WO2022080267A1 - エッチングガス、エッチング方法、及び半導体素子の製造方法 - Google Patents
エッチングガス、エッチング方法、及び半導体素子の製造方法 Download PDFInfo
- Publication number
- WO2022080267A1 WO2022080267A1 PCT/JP2021/037421 JP2021037421W WO2022080267A1 WO 2022080267 A1 WO2022080267 A1 WO 2022080267A1 JP 2021037421 W JP2021037421 W JP 2021037421W WO 2022080267 A1 WO2022080267 A1 WO 2022080267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- etching
- gas
- etched
- fluorobutene
- chf
- Prior art date
Links
- 238000005530 etching Methods 0.000 title claims abstract description 300
- 238000000034 method Methods 0.000 title claims abstract description 61
- 239000004065 semiconductor Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- WFOIWBGKCSYBJN-UHFFFAOYSA-N 1-fluorobut-1-ene Chemical compound CCC=CF WFOIWBGKCSYBJN-UHFFFAOYSA-N 0.000 claims abstract description 86
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 46
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 44
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 44
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 43
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 43
- 239000012535 impurity Substances 0.000 claims abstract description 42
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 28
- 239000010703 silicon Substances 0.000 claims abstract description 28
- 239000007789 gas Substances 0.000 claims description 213
- NLOLSXYRJFEOTA-OWOJBTEDSA-N (e)-1,1,1,4,4,4-hexafluorobut-2-ene Chemical group FC(F)(F)\C=C\C(F)(F)F NLOLSXYRJFEOTA-OWOJBTEDSA-N 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 239000010941 cobalt Substances 0.000 claims description 15
- 229910017052 cobalt Inorganic materials 0.000 claims description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 12
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 12
- 239000011701 zinc Substances 0.000 claims description 12
- 229910052725 zinc Inorganic materials 0.000 claims description 12
- 238000007865 diluting Methods 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- YIFLMZOLKQBEBO-UPHRSURJSA-N (z)-1,1,1,2,4,4,4-heptafluorobut-2-ene Chemical compound FC(F)(F)C(/F)=C/C(F)(F)F YIFLMZOLKQBEBO-UPHRSURJSA-N 0.000 claims description 3
- FAOACLKUNWKVPH-UHFFFAOYSA-N 2,3,3,4,4,4-hexafluorobut-1-ene Chemical compound FC(=C)C(F)(F)C(F)(F)F FAOACLKUNWKVPH-UHFFFAOYSA-N 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 238000009616 inductively coupled plasma Methods 0.000 description 12
- 238000001020 plasma etching Methods 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- 238000009835 boiling Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000010931 gold Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229920006254 polymer film Polymers 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- -1 droplets Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- QMIWYOZFFSLIAK-UHFFFAOYSA-N 3,3,3-trifluoro-2-(trifluoromethyl)prop-1-ene Chemical compound FC(F)(F)C(=C)C(F)(F)F QMIWYOZFFSLIAK-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- JYZFTXWDXGDNJZ-UHFFFAOYSA-N 1-fluorobut-2-ene Chemical compound CC=CCF JYZFTXWDXGDNJZ-UHFFFAOYSA-N 0.000 description 2
- JESXATFQYMPTNL-UHFFFAOYSA-N 2-ethenylphenol Chemical compound OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 2
- IZHPSCJEIFFRLN-UHFFFAOYSA-N 3,3,4,4,4-pentafluorobut-1-ene Chemical compound FC(F)(F)C(F)(F)C=C IZHPSCJEIFFRLN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- BLNWTWDBKNPDDJ-UHFFFAOYSA-N 1,1,1,2,3,4,4-heptafluorobut-2-ene Chemical compound FC(F)C(F)=C(F)C(F)(F)F BLNWTWDBKNPDDJ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000617 Mangalloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 1
- 229960004065 perflutren Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K13/00—Etching, surface-brightening or pickling compositions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
Definitions
- the present invention relates to an etching gas, an etching method, and a method for manufacturing a semiconductor element.
- Patent Document 1 discloses an etching gas containing hexafluoroisobutene. Hexafluoroisobutene reacts during etching to polymerize, and the mask is covered and protected by a film of this polymer, so that high etching selectivity can be easily obtained.
- the etching selectivity may be insufficient.
- the present invention performs non-etching when an etching gas is brought into contact with a member to be etched having an etching target object to be etched by the etching gas and a non-etching target object not to be etched by the etching gas. It is an object of the present invention to provide an etching gas, an etching method, and a method for manufacturing a semiconductor element, which can selectively etch an object to be etched as compared with the object.
- At least one of copper, zinc, manganese, cobalt, and silicon is further contained or not contained as the metal impurity, and the alkali metal and alkaline earth metal when the metal impurity is contained, and copper, zinc, and the like.
- the etching gas according to [1], wherein the total concentration of manganese, cobalt, and silicon is 10,000 mass ppb or less.
- the fluorobutene is 1,1,1,4,4,4-hexafluoro-2-butene, 1,1,1,2,4,4,4-heptafluoro-2-butene, 3,3. , 4,4,4-Pentafluoro-1-butene, and 2,3,3,4,4,4-hexafluoro-1-butene, which is at least one of [1] to [3].
- the etching target according to any one of [1] to [4] is used as an etching target to be etched by the etching gas and a non-etching target not to be etched by the etching gas.
- An etching method comprising an etching step of contacting a member to be etched and selectively etching the object to be etched as compared with the non-etched object, wherein the object to be etched contains silicon.
- a metal impurity removing step in which the sum of the concentrations of the alkali metal and the alkaline earth metal contained in the etching gas is 5000 mass ppb or less is provided before the etching step.
- etching gas is a gas consisting only of the fluorobutene or a mixed gas containing the fluorobutene and a diluting gas.
- diluted gas is at least one selected from nitrogen gas, helium, argon, neon, krypton, and xenon.
- a method for manufacturing a semiconductor device wherein the semiconductor device is manufactured by using the etching method according to any one of [5] to [8].
- the member to be etched is a semiconductor substrate having the etching target and the non-etching target.
- a method for manufacturing a semiconductor device comprising a processing step of removing at least a part of the object to be etched from the semiconductor substrate by the etching.
- an etching target containing silicon can be selectively etched as compared with a non-etching target.
- the etching gas according to this embodiment is represented by the general formula C 4 H x F y and contains fluorobutene in which x is 1 or more and 7 or less, y is 1 or more and 7 or less, and x + y is 8.
- the gas at least one of alkali metal and alkaline earth metal is contained or not contained as a metal impurity, and the sum of the concentrations of the alkali metal and the alkaline earth metal in the case of containing the gas is 5000 mass ppb or less. be.
- the etching gas according to the present embodiment is applied to a member to be etched having an etching target object to be etched by the etching gas and a non-etching target object not to be etched by the etching gas. It is provided with an etching step of contacting the object and selectively etching the object to be etched as compared with the non-etched object. Then, in the etching method according to the present embodiment, the etching target contains silicon (Si).
- the etching target can be selectively etched as compared with the non-etching target (that is, high etching selectivity can be obtained).
- the fluorobutene is polymerized by reacting during dry etching, and the non-etched object is coated with the film of this polymer to be protected from etching. Therefore, since the etching of the non-etched object is more difficult to proceed, if the etching is performed using the etching gas containing fluorobutene, the etching selectivity is further improved.
