WO2022080426A1 - 水晶振動素子および水晶振動子 - Google Patents

水晶振動素子および水晶振動子 Download PDF

Info

Publication number
WO2022080426A1
WO2022080426A1 PCT/JP2021/037940 JP2021037940W WO2022080426A1 WO 2022080426 A1 WO2022080426 A1 WO 2022080426A1 JP 2021037940 W JP2021037940 W JP 2021037940W WO 2022080426 A1 WO2022080426 A1 WO 2022080426A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
convex portion
crystal
thickness
excitation electrode
Prior art date
Application number
PCT/JP2021/037940
Other languages
English (en)
French (fr)
Inventor
俊雄 西村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180069934.9A priority Critical patent/CN116368733A/zh
Priority to DE212021000441.5U priority patent/DE212021000441U1/de
Priority to JP2022557053A priority patent/JPWO2022080426A1/ja
Publication of WO2022080426A1 publication Critical patent/WO2022080426A1/ja
Priority to US18/297,720 priority patent/US20230246632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0509Holders; Supports for bulk acoustic wave devices consisting of adhesive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators

Definitions

  • the present invention relates to a quartz vibrating element and a quartz oscillator.
  • Patent Document 1 has a configuration in which spurious oscillation, which is a vibration occurring at a frequency other than the main vibration, is reduced by flattening the shape of the vibration displacement while changing the mesa thickness ratio of the reverse mesa shape of the excitation electrode. It has been disclosed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a quartz vibration element and a quartz oscillator capable of further reducing spurious oscillation.
  • the crystal vibrating element includes a quartz piece having a main surface defined by a first basic axis and a second basic axis intersecting the first basic axis, and an excitation electrode portion provided on the main surface of the quartz piece.
  • the quartz piece vibrates in the thickness direction and the surface defined by the first basic axis when the direction intersecting the main surface is the thickness direction.
  • the excitation electrode portion is located at the flat plate portion and the electrode end portion of the main surface of the quartz piece, and has a film thickness portion having a film thickness larger than that of the flat plate portion.
  • the 1st convex part as a convex part protruding from the flat plate extending in the axial direction of the 2nd basic axis, and the axial end of the 2nd basic axis on the main surface.
  • a second convex portion as a convex portion protruding from a flat plate portion extending in the axial direction of the first basic axis, and cut in a direction along a surface defined by the first basic axis and the thickness direction of the quartz piece.
  • the cross-sectional area of the first convex portion formed is larger than the cross-sectional area of the second convex portion cut along the plane defined by the second base axis and the thickness direction of the quartz piece.
  • the crystal vibrating element includes a crystal piece having a main surface defined by a first basic axis and a second basic axis intersecting the first basic axis, and an excitation electrode portion provided on the main surface of the crystal piece.
  • the thickness of the quartz piece vibrates on the surface defined by the thickness direction and the first basic axis when the direction intersecting the main surface is defined as the thickness direction when a voltage is applied to the excitation electrode portion.
  • the excitation electrode portion is located at the flat plate portion and the electrode end portion in the direction along the main surface of the quartz piece, and has a film thickness portion having a larger film thickness than the flat plate portion. It is located at the axial end of the first base shaft on the main surface and has a first convex portion as a convex portion extending in the axial direction of the second base shaft.
  • the crystal vibrating element includes a crystal piece having a main surface defined by a first basic axis and a second basic axis intersecting the first basic axis, and an excitation electrode portion provided on the main surface of the crystal piece.
  • the thickness of the quartz piece vibrates in the surface defined by the thickness direction and the first basic axis when the direction intersecting the main surface is defined as the thickness direction when a voltage is applied to the excitation electrode portion.
  • the excitation electrode portion is located at the flat plate portion and the electrode end portion in the direction along the main surface of the quartz piece, and has a film thickness portion having a larger film thickness than the flat plate portion. It is located at the axial end of the second base shaft on the main surface and has a second convex portion as a convex portion extending in the axial direction of the first base shaft.
  • the crystal oscillator according to one aspect of the present invention includes a crystal vibrating element having the above configuration, a base member on which the crystal vibrating element is mounted, and a lid member joined to the base member to seal the crystal vibrating element.
  • spurious oscillation can be further reduced.
  • Each drawing shall be provided with a Cartesian coordinate system consisting of X-axis, Y'axis and Z'axis for convenience to clarify the relationship between each drawing and to help understand the positional relationship of each member.
  • the X-axis, Y'axis and Z'axis correspond to each other in the drawings.
  • the X-axis, Y'axis, and Z'axis correspond to the crystallographic axes of the crystal piece 11 described later, respectively.
  • the X-axis corresponds to the electric axis (polar axis)
  • the Y-axis corresponds to the mechanical axis
  • the Z-axis corresponds to the optical axis.
  • the Y'axis and the Z'axis are axes obtained by rotating the Y axis and the Z axis around the X axis in the direction of the Y axis to the Z axis by 35 degrees 15 minutes ⁇ 1 minute 30 seconds, respectively.
  • the X-axis is an example of the first axis
  • the Y-axis is an example of the second axis
  • the Z-axis is an example of the third axis.
  • the crystal oscillator 1 includes a crystal vibration element 10, a base member 30, a lid member 40, and a joining member 50.
  • the crystal vibrating element 10 is provided between the base member 30 and the lid member 40.
  • the crystal vibrating element 10 includes a flaky crystal piece 11, a first excitation electrode 14a, a second excitation electrode 14b, a first extraction electrode 15a, a second extraction electrode 15b, a first connection electrode 16a, and a first. It is provided with two connection electrodes 16b.
  • the crystal piece 11 is formed by etching a crystal substrate (for example, a crystal wafer) obtained by cutting and polishing a crystal of artificial quartz (Synthetic Quartz Crystal). When a voltage is applied to the first excitation electrode 14a and the second excitation electrode 14b, the crystal piece 11 has the thickness direction and the first of the crystal pieces 11 when the direction intersecting the main surface of the crystal piece 11 is the thickness direction. The thickness sliding vibration that vibrates on the surface defined by the base shaft is performed.
  • 3 and 4 are diagrams for explaining an example of the main surface defined by the first base axis and the second base axis of the quartz piece 11. 3 and 4 show an example of the cut angle of the crystal piece 11 when the main vibration of the crystal piece 11 is the thickness sliding vibration, and if the main vibration of the crystal piece 11 is the thickness sliding vibration. , The present invention may be applied to other cut angles.
  • the axis in which the Z-axis is tilted around the X-axis by a predetermined angle ⁇ is the Z'axis (the Z'axis (the Z'axis)
  • the X axis corresponds to the first base axis
  • the Z'axis corresponds to the second base axis.
  • the first baseline includes, for example, an axis with the X axis slightly tilted around the Z'axis.
  • the second base axis includes an axis in which the Z axis is tilted around the X axis at an angle slightly deviated from a predetermined angle.
  • the cut angle of the crystal piece 11 includes, for example, an AT cut, a BT cut, and a CT cut.
  • the main surface of the AT-cut type crystal piece 11 is, for example, a surface parallel to the surface specified by the Z'axis and the X axis in which the Z axis is tilted by about 35 degrees around the X axis.
  • the AT-cut type crystal piece 11 has, for example, a Z'axis in which the Z-axis is tilted around the X-axis at an angle slightly deviated from about 35 degrees, and the X-axis is slightly tilted around the Z-axis.
  • the plane parallel to the plane specified by the X'axis may be the main plane.
  • the crystal vibrating element 10 using the AT-cut type crystal piece 11 has high frequency stability in a wide temperature range.
  • the main surface of the BT-cut type crystal piece 11 is, for example, a surface parallel to the surface specified by the Z'axis and the X axis in which the Z axis is tilted by about ⁇ 49 degrees around the X axis.
  • the main surface of the CT-cut type crystal piece 11 is, for example, a surface parallel to the surface specified by the Z'axis and the X axis in which the Z axis is tilted by about 38 degrees around the X axis.
  • the axis in which the X-axis is tilted around the Z-axis by a predetermined angle ⁇ is the X'axis (the th-th). 1 tilted axis) (see FIG. 4 (a)), and the axis tilted around the X'axis by a predetermined angle ⁇ is defined as the Z'axis (third tilted axis) (FIG. 4 (b)).
  • the X'axis corresponds to the first axis and the Z'axis corresponds to the second axis.
  • the first base axis includes, for example, an axis in which the X axis is tilted around the Z axis at an angle slightly deviated from a predetermined angle ⁇ .
  • the second base axis includes an axis in which the Z axis is tilted around the X'axis at an angle slightly deviated from a predetermined angle.
  • the cut angle of the crystal piece 11 includes, for example, an SC cut.
  • the SC-cut quartz piece 11 is composed of, for example, an X'axis in which the X-axis is tilted by about 22 degrees around the Z-axis and a Z'axis in which the Z-axis is tilted by about 34 degrees around the X'axis.
  • the plane parallel to the specified plane is the main plane.
  • the AT-cut type crystal piece 11 has a long side direction in which a long side parallel to the X-axis direction extends and a short side direction in which a short side parallel to the Z'axis direction extends. And, it is a plate shape having a thickness direction in which a thickness parallel to the Y'axis direction extends.
  • the first main surface 11A and the second main surface 11B of the crystal piece 11 have a rectangular shape.
  • the crystal vibration element 10 includes an excitation electrode unit 14.
  • the excitation electrode unit 14 includes, for example, a first excitation electrode 14a and a second excitation electrode 14b.
  • the first excitation electrode 14a is provided on the first main surface 11A of the crystal piece 11.
  • the second excitation electrode 14b is provided on the second main surface 11B of the crystal piece 11.
  • the first excitation electrode 14a and the second excitation electrode 14b face each other with the crystal piece 11 interposed therebetween.
  • the first excitation electrode 14a and the second excitation electrode 14b have a rectangular shape and are arranged so as to overlap each other in a plan view.
  • the first excitation electrode 14a and the second excitation electrode 14b are located at the electrode ends in the direction along the first main surface 11A of the quartz piece 11, and have a film thickness portion 14C having a film thickness larger than that of the flat plate portion 14B.
  • the crystal vibrating element 10 has a first extraction electrode 15a and a second extraction electrode 15b.
  • the first extraction electrode 15a is provided on the first main surface 11A of the crystal piece 11.
  • the first extraction electrode 15a electrically connects the first excitation electrode 14a and the first connection electrode 16a.
  • the second extraction electrode 15b is provided on the second main surface 11B of the crystal piece 11.
  • the second extraction electrode 15b electrically connects the second excitation electrode 14b and the second connection electrode 16b.
  • the first connection electrode 16a extends in the + Z'axis direction from the end portion on the ⁇ X axis direction side of the first extraction electrode 15a, is folded back at the end face on the + Z ′ axis direction side of the crystal piece 11, and is the second crystal piece 11. 2
  • the main surface 11B extends in the ⁇ Z ′ axial direction.
  • the first excitation electrode 14a and the base member 30 are electrically connected via the first extraction electrode 15a and the first connection electrode 16a.
  • the second connection electrode 16b extends in the ⁇ Z ′ axis direction from the end portion on the ⁇ X axis direction side of the second extraction electrode 15b, and is folded back at the end face on the ⁇ Z axis direction side of the crystal piece 11 to form the crystal piece 11.
  • the second main surface 11B extends in the + Z'axial direction.
  • the second excitation electrode 14b and the base member 30 are electrically connected via the second extraction electrode 15b and the second connection electrode 16b.
  • the base member 30 is a sintered material such as an insulating ceramic (alumina).
  • a crystal vibrating element 10 is mounted on the upper surface 31A of the base member 30.
  • An external circuit board (not shown) is mounted on the lower surface 31B of the base member 30.
  • the base member 30 includes a first electrode pad 33a, a second electrode pad 33b, a first external electrode 35a, a second external electrode 35b, a third external electrode 35c, a fourth external electrode 35d, and a first conductivity. It includes a property-retaining member 36a and a second conductivity-retaining member 36b.
  • the first electrode pad 33a and the second electrode pad 33b are provided on the upper surface of the base member 30 and are electrically connected to the crystal vibrating element 10.
  • the first external electrode 35a and the second external electrode 35b are provided on the lower surface 31B of the base member 30, and electrically connect an external substrate (not shown) to the crystal oscillator 1.
  • the third external electrode 35c and the fourth external electrode 35d are dummy electrodes provided on the lower surface 31B of the base member 30 and to which an electric signal or the like is not input.
  • the first electrode pad 33a is electrically connected to the first external electrode 35a via the first through electrode 34a that penetrates the base member 30 along the Y'axis direction.
  • the second electrode pad 33b is electrically connected to the second external electrode 35b via the second through electrode 34b that penetrates the base member 30 along the Y'axis direction.
  • the first conductive holding member 36a and the second conductive holding member 36b are cured products of a conductive adhesive containing, for example, a thermosetting resin, a photocurable resin, and the like, and the first conductive holding member 36a and the first conductive holding member 36b.
  • the main component of the conductive holding member 36b is a silicone resin.
  • the first conductive holding member 36a and the second conductive holding member 36b contain conductive particles, and as the conductive particles, for example, metal particles containing silver (Ag) are used.
  • the first conductive holding member 36a and the second conductive holding member 36b electrically connect the crystal vibrating element 10 and the base member 30.
  • the first conductivity holding member 36a joins the first electrode pad 33a and the first connection electrode 16a.
  • the second conductivity holding member 36b joins the second electrode pad 33b and the second connection electrode 16b.
  • the first conductive holding member 36a and the second conductive holding member 36b hold the crystal vibrating element 10 at a distance from the base member 30 so that the crystal vibrating element 10 can be excited.
  • the lid member 40 is joined to the base member 30 and forms an internal space 49 with the base member 30.
  • the crystal vibrating element 10 is housed in the internal space 49.
  • the material of the lid member 40 is not particularly limited, but is made of a conductive material such as metal. Since the lid member 40 is made of a conductive material, the ingress and egress of electromagnetic waves into the internal space 49 is reduced.
  • the joining member 50 joins the tip of the side wall portion of the lid member 40 and the upper surface 31A of the base member 30 to seal the internal space 49. It is desirable that the joining member 50 has a high gas barrier property, and more preferably has a low moisture permeability.
  • the joining member 50 is, for example, a cured product of an adhesive containing an epoxy resin as a main component.
  • the resin-based adhesive constituting the joining member 50 may contain, for example, a vinyl compound, an acrylic compound, a urethane compound, a silicone compound, or the like.
  • the configuration of the excitation electrode portion 14 of the quartz vibration element 10 according to the present embodiment will be described with particular attention to the configuration of the film thickness portion 14C of the excitation electrode portion 14.
  • the film thickness portion 14C of the first excitation electrode 14a will be particularly described for convenience of explanation and understanding of the specification, but the film thickness portion of the second excitation electrode 14b also has the same configuration.
  • the first excitation electrode 14a has, for example, a flat plate portion 14B and a film thickness portion 14C.
  • the flat plate portion 14B has a rectangular shape, for example, and is provided on the first main surface of the crystal piece 11.
  • the film thickness portion 14C includes a first convex portion 14Ca and a second convex portion 14Cb protruding from the upper surface of the flat plate portion 14B.
  • the first convex portion 14Ca and the second convex portion 14Cb are made of, for example, the same material as the flat plate portion 14B in the first excitation electrode 14a.
  • the first convex portion 14Ca and the second convex portion 14Cb may be made of a material different from that of the flat plate portion 14B in the first excitation electrode 14a.
  • the first convex portion 14Ca and the second convex portion 14Cb are made of, for example, an insulating material.
  • the first convex portion 14Ca is located at the end of the first main surface 11A of the crystal piece 11 in the X-axis direction and extends in the Z'axis direction.
  • the first convex portion 14Ca is located, for example, at both ends of the first main surface 11A of the crystal piece 11 in the X-axis direction, and is from one end to the other end of the first main surface 11A of the crystal piece 11 in the Z'axis direction.
  • the second convex portion 14Cb is located at the end of the second main surface 11B of the crystal piece 11 in the Z'axis direction and extends in the X-axis direction.
  • the second convex portion 14Cb is located, for example, at both ends of the second main surface 11B of the crystal piece 11 in the Z'axis direction, and is from one end to the other end of the second main surface 11B of the crystal piece 11 in the X-axis direction.
  • the width Wx of the first convex portion 14Ca is larger than the width Wz of the second convex portion 14Cb.
  • FIGS. 7 to 9. 7 and 8 show the vibration characteristics of the crystal vibration element 10 predicted by using the simulation model of the crystal oscillator 1 according to the present embodiment.
  • the simulation model of the crystal oscillator 1 aluminum is set as the material of the excitation electrode portion 14.
  • the crystal piece 11 has the thickness direction and the first base axis when the direction intersecting the main surface is the thickness direction when a voltage is applied to the excitation electrode portion 14. The thickness sliding vibration that vibrates on the surface specified by.
  • FIG. 7 is a graph showing the electromechanical coupling constant of the crystal vibrating element 10 according to the present embodiment.
  • the electromechanical coupling constant is a coefficient representing the conversion ability between electrical energy and mechanical energy, and the larger the value of this coefficient, the higher the conversion ability between electrical energy and mechanical energy.
  • FIG. 8 is a graph showing the vibration characteristics of the crystal vibration element 10 according to the present embodiment.
  • the vibration characteristic of the crystal vibrating element 10 shows the vibration shape of the crystal vibrating element 10 at the time of thickness sliding vibration.
  • FIG. 9 is a graph showing the vibration characteristics of the crystal vibrating element 10 according to the present embodiment while changing various parameters related to the crystal vibrating element 10.
  • the vertical axis represents the electromechanical coupling constant
  • the horizontal axis represents the ratio of the width Wx of the first convex portion 14Ca to the thickness T of the quartz piece 11.
  • the value of the electromechanical coupling constant is "6.8" in the comparative example corresponding to the case where the first convex portion 14Ca and the second convex portion 14Cb are not provided on the excitation electrode portion 14.
  • the ratio of the width Wx of the first convex portion 14Ca to the thickness T of the crystal piece 11 is determined.
  • the ratio is gradually increased to "0.0", “3.4", “4.6”, and “5.0", and the ratio is "0"
  • the value of the electromechanical coupling constant is "7". It is "0.5”, and the value of the electromechanical coupling constant tends to increase as the ratio increases.
  • the ratio is "4.6”
  • the value of the electromechanical coupling constant becomes the maximum value "7.9".
  • the wavelength of the vibration of the first convex portion 14Ca or the second convex portion 14Cb of the excitation electrode portion 14 is higher than the wavelength of the vibration of the flat plate portion 14B of the excitation electrode portion 14 during the thickness sliding vibration of the crystal piece 11. , Relatively short. Then, the strain generated in the first convex portion 14Ca or the second convex portion 14Cb of the excitation electrode portion 14 becomes relatively larger than the strain generated in the flat plate portion 14B of the excitation electrode portion 14.
  • the strain is concentrated on the first convex portion 14Ca or the second convex portion 14Cb of the excitation electrode portion 14, and the strain on the flat plate portion 14B of the excitation electrode portion 14 is relaxed and displaced. Since the amount becomes uniform, the electromechanical coupling constant of the crystal vibrating element 10 increases.
  • the crystal vibrating element 10 satisfies the condition that the width Wx of the first convex portion 14Ca is larger than the width Wz of the second convex portion 14Cb. That is, since the crystal piece 11 is displaced in the X-axis direction during the thickness sliding vibration of the crystal piece 11, the strain generated in the excitation electrode portion 14 is larger in the X-axis direction than in the Z'axis direction. .. Therefore, the optimum value of the width Wx of the first convex portion 14Ca for alleviating the distortion in the X-axis direction is larger than the optimum value of the width Wz of the second convex portion 14Cb for alleviating the distortion in the Z'axis direction. ..
