WO2022079835A1 - エレベータ用ロープ - Google Patents

エレベータ用ロープ Download PDF

Info

Publication number
WO2022079835A1
WO2022079835A1 PCT/JP2020/038790 JP2020038790W WO2022079835A1 WO 2022079835 A1 WO2022079835 A1 WO 2022079835A1 JP 2020038790 W JP2020038790 W JP 2020038790W WO 2022079835 A1 WO2022079835 A1 WO 2022079835A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fiber
steel wire
steel
elevator rope
Prior art date
Application number
PCT/JP2020/038790
Other languages
English (en)
French (fr)
Inventor
晋也 内藤
政彦 肥田
豊弘 野口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080105932.6A priority Critical patent/CN116348407A/zh
Priority to PCT/JP2020/038790 priority patent/WO2022079835A1/ja
Priority to JP2022556756A priority patent/JP7321390B2/ja
Priority to DE112020007682.2T priority patent/DE112020007682T5/de
Priority to KR1020237012080A priority patent/KR20230066069A/ko
Publication of WO2022079835A1 publication Critical patent/WO2022079835A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/005Composite ropes, i.e. ropes built-up from fibrous or filamentary material and metal wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/06Making ropes or cables from special materials or of particular form from natural or artificial staple fibres
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1028Rope or cable structures characterised by the number of strands
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2042Strands characterised by a coating
    • D07B2201/2044Strands characterised by a coating comprising polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2057Cores characterised by their structure comprising filaments or fibers resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2067Cores characterised by the elongation or tension behaviour
    • D07B2201/2068Cores characterised by the elongation or tension behaviour having a load bearing function
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2007Elevators

Definitions

  • This disclosure relates to an elevator rope that suspends a car in an elevator.
  • Patent Document 1 discloses an elevator rope having a structure in which a plurality of steel strands are wound around the outer periphery of a fiber core made of a high-strength synthetic fiber, and a plurality of steel strands are wound around the outer periphery thereof.
  • the fiber core is tightened by two layers of steel strands so that the tensile load applied to the elevator rope is sufficiently transmitted to the fiber core.
  • an object of the present disclosure is to provide an elevator rope capable of increasing the amount of high-strength synthetic fiber used to reduce the weight and ensuring the required strength of the elevator rope as a whole.
  • the elevator rope according to the present disclosure is formed by winding a fiber core made of high-strength synthetic fiber and a first steel strand or a single steel wire obtained by twisting a plurality of steel wires around the outer periphery of the fiber core.
  • a first fiber layer composed of a first steel wire layer and high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer, and a second steel strand or a single steel strand obtained by twisting a plurality of steel wires. It is provided with a second steel wire layer formed by winding a plurality of the steel wires of the above on the outer periphery of the first fiber layer.
  • the amount of high-strength synthetic fiber used can be increased to reduce the weight, and the required strength of the elevator rope as a whole can be secured.
  • FIG. 1 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 100.
  • FIG. 2 is a side view showing a state in which each layer of the elevator rope 100 is sequentially cut open.
  • the elevator rope 100 has a fiber core 11 made of high-strength synthetic fiber and a plurality of first steel strands 12a obtained by twisting a plurality of steel wires on the outer periphery of the fiber core 11. It has a first steel wire layer 12 formed by main winding. Further, the first fiber layer 13 made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 12 and the second steel strand 14a obtained by twisting a plurality of steel wires are used as the first fiber layer. It has a second steel wire layer 14 formed by winding a plurality of fibers around the outer periphery of the 13.
  • the fiber core 11 is a twisted bundle of a plurality of fibers.
  • a plurality of different fiber bundles are arranged around a fiber bundle serving as a core material and twisted to form a fiber core 11.
  • Each fiber bundle consists of high-strength synthetic fibers.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the first steel wire layer 12 is formed by winding a plurality of first steel strands 12a obtained by twisting a plurality of steel wires around the outer periphery of the fiber core 11.
  • twelve first steel strands 12a are wound around the outer periphery of the fiber core 11.
  • Each first steel strand 12a consists of a core wire and six lateral lines wound around the core wire. Both the core wire and the lateral line are made of steel wire.
  • the first fiber layer 13 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 12. For example, a plurality of fiber bundles are twisted together to form a first fiber layer 13. Each fiber bundle consists of high-strength synthetic fibers.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • PBO polyparaphenylene benzoxazole
  • aramid fiber polyallylate fiber
  • basalt fiber and the like are used as the high-strength synthetic fiber.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the second steel wire layer 14 is formed by winding a plurality of second steel strands 14a, which are obtained by twisting a plurality of steel wires, around the outer periphery of the first fiber layer 13.
  • eight second steel strands 14a are wound around the outer periphery of the first fiber layer 13.
