WO2022079992A1 - 端末、通信装置及び通信方法 - Google Patents

端末、通信装置及び通信方法 Download PDF

Info

Publication number
WO2022079992A1
WO2022079992A1 PCT/JP2021/029726 JP2021029726W WO2022079992A1 WO 2022079992 A1 WO2022079992 A1 WO 2022079992A1 JP 2021029726 W JP2021029726 W JP 2021029726W WO 2022079992 A1 WO2022079992 A1 WO 2022079992A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
transmission
communication
uplink
information
Prior art date
Application number
PCT/JP2021/029726
Other languages
English (en)
French (fr)
Inventor
浩幸 金谷
敬 岩井
智史 高田
嘉夫 浦部
太一 三浦
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to US18/248,819 priority Critical patent/US20230422179A1/en
Priority to KR1020237011934A priority patent/KR20230087467A/ko
Priority to EP21879734.8A priority patent/EP4231749A4/en
Priority to CN202180070609.4A priority patent/CN116438884A/zh
Priority to JP2022556426A priority patent/JPWO2022079992A1/ja
Publication of WO2022079992A1 publication Critical patent/WO2022079992A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This disclosure relates to terminals, communication devices and communication methods.
  • 802.11ax As a successor to the IEEE (the Institute of Electrical and Electronics Engineers) 802.11 standard 802.11ax (hereinafter referred to as “11ax”), 802.11be (hereinafter referred to as “11be”) technical specifications have been formulated. There is.
  • IEEE 802.11-19 / 1102r0 A unified transmission procedure for multi-AP coordination, July 2019 IEEE 802.11-20 / 1040r1, Coordinated Spatial Reuse: Extension to Uplink, July 2020 IEEE P802.11ax / D6.0, November 2019
  • the non-limiting examples of the present disclosure contribute to the provision of terminals, communication devices, and communication methods capable of improving the efficiency of transmission power control in uplink cooperative communication.
  • the terminal includes a control circuit that determines the transmission power of the uplink based on a plurality of signals received from a plurality of sources that perform cooperative communication of the uplink, and the determined transmission. It is provided with a transmission circuit that performs uplink transmission by electric power.
  • the efficiency of transmission power control in uplink cooperative communication can be improved.
  • DL Downlink
  • UL Uplink
  • UL Uplink
  • UL Uplink
  • C-SR Coordinated spatial reuse
  • MAC Medium Access Control
  • PSR Trigger Type Parameterized spatial reuse
  • STA Block diagram showing a partial configuration example of a terminal
  • AP AccessPoint
  • STA configuration Diagram showing an example of AP and STA placement
  • DL communication communication from AP to STA
  • UL communication communication from STA to AP
  • the forms of cooperative communication include, for example, a form in which two APs cooperate to perform DL communication together (hereinafter referred to as "DL-DL communication”) and a form in which two APs cooperate to perform UL communication together (hereinafter referred to as "DL-DL communication”).
  • DL-DL communication a form in which two APs cooperate to perform UL communication together
  • DL-DL communication a form in which two APs cooperate to perform UL communication together
  • UL-UL communication has been studied (see, for example, Non-Patent Document 1).
  • FIG. 1 is a diagram showing an operation example of DL-DL communication.
  • AP1 which is a master AP that controls cooperative communication, transmits a trigger frame (for example, Slave TF) instructing the start of cooperative communication to AP2 and AP3, which are slave APs. Then, AP1, AP2, and AP3 cooperate with each other to transmit downlink data Data1, Data2, and Data3, respectively.
  • a trigger frame for example, Slave TF
  • FIG. 2 is a diagram showing an operation example of UL-UL communication.
  • AP1 which is a master AP transmits a trigger frame (for example, Slave TF) instructing the start of cooperative communication, as in FIG.
  • AP1, AP2, and AP3 each transmit a trigger frame (for example, Basic TF) instructing uplink transmission.
  • AP1, AP2, and AP3 cooperate with each other to receive uplink data Data1, Data2, and Data3, respectively.
  • C-SR Coordinated spatial reuse
  • FIG. 3 is a diagram showing an operation example of UL-UL communication.
  • FIG. 3 illustrates an example of operation to which C-SR is applied (see, for example, Non-Patent Document 2).
  • FIG. 3 shows, for example, operation examples of AP1, AP2, STA1-1, STA1-2, STA2-1, and STA2-2.
  • STA1-1 and STA1-2 are STAs connected to AP1 (or also referred to as components of AP1's Basic Service Set (BSS)).
  • STA2-1 and STA2-2 are STAs (or BSS components of AP2) connected to AP2.
  • AP1 and AP2 may be included in a cooperative set (for example, APcandidateset) which is a group of AP candidates that perform cooperative communication.
  • BSS Basic Service Set
  • Associate the operation of STA connecting to AP in BSS.
  • AP1 for example, called Master AP or Sharing AP
  • AP1 that controls cooperative communication.
  • AP1 for example, called Master AP or Sharing AP
  • the path loss between STA and AP (between STA and AP) included in the cooperative set (AP candidate set) is the Slave AP (or Slave AP) whose cooperative communication is controlled.
  • Shared AP may notify AP1 which is a Master AP (or Sharing AP).
  • AP1 transmits a C-SR announcement (C-SR-A) frame to AP2.
  • C-SR-A C-SR announcement
  • AP1 and AP2 each transmit a trigger frame (Trigger frame) to the associated STA. Then, AP1 and AP2 cooperate to receive uplink data from STA1-1, STA1-2, STA2-1, and STA2-2, respectively.
  • Trigger frame Trigger frame
  • a trigger frame for notifying the transmission control information and the transmission timing to the STA is transmitted and received.
  • Slave TF, Basic TF shown in FIGS. 1 and 2, and C-SR-A shown in FIG. 3 are one of the trigger frames.
  • FIG. 4 is a diagram showing an example of the type of Medium Access Control (MAC) frame in 11ax.
  • FIG. 4 shows the changes in the values changed in 11ax.
  • the contents shown in FIG. 4 are the contents shown in Table 9-1 of Non-Patent Document 3.
  • the trigger frame instructing UL communication in 11ax is a field containing common information addressed to the STA to be triggered (hereinafter referred to as "Common info field”) and a field containing information addressed to individual STAs (hereinafter referred to as “Common info field”).
  • Common info field a field containing common information addressed to the STA to be triggered
  • Common info field a field containing information addressed to individual STAs
  • Common info field hereinafter referred to as "Common info field”
  • User info field a field containing information addressed to individual STAs
  • FIG. 5 is a diagram showing an example of the format of Common info field.
  • the format shown in FIG. 5 is, for example, the same as the format shown in Figure 9-64b of Non-Patent Document 3.
  • FIG. 5 shows a plurality of subfields included in the Common info field format.
  • the Common info field includes, for example, APTXPower (information indicating the transmission power value from the AP to the STA) as information related to transmission power control.
  • FIG. 6 is a diagram showing an example of the format of User info field.
  • the format shown in FIG. 6 is the same as the format shown in Figure 9-64d of Non-Patent Document 3.
  • FIG. 6 shows a plurality of subfields included in the User info field format.
  • the User info field includes, for example, UL Target RSSI (information regarding the target received signal strength of the AP in the uplink; also referred to as UL Target Receive Power) as information related to transmission power control.
  • UL Target RSSI information regarding the target received signal strength of the AP in the uplink; also referred to as UL Target Receive Power
  • FIG. 7 shows an example of the value included in the subfield (hereinafter, simply referred to as Trigger Type) indicated as “Trigger Type” of Common info field.
  • Trigger Type the value included in the subfield indicated as “Trigger Type” of Common info field.
  • the table shown in FIG. 7 is, for example, the same as Table 9-31b of Non-Patent Document 3.
  • FIG. 8 is a diagram showing an operation example of PSR-based spatial reuse.
  • the content shown in FIG. 8 is the content shown in Figure 26-13 of Non-Patent Document 3.
  • a certain AP may transmit a Trigger frame PSR Reception Physical layer convergence protocol Data Unit (PSRR PPDU).
  • PSRR PPDU Trigger frame PSR Reception Physical layer convergence protocol Data Unit
  • the Common Info field in the PSRR PPDU (eg, a field common to multiple STAs) may contain the value specified by UL spatial reuse.
  • the STA different from the STA under BSS is a value specified by UL spatial reuse included in PSRR PPDU, and
  • the uplink transmission power may be calculated based on the path loss measured using the PSRR PPDU.
  • the STA under OBSS may transmit an uplink signal (for example, PSR Transmission PPDU (PSRT PPDU)) based on the calculated transmission power.
  • PSRT PPDU PSR Transmission PPDU
  • the STA associated with the AP (for example, STA under BSS or also referred to as BSS STA) is based on the information regarding the uplink transmission power specified by the PSRR PPDU which is the Trigger frame.
  • An uplink signal (for example, High Efficiency Trigger-based PPDU (HE TB PPDU)) may be transmitted.
  • HE TB PPDU High Efficiency Trigger-based PPDU
  • transmission power control in UL-UL communication has not been sufficiently studied.
  • AP1 which is the master AP
  • the amount of information in the communication between APs can be increased.
  • the wireless communication system includes at least two APs and one STA.
  • FIG. 9 is a block diagram showing a partial configuration example of STA10.
  • the STA 10 shown in FIG. 9 includes a control unit 11 and a transmission unit 12.
  • the control unit 11 (for example, corresponding to a control circuit) receives an uplink transmission power based on a plurality of signals (for example, Trigger frame) received from a plurality of sources (for example, AP) that perform uplink cooperative communication. To decide.
  • the transmission unit 12 (corresponding to, for example, a transmission circuit) performs uplink transmission with the determined transmission power.
  • FIG. 10 is a block diagram showing an example of the AP according to the present embodiment.
  • the AP 100 shown in FIG. 10 has a transmission packet generation unit 101, a radio transmission / reception unit 102, a reception packet decoding unit 103, and a control signal generation unit 104.
  • the transmission packet generation unit 101 generates a transmission packet from, for example, transmission data from a processing unit of an upper layer (not shown) and data generated by the control signal generation unit 104 (for example, control information), and wirelessly generates the generated packet. It is output to the transmission / reception unit 102.
  • the wireless transmission / reception unit 102 converts the transmission packet input from the transmission packet generation unit 101 into a wireless transmission signal, and transmits the wireless transmission signal via the antenna.
  • the wireless transmission / reception unit 102 receives the wireless reception signal, converts the wireless reception signal into a reception packet, and outputs the reception packet to the reception packet decoding unit 103.
  • the received packet decoding unit 103 decodes the received packet and outputs the received data input from the wireless transmission / reception unit 102 to a processing unit of a higher layer (not shown). Alternatively, the received packet decoding unit 103 decodes the received packet and outputs the control information to the control signal generation unit 104.
  • the control signal generation unit 104 generates control information based on the transmission data, the control information input from the reception packet decoding unit 103, and at least one of the internal states, and the generated control information is transmitted to the transmission packet generation unit 101. Output to.
  • the control signal generation unit 104 may generate control information regarding triggers, associations, or data communications.
  • FIG. 11 is a block diagram showing an example of STA according to the present embodiment.
  • the STA 200 shown in FIG. 11 has a transmission packet generation unit 201, a radio transmission / reception unit 202, a reception packet decoding unit 203, a path loss measurement unit 204, a control signal generation unit 205, and a transmission power control unit 206.
  • control unit 11 shown in FIG. 9 includes at least one of the transmission packet generation unit 201, the reception packet decoding unit 203, the path loss measurement unit 204, the control signal generation unit 205, and the transmission power control unit 206 shown in FIG. May include.
  • the transmission unit 12 shown in FIG. 9 may include the radio transmission / reception unit 202 shown in FIG.
  • the transmission packet generation unit 201 generates a transmission packet from, for example, transmission data from a processing unit of an upper layer (not shown) and data generated by the control signal generation unit 205 (for example, control information), and wirelessly generates the generated packet. Output to the transmitter / receiver 202.
  • the wireless transmission / reception unit 202 converts the transmission packet input from the transmission packet generation unit 201 into a wireless transmission signal, and transmits the wireless transmission signal via the antenna.
  • the wireless transmission / reception unit 202 receives the wireless reception signal, converts the wireless reception signal into a reception packet, and outputs the reception packet to the reception packet decoding unit 203 and the path loss measurement unit 204.
  • the received packet decoding unit 203 decodes the received packet and outputs the received data input from the wireless transmission / reception unit 202 to a processing unit of a higher layer (not shown). Alternatively, the received packet decoding unit 203 decodes the received packet and outputs the control information to the path loss measuring unit 204, the control signal generation unit 205, and the transmission power control unit 206.
  • the path loss measuring unit 204 is based on, for example, the received power measurement value of the received packet input from the wireless transmission / reception unit 202 and the transmission power of the AP100 included in the control information input from the received packet decoding unit 203.
  • the path loss between the AP100 and the STA200 is measured, and information about the path loss is output to the control signal generation unit 205 and the transmission power control unit 206.
  • the control signal generation unit 205 generates control information based on transmission data, control information input from the received packet decoding unit 203, information on path loss input from the path loss measurement unit 204, and at least one of the internal states. Then, the generated control information is output to the transmission packet generation unit 201.
  • the transmission power control unit 206 is an uplink in the wireless transmission / reception unit 202 based on the information on the transmission power included in the control information input from the received packet decoding unit 203 and the information on the path loss input from the path loss measurement unit 204. Controls the transmission power of.
  • FIG. 12 is a diagram showing an example of UL-UL communication that cooperates based on the C-SR method.
  • FIG. 12 shows, for example, a set (cooperative set) including AP1, AP2, STA1, and STA2.
  • STA1 exists within the coverage area of AP1 and associates with AP1.
  • STA2 exists within the coverage area of AP2 and associates with AP2.
  • the associated AP of STA1 is AP1 and the associated AP of STA2 is AP2.
  • UL communication from STA1 to AP1 and UL communication from STA2 to AP2 are coordinated by the C-SR method.
  • AP1 is an AP (for example, Master AP or Sharing AP) that is arranged in the cooperative set and controls the cooperative set (or cooperative communication).
  • AP2 is an AP (eg, Slave AP or Shared AP) that is placed in the cooperative set and controlled by the Master AP.
  • STA1 is present at a position where it is highly possible that it cannot receive the packet from AP2 while it can receive the packet from AP1. In this case, in STA1, the received power of the packet from AP2 tends to be low.
  • STA2 exists at a position where packets from both AP1 and AP2 can be received, for example.
  • the received power of the packet from AP1 tends to be high.
  • UL-UL communication may be executed in the cooperative set after the initial setting of the cooperative set shown in FIG. 12 and after STA1 associates with AP1 and STA2 associates with AP2.
  • FIG. 13 is a diagram showing an example of a UL-UL communication sequence in the cooperative set shown in FIG.
  • AP1 and AP2 transmit, for example, a beacon.
  • the beacon may be transmitted, for example, at regular intervals. Further, the beacon may contain, for example, information regarding the transmission power value of each of AP1 and AP2.
  • STA1 and STA2 After receiving the beacon from each AP, STA1 and STA2 measure the path loss between STA and AP based on the transmission power value of the AP included in the beacon and the received power measured using the beacon. It's okay.
  • STA1 notifies AP1, which is an associated AP, of a Report packet containing information on the measured path loss, for example.
  • STA2 notifies AP2, which is an associated AP, of a Report packet containing information on the measured path loss, for example.
  • STA2 may notify AP2 of the path loss between STA2-AP1 and the path loss between STA2-AP2 by a Report packet.
  • AP1 specifies the frequency band received by AP2 for AP2 by, for example, the Multi-AP Trigger frame (MAPTF) instructing the start of cooperative transmission.
  • MAPTF Multi-AP Trigger frame
  • AP2 calculates the transmission power value (UL transmission power) of STA2 based on, for example, the path loss between STA2-AP1 and the path loss between STA2-AP2 included in the Report packet from STA2. AP2 notifies STA2 of a Trigger frame containing information on the calculated transmission power value of STA2, for example.