  • FIG. 8 is a diagram showing the amount of displacement of the crystal vibrating element 10 for each position in the Z-axis direction.
  • a comparative example corresponding to the case where the crystal vibrating element 10 is not provided with the first convex portion 14Ca and the second convex portion 14Cb, and the first convex portion 14Ca and the first convex portion 14Ca on the crystal piece 11 under the above conditions.
  • the crystal vibrating element 10 of the embodiment has a flat vibration shape at the time of thickness sliding vibration as compared with the crystal vibrating element 10 of the comparative example, and other than the main vibration.
  • Spurious oscillation which is a vibration that occurs at the frequency of, is suitably reduced.
  • the thickness T of the crystal piece 11 and the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 are as various parameters related to the crystal vibrating element 10 shown in FIG. 9D.
  • the case where the thickness Tf of the film thickness portion 14C of the excitation electrode portion 14 is changed will be described as an example.
  • the thickness Tf corresponds to the amount of protrusion of the film thickness portion 14C from the flat plate portion 14B of the excitation electrode portion 14.
  • the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.05”, and the excitation electrode portion 14 of the excitation electrode portion 14 with respect to the thickness T of the crystal piece 11 It is a graph when the ratio of the thickness Tf of the film thickness part 14C is "0.02".
  • the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.10”, and the film thickness of the crystal piece 11 is relative to the thickness T of the crystal piece 11. It is a graph when the ratio of the thickness Tf of the thick portion 14C is "0.03".
  • the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.20”, and the excitation electrode portion 14 of the excitation electrode portion 14 with respect to the thickness T of the crystal piece 11 It is a graph when the ratio of the thickness of the film thickness part 14C is "0.06".
  • the condition regarding the width Wx of the first convex portion 14Ca having the maximum electromechanical coupling constant and the condition relating to the width Wz of the second convex portion 14Cb having the maximum electromechanical coupling constant were compared.
  • the width Wx of the first convex portion 14Ca is larger than the width Wz of the second convex portion 14Cb.
  • the Y-axis and the Z-axis are inclined by a predetermined angle around the X-axis, and the Y-axis and Z are A crystal piece 11 having a first main surface 11A and a second main surface 11B, which is a'axis and is a surface parallel to the plane specified by the X-axis and the Z'axis, and the first main surface 11A and the crystal piece 11
  • a vibration electrode portion 14 provided on the second main surface 11B is provided, and the crystal piece 11 has a thickness direction when the direction intersecting the main surface is defined as the thickness direction when a voltage is applied to the excitation electrode portion 14.
  • Thickness sliding vibration is performed on the surface defined by the first base axis, and the excitation electrode portion 14 is located at the electrode end portion in the direction along the first main surface 11A and the second main surface 11B of the crystal piece 11. It has a film thickness portion 14C having a film thickness larger than that of the flat plate portion 14B, and the film thickness portion 14C is located at the end of the first main surface 11A and the second main surface 11B in the axial direction of the X axis, and is located on the Z'axis.
  • a first convex portion 14Ca extending in the axial direction of the above, and a second convex portion 14Cb located at the end of the first main surface 11A and the second main surface 11B in the axial direction of the Z'axis and extending in the axial direction of the X axis.
  • the width Wx of the first convex portion 14Ca is larger than the width Wz of the second convex portion 14Cb.
  • the width Wx of the first convex portion 14Ca is equal to or less than the width Wz of the second convex portion 14Cb.
  • the strain is concentrated on the first convex portion 14Ca or the second convex portion 14Cb of the excitation electrode portion 14 during the thickness sliding vibration of the quartz piece 11, and the strain on the flat plate portion 14B of the excitation electrode portion 14 is relaxed.
  • the amount of displacement becomes uniform. Therefore, since the value of the electromechanical coupling constant corresponding to the efficiency of the piezoelectric effect in the crystal vibrating element 10 becomes large, spurious oscillation, which is vibration occurring at a frequency other than the main vibration, can be reduced.
  • the first excitation electrode 14a has, for example, a flat plate portion 14B and a film thickness portion 14C.
  • the flat plate portion 14B has a rectangular shape, for example, and is provided on the first main surface 11A of the crystal piece 11.
  • the film thickness portion 14C protrudes from the upper surface of the flat plate portion 14B, and includes, for example, the first convex portion 14Ca.
  • the first convex portion 14Ca is located at the end of the first main surface 11A of the crystal piece 11 in the X-axis direction and extends in the Z'axis direction.
  • the first convex portion 14Ca is located, for example, at both ends of the first main surface 11A of the crystal piece 11 in the X-axis direction, and is from one end to the other end of the first main surface 11A of the crystal piece 11 in the Z'axis direction. Extends to.
  • FIGS. 12 and 13 show the vibration characteristics of the crystal vibration element 10 predicted by using the simulation model of the crystal oscillator 1 according to the present embodiment.
  • the simulation model of the crystal oscillator 1 aluminum is set as the material of the excitation electrode portion 14.
  • the crystal piece 11 has the thickness direction and the first base axis when the direction intersecting the main surface is the thickness direction when a voltage is applied to the excitation electrode portion 14.
  • FIG. 12 is a graph showing the electromechanical coupling constant of the crystal oscillator 1 according to the present embodiment.
  • FIG. 13 is a graph showing the vibration characteristics of the crystal oscillator 1 according to the present embodiment.
  • the vibration characteristics of the crystal oscillator 1 indicate the vibration shape of the crystal oscillator 1 at the time of thickness slip vibration.
  • the example shown in FIG. 12 shows the transition of the change in the electromechanical coupling constant of the crystal oscillator 1 when the width Wx of the first convex portion 14Ca is changed.
  • the vertical axis represents the electromechanical coupling constant
  • the horizontal axis represents the ratio of the width Wx of the first convex portion 14Ca to the thickness T of the quartz piece 11.
  • the value of the electromechanical coupling constant is "6.8" in the comparative example corresponding to the case where the first convex portion 14Ca is not provided on the crystal piece 11.
  • the ratio of the width Wx of the first convex portion 14Ca to the thickness T of the crystal piece 11 is "3.8", "4".
  • the ratio is "4.2” when the ratio is gradually increased to ".2”, “5.0”, and "7.0", the value of the electromechanical coupling constant is the maximum value "7.3". It becomes.
  • the wavelength of the vibration of the first convex portion 14Ca of the excitation electrode portion 14 is relatively shorter than the wavelength of the vibration of the flat plate portion 14B of the excitation electrode portion 14 during the thickness sliding vibration of the crystal piece 11. .. Then, the strain generated in the first convex portion 14Ca of the excitation electrode portion 14 becomes relatively larger than the strain generated in the flat plate portion 14B of the excitation electrode portion 14.
  • FIG. 13 is a diagram showing the amount of displacement of the crystal vibrating element 10 for each position in the X-axis direction.
  • a comparative example corresponding to the case where the first convex portion 14Ca is not provided on the crystal piece 11 and an implementation corresponding to the case where the first convex portion 14Ca is provided on the crystal piece 11 under the above conditions. It is shown with an example. As is clear from the example shown in FIG.
  • the crystal vibrating element 10 of the embodiment has a flat vibration shape at the time of thickness sliding vibration as compared with the crystal vibrating element 10 of the comparative example, and other than the main vibration.
  • Spurious oscillation which is a vibration that occurs at the frequency of, is suitably reduced.
  • the Y-axis and the Z-axis are inclined by a predetermined angle around the X-axis, and the Y-axis and Z are A crystal piece 11 having a first main surface 11A and a second main surface 11B, which is a'axis and is a surface parallel to the plane specified by the X-axis and the Z'axis, and the first main surface 11A and the crystal piece 11
  • a vibration electrode portion 14 provided on the second main surface 11B is provided, and the crystal piece 11 has a thickness direction when the direction intersecting the main surface is defined as the thickness direction when a voltage is applied to the excitation electrode portion 14.
  • the excitation electrode portion 14 is located at the electrode end portion in the direction along the first main surface 11A and the second main surface 11B of the crystal piece 11 by performing a thickness sliding vibration that vibrates on the surface defined by the first base shaft.
  • the film thickness portion 14C has a film thickness portion 14C having a film thickness larger than that of the flat plate portion 14B, and the film thickness portion 14C is located at the axial end of the X axis on the first main surface 11A and the second main surface 11B, and is Z'. It has a first convex portion 14Ca extending in the axial direction of the axis.
  • the first convex portion of the exciting electrode portion 14 is subjected to the thickness sliding vibration of the crystal piece 11 as compared with the case where the crystal vibrating element 10 does not have the first convex portion 14Ca.
  • the strain is concentrated on the portion 14Ca, the strain on the flat plate portion 14B of the excitation electrode portion 14 is relaxed, and the displacement amount becomes uniform. Therefore, since the value of the electromechanical coupling constant corresponding to the efficiency of the piezoelectric effect in the crystal vibrating element 10 becomes large, spurious oscillation, which is vibration occurring at a frequency other than the main vibration, can be reduced.
  • the first excitation electrode 14a has, for example, a flat plate portion 14B and a film thickness portion 14C.
  • the flat plate portion 14B has a rectangular shape, for example, and is provided on the first main surface 11A of the crystal piece 11.
  • the film thickness portion 14C protrudes from the upper surface of the flat plate portion 14B, and includes, for example, a second convex portion 14Cb.
  • the second convex portion 14Cb is located at the end of the second main surface 11B of the crystal piece 11 in the Z'axis direction and extends in the X-axis direction.
  • the second convex portion 14Cb is located, for example, at both ends of the second main surface 11B of the crystal piece 11 in the Z'axis direction, and is from one end to the other end of the second main surface 11B of the crystal piece 11 in the X-axis direction. Extends to.
  • FIGS. 16 and 17 show the vibration characteristics of the crystal vibration element 10 predicted by using the simulation model of the crystal oscillator 1 according to the present embodiment.
  • the simulation model of the crystal oscillator 1 aluminum is set as the material of the excitation electrode portion 14.
  • the crystal piece 11 has the thickness direction and the first base axis when the direction intersecting the main surface is the thickness direction when a voltage is applied to the excitation electrode portion 14.
  • FIG. 16 is a graph showing the electromechanical coupling constant of the crystal vibrating element 10 according to the present embodiment.
  • FIG. 17 is a graph showing the vibration characteristics of the crystal vibration element 10 according to the present embodiment.
  • the vibration characteristic of the crystal vibrating element 10 shows the vibration shape of the crystal vibrating element 10 at the time of thickness sliding vibration.
  • FIG. 16 shows the transition of the change in the electromechanical coupling constant of the crystal vibrating element 10 when the width Wz of the second convex portion 14Cb is changed.
  • the vertical axis represents the electromechanical coupling constant
  • the horizontal axis represents the ratio of the width Wz of the second convex portion 14Cb to the thickness T of the quartz piece 11.
  • the value of the electromechanical coupling constant is "6.8" in the comparative example corresponding to the case where the second convex portion 14Cb is not provided on the crystal piece 11.
  • the ratio of the width Wz of the second convex portion 14Cb to the thickness T of the crystal piece 11 is "2.8", "3".
  • the ratio is "3.4” when the ratio is gradually increased to "0.4", “4.0”, and "7.0”
  • the maximum value of the electromechanical coupling constant is "7.4". Will be.
  • the wavelength of the vibration of the second convex portion 14Cb of the excitation electrode portion 14 is relatively shorter than the wavelength of the vibration of the flat plate portion 14B of the excitation electrode portion 14 during the thickness sliding vibration of the crystal piece 11. .. Then, the strain generated in the second convex portion 14Cb of the excitation electrode portion 14 becomes relatively larger than the strain generated in the flat plate portion 14B of the excitation electrode portion 14.
  • FIG. 15 is a diagram showing the amount of displacement of the crystal vibrating element 10 for each position in the Z-axis direction.
  • a comparative example corresponding to the case where the second convex portion 14Cb is not provided on the crystal piece 11 and an implementation corresponding to the case where the second convex portion 14Cb is provided on the crystal piece 11 under the above conditions. It is shown with an example. As is clear from the example shown in FIG.
  • the crystal vibrating element 10 of the embodiment has a flat vibration shape at the time of thickness sliding vibration as compared with the crystal vibrating element 10 of the comparative example, and other than the main vibration.
  • Spurious oscillation which is a vibration that occurs at the frequency of, is suitably reduced.
  • the Y-axis and the Z-axis are inclined by a predetermined angle around the X-axis, and the Y-axis and Z are A crystal piece 11 having a first main surface 11A and a second main surface 11B, which is a'axis and is a surface parallel to the plane specified by the X-axis and the Z'axis, and the first main surface 11A and the crystal piece 11
  • a vibration electrode portion 14 provided on the second main surface 11B is provided, and the crystal piece 11 has a thickness direction when the direction intersecting the main surface is defined as the thickness direction when a voltage is applied to the excitation electrode portion 14.
  • the excitation electrode portion 14 is located at the electrode end portion in the direction along the first main surface 11A and the second main surface 11B of the crystal piece 11 by performing a thickness sliding vibration that vibrates on the surface defined by the first base shaft.
  • the film thickness portion 14C has a film thickness portion 14C having a film thickness larger than that of the flat plate portion 14B, and the film thickness portion 14C is located at the end portion in the second main surface 11B of the crystal piece 11 in the Z'axis direction and extends in the X-axis direction. It has a second convex portion 14Cb.
  • the second convex portion of the exciting electrode portion 14 is subjected to the thickness sliding vibration of the crystal piece 11 as compared with the case where the crystal vibrating element 10 does not have the second convex portion 14Cb.
  • the strain is concentrated on the portion 14Cb, and the strain on the flat plate portion 14B of the excitation electrode portion 14 is relaxed and becomes uniform. Therefore, since the value of the electromechanical coupling constant corresponding to the efficiency of the piezoelectric effect in the crystal vibrating element 10 becomes large, spurious oscillation, which is vibration occurring at a frequency other than the main vibration, can be reduced.
  • FIGS. 18 to 20 show the vibration characteristics of the crystal vibration element 10 predicted by using the simulation model of the crystal oscillator 1 according to the present embodiment.
  • the simulation model of the crystal oscillator 1 aluminum is set as the material of the excitation electrode portion 14.
  • the crystal piece 11 has the thickness direction and the first base axis when the direction intersecting the main surface is the thickness direction when a voltage is applied to the excitation electrode portion 14.
  • FIG. 18 is a graph showing the electromechanical coupling constants of the crystal vibrating element 10 according to the present embodiment.
  • the electromechanical coupling constant is a coefficient representing the conversion ability between electrical energy and mechanical energy, and the larger the value of this coefficient, the higher the conversion ability between electrical energy and mechanical energy.
  • 19 and 20 are graphs showing the vibration characteristics of the crystal vibration element 10 according to the present embodiment.
  • the vibration characteristic of the crystal vibrating element 10 shows the vibration shape of the crystal vibrating element 10 at the time of thickness sliding vibration.
  • the width Wx of the first convex portion 14Ca and the width Wz of the second convex portion 14Cb are fixed to "4.5", and the protrusion amount Tfz of the second convex portion 14Cb with respect to the thickness T of the crystal piece 11
  • the vertical axis represents the electromechanical coupling constant
  • the horizontal axis represents the ratio of the protrusion amount Tfx of the first convex portion 14Ca to the thickness T of the quartz piece 11.
  • the value of the electromechanical coupling constant is "6.8" in the comparative example corresponding to the case where the first convex portion 14Ca and the second convex portion 14Cb are not provided on the excitation electrode portion 14.
  • the ratio of the protrusion amount Tfx of the first convex portion 14Ca to the thickness T of the crystal piece 11 is set.
  • the wavelength of the vibration of the first convex portion 14Ca or the second convex portion 14Cb of the excitation electrode portion 14 is higher than the wavelength of the vibration of the flat plate portion 14B of the excitation electrode portion 14 during the thickness sliding vibration of the crystal piece 11. , Relatively short. Then, the strain generated in the first convex portion 14Ca or the second convex portion 14Cb of the excitation electrode portion 14 becomes relatively larger than the strain generated in the flat plate portion 14B of the excitation electrode portion 14.
  • the strain is concentrated on the first convex portion 14Ca or the second convex portion 14Cb of the excitation electrode portion 14, and the strain on the flat plate portion 14B of the excitation electrode portion 14 is relaxed and displaced. Since the amount becomes uniform, the electromechanical coupling constant of the crystal vibrating element 10 increases.
  • the crystal vibrating element 10 has a protrusion amount of the first convex portion 14Ca on the premise that the width Wx of the first convex portion 14Ca and the width Wz of the second convex portion 14Cb are the same.
  • the condition that Tfx is larger than the protrusion amount Tfz of the second convex portion 14Cb is satisfied. That is, since the crystal piece 11 is displaced in the X-axis direction during the thickness sliding vibration of the crystal piece 11, the strain generated in the excitation electrode portion 14 is larger in the X-axis direction than in the Z'axis direction. ..
  • the optimum value of the protrusion amount Tfx of the first convex portion 14Ca for alleviating the distortion in the X-axis direction is larger than the optimum value of the protrusion amount Tfz of the second convex portion 14Cb for alleviating the distortion in the Z'axis direction. Is also big.
  • FIGS. 19 and 20 in the example shown in FIG. 18, the protrusion of the first convex portion 14Ca with respect to the thickness T of the quartz piece 11 so that the value of the electromechanical coupling constant becomes the maximum value “8.0”.
  • the vibration characteristics of the crystal vibrating element 10 when the ratio of the quantity Tfx is set are shown.
  • FIG. 19 is a diagram showing the amount of displacement of the crystal vibrating element 10 for each position in the X-axis direction.
  • FIG. 20 is a diagram showing the amount of displacement of the crystal vibrating element 10 for each position in the Z-axis direction. In the examples shown in FIGS.
  • FIGS. 21 and 22 show the vibration characteristics of the crystal vibration element 10 predicted by using the simulation model of the crystal oscillator 1 according to the present embodiment.
  • the simulation model of the crystal oscillator 1 aluminum is set as the material of the excitation electrode portion 14.
  • the crystal piece 11 has the thickness direction and the first base axis when the direction intersecting the main surface is the thickness direction when a voltage is applied to the excitation electrode portion 14.
  • FIG. 21 is a graph showing the electromechanical coupling constant of the crystal oscillator 1 according to the present embodiment.
  • FIG. 22 is a graph showing the vibration characteristics of the crystal oscillator 1 according to the present embodiment.
  • the vibration characteristics of the crystal oscillator 1 indicate the vibration shape of the crystal oscillator 1 at the time of thickness slip vibration.
  • the example shown in FIG. 21 shows the transition of the change in the electromechanical coupling constant of the crystal oscillator 1 when the ratio of the protrusion amount Tfx of the first convex portion 14Ca to the thickness T of the crystal piece 11 is changed.
  • the vertical axis represents the electromechanical coupling constant
  • the horizontal axis represents the ratio of the protrusion amount Tfx of the first convex portion 14Ca to the thickness T of the quartz piece 11.
  • the value of the electromechanical coupling constant is "6.8" in the comparative example corresponding to the case where the first convex portion 14Ca is not provided on the crystal piece 11.
  • the ratio of the protrusion amount Tfx of the first convex portion 14Ca to the thickness T of the crystal piece 11 is "0.010", ".
  • the maximum value of the electromechanical coupling constant is "7.5" when the ratio is "0.018”.