  • Each second steel strand 14a has a core wire, nine first lateral lines wound around the outer circumference of the core wire, and nine second lateral lines wound around the outer circumference thereof.
  • the core wire, the first lateral line and the second lateral line are all made of steel wire.
  • the second steel wire layer 14 is located on the outermost layer of the elevator rope 100 and is exposed to the outside.
  • the elevator rope 100 further includes a first fiber layer 13 made of high-strength synthetic fiber in addition to the fiber core 11 made of high-strength synthetic fiber. This makes it possible to increase the amount of high-strength synthetic fiber used and reduce the weight.
  • a first steel wire layer 12 is provided on the outer periphery of the fiber core 11, and a second steel wire layer 14 is provided on the outer periphery of the first fiber layer 13.
  • the fiber core 11 is tightened by the first steel wire layer 12, and the first fiber layer 13 is tightened by the second steel wire layer 14, so that the tensile load applied to the elevator rope 100 becomes the fiber core 11. It can be sufficiently transmitted to each of the first fiber layers 13. As a result, it is possible to suppress the concentration of an excessive load on the first steel wire layer 12 or the second steel wire layer 14, and it is possible to secure the required strength of the elevator rope 100 as a whole.
  • the above configuration is particularly effective when it is required to increase the amount of high-strength synthetic fiber used and realize weight reduction by increasing the diameter of the elevator rope (for example, the diameter is 12 mm or more).
  • the diameter of the elevator rope 100 the diameter of the circumscribed circle is measured at two or more arbitrary points except within 1.5 m from the end of the elevator rope 100, and the average value thereof is used.
  • the elevator is provided with a weight compensation rope as the elevator height increases.
  • the weight is reduced to reduce the weight imbalance caused by the weight of the elevator rope 100. It can be reduced and the number or mass of weight compensating ropes can be reduced or completely removed.
  • the fiber core 11 is made by twisting a plurality of fiber bundles is described, but the plurality of fiber bundles are not twisted but are arranged and bundled substantially in parallel. It may be a thing.
  • the number of the first steel strands 12a constituting the first steel wire layer 12 and the structure of each first steel strand 12a are appropriately changed as necessary. You may.
  • the number of the second steel strands 14a constituting the second steel wire layer 14 and the structure of each of the second steel strands 14a can also be appropriately changed as needed.
  • FIG. 3 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 101.
  • FIG. 4 is a side view showing a state in which each layer of the elevator rope 101 is sequentially cut open.
  • the elevator rope 101 differs from the first embodiment in that it includes a resin coating layer 18 as an outermost layer. That is, in the elevator rope 100 according to the first embodiment, the second steel wire layer 14 is exposed to the outside as the outermost layer of the elevator rope 100. On the other hand, in the elevator rope 101 according to this modification, the outer periphery of the second steel wire layer 14 is covered with the covering layer 18. As a result, the elevator rope 101 has improved wear resistance and durability.
  • the coating layer 18 is inserted between the second steel strands 14a adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • the elevator is provided with a weight compensation rope as the elevator height increases.
  • the weight can be reduced and the friction coefficient between the elevator and the sheave can be improved. It is possible to suppress slippage between the ropes and enable stable power transmission. As a result, the number or mass of weight compensating ropes can be further reduced or completely removed.
  • FIG. 5 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 200.
  • a fiber core 21 made of high-strength synthetic fiber and a plurality of first steel strands 22a obtained by twisting a plurality of steel wires are wound around the outer periphery of the fiber core 21. It has a first steel wire layer 22. Further, the first fiber layer 23 made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 22 and the second steel strand 24a obtained by twisting a plurality of steel wires are used as the first fiber layer. It has a second steel wire layer 24 formed by winding a plurality of wires around the outer periphery of the 23.
  • a second fiber layer 25 made of high-strength synthetic fibers arranged on the outer periphery of the second steel wire layer 24 and a third steel strand 26a obtained by twisting a plurality of steel wires are formed into a second fiber layer. It has a third steel wire layer 26 formed by winding a plurality of wires around the outer periphery of the 25.
  • the fiber core 21 is a twisted bundle of a plurality of fibers.
  • a plurality of different fiber bundles are arranged around the fiber bundle as the core material and twisted to form a fiber core 21.
  • Each fiber bundle consists of high-strength synthetic fibers.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the first steel wire layer 22 is formed by winding a plurality of first steel strands 22a, which are obtained by twisting a plurality of steel wires, around the outer circumference of a fiber core 21.
  • twelve first steel strands 22a are wound around the outer circumference of the fiber core 21.
  • Each first steel strand 22a consists of a core wire and six lateral lines wound around the core wire. Both the core wire and the lateral line are made of steel wire.