  • STA2 transmits a DATA packet, for example, based on the transmission power value specified by the Trigger frame from AP2.
  • the transmission power value of STA2 is calculated by AP2, which is an associated AP of STA2.
  • the path loss value used for calculating the transmission power value of STA2 is measured based on the beacon from each AP100 (for example, AP1 and AP2) received by STA2 and transmitted to AP2 which is an associated AP of STA2. Will be done. In other words, the path loss value measured by STA2 does not have to be sent to AP1 which is not STA2's associated AP.
  • AP2 which is a Shared AP in cooperative communication, does not have to notify AP1, which is a Sharing AP, of path loss related to STA2 (for example, path loss between STA2-AP1 and path loss between STA2-AP2). ..
  • the amount of information in the communication between APs can be reduced in the transmission power control of UL communication, so that the efficiency of transmission power control in cooperative communication can be improved.
  • AP1 has a transmission power value (UL transmission power value) of STA1 based on information on path loss included in the Report packet from STA1 (for example, path loss between STA1-AP1 and path loss between STA1-AP2). ), And notify STA1 of the Trigger frame containing the calculated transmission power value of STA2.
  • the STA1 may transmit a DATA packet, for example, based on the transmission power value specified by the Trigger frame from AP1.
  • the STA200 may spontaneously transmit, for example, a Report packet.
  • the STA200 may send a Report packet based on the latest beacon.
  • the STA 200 may respond (eg, send a Report packet) to the Report packet request of the AP100, for example.
  • the STA200 may transmit, for example, a set of an identifier of the AP100 (for example, AP-ID) and a path loss value corresponding to the AP100, and the Report of the AP100.
  • the path loss value with and from the AP100 corresponding to the AP-ID specified in the packet request may be transmitted in the Report packet.
  • the signal used for the measurement of the path loss is not limited to the beacon, for example, a null data packet (NDP: NullDataPacket). ) May be.
  • NDP NullDataPacket
  • the STA 200 may notify the AP 100 of the received power, and the AP 100 may calculate the path loss in the STA 200 based on the notified received power.
  • the path loss between the AP100 and the STA200 may be set to the maximum value of the path loss or the minimum value of the received power and notified to the associated AP. good.
  • the transmission power value is notified from AP2 to STA2 by the Trigger frame
  • the information notified by the Trigger frame is not limited to the transmission power value.
  • AP2 notifies (or specifies) a value obtained by subtracting the path loss between STA2-AP2 from the calculated transmission power value (hereinafter, referred to as, for example, Expected receive power) to STA2. You may.
  • STA2 can handle the expected received power in the same way as UL Target RSSI in FIG. 6 to determine the transmission power.
  • STA2 determines the path loss between AP2-STA2 based on the transmission power information of AP2 (corresponding to APTXPower in FIG.
  • the Trigger frame included in the Trigger frame transmitted from AP2 and the received power of Trigger frame in STA2.
  • the transmission power can be determined from the calculated path loss and the expected received power. Therefore, when notifying the expected received power using the Trigger frame format of FIG. 6, it is preferable to set the value of the expected received power in the UL Target RSSI field.
  • the UL Target RSSI field may be diverted to, for example, UL Expected Receive Power field to indicate the expected received power. This makes it possible to use the Trigger frame in the format shown in FIG. 6 for both cooperative communication and communication different from cooperative notification without adding a field.
  • AP1 may specify the transmission power of STA1 as a preset (or limited) value.
  • the Sharing AP may notify the Shared AP (for example, AP2 in FIG. 13) of the allowable interference power (also referred to as Acceptable Maximum Interference Level) by MAPTF.
  • the Shared AP may set the transmission power of the STA200, for example, based on the notified allowable interference power.
  • the Shared AP can set the transmission power of the STA 200 associated with the Shared AP in consideration of the interference with the Sharing AP, so that the accuracy of the transmission power control can be improved.
  • FIG. 14 is a diagram showing an example of a format in which a field of allowable interference power is added to the Common info field of MAPTF.
  • the Sharing AP notifies the Shared AP of one allowable interference power by the MAPTF. Therefore, for example, when the setting for a plurality of STA200s is specified by the Trigger frame following the MAPTF, the allowable interference power specified by the MAPTF is the value of any one of the allowable interference powers for the STA200 (for example,). , Minimum value).
  • the allowable interference power may be notified in the User info field of MAPTF.
  • the permissible interference power may be individually specified for the AP100, individually for the frequency band, or individually for the STA200.
  • FIG. 15 is a diagram showing an example of a format in which the allowable interference power is individually specified for the AP100 or the frequency band.
  • "AP-ID" shown in FIG. 15 is an identifier that specifies AP100.
  • the AP-ID may be included in AID12, which is the identifier of STA200 shown in FIG. 6, and AP-ID may be used instead of AID12.
  • FIG. 16 is a diagram showing an example of a format in which the allowable interference power is individually specified for the STA 200.
  • the information regarding the allowable interference power may be included in the STA info field (information field individual to the STA) in the User info field.
  • the AP100 determines the transmission power of the STA200 based on the path loss measured in the STA200.
  • the STA 200 determines the transmission power based on the path loss.
  • UL- is coordinated based on the C-SR method by AP100 (for example, AP1 and AP2) and STA200 (for example, STA1 and STA2) shown in FIG.
  • AP100 for example, AP1 and AP2
  • STA200 for example, STA1 and STA2
  • An example of UL communication will be described.
  • FIG. 17 is a diagram showing an example of a UL-UL communication sequence in the cooperative set shown in FIG.
  • AP1 which is a Sharing AP specifies a frequency band received by AP2 with respect to AP2 which is a Shared AP, for example, by MAPTF.
  • the MAP TF may include, for example, the UL spatial reuse information shown in FIG. 5, or the allowable interference power described in the first embodiment.
  • STA1 and STA2 can also receive MAPTF.
  • AP1 and AP2 transmit, for example, a Trigger frame containing information on transmission power control to STA1 and STA2.
  • Information related to transmission power control includes, for example, APTXPower (information indicating the transmission power value from AP to STA) shown in FIG. 5 and UL Target RSSI (target reception signal strength of AP100 in the uplink) shown in FIG. Information about) may be included.
  • Transmission power candidates (hereinafter referred to as "TxPowerOBSS") may be calculated.
  • STA2 may calculate transmission power candidates based on MAPTF by the same processing as PSR-based spatial reuse shown in FIG.
  • STA2 may calculate the uplink transmission power candidate TxPowerOBSS based on the value specified by UL spatial reuse included in MAPTF and the path loss measured using MAPTF.
  • Transmission power candidates may be calculated based on the received power (for example, referred to as "RxPower") measured using the Trigger frame (including Power and UL Target RSSI). ..
  • RxPower Transmission power candidate
  • STA2 may calculate the transmission power candidate TxPowerBSS according to the following equation (1). For example, (AP TX power --RxPower) in Eq. (1) corresponds to the path loss between STA2-AP2.
  • TxPowerBSS (AP TX Power --RxPower) + UL Target RSSI (1)
  • the STA200 transfers the uplink transmission power based on the plurality of signals (for example, MAPTF and Triggerframe) received from the plurality of sources (for example, AP1 and AP2) that perform the uplink cooperative communication. It is determined, and uplink transmission is performed using the determined transmission power.
  • the plurality of signals for example, MAPTF and Triggerframe
  • the plurality of sources for example, AP1 and AP2
  • the transmission power value of STA2 is calculated by STA2. Further, for example, the path loss value used for calculating the transmission power value of STA2 is measured based on the trigger frame transmitted from a plurality of AP100s (for example, AP1 and AP2) received by STA2. Thus, for example, the path loss value measured by STA2 does not have to be transmitted to AP100 (eg AP1 and AP2).
  • AP100 eg AP1 and AP2
  • AP2 which is a Shared AP has a path loss related to STA2 (for example, a path loss between STA2-AP1) with respect to AP1 which is a Sharing AP.
  • path loss between STA2-AP2 does not have to be notified.
  • STA2 does not have to notify AP2 of the path loss related to STA2.
  • the amount of information in the communication between APs can be reduced in the transmission power control of UL communication, so that the efficiency of transmission power control in cooperative communication can be improved.
  • the STA200 receives a packet (for example, the timing immediately before) closer to the transmission timing of the DATA packet (for example, in FIG. 17, the MAP from AP1).
  • the transmission power is set using the path loss measured based on TF and Trigger frame from AP2. By setting the transmission power, the period from the path loss measurement to the packet transmission becomes shorter, so that it becomes easier to follow the fluctuation of the path loss due to, for example, the movement of the shield or the STA200, and the accuracy of the transmission power control can be improved.
  • TxPowerBSS is a transmission power value set based on the path loss between STA2 and AP2, which is an associated AP of STA2, and the parameter notified by the Trigger frame from AP2.
  • TxPowerBSS is a transmission power value (for example, a desired transmission power value) expected for communication between STA2-AP2.
  • TxPowerOBSS is, for example, a transmission power value set based on UL spatial reuse included in MAPTF from AP1 different from STA2's associated AP.
  • the parameters specified by UL spatial reuse may include values for permissible interference power.
  • TxPowerOBSS is, for example, the transmit power acceptable for UL transmission in STA2.
  • the signal transmitted by STA2 with a transmit power exceeding TxPowerOBSS can interfere with AP1.
  • the STA2 can set the transmission power of the uplink with TxPowerOBSS as the upper limit, for example, so that the accuracy of the transmission power control in the uplink can be improved.
  • the STA200 existing at a position where packets from a plurality of AP100s can be received is an uplink that suppresses interference with a plurality of AP100s performing cooperative communication based on the received packets from each of the plurality of AP100s. Transmission power control can be performed appropriately.
  • STA2 may set, for example, TxPowerBSS as the transmission power of the DATA packet. If STA2 does not receive MAPTF, the path loss based on MAPTF, for example, the path loss between STA2-AP1 is expected to be larger than when STA2 receives MAPTF, so the transmission power of STA2. Is set to TxPowerBSS, but it is expected that the effect of interference from STA2 uplink transmission on AP1 will be small.
  • the STA200 existing at a position where a packet from a part of the AP100 (for example, associated AP) can be received among the plurality of AP100s performing cooperative communication is based on the packet from the part of the AP100. It is possible to appropriately control the transmission power of the uplink in consideration of the AP100 that performs the uplink communication.
  • STA1 may set a transmission power (for example, a value similar to TxPowerBSS) based on the Trigger frame from AP1.
  • a transmission power for example, a value similar to TxPowerBSS
  • STA2 calculates TxPowerOBSS when MAPTF from AP1 (for example, OBSS) is received. In other words, STA2 does not have to calculate TxPowerOBSS if it does not receive MAPTF from AP1 (eg OBSS). Therefore, for example, the STA 200 may receive the allowable interference power (also referred to as Acceptable Maximum Interference Level) notified by the MAP TF from the Sharing AP (for example, AP1 in FIG. 17). Information on the allowable interference power may be included in the Common info field of the MAP TF (or Trigger frame) as shown in FIG. 14, and the MAP TF (or Trigger frame) as shown in FIG. It may be included in the User info field of, and as shown in FIG. 16, it may be included in the STA info field in the User info field.
  • allowable interference power also referred to as Acceptable Maximum Interference Level
  • the transmission power of the STA2 may be set based on the allowable interference power included in the MAPTF.
  • the transmission power control using the allowable interference power for example, the Shared AP can set the transmission power of the STA 200 associated with the Shared AP in consideration of the interference with the Sharing AP, so that the accuracy of the transmission power control can be improved.
  • the method of calculating the transmission power candidate TxPowerBSS based on the Trigger frame from the associated AP is not limited to the method based on the equation (1), and may be another method. Further, in STA200, the method of calculating the transmission power candidate TxPowerOBSS based on the Trigger frame (for example, MAPTF) from the AP different from the associated AP is not limited to the method based on PSR-based spatial reuse, for example, and other methods can be used. good. For example, the calculation methods of TxPowerBSS and TxPowerOBSS may be common or different.
  • the cooperative communication by two AP100s has been described, but the number of AP100s that perform cooperative communication may be three or more. In this embodiment, a case where the number of AP100s is three will be described as an example.
  • FIG. 18 is a diagram showing an example of UL-UL communication that cooperates based on the C-SR method.
  • FIG. 18 shows, for example, a set (cooperative set) including AP1, AP2, AP3, STA1, STA2, and STA3.
  • STA1 exists within the coverage area of AP1 and associates with AP1.
  • STA2 exists within the coverage area of AP2 and associates with AP2.
  • STA3 exists within the coverage area of AP3 and associates with AP3.
  • the associated AP of STA1 is AP1
  • the associated AP of STA2 is AP2
  • the associated AP of STA3 is AP3.
  • UL communication from STA1 to AP1, UL communication from STA2 to AP2, and UL communication from STA3 to AP3 are coordinated by the C-SR method.
  • AP1 is an AP (for example, referred to as Master AP or Sharing AP) that is arranged in the cooperative set and controls the cooperative set (or cooperative communication).
  • AP2 and AP3 are APs (for example, called Slave AP or Shared AP) that are arranged in the cooperative set and controlled by the Master AP.
  • FIG. 18 shows an example of coordinated transmission including a plurality of Shared APs (or Slave APs).
  • the lower the transmission power of STA2 and STA3 is set (in other words, the limitation), the less the influence of interference from STA2 and STA3 on AP1 can be reduced.
  • the lower the transmission power of STA1 and STA3 is set (in other words, limited), the less the influence of interference from STA1 and STA3 on AP2 can be reduced.
  • AP3 exists at a position that is not easily affected by interference from STA1 and STA2.
  • STA1 is present at a position where, for example, it is possible to receive a packet from AP1, but it is highly likely that it will not receive a packet from AP2 or AP3. In this case, in STA1, the received power of the packet from AP2 or AP3 tends to be low.
  • STA2 exists at a position where packets from both AP1 and AP2 can be received, for example. In this case, in STA2, the received power of the packet from AP1 tends to be high. Further, in FIG. 18, STA3 exists at a position where, for example, each packet of AP1, AP2, and AP3 can be received. In this case, in STA3, the received power of packets from AP1 and AP2 tends to be high.
  • UL-UL communication may be executed in the cooperative set after the initial setting of the cooperative set shown in FIG. 18, and after STA1 associates with AP1, STA2 associates with AP2, and STA3 associates with AP3.
  • FIG. 19 is a diagram showing an example of a UL-UL communication sequence in the cooperative set shown in FIG.
  • AP1 which is a Sharing AP specifies a frequency band which each of AP2 and AP3 receives for AP2 and AP3 which are Shared APs by MAPTF, for example, as in the second embodiment.
  • the MAP TF may include, for example, the UL spatial reuse information shown in FIG. 5, or the allowable interference power described in the first embodiment.
  • STA1, STA2 and STA3 can also receive MAPTF.
  • AP1 and AP2 transmit a Trigger frame containing information on transmission power control to STA1 and STA2, for example, as in the second embodiment.
  • the information related to the transmission power control includes, for example, APTXPower (information indicating the transmission power value from the AP to the STA) shown in FIG. 5 and UL Target RSSI (uplink link) shown in FIG. 6, as in the second embodiment.
  • APTXPower information indicating the transmission power value from the AP to the STA
  • UL Target RSSI uplink link
  • STA1 and STA2 may set the transmission power by, for example, the same operation as in the second embodiment.
  • the AP3 transmits the Trigger frame to the STA3 at a transmission timing different from the transmission timing of the Trigger frame of the AP2, for example.
