WO2022080169A1 - 埋め込み方法及び成膜装置 - Google Patents

埋め込み方法及び成膜装置 Download PDF

Info

Publication number
WO2022080169A1
WO2022080169A1 PCT/JP2021/036643 JP2021036643W WO2022080169A1 WO 2022080169 A1 WO2022080169 A1 WO 2022080169A1 JP 2021036643 W JP2021036643 W JP 2021036643W WO 2022080169 A1 WO2022080169 A1 WO 2022080169A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
oxide film
metal oxide
gas
embedding method
Prior art date
Application number
PCT/JP2021/036643
Other languages
English (en)
French (fr)
Inventor
敏夫 長谷川
勝利 石井
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020237014715A priority Critical patent/KR20230078781A/ko
Priority to US18/247,497 priority patent/US20230374656A1/en
Publication of WO2022080169A1 publication Critical patent/WO2022080169A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This disclosure relates to an embedding method and a film forming apparatus.
  • a technique for forming an aluminum-containing oxide thin film by atomic layer deposition using an aluminum-containing composition containing trimethylaluminum and dimethylaluminum hydride and an oxygen-containing compound containing an oxygen atom as raw materials is known (for example, patent). See Document 1). Further, the Al 2 O 3 film covering the surface of the reactor is reacted with BCl 3 and COCl 2 to form a volatile product, and the volatile product is removed from the reactor, whereby Al 2 is removed from the surface of the reactor.
  • a technique for removing an O3 film is known ( see, for example, Patent Document 2).
  • the present disclosure provides a technique capable of forming a metal oxide film having high quality and excellent embedding characteristics.
  • the embedding method is a method of embedding a metal oxide film in a recess formed on the surface of a substrate, and a metal raw material gas and an oxidizing agent are supplied to the recess to form the metal oxide film. It comprises a step of supplying an etching gas containing at least one of SOCL 2 and (COCl) 2 to the metal oxide film and etching a part of the metal oxide film.
  • a process sectional view showing an example of the embedding method of the embodiment A process sectional view showing an example of the embedding method of the embodiment.
  • a process sectional view showing an example of the embedding method of the embodiment A process sectional view showing an example of the embedding method of the embodiment.
  • a process sectional view showing another example of the embedding method of the embodiment A process sectional view showing another example of the embedding method of the embodiment.
  • a high quality metal oxide film is formed by, for example, a high temperature process of 500 ° C. or higher.
  • the step covering property for the recesses tends to deteriorate, and the embedding characteristics deteriorate.
  • the present inventors have diligently studied a method for forming a metal oxide film having high quality and excellent embedding characteristics.
  • high quality is achieved by an embedding method including a step of forming a metal oxide film and a step of etching a part of the metal oxide film with thionyl chloride [SOCl 2 ] and / or oxalyl chloride [(COCl) 2 ].
  • SOCl 2 thionyl chloride
  • oxalyl chloride (COCl) 2 ].
  • the embedding method of the embodiment is a method of embedding an aluminum oxide film ( Al2O3 film) in the recesses formed on the surface of the substrate by repeating a cycle including a film forming step and an etching step.
  • Al2O3 film aluminum oxide film
  • the Al raw material gas and the oxidizing agent are supplied to the recess 110 formed on the surface of the substrate 100 to form the Al 2 O 3 film 120.
  • the substrate 100 may be a semiconductor wafer such as a silicon wafer.
  • the recess 110 may be, for example, a trench or a via.
  • the Al 2 O 3 film 120 is formed so that the opening of the recess 110 is not closed.
  • ALD atomic layer deposition
  • the film forming step it is preferable to form the Al 2 O 3 film 120 in the recess 110 by repeating the supply of the Al raw material gas, the supply of the purge gas, the supply of the oxidizing agent, and the supply of the purge gas in this order.
  • the Al 2 O 3 film 120 can be conformally formed in the recess 110, so that voids, seams and the like are less likely to occur when the Al 2 O 3 film 120 is embedded in the recess 110.
  • Al raw material gas for example, AlCl 3 , (CH 3 ) 3 Al 2 Cl 3 , EADC [(CH 3 CH 2 ) AlCl 2 ], Halogen-containing Al raw material gases such as DEAC [(CH 3 CH 2 ) 2 AlCl], EASC [(CH 3 CH 2 ) 1.5 AlCl 1.5 ], and DMAC [(CH 3 ) 2 AlCl]
  • the oxidizing agent for example, O 2 gas, O 3 gas, H 2 O gas, H 2 O 2 gas, a mixed gas of H 2 and O 2 , and IPA (isopropyl alcohol) gas can be used.
  • purge gas an inert gas such as N2 gas or Ar gas can be used.
  • the Al 2 O 3 film 120 is formed by a chemical reaction represented by the following formula (A). To.
  • an etching gas containing at least one of thionyl chloride [SOCl 2 ] and oxalyl chloride [(COCl) 2 ] is supplied to the Al 2 O 3 film 120 to supply Al 2 O 3 A part of the film 120 is etched.
  • the Al 2 O 3 film 120 is selectively etched so as to widen the opening of the recess 110.
  • SOCL 2 and (COCl) 2 have an etching rate of 1 nm / min to 100 nm / min with respect to the Al 2 O 3 film 120 at a temperature of 500 ° C. or higher. Therefore, by using SOCL 2 and (COCl) 2 as the etching gas, it is possible to etch a part of the Al 2 O 3 film 120 with good controllability without changing the processing temperature in the film forming process and the etching process. As described above, in the etching step, it is preferable to use an etching gas having an etching rate of 1 nm / min to 100 nm / min with respect to the Al2O3 film 120 at a temperature of 500 ° C. or higher.
