WO2022079836A1 - エレベータ用ロープ及びその製造方法 - Google Patents

エレベータ用ロープ及びその製造方法 Download PDF

Info

Publication number
WO2022079836A1
WO2022079836A1 PCT/JP2020/038791 JP2020038791W WO2022079836A1 WO 2022079836 A1 WO2022079836 A1 WO 2022079836A1 JP 2020038791 W JP2020038791 W JP 2020038791W WO 2022079836 A1 WO2022079836 A1 WO 2022079836A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
steel
fiber
steel wire
elevator rope
Prior art date
Application number
PCT/JP2020/038791
Other languages
English (en)
French (fr)
Inventor
晋也 内藤
政彦 肥田
豊弘 野口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022556757A priority Critical patent/JPWO2022079836A1/ja
Priority to DE112020007686.5T priority patent/DE112020007686T5/de
Priority to KR1020237009631A priority patent/KR20230044028A/ko
Priority to PCT/JP2020/038791 priority patent/WO2022079836A1/ja
Priority to CN202080105933.0A priority patent/CN116323458A/zh
Publication of WO2022079836A1 publication Critical patent/WO2022079836A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/005Composite ropes, i.e. ropes built-up from fibrous or filamentary material and metal wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • D07B1/0686Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration characterised by the core design
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2056Cores characterised by their structure comprising filaments or fibers arranged parallel to the axis
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2057Cores characterised by their structure comprising filaments or fibers resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2067Cores characterised by the elongation or tension behaviour
    • D07B2201/2068Cores characterised by the elongation or tension behaviour having a load bearing function
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2073Spacers in circumferencial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2074Spacers in radial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2007Elevators