  • AP3 may transmit a Trigger frame after a certain interval (for example, Short Inter Frame Space (SIFS)) from the Trigger frame of AP2.
  • SIFS Short Inter Frame Space
  • the packet length of the Trigger frame of AP2 (referred to as TriggerLength) is notified by MAPTF, and AP3 may transmit the Triggerframe after (SIFS + TriggerLength + SIFS) from MAPTF.
  • the resources in the time domain of the Trigger frame transmitted from multiple Shared APs may be different from each other.
  • TxPowerOBSS1 transmission power candidate
  • STA3 may measure path loss using, for example, MAPTF and calculate TxPowerOBSS1 based on the measured path loss and the value specified by UL spatial reuse.
  • the STA3 may calculate the transmission power candidate based on the MAP TF by the same processing as the PSR-based spatial reuse shown in FIG.
  • TxPowerOBSS2 a transmission power candidate based on the Trigger frame.
  • the STA3 may measure the path loss using, for example, a Trigger frame, and calculate TxPowerOBSS2 based on the measured path loss and the value specified by UL spatial reuse. For example, the STA3 may calculate the transmission power candidate based on the Trigger frame from the AP2 different from the associated AP by the same processing as the PSR-based spatial reuse shown in FIG.
  • TxPowerBSS transmission power candidate
  • STA3 is, for example, information on transmission power control included in the Trigger frame (including, for example, APTXPower and ULTargetRSSI), and received power measured using the Triggerframe (for example, referred to as "RxPower"). Based on this, TxPowerBSS may be calculated. For example, STA3 may calculate the transmission power candidate TxPowerBSS according to the above-mentioned equation (1).
  • TxPow transmission power of the uplink signal (for example, DATA packet) according to the following equation (3) based on a plurality of transmission power candidates TxPowerOBSS1, TxPowerOBSS2 and TxPowerBSS. It's okay.
  • TxPow min (TxPowerOBSS1, TxPowerOBSS2, TxPowerBSS) (3)
  • the STA200 transmits the uplink based on the plurality of signals (for example, MAPTF and Trigger frame) received from the plurality of sources (for example, AP1, AP2 and AP3) that perform the uplink cooperative communication.
  • the power is determined, and uplink transmission is performed using the determined transmission power.
  • the transmission power value of STA3 is calculated by STA3.
  • the path loss value used for calculating the transmission power value of STA3 is measured based on the trigger frame transmitted from a plurality of AP100s (for example, AP1, AP2 and AP3) received by STA3.
  • AP100s for example, AP1, AP2 and AP3
  • the path loss value measured by STA3 does not have to be transmitted to AP100 (eg, AP1, AP2 and AP3).
  • AP2 and AP3 which are Shared APs (for example, AP100 different from the AP that controls cooperative communication), do not notify AP1, which is a Sharing AP, of the path loss related to STA2 and STA3. good.
  • STA2 and STA3 do not have to notify AP2 and AP3 of the path loss related to STA2 and STA3.
  • the amount of information in the communication between APs can be reduced in the transmission power control of UL communication, so that the efficiency of transmission power control in cooperative communication can be improved even when the number of APs is 3 or more. ..
  • STA3 may perform transmission power control based on TxPowerOBSS1 and TxPowerBSS (for example, the same operation as STA2 shown in FIG. 17 of the second embodiment). Further, for example, when STA3 does not receive MAPTF of AP1, STA3 may perform transmission power control based on TxPowerOBSS2 and TxPowerBSS. Further, for example, in FIG. 19, when STA3 does not receive the MAPTF from AP1 and the Trigger frame from AP2, STA3 may set, for example, TxPowerBSS as the transmission power of the DATA packet.
  • the transmission order of the Trigger frame in the Shared AP may be the order specified by the User info field of the MAP TF.
  • the transmission order of the Trigger frame shown in FIG. 19 may be set.
  • the Trigger frames of AP2 and AP3 are transmitted at different timings (in other words, resources in different time domains)
  • the Trigger frames of AP2 and AP3 are different resources in a certain domain. It may be sent.
  • the Trigger frames of AP2 and AP3 may be transmitted in different frequency bands (resources in different frequency domains).
  • the time resources (or timings) at which the Trigger frames of AP2 and AP3 are transmitted may be the same or different. This allows STA3 to measure the path loss between STA3-AP2, for example, based on the Trigger frame from AP2.
  • the number of Shared APs may be three or more.
  • the resources to which the Trigger frame of three or more Shared APs are transmitted may be different from each other in at least one of the time domain and the frequency domain, for example.
  • the STA200 can measure the path loss between each Shared AP, for example, based on the Trigger frame from a plurality of Shared APs.
  • the allocated frequency band of the Trigger frame of AP3 may be different from the allocated frequency band of DATA of STA1 and STA2.
  • the allocated frequency band of DATA of STA1 and STA2 may be different from the allocated frequency band of DATA of STA1 and STA2.
  • the transmission power of the Trigger frame of AP3 may be controlled based on the bus loss between AP1 and AP3 by MAPTF and the bus loss between AP2 and AP3 by the Trigger frame transmitted by AP2. ..
  • This transmission power control enables transmission power control that suppresses interference of AP1 and AP2 with DATA reception for the Trigger frame of AP3.
  • STA3 calculates TxPowerOBSS1 when MAPTF from AP1 (for example, OBSS) is received. In other words, STA3 does not have to calculate TxPowerOBSS1 if it does not receive MAPTF from AP1 (eg OBSS). Therefore, for example, the STA 200 may receive the allowable interference power (also referred to as Acceptable Maximum Interference Level) notified by the MAP TF from the Sharing AP (for example, AP1 in FIG. 19). Information on the allowable interference power may be included in the Common info field of the MAP TF (or Trigger frame) as shown in FIG. 14, and the MAP TF (or Trigger frame) as shown in FIG. It may be included in the User info field of, and as shown in FIG. 16, it may be included in the STA info field in the User info field.
  • allowable interference power also referred to as Acceptable Maximum Interference Level
  • TxPowerSelect information regarding the validity and invalidity of the transmission power control operation based on a plurality of signals (for example, referred to as "TXPowerSelect") may be notified to the STA200 by the Trigger frame.
  • TxPowerSelect may be instructed by Reserved (B63) of Commoninfofield shown in FIG.
  • TXPowerSelect may be based on, for example, path loss.
  • the STA200 enables and disables transmission power control based on a plurality of signals based on the received packet type (for example, Trigger Type of Common info field shown in FIG. 5) instead of TXPowerSelect. You may judge. For example, when the STA200 receives a packet whose Trigger Type is MAP TF from an AP different from the associated AP, the transmission power based on a plurality of signals in the TXOP period specified in the UL Length or MAP TF preamble shown in FIG. Control may be enabled. Thereby, the operation period of the transmission power control based on a plurality of signals can be set (or limited).
  • the format of the Common info field of MAP TF may be the format shown in FIG. 20 instead of the format shown in FIG.
  • the format of the User info field of MAP TF may be the format shown in FIG. 21 instead of the format shown in FIG.
  • the information regarding the Trigger frame shown in FIG. 22 may be set instead of the information regarding the Trigger Type shown in FIG. 7 (for example, a table). ..
  • Trigger Type Multi-AP is added as compared with FIG. 7.
  • the UL / DL Flag shown in FIG. 20 may be added to the Trigger Dependent Common Info shown in FIG.
  • the AID 12 shown in FIG. 6 may be changed to the AP ID shown in FIG. 21 (for example, an identifier indicating the notification destination Shared AP).
  • MAPType and MAPTypeDependentInfo are assigned to values that are unused during C-SR in MAPTF shown in FIG. 6 (for example, ULHE-MCS, etc.) or TriggerDependentUserInfo. good.
  • the format of MAPTF may be different from the format of Triggerframe.
  • FIG. 23 is a diagram showing an example of the format of the MAP Trigger frame.
  • the fact that the frame type is "MAP Trigger” may be specified by, for example, "Type” and "Subtype” included in the "Frame Control" field.
  • FIG. 24 is a diagram showing an example of the type of MAC frame specified by Type and Subtype.
  • FIG. 24 is a table in which "MAP Trigger" is added to the type of MAC frame shown in FIG. 4, for example.
  • the "Common Info” field may indicate common information among the Shared APs that communicate with each other, and the "Per AP info” field may indicate individual information to the Shared APs that communicate with each other.
  • “Length” may indicate the DATA transmission / reception period including Ack transmission / reception of Sharing AP
  • BW may indicate the frequency band transmitted / received by Sharing AP and Shared AP
  • “TX Power” may indicate the transmission power value of MAPTF
  • "UL / DL Flag” may indicate a flag indicating the transmission direction (UL communication or DL communication) of DATA of Sharing AP.
  • the “AP ID” may indicate an identifier indicating the notification destination Shared AP, and the “Resource Allocation” can use the corresponding Shared AP.
  • the frequency band may be indicated, "MAPType” may indicate a cooperative method, and "MAPTypeDependentInfo” may indicate information corresponding to the cooperative method indicated by MAPType.
  • MAPType examples include C-SR, Joint Transmissions (JT), Coordinated Beamforming (CBF), and Coordinated Orthogonal Frequency Division Multiple Access (C-OFDMA).
  • JT Joint Transmissions
  • CBF Coordinated Beamforming
  • C-OFDMA Coordinated Orthogonal Frequency Division Multiple Access
  • APTypeDependentInfo may be set to the allowable interference power described in the first embodiment when UL / DLFlag is UL communication, and UL / DL may be set.
  • Flag is DL communication
  • the maximum transmission power of Shared AP may be set.
  • the allowable interference power and the maximum are not limited to this. It may be in a format that notifies both transmission power.
  • MAPTypeDependentInfo when MAPType indicates C-OFDMA may be set without information.
  • the validity and invalidity of the transmission power control based on the plurality of transmission power candidates described in the second embodiment and the third embodiment may be switched based on the MAP Type.
  • the MAP Type is C-SR
  • the operation of the transmission power control based on multiple transmission power candidates is enabled
  • the MAP Type is different from the C-SR
  • the transmission power based on multiple transmission power candidates is set.
  • the control operation may be disabled.
  • the present invention is not limited to this, and the allowable interference power (for example, "maximum transmission power-" The path loss between the Shared AP and the Shared AP ") may be notified.
  • the STA200 may associate with a plurality of AP100s.
  • the STA200 notifies the plurality of associated APs of the path loss based on the signals from the plurality of APs 100 including the plurality of associated APs, and the plurality of associated APs control the transmission power of the STA200. You may.
  • the STA 200 may control the uplink transmission power based on the signals from the plurality of APs 100 including the plurality of associated APs.
  • the present disclosure is not limited to this.
  • the sources of the plurality of signals used for the transmission power control of the STA in the second and third embodiments are not limited to the AP.
  • some of the plurality of APs may be replaced with STA.
  • the present disclosure may be applied when one or more APs and one or more STAs perform cooperative communication with another STA.
  • the present disclosure may be applied when two or more STAs perform cooperative communication with another STA.
  • each signal (each packet) in the above-described embodiment is an example, and the present disclosure is not limited to this.
  • Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of functional blocks.
  • the LSI may include data input and output.
  • LSIs may be referred to as ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • the present disclosure may be realized as digital processing or analog processing.
  • the communication device may include a wireless transceiver and a processing / control circuit.
  • the wireless transceiver may include a receiver and a transmitter, or them as a function.
  • the radio transceiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • the RF module may include an amplifier, an RF modulator / demodulator, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.).
  • Digital players digital audio / video players, etc.
  • wearable devices wearable cameras, smart watches, tracking devices, etc.
  • game consoles digital book readers
  • telehealth telemedicines remote health Care / medicine prescription
  • vehicles with communication functions or mobile transportation automobiles, planes, ships, etc.
  • combinations of the above-mentioned various devices can be mentioned.
  • Communication devices are not limited to those that are portable or mobile, but are all types of devices, devices, systems that are not portable or fixed, such as smart home devices (home appliances, lighting equipment, smart meters or or Includes measuring instruments, control panels, etc.), vending machines, and any other "Things” that can exist on the IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or or Includes measuring instruments, control panels, etc.
  • vending machines and any other “Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication by a combination of these, in addition to data communication by a cellular system, a wireless LAN system, a communication satellite system, etc.
  • the communication device also includes devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure.
  • devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure.
  • controllers and sensors that generate control and data signals used by communication devices that perform the communication functions of the communication device.
  • Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
  • the terminal includes a control circuit that determines the transmission power of the uplink based on a plurality of signals received from a plurality of sources that perform cooperative communication of the uplink, and the determined transmission. It is equipped with a transmission circuit that performs uplink transmission by electric power.
  • control circuit determines the uplink transmission power based on a plurality of transmission power candidates based on each of the plurality of signals.
  • the plurality of signals include a trigger frame instructing the uplink transmission.
  • the plurality of signals include a trigger frame instructing the start of the cooperative communication.
  • the source access point to which the terminal connects is a second access point among the plurality of source access points, which is different from the first access point that controls the cooperative communication. Is.
  • At least one resource in the time domain and frequency domain of the trigger frame, which is the signal transmitted from the plurality of second access points, is different from each other.
  • control circuit determines whether or not to determine the transmission power based on the plurality of signals based on the information contained in at least one of the plurality of signals. ..
  • the information is included in a common information field of the trigger frame, which is at least one signal.
  • the information is the type of trigger frame that is the at least one signal.
  • a receiving circuit for receiving information regarding the allowable interference power is further provided, and the control circuit determines the transmission power based on the allowable interference power.
  • the information regarding the allowable interference power is included in the common information field of the trigger frame, which is at least one of the plurality of signals.
  • the information regarding the allowable interference power is included in the user information field of the trigger frame, which is at least one of the plurality of signals.
  • the information regarding the allowable interference power is included in a field individual to the terminal in the user information field.
  • the communication device includes a transmission circuit for transmitting information regarding cooperative communication, and a reception circuit for receiving uplink transmission, which is transmitted based on the information regarding cooperative communication. , The transmission power of the uplink transmission is determined based on the information about the cooperative communication.
  • the terminal determines the transmission power of the uplink based on the plurality of signals received from the plurality of sources that perform the uplink cooperative communication, and the determination is made. Uplink transmission is performed by the transmission power.
  • the communication device transmits information on cooperative communication, receives uplink transmission transmitted based on the information on cooperative communication, and transmits power of the uplink transmission. Is determined based on the information regarding the cooperative communication.
  • One embodiment of the present disclosure is useful for wireless communication systems.
  • Control unit 12 Transmitter unit 100 AP 101,201 Transmission packet generation unit 102,202 Wireless transmission / reception unit 103,203 Received packet decoding unit 104,205 Control signal generation unit 204 Path loss measurement unit 206 Transmission power control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、上りリンクの協調通信を行う複数の送信元から受信した複数の信号に基づいて、前記上りリンクの送信電力を決定する制御回路と、決定された送信電力によって上りリンク送信を行う送信回路と、を備える。