- the etching gas contains metal impurities
- the catalytic action of the metal impurities promotes the polymerization reaction of the carbon-carbon double bond of the fluorobutene, so that the formation of the polymer film is promoted.
- a polymer film is excessively formed on the etching target, and the etching of the etching target is difficult to proceed, so that the etching selectivity may decrease.
- the alkali metal and the alkaline earth metal have a high catalytic action for promoting the polymerization reaction of the carbon-carbon double bond of the fluorobutene, there is a possibility that the etching selectivity is greatly reduced.
- the etching gas according to the present embodiment does not contain or has a low concentration of an alkali metal and an alkaline earth metal, the polymerization reaction of the carbon-carbon double bond of the fluorobutene is promoted. Hateful. Therefore, if the member to be etched is dry-etched using the etching gas according to the present embodiment, it is unlikely that an excessive polymer film is formed on the object to be etched, so that the etching is performed as compared with the non-etched object.
- the object can be selectively etched.
- the etching selection ratio which is the ratio of the etching rate of the non-etched object to the etching rate of the etched object, tends to be 10 or more.
- the etching selectivity is preferably 10 or more, more preferably 30 or more, and even more preferably 50 or more.
- the etching in the present invention means that the member to be etched is processed into a predetermined shape (for example, a three-dimensional shape) by removing a part or all of the object to be etched (for example, the member to be etched). It means (to process a film-like etching object made of a silicon compound having a predetermined film thickness).
- the etching method according to this embodiment can be used for manufacturing a semiconductor element. That is, the method for manufacturing a semiconductor element according to the present embodiment is a method for manufacturing a semiconductor element for manufacturing a semiconductor element by using the etching method according to the present embodiment, and the member to be etched is an object to be etched and a non-etched object. It is a semiconductor substrate having an object, and includes a processing step of removing at least a part of the object to be etched from the semiconductor substrate by etching.
- the etching method according to the present embodiment can accurately etch the object to be etched, it can be used for manufacturing semiconductor elements such as 3D-NAND flash memory and logic devices, for example. Further, the etching method according to the present embodiment can be expected to contribute to further miniaturization and high integration of semiconductor devices.
- the etching of the present embodiment can be achieved by either plasma etching using plasma or plasmaless etching using plasma.
- plasma etching include reactive ion etching (RIE), inductively coupled plasma (ICP) etching, capacitively coupled plasma (CCP: Capacitive Coupled Plasma) etching, and electron etching.
- RIE reactive ion etching
- ICP inductively coupled plasma
- CCP capacitively coupled plasma
- electron etching Electron Cyclotron Resonance
- Plasma etching microwave plasma etching can be mentioned.
- plasma may be generated in a chamber in which a member to be etched is installed, or a plasma generation chamber and a chamber in which the member to be etched may be installed may be separated (that is, remote plasma is used). May be). Etching using a remote plasma may enable etching of a silicon-containing object to be etched with higher selectivity.
- fluorobutene The fluorobutene contained in the etching gas according to the present embodiment is represented by the general formula C 4 H x F y , and x in the general formula is 1 or more and 7 or less and y is 1 or more and 7 or less. , X + y satisfies the three conditions of 8.
- the type of fluorobutene is not particularly limited as long as it meets the above requirements, and linear fluorobutene and branched-chain fluorobutene (isobutene) can be used, but fluoro-1-butene is used. Similar substances and those similar to fluoro-2-butene can be preferably used.
- fluorobutenes may be used alone, or two or more types may be used in combination. Further, although some of the above fluorobutenes have cis-trans isomers, either cis-type or trans-type fluorobutene can be used in the etching gas according to the present embodiment. ..
- those having a boiling point at 1 atm of 50 ° C. or lower are preferable, and those having a boiling point of 40 ° C. or lower are more preferable.
- the boiling point at 1 atm is within the above range, when the fluorobutene gas is introduced into, for example, a plasma etching apparatus, the fluorobutene gas is difficult to liquefy inside a pipe or the like into which the fluorobutene gas is introduced. Therefore, it is possible to suppress the occurrence of troubles caused by the liquefaction of the fluorobutene gas, so that the plasma etching process can be efficiently performed.
- fluorobutene examples include 1,1,1,4,4,4-hexafluoro-2-butene (boiling point 9 ° C.), 1,1,1,2,4,4,4-. Heptafluoro-2-butene (boiling point 8 ° C), 3,3,4,4,4-pentafluoro-1-butene (boiling point 3-6 ° C), and 2,3,3,4,4,4-hexa At least one selected from fluoro-1-butene (boiling point 3-7 ° C.) is preferred.
- the etching gas is a gas containing the above-mentioned fluorobutene.
- the etching gas may be a gas consisting only of the above-mentioned fluorobutene or a mixed gas containing the above-mentioned fluorobutene and a diluting gas. Further, it may be a mixed gas containing the above-mentioned fluorobutene, a diluting gas and an added gas.
- the diluting gas at least one selected from nitrogen gas (N 2 ), helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) can be used.
- an oxidizing gas for example, an oxidizing gas, a fluorocarbon gas, or a hydrofluorocarbon gas
- the oxidizing gas include oxygen gas (O 2 ), ozone (O 3 ), carbon monoxide (CO), carbon dioxide (CO 2 ), nitric oxide (NO), and nitrous oxide (N 2 ). O) and nitrogen dioxide (NO 2 ) can be mentioned.
- fluorocarbons include carbon tetrafluoride (CF 4 ), hexafluoromethane (C 2 F 6 ), and octafluoropropane (C 3 F 8 ).
- hydrofluorocarbons include CF 3 H, CF 2 H 2 , CF H 3 , C 2 F 4 H 2 , C 2 F 5 H, C 3 F 7 H, C 3 F 6 H 2 , C 3 F 5 Examples include H 3 , C 3 F 4 H 4 , and C 3 F 3 H 5 .
- One type of these additive gases may be used alone, or two or more types may be used in combination.
- the content of the diluted gas is preferably 90% by volume or less, more preferably 50% by volume or less, based on the total amount of the etching gas.
- the content of the added gas is preferably 50% by volume or less, more preferably 30% by volume or less, based on the total amount of the etching gas.
- the content of fluorobutene in the etching gas is preferably 5% by volume or more, more preferably 10% by volume or more, based on the total amount of the etching gas, from the viewpoint of improving the etching rate. Further, from the viewpoint of suppressing the amount of fluorobutene used, 90% by volume or less is preferable, and 80% by volume or less is more preferable with respect to the total amount of etching gas.
- the etching gas according to the present embodiment contains or does not contain at least one of an alkali metal and an alkaline earth metal as a metal impurity, but the sum of the concentrations of the alkali metal and the alkaline earth metal in the case of containing the alkali metal is 5000. Since the concentration is as low as ppb or less by mass, it is difficult to promote the polymerization reaction of the carbon-carbon double bond of the fluorobutene as described above, and as a result, the etching target is selectively etched as compared with the non-etching target. can do.
- the term "not contained” means a case where it cannot be quantified by an inductively coupled plasma mass spectrometer (ICP-MS).