  • the wavelength of the vibration of the first convex portion 14Ca of the excitation electrode portion 14 is relatively shorter than the wavelength of the vibration of the flat plate portion 14B of the excitation electrode portion 14 during the thickness sliding vibration of the crystal piece 11. .. Then, the strain generated in the first convex portion 14Ca of the excitation electrode portion 14 becomes relatively larger than the strain generated in the flat plate portion 14B of the excitation electrode portion 14.
  • FIG. 22 is a diagram showing the amount of displacement of the crystal vibrating element 10 for each position in the X-axis direction.
  • a comparative example corresponding to the case where the first convex portion 14Ca is not provided on the crystal piece 11 and an implementation corresponding to the case where the first convex portion 14Ca is provided on the crystal piece 11 under the above conditions. It is shown with an example.
  • the crystal vibrating element 10 of the embodiment has a flat vibration shape at the time of thickness sliding vibration as compared with the crystal vibrating element 10 of the comparative example, and other than the main vibration.
  • Spurious oscillation which is a vibration that occurs at the frequency of, is suitably reduced.
  • FIGS. 23 and 24 show the vibration characteristics of the crystal vibration element 10 predicted by using the simulation model of the crystal oscillator 1 according to the present embodiment.
  • the simulation model of the crystal oscillator 1 aluminum is set as the material of the excitation electrode portion 14.
  • the crystal piece 11 has the thickness direction and the first base axis when the direction intersecting the main surface is the thickness direction when a voltage is applied to the excitation electrode portion 14.
  • FIG. 23 is a graph showing the electromechanical coupling constant of the crystal vibrating element 10 according to the present embodiment.
  • FIG. 24 is a graph showing the vibration characteristics of the crystal vibration element 10 according to the present embodiment.
  • the vibration characteristic of the crystal vibrating element 10 shows the vibration shape of the crystal vibrating element 10 at the time of thickness sliding vibration.
  • the example shown in FIG. 23 shows the transition of the change in the electromechanical coupling constant of the crystal vibrating element 10 when the ratio of the protrusion amount Tfz of the second convex portion 14Cb to the thickness T of the crystal piece 11 is changed.
  • the vertical axis represents the electromechanical coupling constant
  • the horizontal axis represents the ratio of the protrusion amount Tfz of the second convex portion 14Cb to the thickness T of the quartz piece 11.
  • the value of the electromechanical coupling constant is "7.5" in the comparative example corresponding to the case where the second convex portion 14Cb is not provided on the crystal piece 11.
  • the ratio of the protrusion amount Tfz of the second convex portion 14Cb to the thickness T of the crystal piece 11 is "0.01", ".
  • the maximum value of the electromechanical coupling constant is "7.5" when the ratio is "0.013".
  • the wavelength of the vibration of the second convex portion 14Cb of the excitation electrode portion 14 is relatively shorter than the wavelength of the vibration of the flat plate portion 14B of the excitation electrode portion 14 during the thickness sliding vibration of the crystal piece 11. .. Then, the strain generated in the second convex portion 14Cb of the excitation electrode portion 14 becomes relatively larger than the strain generated in the flat plate portion 14B of the excitation electrode portion 14.
  • FIG. 24 is a diagram showing the amount of displacement of the crystal vibrating element 10 for each position in the Z-axis direction.
  • FIG. 24 there is a comparative example corresponding to the case where the second convex portion 14Cb is not provided on the crystal piece 11, and an implementation corresponding to the case where the second convex portion 14Cb is provided on the crystal piece 11 under the above conditions. It is shown with an example.
  • the crystal vibrating element 10 of the embodiment has a flat vibration shape during the thickness sliding vibration as compared with the crystal vibrating element 10 of the comparative example, and other than the main vibration.
  • Spurious oscillation which is a vibration that occurs at the frequency of, is suitably reduced.
  • the thickness T of the crystal piece 11 the thickness Te of the flat plate portion 14B of the excitation electrode portion 14, and the film of the excitation electrode portion 14
  • the thickness Tf corresponds to the amount of protrusion of the film thickness portion 14C from the flat plate portion 14B of the excitation electrode portion 14.
  • the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.05”, and the excitation electrode portion 14 of the excitation electrode portion 14 with respect to the thickness T of the crystal piece 11 It is a graph when the ratio of the protrusion amount Tfz of the 2nd convex portion 14Cb is "0.013".
  • the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.10”, and the excitation electrode portion 14 of the excitation electrode portion 14 with respect to the thickness T of the crystal piece 11 It is a graph when the ratio of the protrusion amount Tfz of the 2nd convex portion 14Cb is "0.016".
  • the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.20”, and the excitation electrode portion 14 of the excitation electrode portion 14 with respect to the thickness T of the crystal piece 11
  • the condition regarding the protrusion amount Tfx of the first convex portion 14Ca having the maximum electromechanical coupling constant and the condition relating to the protrusion amount Tfz of the second convex portion 14Cb having the maximum electromechanical coupling constant are set.
  • the protrusion amount Tfx of the first convex portion 14Ca is larger than the protrusion amount Tfz of the second convex portion 14Cb.
  • FIGS. 26 (a) to 26 (c) as various parameters related to the crystal vibrating element 10, the thickness T of the crystal piece 11, the thickness Te of the flat plate portion 14B of the excitation electrode portion 14, and the film thickness portion of the excitation electrode portion 14
  • FIG. 26A is a graph when the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 is “0.05 ⁇ m”.
  • FIG. 26B is a graph when the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 is “0.10 ⁇ m”.
  • FIG. 26C is a graph when the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 is “0.20 ⁇ m”.
  • the condition regarding the width Wx of the first convex portion 14Ca having the maximum electromechanical coupling constant and the condition relating to the width Wz of the second convex portion 14Cb having the maximum electromechanical coupling constant were compared.
  • the width Wx of the first convex portion 14Ca is larger than the width Wz of the second convex portion 1414Cb.
  • the width Wx of the first convex portion 14Ca and the width Wb of the second convex portion 14Cb that maximize the electromechanical coupling constant become smaller.
  • the thickness T of the crystal piece 11, the thickness Te of the flat plate portion 14B of the excitation electrode portion 14, and the thickness Tf of the film thickness portion 14C of the excitation electrode portion 14 are changed as various parameters related to the crystal vibration element 10.
  • the vertical axis indicates the ratio of the total cross-sectional area of the flat plate portion 14B and the film thickness portion 14C of the excitation electrode portion 14 to the cross-sectional area of the flat plate portion 14B of the excitation electrode portion 14, and the horizontal axis is , The ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is shown.
  • the width Wx of the first convex portion 14Ca or the width Wz of the second convex portion 14Cb is fixed, and the ratio of the protrusion amount Tfx of the first convex portion 14Ca to the thickness T of the crystal piece 11 or the first 2
  • the transition of the change of the electromechanical coupling constant of the crystal oscillator 1 when the ratio of the protrusion amount Tfz of the convex portion 14Cb is changed is shown.
  • the vertical axis represents the electromechanical coupling constant
  • the horizontal axis represents the ratio of the protrusion amount Tfx of the first convex portion 14Ca to the thickness T of the quartz piece 11.
  • the value of the electromechanical coupling constant is "6.” in that the value of the electromechanical coupling constant is “6. 8 ”.
  • the first convex portion 14Ca is provided on the excitation electrode portion 14
  • the second convex portion 14Cb is provided on the excitation electrode portion 14
  • the value "6.8" of the electromechanical coupling constant corresponding to the case where it is not provided.
  • the predetermined condition is, for example, that the electromechanical coupling constant of the crystal oscillator 1 is equal to or higher than the case where the crystal oscillator 1 is not provided with the first convex portion 14Ca and the second convex portion 14Cb, and the effect of increasing the electromechanical coupling constant is satisfied. Is established when is obtained.
  • the graph when the width Wx of the first convex portion 14Ca of the excitation electrode portion 14 is “3.5 ( ⁇ m)”, “4.5 ( ⁇ m)”, and “6.0 ( ⁇ m)” is shown. Has been done.
  • the graph when the width Wz of the second convex portion 14Cb of the excitation electrode portion 14 is "3.5 ( ⁇ m)", “4.5 ( ⁇ m)", and "6.0 ( ⁇ m)" is shown. Has been done.
  • the transition of the change of the coefficient A of the function is shown.
  • the larger the ratio of the width Wx of the first convex portion 14Ca of the excitation electrode portion 14 or the width Wz of the second convex portion 14Cb to the thickness T of the crystal piece 11 the more the linear function of the linear function.
  • the coefficient A becomes smaller.
  • the above-mentioned primary when the ratio of the width Wx of the first convex portion 14Ca of the excitation electrode portion 14 or the ratio of the width Wz of the second convex portion 14Cb to the thickness T of the crystal piece 11 is changed.
  • the transition of the change of the coefficient B of the function is shown.
  • the larger the ratio of the width Wx of the first convex portion 14Ca of the excitation electrode portion 14 or the width Wz of the second convex portion 14Cb to the thickness T of the crystal piece 11 the more the linear function of the linear function.
  • the coefficient B becomes smaller.
  • the change in the optimum value of Tfx / T that maximizes the electromechanical coupling constant when the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is changed. It shows the transition.
  • the graph when the width Wx of the first convex portion 14Ca of the excitation electrode portion 14 is “3.5 ( ⁇ m)”, “4.5 ( ⁇ m)”, and “6.0 ( ⁇ m)” is shown. Has been done.
  • the larger the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the quartz piece 11 the larger the optimum value of Tfx / T at which the electromechanical coupling constant becomes maximum.
  • the optimum value of Tfx / T that maximizes the electromechanical coupling constant is a linear function "Ax (Ax)" when the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is used as a variable. It is represented by "Te / T) + B".
  • the change in the optimum value of Tfz / T that maximizes the electromechanical coupling constant when the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is changed. It shows the transition.
  • the graph when the width Wz of the second convex portion 14Cb of the excitation electrode portion 14 is "3.5 ( ⁇ m)", “4.5 ( ⁇ m)", and "6.0 ( ⁇ m)" is shown.
  • the larger the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the quartz piece 11 the larger the optimum value of Tfz / T at which the electromechanical coupling constant becomes maximum.
  • the optimum value of Tfz / T that maximizes the electromechanical coupling constant is a linear function “A ⁇ (A ⁇ (. It is represented by "Te / T) + B".
  • the example shown in FIG. 37 shows the transition of the change in the electromechanical coupling constant when the cross-sectional area of the first convex portion 14Ca cut along the protruding direction of the first convex portion 14Ca is changed.
  • the ratio of the thickness Tf of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is "0.015”, "0.020", "0.025”, "0.030”.
  • the graph of is shown. In this graph, in any case, the maximum value of the cross-sectional area of the first convex portion from which the effect of increasing the electromechanical coupling constant cannot be obtained is substantially constant.
  • the cross-sectional area Sfx of the first convex portion 14Ca of the excitation electrode portion 14 with respect to the thickness T of the crystal piece 11 (cut in the direction along the surface defined by the first base axis and the thickness direction of the crystal piece 11).
  • Second convex portion 14Cb cut along a plane defined by the ratio of the cross-sectional area of the first convex portion 14Ca or the cross-sectional area Sfz of the second convex portion 14Cb (the thickness direction of the second base axis and the crystal piece 11).
  • the maximum value of the cross-sectional area of the first convex portion and the second convex portion from which the effect of increasing the electromechanical coupling constant cannot be obtained is the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the quartz piece 11. Is a variable, it is represented by a linear function "A ⁇ (Te / T) + B".
  • the graph in the case where the ratio of the protrusion amount Tfx of the first convex portion 14Ca of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.015”, “0.020”, and “0.030” is shown. It is shown.
  • the optimum value of Wx / T that maximizes the electromechanical coupling constant is a linear function "Ax (Ax)" when the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is used as a variable. It is represented by "Te / T) + B".
  • the graph in the case where the ratio of the protrusion amount Tfz of the second convex portion 14Cb of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.015”, “0.020”, and “0.030” is shown. It is shown.
  • FIGS. 43 (a) to 43 (c) as various parameters related to the crystal vibrating element 10, the thickness T of the crystal piece 11, the thickness Te of the flat plate portion 14B of the excitation electrode portion 14, and the film thickness portion of the excitation electrode portion 14
  • the thickness Tf of 14C corresponds to the amount of protrusion of the film thickness portion 14C from the flat plate portion 14B of the excitation electrode portion 14.
  • FIG. 43A is a graph when the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.05”.
  • FIG. 43B is a graph when the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.10”.
  • FIG. 43C is a graph when the ratio of the thickness Te of the flat plate portion 14B of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is “0.20”.
  • the condition regarding the ratio of the cross-sectional area of the first convex portion 14Ca having the maximum electromechanical coupling constant and the condition relating to the ratio of the cross-sectional area of the second convex portion 14Cb having the maximum electromechanical coupling constant is larger than the cross-sectional area of the second convex portion 14Cb.
  • the vibration state of the crystal oscillator 1 when the ratio of the cross-sectional area Sfz of the second convex portion 14Cb to the cross-sectional area Sfx of the first convex portion 14Ca of the excitation electrode portion 14 is changed is shown.
  • the transition of the change of the Q value which is a parameter is shown.
  • the ratio of the cross-sectional area Sfx of the first convex portion 14Ca of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is "0.06", "0.08", "0.10", "0.12”.
  • the graph in the case of " is shown. In this graph, in any case, when the value of Sfz / Sfx exceeds "1.0", the Q value drops sharply.
  • the vibration characteristics of the crystal oscillator 1 can be improved by making the cross-sectional area Sfx of the first convex portion 14Ca of the excitation electrode portion 14 larger than the cross-sectional area Sfz of the second convex portion 14Cb.
  • Q is a parameter indicating the vibration state of the crystal oscillator 1 when the ratio of the width Wz of the second convex portion 14Cb of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is changed. It shows the transition of the change of the value.
  • the ratio of the width Wx of the first convex portion 14Ca of the excitation electrode portion 14 to the thickness T of the crystal piece 11 is "1.0", "2.0", “3.0", "4.3".
  • the graph for the case of is shown. In this graph, in any case, when the width Wz of the second convex portion 14Cb of the excitation electrode portion 14 becomes larger than the width Wx of the first convex portion 14Ca, the Q value drops sharply. Therefore, the vibration characteristics of the crystal oscillator 1 can be improved by making the width Wx of the first convex portion 14Ca of the excitation electrode portion 14 larger than the width Wz of the second convex portion 14Cb.
  • a quartz piece having a main surface defined by a first basic axis and a second basic axis intersecting the first basic axis, and an exciting electrode portion provided on the main surface of the quartz piece are provided.
  • the quartz piece undergoes thickness sliding vibration that vibrates in the surface defined by the thickness direction and the first basic axis when the direction intersecting the main surface is the thickness direction, and the quartz piece is excited.
  • the electrode portion is located at the flat plate portion and the electrode end portion in the direction along the main surface of the quartz piece, and has a film thickness portion having a film thickness larger than that of the flat plate portion.
  • the first convex portion as a convex portion protruding from the flat plate portion extending in the axial direction of the second basic axis and the first convex portion located at the axial end of the second basic axis on the main surface. It has a second convex portion as a convex portion protruding from a flat plate portion extending in the axial direction of one basic axis, and a first convex portion cut along a surface defined by the first basic axis and the thickness direction of the quartz piece.
  • a quartz vibrating element is provided in which the cross-sectional area of the portion is larger than the cross-sectional area of the second convex portion cut along the plane defined by the second base axis and the thickness direction of the quartz piece.
  • the material of the first convex portion and the second convex portion is aluminum, and the larger the ratio of the thickness of the flat plate portion to the thickness of the quartz piece, the more the vibration characteristic of the quartz vibrating element is a predetermined condition.
  • a quartz vibrating element in which the maximum value of the cross-sectional area of the first convex portion and the second convex portion satisfying the above conditions is increased.
  • the maximum value of the cross-sectional area of the first convex portion and the second convex portion where the vibration characteristics of the quartz vibrating element satisfy a predetermined condition is a variable of the ratio of the thickness of the flat plate portion to the thickness of the quartz piece.
  • a quartz vibration element represented by a linear function is provided.
  • the width of the first convex portion in the direction intersecting the protruding direction of the first convex portion is larger than the width of the second convex portion in the direction intersecting the protruding direction of the second convex portion.
  • a crystal vibrating element is provided.
  • the material of the first convex portion and the second convex portion is aluminum, and the larger the ratio of the thickness of the flat plate portion to the thickness of the quartz piece, the more the vibration characteristic of the quartz vibrating element is a predetermined condition.
  • a quartz vibrating element is provided in which the maximum value of the width of the first convex portion and the second convex portion satisfying the condition is increased.
  • the maximum value of the widths of the first convex portion and the second convex portion where the vibration characteristics of the quartz vibrating element satisfy a predetermined condition is the ratio of the thickness of the flat plate portion to the thickness of the quartz piece as a variable.
  • a quartz vibration element represented by a linear function is provided.
  • a quartz vibration element in which the protrusion amount of the first convex portion is larger than the protrusion amount of the second convex portion.
  • a quartz piece having a main surface defined by a first basic axis and a second basic axis intersecting the first basic axis, and an excitation electrode portion provided on the main surface of the quartz piece are provided.
  • the excitation electrode portion is located at the flat plate portion and the electrode end portion in the direction along the main surface of the quartz piece, and has a film thickness portion having a larger film thickness than the flat plate portion, and the film thickness portion is the first on the main surface.
  • a quartz vibration element having a first convex portion as a convex portion extending in the axial direction of the second basic axis, which is located at an axial end portion of the base axis.
  • a quartz piece having a main surface defined by a first basic axis and a second basic axis intersecting the first basic axis, and an excitation electrode portion provided on the main surface of the quartz piece are provided.
  • the excitation electrode portion is located at the flat plate portion and the electrode end portion in the direction along the main surface of the quartz piece, and has a film thickness portion having a thickness larger than that of the flat plate portion, and the film thickness portion is the second portion on the main surface.
  • a quartz vibration element having a second convex portion as a convex portion extending in the axial direction of the first basic axis, which is located at an axial end portion of the base axis.
  • the axis in which the third axis is tilted around the first axis by a predetermined angle is the third tilt axis.
  • a quartz vibration element is provided in which the first axis corresponds to the first basic axis and the third inclined axis corresponds to the second basic axis.
  • the axis in which the first axis is tilted around the third axis by a predetermined angle is the first tilt axis.
  • the first tilt axis corresponds to the first base axis and the third tilt axis becomes the second base axis.
  • a corresponding crystal vibrating element is provided.
  • a quartz vibration element in which the convex portion is made of the same material as the flat plate portion in the excitation electrode portion.
  • a quartz vibration element in which the convex portion is made of a material different from that of the flat plate portion in the excitation electrode portion.
  • a quartz vibration element in which the convex portion is made of an insulating material.
  • spurious oscillation can be further reduced.
  • Crystal oscillator 10 ... Crystal vibrating element 11 ... Crystal piece 14a, 14b ... Excitation electrode 15a, 15b ... Extraction electrode 16a, 16b ... Connection electrode 30 ... Base member 33a, 33b ... Electrode pad 34a, 34b ... Through electrode 35a ⁇ 35d ... External electrodes 36a, 36b ... Conductive holding member 40 ... Lid member 50 ... Joining member.