Description

端末、通信装置及び通信方法
 本開示は、端末、通信装置及び通信方法に関する。
 IEEE(the Institute of Electrical and Electronics Engineers)802.11の規格である802.11ax(以下、「11ax」と呼ぶ)の後継規格として、802.11be(以下、「11be」と呼ぶ)の技術仕様策定が進められている。
 11beでは、上りリンク(UL:uplink)の協調通信の適用が検討されている。
IEEE 802.11-19/1102r0, A unified transmission procedure for multi-AP coordination, July 2019 IEEE 802.11-20/1040r1, Coordinated Spatial Reuse: Extension to Uplink, July 2020 IEEE P802.11ax/D6.0, November 2019
 しかしながら、上りリンクの協調通信における送信電力制御について十分に検討されていない。
 本開示の非限定的な実施例は、上りリンクの協調通信における送信電力制御の効率を向上できる端末、通信装置及び通信方法の提供に資する。
 本開示の一実施例に係る端末は、上りリンクの協調通信を行う複数の送信元から受信した複数の信号に基づいて、前記上りリンクの送信電力を決定する制御回路と、前記決定された送信電力によって上りリンク送信を行う送信回路と、を備える。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、上りリンクの協調通信における送信電力制御の効率を向上できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
Downlink(DL)-DL通信の動作例を示す図 Uplink(UL)-UL通信の動作例を示す図 Coordinated spatial reuse(C-SR)の動作例を示す図 Medium Access Control(MAC)フレームの種別の一例を示す図 Common info fieldのフォーマットの例を示す図 User info fieldのフォーマットの例を示す図 Trigger Typeの一例を示す図 Parameterized spatial reuse (PSR)-based spatial reuseの動作例を示す図 端末(STA:Station)の一部の構成例を示すブロック図 アクセスポイント(AP:Access Point)の構成例を示すブロック図 STAの構成例を示すブロック図 AP及びSTAの配置例を示す図 実施の形態1に係るUL-UL通信の一例を示すシーケンス図 Multi-AP (MAP) Trigger frameのフォーマットの一例を示す図 Multi-AP (MAP) Trigger frameのフォーマットの一例を示す図 Multi-AP (MAP) Trigger frameのフォーマットの一例を示す図 実施の形態2に係るUL-UL通信の一例を示すシーケンス図 AP及びSTAの配置例を示す図 実施の形態3に係るUL-UL通信の一例を示すシーケンス図 MAP Trigger frameのCommon info fieldの一例を示す図 MAP Trigger frameのUser info fieldの一例を示す図 Trigger Typeの一例を示す図 MAP Trigger frameのフォーマットの一例を示す図 MACフレームの種別の一例を示す図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 [協調通信]
 11beでは、例えば、複数のアクセスポイント(「基地局」とも呼ばれる、以下、「AP(Access Point)」と呼ぶ)と端末(例えば、non-AP STA(station)とも呼ばれる、以下「STA」と呼ぶ)との間においてデータを送受信するMulti-AP (MAP) coordination(以下「協調通信」と呼ぶ)の適用が検討されている。
 通信の形態には、APからSTAへの通信(以下、「DL通信」という)と、STAからAPへの通信(以下、「UL通信」という)とがある。協調通信の形態には、例えば、2つのAPが協調して共にDL通信を行う形態(以下、「DL-DL通信」という)と、2つのAPが協調して共にUL通信を行う形態(以下、「UL-UL通信」という)と、が検討されている(例えば、非特許文献1を参照)。
 図1は、DL-DL通信の動作例を示す図である。図1に示すように、協調通信を制御するmaster APであるAP1は、slave APであるAP2及びAP3に、協調通信の開始を指示するトリガーフレーム(例えば、Slave TF)を送信する。そして、AP1とAP2とAP3とが協調し、それぞれ、下りリンクのデータであるData 1、Data 2及びData 3とを送信する。
 図2は、UL-UL通信の動作例を示す図である。図2に示すように、master APであるAP1は、図1と同様に、協調通信の開始を指示するトリガーフレーム(例えば、Slave TF)を送信する。そして、AP1、AP2及びAP3は、それぞれ、上りリンク送信を指示するトリガーフレーム(例えば、Basic TF)を送信する。そして、AP1とAP2とAP3とが協調し、それぞれ、上りリンクのデータであるData 1、Data 2及びData 3を受信する。
 協調する方式として、例えば、複数のAPが、互いに同じ周波数帯域を用いて信号を受信するCoordinated spatial reuse(以下、「C-SR」と呼ぶ)が挙げられる(例えば、非特許文献2を参照)。
 図3は、UL-UL通信の動作例を示す図である。図3には、例示的に、C-SRを適用した動作例が示される(例えば、非特許文献2を参照)。
 図3には、例えば、AP1、AP2、STA1-1、STA1-2、STA2-1、及び、STA2-2の動作例が示される。なお、STA1-1及びSTA1-2は、AP1に接続するSTA(又は、AP1のBasic Service Set(BSS)の構成要素とも呼ぶ)である。また、STA2-1及びSTA2-2は、AP2に接続するSTA(又は、AP2のBSSの構成要素)である。例えば、AP1及びAP2は、協調通信を行うAP候補のグループである協調セット(例えば、AP candidate set)に含まれてよい。
 なお、BSS(Basic Service Set)は、或るAPと複数のSTAで構成される基本サービスセットである。また、BSS内でSTAがAPに接続する動作を「アソシエート」と呼ぶ。
 図3の「Preparation Phase」では、例えば、各装置のcapabilityを示す情報、各装置の受信電力(例えば、受信信号強度(RSSI:Received Signal Strength Indicator))を示す情報、measurement reportの情報(例えば、パスロスに関する情報)が協調通信を制御するAP1(例えば、Master AP又はSharing APと呼ぶ)に集約される。例えば、図3に示すように、C-SRでは、協調セット(AP candidate set)に含まれるSTAとAPとの間(STA-AP間)のパスロスが、協調通信を制御されるSlave AP(又は、Shared APと呼ぶ)であるAP2から、Master AP(又は、Sharing APと呼ぶ)であるAP1へ通知されてよい。
 また、図3の「Announcement Phase」では、例えば、AP1が、C-SR announcement(C-SR-A)フレームをAP2へ送信する。
 そして、図3の「Transmission Phase」では、データの送受信が行われる。例えば、図3では、AP1及びAP2は、それぞれ、アソシエートするSTAに対してトリガーフレーム(Trigger frame)を送信する。そして、AP1とAP2とが協調し、それぞれ、STA1-1、STA1-2及びSTA2-1、STA2-2からの上りリンクのデータを受信する。
 上述の例のように、各協調通信の形態では、例えば、送信制御情報及び送信タイミングをSTAへ通知するトリガーフレームが送受信される。例えば、図1及び図2に示した、Slave TF、Basic TF、及び、図3に示したC-SR-Aは、トリガーフレームの一つである。
 図4は、11axにおけるMedium Access Control(MAC)フレームの種別の例を示す図である。図4には、11axにおいて変更された値の変更内容が示される。なお、図4に示す内容は、非特許文献3のTable9-1に示される内容である。
 11axにおけるUL通信を指示するトリガーフレームは、トリガ対象となるSTA宛ての共通の情報が含まれるフィールド(以下、「Common info field」と呼ぶ)、及び、個別のSTA宛ての情報が含まれるフィールド(以下、「User info field」と呼ぶ)を含む。
 図5は、Common info fieldのフォーマットの例を示す図である。図5に示すフォーマットは、例えば、非特許文献3のFigure 9-64bに示されるフォーマットと同様である。図5には、Common info fieldのフォーマットに含まれる複数のsubfieldが示される。Common info fieldには、送信電力制御に関する情報として、例えば、AP TX Power(APからSTAへの送信電力値を示す情報)が含まれる。
 図6は、User info fieldのフォーマットの例を示す図である。図6に示すフォーマットは、非特許文献3のFigure 9-64dに示されるフォーマットと同様である。図6には、User info fieldのフォーマットに含まれる複数のsubfieldが示される。User info fieldには、送信電力制御に関する情報として、例えば、UL Target RSSI(上りリンクにおけるAPの目標受信信号強度に関する情報;UL Target Receive Powerとも呼ばれる)が含まれる。
 図7は、Common info fieldの「Trigger Type」と示されるsubfield(以下、単に、Trigger Typeと記載)に含まれる値の例を示す。なお、図7に示すテーブルは、例えば、非特許文献3のTable 9-31bと同様である。
 また、11axでは、例えば、Parameterized spatial reuse (PSR)-based spatial reuseが検討されている(例えば、非特許文献3を参照)。図8は、PSR-based spatial reuseの動作例を示す図である。なお、図8に示す内容は、非特許文献3のFigure 26-13に示される内容である。
 例えば、図8に示すように、或るAPは、Trigger frameであるPSR Reception Physical layer convergence procedure Protocol Data Unit (PSRR PPDU)を送信してよい。例えば、PSRR PPDU内のCommon Infoフィールド(例えば、複数のSTAに共通のフィールド)には、UL spatial reuseによって指定される値が含まれてよい。
 例えば、図8において、BSS配下のSTAと異なるSTA(例えば、Overlapping BSS(OBSS)配下のSTA、又は、OBSS STAとも呼ぶ)は、PSRR PPDUに含まれるUL spatial reuseによって指定される値、及び、PSRR PPDUを用いて測定したパスロスに基づいて、上りリンクの送信電力を算出してよい。そして、OBSS配下のSTAは、算出した送信電力に基づいて、上りリンク信号(例えば、PSR Transmission PPDU(PSRT PPDU))を送信してよい。
 なお、図8において、例えば、当該APにアソシエートするSTA(例えば、BSS配下のSTA、又は、BSS STAとも呼ぶ)は、Trigger frameであるPSRR PPDUによって指定される上り送信電力に関する情報に基づいて、上りリンク信号(例えば、High Efficiency Trigger-based PPDU(HE TB PPDU))を送信してよい。
 以上、協調通信の例について説明した。
 しかしながら、例えば、UL-UL通信における送信電力制御については十分に検討されていない。例えば、図3に示すUL-UL通信では、協調セットに含まれるSTA-AP間のパスロスに関する情報が、Master APであるAP1へ通知されるため、AP間通信の情報量が増加し得る。
 そこで、本開示の非限定的な実施例では、例えば、AP間通信の情報量を削減し、UL-UL通信における送信電力制御の効率を向上させる方法について説明する。
 (実施の形態1)
 [無線通信システムの構成例]
 本開示の一実施例に関わる無線通信システムは、少なくとも2つのAPと1つのSTAとを含む。
 図9は、STA10の一部の構成例を示すブロック図である。図9に示すSTA10は、制御部11と、送信部12とを備える。制御部11(例えば、制御回路に対応)は、上りリンクの協調通信を行う複数の送信元(例えば、AP)から受信した複数の信号(例えば、Trigger frame)に基づいて、上りリンクの送信電力を決定する。送信部12(例えば、送信回路に対応)は、決定された送信電力によって上りリンク送信を行う。
 以下、一例として、少なくとも2つのAPが協調してUL-UL通信を行う例を説明する。なお、以降の説明において、「パケット」および「フレーム」は、「信号」の非限定的な一例である。
 [APの構成例]
 図10は、本実施の形態に係るAPの一例を示すブロック図である。図10に示すAP100は、送信パケット生成部101と、無線送受信部102と、受信パケット復号部103と、制御信号生成部104と、を有する。
 送信パケット生成部101は、例えば、図示しない上位レイヤの処理部から送信データ、及び、制御信号生成部104によって生成されたデータ(例えば、制御情報)から送信パケットを生成し、生成したパケットを無線送受信部102に出力する。
 無線送受信部102は、送信パケット生成部101から入力される送信パケットを無線送信信号に変換し、アンテナを介して、無線送信信号を送信する。
 無線送受信部102は、無線受信信号を受信し、無線受信信号を受信パケットに変換し、受信パケットを受信パケット復号部103へ出力する。
 受信パケット復号部103は、受信パケットを復号し、無線送受信部102から入力される受信データを、図示しない上位レイヤの処理部へ出力する。あるいは、受信パケット復号部103は、受信パケットを復号し、制御情報を制御信号生成部104に出力する。
 制御信号生成部104は、送信データ、受信パケット復号部103から入力される制御情報、及び、内部状態の少なくとも1つに基づいて、制御情報を生成し、生成した制御情報を送信パケット生成部101に出力する。例えば、制御信号生成部104は、トリガ、アソシエーション、又は、データ通信に関する制御情報を生成してよい。
 [STAの構成例]
 図11は、本実施の形態に係るSTAの一例を示すブロック図である。図11に示すSTA200は、送信パケット生成部201と、無線送受信部202と、受信パケット復号部203と、パスロス測定部204と、制御信号生成部205と、送信電力制御部206と、を有する。
 例えば、図9に示す制御部11は、図11に示す送信パケット生成部201、受信パケット復号部203、パスロス測定部204、制御信号生成部205、及び、送信電力制御部206の少なくとも一つを含んでよい。また、例えば、図9に示す送信部12は、図11に示す無線送受信部202を含んでよい。
 送信パケット生成部201は、例えば、図示しない上位レイヤの処理部から送信データ、及び、制御信号生成部205によって生成されたデータ(例えば、制御情報)から送信パケットを生成し、生成したパケットを無線送受信部202に出力する。
 無線送受信部202は、送信パケット生成部201から入力される送信パケットを無線送信信号に変換し、アンテナを介して、無線送信信号を送信する。