Definitions

  • This disclosure relates to an elevator rope for suspending a car in an elevator and a method for manufacturing the same.
  • Patent Document 1 discloses a method of manufacturing an elevator rope by arranging a fiber core made of high-strength synthetic fiber in the center and winding a steel strand around the fiber core.
  • a fiber core made of high-strength synthetic fiber for example, a large number of high-strength fiber yarns obtained by bundling a plurality of high-strength synthetic fibers having a diameter of several to several tens of ⁇ m are bundled or twisted together to form a fiber core. Is formed so that the overall cross-sectional shape is circular. At this time, the high-strength fiber yarn is intentionally twisted loosely so that the fiber core can sufficiently bear the tensile load applied to the elevator rope during elevator operation.
  • the high-strength fiber yarn is thin and soft, it easily loses its shape when twisted loosely, and it is not easy to make a circular core material, and it may become elliptical. If the ellipticity of the core material is high, the ellipticity of the rope wound with steel strands around the core material is also high, and if the ellipticity is high, the life of the rope may be shortened.
  • an object of the present disclosure is to provide an elevator rope having a structure capable of easily manufacturing an elevator rope having a low ellipticity, which contains high-strength synthetic fibers, and a method for manufacturing the same.
  • the elevator rope according to the present disclosure is a first fiber composed of a steel core made of a steel strand or a single steel wire obtained by twisting a plurality of steel wires and a high-strength synthetic fiber arranged on the outer periphery of the steel core. It is provided with a layer and a first steel wire layer formed by winding a plurality of steel strands or a single steel wire obtained by twisting a plurality of steel wires around the outer periphery of the first fiber layer.
  • a plurality of fiber bundles made of high-strength synthetic fibers are arranged on the outer periphery of a steel strand made by twisting a plurality of steel wires or a steel core made of a single steel wire.
  • the step of forming the first fiber layer and a plurality of steel strands or a single steel wire obtained by twisting a plurality of steel wires are wound around the outer periphery of the first fiber layer to form the first steel wire. It includes a step of forming a layer.
  • FIG. 1 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 100.
  • FIG. 2 is a side view showing a state in which each layer of the elevator rope 100 is sequentially cut open.
  • the elevator rope 100 has a steel core 11 and a first fiber layer 12 made of high-strength synthetic fibers arranged on the outer periphery of the steel core 11. Further, it has a first steel wire layer 13 formed by winding a plurality of first steel strands 13n around the outer periphery of the first fiber layer 12.
  • the steel core 11 is made of a steel strand obtained by twisting a plurality of steel wires.
  • the steel core 11 is composed of a core wire 11a and six side wires 11b wound around the outer circumference of the core wire 11a. Both the core wire 11a and the lateral line 11b are made of steel wire.
  • the first fiber layer 12 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the steel core 11.
  • the first fiber layer 12 is formed by twisting a plurality of fiber bundles, and each fiber bundle is made of high-strength synthetic fiber.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • PBO polyparaphenylene benzoxazole
  • aramid fiber polyallylate fiber
  • basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the first steel wire layer 13 is formed by winding a plurality of first steel strands 13n obtained by twisting a plurality of steel wires around the outer periphery of the first fiber layer 12.
  • eight first steel strands 13n are wound around the outer periphery of the first fiber layer 12.
  • Each of the first steel strands 13n has a core wire 13a, nine first lateral lines 13b wound around the outer circumference of the core wire 13a, and nine second lateral lines 13c wound around the outer circumference thereof.
  • the core wire 13a, the first lateral line 13b, and the second lateral line 13c are all made of steel wire.
  • the first steel wire layer 13 is located on the outermost layer of the elevator rope 100 and is exposed to the outside.
  • a plurality of fiber bundles made of high-strength synthetic fibers are arranged on the outer periphery of a steel core 11 made of a steel strand obtained by twisting a plurality of steel wires.
  • the fiber layer 12 is formed. Specifically, a plurality of fiber bundles are twisted along the outer peripheral surface of the steel core 11 to form the first fiber layer 12.
  • the plurality of fiber bundles are intentionally twisted loosely, but twisted because the steel core 11 is used as the core material.
  • the shape of the first fiber layer 12 is not easily deformed when they are combined, and the formation of the first fiber layer 12 is easy.
  • a plurality of first steel strands 13n obtained by twisting a plurality of steel wires are wound around the outer periphery of the first fiber layer 12 to form the first steel wire layer 13.
  • the elevator rope 100 includes a steel core 11, a first fiber layer 12 made of high-strength synthetic fibers arranged on the outer periphery of the steel core 11, and a steel strand as a first fiber layer.
  • a first steel wire layer 13 formed by winding a plurality of wires around the outer periphery of the 12 is provided.
  • the first fiber layer 12 can be easily formed using the steel core 11 as a core material, and an elevator rope containing high-strength synthetic fibers and having a low ellipticity can be easily manufactured.
  • the elevator is provided with a rope (or chain) for weight compensation as the elevator height increases, but according to the elevator rope 100, weight reduction can be realized by including high-strength synthetic fibers. From, the number or mass of weight compensation ropes (or chains) can be further reduced or completely removed.
  • the first fiber layer 12 is formed by twisting a plurality of fiber bundles around the outer periphery of the steel core 11 has been described, but instead of this, a plurality of fibers are described.
  • the fiber bundles may be knitted together, or a plurality of fiber bundles may be arranged and bundled substantially in parallel.
  • the structure of the constituent strands constituting the steel core 11 may be appropriately changed.
  • the number of the first steel strands 13n constituting the first steel wire layer 13 and the structure of each first steel strand 13n may be appropriately changed.
  • FIG. 3 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 101.
  • FIG. 4 is a side view showing a state in which each layer of the elevator rope 101 is sequentially cut open.
  • the elevator rope 101 differs from the first embodiment in that it includes a resin coating layer 18 as an outermost layer. That is, in the elevator rope 100 according to the first embodiment, the first steel wire layer 13 is exposed to the outside as the outermost layer of the elevator rope 100. On the other hand, in the elevator rope 101 according to this modification, the outer periphery of the first steel wire layer 13 is covered with the covering layer 18. As a result, the elevator rope 101 has improved wear resistance and durability.
  • the covering layer 18 is inserted between the first steel strands 13n adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • the elevator is provided with a rope (or chain) for weight compensation as the elevator height increases, but according to the elevator rope 101, weight reduction can be realized by including high-strength synthetic fibers.
  • weight reduction can be realized by including high-strength synthetic fibers.
  • FIG. 5 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 102.
  • the elevator rope 102 is first provided with a cushioning layer made of resin between the steel core 11 and the first fiber layer 12 and between the first fiber layer 12 and the first steel wire layer 13, respectively. It is different from the embodiment of 1. In the following description, the differences will be described, and the description of the same configuration as that of the first embodiment will be omitted.
  • the elevator rope 102 has a first cushioning layer 19a made of resin between the steel core 11 and the first fiber layer 12. As a result, wear of the first fiber layer 12 due to direct contact between the steel core 11 and the first fiber layer 12 can be suppressed. Further, a second cushioning layer 19b made of resin is provided between the first fiber layer 12 and the first steel wire layer 13. As a result, wear of the first fiber layer 12 due to direct contact between the first fiber layer 12 and the first steel wire layer 13 can be suppressed.
  • a resin having wear resistance and low friction resistance for example, polyethylene or polypropylene is used as the material of the first cushioning layer 19a and the second cushioning layer 19b.
  • a buffer layer may be provided only at one of the locations. As a result, the wear of the first fiber layer 12 can be suppressed at the portion provided with the buffer layer. That is, a buffer layer may be provided at least one place between the steel core 11 and the first fiber layer 12 and between the first fiber layer 12 and the first steel wire layer 13.
  • FIG. 6 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 200.
  • the elevator rope 200 differs from that of the first embodiment in that the steel core 21 is composed of a single steel wire.
  • the steel core 11 is composed of a steel strand obtained by twisting a plurality of steel wires. Since it is common to the first embodiment in other points, the description thereof is omitted here.
  • a cushioning layer is provided at least one place between the steel core 21 and the first fiber layer 12 and between the first fiber layer 12 and the first steel wire layer 13. You may be prepared.
  • FIG. 7 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 201.
  • the elevator rope 201 differs from the second embodiment in that it includes a resin coating layer 28 as the outermost layer. That is, in the elevator rope 200 according to the second embodiment, the first steel wire layer 13 is exposed to the outside as the outermost layer of the elevator rope 200. On the other hand, in the elevator rope 201 according to this modification, the outer periphery of the first steel wire layer 13 is covered with the covering layer 28. As a result, the elevator rope 201 has improved wear resistance and durability.