  • an etching gas having a value of 5 nm / min to 50 nm / min it is more preferable to use an etching gas having a value of 5 nm / min to 50 nm / min.
  • SOCL 2 and (COCl) 2 have a low etching rate with respect to the Al2O3 film 120 at a temperature of less than 500 ° C. Therefore, since the film deposited on the inner wall of the processing container having a lower temperature than the substrate is hardly etched, it is possible to suppress the generation of particles due to the peeling of the deposited film from the inner wall of the processing container.
  • SOCL 2 gas is used as the etching gas, a part of the Al 2 O 3 film 120 can be etched by a chemical reaction represented by the following formula (B).
  • the recess 110 is formed as shown in FIG. 1C.
  • the Al 2 O 3 film 120 is embedded.
  • an etching gas containing at least one of SOCL 2 and (COCl) 2 is supplied to the Al 2 O 3 film 120 to etch a part of the Al 2 O 3 film.
  • the recess 210 formed on the surface of the substrate 200 extends from the vertical hole 211 extending in the thickness direction of the substrate 200 and the side wall 211a of the vertical hole 211 to the substrate. It can also be applied to include a lateral hole 212 extending in a direction parallel to the surface of the 200.
  • the Al raw material gas and the oxidizing agent are supplied to the recesses 210 formed on the surface of the substrate 200 to form the Al 2 O 3 film 220.
  • an etching gas containing at least one of thionyl chloride [SOCl 2 ] and oxalyl chloride [(COCl) 2 ] is supplied to the Al 2 O 3 film 220 to supply Al 2 O 3 A part of the film 220 is etched. Then, by repeating the cycle including the film forming step and the etching step, the Al 2 O 3 film 220 can be embedded in the recess 210 as shown in FIG. 2C.
  • the film forming apparatus of the embodiment is configured as an apparatus capable of forming a film by an atomic layer deposition (ALD) method and a chemical vapor deposition (CVD) method.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the film forming apparatus includes a processing container 1, a mounting table 2, a shower head 3, an exhaust unit 4, a gas supply unit 5, a control unit 6, and the like.
  • the processing container 1 is made of a metal such as aluminum and has a substantially cylindrical shape.
  • the processing container 1 houses the substrate W inside.
  • the substrate W may be, for example, a semiconductor wafer.
  • a carry-in outlet 11 for carrying in or out the substrate W is formed on the side wall of the processing container 1.
  • the carry-in outlet 11 is opened and closed by the gate valve 12.
  • An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the processing container 1.
  • a slit 13a is formed in the exhaust duct 13 along the inner peripheral surface.
  • An exhaust port 13b is formed on the outer wall of the exhaust duct 13.
  • a top wall 14 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the processing container 1.
  • the space between the exhaust duct 13 and the top wall 14 is hermetically sealed with a seal ring 15.
  • the mounting table 2 horizontally supports the substrate W in the processing container 1.
  • the mounting table 2 has a disk shape larger than that of the substrate W, and is made of a ceramic material such as aluminum nitride (AlN) or a metal material such as aluminum or nickel alloy.
  • a heater 21 for heating the substrate W is embedded in the mounting table 2.
  • the heater 21 is supplied with power from a heater power supply (not shown) to generate heat.
  • the substrate W is controlled to a predetermined temperature by controlling the output of the heater 21 by the temperature signal of the thermocouple (not shown) provided near the upper surface of the mounting table 2.
  • the mounting table 2 is provided with a cover member 22 formed of ceramics such as alumina so as to cover the outer peripheral region of the upper surface and the side surface.
  • the mounting table 2 is supported by the support member 23.
  • the support member 23 extends from the center of the bottom surface of the mounting table 2 to the lower side of the processing container 1 through a hole formed in the bottom wall of the processing container 1, and its lower end is connected to the elevating mechanism 24.
  • the mounting table 2 is moved up and down by the elevating mechanism 24 between the processing position shown in FIG. 3 and the transport position where the substrate W can be transported, which is indicated by the alternate long and short dash line below the processing position.
  • a flange portion 25 is attached below the processing container 1 of the support member 23.
  • a bellows 26 is provided between the bottom surface of the processing container 1 and the flange portion 25. The bellows 26 separates the atmosphere inside the processing container 1 from the outside air, and expands and contracts as the mounting table 2 moves up and down.
  • three wafer support pins 27 are provided so as to project upward from the elevating plate 27a.
  • the wafer support pin 27 is moved up and down via the raising and lowering plate 27a by the raising and lowering mechanism 28 provided below the processing container 1.
  • the wafer support pin 27 is inserted into a through hole 2a provided in the mounting table 2 at the transport position so that the wafer support pin 27 can be recessed with respect to the upper surface of the mounting table 2.
  • the substrate W is transferred between the transfer robot (not shown) and the mounting table 2.
  • the shower head 3 supplies the processing gas into the processing container 1 in the form of a shower.