 無線送受信部202は、無線受信信号を受信し、無線受信信号を受信パケットに変換し、受信パケットを受信パケット復号部203及びパスロス測定部204へ出力する。
 受信パケット復号部203は、受信パケットを復号し、無線送受信部202から入力される受信データを、図示しない上位レイヤの処理部へ出力する。あるいは、受信パケット復号部203は、受信パケットを復号し、制御情報を、パスロス測定部204、制御信号生成部205、及び、送信電力制御部206に出力する。
 パスロス測定部204は、例えば、無線送受信部202から入力される受信パケットの受信電力測定値、及び、受信パケット復号部203から入力される制御情報に含まれるAP100の送信電力に関する情報に基づいて、AP100とSTA200との間のパスロスを測定し、パスロスに関する情報を、制御信号生成部205及び送信電力制御部206に出力する。
 制御信号生成部205は、送信データ、受信パケット復号部203から入力される制御情報、パスロス測定部204から入力されるパスロスに関する情報、及び、内部状態の少なくとも1つに基づいて、制御情報を生成し、生成した制御情報を送信パケット生成部201に出力する。
 送信電力制御部206は、受信パケット復号部203から入力される制御情報に含まれる送信電力に関する情報、及び、パスロス測定部204から入力されるパスロスに関する情報に基づいて、無線送受信部202における上りリンクの送信電力を制御する。
 [UL-UL通信の動作例]
 以下では、一例として、AP100及びSTA200によるUL-UL通信での協調の例について説明する。図12は、C-SR方式に基づいて協調するUL-UL通信の例を示す図である。
 図12には、例えば、AP1と、AP2と、STA1と、STA2とを含むセット(協調セット)が示される。STA1は、AP1のカバーエリア内に存在し、AP1とアソシエートしている。STA2は、AP2のカバーエリア内に存在し、AP2とアソシエートしている。換言すると、図12において、STA1のassociated APはAP1であり、STA2のassociated APはAP2である。
 図12では、例えば、STA1からAP1へのUL通信と、STA2からAP2へのUL通信が、C-SR方式によって協調される。図12では、例えば、AP1は、協調セット内に配置され、協調セット(又は、協調通信)を制御するAP(例えば、Master AP又はSharing AP)である。AP2は、協調セット内に配置され、Master APによって制御されるAP(例えば、Slave AP又はShared AP)である。
 また、図12では、例えば、STA2の送信電力が低く設定(換言すると、制限)されるほど、AP1に対するSTA2からの干渉の影響は低減され得る。また、図12では、例えば、AP2は、STA1からの干渉の影響を受けにくい位置に存在する。
 図12において、STA1は、例えば、AP1からのパケットを受信可能であるのに対して、AP2からのパケットを受信しない可能性が高い位置に存在する。この場合、STA1では、AP2からのパケットの受信電力は低くなりやすい。
 その一方で、図12において、STA2は、例えば、AP1及びAP2の双方からのパケットを受信可能である位置に存在する。この場合、STA2では、AP1からのパケットの受信電力は高くなりやすい。
 例えば、図12に示す協調セットの初期設定、及び、STA1がAP1とアソシエートし、STA2がAP2とアソシエートした後、協調セットにおいて、UL-UL通信が実行されてよい。
 図13は、図12に示す協調セットにおけるUL-UL通信のシーケンスの一例を示す図である。
 図13において、AP1及びAP2は、例えば、ビーコンを送信する。ビーコンは、例えば、一定周期で送信されてよい。また、ビーコンには、例えば、AP1及びAP2それぞれの送信電力値に関する情報が含まれてよい。STA1及びSTA2は、各APからのビーコンを受信した後、当該ビーコンに含まれるAPの送信電力値、及び、当該ビーコンを用いて測定した受信電力に基づいて、STA-AP間のパスロスを測定してよい。
 STA1は、例えば、測定したパスロスに関する情報を含むReportパケットをassociated APであるAP1へ通知する。同様に、STA2は、例えば、測定したパスロスに関する情報を含むReportパケットをassociated APであるAP2へ通知する。例えば、STA2は、Reportパケットによって、STA2-AP1間のパスロス、及び、STA2-AP2間のパスロスをAP2に通知してよい。
 AP1は、例えば、協調送信の開始を指示するMulti-AP Trigger frame(MAP TF)によって、AP2に対して、AP2が受信する周波数帯域を指定する。
 AP2は、例えば、STA2からのReportパケットに含まれるSTA2-AP1間のパスロス及びSTA2-AP2間のパスロスに基づいてSTA2の送信電力値(UL送信電力)を計算する。AP2は、例えば、計算したSTA2の送信電力値に関する情報を含むTrigger frameをSTA2に通知する。
 STA2は、例えば、AP2からのTrigger frameによって指定された送信電力値に基づいて、DATAパケットを送信する。
 このように、図13において、STA2の送信電力値は、STA2のassociated APであるAP2によって計算される。また、例えば、STA2の送信電力値の計算に使用されるパスロス値は、STA2が受信する各AP100(例えば、AP1及びAP2)からのビーコンに基づいて測定され、STA2のassociated APであるAP2へ送信される。換言すると、STA2によって測定されるパスロス値は、STA2のassociated APではないAP1へ送信されなくてよい。
 これにより、例えば、協調通信におけるShared APであるAP2は、Sharing APであるAP1に対して、STA2に関するパスロス(例えば、STA2-AP1間のパスロス及びSTA2-AP2間のパスロス)を通知しなくてよい。
 よって、本実施の形態によれば、UL通信の送信電力制御において、AP間通信の情報量を削減できるので、協調通信における送信電力制御の効率を向上できる。
 なお、図13において、AP1は、STA1からのReportパケットに含まれるパスロスに関する情報(例えば、STA1-AP1間のパスロス及びSTA1-AP2間のパスロス)に基づいてSTA1の送信電力値(UL送信電力値)を計算し、計算したSTA2の送信電力値に関する情報を含むTrigger frameをSTA1に通知してよい。STA1は、例えば、AP1からのTrigger frameによって指定された送信電力値に基づいて、DATAパケットを送信してよい。
 また、STA200は、例えば、Reportパケットを自発的に送信してもよい。例えば、STA200は、最新のビーコンに基づいてReportパケットを送信してもよい。または、STA200は、例えば、AP100のReportパケット要求に対して応答(例えば、Reportパケットを送信)してもよい。また、STA200がReportパケットを自発的に送信する場合、STA200は、例えば、AP100の識別子(例えば、AP-ID)と当該AP100に対応するパスロス値とのセットを送信してもよく、AP100のReportパケット要求において指定されたAP-IDに対応するAP100との間のパスロス値をReportパケットにおいて送信してもよい。
 また、上記の例では、STA200がビーコンに基づいてパスロスを測定する方法について説明したが、パスロスの測定に使用される信号は、ビーコンに限定されず、例えば、ヌデータパケット(NDP:Null Data Packet)でもよい。
 また、上記の例では、ReportパケットによってパスロスがAP100へ通知される場合について説明したが、AP100へ通知される情報はパスロスに限定されない。例えば、STA200は、受信電力をAP100へ通知し、AP100は、通知された受信電力に基づいて、STA200におけるパスロスを計算してもよい。
 また、例えば、STA200は、各AP100からのビーコンを受信しない場合、当該AP100とSTA200との間のパスロスを、パスロスの最大値又は受信電力の最小値に設定して、associated APへ通知してもよい。
 また、図13に示す例では、AP2からSTA2へTrigger frameによって送信電力値が通知される場合について説明したが、Trigger frameによって通知される情報は、送信電力値に限定されない。例えば、AP2は、STA2に対して、算出した送信電力値からSTA2-AP2間のパスロスを減算した値(以下、例えば、期待受信電力(Expected receive power)と称する)を通知(又は、指定)してもよい。この場合、STA2は、期待受信電力を図6のUL Target RSSIと同様に扱って送信電力を決定できる。例えば、STA2は、AP2から送信されたTrigger frameに含まれるAP2の送信電力情報(図6のAP TX Powerに相当)と、STA2におけるTrigger frameの受信電力とに基づいてAP2-STA2間のパスロスを算出し、算出したパスロスと期待受信電力から送信電力を決定できる。それゆえ、図6のTrigger frameのフォーマットを使用して期待受信電力を通知する場合は、UL Target RSSIフィールドに期待受信電力の値を設定するのが好ましい。または、協調通信に使用する場合は、UL Target RSSIフィールドを転用して、例えば、UL Expected Receive Power fieldとし、期待受信電力を示してもよい。これにより、フィールドを追加することなく図6のフォーマットのTrigger frameを協調通信、及び、協調通知と異なる通信の両方で使用可能になる。
 また、例えば、図13において、AP1は、STA1の送信電力を予め設定(又は、制限)した値に指定してもよい。
 また、Sharing AP(例えば、図13ではAP1)は、例えば、MAP TFによって、許容干渉電力(Acceptable Maximum Interference Levelとも呼ぶ)を、Shared AP(例えば、図13のAP2)に通知してもよい。Shared APは、例えば、通知された許容干渉電力に基づいて、STA200の送信電力を設定してよい。許容干渉電力を用いる送信電力制御により、例えば、Shared APは、Sharing APに対する干渉を考慮して、Shared APにアソシエートするSTA200の送信電力を設定できるので、送信電力制御の精度を向上できる。
 なお、例えば、許容干渉電力は、MAP TFのCommon info field(共通情報フィールド)において通知されてもよい。図14は、MAP TFのCommon info fieldに許容干渉電力のフィールドを追加したフォーマットの例を示す図である。図14の場合、Sharing APは、MAP TFによって1つの許容干渉電力をShared APへ通知する。このため、例えば、MAP TFに後続するTrigger frameによって複数のSTA200に対する設定を指定する場合には、MAP TFによって指定される許容干渉電力は、STA200に対する許容干渉電力のうち何れか一つの値(例えば、最小値)に設定されてもよい。
 また、例えば、許容干渉電力は、MAP TFのUser info field(ユーザ情報フィールド)において通知されてもよい。例えば、許容干渉電力は、AP100に個別に指定されてもよく、周波数帯域に個別に指定されてもよく、STA200に個別に指定されてもよい。図15は、AP100又は周波数帯域に個別に許容干渉電力を指定するフォーマットの例を示す図である。例えば、図15に示す「AP-ID」はAP100を指定する識別子である。AP-IDは、例えば、図6に示すSTA200の識別子であるAID12に含めてもよく、AID12の代わりにAP-IDを用いてもよい。また、図16は、STA200に個別に許容干渉電力を指定するフォーマットの例を示す図である。図16に示すように、許容干渉電力に関する情報は、User info field内のSTA info field(STAに個別の情報フィールド)に含まれてよい。
 (実施の形態2)
 本実施の形態に係る基地局及び端末の構成例は、例えば、一部の機能が実施の形態1と異なり、他の機能は実施の形態1と同様でよい。
 実施の形態1では、例えば、AP100が、STA200において測定されたパスロスに基づいてSTA200の送信電力を決定する例について説明した。本実施の形態では、STA200がパスロスに基づいて送信電力を決定する場合について説明する。
 なお、以下では、一例として、実施の形態1と同様、図12に示す、AP100(例えば、AP1及びAP2)及びSTA200(例えば、STA1及びSTA2)による、C-SR方式に基づいて協調するUL-UL通信の例について説明する。
 図17は、図12に示す協調セットにおけるUL-UL通信のシーケンスの一例を示す図である。
 図17において、Sharing APであるAP1は、例えば、MAP TFによって、Shared APであるAP2に対して、AP2が受信する周波数帯域を指定する。MAP TFには、例えば、図5に示すUL spatial reuse情報、又は、実施の形態1で説明した許容干渉電力が含まれてよい。なお、図17では、例えば、STA1及びSTA2もMAP TFを受信可能である。
 AP1及びAP2は、例えば、送信電力制御に関する情報を含むTrigger frameをSTA1及びSTA2へ送信する。送信電力制御に関する情報には、例えば、図5に示すAP TX Power(APからSTAへの送信電力値を示す情報)、及び、図6に示すUL Target RSSI(上りリンクにおけるAP100の目標受信信号強度に関する情報)が含まれてよい。
 STA2は、例えば、AP1からの協調通信の開始を指示するMAP TF(例えば、associated APと異なるAPからの信号)を受信した場合、MAP TFを用いてパスロスを測定し、測定したパスロスに基づいて、送信電力候補(以下、「TxPowerOBSS」と呼ぶ)を算出してよい。STA2は、例えば、図8に示すPSR-based spatial reuseと同様の処理によって、MAP TFに基づく送信電力候補の算出を行ってよい。例えば、STA2は、MAP TFに含まれるUL spatial reuseによって指定される値、及び、MAP TFを用いて測定したパスロスに基づいて、上りリンクの送信電力候補TxPowerOBSSを算出してよい。
 また、STA2は、例えば、AP2からの上りリンク送信を指示するTrigger frame(例えば、associated APからのTrigger frame)を受信した場合、Trigger frameに含まれる送信電力制御に関する情報(例えば、上述したAP TX Power及びUL Target RSSIを含む)、及び、Trigger frameを用いて測定した受信電力(例えば、「RxPower」と呼ぶ)に基づいて、送信電力候補(以下、「TxPowerBSS」と呼ぶ)を算出してよい。STA2は、例えば、次式(1)に従って、送信電力候補TxPowerBSSを算出してよい。例えば、式(1)の(AP TX power - RxPower)は、STA2-AP2間のパスロスに相当する。
 TxPowerBSS = (AP TX Power - RxPower) + UL Target RSSI     (1)
 そして、STA2は、複数の送信電力候補TxPowerOBSS及びTxPowerBSSに基づいて、次式(2)に従って、上りリンク信号(例えば、DATAパケット)の送信電力(以下、「TxPow」と呼ぶ)を決定してよい。
 TxPow=min(TxPowerOBSS, TxPowerBSS)     (2)
 このように、STA200は、上りリンクの協調通信を行う複数の送信元(例えば、AP1及びAP2)から受信した複数の信号(例えば、MAP TF及びTrigger frame)に基づいて、上りリンクの送信電力を決定し、決定した送信電力によって上りリンク送信を行う。