  • the coating layer 28 is inserted between the first steel strands 13n adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • FIG. 8 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 300.
  • the elevator rope 300 has a steel core 31 and a first fiber layer 32 made of high-strength synthetic fibers arranged on the outer periphery of the steel core 31. Further, it has a first steel wire layer 33 formed by winding a plurality of first steel strands 33n around the outer periphery of the first fiber layer 32. Further, it has a second fiber layer 34 made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 33. Further, it has a second steel wire layer 35 formed by winding a plurality of second steel strands 35n around the outer periphery of the second fiber layer 34.
  • the steel core 31 is made of a steel strand obtained by twisting a plurality of steel wires.
  • the steel core 31 is composed of a core wire and six side wires wound around the outer circumference of the core wire. Both the core wire and the lateral line are made of steel wire.
  • the first fiber layer 32 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the steel core 31.
  • the first fiber layer 32 is formed by twisting a plurality of fiber bundles, and each fiber bundle is made of high-strength synthetic fiber.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • PBO polyparaphenylene benzoxazole
  • aramid fiber polyallylate fiber
  • basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the first steel wire layer 33 is formed by winding a plurality of first steel strands 33n obtained by twisting a plurality of steel wires around the outer periphery of the first fiber layer 32.
  • twelve first steel strands 33n are wound around the outer periphery of the first fiber layer 32.
  • Each first steel strand 33n consists of a core wire and six lateral lines wound around the core wire. Both the core wire and the lateral line are made of steel wire.
  • the second fiber layer 34 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 33.
  • the second fiber layer 34 is formed by twisting a plurality of fiber bundles, and each fiber bundle is made of high-strength synthetic fiber.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • PBO polyparaphenylene benzoxazole
  • aramid fiber polyallylate fiber
  • basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the second steel wire layer 35 is formed by winding a plurality of second steel strands 35n, which are obtained by twisting a plurality of steel wires, around the outer periphery of the second fiber layer 34.
  • twelve second steel strands 35n are wound around the outer periphery of the second fiber layer 34.
  • Each second steel strand 35n has a core wire, nine first lateral lines wound around the outer circumference of the core wire, and nine second lateral lines wound around the outer circumference thereof.
  • the core wire, the first lateral line and the second lateral line are all made of steel wire.
  • the second steel wire layer 35 is located on the outermost layer of the elevator rope 300 and is exposed to the outside.
  • a plurality of fiber bundles made of high-strength synthetic fibers are arranged on the outer periphery of a steel core 31 made of a steel strand obtained by twisting a plurality of steel wires.
  • the fiber layer 32 is formed. Specifically, a plurality of fiber bundles are twisted along the outer peripheral surface of the steel core 31 to form the first fiber layer 32.
  • the plurality of fiber bundles are intentionally twisted loosely, but twisted because the steel core 31 is used as the core material.
  • the shape of the first fiber layer 32 is not easily deformed when they are combined, and the formation of the first fiber layer 32 is easy.
  • a plurality of first steel strands 33n obtained by twisting a plurality of steel wires are wound around the outer periphery of the first fiber layer 32 to form the first steel wire layer 33.
  • a plurality of fiber bundles made of high-strength synthetic fibers are arranged on the outer periphery of the first steel wire layer 33 to form the second fiber layer 34. Specifically, a plurality of fiber bundles are twisted along the outer peripheral surface of the first steel wire layer 33 to form the second fiber layer 34. After that, a plurality of second steel strands 35n obtained by twisting a plurality of steel wires are wound around the outer periphery of the second fiber layer 34 to form the second steel wire layer 35.
  • the elevator rope 300 includes a steel core 31, a first fiber layer 32 made of high-strength synthetic fibers arranged on the outer periphery of the steel core 31, and a steel strand as a first fiber layer.
  • a first steel wire layer 33 formed by winding a plurality of wires around the outer periphery of the 32 is provided.
  • the first fiber layer 32 can be easily formed using the steel core 31 as the core material, and an elevator rope containing high-strength synthetic fibers and having a low ellipticity can be easily manufactured.
  • the elevator rope 300 has a second fiber layer 34 made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 33, and a plurality of steel strands on the outer periphery of the second fiber layer 34.
  • a second steel wire layer 35, which is wound, is further provided. That is, two fiber layers are provided. This makes it possible to increase the amount of high-strength synthetic fiber used and reduce the weight.
  • the elevator is provided with a rope (or chain) for weight compensation as the elevator height increases, but according to the elevator rope 300, the plurality of fiber layers contain more high-strength synthetic fibers.
  • the weight can be reduced as compared with the conventional elevator rope, and the number or mass of the weight compensation rope (or chain) can be further reduced or completely removed.
  • the case where the first fiber layer 32 and the second fiber layer 34 are obtained by twisting a plurality of fiber bundles around the outer periphery of the steel core 31 has been described.
  • a plurality of fiber bundles may be knitted together, or a plurality of fiber bundles may be arranged and bundled substantially in parallel.
  • the structure of the constituent strands constituting the steel core 31 may be appropriately changed.
  • the number of the first steel strands 33n constituting the first steel wire layer 33 and the structure of each first steel strand 33n may be appropriately changed.
  • the number of the second steel strands 35n constituting the second steel wire layer 35 and the structure of each second steel strand 35n may be appropriately changed.
  • a cushioning layer made of resin may be provided at least one place between the second fiber layer 34 and between the second fiber layer 34 and the second steel wire layer 35. Thereby, the wear of the first fiber layer 32 or the second fiber layer 34 can be suppressed at the portion provided with the buffer layer.
  • a resin having wear resistance and low friction resistance for example, polyethylene or polypropylene can be used.
  • FIG. 9 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 301.
  • the elevator rope 301 differs from the third embodiment in that it includes a resin coating layer 38 as the outermost layer. That is, in the elevator rope 300 according to the third embodiment, the second steel wire layer 35 is exposed to the outside as the outermost layer of the elevator rope 300. On the other hand, in the elevator rope 301 according to this modification, the outer periphery of the second steel wire layer 35 is covered with the covering layer 38. As a result, the elevator rope 301 has improved wear resistance and durability.
  • the coating layer 38 is inserted between the second steel strands 35n adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • the elevator is provided with a rope (or chain) for weight compensation as the elevator height increases, but according to the elevator rope 301, the plurality of fiber layers contain more high-strength synthetic fibers.
  • the plurality of fiber layers contain more high-strength synthetic fibers.
  • FIG. 10 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 302.
  • the third embodiment is that the elevator rope 302 has a resin covering body 39 that covers each of the first steel strands 33n of the first steel wire layer 33.
  • the material of the covering body 49 a resin having wear resistance and low friction resistance, for example, polyethylene, polypropylene, or the like is used.
  • FIG. 11 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 400.
  • the elevator rope 400 differs from that of the third embodiment in that the steel core 41 is composed of a single steel wire.
  • the steel core 31 is made of a steel strand obtained by twisting a plurality of steel wires. Since it is common to the third embodiment in other points, the description thereof is omitted here.
  • FIG. 12 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 401.
  • the elevator rope 401 differs from the fourth embodiment in that it includes a resin coating layer 48 as the outermost layer. That is, in the elevator rope 400 according to the fourth embodiment, the second steel wire layer 35 is exposed to the outside as the outermost layer of the elevator rope 400. On the other hand, in the elevator rope 401 according to this modification, the outer periphery of the second steel wire layer 35 is covered with the covering layer 48. As a result, the elevator rope 401 has improved wear resistance and durability.
  • the coating layer 48 is inserted between the second steel strands 35n adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • FIG. 13 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 500.
  • the elevator rope 500 is provided on the outer periphery of the steel core 51, the first fiber layer 52 made of high-strength synthetic fibers arranged on the outer periphery of the steel core 51, and the first fiber layer 52. It has a first steel wire layer 53 formed by winding a plurality of first steel strands 53n. Further, a second fiber layer 54 made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 53 and a plurality of second steel strands 55n are wound around the outer periphery of the second fiber layer 54. It has a second steel wire layer 55.
  • the steel core 51 is made of a steel strand obtained by twisting a plurality of steel wires.
  • the steel core 51 includes a core wire and six side wires wound around the outer circumference of the core wire. Both the core wire and the lateral line are made of steel wire.
  • the first fiber layer 52 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the steel core 51.
  • the first fiber layer 52 is formed by twisting a plurality of fiber bundles, and each fiber bundle is made of high-strength synthetic fiber.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • PBO polyparaphenylene benzoxazole