  • the shower head 3 is made of, for example, a metal material and is arranged so as to face the mounting table 2.
  • the shower head 3 has substantially the same diameter as the mounting table 2.
  • the shower head 3 includes a main body 31 and a shower plate 32.
  • the main body 31 is fixed to the lower surface of the top wall 14.
  • the shower plate 32 is connected under the main body 31.
  • a gas diffusion space 33 is formed between the main body 31 and the shower plate 32.
  • the gas diffusion space 33 is provided with a gas introduction hole 36 so as to penetrate the center of the top wall 14 and the main body 31.
  • An annular protrusion 34 projecting downward is formed on the peripheral edge of the shower plate 32.
  • a large number of gas discharge holes 35 are formed on the flat surface inside the annular protrusion 34 of the shower plate 32.
  • a processing space 37 is formed between the mounting table 2 and the shower plate 32, and the upper surface of the cover member 22 and the annular protrusion 34 are close to each other to form an annular gap 38. Will be done.
  • the exhaust unit 4 exhausts the inside of the processing container 1.
  • the exhaust unit 4 includes an exhaust pipe 41 and an exhaust mechanism 42.
  • the exhaust pipe 41 is connected to the exhaust port 13b.
  • the exhaust mechanism 42 is connected to the exhaust pipe 41 and includes a vacuum pump, a pressure control valve, and the like.
  • the exhaust mechanism 42 exhausts the gas in the processing container 1 through the exhaust duct 13 and the exhaust pipe 41.
  • the gas supply unit 5 supplies various gases to the shower head 3.
  • the gas supply unit 5 includes a gas source 51 and a gas line 52.
  • the gas source 51 includes, for example, various processing gas supply sources, a mass flow controller, and valves (none of which are shown).
  • the various treatment gases include an Al raw material gas, an oxidizing agent and an etching gas used in the embedding method of the above-described embodiment.
  • Various gases are introduced from the gas source 51 into the gas diffusion space 33 via the gas line 52 and the gas introduction hole 36.
  • the control unit 6 implements, for example, the above-mentioned embedding method by controlling each part of the film forming apparatus.
  • the control unit 6 may be, for example, a computer.
  • the computer program that operates each part of the film forming apparatus is stored in the storage medium.
  • the storage medium may be, for example, a flexible disk, a compact disk, a hard disk, a flash memory, a DVD, or the like.
  • control unit 6 opens the gate valve 12 and conveys the substrate W having a recess on the surface into the processing container 1 by a transfer mechanism (not shown) and places it on the mounting table 2.
  • the substrate W is placed horizontally with its surface facing up.
  • the control unit 6 closes the gate valve 12 after retracting the transport mechanism from the processing container 1.
  • the control unit 6 heats the substrate W to a predetermined temperature by the heater 21 of the mounting table 2, and adjusts the inside of the processing container 1 to a predetermined pressure by the exhaust mechanism 42.
  • control unit 6 controls each part of the film forming apparatus to carry out the embedding method of the above-described embodiment. That is, the control unit 6 controls the exhaust unit 4, the gas supply unit 5, and the like, and repeats the cycle including the film forming step and the etching step to embed the Al 2 O 3 film in the recess.
  • control unit 6 moves the substrate W from the processing container 1 in the reverse procedure of carrying the substrate W into the processing container 1. Carry out.
  • the Al raw material gas is an example of the metal raw material gas
  • the Al 2 O 3 film is an example of the metal oxide film.
  • the metal oxide film may be a High-k film such as an HfO 2 film or a ZrO 2 film.
  • HfCl 4 can be used as the metal raw material gas.
  • ZrCl 4 gas can be used as the metal raw material gas.
  • SOCL 2 and (COCl) 2 have an etching rate of 1 nm / min to 100 nm / min for the HfO 2 film and the ZrO 2 film at a temperature of 500 ° C. or higher.
  • the HfO 2 film and the HfO 2 film can be controlled with good controllability without changing the processing temperature of the film forming process and the etching process, as in the case of the Al 2 O 3 film.
  • a part of the ZrO 2 film can be etched.
  • etching gas In the above embodiment, the case where thionyl chloride [SOCl 2 ] and oxalyl chloride [(COCl) 2 ] are used as the etching gas has been described, but the present disclosure is not limited thereto.
  • Cl 2 gas, BCl 3 gas, and ClF 3 gas can be used as the etching gas.
  • the film forming apparatus is a single-wafer type apparatus that processes substrates one by one
  • the film forming apparatus may be a batch type apparatus that processes a plurality of substrates at once.
  • a plurality of substrates arranged on the rotary table in the processing container are revolved by the rotary table, and the region where the first gas is supplied and the region where the second gas is supplied are ordered in order.
  • It may be a semi-batch type device that processes the substrate by passing it through the device.
  • the film forming apparatus is an apparatus having no plasma generating unit
  • the present disclosure is not limited to this.
  • the film forming apparatus may be an apparatus having a plasma generating unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本開示の一態様による埋め込み方法は、基板の表面に形成された凹部に金属酸化膜を埋め込む方法であって、前記凹部に金属原料ガス及び酸化剤を供給して前記金属酸化膜を成膜する工程と、前記金属酸化膜にSOCl2及び(COCl)2の少なくとも1つを含むエッチングガスを供給して前記金属酸化膜の一部をエッチングする工程と、を有する。