 例えば、図17において、STA2の送信電力値は、STA2によって計算される。また、例えば、STA2の送信電力値の計算に使用されるパスロス値は、STA2が受信する複数のAP100(例えば、AP1及びAP2)から送信されるトリガーフレームに基づいて測定される。よって、例えば、STA2によって測定されるパスロス値は、AP100(例えば、AP1及びAP2)へ送信されなくてよい。
 これにより、例えば、図17において、Shared APであるAP2(例えば、協調通信を制御するAP1と異なるAP100)は、Sharing APであるAP1に対して、STA2に関するパスロス(例えば、STA2-AP1間のパスロス及びSTA2-AP2間のパスロス)を通知しなくてよい。また、STA2は、AP2に対してSTA2に関するパスロスを通知しなくてよい。
 よって、本実施の形態によれば、UL通信の送信電力制御において、AP間通信の情報量を削減できるので、協調通信における送信電力制御の効率を向上できる。
 また、本実施の形態では、例えば、図17に示すように、STA200は、DATAパケットの送信タイミングにより近いタイミング(例えば、直前のタイミング)に受信したパケット(例えば、図17では、AP1からのMAP TF、及び、AP2からのTrigger frame)に基づいて測定されたパスロスを用いて送信電力を設定する。この送信電力の設定により、パスロス測定からパケット送信までの期間がより短くなるので、例えば、遮蔽物又はSTA200の移動等によるパスロスの変動に追従しやすくなり、送信電力制御の精度を向上できる。
 また、ここで、TxPowerBSSは、STA2とSTA2のassociated APであるAP2との間のパスロス、及び、AP2からのTrigger frameによって通知されるパラメータに基づいて設定される送信電力値である。換言すると、TxPowerBSSは、STA2-AP2間の通信に期待される送信電力値(例えば、所望の送信電力値)である。その一方で、TxPowerOBSSは、例えば、STA2のassociated APと異なるAP1からのMAP TFに含まれるUL spatial reuseに基づいて設定される送信電力値である。例えば、UL spatial reuseによって指定されるパラメータには許容干渉電力に関する値が含まれてよい。この場合、TxPowerOBSSは、例えば、STA2におけるUL送信に対して許容可能な送信電力である。換言すると、STA2がTxPowerOBSSを超える送信電力によって送信する信号は、AP1に対して干渉を与え得る。
 以上より、式(2)によって、STA2は、例えば、TxPowerOBSSを上限値として、上りリンクの送信電力の設定が可能になるので、上りリンクにおける送信電力制御の精度を向上できる。このように、例えば、複数のAP100からのパケットを受信可能である位置に存在するSTA200は、複数のAP100それぞれからの受信パケットに基づいて、協調通信を行う複数のAP100に対する干渉を抑制した上りリンクの送信電力制御を適切に行うことができる。
 なお、図17において、STA2がMAP TFを受信しない場合、STA2は、例えば、TxPowerBSSをDATAパケットの送信電力に設定してもよい。STA2がMAP TFを受信しない場合、MAP TFに基づくパスロス、例えば、STA2-AP1間のパスロスは、STA2がMAP TFを受信する場合と比較して、大きいことが想定されるので、STA2の送信電力がTxPowerBSSに設定されても、STA2からの上りリンク送信がAP1へ与える干渉の影響は少ないことが想定される。このように、協調通信を行う複数のAP100のうち一部のAP100(例えば、associated AP)からのパケットを受信可能である位置に存在するSTA200は、当該一部のAP100からのパケットに基づいて、上りリンク通信を行うAP100を考慮した上りリンクの送信電力制御を適切に行うことができる。
 また、例えば、図12において、STA1は、AP1のパケットを受信可能であるのに対して、AP2のパケットを受信しない可能性が高い。そこで、図17において、STA1は、AP1からのTrigger frameに基づいて、送信電力(例えば、TxPowerBSSと同様の値)を設定してもよい。
 また、本実施の形態では、STA2は、AP1(例えば、OBSS)からのMAP TFを受信した場合にTxPowerOBSSを算出する。換言すると、STA2は、AP1(例えば、OBSS)からのMAP TFを受信しない場合にはTxPowerOBSSを算出しなくてよい。そこで、例えば、STA200は、Sharing AP(例えば、図17のAP1)から、MAP TFによって通知される許容干渉電力(Acceptable Maximum Interference Levelとも呼ぶ)を受信してもよい。なお、許容干渉電力に関する情報は、図14に示すように、MAP TF(又は、Trigger frame)のCommon info fieldに含まれてもよく、図15に示すように、MAP TF(又は、Trigger frame)のUser info fieldに含まれてもよく、図16に示すように、User info field内のSTA info fieldに含まれてもよい。
 許容干渉電力の通知により、STA2は、例えば、MAP TFを受信した場合には、当該MAP TFに含まれる許容干渉電力に基づいて、STA2の送信電力を設定してよい。許容干渉電力を用いる送信電力制御により、例えば、Shared APは、Sharing APに対する干渉を考慮して、Shared APにアソシエートするSTA200の送信電力を設定できるので、送信電力制御の精度を向上できる。
 なお、STA200において、associated APからのTrigger frameに基づく送信電力候補TxPowerBSSの算出方法は、例えば、式(1)に基づく方法に限定されず、他の方法でもよい。また、STA200において、associated APと異なるAPからのTrigger frame(例えば、MAP TF)に基づく送信電力候補TxPowerOBSSの算出方法は、例えば、PSR-based spatial reuseに基づく方法に限定されず、他の方法でもよい。例えば、TxPowerBSS及びTxPowerOBSSの算出方法は、共通でもよく、異なってもよい。
 (実施の形態3)
 本実施の形態に係る基地局及び端末の構成例は、例えば、一部の機能が実施の形態1と異なり、他の機能は実施の形態1と同様でよい。
 実施の形態2では、2つのAP100による協調通信について説明したが、協調通信を行うAP100の数は3個以上でもよい。本実施の形態では、一例として、AP100が3個の場合について説明する。
 図18は、C-SR方式に基づいて協調するUL-UL通信の例を示す図である。
 図18には、例えば、AP1と、AP2と、AP3と、STA1と、STA2と、STA3とを含むセット(協調セット)が示される。STA1は、AP1のカバーエリア内に存在し、AP1とアソシエートしている。STA2は、AP2のカバーエリア内に存在し、AP2とアソシエートしている。STA3は、AP3のカバーエリア内に存在し、AP3とアソシエートしている。換言すると、図18において、STA1のassociated APはAP1であり、STA2のassociated APはAP2であり、STA3のassociated APはAP3である。
 図18では、例えば、STA1からAP1へのUL通信と、STA2からAP2へのUL通信と、STA3からAP3へのUL通信とがC-SR方式によって協調される。図18では、例えば、AP1は、協調セット内に配置され、協調セット(又は、協調通信)を制御するAP(例えば、Master AP又はSharing APと呼ぶ)である。AP2及びAP3は、協調セット内に配置され、Master APによって制御されるAP(例えば、Slave AP又はShared APと呼ぶ)である。換言すると、図18は、複数のShared AP(又は、Slave AP)を含む協調送信の例を示す。
 また、図18では、例えば、STA2及びSTA3の送信電力が低く設定(換言すると、制限)されるほど、AP1に対するSTA2及びSTA3からの干渉の影響は低減され得る。また、図18では、例えば、STA1及びSTA3の送信電力が低く設定(換言すると、制限)されるほど、AP2に対するSTA1及びSTA3からの干渉の影響は低減され得る。また、図18では、例えば、AP3は、STA1及びSTA2からの干渉の影響を受けにくい位置に存在する。
 図18において、STA1は、例えば、AP1からのパケットを受信可能であるのに対して、AP2又はAP3からのパケットを受信しない可能性が高い位置に存在する。この場合、STA1では、AP2又はAP3からのパケットの受信電力は低くなりやすい。
 その一方で、図18において、STA2は、例えば、AP1及びAP2の双方からのパケットを受信可能である位置に存在する。この場合、STA2では、AP1からのパケットの受信電力は高くなりやすい。また、図18において、STA3は、例えば、AP1、AP2及びAP3のそれぞれのパケットを受信可能である位置に存在する。この場合、STA3では、AP1及びAP2からのパケットの受信電力は高くなりやすい。
 例えば、図18に示す協調セットの初期設定、及び、STA1がAP1とアソシエートし、STA2がAP2とアソシエートし、STA3がAP3とアソシエートした後、協調セットにおいて、UL-UL通信が実行されてよい。
 図19は、図18に示す協調セットにおけるUL-UL通信のシーケンスの一例を示す図である。
 図19において、Sharing APであるAP1は、例えば、実施の形態2と同様、MAP TFによって、Shared APであるAP2及びAP3に対して、AP2及びAP3それぞれが受信する周波数帯域を指定する。MAP TFには、例えば、図5に示すUL spatial reuse情報、又は、実施の形態1で説明した許容干渉電力が含まれてよい。なお、図19では、例えば、STA1、STA2及びSTA3もMAP TFを受信可能である。
 AP1及びAP2は、例えば、実施の形態2と同様、送信電力制御に関する情報を含むTrigger frameをSTA1及びSTA2へ送信する。送信電力制御に関する情報には、例えば、実施の形態2と同様、図5に示すAP TX Power(APからSTAへの送信電力値を示す情報)、及び、図6に示すUL Target RSSI(上りリンクにおけるAP100の目標受信信号強度に関する情報)が含まれてよい。
 本実施の形態では、STA1及びSTA2は、例えば、実施の形態2と同様の動作によって、送信電力を設定してよい。
 また、図19において、AP3は、例えば、AP2のTrigger frameの送信タイミングと異なる送信タイミングにおいてTrigger frameをSTA3へ送信する。例えば、AP3は、AP2のTrigger frameから一定間隔(例えば、Short Inter Frame Space(SIFS))後にTrigger frameを送信してもよい。または、例えば、MAP TFによってAP2のTrigger frameのパケット長(例えば、Trigger Lengthと呼ぶ)が通知され、AP3は、MAP TFから(SIFS+Trigger Length+SIFS)後にTrigger frameを送信してもよい。
 このように、複数のShared APから送信されるTrigger frameの時間領域のリソースは互いに異なってよい。
 STA3は、例えば、AP1からの協調通信の開始を指示するMAP TF(例えば、associated APと異なるAPからの信号)を受信した場合、MAP TFに基づいて送信電力候補(以下、「TxPowerOBSS1」と呼ぶ)を算出する。STA3は、例えば、MAP TFを用いてパスロスを測定し、測定したパスロス及びUL spatial reuseによって指定される値に基づいてTxPowerOBSS1を算出してよい。STA3は、例えば、図8に示すPSR-based spatial reuseと同様の処理によって、MAP TFに基づく送信電力候補の算出を行ってよい。
 同様に、STA3は、AP2からのTrigger frame(例えば、associated APと異なるAPからの信号)を受信した場合、当該Trigger frameに基づいて送信電力候補(以下、「TxPowerOBSS2」と呼ぶ)を算出する。STA3は、例えば、Trigger frameを用いてパスロスを測定し、測定したパスロス及びUL spatial reuseによって指定される値に基づいてTxPowerOBSS2を算出してよい。STA3は、例えば、図8に示すPSR-based spatial reuseと同様の処理によって、associated APと異なるAP2からのTrigger frameに基づく送信電力候補の算出を行ってよい。
 また、STA3は、AP3からの上りリンク送信を指示するTrigger frame(例えば、associated APからのTrigger frame)を受信した場合、当該Trigger frameに基づいて送信電力候補(以下、「TxPowerBSS」と呼ぶ)を算出する。STA3は、例えば、Trigger frameに含まれる送信電力制御に関する情報(例えば、AP TX Power及びUL Target RSSIを含む)、及び、Trigger frameを用いて測定した受信電力(例えば、「RxPower」と呼ぶ)に基づいて、TxPowerBSSを算出してよい。STA3は、例えば、上述した式(1)に従って、送信電力候補TxPowerBSSを算出してよい。
 そして、STA3は、複数の送信電力候補TxPowerOBSS1、TxPowerOBSS2及びTxPowerBSSに基づいて、次式(3)に従って、上りリンク信号(例えば、DATAパケット)の送信電力(以下、「TxPow」と呼ぶ)を設定してよい。
 TxPow=min(TxPowerOBSS1, TxPowerOBSS2, TxPowerBSS)     (3)
 このように、STA200は、上りリンクの協調通信を行う複数の送信元(例えば、AP1、AP2及びAP3)から受信した複数の信号(例えば、MAP TF及びTrigger frame)に基づいて、上りリンクの送信電力を決定し、決定した送信電力によって上りリンク送信を行う。
 例えば、図19において、STA3の送信電力値は、STA3によって計算される。また、例えば、STA3の送信電力値の計算に使用されるパスロス値は、STA3が受信する複数のAP100(例えば、AP1、AP2及びAP3)から送信されるトリガーフレームに基づいて測定される。よって、例えば、STA3によって測定されるパスロス値は、AP100(例えば、AP1、AP2及びAP3)へ送信されなくてよい。
 これにより、例えば、図19において、Shared APであるAP2及びAP3(例えば、協調通信を制御するAPと異なるAP100)は、Sharing APであるAP1に対して、STA2及びSTA3に関するパスロスを通知しなくてよい。また、STA2及びSTA3は、AP2及びAP3に対してSTA2及びSTA3に関するパスロスを通知しなくてよい。
 よって、本実施の形態によれば、UL通信の送信電力制御において、AP間通信の情報量を削減できるので、AP数が3個以上の場合でも、協調通信における送信電力制御の効率を向上できる。
 なお、例えば、STA3がAP2のTrigger frameを受信しない場合、STA3は、TxPowerOBSS1及びTxPowerBSSに基づく送信電力制御(例えば、実施の形態2の図17に示すSTA2と同様の動作)を行ってもよい。また、例えば、STA3がAP1のMAP TFを受信しない場合、STA3は、TxPowerOBSS2及びTxPowerBSSに基づく送信電力制御を行ってもよい。また、例えば、図19において、STA3がAP1からのMAP TF及びAP2からのTrigger frameを受信しない場合、STA3は、例えば、TxPowerBSSをDATAパケットの送信電力に設定してもよい。