- alkali metal examples include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and francium (Fr), and examples of the alkaline earth metal include beryllium (Be) and magnesium ( Examples thereof include Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
- the etching gas according to the present embodiment contains one or more of the metals listed above as metal impurities, the total concentration of all the types of metal impurities contained therein is 5000 mass. It is ppb or less.
- the sum of the concentrations of the alkali metal and the alkaline earth metal contained in the etching gas needs to be 5000 mass ppb or less, but 1000 mass ppb or less. It is preferably 100 mass ppb or less, and more preferably 100 mass ppb or less.
- the concentrations of lithium, sodium and potassium among the alkali metals are particularly important, and the concentrations of magnesium and calcium among the alkaline earth metals are particularly important. Of particular importance. Therefore, the concentrations of lithium, sodium, and potassium contained in the etching gas are preferably 1000 mass ppb or less, and more preferably 100 mass ppb or less, respectively.
- the concentrations of magnesium and calcium contained in the etching gas are preferably 1000 mass ppb or less, and more preferably 100 mass ppb or less, respectively.
- the sum of the concentrations of the alkali metal and the alkaline earth metal may be 1 mass ppb or more.
- the concentration of metal impurities such as alkali metal and alkaline earth metal in the etching gas can be quantified by an inductively coupled plasma mass spectrometer (ICP-MS).
- the concentrations of alkali metals and alkaline earth metals in the etching gas are used. It is preferable that the concentration of Si) is also low. That is, the etching gas contains or does not contain at least one of the alkali metal and the alkaline earth metal as a metal impurity, and the sum of the concentrations of the alkali metal and the alkaline earth metal in the case of containing the alkali metal and the alkaline earth metal is 5000 mass ppb or less.
- At least one of copper, zinc, manganese, cobalt, and silicon is further contained or not contained as the metal impurity, and the alkali metal and alkaline earth metal in the case of containing the metal impurity, and
- the total concentration of copper, zinc, manganese, cobalt and silicon is preferably 10,000 mass ppb or less, more preferably 5000 mass ppb or less, and further preferably 1000 mass ppb or less.
- the total concentration of the alkali metal, the alkaline earth metal, and copper, zinc, manganese, cobalt, and silicon may be 2 mass ppb or more.
- titanium (Ti) and zirconium (Zr) are used.
- Hafnium (Hf), Niob (Nb), Tantalum (Ta), Tungsten (W), Luthenium (Ru), Rhodium (Rh), Palladium (Pd), Platinum (Pt), Silver (Ag), Gold (Au) ), Cadmium (Cd), tin (Sn), and lead (Pb) are also preferably low.
- the etching gas contains at least one of an alkali metal and an alkaline earth metal and at least one of copper, zinc, manganese, cobalt, and silicon as metal impurities, and titanium, zirconium, hafnium, niobium, and so on. If at least one of tantalum, tungsten, ruthenium, rhodium, palladium, platinum, silver, gold, cadmium, tin, and lead is further contained as a metal impurity, the sum of the concentrations of all these metal impurities contained is 15,000.
- the mass is preferably ppb or less, more preferably 10,000 mass ppb or less, and further preferably 5000 mass ppb or less.
- the etching gas contains at least one of alkali metals and alkaline earth metals, and at least one of copper, zinc, manganese, cobalt, and silicon, and titanium, zirconium, hafnium, niobium, tantalum, tungsten, ruthenium, and rhodium. , Palladium, platinum, silver, gold, ruthenium, tin, and lead as metal impurities, and at least one of chromium, molybdenum, iron, nickel, aluminum, and antimony as metal impurities.
- the sum of the concentrations of all the contained metal impurities is preferably 20000 mass ppb or less, more preferably 15000 mass ppb or less, and further preferably 10000 mass ppb or less.
- the above-mentioned metal impurities may be contained in the etching gas as a simple substance of a metal, a metal compound, a metal halide, or a metal complex.
- Examples of the form of metal impurities in the etching gas include fine particles, droplets, gas and the like. It is considered that the alkali metal and the alkaline earth metal are derived from the raw materials, reactors, purification devices and the like used for synthesizing the above fluorobutene and are mixed in the etching gas.
- a method for removing the metal impurities from the fluorobutene for example, a method for passing the fluorobutene through a filter, a method for contacting an adsorbent, and a method for separating by distillation.
- the fluorobutene is sealed in a stainless steel cylinder and held at about 0 ° C., and the gas phase portion is extracted by the method described in Examples described later to remove the metal impurities. Fluorobutene with reduced concentration can be obtained.
- the etching step described later it is preferable to perform the etching step described later after the sum of the concentrations of the alkali metal and the alkaline earth metal contained in the etching gas is set to 5000 mass ppb or less.
- the pressure condition of the etching step in the etching method according to the present embodiment is not particularly limited, but is preferably 10 Pa or less, and more preferably 5 Pa or less. When the pressure condition is within the above range, plasma is likely to be stably generated. On the other hand, the pressure condition in the etching step is preferably 0.05 Pa or more. When the pressure condition is within the above range, a large amount of ionized ions are generated and a sufficient plasma density can be easily obtained.
- the flow rate of the etching gas may be appropriately set so that the pressure in the chamber is kept constant according to the size of the chamber and the capacity of the exhaust equipment for depressurizing the inside of the chamber.
- the temperature condition of the etching step in the etching method according to the present embodiment is not particularly limited, but it is preferably 200 ° C. or lower in order to obtain high etching selectivity, and a non-etching object such as a mask is etched. It is more preferably 150 ° C. or lower in order to further suppress the etching, and further preferably 100 ° C. or lower in order to perform anisotropic etching.
- the temperature of the temperature condition is the temperature of the member to be etched, but the temperature of the stage that supports the member to be etched, which is installed in the chamber of the etching apparatus, can also be used.
- the above fluorobutene hardly reacts with non-etching objects such as masks at a temperature of 200 ° C. or lower. Therefore, if the member to be etched is etched by the etching method according to the present embodiment, the object to be etched can be selectively etched with almost no etching of the non-etched object. Therefore, the etching method according to the present embodiment can be used as a method of processing a silicon-containing etching target into a predetermined shape by using a patterned non-etching target as a resist or a mask.
- the etching selectivity tends to be high.
- the etching selection ratio which is the ratio of the etching rate of the object to be etched containing silicon to the etching rate of the non-etched object, tends to be 10 or more.
- the bias power constituting the potential difference between the plasma generated during etching and the member to be etched may be selected from 0 to 10000 W depending on the desired etching shape, and 0 to 1000 W when selectively etching is performed. The degree is preferable. Anisotropic etching can be performed by this potential difference.
- the member to be etched by the etching method according to the present embodiment has an etching target and a non-etching target, but has a portion formed by the etching target and a portion formed by the non-etching target. It may be a member or a member formed of a mixture of an etching target and a non-etching target. Further, the member to be etched may have a member other than the object to be etched and the object to be etched.
- the shape of the member to be etched is not particularly limited, and may be, for example, plate-shaped, foil-shaped, film-shaped, powder-shaped, or lump-shaped. Examples of the member to be etched include the above-mentioned semiconductor substrate.
- the object to be etched may be formed only of a material containing silicon, or may have a portion formed only of a material containing silicon and a portion formed of another material. It may be formed of a mixture of a material containing silicon and another material.