Description

埋め込み方法及び成膜装置
 本開示は、埋め込み方法及び成膜装置に関する。
 トリメチルアルミニウムおよびジメチルアルミニウムハイドライドを含むアルミニウム含有組成物と、酸素原子を含む酸素含有化合物とを原料として、原子層堆積により、アルミニウム含有酸化物薄膜を成膜する技術が知られている(例えば、特許文献1参照)。また、反応器表面を被覆したAl膜をBCl、COClと反応させて揮発性生成物を作り、反応器から揮発性生成物を除去して、それにより反応器表面からAl膜を除去する技術が知られている(例えば、特許文献2参照)。
特開2016-141882号公報 特開2005-175466号公報
 本開示は、高品質で埋め込み特性の優れた金属酸化膜を形成できる技術を提供する。
 本開示の一態様による埋め込み方法は、基板の表面に形成された凹部に金属酸化膜を埋め込む方法であって、前記凹部に金属原料ガス及び酸化剤を供給して前記金属酸化膜を成膜する工程と、前記金属酸化膜にSOCl及び(COCl)の少なくとも1つを含むエッチングガスを供給して前記金属酸化膜の一部をエッチングする工程と、を有する。
 本開示によれば、高品質で埋め込み特性の優れた金属酸化膜を形成できる。
実施形態の埋め込み方法の一例を示す工程断面図 実施形態の埋め込み方法の一例を示す工程断面図 実施形態の埋め込み方法の一例を示す工程断面図 実施形態の埋め込み方法の別の一例を示す工程断面図 実施形態の埋め込み方法の別の一例を示す工程断面図 実施形態の埋め込み方法の別の一例を示す工程断面図 実施形態の埋め込み方法を実施する成膜装置の一例を示す概略断面図
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。
 〔金属酸化膜〕
 高品質な金属酸化膜を凹部に埋め込むニーズがある。高品質な金属酸化膜は、例えば500℃以上の高温プロセスにより成膜される。しかし、高温プロセスでは凹部に対する段差被覆性が悪化する傾向にあり、埋め込み特性が劣化する。
 そこで、本発明者らは、高品質で埋め込み特性の優れた金属酸化膜を形成する方法について鋭意検討した。その結果、金属酸化膜を成膜する工程と塩化チオニル[SOCl]及び/又は塩化オキサリル[(COCl)]により金属酸化膜の一部をエッチングする工程とを含む埋め込み方法により、高品質で埋め込み特性の優れた金属酸化膜を形成できることを見出した。以下、詳細を説明する。
 〔埋め込み方法〕
 図1A~図1Cを参照し、実施形態の埋め込み方法の一例について説明する。実施形態の埋め込み方法は、基板の表面に形成された凹部に、成膜工程及びエッチング工程を含むサイクルを繰り返すことにより、凹部に酸化アルミニウム膜(Al膜)を埋め込む方法である。
 成膜工程では、図1Aに示されるように、基板100の表面に形成された凹部110にAl原料ガス及び酸化剤を供給してAl膜120を成膜する。基板100は、例えばシリコンウエハ等の半導体ウエハであってよい。凹部110は、例えばトレンチ、ビアであってよい。成膜工程では、例えば凹部110の開口が閉塞しないようにAl膜120を成膜する。成膜工程では、原子層堆積(ALD:Atomic Layer Deposition)によりAl膜120を成膜することが好ましい。すなわち、成膜工程では、Al原料ガスの供給、パージガスの供給、酸化剤の供給及びパージガスの供給をこの順に繰り返すことにより、凹部110にAl膜120を成膜することが好ましい。これにより、凹部110にAl膜120をコンフォーマルに成膜できるので、凹部110にAl膜120が埋め込まれたときにボイド、シーム等が発生しにくい。また、成膜工程では、基板を500℃以上の高温に加熱することが好ましい。これにより、高品質なAl膜120を成膜できる。基板を500℃以上の温度に加熱した状態で行うALDによる成膜では、Al原料ガスとして、例えばAlCl、(CHAlCl、EADC[(CHCH)AlCl]、DEAC[(CHCHAlCl]、EASC[(CHCH1.5AlCl1.5]、DMAC[(CHAlCl]等のハロゲン含有Al原料ガスを利用できる。酸化剤としては、例えばOガス、Oガス、HOガス、Hガス、HとOの混合ガス、IPA(isopropyl alcohol)ガスを利用できる。パージガスとしては、Nガス、Arガス等の不活性ガスを利用できる。
 例えば、Al原料ガスとしてDMAC[(CHAlCl]、酸化ガスとしてHOガスを用いる場合、以下の式(A)で表される化学反応によりAl膜120が成膜される。
 (CHAlCl+HO→Al(s)+CH(g)+HCl(g) (A)
 エッチング工程では、図1Bに示されるように、Al膜120に塩化チオニル[SOCl]及び塩化オキサリル[(COCl)]の少なくとも1つを含むエッチングガスを供給してAl膜120の一部をエッチングする。例えば、エッチング工程では、凹部110の開口を拡げるようにAl膜120を選択的にエッチングする。エッチング工程では、基板を成膜工程と同じ温度又は略同じ温度、例えば500℃以上の高温に加熱することが好ましい。略同じ温度とは、同じ温度に対し、±5%の範囲の温度を意味する。SOCl及び(COCl)は、500℃以上の温度におけるAl膜120に対するエッチング速度が1nm/min~100nm/minである。そのため、エッチングガスとしてSOCl及び(COCl)を用いることで、成膜工程とエッチング工程の処理温度を変更することなく、制御性よくAl膜120の一部をエッチングできる。このように、エッチング工程では、500℃以上の温度におけるAl膜120に対するエッチング速度が1nm/min~100nm/minとなるようなエッチングガスを用いることが好ましい。また、5nm/min~50nm/minとなるようなエッチングガスを用いることがより好ましい。また、SOCl及び(COCl)は、500℃未満の温度におけるAl膜120に対するエッチング速度が小さい。そのため、基板と比べて温度が低い処理容器の内壁に堆積した膜はほとんどエッチングされないので、処理容器の内壁からの堆積膜の剥離等によるパーティクルの発生を抑制できる。例えば、エッチングガスとしてSOClガスを用いる場合、以下の式(B)で表される化学反応によりAl膜120の一部をエッチングできる。