  • the first fiber layer 23 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the first steel wire layer 22. For example, a plurality of fiber bundles are twisted together to form a first fiber layer 23. Each fiber bundle consists of high-strength synthetic fibers.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • PBO polyparaphenylene benzoxazole
  • aramid fiber polyallylate fiber
  • basalt fiber and the like are used as the high-strength synthetic fiber.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the second steel wire layer 24 is formed by winding a plurality of second steel strands 24a, which are obtained by twisting a plurality of steel wires, around the outer periphery of the first fiber layer 23.
  • 21 second steel strands 24a are wound around the outer periphery of the first fiber layer 23.
  • Each second steel strand 24a has a core wire, nine first lateral lines wound around the outer circumference of the core wire, and nine second lateral lines wound around the outer circumference thereof.
  • the core wire, the first lateral line and the second lateral line are all made of steel wire.
  • the second fiber layer 25 is a layer made of high-strength synthetic fibers arranged on the outer periphery of the second steel wire layer 24. For example, a plurality of fiber bundles are twisted together to form a second fiber layer 25. Each fiber bundle consists of high-strength synthetic fibers.
  • the high-strength synthetic fiber for example, carbon fiber, glass fiber, polyparaphenylene benzoxazole (PBO) fiber, aramid fiber, polyallylate fiber, basalt fiber and the like are used.
  • Each fiber bundle may be solidified with a resin such as an epoxy resin or a urethane resin and integrated, or may be coated with a resin.
  • the third steel wire layer 26 is formed by winding a plurality of third steel strands 26a, which are obtained by twisting a plurality of steel wires, around the outer periphery of the second fiber layer 25.
  • 15 third steel strands 26a are wound around the outer periphery of the first fiber layer 23.
  • Each third steel strand 26a has a core wire, nine first lateral lines wound around the outer circumference of the core wire, and nine second lateral lines wound around the outer circumference thereof.
  • the core wire, the first lateral line and the second lateral line are all made of steel wire.
  • the third steel wire layer 26 is located on the outermost layer of the elevator rope 200 and is exposed to the outside.
  • the elevator rope 200 further includes a first fiber layer 23 made of high-strength synthetic fiber and a second fiber layer 25 in addition to the fiber core 21 made of high-strength synthetic fiber.
  • a first steel wire layer 22 is provided on the outer periphery of the fiber core 21, and a second steel wire layer 24 is provided on the outer periphery of the first fiber layer 23.
  • a third steel wire layer 26 is provided on the outer periphery of the second fiber layer 25.
  • the second fiber layer 25 can be tightened by the third steel wire layer 26.
  • the tensile load applied to the elevator rope 200 can be sufficiently transmitted to each of the fiber core 21, the first fiber layer 23, and the second fiber layer 25.
  • the above configuration is particularly effective when it is required to increase the amount of high-strength synthetic fiber used and realize weight reduction by increasing the diameter of the elevator rope (for example, the diameter is 18 mm or more).
  • the fiber core 21 is made by twisting a plurality of fiber bundles is described, but the plurality of fiber bundles are not twisted but are arranged and bundled substantially in parallel. It may be a thing.
  • the number of the first steel strands 22a constituting the first steel wire layer 22 and the structure of each first steel strand 22a are appropriately changed as necessary. You may.
  • the number of the second steel strands 24a constituting the second steel wire layer 24 and the structure of each of the second steel strands 24a can also be appropriately changed as needed.
  • the number of the third steel strands 26a constituting the third steel wire layer 26 and the structure of each third steel strand 26a can be appropriately changed as necessary.
  • a cushioning layer made of resin may be provided at least at one position between the and the second steel wire layer 24. Further, a cushioning layer made of resin is provided at least at one place between the second steel wire layer 24 and the second fiber layer 25 and between the second fiber layer 25 and the third steel wire layer 26. You may do it. At the location provided with the cushioning layer, it is possible to suppress wear of the fiber core 21, the first fiber layer 23, or the second fiber layer 25 due to direct contact between adjacent layers.
  • FIG. 6 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 201.
  • the elevator rope 201 differs from the second embodiment in that it includes a resin coating layer 28 as the outermost layer. That is, in the elevator rope 200 according to the second embodiment, the third steel wire layer 26 is exposed to the outside as the outermost layer of the elevator rope 200. On the other hand, in the elevator rope 201 according to this modification, the outer periphery of the third steel wire layer 26 is covered with the covering layer 28. As a result, the elevator rope 201 has improved wear resistance and durability.
  • the coating layer 28 is inserted between the third steel strands 26a adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • FIG. 7 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 300.
  • the elevator rope 300 is provided between the fiber core 11 and the first steel wire layer 12, between the first steel wire layer 12 and the first fiber layer 13, and between the first fiber layer 13 and the second steel wire. It differs from the first embodiment in that a buffer layer made of a resin is provided between the layers 14. In the following description, the differences will be described, and the description of the same configuration as that of the first embodiment will be omitted.