  • aramid fiber polyallylate fiber
  • basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the first steel wire layer 53 is formed by winding a plurality of first steel strands 53n obtained by twisting a plurality of steel wires around the outer periphery of the first fiber layer 52.
  • twelve first steel strands 53n are wound around the outer periphery of the first fiber layer 52.
  • Each first steel strand 53n consists of a core wire and six lateral lines wound around the core wire. Both the core wire and the lateral line are made of steel wire.
  • the second fiber layer 54 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 53.
  • the second fiber layer 54 is formed by twisting a plurality of fiber bundles, and each fiber bundle is made of high-strength synthetic fiber.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • PBO polyparaphenylene benzoxazole
  • aramid fiber polyallylate fiber
  • basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the second steel wire layer 55 is formed by winding a plurality of second steel strands 55n obtained by twisting a plurality of steel wires around the outer periphery of the second fiber layer 54.
  • 20 second steel strands 55n are wound around the outer periphery of the second fiber layer 54.
  • Each second steel strand 55n has a core wire, nine first lateral lines wound around the outer circumference of the core wire, and nine second lateral lines wound around the outer circumference thereof.
  • the core wire, the first lateral line and the second lateral line are all made of steel wire.
  • the third fiber layer 56 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the second steel wire layer 55.
  • the third fiber layer 56 is formed by twisting a plurality of fiber bundles, and each fiber bundle is made of high-strength synthetic fiber.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • PBO polyparaphenylene benzoxazole
  • aramid fiber polyallylate fiber
  • basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the third steel wire layer 57 is formed by winding a plurality of third steel strands 57n, which are obtained by twisting a plurality of steel wires, around the outer periphery of the third fiber layer 56.
  • 15 third steel strands 57n are wound around the outer circumference of the third fiber layer 56.
  • Each third steel strand 57n has a core wire, nine first lateral lines wound around the outer circumference of the core wire, and nine second lateral lines wound around the outer circumference thereof.
  • the core wire, the first lateral line and the second lateral line are all made of steel wire.
  • the third steel wire layer 57 is located on the outermost layer of the elevator rope 500 and is exposed to the outside.
  • a plurality of fiber bundles made of high-strength synthetic fibers are arranged on the outer periphery of a steel core 51 made of a steel strand obtained by twisting a plurality of steel wires.
  • the fiber layer 52 is formed. Specifically, a plurality of fiber bundles are twisted along the outer peripheral surface of the steel core 51 to form the first fiber layer 52.
  • the plurality of fiber bundles are intentionally twisted loosely, but twisted because the steel core 51 is used as the core material.
  • the shape of the first fiber layer 52 is not easily deformed when they are combined, and the formation of the first fiber layer 52 is easy.
  • a plurality of first steel strands 53n obtained by twisting a plurality of steel wires are wound around the outer periphery of the first fiber layer 52 to form the first steel wire layer 53.
  • a plurality of fiber bundles made of high-strength synthetic fibers are arranged on the outer periphery of the first steel wire layer 53 to form the second fiber layer 54.
  • a plurality of fiber bundles are twisted along the outer peripheral surface of the first steel wire layer 53 to form the second fiber layer 54.
  • a plurality of second steel strands 55n obtained by twisting a plurality of steel wires are wound around the outer periphery of the second fiber layer 54 to form the second steel wire layer 55.
  • a plurality of fiber bundles made of high-strength synthetic fibers are arranged on the outer periphery of the second steel wire layer 55 to form the third fiber layer 56.
  • a plurality of fiber bundles are twisted along the outer peripheral surface of the second steel wire layer 55 to form the third fiber layer 56.
  • a plurality of third steel strands 57n obtained by twisting a plurality of steel wires are wound around the outer periphery of the third fiber layer 56 to form the third steel wire layer 57.
  • the elevator rope 500 includes a steel core 51, a first fiber layer 52 made of high-strength synthetic fibers arranged on the outer periphery of the steel core 51, and a steel strand as a first fiber layer.
  • a first steel wire layer 53 formed by winding a plurality of wires around the outer periphery of the 52 is provided.
  • the first fiber layer 52 can be easily formed using the steel core 51 as the core material, and an elevator rope containing high-strength synthetic fibers can be easily manufactured.
  • the elevator rope 500 includes a second fiber layer 54 made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 53, and a plurality of steel strands on the outer periphery of the second fiber layer 54. It is further provided with a second steel wire layer 55 that is wound. Further, a third fiber layer 56 made of high-strength synthetic fibers arranged on the outer periphery of the second steel wire layer 55 and a third steel strand wound around the outer periphery of the third fiber layer 56. It further includes a steel wire layer 57. That is, three fiber layers are provided. This makes it possible to increase the amount of high-strength synthetic fiber used and reduce the weight.
  • the elevator is provided with a rope (or chain) for weight compensation as the elevator height increases, but according to the elevator rope 500, the plurality of fiber layers contain more high-strength synthetic fibers.
  • the weight can be reduced as compared with the conventional elevator rope, and the number or mass of the weight compensation rope (or chain) can be further reduced or completely removed.
  • the case where the first fiber layer 52 and the second fiber layer 54 are obtained by twisting a plurality of fiber bundles around the outer periphery of the steel core 51 has been described.
  • a plurality of fiber bundles may be knitted together, or a plurality of fiber bundles may be arranged and bundled substantially in parallel.
  • the structure of the constituent strands constituting the steel core 51 may be appropriately changed.
  • the number of the first steel strands 53n constituting the first steel wire layer 53 and the structure of each first steel strand 53n may be appropriately changed.
  • the number of the second steel strands 55n constituting the second steel wire layer 55 and the structure of each second steel strand 55n may be appropriately changed.
  • the number of the third steel strands 57n constituting the third steel wire layer 57 and the structure of each third steel strand 57n may be appropriately changed.
  • a cushioning layer made of resin may be provided between the first fiber layer 52 and the first steel wire layer 53.
  • a cushioning layer made of resin should be provided between the first steel wire layer 53 and the second fiber layer 54, and between the second fiber layer 54 and the second steel wire layer 55. You may do it.
  • a cushioning layer made of resin may be provided between the second steel wire layer 55 and the third fiber layer 56, and also between the third fiber layer 56 and the third steel wire layer 57. good.
  • a resin having wear resistance and low friction resistance for example, polyethylene or polypropylene can be used.
  • the fifth embodiment between the steel core 51 and the first fiber layer 52, between the first fiber layer 52 and the first steel wire layer 53, and the first steel wire layer 53.
  • a cushioning layer made of resin may be provided at least at one position between the fiber layer 56 and the third steel wire layer 57.
  • the wear of the first fiber layer 52, the second fiber layer 54, or the third fiber layer 56 can be suppressed at the portion provided with the buffer layer.
  • a resin having wear resistance and low friction resistance for example, polyethylene or polypropylene can be used as the material of the cushioning layer.
  • FIG. 14 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 501.
  • the elevator rope 501 differs from the fifth embodiment in that it includes a resin coating layer 58 as the outermost layer. That is, in the elevator rope 500 according to the fifth embodiment, the third steel wire layer 57 is exposed to the outside as the outermost layer of the elevator rope 500. On the other hand, in the elevator rope 501 according to this modification, the outer periphery of the third steel wire layer 57 is covered with the covering layer 58. As a result, the elevator rope 501 has improved wear resistance and durability.
  • the coating layer 58 is inserted between the third steel strands 57n adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • FIG. 15 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 600.
  • the elevator rope 600 differs from that of the fifth embodiment in that the steel core 61 is made of a single steel wire.
  • the steel core 51 is made of a steel strand obtained by twisting a plurality of steel wires. Since it is common to the fifth embodiment in other points, the description thereof is omitted here.
  • FIG. 16 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 601.
  • the elevator rope 601 differs from the sixth embodiment in that it includes a resin coating layer 68 as the outermost layer. That is, in the elevator rope 600 according to the sixth embodiment, the third steel wire layer 57 is exposed to the outside as the outermost layer of the elevator rope 600. On the other hand, in the elevator rope 601 according to this modification, the outer periphery of the third steel wire layer 57 is covered with the coating layer 68. As a result, the elevator rope 601 has improved wear resistance and durability.
  • the coating layer 68 is inserted between the third steel strands 57n adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer-based resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • the fiber layer is one layer, two layers or three layers has been described, but the number of fiber layers can be appropriately increased according to the degree of increasing the diameter of the elevator rope. At that time, it is preferable to provide a steel wire layer on the outer periphery of each fiber layer.