Abstract

第1基軸及び第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、水晶片の主面に設けられた励振電極部とを備え、水晶片は、励振電極部に電圧が印加された場合に、主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部は、平板部と、水晶片の前記主面に沿う方向における電極端部に位置し、平板部よりも膜厚が大きい膜厚部を有し、膜厚部は、主面における第1基軸の軸線方向の端部に位置し、第2基軸の軸線方向に延びる平板部から突出した凸部としての第1凸部と、主面における第2基軸の軸線方向の端部に位置し、第1基軸の軸線方向に延びる平板部から突出した凸部としての第2凸部と、を有し、第1基軸と水晶片の厚み方向とによって規定される面に沿う方向に切断した第1凸部の断面積は、第2基軸と水晶片の厚み方向とによって規定される面に沿う方向に切断した第2凸部の断面積よりも大きい。

Description

水晶振動素子および水晶振動子
 本発明は、水晶振動素子および水晶振動子に関する。
 発振装置や帯域フィルタなどに用いられる基準信号の信号源に、厚み滑り振動を主振動とする水晶振動子が広く用いられている。例えば、特許文献1には、励振電極の逆メサ形状のメサ厚み比を変化させつつ、振動変位の形状を平坦にすることで主振動以外の周波数で起こる振動であるスプリアス発振を低減する構成が開示されている。
国際公開第98/38736号公報
 しかしながら、従来の技術においては、スプリアス発振をより一層低減することが望まれていた。
 本発明は、このような事情に鑑みてなされたものであり、スプリアス発振をより一層低減することができる水晶振動素子および水晶振動子を提供することを目的とする。
 本発明の一側面に係る水晶振動素子は、第1基軸及び当該第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、水晶片の主面に設けられた励振電極部とを備え、水晶片は、励振電極部に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部は、平板部と、前記水晶片の主面の電極端部に位置し、平板部よりも膜厚が大きい膜厚部を有し、膜厚部は、主面における第1基軸の軸線方向の端部に位置し、第2基軸の軸線方向に延びる平板部から突出した凸部としての第1凸部と、主面における第2基軸の軸線方向の端部に位置し、第1基軸の軸線方向に延びる平板部から突出した凸部としての第2凸部と、を有し、前記第1基軸と前記水晶片の厚み方向とによって規定される面に沿う方向に切断した第1凸部の断面積は、第2基軸と前記水晶片の厚み方向とによって規定される面に沿う方向に切断した第2凸部の断面積よりも大きい。
 本発明の一側面に係る水晶振動素子は、第1基軸及び第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、水晶片の主面に設けられた励振電極部と、を備え、水晶片は、励振電極部に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、前記厚み方向と前記第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部は、平板部と、水晶片の主面に沿う方向における電極端部に位置し、平板部よりも膜厚が大きい膜厚部を有し、膜厚部は、主面における第1基軸の軸線方向の端部に位置し、第2基軸の軸線方向に延びる凸部としての第1凸部を有する。
 本発明の一側面に係る水晶振動素子は、第1基軸及び第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、水晶片の主面に設けられた励振電極部と、を備え、水晶片は、励振電極部に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、前記厚み方向と前記第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部は、平板部と、水晶片の主面に沿う方向における電極端部に位置し、平板部よりも膜厚が大きい膜厚部を有し、膜厚部は、主面における第2基軸の軸線方向の端部に位置し、第1基軸の軸線方向に延びる凸部としての第2凸部を有する。
 本発明の一側面に係る水晶振動子は、上記構成の水晶振動素子と、水晶振動素子が搭載されたベース部材と、ベース部材に接合されて水晶振動素子を封止する蓋部材とを備える。
 本発明によれば、スプリアス発振をより一層低減することができる。
第1実施形態に係る水晶振動子の構成を概略的に示す分解斜視図である。 第1実施形態に係る水晶振動子の構成を概略的に示す断面図である。 水晶片の第1基軸及び第2基軸によって規定される主面の一例を説明するための図である。 (a)、(b)は、水晶片の第1基軸及び第2基軸によって規定される主面の一例を説明するための図である。 第1実施形態に係る水晶振動素子の平面図である。 第1実施形態に係る水晶振動素子の断面図である。 第1実施形態に係る水晶振動素子の電気機械結合定数を示すグラフである。 第1実施形態に係る水晶振動素子の振動特性を示すグラフである。 第1実施形態に係る水晶振動素子の振動特性を示すグラフである。 第2実施形態に係る水晶振動素子の平面図である。 第2実施形態に係る水晶振動素子の断面図である。 第2実施形態に係る水晶振動素子の電気機械結合定数を示すグラフである。 第2実施形態に係る水晶振動素子の振動特性を示すグラフである。 第3実施形態に係る水晶振動素子の平面図である。 第3実施形態に係る水晶振動素子の断面図である。 第3実施形態に係る水晶振動素子の電気機械結合定数を示すグラフである。 第3実施形態に係る水晶振動素子の振動特性を示すグラフである。 第4実施形態に係る水晶振動素子の電気機械結合定数を示すグラフである。 第4実施形態に係る水晶振動素子の振動特性を示すグラフである。 第4実施形態に係る水晶振動素子の振動特性を示すグラフである。 第5実施形態に係る水晶振動素子の電気機械結合定数を示すグラフである。 第5実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の電気機械結合定数を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第6実施形態に係る水晶振動素子の振動特性を示すグラフである。 第7実施形態に係る水晶振動素子の振動特性を示すグラフである。 第7実施形態に係る水晶振動素子の振動特性を示すグラフである。 第7実施形態に係る水晶振動素子の振動特性を示すグラフである。 第7実施形態に係る水晶振動素子の振動特性を示すグラフである。 第7実施形態に係る水晶振動素子の振動特性を示すグラフである。 第7実施形態に係る水晶振動素子の振動特性を示すグラフである。 第7実施形態に係る水晶振動素子の振動特性を示すグラフである。 水晶振動素子の機能を説明するためのグラフである。 水晶振動素子の機能を説明するためのグラフである。
 <第1実施形態>
 図1~図6を参照しつつ、本発明の第1実施形態に係る水晶振動子1の構成について説明する。
 各々の図面には、各々の図面相互の関係を明確にし、各部材の位置関係を理解する助けとするために、便宜上、X軸、Y´軸及びZ´軸からなる直交座標系を付すことがある。X軸、Y´軸及びZ´軸は各図面において互いに対応している。X軸、Y´軸及びZ´軸は、それぞれ、後述の水晶片11の結晶軸(Crystallographic Axes)に対応している。X軸が電気軸(極性軸)、Y軸が機械軸、Z軸が光学軸に対応している。Y´軸及びZ´軸は、それぞれ、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸である。X軸は、第1軸の一例であり、Y軸は、第2軸の一例であり、Z軸は、第3軸の一例である。
 図1及び図2に示すように、水晶振動子1は、水晶振動素子10と、ベース部材30と、蓋部材40と、接合部材50と、を備えている。水晶振動素子10は、ベース部材30と蓋部材40との間に設けられている。
 水晶振動素子10は、薄片状の水晶片11と、第1励振電極14aと、第2励振電極14bと、第1引出電極15aと、第2引出電極15bと、第1接続電極16aと、第2接続電極16bとを備えている。水晶片11は、人工水晶(Synthetic Quartz Crystal)の結晶体を切断及び研磨加工して得られる水晶基板(例えば、水晶ウェハ)をエッチング加工することで形成される。水晶片11は、第1励振電極14a及び第2励振電極14bに電圧が印加された場合に水晶片11の主面と交差する方向を厚み方向としたとき、厚み方向と水晶片11の第1基軸とによって規定される面において振動する厚み滑り振動を行う。
 図3及び図4は、水晶片11の第1基軸及び第2基軸によって規定される主面の一例を説明するための図である。なお、図3及び図4は、水晶片11の主振動が厚み滑り振動である場合の水晶片11のカット角の一例を示すものであり、水晶片11の主振動が厚み滑り振動であれば、本発明をその他のカット角に適用してもよい。
 図3に示す例では、水晶片11の結晶軸である互いに交差するX軸、Y軸、Z軸のうち、Z軸をX軸の周りに所定角度θだけ傾斜させた軸をZ´軸(第3傾斜軸)としたとき、X軸を第1基軸に対応させるとともにZ´軸を第2基軸に対応させる。この場合、第1基軸は、例えば、X軸をZ´軸の周りに僅かに傾斜させた軸を含む。また、第2基軸は、Z軸をX軸の周りに所定角度から僅かにずれた角度で傾斜させた軸を含む。同図に示す例では、水晶片11のカット角は、例えば、ATカット、BTカット、CTカットを含む。
 ATカット型の水晶片11は、例えば、Z軸をX軸の周りに約35度傾斜させたZ´軸とX軸とによって特定される面と平行な面が主面となる。なお、ATカット型の水晶片11は、例えば、Z軸をX軸の周りに約35度から僅かにずれた角度で傾斜させたZ´軸と、X軸をZ軸の周りに僅かに傾斜させたX´軸とによって特定される面と平行な面を主面としてもよい。ATカット型の水晶片11を用いた水晶振動素子10は、広い温度範囲で高い周波数安定性を有する。BTカット型の水晶片11は、例えば、Z軸をX軸の周りに約-49度傾斜させたZ´軸とX軸とによって特定される面と平行な面が主面となる。CTカット型の水晶片11は、例えば、Z軸をX軸の周りに約38度傾斜させたZ´軸とX軸とによって特定される面と平行な面が主面となる。
 図4に示す例では、水晶片の結晶軸である互いに交差するX軸、Y軸、Z軸のうち、X軸をZ軸の周りに所定角度φだけ傾斜させた軸をX´軸(第1傾斜軸)とし(図4(a)参照)、Z軸をX´軸の周りに所定角度θだけ傾斜させた軸をZ´軸(第3傾斜軸)としたとき(図4(b)参照)、X´軸を第1基軸に対応させるとともにZ´軸を第2基軸に対応させる。この場合、第1基軸は、例えば、X軸をZ軸の周りに所定角度φから僅かにずれた角度で傾斜させた軸を含む。また、第2基軸は、Z軸をX´軸の周りに所定角度から僅かにずれた角度で傾斜させた軸を含む。同図に示す例では、水晶片11のカット角は、例えば、SCカットを含む。SCカット型の水晶片11は、例えば、X軸をZ軸の周りに約22度傾斜させたX´軸と、Z軸をX´軸の周りに約34度傾斜させたZ´軸とによって特定される面と平行な面が主面となる。
 図1及び図2に戻り、ATカット型の水晶片11は、X軸方向に平行な長辺が延在する長辺方向と、Z´軸方向に平行な短辺が延在する短辺方向と、Y´軸方向に平行な厚さが延在する厚さ方向を有する板状である。水晶片11の第1主面11A及び第2主面11Bは、矩形状をなしている。
 水晶振動素子10は、励振電極部14を備える。励振電極部14は、例えば、第1励振電極14aと、第2励振電極14bとを含む。第1励振電極14aは、水晶片11の第1主面11Aに設けられている。第2励振電極14bは、水晶片11の第2主面11Bに設けられている。第1励振電極14a及び第2励振電極14bは、水晶片11を挟んで互いに対向している。第1励振電極14a及び第2励振電極14bは、矩形状をなしており、平面視において互いに重なり合うように配置されている。
 第1励振電極14a及び第2励振電極14bは、水晶片11の第1主面11Aに沿う方向における電極端部に位置し、平板部14Bよりも膜厚が大きい膜厚部14Cを有する。
 水晶振動素子10は、第1引出電極15aと、第2引出電極15bとを有する。第1引出電極15aは、水晶片11の第1主面11Aに設けられている。第1引出電極15aは、第1励振電極14aと第1接続電極16aとを電気的に接続している。第2引出電極15bは、水晶片11の第2主面11Bに設けられている。第2引出電極15bは、第2励振電極14bと第2接続電極16bとを電気的に接続している。
 第1接続電極16aは、第1引出電極15aにおける-X軸方向側の端部から+Z´軸方向に延び、水晶片11の+Z´軸方向側の端面で折り返されて、水晶片11の第2主面11Bを-Z´軸方向側に延びている。第1励振電極14aとベース部材30とは、第1引出電極15a及び第1接続電極16aを介して電気的に接続されている。第2接続電極16bは、第2引出電極15bにおける-X軸方向側の端部から-Z´軸方向に延び、水晶片11の-Z軸方向側の端面で折り返されて、水晶片11の第2主面11Bを+Z´軸方向側に延びている。第2励振電極14bとベース部材30とは、第2引出電極15b及び第2接続電極16bを介して電気的に接続されている。
 ベース部材30は、例えば絶縁性セラミック(アルミナ)などの焼結材である。ベース部材30の上面31Aには、水晶振動素子10が搭載されている。ベース部材30の下面31Bには、図示しない外部の回路基板が実装されている。
 ベース部材30は、第1電極パッド33aと、第2電極パッド33bと、第1外部電極35aと、第2外部電極35bと、第3外部電極35cと、第4外部電極35dと、第1導電性保持部材36aと、第2導電性保持部材36bとを備えている。
 第1電極パッド33a及び第2電極パッド33bは、ベース部材30の上面に設けられ、水晶振動素子10に対して電気的に接続されている。
 第1外部電極35a及び第2外部電極35bは、ベース部材30の下面31Bに設けられ、図示しない外部の基板と水晶振動子1とを電気的に接続する。第3外部電極35c及び第4外部電極35dは、ベース部材30の下面31Bに設けられ、電気信号等が入力されないダミー電極である。第1電極パッド33aは、ベース部材30をY´軸方向に沿って貫通する第1貫通電極34aを介して、第1外部電極35aに電気的に接続されている。第2電極パッド33bは、ベース部材30をY´軸方向に沿って貫通する第2貫通電極34bを介して、第2外部電極35bに電気的に接続されている。
 第1導電性保持部材36a及び第2導電性保持部材36bは、例えば、熱硬化性樹脂や光硬化性樹脂等を含む導電性接着剤の硬化物であり、第1導電性保持部材36a及び第2導電性保持部材36bの主成分はシリコーン樹脂である。第1導電性保持部材36a及び第2導電性保持部材36bは導電性粒子を含んでおり、当該導電性粒子としては例えば銀(Ag)を含む金属粒子が用いられる。
 第1導電性保持部材36a及び第2導電性保持部材36bは、水晶振動素子10とベース部材30とを電気的に接続している。第1導電性保持部材36aは、第1電極パッド33aと第1接続電極16aとを接合している。第2導電性保持部材36bは、第2電極パッド33bと第2接続電極16bとを接合している。第1導電性保持部材36a及び第2導電性保持部材36bは、水晶振動素子10が励振可能となるように、ベース部材30から間隔を空けて水晶振動素子10を保持している。
 蓋部材40は、ベース部材30に接合され、ベース部材30との間に内部空間49を形成している。内部空間49には、水晶振動素子10が収容されている。蓋部材40の材質は特に限定されるものではないが、例えば金属などの導電材料により構成されている。蓋部材40が導電材料により構成されることで、内部空間49への電磁波の出入りが低減される。
 接合部材50は、蓋部材40の側壁部の先端と、ベース部材30の上面31Aとを接合し、内部空間49を封止している。接合部材50は、ガスバリア性の高いことが望ましく、透湿性の低いことがさらに望ましい。接合部材50は、例えば、エポキシ樹脂を主成分とする接着剤の硬化物である。接合部材50を構成する樹脂系接着剤は、例えば、ビニル化合物、アクリル化合物、ウレタン化合物、シリコーン化合物などを含んでもよい。
 次に、本実施形態に係る水晶振動素子10の励振電極部14の構成について、特に、励振電極部14の膜厚部14Cの構成に着目して説明する。なお、以下の説明では、明細書の説明理解の便宜上、第1励振電極14aの膜厚部14Cについて特に説明するが、第2励振電極14bの膜厚部も同様の構成を有する。
 図5及び図6に示すように、第1励振電極14aは、例えば、平板部14Bと、膜厚部14Cとを有する。平板部14Bは、例えば、矩形状をなしており、水晶片11の第1主面に設けられている。膜厚部14Cは、平板部14Bの上面から突出した第1凸部14Caと第2凸部14Cbとを含む。第1凸部14Ca及び第2凸部14Cbは、例えば、第1励振電極14aにおける平板部14Bと同一の材料により構成されている。第1凸部14Ca及び第2凸部14Cbは、第1励振電極14aにおける平板部14Bと異なる材料により構成されてもよい。この場合、第1凸部14Ca及び第2凸部14Cbは、例えば、絶縁材料により構成されている。第1凸部14Caは、水晶片11の第1主面11AにおけるX軸方向の端部に位置し、Z´軸方向に延びる。第1凸部14Caは、例えば、水晶片11の第1主面11AにおけるX軸方向の両側の端部に位置し、水晶片11の第1主面11AにおけるZ´軸方向の一端から他端まで延びている。第2凸部14Cbは、水晶片11の第2主面11BにおけるZ´軸方向の端部に位置し、X軸方向に延びている。第2凸部14Cbは、例えば、水晶片11の第2主面11BにおけるZ´軸方向の両側の端部に位置し、水晶片11の第2主面11BにおけるX軸方向の一端から他端まで延びている。第1凸部14Caの幅Wxは、第2凸部14Cbの幅Wzよりも大きい。