  • the elevator rope 300 has a first cushioning layer 37a made of resin between the fiber core 11 and the first steel wire layer 12. As a result, wear of the fiber core 11 due to direct contact between the fiber core 11 and the first steel wire layer 12 can be suppressed. Further, a second cushioning layer 37b made of resin is provided between the first steel wire layer 12 and the first fiber layer 13. As a result, wear of the first fiber layer 13 due to direct contact between the first steel wire layer 12 and the first fiber layer 13 can be suppressed. Further, a third buffer layer 37c made of resin is provided between the first fiber layer 13 and the second steel wire layer 14. As a result, wear of the first fiber layer 13 due to direct contact between the first fiber layer 13 and the second steel wire layer 14 can be suppressed. As the material of the first cushioning layer 37a, the second cushioning layer 37b and the third cushioning layer 37c, a resin having wear resistance and low friction resistance, for example, polyethylene or polypropylene is used.
  • the buffer layer may be provided only at one or two of them. Thereby, the wear of the fiber core 11 or the first fiber layer 13 can be suppressed at the portion provided with the buffer layer. That is, between the fiber core 11 and the first steel wire layer 12, between the first steel wire layer 12 and the first fiber layer 13, and between the first fiber layer 13 and the second steel wire layer 14.
  • a buffer layer may be provided at at least one of the above points.
  • FIG. 8 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 301.
  • the elevator rope 301 differs from the third embodiment in that it includes a resin coating layer 38 as the outermost layer. That is, in the elevator rope 300 according to the third embodiment, the second steel wire layer 14 is exposed to the outside as the outermost layer of the elevator rope 300. On the other hand, in the elevator rope 301 according to this modification, the outer periphery of the second steel wire layer 14 is covered with the covering layer 38. As a result, the elevator rope 301 has improved wear resistance and durability.
  • the coating layer 38 is inserted between the second steel strands 14a adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • FIG. 9 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 400.
  • the first embodiment is that the elevator rope 400 has a resin covering body 49 that covers each first steel strand 12a of the first steel wire layer 12. There is no substantial difference in other points, unlike the form of. As a result, wear of the fiber core 11 due to direct contact between the fiber core 11 and the first steel strand 12a can be suppressed. Further, it is possible to suppress the wear of the first fiber layer 13 due to the direct contact between the first steel strand 12a and the first fiber layer 13.
  • a resin having wear resistance and low friction resistance for example, polyethylene, polypropylene, or the like is used.
  • FIG. 10 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 401.
  • the elevator rope 401 differs from the fourth embodiment in that it includes a resin coating layer 48 as the outermost layer. That is, in the elevator rope 400 according to the fourth embodiment, the second steel wire layer 14 is exposed to the outside as the outermost layer of the elevator rope 400. On the other hand, in the elevator rope 401 according to this modification, the outer periphery of the second steel wire layer 14 is covered with the covering layer 48. As a result, the elevator rope 401 has improved wear resistance and durability.
  • the coating layer 48 is inserted between the second steel strands 14a adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • FIG. 11 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 500.
  • the elevator rope 500 is different from that of the first embodiment in that the first steel wire layer 52 is formed by winding a plurality of single steel wires 52a around the outer periphery of the fiber core 11.
  • the first steel wire layer 12 is formed by winding a plurality of first steel strands 12a obtained by twisting a plurality of steel wires around the outer periphery of the fiber core 11.
  • FIG. 12 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 501.
  • the elevator rope 501 differs from the fifth embodiment in that it includes a resin coating layer 58 as the outermost layer. That is, in the elevator rope 500 according to the fifth embodiment, the second steel wire layer 14 is exposed to the outside as the outermost layer of the elevator rope 500. On the other hand, in the elevator rope 501 according to this modification, the outer periphery of the second steel wire layer 14 is covered with the covering layer 58. As a result, the elevator rope 501 has improved wear resistance and durability.
  • the coating layer 58 is inserted between the second steel strands 14a adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • FIG. 13 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 600.
  • the elevator rope 600 has a core wire 621 made of high-strength synthetic fiber inside each first steel strand 62a constituting the first steel wire layer 62, and constitutes the second steel wire layer 64. It differs from that of the first embodiment in that each second steel strand 64a has a core wire 641 made of high-strength synthetic fiber inside. In the following description, the differences will be described, and the description of the same configuration as that of the first embodiment will be omitted.
  • first steel wire layer 62 six first steel strands 62a are wound around the outer periphery of the fiber core 11.
  • Each first steel strand 62a has a core wire 621, twelve first lateral lines 622 wound around the outer circumference of the core wire 621, and twelve second lateral lines 623 wound around the outer circumference thereof.
  • the core wire 621 is made of high-strength synthetic fiber
  • the first lateral line 622 and the second lateral line 623 are both made of steel wire.
  • each second steel strand 64a has a core wire 641, twelve first lateral lines 642 wound around the outer circumference of the core wire 641, and twelve second lateral lines 643 wound around the outer circumference thereof.