 Al+SOCl→AlCl(g)+SO(g) (B)
 以上に説明した実施形態の埋め込み方法によれば、基板100の表面に形成された凹部110に、成膜工程及びエッチング工程を含むサイクルを繰り返すことにより、図1Cに示されるように、凹部110にAl膜120を埋め込む。そして、エッチング工程では、Al膜120にSOCl及び(COCl)の少なくとも1つを含むエッチングガスを供給してAl膜の一部をエッチングする。これにより、高品質で埋め込み特性の優れた金属酸化膜を形成できる。
 以上、図1A~図1Cを参照して、縦穴のみで構成される凹部110にAl膜120を埋め込む場合を説明したが、本開示はこれに限定されない。例えば図2A~図2Cに示されるように、実施形態の埋め込み方法は、基板200の表面に形成された凹部210が、基板200の厚さ方向に延びる縦穴211と、縦穴211の側壁211aから基板200の表面に平行な方向に延びる横穴212とを含む場合にも適用できる。
 具体的には、成膜工程では、図2Aに示されるように、基板200の表面に形成された凹部210にAl原料ガス及び酸化剤を供給してAl膜220を成膜する。エッチング工程では、図2Bに示されるように、Al膜220に塩化チオニル[SOCl]及び塩化オキサリル[(COCl)]の少なくとも1つを含むエッチングガスを供給してAl膜220の一部をエッチングする。そして、成膜工程及びエッチング工程を含むサイクルを繰り返すことにより、図2Cに示されるように、凹部210にAl膜220を埋め込むことができる。
 〔成膜装置〕
 図3を参照し、実施形態の埋め込み方法を実施する成膜装置の一例について説明する。実施形態の成膜装置は、原子層堆積(ALD:Atomic Layer Deposition)法による成膜及び化学的気相成長(CVD:Chemical Vapor Deposition)法による成膜が実施可能な装置として構成されている。
 成膜装置は、処理容器1、載置台2、シャワーヘッド3、排気部4、ガス供給部5、制御部6等を備える。
 処理容器1は、アルミニウム等の金属により構成され、略円筒状を有する。処理容器1は、内部に基板Wを収容する。基板Wは、例えば半導体ウエハであってよい。処理容器1の側壁には、基板Wを搬入又は搬出するための搬入出口11が形成されている。搬入出口11は、ゲートバルブ12により開閉される。処理容器1の本体の上には、断面が矩形状をなす円環状の排気ダクト13が設けられている。排気ダクト13には、内周面に沿ってスリット13aが形成されている。排気ダクト13の外壁には、排気口13bが形成されている。排気ダクト13の上面には、処理容器1の上部開口を塞ぐように天壁14が設けられている。排気ダクト13と天壁14との間は、シールリング15で気密に封止されている。
 載置台2は、処理容器1内で基板Wを水平に支持する。載置台2は、基板Wよりも大きい円板状を有し、窒化アルミニウム(AlN)等のセラミックス材料や、アルミニウムやニッケル合金等の金属材料で構成されている。載置台2の内部には、基板Wを加熱するためのヒータ21が埋め込まれている。ヒータ21は、ヒータ電源(図示せず)から給電されて発熱する。そして、載置台2の上面の近傍に設けられた熱電対(図示せず)の温度信号によりヒータ21の出力を制御することにより、基板Wが所定の温度に制御される。載置台2には、上面の外周領域及び側面を覆うようにアルミナ等のセラミックスにより形成されたカバー部材22が設けられている。
 載置台2は、支持部材23に支持されている。支持部材23は、載置台2の底面中央から処理容器1の底壁に形成された孔部を貫通して処理容器1の下方に延び、その下端が昇降機構24に接続されている。載置台2は、昇降機構24により、図3で示す処理位置と、その下方の二点鎖線で示す基板Wの搬送が可能な搬送位置との間で昇降する。支持部材23の処理容器1の下方には、鍔部25が取り付けられている。処理容器1の底面と鍔部25との間には、ベローズ26が設けられている。ベローズ26は、処理容器1内の雰囲気を外気と区画し、載置台2の昇降動作にともなって伸縮する。
 処理容器1の底面近傍には、昇降板27aから上方に突出するように3本(2本のみ図示)のウエハ支持ピン27が設けられている。ウエハ支持ピン27は、処理容器1の下方に設けられた昇降機構28により昇降板27aを介して昇降する。ウエハ支持ピン27は、搬送位置にある載置台2に設けられた貫通孔2aに挿通されて載置台2の上面に対して突没可能となっている。ウエハ支持ピン27を昇降させることにより、搬送ロボット(図示せず)と載置台2との間で基板Wの受け渡しが行われる。