- the silicon-containing material include silicon oxide, silicon nitride, polysilicon, and silicon germanium (SiGe).
- silicon oxide examples include silicon dioxide (SiO 2 ).
- silicon nitride refers to a compound having silicon and nitrogen in arbitrary proportions, and examples thereof include Si 3 N 4 .
- the purity of silicon nitride is not particularly limited, but is preferably 30% by mass or more, more preferably 60% by mass or more, and further preferably 90% by mass or more.
- the shape of the object to be etched is not particularly limited, and may be, for example, plate-shaped, foil-shaped, film-shaped, powder-shaped, or lump-shaped.
- Non-etched object Since the non-etching object does not substantially react with the above-mentioned fluorobutene or the reaction with the above-mentioned fluorobutene is extremely slow, the etching hardly proceeds even if the etching is performed by the etching method according to the present embodiment. It doesn't.
- the non-etching object is not particularly limited as long as it has the above-mentioned properties, but for example, photoresist, amorphous carbon, titanium nitride, metals such as copper, nickel, and cobalt, and oxidation of these metals. Examples include objects and nitrides. Among these, photoresist and amorphous carbon are more preferable from the viewpoint of handleability and availability.
- Photoresist means a photosensitive composition whose physical properties such as solubility are changed by light, electron beam, or the like.
- photoresists for g-line, h-line, i-line, KrF, ArF, F2, EUV and the like can be mentioned.
- the composition of the photoresist is not particularly limited as long as it is generally used in the semiconductor manufacturing process, and for example, chain olefin, cyclic olefin, styrene, vinylphenol, acrylic acid, methacrylate, epoxy, etc. Examples thereof include compositions containing a polymer synthesized from at least one monomer selected from melamine and glycol.
- the non-etching target can be used as a resist or a mask for suppressing etching of the etching target by the etching gas. Therefore, in the etching method according to the present embodiment, the patterned non-etched object is used as a resist or a mask to process the etched object into a predetermined shape (for example, the film-shaped etched object of the member to be etched). Since it can be used for a method such as (processing an object to a predetermined film thickness), it can be suitably used for manufacturing a semiconductor element. Further, since the non-etched object is hardly etched, it is possible to suppress the etching of the portion of the semiconductor element that should not be etched, and it is possible to prevent the characteristics of the semiconductor element from being lost by etching. can.
- the non-etching object remaining after patterning can be removed by a removal method generally used in the semiconductor device manufacturing process. For example, ashing with an oxidizing gas such as oxygen plasma or ozone, or dissolution using a chemical solution such as APM (mixed solution of ammonia water and hydrogen peroxide solution), SPM (mixed solution of sulfuric acid and hydrogen peroxide solution) or organic solvent. Removal is mentioned.
- ashing with an oxidizing gas such as oxygen plasma or ozone
- a chemical solution such as APM (mixed solution of ammonia water and hydrogen peroxide solution), SPM (mixed solution of sulfuric acid and hydrogen peroxide solution) or organic solvent. Removal is mentioned.
- the etching apparatus of FIG. 1 is a plasma etching apparatus that performs etching using plasma. First, the etching apparatus of FIG. 1 will be described.
- the etching apparatus of FIG. 1 supports a chamber 10 in which etching is performed internally, a plasma generator (not shown) that generates gas inside the chamber 10, and a member 12 to be etched to be etched inside the chamber 10.
- a thermometer 14 that measures the temperature of the stage 11 and the member 12 to be etched, an exhaust pipe 13 for discharging the gas inside the chamber 10, and a vacuum provided in the exhaust pipe 13 to reduce the pressure inside the chamber 10. It includes a pump 15 and a pressure gauge 16 for measuring the pressure inside the chamber 10.
- the type of plasma generation mechanism of the plasma generator is not particularly limited, and may be one in which a high frequency voltage is applied to a parallel plate or one in which a high frequency current is passed through a coil.
- a high frequency voltage is applied to the member 12 to be etched in plasma
- a negative voltage is applied to the member 12 to be etched, and positive ions are incident on the member 12 to be etched at high speed and vertically, so that anisotropic etching is possible.
- the etching apparatus of FIG. 1 is provided with an etching gas supply unit that supplies the etching gas inside the chamber 10.
- This etching gas supply unit is a fluorobutene gas supply unit 1 that connects a fluorobutene gas supply unit 1 that supplies a fluorobutene gas, a dilution gas supply unit 2 that supplies a dilution gas, a fluorobutene gas supply unit 1 and a chamber 10. It has a diluting gas supply pipe 6 for connecting a diluting gas supply unit 2 to an intermediate portion of the fluorobutene gas supply pipe 5 and a diluting gas supply pipe 5.
- the fluorobutene gas supply pipe 5 is provided with a fluorobutene gas pressure control device 7 for controlling the pressure of the fluorobutene gas and a fluorobutene gas flow rate control device 3 for controlling the flow rate of the fluorobutene gas.
- the diluted gas supply pipe 6 is provided with a diluted gas pressure control device 8 for controlling the pressure of the diluted gas and a diluted gas flow rate control device 4 for controlling the flow rate of the diluted gas.
- a facility for supplying the added gas may be provided in the same manner as the diluted gas supply unit 2, the diluted gas flow rate control device 4, the diluted gas supply pipe 6, and the diluted gas pressure control device 8 (not shown). ).
- the fluorobutene gas When the fluorobutene gas is supplied to the chamber 10 as the etching gas, the inside of the chamber 10 is depressurized by the vacuum pump 15, and then the fluorobutene gas is supplied from the fluorobutene gas supply unit 1 to the fluorobutene gas supply pipe 5. By sending out the fluorobutene gas, the fluorobutene gas is supplied to the chamber 10 through the fluorobutene gas supply pipe 5.
- the inside of the chamber 10 is depressurized by the vacuum pump 15, and then fluorobutene is supplied from the fluorobutene gas supply unit 1.
- the fluorobutene gas is sent out to the gas supply pipe 5, and the diluted gas is sent from the diluted gas supply unit 2 to the fluorobutene gas supply pipe 5 via the diluted gas supply pipe 6.
- the fluorobutene gas and the diluting gas are mixed in the intermediate portion of the fluorobutene gas supply pipe 5 to form a mixed gas, and this mixed gas is supplied to the chamber 10 via the fluorobutene gas supply pipe 5. It has become.
- the configuration of the fluorobutene gas supply unit 1 and the diluted gas supply unit 2 is not particularly limited, and may be, for example, a cylinder or a cylinder. Further, as the fluorobutene gas flow rate control device 3 and the diluted gas flow rate control device 4, for example, a mass flow controller or a flow meter can be used.
- the supply pressure of the etching gas is preferably 1 Pa or more and 0.2 MPa or less, more preferably 10 Pa or more and 0.1 MPa or less, and further preferably 50 Pa or more and 50 kPa or less.
- the supply pressure of the etching gas is within the above range, the etching gas is smoothly supplied to the chamber 10, and the load on the parts (for example, the various devices and the piping) of the etching device of FIG. 1 is small. ..
- the pressure of the etching gas supplied into the chamber 10 is preferably 1 Pa or more and 80 kPa or less, and more preferably 10 Pa or more and 50 kPa or less, from the viewpoint of uniformly etching the surface of the member 12 to be etched. , 100 Pa or more and 20 kPa or less is more preferable.