Landscapes

  • Ropes Or Cables (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

エレベータにおいてかごを吊り下げるエレベータ用ロープであって、複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線からなる鋼芯と、鋼芯の外周に配置された高強度合成繊維からなる第1の繊維層と、複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、第1の繊維層の外周に複数本巻き付けてなる第1の鋼線層とを備えたエレベータ用ロープを提供する。このエレベータ用ロープによれば、高強度合成繊維を含む楕円度の低いエレベータ用ロープを容易に製造することができる。

Description

エレベータ用ロープ及びその製造方法
 本開示は、エレベータにおいてかごを吊り下げるエレベータ用ロープ及びその製造方法に関する。
 建造物の高層化に伴い、エレベータの高揚程化が進んでいる。高揚程のエレベータでは、使用されるエレベータ用ロープの直径及び長さが大きくなることから、軽量で高強度なロープが必要となる。そこで、エレベータ用ロープの芯に軽くて強い高強度合成繊維を使用する方法が知られている。
 特許文献1には、中心に高強度合成繊維からなる繊維芯を配置し、その外周に鋼製ストランドを巻き付けてエレベータ用ロープを製造する方法が開示されている。
国際公開第2017/064808号
 ところで、高強度合成繊維からなる繊維芯の製造においては、たとえば径が数~数十μmである高強度合成繊維を複数束ねてなる高強度繊維ヤーンを多数並べて束ねたり撚り合わせたりして繊維芯を形成しつつ、その全体の断面形状が円形になるようにする。このとき、エレベータ運行時にエレベータ用ロープにかかる引張荷重を繊維芯が充分に負担できるようにするため、高強度繊維ヤーンはあえて少し緩めに撚り合わせる。しかしながら、高強度繊維ヤーンは細くて柔らかいため緩く撚り合わせるときに形が崩れやすく、円形の芯材を作るのが容易ではなく、楕円化してしまう場合がある。芯材の楕円度が高いと、その外周に鋼製ストランドを巻いたロープの楕円度も高くなり、楕円度が高いとロープの寿命の低下を招くおそれがある。
 そこで、本開示の目的は、高強度合成繊維を含む、楕円度の低いエレベータ用ロープを容易に製造することができる構造のエレベータ用ロープ及びその製造方法を提供することである。
 本開示に係るエレベータ用ロープは、複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線からなる鋼芯と、鋼芯の外周に配置された高強度合成繊維からなる第1の繊維層と、複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、第1の繊維層の外周に複数本巻き付けてなる第1の鋼線層とを備えたものである。
 本開示に係るエレベータ用ロープの製造方法は、複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線からなる鋼芯の外周に、高強度合成繊維からなる複数本の繊維束を配置して第1の繊維層を形成する工程と、複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、前記第1の繊維層の外周に複数本巻き付けて第1の鋼線層を形成する工程とを含むものである。
 本開示に係るエレベータ用ロープ及びその製造方法によれば、高強度合成繊維を含む楕円度の低いエレベータ用ロープを容易に製造することができる。
第1の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第1の実施の形態に係るエレベータ用ロープの各層を順番に切り開いた状態を示す側面図である。 第1の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第1の実施の形態の第1の変形例に係るエレベータ用ロープの各層を順番に切り開いた状態を示す側面図である。 第1の実施の形態の第2の変形例に係るエレベータ用ロープの各層を順番に切り開いた状態を示す側面図である。 第2の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第2の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第3の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第3の実施の形態の第1の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第3の実施の形態の第2の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第4の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第4の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第5の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第5の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第6の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第6の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。
 [第1の実施の形態]
 以下、第1の実施の形態に係るエレベータ用ロープ100について説明する。図1はエレベータ用ロープ100の長手方向に垂直な断面を示す断面図である。図2はエレベータ用ロープ100の各層を順番に切り開いた状態を示す側面図である。
 図1及び図2に示すように、エレベータ用ロープ100は、鋼芯11と、鋼芯11の外周に配置された高強度合成繊維からなる第1の繊維層12を有している。また、第1の繊維層12の外周に複数本の第1の鋼製ストランド13nを巻き付けてなる第1の鋼線層13を有している。
 鋼芯11は、複数の鋼線を撚り合わせた鋼製ストランドからなる。鋼芯11は、心線11aと、この心線11aの外周に巻き付けられた6本の側線11bからなる。この心線11aと側線11bはいずれも鋼線からなる。
 第1の繊維層12は、鋼芯11の外周に配置された高強度合成繊維からなる層である。第1の繊維層12は、複数本の繊維束を撚り合わせて形成され、各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第1の鋼線層13は、複数の鋼線を撚り合わせた第1の鋼製ストランド13nを第1の繊維層12の外周に複数本巻き付けてなる。図1に示す例においては、第1の繊維層12の外周に、8本の第1の鋼製ストランド13nが巻き付けられている。各第1の鋼製ストランド13nは、心線13aと、この心線13aの外周に巻き付けられた9本の第1の側線13bと、さらにその外周に巻き付けられた9本の第2の側線13cを有する。この心線13a、第1の側線13b及び第2の側線13cはいずれも鋼線からなる。第1の実施の形態においては、この第1の鋼線層13が、エレベータ用ロープ100の最外層に位置し、外部に露出している。
 エレベータ用ロープ100を製造する際には、まず複数の鋼線を撚り合わせた鋼製ストランドからなる鋼芯11の外周に、高強度合成繊維からなる複数本の繊維束を配置して第1の繊維層12を形成する。具体的には、複数本の繊維束を鋼芯11の外周面に沿うように撚り合わせて第1の繊維層12を形成する。このとき、第1の繊維層12によりエレベータ用ロープにかかる引張荷重を充分に負担できるようにするため、複数本の繊維束はあえて少し緩く撚り合わせるが、鋼芯11を芯材としているため撚り合わせるときの形が崩れにくく、第1の繊維層12の形成が容易である。その後、複数の鋼線を撚り合わせた第1の鋼製ストランド13nを第1の繊維層12の外周に複数本巻き付けて第1の鋼線層13を形成する。
 以上説明したように、エレベータ用ロープ100は、鋼芯11と、その鋼芯11の外周に配置された高強度合成繊維からなる第1の繊維層12と、鋼製ストランドを第1の繊維層12の外周に複数本巻き付けてなる第1の鋼線層13とを備えている。これにより、鋼芯11を芯材として第1の繊維層12を容易に形成することができ、高強度合成繊維を含む楕円度の低いエレベータ用ロープを容易に製造することができる。
 また、エレベータは、昇降高が高くなるほど、エレベータに重量補償用のロープ(又は鎖)を設けることが好ましいが、エレベータ用ロープ100によれば、高強度合成繊維を含むことにより軽量化を実現できることから、重量補償用のロープ(又は鎖)の本数又は質量をさらに減らしたり、または完全に除去したりすることができる。
 なお、上記第1の実施の形態では、第1の繊維層12が、鋼芯11の外周に複数本の繊維束を撚り合わせたものである場合について説明したが、これに代えて、複数本の繊維束を編み合わせたものであってもよいし、複数本の繊維束をおおよそ平行に並べて束ねたものであってもよい。
 また、上記第1の実施の形態において、鋼芯11を構成する構成ストランドの構造(鋼線の数や配置など)は適宜変更してもよい。また、第1の鋼線層13を構成する第1の鋼製ストランド13nの本数や、各第1の鋼製ストランド13nの構造(鋼線の数や配置など)も適宜変更してもよい。
 [第1の実施の形態の第1の変形例]
 以下、第1の実施の形態の第1の変形例であるエレベータ用ロープ101について説明する。図3はエレベータ用ロープ101の長手方向に垂直な断面を示す断面図である。図4はエレベータ用ロープ101の各層を順番に切り開いた状態を示す側面図である。
 図3及び図4に示すように、エレベータ用ロープ101は、最外層として樹脂製の被覆層18を備えている点において第1の実施の形態と相違する。すなわち、第1の実施の形態に係るエレベータ用ロープ100においては、第1の鋼線層13がエレベータ用ロープ100の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ101においては、第1の鋼線層13の外周が被覆層18により被覆されている。これにより、エレベータ用ロープ101は耐摩耗性が向上し、耐久性が向上する。被覆層18は、互いに隣接する第1の鋼製ストランド13nの間に入り込んでいる。被覆層18の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 また、エレベータは、昇降高が高くなるほど、エレベータに重量補償用のロープ(又は鎖)を設けることが好ましいが、エレベータ用ロープ101によれば、高強度合成繊維を含むことにより軽量化を実現できるとともに、綱車との間の摩擦係数の向上によって綱車との間の滑りを抑制し、安定した動力伝達が行えるようにすることができる。その結果、重量補償用のロープ(又は鎖)の本数又は質量をさらに減らしたり、または完全に除去したりすることができる。
 [第1の実施の形態の第2の変形例]
 以下、第1の実施の形態の第2の変形例であるエレベータ用ロープ102について説明する。図5はエレベータ用ロープ102の長手方向に垂直な断面を示す断面図である。エレベータ用ロープ102は、鋼芯11と第1の繊維層12の間、及び第1の繊維層12と第1の鋼線層13の間にそれぞれ樹脂からなる緩衝層を備えている点において第1の実施の形態と相違する。以下の説明ではその相違点について説明し、第1の実施の形態と同様の構成については説明を省略する。
 図5に示すように、エレベータ用ロープ102は、鋼芯11と第1の繊維層12の間に樹脂からなる第1の緩衝層19aを有している。これにより、鋼芯11と第1の繊維層12が直接接触することによる第1の繊維層12の摩耗を抑制できる。また、第1の繊維層12と第1の鋼線層13の間に樹脂からなる第2の緩衝層19bを有している。これにより、第1の繊維層12と第1の鋼線層13が直接接触することによる第1の繊維層12の摩耗を抑制できる。第1の緩衝層19a、及び第2の緩衝層19bの材料としては、耐摩耗性と低摩擦性を有する樹脂、例えばポリエチレン,ポリプロピレンなどを用いる。