 シャワーヘッド3は、処理容器1内に処理ガスをシャワー状に供給する。シャワーヘッド3は、例えば金属材料により形成され、載置台2に対向して配置されている。シャワーヘッド3は、載置台2とほぼ同じ直径を有する。シャワーヘッド3は、本体部31及びシャワープレート32を含む。本体部31は、天壁14の下面に固定されている。シャワープレート32は、本体部31の下に接続されている。本体部31とシャワープレート32との間には、ガス拡散空間33が形成されている。ガス拡散空間33には、天壁14及び本体部31の中央を貫通するようにガス導入孔36が設けられている。シャワープレート32の周縁部には、下方に突出する環状突起部34が形成されている。シャワープレート32における環状突起部34の内側の平坦面には、多数のガス吐出孔35が形成されている。
 載置台2が処理位置に移動した状態では、載置台2とシャワープレート32との間に処理空間37が形成され、カバー部材22の上面と環状突起部34とが近接して環状隙間38が形成される。
 排気部4は、処理容器1の内部を排気する。排気部4は、排気配管41及び排気機構42を含む。排気配管41は、排気口13bに接続されている。排気機構42は、排気配管41に接続されており、真空ポンプ、圧力制御バルブ等を含む。排気機構42は、排気ダクト13及び排気配管41を介して、処理容器1内のガスを排気する。
 ガス供給部5は、シャワーヘッド3に各種のガスを供給する。ガス供給部5は、ガス源51及びガスライン52を含む。ガス源51は、例えば各種の処理ガスの供給源、マスフローコントローラ、バルブ(いずれも図示せず)を含む。各種の処理ガスは、前述の実施形態の埋め込み方法において用いられるAl原料ガス、酸化剤及びエッチングガスを含む。各種のガスは、ガス源51からガスライン52及びガス導入孔36を介してガス拡散空間33に導入される。
 制御部6は、成膜装置の各部を制御することにより、例えば前述した埋め込み方法を実施する。制御部6は、例えばコンピュータであってよい。また、成膜装置の各部の動作を行うコンピュータのプログラムは、記憶媒体に記憶されている。記憶媒体は、例えばフレキシブルディスク、コンパクトディスク、ハードディスク、フラッシュメモリ、DVD等であってよい。
 次に、成膜装置の動作の一例について、前述の図1A~図1C及び図2A~図2Cに示される実施形態の埋め込み方法を実施する場合を説明する。
 まず、制御部6は、ゲートバルブ12を開いて搬送機構(図示せず)により、表面に凹部を有する基板Wを処理容器1内に搬送し、載置台2に載置する。基板Wは、表面を上に向けて水平に載置される。制御部6は、搬送機構を処理容器1内から退避させた後、ゲートバルブ12を閉じる。次いで、制御部6は、載置台2のヒータ21により基板Wを所定の温度に加熱し、排気機構42により処理容器1内を所定の圧力に調整する。
 次いで、制御部6は、成膜装置の各部を制御して、前述の実施形態の埋め込み方法を実施する。すなわち、制御部6は、排気部4、ガス供給部5等を制御して、成膜工程及びエッチング工程を含むサイクルを繰り返すことにより、凹部にAl膜を埋め込む。
 基板Wの表面に形成された凹部にAl膜が埋め込まれた後、制御部6は、処理容器1内への基板Wの搬入とは逆の手順で、基板Wを処理容器1から搬出する。
 なお、上記の実施形態において、Al原料ガスは金属原料ガスの一例であり、Al膜は金属酸化膜の一例である。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 上記の実施形態では、金属酸化膜としてAl膜を成膜する場合を説明したが、本開示はこれに限定されない。例えば、金属酸化膜は、HfO膜、ZrO膜等のHigh-k膜であってもよい。例えば、HfO膜を成膜する場合、金属原料ガスとしては例えばHfClを利用できる。また例えば、ZrO膜を成膜する場合、金属原料ガスとしては例えばZrClガスを利用できる。SOCl及び(COCl)は、500℃以上の温度におけるHfO膜及びZrO膜に対するエッチング速度が1nm/min~100nm/minである。そのため、エッチングガスとしてSOCl及び(COCl)を用いることで、Al膜の場合と同様に、成膜工程とエッチング工程の処理温度を変更することなく、制御性よくHfO膜及びZrO膜の一部をエッチングできる。
 上記の実施形態では、エッチングガスとして塩化チオニル[SOCl]及び塩化オキサリル[(COCl)]を用いる場合を説明したが、本開示はこれに限定されない。例えば、エッチングガスとして、Clガス、BClガス、ClFガスを用いることができる。
 上記の実施形態では、成膜装置が基板を1枚ずつ処理する枚葉式の装置である場合を説明したが、本開示はこれに限定されない。例えば、成膜装置は複数の基板に対して一度に処理を行うバッチ式の装置であってもよい。また、例えば成膜装置は処理容器内の回転テーブルの上に配置した複数の基板を回転テーブルにより公転させ、第1のガスが供給される領域と第2のガスが供給される領域とを順番に通過させて基板に対して処理を行うセミバッチ式の装置であってもよい。
 上記の実施形態では、成膜装置がプラズマ生成部を有していない装置である場合を説明したが、本開示はこれに限定されない。例えば、成膜装置は、プラズマ生成部を有する装置であってもよい。
 本国際出願は、2020年10月12日に出願した日本国特許出願第2020-172144号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
 1 処理容器
 5 ガス供給部
 6 制御部