 次に、図7~図9を参照して、本実施形態に係る水晶振動子1の機能を説明する。図7及び図8は、本実施形態に係る水晶振動子1のシミュレーションモデルを用いて予測した水晶振動素子10の振動特性を示したものである。水晶振動子1のシミュレーションモデルにおいては、励振電極部14の材質としてアルミニウムが設定されている。また、水晶振動子1のシミュレーションモデルにおいては、水晶片11は、励振電極部14に電圧が印加された場合に、主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行う。図7は、本実施形態に係る水晶振動素子10の電気機械結合定数を示すグラフである。電気機械結合定数は、電気的エネルギーと機械的エネルギーとの変換能力を表す係数であり、この係数の値が大きいほど、電気的エネルギーと機械的エネルギーとの変換能力が高いことを示す。図8は、本実施形態に係る水晶振動素子10の振動特性を示すグラフである。水晶振動素子10の振動特性は、厚み滑り振動時における水晶振動素子10の振動形状を示している。図9は、本実施形態に係る水晶振動素子10の振動特性を、水晶振動素子10に関する各種パラメータを変更しつつ示したグラフである。
 図7に示す例では、第2凸部14Cbの幅Wzを「3.4」に固定し、第1凸部14Caの幅Wxを変化させた場合の水晶振動子1の電気機械結合定数の変化の推移を示している。同図に示す例では、縦軸が電気機械結合定数を表し、横軸が水晶片11の厚みTに対する第1凸部14Caの幅Wxの比率を表している。この例では、励振電極部14に第1凸部14Ca及び第2凸部14Cbを設けなかった場合に相当する比較例において、電気機械結合定数の値が「6.8」となっている。これに対し、励振電極部14に第1凸部14Ca及び第2凸部14Cbを設けた場合に相当する実施例において、水晶片11の厚みTに対する第1凸部14Caの幅Wxの比率を、「0.0」、「3.4」、「4.6」、「5.0」と段階的に増大させた場合、比率が「0」の場合において、電気機械結合定数の値が「7.5」となっており、比率が大きくなるにつれて、電気機械結合定数の値が増大する傾向にある。そして、比率が「4.6」である場合に電気機械結合定数の値が最大値「7.9」となる。
 すなわち、励振電極部14に第1凸部14Caまたは第2凸部14Cbを設けた場合、質量負荷効果によって励振電極部14を伝播する音速が部分的に低下する。そのため、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caまたは第2凸部14Cbの振動の波長が、励振電極部14の平板部14Bの振動の波長に比して、相対的に短くなる。そして、励振電極部14の第1凸部14Caまたは第2凸部14Cbに生じる歪みが、励振電極部14の平板部14Bに生じる歪みに比して、相対的に大きくなる。その結果、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caまたは第2凸部14Cbに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて変位量が均一となるため、水晶振動素子10の電気機械結合定数が増大する。
 なお、図7に示す例において、水晶振動素子10は、第1凸部14Caの幅Wxが第2凸部14Cbの幅Wzよりも大きい、という条件を満たしている。すなわち、水晶片11の厚み滑り振動時には、水晶片11はX軸方向に変位するため、励振電極部14に生じる歪みは、X軸方向の歪みの方が、Z´軸方向の歪みよりも大きい。そのため、X軸方向の歪みを緩和するための第1凸部14Caの幅Wxの最適値は、Z´軸方向の歪みを緩和するための第2凸部14Cbの幅Wzの最適値よりも大きい。
 図8に示す例では、図7に示す例において、電気機械結合定数の値が最大値「7.9」となるように、水晶片11の厚みTに対する第1凸部14Caの幅Wxの比率を設定した場合の水晶振動素子10の振動特性を示している。図8は、水晶振動素子10におけるZ軸方向の位置ごとの変位量を示した図である。図8に示す例では、水晶振動素子10に第1凸部14Ca及び第2凸部14Cbを設けなかった場合に相当する比較例と、上記の条件にて水晶片11に第1凸部14Ca及び第2凸部14Cbを設けた場合に相当する実施例とを重ねて示している。図8に示す例からも明らかなように、実施例の水晶振動素子10は、比較例の水晶振動素子10と比較して、厚み滑り振動時における振動形状が平坦となっており、主振動以外の周波数で起こる振動であるスプリアス発振が好適に低減される。
 図9(a)~図9(c)に示す例では、図9(d)に示す水晶振動素子10に関する各種パラメータとして、水晶片11の厚みT、励振電極部14の平板部14Bの厚みTe、励振電極部14の膜厚部14Cの厚みTfを変更した場合を例に挙げて説明する。厚みTfは、励振電極部14の平板部14Bからの膜厚部14Cの突出量に相当する。図9(a)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.05」であり、かつ、水晶片11の厚みTに対する励振電極部14の膜厚部14Cの厚みTfの比率が「0.02」である場合のグラフである。図9(b)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.10」であり、かつ、水晶片11の厚みTに対する水晶片11の膜厚部14Cの厚みTfの比率が「0.03」である場合のグラフである。図9(c)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.20」であり、かつ、水晶片11の厚みTに対する励振電極部14の膜厚部14Cの厚みの比率が「0.06」である場合のグラフである。これらの例の何れにおいても、電気機械結合定数が最大となる第1凸部14Caの幅Wxに関する条件と、電気機械結合定数が最大となる第2凸部14Cbの幅Wzに関する条件とを比較した場合に、第1凸部14Caの幅Wxが第2凸部14Cbの幅Wzよりも大きい。
 本実施形態に係る水晶振動素子10は、結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りに所定角度だけ傾斜させた軸をY´軸及びZ´軸とし、X軸とZ´軸とによって特定される面と平行な面である第1主面11A及び第2主面11Bを有する水晶片11と、水晶片11の第1主面11A及び第2主面11Bに設けられた励振電極部14とを備え、水晶片11は、励振電極部14に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部14は、水晶片11の第1主面11A及び第2主面11Bに沿う方向における電極端部に位置し、平板部14Bよりも膜厚が大きい膜厚部14Cを有し、膜厚部14Cは、第1主面11A及び第2主面11BにおけるX軸の軸線方向の端部に位置し、Z´軸の軸線方向に延びる第1凸部14Caと、第1主面11A及び第2主面11BにおけるZ´軸の軸線方向の端部に位置し、X軸の軸線方向に延びる第2凸部14Cbと、を有し、第1凸部14Caの幅Wxは、第2凸部14Cbの幅Wzよりも大きい。水晶振動素子10は、第1凸部14Caの幅Wxが第2凸部14Cbの幅Wzよりも大きい場合には、第1凸部14Caの幅Wxが第2凸部14Cbの幅Wz以下である場合と比較して、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caまたは第2凸部14Cbに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて変位量が均一となる。そのため、水晶振動素子10における圧電効果の効率に相当する電気機械結合定数の値が大きくなるため、主振動以外の周波数で起こる振動であるスプリアス発振を低減することができる。
 <第2実施形態>
 第2実施形態では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図10及び図11に示すように、第1励振電極14aは、例えば、平板部14Bと、膜厚部14Cとを有する。平板部14Bは、例えば、矩形状をなしており、水晶片11の第1主面11Aに設けられている。膜厚部14Cは、平板部14Bの上面から突出しており、例えば、第1凸部14Caを含む。第1凸部14Caは、水晶片11の第1主面11AにおけるX軸方向の端部に位置し、Z´軸方向に延びる。第1凸部14Caは、例えば、水晶片11の第1主面11AにおけるX軸方向の両側の端部に位置し、水晶片11の第1主面11AにおけるZ´軸方向の一端から他端まで延びている。
 次に、図12及び図13を参照して、本実施形態に係る水晶振動子1の機能を説明する。図12及び図13は、本実施形態に係る水晶振動子1のシミュレーションモデルを用いて予測した水晶振動素子10の振動特性を示したものである。水晶振動子1のシミュレーションモデルにおいては、励振電極部14の材質としてアルミニウムが設定されている。また、水晶振動子1のシミュレーションモデルにおいては、水晶片11は、励振電極部14に電圧が印加された場合に、主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行う。図12は、本実施形態に係る水晶振動子1の電気機械結合定数を示すグラフである。図13は、本実施形態に係る水晶振動子1の振動特性を示すグラフである。水晶振動子1の振動特性は、厚み滑り振動時における水晶振動子1の振動形状を示している。
 図12に示す例では、第1凸部14Caの幅Wxを変化させた場合の水晶振動子1の電気機械結合定数の変化の推移を示している。同図に示す例では、縦軸が電気機械結合定数を表し、横軸が水晶片11の厚みTに対する第1凸部14Caの幅Wxの比率を表している。この例では、水晶片11に第1凸部14Caを設けなかった場合に相当する比較例において、電気機械結合定数の値が「6.8」となっている。これに対し、水晶片11に第1凸部14Caを設けた場合に相当する実施例において、水晶片11の厚みTに対する第1凸部14Caの幅Wxの比率を「3.8」、「4.2」、「5.0」、「7.0」と段階的に増大させた場合において、比率が「4.2」である場合に電気機械結合定数の値が最大値「7.3」となる。
 すなわち、励振電極部14に第1凸部14Caを設けた場合、質量負荷効果によって励振電極部14を伝播する音速が部分的に低下する。そのため、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caの振動の波長が、励振電極部14の平板部14Bの振動の波長に比して、相対的に短くなる。そして、励振電極部14の第1凸部14Caに生じる歪みが、励振電極部14の平板部14Bに生じる歪みに比して、相対的に大きくなる。その結果、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて変位量が均一となるため、水晶振動素子10の電気機械結合定数が増大する。
 図13に示す例では、図12に示す例において、電気機械結合定数の値が最大値「7.3」となるように、水晶片11の厚みTに対する第1凸部14Caの幅Wxの比率を設定した場合の水晶振動素子10の振動特性を示している。図13は、水晶振動素子10におけるX軸方向の位置ごとの変位量を示した図である。図13に示す例では、水晶片11に第1凸部14Caを設けなかった場合に相当する比較例と、上記の条件にて水晶片11に第1凸部14Caを設けた場合に相当する実施例とを重ねて示している。図8に示す例からも明らかなように、実施例の水晶振動素子10は、比較例の水晶振動素子10と比較して、厚み滑り振動時における振動形状が平坦となっており、主振動以外の周波数で起こる振動であるスプリアス発振が好適に低減される。
 本実施形態に係る水晶振動素子10は、結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りに所定角度だけ傾斜させた軸をY´軸及びZ´軸とし、X軸とZ´軸とによって特定される面と平行な面である第1主面11A及び第2主面11Bを有する水晶片11と、水晶片11の第1主面11A及び第2主面11Bに設けられた励振電極部14と、を備え、水晶片11は、励振電極部14に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部14は、水晶片11の第1主面11A及び第2主面11Bに沿う方向における電極端部に位置し、平板部14Bよりも膜厚が大きい膜厚部14Cを有し、膜厚部14Cは、第1主面11A及び第2主面11BにおけるX軸の軸線方向の端部に位置し、Z´軸の軸線方向に延びる第1凸部14Caを有する。水晶振動素子10は、第1凸部14Caを有する場合には、第1凸部14Caを有さない場合と比較して、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて変位量が均一となる。そのため、水晶振動素子10における圧電効果の効率に相当する電気機械結合定数の値が大きくなるため、主振動以外の周波数で起こる振動であるスプリアス発振を低減することができる。
 <第3実施形態>
 第3実施形態では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図14及び図15に示すように、第1励振電極14aは、例えば、平板部14Bと、膜厚部14Cとを有する。平板部14Bは、例えば、矩形状をなしており、水晶片11の第1主面11Aに設けられている。膜厚部14Cは、平板部14Bの上面から突出しており、例えば、第2凸部14Cbを含む。第2凸部14Cbは、水晶片11の第2主面11BにおけるZ´軸方向の端部に位置し、X軸方向に延びている。第2凸部14Cbは、例えば、水晶片11の第2主面11BにおけるZ´軸方向の両側の端部に位置し、水晶片11の第2主面11BにおけるX軸方向の一端から他端まで延びている。
 次に、図16及び図17を参照して、本実施形態に係る水晶振動素子10の機能を説明する。図16及び図17は、本実施形態に係る水晶振動子1のシミュレーションモデルを用いて予測した水晶振動素子10の振動特性を示したものである。水晶振動子1のシミュレーションモデルにおいては、励振電極部14の材質としてアルミニウムが設定されている。また、水晶振動子1のシミュレーションモデルにおいては、水晶片11は、励振電極部14に電圧が印加された場合に、主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行う。図16は、本実施形態に係る水晶振動素子10の電気機械結合定数を示すグラフである。図17は、本実施形態に係る水晶振動素子10の振動特性を示すグラフである。水晶振動素子10の振動特性は、厚み滑り振動時における水晶振動素子10の振動形状を示している。
 図16に示す例では、第2凸部14Cbの幅Wzを変化させた場合の水晶振動素子10の電気機械結合定数の変化の推移を示している。同図に示す例では、縦軸が電気機械結合定数を表し、横軸が水晶片11の厚みTに対する第2凸部14Cbの幅Wzの比率を表している。この例では、水晶片11に第2凸部14Cbを設けなかった場合に相当する比較例において、電気機械結合定数の値が「6.8」となっている。これに対し、水晶片11に第2凸部14Cbを設けた場合に相当する実施例において、水晶片11の厚みTに対する第2凸部14Cbの幅Wzの比率を「2.8」、「3.4」、「4.0」、「7.0」と段階的に増大させた場合において、比率が「3.4」である場合に電気機械結合定数の値が最大値「7.4」となる。
 すなわち、励振電極部14に第2凸部14Cbを設けた場合、質量負荷効果によって励振電極部14を伝播する音速が部分的に低下する。そのため、水晶片11の厚み滑り振動時において、励振電極部14の第2凸部14Cbの振動の波長が、励振電極部14の平板部14Bの振動の波長に比して、相対的に短くなる。そして、励振電極部14の第2凸部14Cbに生じる歪みが、励振電極部14の平板部14Bに生じる歪みに比して、相対的に大きくなる。その結果、水晶片11の厚み滑り振動時において、励振電極部14の第2凸部14Cbに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて変位量が均一となるため、水晶振動素子10の電気機械結合定数が増大する。
 図17に示す例では、図16に示す例において、電気機械結合定数の値が最大値「7.4」となるように、水晶片11の厚みTに対する第2凸部14Cbの幅Wzの比率を設定した場合の水晶振動素子10の振動特性を示している。図15は、水晶振動素子10におけるZ軸方向の位置ごとの変位量を示した図である。図17に示す例では、水晶片11に第2凸部14Cbを設けなかった場合に相当する比較例と、上記の条件にて水晶片11に第2凸部14Cbを設けた場合に相当する実施例とを重ねて示している。図17に示す例からも明らかなように、実施例の水晶振動素子10は、比較例の水晶振動素子10と比較して、厚み滑り振動時における振動形状が平坦となっており、主振動以外の周波数で起こる振動であるスプリアス発振が好適に低減される。
 本実施形態に係る水晶振動素子10は、結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りに所定角度だけ傾斜させた軸をY´軸及びZ´軸とし、X軸とZ´軸とによって特定される面と平行な面である第1主面11A及び第2主面11Bを有する水晶片11と、水晶片11の第1主面11A及び第2主面11Bに設けられた励振電極部14と、を備え、水晶片11は、励振電極部14に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部14は、水晶片11の第1主面11A及び第2主面11Bに沿う方向における電極端部に位置し、平板部14Bよりも膜厚が大きい膜厚部14Cを有し、膜厚部14Cは、水晶片11の第2主面11BにおけるZ´軸方向の端部に位置し、X軸方向に延びる第2凸部14Cbを有する。水晶振動素子10は、第2凸部14Cbを有する場合には、第2凸部14Cbを有さない場合と比較して、水晶片11の厚み滑り振動時において、励振電極部14の第2凸部14Cbに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて均一となる。そのため、水晶振動素子10における圧電効果の効率に相当する電気機械結合定数の値が大きくなるため、主振動以外の周波数で起こる振動であるスプリアス発振を低減することができる。
 <第4実施形態>