  • the core wire 641 is made of high-strength synthetic fiber
  • the first lateral line 642 and the second lateral line 643 are both made of steel wire.
  • the second steel wire layer 64 is located on the outermost layer of the elevator rope 600 and is exposed to the outside.
  • the elevator rope 600 includes a core wire 621 made of high-strength synthetic fiber inside each first steel strand 62a, and has high-strength synthesis inside each second steel strand 64a. It has a core wire 641 made of fibers. As a result, the amount of high-strength synthetic fiber used can be increased and the weight can be reduced as compared with the case where the core wire made of steel wire is provided inside the first steel strand 62a or the second steel strand 64a. can.
  • both the first steel strand 62a constituting the first steel wire layer 62 and the second steel strand 64a constituting the second steel wire layer 64 are used.
  • the core wire made of high-strength synthetic fiber is provided inside has been described, but the core wire made of high-strength synthetic fiber may be provided inside only one of them.
  • a resin covering body covering the core wire 621 may be provided in each of the first steel strands 62a. As a result, wear of the core wire 621 due to direct contact between the core wire 621 and the first lateral line 622 can be suppressed. Further, in each of the second steel strands 64a, a resin covering body covering the core wire 641 may be provided in each of the second steel strands 64a. As a result, it is possible to suppress wear of the core wire 641 due to direct contact between the core wire 641 and the first side wire 642.
  • FIG. 14 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the elevator rope 601.
  • the elevator rope 601 differs from the sixth embodiment in that it includes a resin coating layer 68 as the outermost layer. That is, in the elevator rope 600 according to the sixth embodiment, the second steel wire layer 64 is exposed to the outside as the outermost layer of the elevator rope 600. On the other hand, in the elevator rope 601 according to this modification, the outer periphery of the second steel wire layer 64 is covered with the covering layer 68. As a result, the elevator rope 601 has improved wear resistance and durability.
  • the coating layer 68 is inserted between the second steel strands 64a adjacent to each other.
  • a resin having a sufficient coefficient of friction for example, an elastomer-based resin, polyurethane, or the like is used in order to secure the traction ability with the sheave.
  • the fiber core and the first steel wire have a structure capable of increasing the amount of high-strength synthetic fiber used and reducing the weight when the diameter of the elevator rope is increased.
  • the case where the layer, the first fiber layer and the second steel wire layer are provided in order will be described.