- the pressure of the etching gas in the chamber 10 is within the above range, a sufficient etching rate can be obtained and the etching selection ratio tends to be high.
- the pressure in the chamber 10 before supplying the etching gas is not particularly limited as long as it is equal to or lower than the supply pressure of the etching gas or lower than the supply pressure of the etching gas, but is not particularly limited, but is, for example, 10 -5 Pa or more. It is preferably less than 10 kPa, and more preferably 1 Pa or more and 2 kPa or less.
- the differential pressure between the supply pressure of the etching gas and the pressure in the chamber 10 before supplying the etching gas is preferably 0.5 MPa or less, more preferably 0.3 MPa or less, and 0.1 MPa or less. Is more preferable.
- the etching gas can be smoothly supplied to the chamber 10.
- the etching processing time (hereinafter, also referred to as "etching time”) can be arbitrarily set depending on how much the object to be etched of the member 12 to be etched is desired to be etched, but the production efficiency of the semiconductor device manufacturing process is taken into consideration. Then, it is preferably within 60 minutes, more preferably within 40 minutes, and even more preferably within 20 minutes.
- the etching processing time refers to the time during which the etching gas is in contact with the member 12 to be etched inside the chamber 10.
- the etching method according to the present embodiment can be performed using a general plasma etching apparatus used in the semiconductor device manufacturing process, such as the etching apparatus of FIG. 1, and the configuration of the etchable apparatus that can be used is particularly limited. Not done.
- the positional relationship between the fluorobutene gas supply pipe 5 and the member 12 to be etched is not particularly limited as long as the etching gas can be brought into contact with the member 12 to be etched.
- the temperature control mechanism of the chamber 10 since the temperature of the member 12 to be etched may be adjusted to an arbitrary temperature, the temperature control mechanism may be directly provided on the stage 11 or an external temperature controller.
- the chamber 10 may be heated or cooled from the outside of the chamber 10.
- the material of the etching apparatus shown in FIG. 1 is not particularly limited as long as it has corrosion resistance to the fluorobutene used and can be depressurized to a predetermined pressure.
- a metal such as nickel, nickel-based alloy, aluminum, stainless steel, platinum, copper, or cobalt, a ceramic such as alumina, a fluororesin, or the like can be used for the portion in contact with the etching gas.
- nickel-based alloys include Inconel (registered trademark), Hastelloy (registered trademark), Monel (registered trademark) and the like.
- fluororesin include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA), polyvinylidene fluoride (PVDF), and Teflon.
- PTFE polytetrafluoroethylene
- PCTFE polychlorotrifluoroethylene
- PFA tetrafluoroethylene / perfluoroalkoxyethylene copolymer
- PVDF polyvinylidene fluoride
- Teflon Teflon
- Fluorobutene containing various concentrations of metal impurities was prepared. Examples of preparation of fluorobutene will be described below.
- (Preparation Example 1) Five cylinders made of manganese steel with a capacity of 1 L were prepared. These cylinders are referred to as cylinder A, cylinder B, cylinder C, cylinder D, and cylinder E in order. Cylinder A is filled with 500 g of 1,1,1,4,4,4-hexafluoro-2-butene (boiling point: 9 ° C.), cooled to 0 ° C. to liquefy, and the liquid phase is in a state of approximately 100 kPa. A part and a gas phase part were formed. The cylinders B, C, D, and E were cooled to ⁇ 78 ° C. after depressurizing the inside to 1 kPa or less with a vacuum pump.
- the temperature of the cylinder B is raised to about 0 ° C. to form a liquid phase portion and a gas phase portion, and 1,1,1,4,4, from the upper outlet where the gas phase portion of the cylinder B is present.
- 300 g of 4-hexafluoro-2-butene gas was extracted and transferred to the cylinder C under reduced pressure.
- 100 g of 1,1,1,4,4,4-hexafluoro-2-butene remaining in the cylinder B is used as sample 1-2.
- the gas of 1,1,1,4,4,4-hexafluoro-2-butene remaining in the cylinder B was extracted from the upper outlet, and the concentration of various metal impurities was measured by an inductively coupled plasma mass spectrometer. .. The results are shown in Table 1.
- the temperature of the cylinder C is raised to about 0 ° C. to form a liquid phase portion and a gas phase portion, and 1,1,1,4,4 from the upper outlet where the gas phase portion of the cylinder C is present.
- 200 g of 4-hexafluoro-2-butene gas was extracted and transferred to the cylinder D under reduced pressure.
- 100 g of 1,1,1,4,4,4-hexafluoro-2-butene remaining in the cylinder C is used as sample 1-3.
- the gas of 1,1,1,4,4,4-hexafluoro-2-butene remaining in the cylinder C was extracted from the upper outlet, and the concentration of various metal impurities was measured by an inductively coupled plasma mass spectrometer. .. The results are shown in Table 1.
- the temperature of the cylinder D is raised to about 0 ° C. to form a liquid phase portion and a gas phase portion, and 1,1,1,4,4, from the upper outlet where the gas phase portion of the cylinder D is present.
- 100 g of gas of 4-hexafluoro-2-butene was extracted and transferred to the cylinder E under reduced pressure.
- 100 g of 1,1,1,4,4,4-hexafluoro-2-butene remaining in the cylinder D is used as a sample 1-4.
- the gas of 1,1,1,4,4,4-hexafluoro-2-butene remaining in the cylinder D was extracted from the upper outlet, and the concentration of various metal impurities was measured by an inductively coupled plasma mass spectrometer. .. The results are shown in Table 1.
- Preparation Example 2 Samples 2-1 to 2-5 were prepared in the same manner as in Preparation Example 1 except that 1,1,1,2,4,4,4-heptafluoro-2-butene was used as the fluorobutene. Prepared. Then, the concentrations of various metal impurities in each sample were measured by an inductively coupled plasma mass spectrometer. The results are shown in Table 2.
- Preparation Example 4 Samples 4-1 to 4-5 were prepared in the same manner as in Preparation Example 1 except that 2,3,3,4,4,4-hexafluoro-1-butene was used as the fluorobutene. .. Then, the concentrations of various metal impurities in each sample were measured by an inductively coupled plasma mass spectrometer. The results are shown in Table 4.
- Example 1 A silicon oxide film having a thickness of 1000 nm, a silicon nitride film having a thickness of 1000 nm, and a photoresist film having a thickness of 1000 nm are formed on the surface of the semiconductor wafer so as to be exposed on the surface without being laminated. This was used as a test body. Then, the test piece was etched using 1,1,1,4,4,4-hexafluoro-2-butene of Sample 1-5.
- the ICP etching apparatus As the etching apparatus, the ICP etching apparatus RIE-230iP manufactured by SAMCO Co., Ltd. was used. Specifically, sample 1-5 1,1,1,4,4,4-hexafluoro-2-butene has a flow rate of 10 mL / min, oxygen gas has a flow rate of 10 mL / min, and argon has a flow rate of 30 mL / min.
- an etching gas was prepared in the chamber, and a high-frequency voltage was applied at 500 W to turn the etching gas into plasma in the chamber. Then, the test piece in the chamber was etched under the etching conditions of a pressure of 3 Pa, a temperature of 20 ° C., and a bias power of 100 W.