 第4実施形態では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図18~図20を参照して、本実施形態に係る水晶振動子1の機能を説明する。図18~図20は、本実施形態に係る水晶振動子1のシミュレーションモデルを用いて予測した水晶振動素子10の振動特性を示したものである。水晶振動子1のシミュレーションモデルにおいては、励振電極部14の材質としてアルミニウムが設定されている。また、水晶振動子1のシミュレーションモデルにおいては、水晶片11は、励振電極部14に電圧が印加された場合に、主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行う。図18は、本実施形態に係る水晶振動素子10の電気機械結合定数を示すグラフである。電気機械結合定数は、電気的エネルギーと機械的エネルギーとの変換能力を表す係数であり、この係数の値が大きいほど、電気的エネルギーと機械的エネルギーとの変換能力が高いことを示す。図19及び図20は、本実施形態に係る水晶振動素子10の振動特性を示すグラフである。水晶振動素子10の振動特性は、厚み滑り振動時における水晶振動素子10の振動形状を示している。
 図18に示す例では、第1凸部14Caの幅Wx及び第2凸部14Cbの幅Wzを「4.5」に固定し、水晶片11の厚みTに対する第2凸部14Cbの突出量Tfzの比率を「0.013」に固定し、水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を変化させた場合の水晶振動子1の電気機械結合定数の変化の推移を示している。同図に示す例では、縦軸が電気機械結合定数を表し、横軸が水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を表している。この例では、励振電極部14に第1凸部14Ca及び第2凸部14Cbを設けなかった場合に相当する比較例において、電気機械結合定数の値が「6.8」となっている。これに対し、励振電極部14に第1凸部14Ca及び第2凸部14Cbを設けた場合に相当する実施例において、水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を、「0.0」、「0.010」、「0.018」、「0.025」、「0.035」と段階的に増大させた場合、比率が「0」の場合において、電気機械結合定数の値が「7.5」となっており、比率が大きくなるにつれて、電気機械結合定数の値が増大する傾向にある。そして、比率が「0.018」である場合に電気機械結合定数の値が最大値「8.0」となる。
 すなわち、励振電極部14に第1凸部14Caまたは第2凸部14Cbを設けた場合、質量負荷効果によって励振電極部14を伝播する音速が部分的に低下する。そのため、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caまたは第2凸部14Cbの振動の波長が、励振電極部14の平板部14Bの振動の波長に比して、相対的に短くなる。そして、励振電極部14の第1凸部14Caまたは第2凸部14Cbに生じる歪みが、励振電極部14の平板部14Bに生じる歪みに比して、相対的に大きくなる。その結果、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caまたは第2凸部14Cbに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて変位量が均一となるため、水晶振動素子10の電気機械結合定数が増大する。
 なお、図18に示す例において、水晶振動素子10は、第1凸部14Caの幅Wxと第2凸部14Cbの幅Wzとが同一である前提の下で、第1凸部14Caの突出量Tfxが第2凸部14Cbの突出量Tfzよりも大きい、という条件を満たしている。すなわち、水晶片11の厚み滑り振動時には、水晶片11はX軸方向に変位するため、励振電極部14に生じる歪みは、X軸方向の歪みの方が、Z´軸方向の歪みよりも大きい。そのため、X軸方向の歪みを緩和するための第1凸部14Caの突出量Tfxの最適値は、Z´軸方向の歪みを緩和するための第2凸部14Cbの突出量Tfzの最適値よりも大きい。
 図19及び図20に示す例では、図18に示す例において、電気機械結合定数の値が最大値「8.0」となるように、水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を設定した場合の水晶振動素子10の振動特性を示している。図19は、水晶振動素子10におけるX軸方向の位置ごとの変位量を示した図である。図20は、水晶振動素子10におけるZ軸方向の位置ごとの変位量を示した図である。図19及び図20に示す例では、水晶振動素子10に第1凸部14Ca及び第2凸部14Cbを設けなかった場合に相当する比較例と、上記の条件にて水晶片11に第1凸部14Ca及び第2凸部14Cbを設けた場合に相当する実施例とを重ねて示している。図19及び図20に示す例からも明らかなように、実施例の水晶振動素子10は、比較例の水晶振動素子10と比較して、厚み滑り振動時における振動形状が平坦となっており、主振動以外の周波数で起こる振動であるスプリアス発振が好適に低減される。
 <第5実施形態>
 第5実施形態では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図21及び図22を参照して、本実施形態に係る水晶振動子1の機能を説明する。図21及び図22は、本実施形態に係る水晶振動子1のシミュレーションモデルを用いて予測した水晶振動素子10の振動特性を示したものである。水晶振動子1のシミュレーションモデルにおいては、励振電極部14の材質としてアルミニウムが設定されている。また、水晶振動子1のシミュレーションモデルにおいては、水晶片11は、励振電極部14に電圧が印加された場合に、主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行う。図21は、本実施形態に係る水晶振動子1の電気機械結合定数を示すグラフである。図22は、本実施形態に係る水晶振動子1の振動特性を示すグラフである。水晶振動子1の振動特性は、厚み滑り振動時における水晶振動子1の振動形状を示している。
 図21に示す例では、水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を変化させた場合の水晶振動子1の電気機械結合定数の変化の推移を示している。同図に示す例では、縦軸が電気機械結合定数を表し、横軸が水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を表している。この例では、水晶片11に第1凸部14Caを設けなかった場合に相当する比較例において、電気機械結合定数の値が「6.8」となっている。これに対し、水晶片11に第1凸部14Caを設けた場合に相当する実施例において、水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を「0.010」、「0.018」、「0.025」、「0.035」と段階的に増大させた場合において、比率が「0.018」である場合に電気機械結合定数の値が最大値「7.5」となる。
 すなわち、励振電極部14に第1凸部14Caを設けた場合、質量負荷効果によって励振電極部14を伝播する音速が部分的に低下する。そのため、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caの振動の波長が、励振電極部14の平板部14Bの振動の波長に比して、相対的に短くなる。そして、励振電極部14の第1凸部14Caに生じる歪みが、励振電極部14の平板部14Bに生じる歪みに比して、相対的に大きくなる。その結果、水晶片11の厚み滑り振動時において、励振電極部14の第1凸部14Caに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて変位量が均一となるため、水晶振動素子10の電気機械結合定数が増大する。
 図22に示す例では、図21に示す例において、電気機械結合定数の値が最大値「7.5」となるように、水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を設定した場合の水晶振動素子10の振動特性を示している。図22は、水晶振動素子10におけるX軸方向の位置ごとの変位量を示した図である。図22に示す例では、水晶片11に第1凸部14Caを設けなかった場合に相当する比較例と、上記の条件にて水晶片11に第1凸部14Caを設けた場合に相当する実施例とを重ねて示している。図22に示す例からも明らかなように、実施例の水晶振動素子10は、比較例の水晶振動素子10と比較して、厚み滑り振動時における振動形状が平坦となっており、主振動以外の周波数で起こる振動であるスプリアス発振が好適に低減される。
 <第6実施形態>
 第6実施形態では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図23及び図24を参照して、本実施形態に係る水晶振動素子10の機能を説明する。図23及び図24は、本実施形態に係る水晶振動子1のシミュレーションモデルを用いて予測した水晶振動素子10の振動特性を示したものである。水晶振動子1のシミュレーションモデルにおいては、励振電極部14の材質としてアルミニウムが設定されている。また、水晶振動子1のシミュレーションモデルにおいては、水晶片11は、励振電極部14に電圧が印加された場合に、主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行う。図23は、本実施形態に係る水晶振動素子10の電気機械結合定数を示すグラフである。図24は、本実施形態に係る水晶振動素子10の振動特性を示すグラフである。水晶振動素子10の振動特性は、厚み滑り振動時における水晶振動素子10の振動形状を示している。
 図23に示す例では、水晶片11の厚みTに対する第2凸部14Cbの突出量Tfzの比率を変化させた場合の水晶振動素子10の電気機械結合定数の変化の推移を示している。同図に示す例では、縦軸が電気機械結合定数を表し、横軸が水晶片11の厚みTに対する第2凸部14Cbの突出量Tfzの比率を表している。この例では、水晶片11に第2凸部14Cbを設けなかった場合に相当する比較例において、電気機械結合定数の値が「7.5」となっている。これに対し、水晶片11に第2凸部14Cbを設けた場合に相当する実施例において、水晶片11の厚みTに対する第2凸部14Cbの突出量Tfzの比率を「0.01」、「0.013」、「0.020」、[0.025」と段階的に増大させた場合において、比率が「0.013」である場合に電気機械結合定数の値が最大値「7.5」となる。
 すなわち、励振電極部14に第2凸部14Cbを設けた場合、質量負荷効果によって励振電極部14を伝播する音速が部分的に低下する。そのため、水晶片11の厚み滑り振動時において、励振電極部14の第2凸部14Cbの振動の波長が、励振電極部14の平板部14Bの振動の波長に比して、相対的に短くなる。そして、励振電極部14の第2凸部14Cbに生じる歪みが、励振電極部14の平板部14Bに生じる歪みに比して、相対的に大きくなる。その結果、水晶片11の厚み滑り振動時において、励振電極部14の第2凸部14Cbに歪みが集中し、励振電極部14の平板部14Bにおける歪みが緩和されて変位量が均一となるため、水晶振動素子10の電気機械結合定数が増大する。
 図24に示す例では、図23に示す例において、電気機械結合定数の値が最大値「7.5」となるように、水晶片11の厚みTに対する第2凸部14Cbの突出量Tfzの比率を設定した場合の水晶振動素子10の振動特性を示している。図24は、水晶振動素子10におけるZ軸方向の位置ごとの変位量を示した図である。図24に示す例では、水晶片11に第2凸部14Cbを設けなかった場合に相当する比較例と、上記の条件にて水晶片11に第2凸部14Cbを設けた場合に相当する実施例とを重ねて示している。図24に示す例からも明らかなように、実施例の水晶振動素子10は、比較例の水晶振動素子10と比較して、厚み滑り振動時における振動形状が平坦となっており、主振動以外の周波数で起こる振動であるスプリアス発振が好適に低減される。
 図25(a)~図25(c)に示す例では、水晶振動素子10に関する各種パラメータとして、水晶片11の厚みT、励振電極部14の平板部14Bの厚みTe、励振電極部14の膜厚部14Cの厚みTfを変更した場合を例に挙げて説明する。厚みTfは、励振電極部14の平板部14Bからの膜厚部14Cの突出量に相当する。図25(a)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.05」であり、かつ、水晶片11の厚みTに対する励振電極部14の第2凸部14Cbの突出量Tfzの比率が「0.013」である場合のグラフである。図25(b)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.10」であり、かつ、水晶片11の厚みTに対する励振電極部14の第2凸部14Cbの突出量Tfzの比率が「0.016」である場合のグラフである。図25(c)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.20」であり、かつ、水晶片11の厚みTに対する励振電極部14の第2凸部14Cbの突出量Tfzの比率が「0.021」である場合のグラフである。これらの例の何れにおいても、電気機械結合定数が最大となる第1凸部14Caの突出量Tfxに関する条件と、電気機械結合定数が最大となる第2凸部14Cbの突出量Tfzに関する条件とを比較した場合に、第1凸部14Caの突出量Tfxが第2凸部14Cbの突出量Tfzよりも大きい。
 図26(a)~(c)に示す例では、水晶振動素子10に関する各種パラメータとして、水晶片11の厚みT、励振電極部14の平板部14Bの厚みTe、励振電極部14の膜厚部14Cの厚みTfを変更した場合を例に挙げて説明する。図26(a)は、励振電極部14の平板部14Bの厚みTeが「0.05μm」である場合のグラフである。図26(b)は、励振電極部14の平板部14Bの厚みTeが「0.10μm」である場合のグラフである。図26(c)は、励振電極部14の平板部14Bの厚みTeが「0.20μm」である場合のグラフである。これらの例の何れにおいても、電気機械結合定数が最大となる第1凸部14Caの幅Wxに関する条件と、電気機械結合定数が最大となる第2凸部14Cbの幅Wzに関する条件とを比較した場合、励振電極部14の膜厚部14Cの厚みTfが共通の条件である場合には、第1凸部14Caの幅Wxが第2凸部1414Cbの幅Wzよりも大きい。また、励振電極部14の膜厚部14Cの厚みTfが大きくなるほど、電気機械結合定数が最大となる第1凸部14Caの幅Wx及び第2凸部14Cbの幅Wbが小さくなる。
 図27に示す例では、水晶振動素子10に関する各種パラメータとして、水晶片11の厚みT、励振電極部14の平板部14Bの厚みTe、励振電極部14の膜厚部14Cの厚みTfを変更した場合を例に挙げて説明する。図27に示すグラフにおいて、縦軸は、励振電極部14の平板部14Bの断面積に対する励振電極部14の平板部14B及び膜厚部14Cの断面積の合計値の比率を示し、横軸は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を示す。このグラフでは、第1凸部14Ca及び第2凸部14Cbの何れにおいても、励振電極部14の平板部14Bの断面積に対する励振電極部14の平板部14B及び膜厚部14Cの断面積の合計値の比率が、水晶片11の厚みTに対する励振電極部14の膜厚部14Cの厚みTfの比率が大きくなるにつれて、小さくなる。
 図28に示す例では、第1凸部14Caの幅Wxまたは第2凸部14Cbの幅Wzを固定し、水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率、または、第2凸部14Cbの突出量Tfzの比率を変化させた場合の水晶振動子1の電気機械結合定数の変化の推移を示している。同図に示す例では、縦軸が電気機械結合定数を表し、横軸が水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率を表している。この例では、励振電極部14に第1凸部14Caまたは第2凸部14Cbを設けなかった場合に相当する(Tf/T=0)となる点において、電気機械結合定数の値が「6.8」となっている。これに対し、励振電極部14に第1凸部14Caを設けた場合には、(Tf/T=0.013)となる点において、電気機械結合定数の値が最大値「7.5」となっている。この例では、(Tf/T=0.013)となる点が水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率の最適値に相当する。また、励振電極部14に第1凸部14Caを設けた場合には、(Tf/T=0.018)となる点において、励振電極部14に第1凸部14Caまたは第2凸部14Cbを設けなかった場合に相当する電気機械結合定数の値「6.8」と一致する。この例では、(Tf/T=0.018)となる点が水晶片11の厚みTに対する第1凸部14Caの突出量Tfxの比率の最大値に相当する。また、励振電極部14に第2凸部14Cbを設けた場合には、(Tf/T=0.020)となる点において、電気機械結合定数の値が最大値「7.3」となっている。この例では、(Tf/T=0.020)となる点が水晶片11の厚みTに対する第2凸部14Cbの突出量Tfzの比率の最適値に相当する。また、励振電極部14に第2凸部14Cbを設けた場合には、(Tf/T=0.028)となる点において、励振電極部14に第1凸部14Caまたは第2凸部14Cbを設けなかった場合に相当する電気機械結合定数の値「6.8」と一致する。この例では、(Tf/T=0.028)となる点が水晶振動素子10の振動特性が所定条件を満たす水晶片11の厚みTに対する第2凸部14Cbの突出量Tfzの比率の最大値に相当する。所定条件は、例えば、水晶振動子1の電気機械結合定数が、水晶振動子1に第1凸部14Ca及び第2凸部14Cbを設けない場合と同等以上であり、電気機械結合定数の増大効果が得られる場合に成立する。