Claims (11)

  1.  基板の表面に形成された凹部に金属酸化膜を埋め込む方法であって、
     前記凹部に金属原料ガス及び酸化剤を供給して前記金属酸化膜を成膜する工程と、
     前記金属酸化膜にSOCl及び(COCl)の少なくとも1つを含むエッチングガスを供給して前記金属酸化膜の一部をエッチングする工程と、
     を有する、埋め込み方法。
  2.  前記成膜する工程と前記エッチングする工程とは、同じ温度又は略同じ温度で行われる、
     請求項1に記載の埋め込み方法。
  3.  前記成膜する工程と前記エッチングする工程とを繰り返す、
     請求項1又は2に記載の埋め込み方法。
  4.  前記成膜する工程及び前記エッチングする工程において、前記基板を500℃以上に加熱する、
     請求項1乃至3のいずれか一項に記載の埋め込み方法。
  5.  前記成膜する工程において、原子層堆積により前記金属酸化膜を成膜する、
     請求項1乃至4のいずれか一項に記載の埋め込み方法。
  6.  前記凹部は、前記基板の厚さ方向に延びる縦穴を含む、
     請求項1乃至5のいずれか一項に記載の埋め込み方法。
  7.  前記凹部は、前記縦穴の側壁から前記基板の表面に平行な方向に延びる横穴を含む、
     請求項6に記載の埋め込み方法。
  8.  前記金属酸化膜は、High-k膜である、
     請求項1乃至7のいずれか一項に記載の埋め込み方法。
  9.  前記金属原料ガスは、金属及びハロゲンを含む、
     請求項1乃至8のいずれか一項に記載の埋め込み方法。
  10.  前記金属は、アルミニウムであり、
     前記金属酸化膜は、酸化アルミニウム膜である、
     請求項9に記載の埋め込み方法。
  11.  処理容器と、
     前記処理容器内に金属原料ガス、酸化剤及びエッチングガスを供給するガス供給部と、
     制御部と、
     を備え、
     前記エッチングガスは、SOCl及び(COCl)の少なくとも1つを含み、
     前記制御部は、
     表面に凹部が形成された基板を前記処理容器内に収容する工程と、
     前記凹部に前記金属原料ガス及び前記酸化剤を供給して金属酸化膜を成膜する工程と、
     前記金属酸化膜に前記エッチングガスを供給して前記金属酸化膜の一部をエッチングする工程と、
     を実施するように前記ガス供給部を制御するよう構成される、
     成膜装置。
PCT/JP2021/036643 2020-10-12 2021-10-04 埋め込み方法及び成膜装置 WO2022080169A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237014715A KR20230078781A (ko) 2020-10-12 2021-10-04 매립 방법 및 성막 장치
US18/247,497 US20230374656A1 (en) 2020-10-12 2021-10-04 Filling method and film forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020172144A JP2022063748A (ja) 2020-10-12 2020-10-12 埋め込み方法及び成膜装置
JP2020-172144 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022080169A1 true WO2022080169A1 (ja) 2022-04-21