- the test piece was taken out from the chamber, the thicknesses of the silicon oxide film, the silicon nitride film, and the photoresist film were measured, and the amount of decrease in the thickness from each film before etching was calculated.
- the etching rate of each film was calculated by dividing this decrease by the etching time. As a result, the etching rate of the photoresist film was less than 1 nm / min, the etching rate of the silicon oxide film was 64 nm / min, and the etching rate of the silicon nitride film was 57 nm / min. From this result, it was confirmed that the silicon oxide film and the silicon nitride film, which are the objects to be etched, are selectively etched as compared with the photoresist film, which is the object to be etched.
- Examples 2 to 16 and Comparative Examples 1 to 4 The etching conditions and etching results in Examples 2 to 16 and Comparative Examples 1 to 4 are shown in Table 5 in comparison with Example 1. That is, etching was performed under the same conditions as in Example 1 except for the conditions shown in Table 5.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Drying Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
この要求を満たす種々のエッチングガスが提案されており、例えば特許文献1には、ヘキサフルオロイソブテンを含有するエッチングガスが開示されている。ヘキサフルオロイソブテンはエッチング中に反応してポリマー化し、このポリマーの膜でマスクが被覆され保護されるため、高いエッチング選択性が得られやすい。
本発明は、エッチングガスによるエッチングの対象であるエッチング対象物とエッチングガスによるエッチングの対象ではない非エッチング対象物とを有する被エッチング部材にエッチングガスを接触させてエッチングを行った場合に、非エッチング対象物に比べてエッチング対象物を選択的にエッチングすることができるエッチングガス、エッチング方法、及び半導体素子の製造方法を提供することを課題とする。
[1] 一般式C4HxFyで表され且つ前記一般式中のxが1以上7以下、yが1以上7以下、x+yが8であるフルオロブテンを含有するエッチングガスであって、
アルカリ金属及びアルカリ土類金属のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のアルカリ金属及びアルカリ土類金属の濃度の和が5000質量ppb以下であるエッチングガス。
[4] 前記フルオロブテンが1,1,1,4,4,4-ヘキサフルオロ-2-ブテン、1,1,1,2,4,4,4-ヘプタフルオロ-2-ブテン、3,3,4,4,4-ペンタフルオロ-1-ブテン、及び2,3,3,4,4,4-ヘキサフルオロ-1-ブテンから選ばれる少なくとも1つである[1]~[3]のいずれか一項に記載のエッチングガス。
[6] 前記エッチングガスが含有するアルカリ金属及びアルカリ土類金属の濃度の和を5000質量ppb以下とする金属不純物除去工程を、前記エッチング工程の前に備える[5]に記載のエッチング方法。
[8] 前記希釈ガスが、窒素ガス、ヘリウム、アルゴン、ネオン、クリプトン、及びキセノンから選ばれる少なくとも一種である[7]に記載のエッチング方法。
前記被エッチング部材が、前記エッチング対象物及び前記非エッチング対象物を有する半導体基板であり、
前記半導体基板から前記エッチング対象物の少なくとも一部を前記エッチングにより除去する処理工程を備える半導体素子の製造方法。
〔エッチング方法〕
本実施形態のエッチングは、プラズマを用いるプラズマエッチング、プラズマを用いないプラズマレスエッチングのいずれによっても達成できる。プラズマエッチングとしては、例えば、反応性イオンエッチング(RIE:Reactive Ion Etching)、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング、容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング、電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)プラズマエッチング、マイクロ波プラズマエッチングが挙げられる。
本実施形態に係るエッチングガスに含有されるフルオロブテンは、一般式C4HxFyで表されるものであり、且つ、一般式中のxが1以上7以下、yが1以上7以下、x+yが8との3つの条件を満たすものである。フルオロブテンの種類は、上記要件を満たしていれば特に限定されるものではなく、直鎖状のフルオロブテンでも分岐鎖状のフルオロブテン(イソブテン)でも使用可能であるが、フルオロ-1-ブテンに類するものとフルオロ-2-ブテンに類するものが好ましく使用可能である。
上記の観点から、フルオロブテンとしては、例えば、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(沸点9℃)、1,1,1,2,4,4,4-ヘプタフルオロ-2-ブテン(沸点8℃)、3,3,4,4,4-ペンタフルオロ-1-ブテン(沸点3-6℃)、及び2,3,3,4,4,4-ヘキサフルオロ-1-ブテン(沸点3-7℃)から選ばれる少なくとも1つが好ましい。
エッチングガスは、上記のフルオロブテンを含有するガスである。エッチングガスは、上記のフルオロブテンのみからなるガスであってもよいし、上記のフルオロブテンと希釈ガスを含有する混合ガスであってもよい。また、上記のフルオロブテンと希釈ガスと添加ガスを含有する混合ガスであってもよい。
希釈ガスとしては、窒素ガス(N2)、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、及びキセノン(Xe)から選ばれる少なくとも一種を用いることができる。
エッチングガス中のフルオロブテンの含有量は、エッチング速度を向上させる観点から、エッチングガスの総量に対して5体積%以上が好ましく、10体積%以上がさらに好ましい。また、フルオロブテンの使用量を抑制する観点から、エッチングガスの総量に対して90体積%以下が好ましく、80体積%以下がさらに好ましい。
本実施形態に係るエッチングガスは、アルカリ金属及びアルカリ土類金属のうち少なくとも一種を金属不純物として含有するか又は含有しないが、前記含有する場合のアルカリ金属及びアルカリ土類金属の濃度の和が5000質量ppb以下と低濃度であるため、前述したように上記フルオロブテンの炭素-炭素二重結合の重合反応が促進されにくく、その結果、非エッチング対象物に比べてエッチング対象物を選択的にエッチングすることができる。ここで、前記含有しないとは、誘導結合プラズマ質量分析計(ICP-MS)で定量することができない場合を意味する。
なお、アルカリ金属及びアルカリ土類金属の濃度の和は、1質量ppb以上であってもよい。
エッチングガス中のアルカリ金属、アルカリ土類金属等の金属不純物の濃度は、誘導結合プラズマ質量分析計(ICP-MS)で定量することができる。
なお、アルカリ金属及びアルカリ土類金属、並びに、銅、亜鉛、マンガン、コバルト及びケイ素の濃度の総和は、2質量ppb以上であってもよい。
上記フルオロブテンから上記金属不純物を除去する方法(金属不純物除去工程において採用される不純物除去方法)としては、例えば、上記フルオロブテンをフィルターに通過させる方法、吸着剤を接触させる方法、蒸留で分離する方法等がある。そして、具体的には、例えば、ステンレス製シリンダーに上記フルオロブテンを封入し、0℃程度に保持した状態で、後述の実施例に記載の方法によって気相部を抜き出すことで、上記金属不純物の濃度が低下したフルオロブテンを得ることができる。このような金属不純物除去工程によって、エッチングガスが含有するアルカリ金属及びアルカリ土類金属の濃度の和を5000質量ppb以下とした後に、後述のエッチング工程を行うことが好ましい。