 図29に示す例では、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変化させた場合の電気機械結合定数の増大効果が得られなくなるTfx/Tの最大値の変化の推移を示している。この例では、励振電極部14の第1凸部14Caの幅Wxが「3.5(μm)」、「4.5(μm)」、「6.0(μm)」の場合のグラフが示されている。このグラフでは、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が大きくなるほど、電気機械結合定数の増大効果が得られなくなるTfx/Tの最大値が大きくなる。また、電気機械結合定数の増大効果が得られなくなるTfx/Tの最大値は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変数としたとき、一次関数「A×(Te/T)+B」で表される。
 図30に示す例では、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変化させた場合の電気機械結合定数の増大効果が得られなくなるTfz/Tの最大値の変化の推移を示している。この例では、励振電極部14の第2凸部14Cbの幅Wzが「3.5(μm)」、「4.5(μm)」、「6.0(μm)」の場合のグラフが示されている。このグラフでは、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が大きくなるほど、電気機械結合定数の増大効果が得られなくなるTfz/Tの最大値が大きくなる。また、電気機械結合定数の増大効果が得られなくなるTfz/Tの最大値は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変数としたとき、一次関数「A×(Te/T)+B」で表される。
 図31に示す例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの幅Wxの比率または第2凸部14Cbの幅Wzの比率を変化させた場合の、上述した一次関数の係数Aの変化の推移を示している。この例では、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの幅Wxの比率または第2凸部14Cbの幅Wzの比率が大きくなるほど、一次関数の係数Aが小さくなる。
 図32に示す例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの幅Wxの比率または第2凸部14Cbの幅Wzの比率を変化させた場合の、上述した一次関数の係数Bの変化の推移を示している。この例では、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの幅Wxの比率または第2凸部14Cbの幅Wzの比率が大きくなるほど、一次関数の係数Bが小さくなる。
 図33に示す例では、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変化させた場合の電気機械結合定数が最大になるTfx/Tの最適値の変化の推移を示している。この例では、励振電極部14の第1凸部14Caの幅Wxが「3.5(μm)」、「4.5(μm)」、「6.0(μm)」の場合のグラフが示されている。このグラフでは、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が大きくなるほど、電気機械結合定数が最大になるTfx/Tの最適値が大きくなる。また、電気機械結合定数が最大になるTfx/Tの最適値は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変数としたとき、一次関数「A×(Te/T)+B」で表される。
 図34に示す例では、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変化させた場合の電気機械結合定数が最大になるTfz/Tの最適値の変化の推移を示している。この例では、励振電極部14の第2凸部14Cbの幅Wzが「3.5(μm)」、「4.5(μm)」、「6.0(μm)」の場合のグラフが示されている。このグラフでは、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が大きくなるほど、電気機械結合定数が最大になるTfz/Tの最適値が大きくなる。また、電気機械結合定数が最大になるTfz/Tの最適値は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変数としたとき、一次関数「A×(Te/T)+B」で表される。
 図35に示す例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの幅Wxの比率または第2凸部14Cbの幅Wzの比率を変化させた場合の、上述した一次関数の係数Aの変化の推移を示している。この例では、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の第1凸部14Caまたは第2凸部14Cbの比率が大きくなるほど、一次関数の係数Aが小さくなる。
 図36に示す例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの幅Wxの比率または第2凸部14Cbの幅Wzの比率を変化させた場合の、上述した一次関数の係数Bの変化の推移を示している。この例では、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の第1凸部14Caまたは第2凸部14Cbの比率が大きくなるほど、一次関数の係数Bが小さくなる。
 <第7実施形態>
 第7実施形態では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図37に示す例では、第1凸部14Caの突出方向に沿うように切断した第1凸部14Caの断面積を変化させた場合の電気機械結合定数の変化の推移を示している。この例では、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTfの比率が「0.015」、「0.020」、「0.025」、「0.030」の場合のグラフが示されている。このグラフでは、いずれの場合においても、電気機械結合定数の増大効果が得られなくなる第1凸部の断面積の最大値は概ね一定値となっている。
 図38に示す例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの断面積Sfx(第1基軸と水晶片11の厚み方向とによって規定される面に沿う方向に切断した第1凸部14Caの断面積)の比率または第2凸部14Cbの断面積Sfz(第2基軸と水晶片11の厚み方向とによって規定される面に沿う方向に切断した第2凸部14Cbの断面積)の比率を変化させた場合の電気機械結合定数の増大効果が得られなくなる第1凸部及び第2凸部の断面積の最大値の変化の推移を示している。この例では、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が大きくなるほど、電気機械結合定数の増大効果が得られなくなる第1凸部及び第2凸部の断面積の最大値が大きくなる。また、電気機械結合定数の増大効果が得られなくなる第1凸部及び第2凸部の断面積の最大値は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変数としたとき、一次関数「A×(Te/T)+B」で表される。
 図39に示す例では、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変化させた場合の電気機械結合定数が最大になるWx/Tの最適値の変化の推移を示している。この例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの突出量Tfxの比率が「0.015」、「0.020」、「0.030」の場合のグラフが示されている。このグラフでは、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が大きくなるほど、電気機械結合定数が最大になるWx/Tの最適値が大きくなる。また、電気機械結合定数が最大になるWx/Tの最適値は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変数としたとき、一次関数「A×(Te/T)+B」で表される。
 図40に示す例では、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変化させた場合の電気機械結合定数が最大になるWz/Tの最適値の変化の推移を示している。この例では、水晶片11の厚みTに対する励振電極部14の第2凸部14Cbの突出量Tfzの比率が「0.015」、「0.020」、「0.030」の場合のグラフが示されている。このグラフでは、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が大きくなるほど、電気機械結合定数が最大になるWz/Tの最適値が大きくなる。また、電気機械結合定数が最大になるWz/Tの最適値は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率を変数としたとき、一次関数「A×(Te/T)+B」で表される。
 図41に示す例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの突出量Tfxの比率または第2凸部14Cbの突出量Tfzの比率を変化させた場合の、上述した一次関数の係数Aの変化の推移を示している。この例では、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの突出量Tfxの比率または第2凸部14Cbの突出量Tfzの比率が大きくなるほど、一次関数の係数Aが小さくなる。
 図42に示す例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの突出量Tfxの比率または第2凸部14Cbの突出量Tfzの比率を変化させた場合の、上述した一次関数の係数Bの変化の推移を示している。この例では、いずれの場合においても、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの突出量Tfxの比率または第2凸部14Cbの突出量Tfzの比率が大きくなるほど、一次関数の係数Bが小さくなる。
 図43(a)~(c)に示す例では、水晶振動素子10に関する各種パラメータとして、水晶片11の厚みT、励振電極部14の平板部14Bの厚みTe、励振電極部14の膜厚部14Cの厚みTfを変更した場合を例に挙げて説明する。厚みTfは、励振電極部14の平板部14Bからの膜厚部14Cの突出量に相当する。図43(a)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.05」である場合のグラフである。図43(b)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.10」である場合のグラフである。図43(c)は、水晶片11の厚みTに対する励振電極部14の平板部14Bの厚みTeの比率が「0.20」である場合のグラフである。これらの例の何れにおいても、電気機械結合定数が最大となる第1凸部14Caの断面積の比率に関する条件と、電気機械結合定数が最大となる第2凸部14Cbの断面積の比率に関する条件とを比較した場合に、第1凸部14Caの断面積が第2凸部14Cbの断面積よりも大きい。
 図44に示す例では、励振電極部14の第1凸部14Caの断面積Sfxに対する第2凸部14Cbの断面積Sfzの比率を変化させた場合の、水晶振動子1の振動の状態を示すパラメータであるQ値の変化の推移を示している。この例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの断面積Sfxの比率が「0.06」、「0.08」、「0.10」、「0.12」の場合のグラフが示されている。このグラフでは、いずれの場合においても、Sfz/Sfxの値が「1.0」を上回ると、Q値が急激に低下している。すなわち、励振電極部14の第2凸部14Cbの断面積Sfzが第1凸部14Caの断面積Sfxよりも大きくなると、Q値が急激に低下している。したがって、励振電極部14の第1凸部14Caの断面積Sfxを第2凸部14Cbの断面積Sfzよりも大きくすることで、水晶振動子1の振動特性を向上させることができる。
 図45に示す例では、水晶片11の厚みTに対する励振電極部14の第2凸部14Cbの幅Wzの比率を変化させた場合の、水晶振動子1の振動の状態を示すパラメータであるQ値の変化の推移を示している。この例では、水晶片11の厚みTに対する励振電極部14の第1凸部14Caの幅Wxの比率が「1.0」、「2.0」、「3.0」、「4.3」の場合のグラフが示されている。このグラフでは、いずれの場合においても、励振電極部14の第2凸部14Cbの幅Wzが第1凸部14Caの幅Wxよりも大きくなると、Q値が急激に低下している。したがって、励振電極部14の第1凸部14Caの幅Wxを第2凸部14Cbの幅Wzよりも大きくすることで、水晶振動子1の振動特性を向上させることができる。
 以下に、本発明の実施形態の一部又は全部を付記し、その効果について説明する。なお、本発明は以下の付記に限定されるものではない。
 本発明の一態様によれば、第1基軸及び第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、水晶片の主面に設けられた励振電極部とを備え、水晶片は、励振電極部に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部は、平板部と、水晶片の主面に沿う方向における電極端部に位置し、平板部よりも膜厚が大きい膜厚部を有し、膜厚部は、主面における第1基軸の軸線方向の端部に位置し、第2基軸の軸線方向に延びる平板部から突出した凸部としての第1凸部と、主面における第2基軸の軸線方向の端部に位置し、第1基軸の軸線方向に延びる平板部から突出した凸部としての第2凸部と、を有し、第1基軸と水晶片の厚み方向とによって規定される面に沿う方向に切断した第1凸部の断面積は、第2基軸と水晶片の厚み方向とによって規定される面に沿う方向に切断した第2凸部の断面積よりも大きい、水晶振動素子が提供される。
 本発明の一態様によれば、第1凸部および第2凸部の材質は、アルミニウムであり、水晶片の厚みに対する平板部の厚みの比が大きいほど、水晶振動素子の振動特性が所定条件を満たす第1凸部および第2凸部の断面積の最大値が大きくなる、水晶振動素子が提供される。
 本発明の一態様によれば、水晶振動素子の振動特性が所定条件を満たす第1凸部および第2凸部の断面積の最大値は、水晶片の厚みに対する平板部の厚みの比を変数とする一次関数で表される、水晶振動素子が提供される。
 本発明の一態様によれば、第1凸部の突出方向と交差する方向における第1凸部の幅は、第2凸部の突出方向と交差する方向における第2凸部の幅よりも大きい、水晶振動素子が提供される。
 本発明の一態様によれば、第1凸部および第2凸部の材質は、アルミニウムであり、水晶片の厚みに対する平板部の厚みの比が大きいほど、水晶振動素子の振動特性が所定条件を満たす第1凸部および第2凸部の幅の最大値は大きくなる、水晶振動素子が提供される。
 本発明の一態様によれば、水晶振動素子の振動特性が所定条件を満たす第1凸部および第2凸部の幅の最大値は、水晶片の厚みに対する平板部の厚みの比を変数とする一次関数で表される、水晶振動素子が提供される。
 本発明の一態様によれば、第1凸部の突出量は、第2凸部の突出量よりも大きい、水晶振動素子が提供される。
 本発明の一態様によれば、第1基軸及び第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、水晶片の主面に設けられた励振電極部と、を備え、水晶片は、励振電極部に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部は、平板部と、水晶片の主面に沿う方向における電極端部に位置し、平板部よりも膜厚が大きい膜厚部を有し、膜厚部は、主面における第1基軸の軸線方向の端部に位置し、第2基軸の軸線方向に延びる凸部としての第1凸部を有する、水晶振動素子が提供される。
 本発明の一態様によれば、第1基軸及び第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、水晶片の主面に設けられた励振電極部と、を備え、水晶片は、励振電極部に電圧が印加された場合に主面と交差する方向を厚み方向としたとき、厚み方向と第1基軸とによって規定される面において振動する厚み滑り振動を行い、励振電極部は、平板部と、水晶片の主面に沿う方向における電極端部に位置し、平板部よりも膜厚が大きい膜厚部を有し、膜厚部は、主面における第2基軸の軸線方向の端部に位置し、第1基軸の軸線方向に延びる凸部としての第2凸部を有する、水晶振動素子が提供される。
 一態様として、水晶片の結晶軸である互いに交差する第1軸、第2軸、第3軸のうち、第3軸を第1軸の周りに所定角度だけ傾斜させた軸を第3傾斜軸としたとき、第1軸を第1基軸に対応させるとともに第3傾斜軸を第2基軸に対応させる、水晶振動素子が提供される。
 一態様として、水晶片の結晶軸である互いに交差する第1軸、第2軸、第3軸のうち、第1軸を第3軸の周りに所定角度だけ傾斜させた軸を第1傾斜軸とし、第3軸を第1傾斜軸の周りに所定角度だけ傾斜させた軸を第3傾斜軸としたとき、第1傾斜軸を第1基軸に対応させるとともに第3傾斜軸を第2基軸に対応させる、水晶振動素子が提供される。
 一態様として、凸部は、励振電極部における平板部と同一の材料により構成される、水晶振動素子が提供される。
 一態様として、凸部は、励振電極部における平板部と異なる材料により構成される、水晶振動素子が提供される。
 一態様として、凸部は、絶縁材料により構成される、水晶振動素子が提供される。
 以上説明したように、本発明の一態様によれば、スプリアス発振をより一層低減することができる。
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
  1…水晶振動子
 10…水晶振動素子
 11…水晶片
 14a,14b…励振電極
 15a,15b…引出電極
 16a,16b…接続電極
 30…ベース部材
 33a、33b…電極パッド
 34a、34b…貫通電極
 35a~35d…外部電極
 36a、36b…導電性保持部材
 40…蓋部材
 50…接合部材。
 