 また、例えば、Shared APにおけるTrigger frameの送信順は、MAP TFのUser info fieldによって指定される順序でもよい。例えば、User info fieldによってAP2,AP3の順に指定された場合には、図19に示すTrigger frameの送信順が設定されてもよい。
 また、図19では、AP2及びAP3のTrigger frameが異なるタイミング(換言すると、異なる時間領域のリソース)で送信される場合について説明したが、AP2及びAP3のTrigger frameは、或る領域における異なるリソースで送信されてもよい。例えば、AP2及びAP3のTrigger frameは、異なる周波数帯域(異なる周波数領域のリソース)において送信されてもよい。この場合、AP2及びAP3のTrigger frameが送信される時間リソース(又は、タイミング)は同一でもよく、異なってもよい。これにより、STA3は、例えば、AP2からのTrigger frameに基づいて、STA3-AP2間のパスロスを測定できる。
 また、図19に示す例では、Shared APが2個(AP2及びAP3)の場合について説明したが、Shared APの数は、3個以上でもよい。この場合、3個以上のShared APのTrigger frameが送信されるリソースは、例えば、時間領域及び周波数領域の少なくとも一方において互いに異なってよい。これにより、STA200は、例えば、複数のShared APからのTrigger frameに基づいて、各Shared APとの間のパスロスを測定できる。
 また、例えば、図19において、AP3のTrigger frameの割当周波数帯域は、STA1及びSTA2のDATAの割当周波数帯域と異なってもよい。この周波数帯域の設定により、例えば、図19に示すように、AP3のTrigger frameの送信タイミングと、STA1及びSTA2のDATAの送信タイミングとが衝突(又は、重複)する場合でも、AP3は、DATAへの干渉を抑制して、Trigger frameを送信できる。
 また、例えば、図19において、AP3のTrigger frameの送信電力は、MAP TFによるAP1-AP3間のバスロス、及び、AP2が送信するTrigger frameによるAP2-AP3間のバスロスに基づいて制御されてもよい。この送信電力制御により、AP3のTrigger frameに対して、AP1及びAP2のDATA受信への干渉を抑制した送信電力制御が可能になる。
 また、本実施の形態では、STA3は、AP1(例えば、OBSS)からのMAP TFを受信した場合にTxPowerOBSS1を算出する。換言すると、STA3は、AP1(例えば、OBSS)からのMAP TFを受信しない場合にはTxPowerOBSS1を算出しなくてよい。そこで、例えば、STA200は、Sharing AP(例えば、図19のAP1)から、MAP TFによって通知される許容干渉電力(Acceptable Maximum Interference Levelとも呼ぶ)を受信してもよい。なお、許容干渉電力に関する情報は、図14に示すように、MAP TF(又は、Trigger frame)のCommon info fieldに含まれてもよく、図15に示すように、MAP TF(又は、Trigger frame)のUser info fieldに含まれてもよく、図16に示すように、User info field内のSTA info fieldに含まれてもよい。
 以上、本開示の各実施の形態について説明した。
 (バリエーション1)
 実施の形態2及び実施の形態3では、STA200が、複数のAP100からの信号に基づいて、上りリンクの送信電力制御を行う場合について説明した。バリエーション1では、例えば、複数の信号に基づく送信電力制御の動作の有効及び無効をAP100が指示してもよい。
 例えば、複数の信号に基づく送信電力制御の動作の有効及び無効に関する情報(例えば、「TX Power Select」と呼ぶ)は、Trigger frameによってSTA200へ通知されてもよい。例えば、Tx Power Selectは、図5に示すCommon info fieldのReserved(B63)で指示されてもよい。
 STA200は、例えば、Trigger frameに含まれるTX Power Selectに基づいて、複数の信号に基づく送信電力の決定を行うか否かを判断してよい。例えば、TX Power Select=0の場合には、STA200は、associated APのTrigger frameに基づく送信電力制御を行ってよい(複数の信号に基づく送信電力制御:無効)。その一方で、TX Power Select=1の場合には、STA200は、例えば、実施の形態2又は実施の形態3において説明した送信電力制御を行ってよい(複数の信号に基づく送信電力制御:有効)。
 また、TX Power Selectの指定は、例えば、パスロスに基づいてもよい。例えば、実施の形態2において、STA2-AP1間のパスロスがSTA2-AP2間のパスロスより十分に大きい場合(例えば、差分が閾値以上の場合)、TX Power Select=0(無効)が設定されてもよい。
 また、STA200は、例えば、TX Power Selectの代わりに、受信したパケットのタイプ(例えば、図5に示すCommon info fieldのTrigger Type)に基づいて、複数の信号に基づく送信電力制御の有効及び無効を判定してもよい。例えば、STA200は、associated APと異なるAPから、Trigger TypeがMAP TFのパケットを受信した場合、図5に示すUL Length又はMAP TFのプリアンブルにおいて指定されたTXOP期間において、複数の信号に基づく送信電力制御を有効に設定してもよい。これにより、複数の信号に基づく送信電力制御の動作期間を設定(又は、制限)できる。
 (バリエーション2)
 実施の形態1、実施の形態2及び実施の形態3において、MAP TFのCommon info fieldのフォーマットは、図5に示すフォーマットの代わりに、図20に示すフォーマットでもよい。また、MAP TFのUser info fieldのフォーマットは、図6に示すフォーマットの代わりに、図21に示すフォーマットでもよい。また、MAP TFにおいて図20及び図21に示すフォーマットが適用される場合、図7に示すTrigger Typeに関する情報(例えば、テーブル)の代わりに、図22に示すTrigger frameに関する情報が設定されてもよい。
 図22では、図7と比較して、Trigger Type=Multi-APが追加される。
 例えば、図20に示すUL/DL Flagは、図5に示すTrigger Dependent Common Infoに追加されてもよい。また、例えば、図6に示すAID12は、図21に示すAP ID(例えば、通知先Shared APを示す識別子)に変更されてもよい。また、例えば、図6に示すMAP TFにおいてC-SRの際に未使用となる値(例えば、UL HE-MCS等)又はTrigger Dependent User Infoに、MAP Type及びMAP Type Dependent Infoが割り当てられてもよい。
 また、例えば、MAP TFのフォーマットは、Trigger frameのフォーマットと異なってもよい。例えば、図23は、MAP Triggerフレームのフォーマットの一例を示す図である。図23において、フレームの種別が「MAP Trigger」であることは、例えば、「Frame Control」フィールドに含まれる「Type」及び「Subtype」によって指定されてもよい。図24は、Type及びSubtypeによって指定されるMACフレームの種別の例を示す図である。図24は、例えば、図4に示すMACフレームの種別に「MAP Trigger」を追加したテーブルである。
 図23において、例えば、「Common Info」フィールドは、協調通信するShared AP間に共通の情報を示し、「Per AP info」フィールドは、協調通信するShared APに個別の情報を示してよい。
 また、図20及び図23のCommon Infoフィールドにおいて、「Length」はSharing APのAck送受信を含むDATA送受信期間を示してよく、「BW」はSharing AP及びShared APが送受信する周波数帯域を示してよく、「TX Power」はMAP TFの送信電力値を示してよく、「UL/DL Flag」はSharing APのDATAの送信方向(UL通信又はDL通信)を示すフラグを示してよい。
 また、図21に示すUser infoフィールド及び図23に示すPer AP Infoフィールドにおいて、「AP ID」は通知先Shared APを示す識別子を示してよく、「Resource Allocation」は該当するShared APが使用可能な周波数帯域を示してよく、「MAP Type」は協調方式を示してよく、「MAP Type Dependent Info」はMAP Typeで示した協調方式に対応する情報を示してよい。
 なお、MAP Typeの例として、例えば、C-SR、Joint Transmissions(JT)、Coordinated Beamforming(CBF)、及び、Coordinated Orthogonal Frequency Division Multiple Access(C-OFDMA)が挙げられる。
 例えば、MAP TypeがC-SRを示す場合、AP Type Dependent Infoには、UL/DL FlagがUL通信の場合には実施の形態1において説明した許容干渉電力が設定されてもよく、UL/DL FlagがDL通信の場合にはShared APの最大送信電力が設定されてもよい。また、一例として、UL/DL Flagに基づいて、C-SR時のMAP Type Dependent Infoが許容干渉電力と最大送信電力とで切り替わる例について説明したが、これに限定されず、許容干渉電力及び最大送信電力の両方を通知するフォーマットでもよい。
 また、例えば、MAP TypeがC-OFDMAを示す場合のMAP Type Dependent Infoを情報無しに設定してもよい。
 また、例えば、実施の形態2及び実施の形態3において説明した、複数の送信電力候補に基づく送信電力制御の有効及び無効は、MAP Typeに基づいて切り替えられてもよい。例えば、MAP TypeがC-SRの場合に、複数の送信電力候補に基づく送信電力制御の動作が有効に設定され、MAP TypeがC-SRと異なる場合に、複数の送信電力候補に基づく送信電力制御の動作が無効に設定されてもよい。
 また、MAP TypeがC-SRの場合のMAP Type Dependent Infoにおいて、Shared APの最大送信電力が通知される場合について説明したが、これに限定されず、許容干渉電力(例えば、「最大送信電力-Sharing APとShared AP間のパスロス」)が通知されてもよい。
 以上、バリエーション2について説明した。
 なお、上述した各実施の形態では、STA200がアソシエートするAP100(associated AP)が一つの場合について説明したが、これに限定されず、STA200が複数のAP100へアソシエートしてもよい。例えば、上述した実施の形態1と同様、STA200は、複数のassociated APへ、複数のassociated APを含む複数のAP100からの信号に基づくパスロスを通知し、複数のassociated APがSTA200の送信電力を制御してもよい。または、例えば、上述した実施の形態2及び実施の形態3と同様、STA200は、複数のassociated APを含む複数のAP100からの信号に基づいて上りリンクの送信電力を制御してもよい。
 上述した実施の形態では、複数のAPがSTAに対して協調通信を行う例を示したが、本開示はこれに限定されない。例えば、実施の形態2及び3においてSTAの送信電力制御に使用される複数の信号の送信元は、APに限定されない。例えば、複数のAPのうち、一部がSTAに置き換わってもよい。例えば、本開示は、1以上のAPと1以上のSTAが、別のSTAに対して協調通信を行う場合に適用されてもよい。あるいは、本開示は、2以上のSTAが、別のSTAに対して協調通信を行う場合に適用されてもよい。
 また、上述した実施の形態における、各信号(各パケット)を表す用語は、一例であり、本開示はこれに限定されない。
 また、上述した実施の形態における「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係る端末は、上りリンクの協調通信を行う複数の送信元から受信した複数の信号に基づいて、前記上りリンクの送信電力を決定する制御回路と、前記決定された送信電力によって上りリンク送信を行う送信回路と、を具備する。
 本開示の一実施例において、前記制御回路は、前記複数の信号それぞれに基づく複数の送信電力候補に基づいて、前記上りリンクの送信電力を決定する。
 本開示の一実施例において、前記複数の信号には、前記上りリンク送信を指示するトリガーフレームが含まれる。
 本開示の一実施例において、前記複数の信号には、前記協調通信の開始を指示するトリガーフレームが含まれる。
 本開示の一実施例において、前記端末が接続する送信元のアクセスポイントは、前記複数の送信元であるアクセスポイントのうち、前記協調通信を制御する第1のアクセスポイントと異なる第2のアクセスポイントである。
 本開示の一実施例において、複数の前記第2のアクセスポイントから送信される前記信号であるトリガーフレームの時間領域及び周波数領域の少なくとも一方のリソースは互いに異なる。
 本開示の一実施例において、前記制御回路は、前記複数の信号のうち少なくとも一つの信号に含まれる情報に基づいて、前記複数の信号に基づく前記送信電力の決定を行うか否かを判断する。
 本開示の一実施例において、前記情報は、前記少なくとも一つの信号であるトリガーフレームの共通情報フィールドに含まれる。
 本開示の一実施例において、前記情報は、前記少なくとも一つの信号であるトリガーフレームのタイプである。
 本開示の一実施例において、許容干渉電力に関する情報を受信する受信回路、をさらに具備し、前記制御回路は、前記許容干渉電力に基づいて、前記送信電力を決定する。
 本開示の一実施例において、前記許容干渉電力に関する情報は、前記複数の信号のうち少なくとも一つの信号であるトリガーフレームの共通情報フィールドに含まれる。
 本開示の一実施例において、前記許容干渉電力に関する情報は、前記複数の信号のうち少なくとも一つの信号であるトリガーフレームのユーザ情報フィールドに含まれる。
 本開示の一実施例において、前記許容干渉電力に関する情報は、前記ユーザ情報フィールド内の端末に個別のフィールドに含まれる。
 本開示の一実施例に係る通信装置は、協調通信に関する情報を送信する、送信回路と、前記協調通信に関する情報に基づいて送信された、上りリンク送信を受信する、受信回路と、を具備し、前記上りリンク送信の送信電力は、前記協調通信に関する情報に基づいて決定される。
 本開示の一実施例に係る通信方法において、端末は、上りリンクの協調通信を行う複数の送信元から受信した複数の信号に基づいて、前記上りリンクの送信電力を決定し、前記決定された送信電力によって上りリンク送信を行う。
 本開示の一実施例に係る通信方法において、通信装置は、協調通信に関する情報を送信し、前記協調通信に関する情報に基づいて送信された、上りリンク送信を受信し、前記上りリンク送信の送信電力は、前記協調通信に関する情報に基づいて決定される。
 2020年10月15日出願の特願2020-174019の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、無線通信システムに有用である。
 10,200 STA
 11 制御部
 12 送信部
 100 AP
 101,201 送信パケット生成部
 102,202 無線送受信部
 103,203 受信パケット復号部
 104,205 制御信号生成部
 204 パスロス測定部
 206 送信電力制御部