本実施形態に係るエッチング方法におけるエッチング工程の圧力条件は特に限定されるものではないが、10Pa以下とすることが好ましく、5Pa以下とすることがより好ましい。圧力条件が上記の範囲内であれば、プラズマを安定して発生させやすい。一方、エッチング工程の圧力条件は0.05Pa以上であることが好ましい。圧力条件が上記の範囲内であれば、電離イオンが多く発生し十分なプラズマ密度が得られやすい。
エッチングガスの流量は、チャンバーの大きさやチャンバー内を減圧する排気設備の能力に応じて、チャンバー内の圧力が一定に保たれるように適宜設定すればよい。
本実施形態に係るエッチング方法におけるエッチング工程の温度条件は特に限定されるものではないが、高いエッチング選択性を得るためには200℃以下とすることが好ましく、マスク等の非エッチング対象物がエッチングされることをより抑制するためには150℃以下とすることがより好ましく、異方性エッチングを行うためには100℃以下とすることがさらに好ましい。ここで、温度条件の温度とは、被エッチング部材の温度であるが、エッチング装置のチャンバー内に設置された、被エッチング部材を支持するステージの温度を使用することもできる。
エッチングを行う際に発生させるプラズマと被エッチング部材との間の電位差を構成するバイアスパワーについては、所望するエッチング形状により0~10000Wから選択すればよく、選択的にエッチングを行う場合は0~1000W程度が好ましい。この電位差によって、異方性エッチングを行うことができる。
本実施形態に係るエッチング方法によりエッチングする被エッチング部材は、エッチング対象物と非エッチング対象物を有するが、エッチング対象物で形成されている部分と非エッチング対象物で形成されている部分とを有する部材でもよいし、エッチング対象物と非エッチング対象物の混合物で形成されている部材でもよい。また、被エッチング部材は、エッチング対象物、非エッチング対象物以外のものを有していてもよい。
また、被エッチング部材の形状は特に限定されるものではなく、例えば、板状、箔状、膜状、粉末状、塊状であってもよい。被エッチング部材の例としては、前述した半導体基板が挙げられる。
エッチング対象物は、ケイ素を含有する材料のみで形成されているものであってもよいし、ケイ素を含有する材料のみで形成されている部分と他の材質で形成されている部分とを有するものであってもよいし、ケイ素を含有する材料と他の材質の混合物で形成されているものであってもよい。ケイ素を含有する材料としては、例えば、酸化ケイ素、窒化ケイ素、ポリシリコン、シリコンゲルマニウム(SiGe)が挙げられる。
また、エッチング対象物の形状は、特に限定されるものではなく、例えば、板状、箔状、膜状、粉末状、塊状であってもよい。
非エッチング対象物は、上記のフルオロブテンと実質的に反応しないか、又は、上記のフルオロブテンとの反応が極めて遅いため、本実施形態に係るエッチング方法によりエッチングを行っても、エッチングがほとんど進行しないものである。非エッチング対象物は、上記のような性質を有するならば特に限定されるものではないが、例えば、フォトレジスト、アモルファスカーボン、窒化チタンや、銅、ニッケル、コバルト等の金属や、これら金属の酸化物、窒化物が挙げられる。これらの中でも、取扱性及び入手容易性の観点から、フォトレジスト、アモルファスカーボンがより好ましい。
エッチングガスをチャンバー10へ供給する際には、エッチングガスの温度を所定値に保持しつつ供給することが好ましい。すなわち、エッチングガスの供給温度は、0℃以上150℃以下であることが好ましい。
例えば、フルオロブテンガス供給用配管5と被エッチング部材12との位置関係は、エッチングガスを被エッチング部材12に接触させることができるならば、特に限定されない。また、チャンバー10の温度調節機構の構成についても、被エッチング部材12の温度を任意の温度に調節できればよいので、ステージ11上に温度調節機構を直接備える構成でもよいし、外付けの温度調節器でチャンバー10の外側からチャンバー10に加温又は冷却を行ってもよい。
(調製例1)
マンガン鋼製の容量1Lのシリンダーを5個用意した。それらシリンダーを順に、シリンダーA、シリンダーB、シリンダーC、シリンダーD、シリンダーEと呼ぶ。シリンダーAには1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(沸点:9℃)500gを充填し、0℃に冷却することにより液化させ、ほぼ100kPaの状態で液相部と気相部とを形成させた。シリンダーB、C、D、Eは、真空ポンプで内部を1kPa以下に減圧した後に-78℃に冷却した。
フルオロブテンとして1,1,1,2,4,4,4-ヘプタフルオロ-2-ブテンを使用した点以外は、調製例1と同様の操作を行って、サンプル2-1~2-5を調製した。そして、それぞれのサンプルの各種金属不純物の濃度を誘導結合プラズマ質量分析計で測定した。結果を表2に示す。
フルオロブテンとして3,3,4,4,4-ペンタフルオロ-1-ブテンを使用した点以外は、調製例1と同様の操作を行って、サンプル3-1~3-5を調製した。そして、それぞれのサンプルの各種金属不純物の濃度を誘導結合プラズマ質量分析計で測定した。結果を表3に示す。
フルオロブテンとして2,3,3,4,4,4-ヘキサフルオロ-1-ブテンを使用した点以外は、調製例1と同様の操作を行って、サンプル4-1~4-5を調製した。そして、それぞれのサンプルの各種金属不純物の濃度を誘導結合プラズマ質量分析計で測定した。結果を表4に示す。
半導体ウェハの表面上に、厚さ1000nmのシリコン酸化膜と、厚さ1000nmのシリコン窒化膜と、厚さ1000nmのフォトレジスト膜とを、積層せず、それぞれ表面に露出するように形成して、これを試験体とした。そして、サンプル1-5の1,1,1,4,4,4-ヘキサフルオロ-2-ブテンを用いて、試験体のエッチングを行った。
実施例2~16及び比較例1~4におけるエッチング条件及びエッチング結果を、実施例1との対比で、表5に示す。すなわち、表5に示した条件以外は、実施例1と同等の条件でエッチングを行った。
2・・・希釈ガス供給部
3・・・フルオロブテンガス流量制御装置
4・・・希釈ガス流量制御装置
5・・・フルオロブテンガス供給用配管
6・・・希釈ガス供給用配管
7・・・フルオロブテンガス圧力制御装置
8・・・希釈ガス圧力制御装置
10・・・チャンバー
11・・・ステージ
12・・・被エッチング部材
13・・・排気用配管
14・・・温度計
15・・・真空ポンプ
16・・・圧力計
Claims (9)
- 一般式C4HxFyで表され且つ前記一般式中のxが1以上7以下、yが1以上7以下、x+yが8であるフルオロブテンを含有するエッチングガスであって、
アルカリ金属及びアルカリ土類金属のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のアルカリ金属及びアルカリ土類金属の濃度の和が5000質量ppb以下であるエッチングガス。 - 銅、亜鉛、マンガン、コバルト、及びケイ素のうち少なくとも一種を前記金属不純物としてさらに含有するか又は含有せず、前記含有する場合のアルカリ金属及びアルカリ土類金属、並びに、銅、亜鉛、マンガン、コバルト、及びケイ素の濃度の総和が10000質量ppb以下である請求項1に記載のエッチングガス。
- 前記アルカリ金属がリチウム、ナトリウム、及びカリウムのうち少なくとも一種であり、前記アルカリ土類金属がマグネシウム及びカルシウムの少なくとも一方である請求項1又は請求項2に記載のエッチングガス。
- 前記フルオロブテンが1,1,1,4,4,4-ヘキサフルオロ-2-ブテン、1,1,1,2,4,4,4-ヘプタフルオロ-2-ブテン、3,3,4,4,4-ペンタフルオロ-1-ブテン、及び2,3,3,4,4,4-ヘキサフルオロ-1-ブテンから選ばれる少なくとも1つである請求項1~3のいずれか一項に記載のエッチングガス。
- 請求項1~4のいずれか一項に記載のエッチングガスを、前記エッチングガスによるエッチングの対象であるエッチング対象物と前記エッチングガスによるエッチングの対象ではない非エッチング対象物とを有する被エッチング部材に接触させ、前記非エッチング対象物に比べて前記エッチング対象物を選択的にエッチングするエッチング工程を備え、前記エッチング対象物がケイ素を含有するエッチング方法。
- 前記エッチングガスが含有するアルカリ金属及びアルカリ土類金属の濃度の和を5000質量ppb以下とする金属不純物除去工程を、前記エッチング工程の前に備える請求項5に記載のエッチング方法。
- 前記エッチングガスが、前記フルオロブテンのみからなるガス、又は、前記フルオロブテンと希釈ガスを含有する混合ガスである請求項5又は請求項6に記載のエッチング方法。
- 前記希釈ガスが、窒素ガス、ヘリウム、アルゴン、ネオン、クリプトン、及びキセノンから選ばれる少なくとも一種である請求項7に記載のエッチング方法。
- 請求項5~8のいずれか一項に記載のエッチング方法を用いて半導体素子を製造する半導体素子の製造方法であって、
前記被エッチング部材が、前記エッチング対象物及び前記非エッチング対象物を有する半導体基板であり、