Family

ID=81207939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036643 WO2022080169A1 (ja) 2020-10-12 2021-10-04 埋め込み方法及び成膜装置

Country Status (4)

Country Link
US (1) US20230374656A1 (ja)
JP (1) JP2022063748A (ja)
KR (1) KR20230078781A (ja)
WO (1) WO2022080169A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291204A (ja) * 1992-04-13 1993-11-05 Sony Corp アルミニウム系パターンの形成方法
JP2015019075A (ja) * 2014-08-11 2015-01-29 東京エレクトロン株式会社 成膜装置及び成膜方法
JP2015149461A (ja) * 2014-02-10 2015-08-20 東京エレクトロン株式会社 金属酸化物膜の成膜方法および成膜装置
WO2017030150A1 (ja) * 2015-08-20 2017-02-23 宇部興産株式会社 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物
JP2019501518A (ja) * 2015-11-13 2019-01-17 アプライド マテリアルズ インコーポレイテッドApplied Materials, Inc. 半導体デバイスの処理方法並びに半導体デバイスの処理システムおよび装置
WO2020050124A1 (ja) * 2018-09-05 2020-03-12 株式会社Kokusai Electric クリーニング方法、半導体装置の製造方法、プログラムおよび基板処理装置
JP2020059916A (ja) * 2018-10-04 2020-04-16 東京エレクトロン株式会社 表面処理方法及び処理システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357138B2 (en) 2002-07-18 2008-04-15 Air Products And Chemicals, Inc. Method for etching high dielectric constant materials and for cleaning deposition chambers for high dielectric constant materials
JP2016141882A (ja) 2015-02-05 2016-08-08 日本アルキルアルミ株式会社 アルミニウム含有酸化物薄膜の製造方法およびアルミニウム含有酸化物薄膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291204A (ja) * 1992-04-13 1993-11-05 Sony Corp アルミニウム系パターンの形成方法
JP2015149461A (ja) * 2014-02-10 2015-08-20 東京エレクトロン株式会社 金属酸化物膜の成膜方法および成膜装置
JP2015019075A (ja) * 2014-08-11 2015-01-29 東京エレクトロン株式会社 成膜装置及び成膜方法
WO2017030150A1 (ja) * 2015-08-20 2017-02-23 宇部興産株式会社 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物
JP2019501518A (ja) * 2015-11-13 2019-01-17 アプライド マテリアルズ インコーポレイテッドApplied Materials, Inc. 半導体デバイスの処理方法並びに半導体デバイスの処理システムおよび装置
WO2020050124A1 (ja) * 2018-09-05 2020-03-12 株式会社Kokusai Electric クリーニング方法、半導体装置の製造方法、プログラムおよび基板処理装置
JP2020059916A (ja) * 2018-10-04 2020-04-16 東京エレクトロン株式会社 表面処理方法及び処理システム

Also Published As

Publication number Publication date
US20230374656A1 (en) 2023-11-23
JP2022063748A (ja) 2022-04-22
KR20230078781A (ko) 2023-06-02

Similar Documents

Publication Publication Date Title
JP6416679B2 (ja) タングステン膜の成膜方法
JP6245643B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
TWI648791B (zh) Etching method
US10790138B2 (en) Method and system for selectively forming film
JP5971870B2 (ja) 基板処理装置、半導体装置の製造方法及び記録媒体
JP6851173B2 (ja) 成膜装置および成膜方法
US9508546B2 (en) Method of manufacturing semiconductor device
JP2016225396A (ja) 金属膜のストレス低減方法および金属膜の成膜方法
JP2016145409A (ja) タングステン膜の成膜方法
US9190281B2 (en) Method of manufacturing semiconductor device
JPWO2007102333A1 (ja) ルテニウム膜の成膜方法およびコンピュータ読取可能な記憶媒体
JP7353200B2 (ja) 成膜方法
US20200370172A1 (en) Hard mask, substrate processing method, and substrate processing apparatus
JP6815158B2 (ja) 酸化チタン膜の成膜方法およびハードマスクの形成方法
JP3578155B2 (ja) 被処理体の酸化方法
KR102589043B1 (ko) 성막 방법
WO2022080169A1 (ja) 埋め込み方法及び成膜装置
JPWO2006090645A1 (ja) 半導体装置の製造方法および基板処理装置
WO2022080153A1 (ja) 基板処理方法および基板処理装置
JP2010080737A (ja) 半導体装置の製造方法及び基板処理装置
JP7249930B2 (ja) 成膜方法および成膜装置
WO2020235596A1 (ja) 成膜方法および成膜装置、ならびに処理容器のクリーニング方法
WO2022054623A1 (ja) 成膜方法
JP2020147828A (ja) フッ化コバルト膜の形成方法及び処理システム
JP2020063470A (ja) パターニングスペーサ用酸化チタン膜を成膜する方法およびパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237014715

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879909

Country of ref document: EP

Kind code of ref document: A1