Claims (16)

  1.  上りリンクの協調通信を行う複数の送信元から受信した複数の信号に基づいて、前記上りリンクの送信電力を決定する制御回路と、
     前記決定された送信電力によって上りリンク送信を行う送信回路と、
     を具備する端末。
  2.  前記制御回路は、前記複数の信号それぞれに基づく複数の送信電力候補に基づいて、前記上りリンクの送信電力を決定する、
     請求項1に記載の端末。
  3.  前記複数の信号には、前記上りリンク送信を指示するトリガーフレームが含まれる、
     請求項1に記載の端末。
  4.  前記複数の信号には、前記協調通信の開始を指示するトリガーフレームが含まれる、
     請求項1に記載の端末。
  5.  前記端末が接続する送信元のアクセスポイントは、前記複数の送信元であるアクセスポイントのうち、前記協調通信を制御する第1のアクセスポイントと異なる第2のアクセスポイントである、
     請求項1に記載の端末。
  6.  複数の前記第2のアクセスポイントから送信される前記信号であるトリガーフレームの時間領域及び周波数領域の少なくとも一方のリソースは互いに異なる、
     請求項5に記載の端末。
  7.  前記制御回路は、前記複数の信号のうち少なくとも一つの信号に含まれる情報に基づいて、前記複数の信号に基づく前記送信電力の決定を行うか否かを判断する、
     請求項1に記載の端末。
  8.  前記情報は、前記少なくとも一つの信号であるトリガーフレームの共通情報フィールドに含まれる、
     請求項7に記載の端末。
  9.  前記情報は、前記少なくとも一つの信号であるトリガーフレームのタイプである、
     請求項7に記載の端末。
  10.  許容干渉電力に関する情報を受信する受信回路、をさらに具備し、
     前記制御回路は、前記許容干渉電力に基づいて、前記送信電力を決定する、
     請求項1に記載の端末。
  11.  前記許容干渉電力に関する情報は、前記複数の信号のうち少なくとも一つの信号であるトリガーフレームの共通情報フィールドに含まれる、
     請求項10に記載の端末。
  12.  前記許容干渉電力に関する情報は、前記複数の信号のうち少なくとも一つの信号であるトリガーフレームのユーザ情報フィールドに含まれる、
     請求項10に記載の端末。
  13.  前記許容干渉電力に関する情報は、前記ユーザ情報フィールド内の端末に個別のフィールドに含まれる、
     請求項12に記載の端末。
  14.  協調通信に関する情報を送信する、送信回路と、
     前記協調通信に関する情報に基づいて送信された、上りリンク送信を受信する、受信回路と、を具備し、
     前記上りリンク送信の送信電力は、前記協調通信に関する情報に基づいて決定される、
     通信装置。
  15.  端末は、
     上りリンクの協調通信を行う複数の送信元から受信した複数の信号に基づいて、前記上りリンクの送信電力を決定し、
     前記決定された送信電力によって上りリンク送信を行う、
     通信方法。
  16.  通信装置は、
     協調通信に関する情報を送信し、
     前記協調通信に関する情報に基づいて送信された、上りリンク送信を受信し、
     前記上りリンク送信の送信電力は、前記協調通信に関する情報に基づいて決定される、
     通信方法。
PCT/JP2021/029726 2020-10-15 2021-08-12 端末、通信装置及び通信方法 WO2022079992A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/248,819 US20230422179A1 (en) 2020-10-15 2021-08-12 Terminal, communication device, and communication method
KR1020237011934A KR20230087467A (ko) 2020-10-15 2021-08-12 단말, 통신 장치 및 통신 방법
EP21879734.8A EP4231749A4 (en) 2020-10-15 2021-08-12 TERMINAL, COMMUNICATION DEVICE AND COMMUNICATION METHOD
CN202180070609.4A CN116438884A (zh) 2020-10-15 2021-08-12 终端、通信装置及通信方法
JP2022556426A JPWO2022079992A1 (ja) 2020-10-15 2021-08-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020174019 2020-10-15
JP2020-174019 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022079992A1 true WO2022079992A1 (ja) 2022-04-21

Family

ID=81207888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029726 WO2022079992A1 (ja) 2020-10-15 2021-08-12 端末、通信装置及び通信方法

Country Status (6)

Country Link
US (1) US20230422179A1 (ja)
EP (1) EP4231749A4 (ja)
JP (1) JPWO2022079992A1 (ja)
KR (1) KR20230087467A (ja)
CN (1) CN116438884A (ja)
WO (1) WO2022079992A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130036383A (ko) * 2011-10-04 2013-04-12 주식회사 팬택 무선 통신 시스템에서 상향링크 전송 전력을 제어하는 장치 및 방법
US20180220456A1 (en) * 2015-07-29 2018-08-02 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
US20180235002A1 (en) * 2015-10-20 2018-08-16 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal in high-density environment including overlapped basic service set
JP2019515566A (ja) * 2016-05-06 2019-06-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated ワイヤレスローカルエリアネットワークにおけるトリガフレーム
WO2019131199A1 (ja) * 2017-12-28 2019-07-04 ソニー株式会社 無線通信装置
JP2020174019A (ja) 2019-04-12 2020-10-22 株式会社デンソー 燃料電池システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020082711A1 (en) * 2018-10-23 2020-04-30 Huawei Technologies Co., Ltd. System and method for uplink power control in a communications system with multi-access point coordination

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130036383A (ko) * 2011-10-04 2013-04-12 주식회사 팬택 무선 통신 시스템에서 상향링크 전송 전력을 제어하는 장치 및 방법
US20180220456A1 (en) * 2015-07-29 2018-08-02 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
US20180235002A1 (en) * 2015-10-20 2018-08-16 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal in high-density environment including overlapped basic service set
JP2019515566A (ja) * 2016-05-06 2019-06-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated ワイヤレスローカルエリアネットワークにおけるトリガフレーム
WO2019131199A1 (ja) * 2017-12-28 2019-07-04 ソニー株式会社 無線通信装置
JP2020174019A (ja) 2019-04-12 2020-10-22 株式会社デンソー 燃料電池システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231749A4
SUNGJIN PARK , ENSIGN PARK , JEONGKI KIM , JINSOO CHOI , KIERON RYU: "Multi-AP Transmission Procedure", IEEE DRAFT; 11-19-0804-00-00BE-MULTI-AP-TRANSMISSION-PROCEDURE, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, 13 May 2019 (2019-05-13), Piscataway, NJ USA , pages 1 - 14, XP068151150 *

Also Published As

Publication number Publication date
EP4231749A1 (en) 2023-08-23
EP4231749A4 (en) 2024-04-17
CN116438884A (zh) 2023-07-14
US20230422179A1 (en) 2023-12-28
JPWO2022079992A1 (ja) 2022-04-21
KR20230087467A (ko) 2023-06-16

Similar Documents

Publication Publication Date Title
US11147098B2 (en) Electronic apparatus, wireless communication device, and wireless communication method
EP2742617B1 (en) Method and apparatus for dynamic frequency selection in wireless local area network system
US11856427B2 (en) Wireless communication electronic device and method, and computer-readable storage medium
EP3817486A1 (en) Electronic device for wireless communication system, and method and storage medium
JP2021513783A (ja) 協調マルチアクセスポイントap伝送のための方法および関連装置
WO2021090718A1 (ja) 通信装置、情報処理方法
KR20230147610A (ko) 기지국 및 통신 방법
WO2022190677A1 (ja) 端末、アクセスポイント、及び、通信方法
WO2022079992A1 (ja) 端末、通信装置及び通信方法
WO2022253150A1 (zh) 数据传输方法及装置
WO2021240958A1 (ja) アクセスポイント、端末、及び、通信方法
US20220346067A1 (en) Communication device and communication method
WO2023181965A1 (ja) 通信装置及び通信方法
WO2022030213A1 (ja) 無線通信装置及び無線通信方法
WO2023100657A1 (ja) 通信装置及び通信方法
WO2024032064A1 (zh) 功率控制方法及通信装置
WO2023079887A1 (ja) アクセスポイント及び通信方法
EP4114078A1 (en) Communication method and device in uplink coordination
WO2023013254A1 (ja) 通信装置及び通信方法
EP4277327A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US20230319722A1 (en) Multi-link single radio suspension and operating parameters
WO2022059359A1 (ja) 基地局、通信装置及び通信方法
EP4376536A1 (en) Device and method for wireless communication, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556426

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18248819

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023006935

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879734

Country of ref document: EP

Effective date: 20230515

ENP Entry into the national phase

Ref document number: 112023006935

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230413