  • the layers of high-strength fibers are substantially two layers including the fiber core.
  • the second fiber layer and the third steel wire layer are further provided.
  • the layers of high-strength fibers are substantially three layers including the fiber core. The number of fiber layers and steel wire layers can be appropriately increased according to the degree of increase in diameter of the elevator rope.
  • each of the third to sixth embodiments is the case of a structure in which one fiber layer and one steel wire layer are added as described in the second embodiment, or an elevator. It can be applied to the case of a structure in which the fiber layer and the steel wire layer are further increased according to the degree of increasing the diameter of the rope.
  • a buffer layer may be provided at least at one of a plurality of locations where the layer made of high-strength synthetic fiber and the layer made of steel wire are adjacent to each other.

Landscapes

  • Ropes Or Cables (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

エレベータにおいてかごを吊り下げるエレベータ用ロープであって、高強度合成繊維からなる繊維芯と、複数の鋼線を撚り合わせた第1の鋼製ストランド又は単一の鋼線を繊維芯の外周に複数本巻き付けてなる第1の鋼線層と、第1の鋼線層の外周に配置された高強度合成繊維からなる第1の繊維層と、複数の鋼線を撚り合わせた第2の鋼製ストランド又は単一の鋼線を第1の繊維層の外周に複数本巻き付けてなる第2の鋼線層とを備えたエレベータ用ロープを提供する。

Description

エレベータ用ロープ
 本開示は、エレベータにおいてかごを吊り下げるエレベータ用ロープに関する。
 建造物の高層化に伴い、エレベータの高揚程化が進んでいる。高揚程のエレベータでは、使用されるエレベータ用ロープの直径及び長さが大きくなることから、軽量で高強度なロープが必要とされる。そこで、エレベータ用ロープの芯に軽くて強い高強度合成繊維を使用する方法が知られている。
 特許文献1には、高強度合成繊維からなる繊維芯の外周に複数本の鋼製ストランドを巻き付け、さらにその外周に複数本の鋼製ストランドを巻き付けた構成のエレベータ用ロープが開示されている。このエレベータ用ロープでは、2層の鋼製ストランドにより繊維芯を締め付けることにより、エレベータ用ロープにかかる引張荷重が繊維芯にも十分に伝達されるようにしている。
国際公開第2017/064808号
 しかしながら、上記特許文献1に記載のエレベータ用ロープにおいては、エレベータ用ロープの大径化に伴い繊維芯の直径を大きくしていった場合、鋼製ストランドによる締付力が繊維芯の中心部まで伝わらなくなり、繊維芯による荷重の負担が不十分になることがある。その場合、鋼製ストランドに過剰に荷重がかかってしまい、エレベータ用ロープ全体として所要の強度を確保できないという問題がある。
 そこで、本開示の目的は、高強度合成繊維の使用量を増やして軽量化を実現するとともに、エレベータ用ロープ全体として所要の強度を確保することができるエレベータ用ロープを提供することである。
 本開示に係るエレベータ用ロープは、高強度合成繊維からなる繊維芯と、複数の鋼線を撚り合わせた第1の鋼製ストランド又は単一の鋼線を繊維芯の外周に複数本巻き付けてなる第1の鋼線層と、第1の鋼線層の外周に配置された高強度合成繊維からなる第1の繊維層と、複数の鋼線を撚り合わせた第2の鋼製ストランド又は単一の鋼線を第1の繊維層の外周に複数本巻き付けてなる第2の鋼線層とを備えたものである。
 本開示に係るエレベータ用ロープによれば、高強度合成繊維の使用量を増やして軽量化を実現するとともに、エレベータ用ロープ全体として所要の強度を確保することができる。
第1の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第1の実施の形態に係るエレベータ用ロープの各層を順番に切り開いた状態を示す側面図である。 第1の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第1の実施の形態の変形例に係るエレベータ用ロープの各層を順番に切り開いた状態を示す側面図である。 第2の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第2の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第3の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第3の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第4の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第4の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第5の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第5の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。 第6の実施の形態に係るエレベータ用ロープの長手方向に垂直な断面図である。 第6の実施の形態の変形例に係るエレベータ用ロープの長手方向に垂直な断面図である。