 なお、上記第1の実施の形態の第2の変形例では、鋼芯11と第1の繊維層12の間、第1の繊維層12と第1の鋼線層13の間の両方にそれぞれ樹脂からなる緩衝層を備えている場合について説明している。しかし、これに代えて、そのいずれか1箇所にのみ緩衝層を備えるようにしてもよい。これにより、その緩衝層を備える箇所において第1の繊維層12の摩耗を抑制できる。すなわち、鋼芯11と第1の繊維層12の間、及び第1の繊維層12と第1の鋼線層13の間の少なくとも1箇所に緩衝層を備えるようにすればよい。
 [第2の実施の形態]
 以下、第2の実施の形態に係るエレベータ用ロープ200について説明する。図6はエレベータ用ロープ200の長手方向に垂直な断面を示す断面図である。エレベータ用ロープ200は、鋼芯21が単一の鋼線からなる点で第1の実施の形態のものと相違する。これに対し、第1の実施の形態では、鋼芯11は、複数の鋼線を撚り合わせた鋼製ストランドからなる。その他の点においては第1の実施の形態と共通するため、ここでは説明を省略する。
 なお、この第2の実施の形態においては、鋼芯21と第1の繊維層12の間、及び第1の繊維層12と第1の鋼線層13の間の少なくとも1箇所に緩衝層を備えるようにしてもよい。
 [第2の実施の形態の変形例]
 以下、第2の実施の形態の変形例であるエレベータ用ロープ201について説明する。図7はエレベータ用ロープ201の長手方向に垂直な断面を示す断面図である。図7に示すように、エレベータ用ロープ201は、最外層として樹脂製の被覆層28を備えている点において第2の実施の形態と相違する。すなわち、第2の実施の形態に係るエレベータ用ロープ200においては、第1の鋼線層13がエレベータ用ロープ200の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ201においては、第1の鋼線層13の外周が被覆層28により被覆されている。これにより、エレベータ用ロープ201は耐摩耗性が向上し、耐久性が向上する。
 被覆層28は、互いに隣接する第1の鋼製ストランド13nの間に入り込んでいる。被覆層28の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 [第3の実施の形態]
 以下、第3の実施の形態に係るエレベータ用ロープ300について説明する。図8はエレベータ用ロープ300の長手方向に垂直な断面を示す断面図である。
 図8に示すように、エレベータ用ロープ300は、鋼芯31と、鋼芯31の外周に配置された高強度合成繊維からなる第1の繊維層32を有している。また、第1の繊維層32の外周に複数本の第1の鋼製ストランド33nを巻き付けてなる第1の鋼線層33を有している。また、第1の鋼線層33の外周に配置された高強度合成繊維からなる第2の繊維層34を有している。また、第2の繊維層34の外周に複数本の第2の鋼製ストランド35nを巻き付けてなる第2の鋼線層35を有している。
 鋼芯31は、複数の鋼線を撚り合わせた鋼製ストランドからなる。鋼芯31は、心線と、この心線の外周に巻き付けられた6本の側線からなる。この心線と側線はいずれも鋼線からなる。
 第1の繊維層32は、鋼芯31の外周に配置された高強度合成繊維からなる層である。第1の繊維層32は、複数本の繊維束を撚り合わせて形成され、各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第1の鋼線層33は、複数の鋼線を撚り合わせた第1の鋼製ストランド33nを第1の繊維層32の外周に複数本巻き付けてなる。図8に示す例においては、第1の繊維層32の外周に、12本の第1の鋼製ストランド33nが巻き付けられている。各第1の鋼製ストランド33nは、心線と、この心線の外周に巻き付けられた6本の側線からなる。この心線と側線はいずれも鋼線からなる。
 第2の繊維層34は、第1の鋼線層33の外周に配置された高強度合成繊維からなる層である。第2の繊維層34は、複数本の繊維束を撚り合わせて形成され、各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第2の鋼線層35は、複数の鋼線を撚り合わせた第2の鋼製ストランド35nを第2の繊維層34の外周に複数本巻き付けてなる。図8に示す例においては、第2の繊維層34の外周に、12本の第2の鋼製ストランド35nが巻き付けられている。各第2の鋼製ストランド35nは、心線と、この心線の外周に巻き付けられた9本の第1の側線と、さらにその外周に巻き付けられた9本の第2の側線を有する。この心線、第1の側線及び第2の側線はいずれも鋼線からなる。第3の実施の形態においては、この第2の鋼線層35が、エレベータ用ロープ300の最外層に位置し、外部に露出している。
 エレベータ用ロープ300を製造する際には、まず複数の鋼線を撚り合わせた鋼製ストランドからなる鋼芯31の外周に、高強度合成繊維からなる複数本の繊維束を配置して第1の繊維層32を形成する。具体的には、複数本の繊維束を鋼芯31の外周面に沿うように撚り合わせて第1の繊維層32を形成する。このとき、第1の繊維層32によりエレベータ用ロープにかかる引張荷重を充分に負担できるようにするため、複数本の繊維束はあえて少し緩く撚り合わせるが、鋼芯31を芯材としているため撚り合わせるときの形が崩れにくく、第1の繊維層32の形成が容易である。その後、複数の鋼線を撚り合わせた第1の鋼製ストランド33nを第1の繊維層32の外周に複数本巻き付けて第1の鋼線層33を形成する。
 その後、第1の鋼線層33の外周に、高強度合成繊維からなる複数本の繊維束を配置し
て第2の繊維層34を形成する。具体的には、複数本の繊維束を第1の鋼線層33の外周面に沿うように撚り合わせて第2の繊維層34を形成する。その後、複数の鋼線を撚り合わせた第2の鋼製ストランド35nを第2の繊維層34の外周に複数本巻き付けて第2の鋼線層35を形成する。
 以上説明したように、エレベータ用ロープ300は、鋼芯31と、その鋼芯31の外周に配置された高強度合成繊維からなる第1の繊維層32と、鋼製ストランドを第1の繊維層32の外周に複数本巻き付けてなる第1の鋼線層33とを備えている。これにより、鋼芯31を芯材として第1の繊維層32を容易に形成することができ、高強度合成繊維を含む楕円度の低いエレベータ用ロープを容易に製造することができる。また、エレベータ用ロープ300は、第1の鋼線層33の外周に配置された高強度合成繊維からなる第2の繊維層34と、鋼製ストランドを第2の繊維層34の外周に複数本巻き付けてなる第2の鋼線層35とをさらに備えている。すなわち、繊維層を2層設けている。これにより、高強度合成繊維の使用量を増やして軽量化を実現できる。
 また、エレベータは、昇降高が高くなるほど、エレベータに重量補償用のロープ(又は鎖)を設けることが好ましいが、エレベータ用ロープ300によれば、複数の繊維層により高強度合成繊維をより多く含むことによって従来のエレベータ用ロープより軽量化を実現でき、重量補償用のロープ(又は鎖)の本数又は質量をさらに減らしたり、または完全に除去したりすることができる。
 なお、上記第3の実施の形態では、第1の繊維層32と第2の繊維層34が、鋼芯31の外周に複数本の繊維束を撚り合わせたものである場合について説明したが、これに代えて、複数本の繊維束を編み合わせたものであってもよいし、複数本の繊維束をおおよそ平行に並べて束ねたものであってもよい。
 また、上記第3の実施の形態において、鋼芯31を構成する構成ストランドの構造(鋼線の数や配置など)は適宜変更してもよい。また、第1の鋼線層33を構成する第1の鋼製ストランド33nの本数や、各第1の鋼製ストランド33nの構造(鋼線の数や配置など)も適宜変更してもよい。また、第2の鋼線層35を構成する第2の鋼製ストランド35nの本数や、各第2の鋼製ストランド35nの構造(鋼線の数や配置など)も適宜変更してもよい。
 また、上記第3の実施の形態においては、鋼芯31と第1の繊維層32の間、第1の繊維層32と第1の鋼線層33の間、第1の鋼線層33と第2の繊維層34との間、及び第2の繊維層34と第2の鋼線層35との間の少なくとも1箇所に樹脂からなる緩衝層を設けるようにしてもよい。これにより、その緩衝層を備える箇所において第1の繊維層32又は第2の繊維層34の摩耗を抑制できる。このとき、緩衝層の材料としては、耐摩耗性と低摩擦性を有する樹脂、例えばポリエチレン,ポリプロピレンなどを用いることができる。
 [第3の実施の形態の第1の変形例]
 以下、第3の実施の形態の変形例であるエレベータ用ロープ301について説明する。図9はエレベータ用ロープ301の長手方向に垂直な断面を示す断面図である。図9に示すように、エレベータ用ロープ301は、最外層として樹脂製の被覆層38を備えている点において第3の実施の形態と相違する。すなわち、第3の実施の形態に係るエレベータ用ロープ300においては、第2の鋼線層35がエレベータ用ロープ300の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ301においては、第2の鋼線層35の外周が被覆層38により被覆されている。これにより、エレベータ用ロープ301は耐摩耗性が向上し、耐久性が向上する。
 被覆層38は、互いに隣接する第2の鋼製ストランド35nの間に入り込んでいる。被覆層38の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 また、エレベータは、昇降高が高くなるほど、エレベータに重量補償用のロープ(又は鎖)を設けることが好ましいが、エレベータ用ロープ301によれば、複数の繊維層により高強度合成繊維をより多く含むことによって従来のエレベータ用ロープより軽量化を実現できるとともに、綱車との間の摩擦係数の向上によって綱車との間の滑りを抑制し、安定した動力伝達が行えるようにすることができる。その結果、重量補償用のロープ(又は鎖)の本数又は質量をさらに減らしたり、または完全に除去したりすることができる。
 [第3の実施の形態の第2の変形例]
 以下、第3の実施の形態の変形例であるエレベータ用ロープ302について説明する。図10はエレベータ用ロープ302の長手方向に垂直な断面を示す断面図である。図10に示すように、エレベータ用ロープ302は、第1の鋼線層33の各第1の鋼製ストランド33nをそれぞれ被覆する樹脂製の被覆体39を有している点において第3の実施の形態と相違し、その他の点に実質的な差異はない。これにより、第1の繊維層32と第1の鋼線層33が直接接触することによる第1の繊維層32の摩耗を抑制できる。また、第1の鋼線層33と第2の繊維層34が直接接触することによる第2の繊維層34の摩耗を抑制できる。被覆体49の材料としては、耐摩耗性と低摩擦性を有する樹脂、例えばポリエチレン,ポリプロピレンなどを用いる。
 [第4の実施の形態]
 以下、第4の実施の形態に係るエレベータ用ロープ400について説明する。図11はエレベータ用ロープ400の長手方向に垂直な断面を示す断面図である。エレベータ用ロープ400は、鋼芯41が単一の鋼線からなる点で第3の実施の形態のものと相違する。これに対し、第3の実施の形態では、鋼芯31は、複数の鋼線を撚り合わせた鋼製ストランドからなる。その他の点においては第3の実施の形態と共通するため、ここでは説明を省略する。
 [第4の実施の形態の変形例]
 以下、第4の実施の形態の変形例であるエレベータ用ロープ401について説明する。図12はエレベータ用ロープ401の長手方向に垂直な断面を示す断面図である。図12に示すように、エレベータ用ロープ401は、最外層として樹脂製の被覆層48を備えている点において第4の実施の形態と相違する。すなわち、第4の実施の形態に係るエレベータ用ロープ400においては、第2の鋼線層35がエレベータ用ロープ400の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ401においては、第2の鋼線層35の外周が被覆層48により被覆されている。これにより、エレベータ用ロープ401は耐摩耗性が向上し、耐久性が向上する。
 被覆層48は、互いに隣接する第2の鋼製ストランド35nの間に入り込んでいる。被覆層48の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 [第5の実施の形態]