 

Claims (15)

  1.  第1基軸及び当該第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、
     前記水晶片の主面に設けられた励振電極部とを備え、
     前記水晶片は、前記励振電極部に電圧が印加された場合に、前記主面と交差する方向を厚み方向としたとき、前記厚み方向と前記第1基軸とによって規定される面において振動する厚み滑り振動を行い、
     前記励振電極部は、平板部と、前記水晶片の前記主面に沿う方向における電極端部に位置し、前記平板部よりも膜厚が大きい膜厚部を有し、
     前記膜厚部は、前記主面における前記第1基軸の軸線方向の端部に位置し、前記第2基軸の軸線方向に延びる前記平板部から突出した凸部としての第1凸部と、
     前記主面における前記第2基軸の軸線方向の端部に位置し、前記第1基軸の軸線方向に延びる前記平板部から突出した凸部としての第2凸部と、
     を有し、
     前記第1基軸と前記水晶片の厚み方向とによって規定される面に沿う方向に切断した前記第1凸部の断面積は、前記第2基軸と前記水晶片の厚み方向とによって規定される面に沿う方向に切断した前記第2凸部の断面積よりも大きい、
    水晶振動素子。
  2.  前記第1凸部および前記第2凸部の材質は、アルミニウムであり、
     前記水晶片の厚みに対する前記平板部の厚みの比が大きいほど、前記水晶振動素子の振動特性が所定条件を満たす前記第1凸部および前記第2凸部の断面積の最大値が大きくなる、
    請求項1に記載の水晶振動素子。
  3.  前記水晶振動素子の振動特性が所定条件を満たす前記第1凸部および前記第2凸部の断面積の最大値は、前記水晶片の厚みに対する前記平板部の厚みの比を変数とする一次関数で表される、
    請求項2に記載の水晶振動素子。
  4.  前記第1凸部の突出方向と交差する方向における前記第1凸部の幅は、前記第2凸部の突出方向と交差する方向における前記第2凸部の幅よりも大きい、
    請求項1から3のいずれか1項に記載の水晶振動素子。
  5.  前記第1凸部および前記第2凸部の材質は、アルミニウムであり、
     前記水晶片の厚みに対する前記平板部の厚みの比が大きいほど、前記水晶振動素子の振動特性が所定条件を満たす前記第1凸部および前記第2凸部の幅の最大値は大きくなる、
    請求項4に記載の水晶振動素子。
  6.  前記水晶振動素子の振動特性が所定条件を満たす前記第1凸部および前記第2凸部の幅の最大値は、前記水晶片の厚みに対する前記平板部の厚みの比を変数とする一次関数で表される、
    請求項5に記載の水晶振動素子。
  7.  前記第1凸部の突出量は、前記第2凸部の突出量よりも大きい、
    請求項1から6のいずれか1項に記載の水晶振動素子。
  8.  第1基軸及び当該第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、
     前記水晶片の前記主面に設けられた励振電極部と、
    を備え、
     前記水晶片は、前記励振電極部に電圧が印加された場合に前記主面と交差する方向を厚み方向としたとき、前記厚み方向と前記第1基軸とによって規定される面において振動する厚み滑り振動を行い、
     前記励振電極部は、平板部と、前記水晶片の前記主面に沿う方向における電極端部に位置し、前記平板部よりも膜厚が大きい膜厚部を有し、
     前記膜厚部は、
     前記主面における前記第1基軸の軸線方向の端部に位置し、前記第2基軸の軸線方向に延びる凸部としての第1凸部を有する、
    水晶振動素子。
  9.  第1基軸及び当該第1基軸と交差する第2基軸によって規定される主面を有する水晶片と、
     前記水晶片の前記主面に設けられた励振電極部と、
    を備え、
     前記水晶片は、前記励振電極部に電圧が印加された場合に前記主面と交差する方向を厚み方向としたとき、前記厚み方向と前記第1基軸とによって規定される面において振動する厚み滑り振動を行い、
     前記励振電極部は、平板部と、前記水晶片の前記主面に沿う方向における電極端部に位置し、前記平板部よりも膜厚が大きい膜厚部を有し、
     前記膜厚部は、
     前記主面における前記第2基軸の軸線方向の端部に位置し、前記第1基軸の軸線方向に延びる凸部としての第2凸部を有する、
    水晶振動素子。
  10.  前記水晶片の結晶軸である互いに交差する第1軸、第2軸、第3軸のうち、第3軸を第1軸の周りに所定角度だけ傾斜させた軸を第3傾斜軸としたとき、第1軸を第1基軸に対応させるとともに第3傾斜軸を第2基軸に対応させる、
     請求項1から9のいずれか1項に記載の水晶振動素子。
  11.  前記水晶片の結晶軸である互いに交差する第1軸、第2軸、第3軸のうち、第1軸を第3軸の周りに所定角度だけ傾斜させた軸を第1傾斜軸とし、第3軸を第1傾斜軸の周りに所定角度だけ傾斜させた軸を第3傾斜軸としたとき、第1傾斜軸を第1基軸に対応させるとともに第3傾斜軸を第2基軸に対応させる、
     請求項1から9のいずれか1項に記載の水晶振動素子。
  12.  前記凸部は、前記励振電極部における前記平板部と同一の材料により構成される、
    請求項1から11のいずれか1項に記載の水晶振動素子。
  13.  前記凸部は、前記励振電極部における前記平板部と異なる材料により構成される、
    請求項1から11のいずれか1項に記載の水晶振動素子。
  14.  前記凸部は、絶縁材料により構成される、
    請求項1、8、9のいずれか1項に記載の水晶振動素子。
  15.  請求項1から14のいずれか1項に記載の水晶振動素子と、
     前記水晶振動素子が搭載されたベース部材と、
     前記ベース部材に接合されて前記水晶振動素子を封止する蓋部材と
    を備える、水晶振動子。
     
PCT/JP2021/037940 2020-10-13 2021-10-13 水晶振動素子および水晶振動子 WO2022080426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180069934.9A CN116368733A (zh) 2020-10-13 2021-10-13 晶体振动元件以及晶体振动器
DE212021000441.5U DE212021000441U1 (de) 2020-10-13 2021-10-13 Kristalloszillationselement und Kristalloszillator
JP2022557053A JPWO2022080426A1 (ja) 2020-10-13 2021-10-13
US18/297,720 US20230246632A1 (en) 2020-10-13 2023-04-10 Crystal oscillation element and crystal oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020172341 2020-10-13
JP2020-172341 2020-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/297,720 Continuation US20230246632A1 (en) 2020-10-13 2023-04-10 Crystal oscillation element and crystal oscillator

Publications (1)

Publication Number Publication Date
WO2022080426A1 true WO2022080426A1 (ja) 2022-04-21

Family

ID=81209241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037940 WO2022080426A1 (ja) 2020-10-13 2021-10-13 水晶振動素子および水晶振動子

Country Status (5)

Country Link
US (1) US20230246632A1 (ja)
JP (1) JPWO2022080426A1 (ja)
CN (1) CN116368733A (ja)
DE (1) DE212021000441U1 (ja)
WO (1) WO2022080426A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168501A (ja) * 1997-08-22 1999-03-09 Matsushita Electric Ind Co Ltd 水晶振動子および水晶振動子の製造方法
JP2003273682A (ja) * 2002-03-15 2003-09-26 Seiko Epson Corp 圧電振動片の周波数調整方法、圧電振動片および圧電デバイス
JP2010074840A (ja) * 2009-11-06 2010-04-02 Seiko Epson Corp 圧電振動片及びその製造方法
JP2014127743A (ja) * 2012-12-25 2014-07-07 Nippon Dempa Kogyo Co Ltd 水晶振動子
JP2015089093A (ja) * 2013-10-28 2015-05-07 株式会社坂本電機製作所 水晶振動子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038736A1 (fr) 1997-02-26 1998-09-03 Toyo Communication Equipment Co., Ltd. Vibrateur piezoelectrique et son procede de fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168501A (ja) * 1997-08-22 1999-03-09 Matsushita Electric Ind Co Ltd 水晶振動子および水晶振動子の製造方法
JP2003273682A (ja) * 2002-03-15 2003-09-26 Seiko Epson Corp 圧電振動片の周波数調整方法、圧電振動片および圧電デバイス
JP2010074840A (ja) * 2009-11-06 2010-04-02 Seiko Epson Corp 圧電振動片及びその製造方法
JP2014127743A (ja) * 2012-12-25 2014-07-07 Nippon Dempa Kogyo Co Ltd 水晶振動子
JP2015089093A (ja) * 2013-10-28 2015-05-07 株式会社坂本電機製作所 水晶振動子

Also Published As

Publication number Publication date
US20230246632A1 (en) 2023-08-03
JPWO2022080426A1 (ja) 2022-04-21
DE212021000441U1 (de) 2023-05-10
CN116368733A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
JP4281348B2 (ja) 圧電振動片と圧電振動片を利用した圧電デバイス、ならびに圧電デバイスを利用した携帯電話装置および圧電デバイスを利用した電子機器
JP6791766B2 (ja) 圧電振動片及び圧電デバイス
JP6855227B2 (ja) 圧電振動片及び圧電デバイス
JP5067486B2 (ja) 屈曲振動片、屈曲振動子、及び圧電デバイス
JP2000134060A (ja) エネルギー閉じ込め型圧電共振子及びエネルギー閉じ込め型圧電共振部品
GB2117968A (en) Gt-cut piezo-electric resonator
JP2012507902A (ja) 複数の調和的共振を有するバルク波を有する共振構造体における交差結合フィルタ要素
WO2019167920A1 (ja) 振動基板、振動素子、及び振動子
JPH0435108A (ja) 超薄板多重モード水晶フィルタ素子
JP2000138554A (ja) エネルギー閉じ込め型圧電共振子
JP4111139B2 (ja) エネルギー閉じ込め型圧電共振部品
WO2022080426A1 (ja) 水晶振動素子および水晶振動子
JP2012186639A (ja) 圧電振動片、圧電振動子、電子デバイス
JPWO2007026397A1 (ja) 圧電共振素子及びそれを用いた圧電共振装置
JP4310838B2 (ja) 圧電デバイス
KR100397724B1 (ko) 두께 확장 진동 모드 압전 공진자, 사다리형 필터 및 압전공진부품
US20190190485A1 (en) Piezoelectric vibrator
US20190149124A1 (en) Piezoelectric vibrating piece and piezoelectric device
WO2021186790A1 (ja) 水晶振動素子、水晶振動子及び水晶発振器
WO2022158028A1 (ja) 圧電振動子
JP7061275B2 (ja) 水晶振動素子および水晶振動子
JP7465458B2 (ja) 圧電振動子
WO2021131121A1 (ja) 圧電振動素子、圧電振動子及び電子装置
JP6904851B2 (ja) 音叉型水晶素子及びその音叉型水晶素子を用いた水晶デバイス
JP6901383B2 (ja) 音叉型水晶素子及びその音叉型水晶素子を用いた水晶デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557053

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21880163

Country of ref document: EP

Kind code of ref document: A1