 [第1の実施の形態]
 以下、第1の実施の形態に係るエレベータ用ロープ100について説明する。図1はエレベータ用ロープ100の長手方向に垂直な断面を示す断面図である。図2はエレベータ用ロープ100の各層を順番に切り開いた状態を示す側面図である。
 図1及び図2に示すように、エレベータ用ロープ100は、高強度合成繊維からなる繊維芯11と、複数の鋼線を撚り合わせた第1の鋼製ストランド12aを繊維芯11の外周に複数本巻き付けてなる第1の鋼線層12を有している。また、第1の鋼線層12の外周に配置された高強度合成繊維からなる第1の繊維層13と、複数の鋼線を撚り合わせた第2の鋼製ストランド14aを第1の繊維層13の外周に複数本巻き付けてなる第2の鋼線層14を有している。
 繊維芯11は、複数本の繊維束が撚り合わされたものである。たとえば芯材となる繊維束の周囲に複数本の別の繊維束を配置し撚り合わせて繊維芯11とする。各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第1の鋼線層12は、複数の鋼線を撚り合わせた第1の鋼製ストランド12aを繊維芯11の外周に複数本巻き付けてなる。図1に示す例においては、繊維芯11の外周に、12本の第1の鋼製ストランド12aが巻き付けられている。各第1の鋼製ストランド12aは、心線と、この心線の外周に巻き付けられた6本の側線からなる。この心線と側線はいずれも鋼線からなる。
 第1の繊維層13は、第1の鋼線層12の外周に配置された高強度合成繊維からなる層である。たとえば複数本の繊維束を撚り合わせて第1の繊維層13とする。各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第2の鋼線層14は、複数の鋼線を撚り合わせた第2の鋼製ストランド14aを第1の繊維層13の外周に複数本巻き付けてなる。図1に示す例においては、第1の繊維層13の外周に、8本の第2の鋼製ストランド14aが巻き付けられている。各第2の鋼製ストランド14aは、心線と、この心線の外周に巻き付けられた9本の第1の側線と、さらにその外周に巻き付けられた9本の第2の側線を有する。この心線、第1の側線及び第2の側線はいずれも鋼線からなる。第1の実施の形態においては、この第2の鋼線層14が、エレベータ用ロープ100の最外層に位置し、外部に露出している。
 以上説明したように、エレベータ用ロープ100は、高強度合成繊維からなる繊維芯11に加えて、高強度合成繊維からなる第1の繊維層13をさらに備えている。これにより、高強度合成繊維の使用量を増やして軽量化を実現できる。また、繊維芯11の外周には第1の鋼線層12を備え、第1の繊維層13の外周には第2の鋼線層14を備えている。これにより、第1の鋼線層12により繊維芯11を締め付け、且つ、第2の鋼線層14により第1の繊維層13を締め付けて、エレベータ用ロープ100にかかる引張荷重が繊維芯11と第1の繊維層13のそれぞれに十分に伝達されるようにすることができる。その結果、第1の鋼線層12又は第2の鋼線層14への過剰な負荷の集中を抑制でき、エレベータ用ロープ100全体として所要の強度を確保することができる。
 上記構成は、たとえばエレベータ用ロープの大径化(たとえば、直径12mm以上)により、高強度合成繊維の使用量を増やして軽量化を実現することが要求される場合に特に有効である。なお、エレベータ用ロープ100の直径としては、エレベータ用ロープ100の端から1.5m以内を除く任意の点2ケ所以上の断面において、外接円の直径を測定し、その平均値を用いる。
 また、エレベータは、昇降高が高くなるほどエレベータに重量補償用ロープを設けることが好ましいが、エレベータ用ロープ100によれば、軽量化の実現により、エレベータ用ロープ100の自重に起因する重量アンバランスを減らすことができ、重量補償用ロープの本数又は質量を減らし、または完全に除去することができる。
 なお、上記第1の実施の形態では、繊維芯11が、複数本の繊維束を撚り合わせたものである場合について説明したが、複数本の繊維束を撚り合わせずにおおよそ平行に並べて束ねたものであってもよい。
 また、上記第1の実施の形態において、第1の鋼線層12を構成する第1の鋼製ストランド12aの本数や、各第1の鋼製ストランド12aの構造は、必要に応じて適宜変更してもよい。第2の鋼線層14を構成する第2の鋼製ストランド14aの本数や、各第2の鋼製ストランド14aの構造についても、必要に応じて適宜変更することができる。
 [第1の実施の形態の変形例]
 以下、第1の実施の形態の変形例であるエレベータ用ロープ101について説明する。図3はエレベータ用ロープ101の長手方向に垂直な断面を示す断面図である。図4はエレベータ用ロープ101の各層を順番に切り開いた状態を示す側面図である。
 図3及び図4に示すように、エレベータ用ロープ101は、最外層として樹脂製の被覆層18を備えている点において第1の実施の形態と相違する。すなわち、第1の実施の形態に係るエレベータ用ロープ100においては、第2の鋼線層14がエレベータ用ロープ100の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ101においては、第2の鋼線層14の外周が被覆層18により被覆されている。これにより、エレベータ用ロープ101は耐摩耗性が向上し、耐久性が向上する。
 被覆層18は、互いに隣接する第2の鋼製ストランド14aの間に入り込んでいる。被覆層18の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 エレベータは、昇降高が高くなるほどエレベータに重量補償用ロープを設けることが好ましいが、エレベータ用ロープ101によれば、軽量化を実現できるとともに、綱車との間の摩擦係数の向上によって綱車との間の滑りを抑制し、安定した動力伝達が行えるようにすることができる。その結果、重量補償用ロープの本数又は質量をさらに減らしたり、または完全に除去したりすることができる。
 [第2の実施の形態]
 以下、第2の実施の形態に係るエレベータ用ロープ200について説明する。図5はエレベータ用ロープ200の長手方向に垂直な断面を示す断面図である。