 以下、第5の実施の形態に係るエレベータ用ロープ500について説明する。図13はエレベータ用ロープ500の長手方向に垂直な断面を示す断面図である。
 図13に示すように、エレベータ用ロープ500は、鋼芯51と、鋼芯51の外周に配置された高強度合成繊維からなる第1の繊維層52と、第1の繊維層52の外周に複数本の第1の鋼製ストランド53nを巻き付けてなる第1の鋼線層53を有している。また、第1の鋼線層53の外周に配置された高強度合成繊維からなる第2の繊維層54と、第2の繊維層54の外周に複数本の第2の鋼製ストランド55nを巻き付けてなる第2の鋼線層55を有している。さらに、第2の鋼線層55の外周に配置された高強度合成繊維からなる第3の繊維層56と、第3の繊維層56の外周に複数本の第3の鋼製ストランド57nを巻き付けてなる第3の鋼線層57を有している。
 鋼芯51は、複数の鋼線を撚り合わせた鋼製ストランドからなる。鋼芯51は、心線と、この心線の外周に巻き付けられた6本の側線からなる。この心線と側線はいずれも鋼線からなる。
 第1の繊維層52は、鋼芯51の外周に配置された高強度合成繊維からなる層である。第1の繊維層52は、複数本の繊維束を撚り合わせて形成され、各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第1の鋼線層53は、複数の鋼線を撚り合わせた第1の鋼製ストランド53nを第1の繊維層52の外周に複数本巻き付けてなる。図13に示す例においては、第1の繊維層52の外周に、12本の第1の鋼製ストランド53nが巻き付けられている。各第1の鋼製ストランド53nは、心線と、この心線の外周に巻き付けられた6本の側線からなる。この心線と側線はいずれも鋼線からなる。
 第2の繊維層54は、第1の鋼線層53の外周に配置された高強度合成繊維からなる層である。第2の繊維層54は、複数本の繊維束を撚り合わせて形成され、各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第2の鋼線層55は、複数の鋼線を撚り合わせた第2の鋼製ストランド55nを第2の繊維層54の外周に複数本巻き付けてなる。図13に示す例においては、第2の繊維層54の外周に、20本の第2の鋼製ストランド55nが巻き付けられている。各第2の鋼製ストランド55nは、心線と、この心線の外周に巻き付けられた9本の第1の側線と、さらにその外周に巻き付けられた9本の第2の側線を有する。この心線、第1の側線及び第2の側線はいずれも鋼線からなる。
 第3の繊維層56は、第2の鋼線層55の外周に配置された高強度合成繊維からなる層である。第3の繊維層56は、複数本の繊維束を撚り合わせて形成され、各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第3の鋼線層57は、複数の鋼線を撚り合わせた第3の鋼製ストランド57nを第3の繊維層56の外周に複数本巻き付けてなる。図13に示す例においては、第3の繊維層56の外周に、15本の第3の鋼製ストランド57nが巻き付けられている。各第3の鋼製ストランド57nは、心線と、この心線の外周に巻き付けられた9本の第1の側線と、さらにその外周に巻き付けられた9本の第2の側線を有する。この心線、第1の側線及び第2の側線はいずれも鋼線からなる。第5の実施の形態においては、この第3の鋼線層57が、エレベータ用ロープ500の最外層に位置し、外部に露出している。
 エレベータ用ロープ500を製造する際には、まず複数の鋼線を撚り合わせた鋼製ストランドからなる鋼芯51の外周に、高強度合成繊維からなる複数本の繊維束を配置し
て第1の繊維層52を形成する。具体的には、複数本の繊維束を鋼芯51の外周面に沿うように撚り合わせて第1の繊維層52を形成する。このとき、第1の繊維層52によりエレベータ用ロープにかかる引張荷重を充分に負担できるようにするため、複数本の繊維束はあえて少し緩く撚り合わせるが、鋼芯51を芯材としているため撚り合わせるときの形が崩れにくく、第1の繊維層52の形成が容易である。その後、複数の鋼線を撚り合わせた第1の鋼製ストランド53nを第1の繊維層52の外周に複数本巻き付けて第1の鋼線層53を形成する。
 その後、第1の鋼線層53の外周に、高強度合成繊維からなる複数本の繊維束を配置して第2の繊維層54を形成する。具体的には、複数本の繊維束を第1の鋼線層53の外周面に沿うように撚り合わせて第2の繊維層54を形成する。また、複数の鋼線を撚り合わせた第2の鋼製ストランド55nを、第2の繊維層54の外周に複数本巻き付けて第2の鋼線層55を形成する。
 その後、第2の鋼線層55の外周に、高強度合成繊維からなる複数本の繊維束を配置して第3の繊維層56を形成する。具体的には、複数本の繊維束を第2の鋼線層55の外周面に沿うように撚り合わせて第3の繊維層56を形成する。また、複数の鋼線を撚り合わせた第3の鋼製ストランド57nを、第3の繊維層56の外周に複数本巻き付けて第3の鋼線層57を形成する。
 以上説明したように、エレベータ用ロープ500は、鋼芯51と、その鋼芯51の外周に配置された高強度合成繊維からなる第1の繊維層52と、鋼製ストランドを第1の繊維層52の外周に複数本巻き付けてなる第1の鋼線層53とを備えている。これにより、鋼芯51を芯材として第1の繊維層52を容易に形成することができ、高強度合成繊維を含むエレベータ用ロープを容易に製造することができる。また、エレベータ用ロープ500は、第1の鋼線層53の外周に配置された高強度合成繊維からなる第2の繊維層54と、鋼製ストランドを第2の繊維層54の外周に複数本巻き付けてなる第2の鋼線層55とをさらに備えている。また、第2の鋼線層55の外周に配置された高強度合成繊維からなる第3の繊維層56と、鋼製ストランドを第3の繊維層56の外周に複数本巻き付けてなる第3の鋼線層57とをさらに備えている。すなわち、繊維層を3層設けている。これにより、高強度合成繊維の使用量を増やして軽量化を実現できる。
 また、エレベータは、昇降高が高くなるほど、エレベータに重量補償用のロープ(又は鎖)を設けることが好ましいが、エレベータ用ロープ500によれば、複数の繊維層により高強度合成繊維をより多く含むことによって従来のエレベータ用ロープより軽量化を実現でき、重量補償用のロープ(又は鎖)の本数又は質量をさらに減らしたり、または完全に除去したりすることができる。
 なお、上記第5の実施の形態では、第1の繊維層52と第2の繊維層54が、鋼芯51の外周に複数本の繊維束を撚り合わせたものである場合について説明したが、これに代えて、複数本の繊維束を編み合わせたものであってもよいし、複数本の繊維束をおおよそ平行に並べて束ねたものであってもよい。
 また、上記第5の実施の形態において、鋼芯51を構成する構成ストランドの構造(鋼線の数や配置など)は適宜変更してもよい。また、第1の鋼線層53を構成する第1の鋼製ストランド53nの本数や、各第1の鋼製ストランド53nの構造(鋼線の数や配置など)も適宜変更してもよい。また、第2の鋼線層55を構成する第2の鋼製ストランド55nの本数や、各第2の鋼製ストランド55nの構造(鋼線の数や配置など)も適宜変更してもよい。また、第3の鋼線層57を構成する第3の鋼製ストランド57nの本数や、各第3の鋼製ストランド57nの構造(鋼線の数や配置など)も適宜変更してもよい。
 また、上記第5の実施の形態においては、第1の繊維層52と第1の鋼線層53の間に樹脂からなる緩衝層を設けるようにしてもよい。これにより、第1の繊維層52と第1の鋼線層53が直接接触することによる第1の繊維層52の摩耗を抑制できる。同様な理由により、第1の鋼線層53と第2の繊維層54の間、及び第2の繊維層54と第2の鋼線層55の間にも、樹脂からなる緩衝層を設けるようにしてもよい。また、第2の鋼線層55と第3の繊維層56の間、及び第3の繊維層56と第3の鋼線層57の間にも、樹脂からなる緩衝層を設けるようにしてもよい。なお、緩衝層の材料としては、耐摩耗性と低摩擦性を有する樹脂、例えばポリエチレン,ポリプロピレンなどを用いることができる。
 また、上記第5の実施の形態においては、鋼芯51と第1の繊維層52の間、第1の繊維層52と第1の鋼線層53の間、第1の鋼線層53と第2の繊維層54との間、第2の繊維層54と第2の鋼線層55との間、第2の鋼線層55と第3の繊維層56との間、及び第3の繊維層56と第3の鋼線層57との間の少なくとも1箇所に樹脂からなる緩衝層を設けるようにしてもよい。これにより、その緩衝層を備える箇所において第1の繊維層52、第2の繊維層54、又は第3の繊維層56の摩耗を抑制できる。このとき、緩衝層の材料としては、耐摩耗性と低摩擦性を有する樹脂、例えばポリエチレン,ポリプロピレンなどを用いることができる。
 [第5の実施の形態の変形例]
 以下、第5の実施の形態の変形例であるエレベータ用ロープ501について説明する。図14はエレベータ用ロープ501の長手方向に垂直な断面を示す断面図である。図14に示すように、エレベータ用ロープ501は、最外層として樹脂製の被覆層58を備えている点において第5の実施の形態と相違する。すなわち、第5の実施の形態に係るエレベータ用ロープ500においては、第3の鋼線層57がエレベータ用ロープ500の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ501においては、第3の鋼線層57の外周が被覆層58により被覆されている。これにより、エレベータ用ロープ501は耐摩耗性が向上し、耐久性が向上する。
 被覆層58は、互いに隣接する第3の鋼製ストランド57nの間に入り込んでいる。被覆層58の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 [第6の実施の形態]
 以下、第6の実施の形態に係るエレベータ用ロープ600について説明する。図15はエレベータ用ロープ600の長手方向に垂直な断面を示す断面図である。エレベータ用ロープ600は、鋼芯61が単一の鋼線からなる点で第5の実施の形態のものと相違する。これに対し、第5の実施の形態では、鋼芯51は、複数の鋼線を撚り合わせた鋼製ストランドからなる。その他の点においては第5の実施の形態と共通するため、ここでは説明を省略する。
 [第6の実施の形態の変形例]
 以下、第6の実施の形態の変形例であるエレベータ用ロープ601について説明する。図16はエレベータ用ロープ601の長手方向に垂直な断面を示す断面図である。図16に示すように、エレベータ用ロープ601は、最外層として樹脂製の被覆層68を備えている点において第6の実施の形態と相違する。すなわち、第6の実施の形態に係るエレベータ用ロープ600においては、第3の鋼線層57がエレベータ用ロープ600の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ601においては、第3の鋼線層57の外周が被覆層68により被覆されている。これにより、エレベータ用ロープ601は耐摩耗性が向上し、耐久性が向上する。
 被覆層68は、互いに隣接する第3の鋼製ストランド57nの間に入り込んでいる。被覆層68の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 上記実施の形態では、繊維層を1層、2層又は3層である場合について説明したが、繊維層の数は、エレベータ用ロープの大径化の程度に応じて適宜増やすことができる。そのとき、各繊維層の外周には鋼線層を設けることが好ましい。
 11、21、31、41、51、61  鋼芯
 11a、13a  心線
 11b  側線
 13b  第1の側線
 13c  第2の側線
 12、32,52  第1の繊維層
 13、33、53  第1の鋼線層
 13n、33n、53n  第1の鋼製ストランド
 18、28、38、48、58、68  被覆層
 19a  第1の緩衝層
 19b  第2の緩衝層
 34、54  第2の繊維層
 35、55  第2の鋼線層
 35n、55n  第2の鋼製ストランド
 39  被覆体
 56  第3の繊維層
 57  第3の鋼線層
 57n  第3の鋼製ストランド
 100,101、200、201、300、301、400、401、500、501、600、601  エレベータ用ロープ