前記半導体基板から前記エッチング対象物の少なくとも一部を前記エッチングにより除去する処理工程を備える半導体素子の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL302124A IL302124A (en) | 2020-10-15 | 2021-10-08 | Etching gas, etching method and method for manufacturing a semiconductor device |
JP2022556925A JPWO2022080267A1 (ja) | 2020-10-15 | 2021-10-08 | |
US18/031,979 US20230386851A1 (en) | 2020-10-15 | 2021-10-08 | Etching gas, etching method, and method for producing semiconductor device |
KR1020237011834A KR20230061541A (ko) | 2020-10-15 | 2021-10-08 | 에칭 가스, 에칭 방법, 및 반도체 소자의 제조 방법 |
CN202180069264.0A CN116325087A (zh) | 2020-10-15 | 2021-10-08 | 蚀刻气体、蚀刻方法和半导体元件的制造方法 |
EP21880006.8A EP4231331A1 (en) | 2020-10-15 | 2021-10-08 | Etching gas, etching method, and method for manufacturing semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020173914 | 2020-10-15 | ||
JP2020-173914 | 2020-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022080267A1 true WO2022080267A1 (ja) | 2022-04-21 |
Family
ID=81208175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/037421 WO2022080267A1 (ja) | 2020-10-15 | 2021-10-08 | エッチングガス、エッチング方法、及び半導体素子の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20230386851A1 (ja) |
EP (1) | EP4231331A1 (ja) |
JP (1) | JPWO2022080267A1 (ja) |
KR (1) | KR20230061541A (ja) |
CN (1) | CN116325087A (ja) |
IL (1) | IL302124A (ja) |
TW (1) | TWI788052B (ja) |
WO (1) | WO2022080267A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014185111A (ja) * | 2013-03-25 | 2014-10-02 | Nippon Zeon Co Ltd | 高純度2,2−ジフルオロブタン |
JP2015533029A (ja) * | 2012-10-30 | 2015-11-16 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 高アスペクト比酸化物エッチング用のフルオロカーボン分子 |
JP2017092357A (ja) * | 2015-11-16 | 2017-05-25 | セントラル硝子株式会社 | ドライエッチングガスおよびドライエッチング方法 |
WO2017169809A1 (ja) * | 2016-03-30 | 2017-10-05 | 日本ゼオン株式会社 | フィルターおよびその製造方法、並びに、ドライエッチング用装置およびドライエッチング方法 |
-
2021
- 2021-10-08 US US18/031,979 patent/US20230386851A1/en active Pending
- 2021-10-08 CN CN202180069264.0A patent/CN116325087A/zh active Pending
- 2021-10-08 JP JP2022556925A patent/JPWO2022080267A1/ja active Pending
- 2021-10-08 KR KR1020237011834A patent/KR20230061541A/ko unknown
- 2021-10-08 IL IL302124A patent/IL302124A/en unknown
- 2021-10-08 WO PCT/JP2021/037421 patent/WO2022080267A1/ja active Application Filing
- 2021-10-08 EP EP21880006.8A patent/EP4231331A1/en active Pending
- 2021-10-15 TW TW110138283A patent/TWI788052B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015533029A (ja) * | 2012-10-30 | 2015-11-16 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 高アスペクト比酸化物エッチング用のフルオロカーボン分子 |
JP2014185111A (ja) * | 2013-03-25 | 2014-10-02 | Nippon Zeon Co Ltd | 高純度2,2−ジフルオロブタン |
JP2017092357A (ja) * | 2015-11-16 | 2017-05-25 | セントラル硝子株式会社 | ドライエッチングガスおよびドライエッチング方法 |
WO2017169809A1 (ja) * | 2016-03-30 | 2017-10-05 | 日本ゼオン株式会社 | フィルターおよびその製造方法、並びに、ドライエッチング用装置およびドライエッチング方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202229631A (zh) | 2022-08-01 |
CN116325087A (zh) | 2023-06-23 |
EP4231331A1 (en) | 2023-08-23 |
JPWO2022080267A1 (ja) | 2022-04-21 |
KR20230061541A (ko) | 2023-05-08 |
US20230386851A1 (en) | 2023-11-30 |
IL302124A (en) | 2023-06-01 |
TWI788052B (zh) | 2022-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020230522A1 (ja) | 金属除去方法、ドライエッチング方法、及び半導体素子の製造方法 | |
WO2022080267A1 (ja) | エッチングガス、エッチング方法、及び半導体素子の製造方法 | |
WO2022080268A1 (ja) | エッチングガス、エッチング方法、及び半導体素子の製造方法 | |
WO2021171986A1 (ja) | ドライエッチング方法、半導体素子の製造方法、及びクリーニング方法 | |
WO2022080271A1 (ja) | エッチングガス及びその製造方法、並びに、エッチング方法、半導体素子の製造方法 | |
WO2022080272A1 (ja) | エッチングガス及びその製造方法、並びに、エッチング方法、半導体素子の製造方法 | |
WO2022009553A1 (ja) | エッチング方法及び半導体素子の製造方法 | |
WO2023017696A1 (ja) | エッチング方法及び半導体素子の製造方法 | |
WO2021210368A1 (ja) | エッチング方法及び半導体素子の製造方法 | |
TWI815331B (zh) | 蝕刻氣體及其製造方法、蝕刻方法以及半導體元件之製造方法 | |
WO2021241143A1 (ja) | ドライエッチング方法、半導体素子の製造方法、及びクリーニング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21880006 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022556925 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237011834 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18031979 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021880006 Country of ref document: EP Effective date: 20230515 |