Claims (11)

  1.  複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線からなる鋼芯と、
     前記鋼芯の外周に配置された高強度合成繊維からなる第1の繊維層と、
     複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、前記第1の繊維層の外周に複数本巻き付けてなる第1の鋼線層と
    を備えたエレベータ用ロープ。
  2.  前記鋼芯と前記第1の繊維層の間、及び前記第1の繊維層と前記第1の鋼線層の間の少なくとも一箇所に樹脂からなる緩衝層を備えた請求項1記載のエレベータ用ロープ。
  3.  前記第1の鋼線層の外周に配置された高強度合成繊維からなる第2の繊維層と、
     複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、前記第2の繊維層の外周に複数本巻き付けてなる第2の鋼線層と
    をさらに備えた請求項1または2記載のエレベータ用ロープ。
  4.  前記第1の鋼線層と前記第2の繊維層の間、及び前記第2の繊維層と前記第2の鋼線層の間の少なくとも一箇所に樹脂からなる緩衝層を備えた請求項3記載のエレベータ用ロープ。
  5.  前記第2の鋼線層の外周に配置された高強度合成繊維からなる第3の繊維層と、
     複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、前記第3の繊維層の外周に複数本巻き付けてなる第3の鋼線層と
    をさらに備えた請求項3又は4記載のエレベータ用ロープ。
  6.  前記第2の鋼線層と前記第3の繊維層の間、及び第3の繊維層と前記第3の鋼線層の間の少なくとも一箇所に樹脂からなる緩衝層を備えた請求項5記載のエレベータ用ロープ。
  7.  最外層として樹脂製の被覆層を備えた請求項1から6のいずれか一項に記載のエレベータ用ロープ。
  8.  複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線からなる鋼芯の外周に、高強度合成繊維からなる複数本の繊維束を配置して第1の繊維層を形成する工程と、
     複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、前記第1の繊維層の外周に複数本巻き付けて第1の鋼線層を形成する工程と
    を含むエレベータ用ロープの製造方法。
  9.  前記第1の鋼線層の外周に、高強度合成繊維からなる複数本の繊維束を配置して第2の繊維層を形成する工程と、
     複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、前記第2の繊維層の外周に複数本巻き付けて第2の鋼線層を形成する工程と
    をさらに含む請求項8記載のエレベータ用ロープの製造方法。
  10.  前記第2の鋼線層の外周に、高強度合成繊維からなる複数本の繊維束を配置して第3の繊維層を形成する工程と、
     複数の鋼線を撚り合わせた鋼製ストランド又は単一の鋼線を、前記第3の繊維層の外周に複数本巻き付けて第3の鋼線層を形成する工程と
    をさらに含む請求項9記載のエレベータ用ロープの製造方法。
  11.  最外層として樹脂からなる被覆体を被覆して被覆層を形成する工程をさらに含む請求項8から10のいずれか一項に記載のエレベータ用ロープの製造方法。
PCT/JP2020/038791 2020-10-14 2020-10-14 エレベータ用ロープ及びその製造方法 WO2022079836A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022556757A JPWO2022079836A1 (ja) 2020-10-14 2020-10-14
DE112020007686.5T DE112020007686T5 (de) 2020-10-14 2020-10-14 Seil für Aufzüge und Verfahren zur Herstellung desselben
KR1020237009631A KR20230044028A (ko) 2020-10-14 2020-10-14 엘리베이터용 로프 및 그 제조 방법
PCT/JP2020/038791 WO2022079836A1 (ja) 2020-10-14 2020-10-14 エレベータ用ロープ及びその製造方法
CN202080105933.0A CN116323458A (zh) 2020-10-14 2020-10-14 电梯用绳索及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038791 WO2022079836A1 (ja) 2020-10-14 2020-10-14 エレベータ用ロープ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022079836A1 true WO2022079836A1 (ja) 2022-04-21

Family

ID=81208962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038791 WO2022079836A1 (ja) 2020-10-14 2020-10-14 エレベータ用ロープ及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2022079836A1 (ja)
KR (1) KR20230044028A (ja)
CN (1) CN116323458A (ja)
DE (1) DE112020007686T5 (ja)
WO (1) WO2022079836A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453730B1 (ja) 2022-12-27 2024-03-21 三菱電機ビルソリューションズ株式会社 エレベーターの改修方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292270A (ja) * 2002-03-29 2003-10-15 Toshiba Elevator Co Ltd エレベータの駆動機構
WO2004065276A1 (ja) * 2003-01-24 2004-08-05 Mitsubishi Denki Kabushiki Kaisha エレベータ用ロープ
WO2006075384A1 (ja) * 2005-01-14 2006-07-20 Mitsubishi Denki Kabushiki Kaisha エレベータ用ロープ及びその製造方法
JP2011046462A (ja) * 2009-08-26 2011-03-10 Toshiba Elevator Co Ltd エレベータ装置およびエレベータ用ワイヤロープ
US20180251940A1 (en) * 2017-03-03 2018-09-06 Bonita Carter Jacketed wire rope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108137277A (zh) 2015-10-16 2018-06-08 三菱电机株式会社 电梯用绳索及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292270A (ja) * 2002-03-29 2003-10-15 Toshiba Elevator Co Ltd エレベータの駆動機構
WO2004065276A1 (ja) * 2003-01-24 2004-08-05 Mitsubishi Denki Kabushiki Kaisha エレベータ用ロープ
WO2006075384A1 (ja) * 2005-01-14 2006-07-20 Mitsubishi Denki Kabushiki Kaisha エレベータ用ロープ及びその製造方法
JP2011046462A (ja) * 2009-08-26 2011-03-10 Toshiba Elevator Co Ltd エレベータ装置およびエレベータ用ワイヤロープ
US20180251940A1 (en) * 2017-03-03 2018-09-06 Bonita Carter Jacketed wire rope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453730B1 (ja) 2022-12-27 2024-03-21 三菱電機ビルソリューションズ株式会社 エレベーターの改修方法

Also Published As

Publication number Publication date
DE112020007686T5 (de) 2023-08-03
CN116323458A (zh) 2023-06-23
JPWO2022079836A1 (ja) 2022-04-21
KR20230044028A (ko) 2023-03-31

Similar Documents

Publication Publication Date Title
RU2553967C2 (ru) Канат или ремень с покрытием для подъемных систем
WO2011145224A1 (ja) ハイブリッドロープおよびその製造方法
KR101665837B1 (ko) 엘리베이터용 로프
US7086217B2 (en) Rope of synthetic fiber with reinforcement element for frictionally engaged power transmission and rope of synthetic fiber with reinforcement element for positively engaged power transmission
JPH07150491A (ja) 巻上げケーブル
WO2004065276A1 (ja) エレベータ用ロープ
WO2012056529A1 (ja) エレベータ用ロープ
EP1426482B1 (en) Rope
KR20200006184A (ko) 엘리베이터용 로프 및 그 제조 방법
WO2022079836A1 (ja) エレベータ用ロープ及びその製造方法
JPH1018190A (ja) ワイヤロープ
EP2655234B1 (en) Elevator system
US11352743B2 (en) Synthetic fiber rope
JPH10140490A (ja) 繊維芯入りワイヤロープ
JP2009292630A (ja) エレベータ用巻上ロープ及びその製造方法
JP5768568B2 (ja) エレベータ用巻上ロープ
RU2533960C1 (ru) Узел для подвешивания и/или привода подъемника, имеющий по меньшей мере одну поверхность, обеспечивающую тягу или образование сил сцепления, содержащую размещенные открыто волокна переплетения
KR102486074B1 (ko) 엘리베이터 로프
JP4034629B2 (ja) ハイブリッドロープ
WO2022079835A1 (ja) エレベータ用ロープ
EP1329413B1 (en) Hoisting rope
JPH0640626Y2 (ja) スチールコード
US2022683A (en) Rope
JP7357803B2 (ja) ベルト、その製造方法、及びエレベーター
WO2024089885A1 (ja) ロープ及びそれを用いたベルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556757

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009631

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20957665

Country of ref document: EP

Kind code of ref document: A1