 図5に示すように、エレベータ用ロープ200は、高強度合成繊維からなる繊維芯21と、複数の鋼線を撚り合わせた第1の鋼製ストランド22aを繊維芯21の外周に複数本巻き付けてなる第1の鋼線層22を有している。また、第1の鋼線層22の外周に配置された高強度合成繊維からなる第1の繊維層23と、複数の鋼線を撚り合わせた第2の鋼製ストランド24aを第1の繊維層23の外周に複数本巻き付けてなる第2の鋼線層24を有している。さらに、第2の鋼線層24の外周に配置された高強度合成繊維からなる第2の繊維層25と、複数の鋼線を撚り合わせた第3の鋼製ストランド26aを第2の繊維層25の外周に複数本巻き付けてなる第3の鋼線層26を有している。
 繊維芯21は、複数本の繊維束が撚り合わされたものである。たとえば芯材となる繊維束の周囲に複数本の別の繊維束を配置し撚り合わせて繊維芯21とする。各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第1の鋼線層22は、複数の鋼線を撚り合わせた第1の鋼製ストランド22aを繊維芯21の外周に複数本巻き付けてなる。図5に示す例においては、繊維芯21の外周に、12本の第1の鋼製ストランド22aが巻き付けられている。各第1の鋼製ストランド22aは、心線と、この心線の外周に巻き付けられた6本の側線からなる。この心線と側線はいずれも鋼線からなる。
 第1の繊維層23は、第1の鋼線層22の外周に配置された高強度合成繊維からなる層である。たとえば複数本の繊維束を撚り合わせて第1の繊維層23とする。各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第2の鋼線層24は、複数の鋼線を撚り合わせた第2の鋼製ストランド24aを第1の繊維層23の外周に複数本巻き付けてなる。図5に示す例においては、第1の繊維層23の外周に、21本の第2の鋼製ストランド24aが巻き付けられている。各第2の鋼製ストランド24aは、心線と、この心線の外周に巻き付けられた9本の第1の側線と、さらにその外周に巻き付けられた9本の第2の側線を有する。この心線、第1の側線及び第2の側線はいずれも鋼線からなる。
 第2の繊維層25は、第2の鋼線層24の外周に配置された高強度合成繊維からなる層である。たとえば複数本の繊維束を撚り合わせて第2の繊維層25とする。各繊維束は高強度合成繊維からなる。高強度合成繊維としては、例えば炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、アラミド繊維、ポリアリレート繊維、又はバサルト繊維などを用いる。各繊維束は、たとえばエポキシ樹脂、ウレタン樹脂等の樹脂で固めて一体化させたものであってもよいし、樹脂を被覆したものであってもよい。
 第3の鋼線層26は、複数の鋼線を撚り合わせた第3の鋼製ストランド26aを第2の繊維層25の外周に複数本巻き付けてなる。図5に示す例においては、第1の繊維層23の外周に、15本の第3の鋼製ストランド26aが巻き付けられている。各第3の鋼製ストランド26aは、心線と、この心線の外周に巻き付けられた9本の第1の側線と、さらにその外周に巻き付けられた9本の第2の側線を有する。この心線、第1の側線及び第2の側線はいずれも鋼線からなる。第2の実施の形態においては、この第3の鋼線層26が、エレベータ用ロープ200の最外層に位置し、外部に露出している。
 以上説明したように、エレベータ用ロープ200は、高強度合成繊維からなる繊維芯21に加えて、高強度合成繊維からなる第1の繊維層23と第2の繊維層25をさらに備えている。これにより、高強度合成繊維の使用量を増やして軽量化を実現できる。また、繊維芯21の外周には第1の鋼線層22を備え、第1の繊維層23の外周には第2の鋼線層24を備えている。また、第2の繊維層25の外周には第3の鋼線層26を備えている。これにより、第1の鋼線層22により繊維芯21を締め付け、且つ、第2の鋼線層24により第1の繊維層23を締め付けることができる。また、第3の鋼線層26により第2の繊維層25を締め付けることができる。これにより、エレベータ用ロープ200にかかる引張荷重が繊維芯21、第1の繊維層23及び第2の繊維層25のそれぞれに十分に伝達されるようにすることができる。その結果、第1の鋼線層22、第2の鋼線層24又は第3の鋼線層26への過剰な負荷の集中を抑制でき、エレベータ用ロープ200全体として所要の強度を確保することができる。上記構成は、たとえばエレベータ用ロープの大径化(たとえば、直径18mm以上)により、高強度合成繊維の使用量を増やして軽量化を実現することが要求される場合に特に有効である。
 なお、上記第2の実施の形態では、繊維芯21が、複数本の繊維束を撚り合わせたものである場合について説明したが、複数本の繊維束を撚り合わせずにおおよそ平行に並べて束ねたものであってもよい。
 また、上記第2の実施の形態において、第1の鋼線層22を構成する第1の鋼製ストランド22aの本数や、各第1の鋼製ストランド22aの構造は、必要に応じて適宜変更してもよい。第2の鋼線層24を構成する第2の鋼製ストランド24aの本数や、各第2の鋼製ストランド24aの構造についても、必要に応じて適宜変更することができる。また、第3の鋼線層26を構成する第3の鋼製ストランド26aの本数や、各第3の鋼製ストランド26aの構造についても、必要に応じて適宜変更することができる。
 また、上記第2の実施の形態においては、繊維芯21と第1の鋼線層22の間、第1の鋼線層22と第1の繊維層23の間、及び第1の繊維層23と第2の鋼線層24の間の少なくとも1箇所に樹脂からなる緩衝層を備えるようにしてもよい。また、第2の鋼線層24と第2の繊維層25の間、及び第2の繊維層25と第3の鋼線層26との間の少なくとも1箇所に樹脂からなる緩衝層を備えるようにしてもよい。緩衝層を備えた箇所では、隣接する層同士が直接接触することによる、繊維芯21、第1の繊維層23、又は第2の繊維層25の摩耗を抑制できる。
 [第2の実施の形態の変形例]
 以下、第2の実施の形態の変形例であるエレベータ用ロープ201について説明する。図6はエレベータ用ロープ201の長手方向に垂直な断面を示す断面図である。図6に示すように、エレベータ用ロープ201は、最外層として樹脂製の被覆層28を備えている点において第2の実施の形態と相違する。すなわち、第2の実施の形態に係るエレベータ用ロープ200においては、第3の鋼線層26がエレベータ用ロープ200の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ201においては、第3の鋼線層26の外周が被覆層28により被覆されている。これにより、エレベータ用ロープ201は耐摩耗性が向上し、耐久性が向上する。
 被覆層28は、互いに隣接する第3の鋼製ストランド26aの間に入り込んでいる。被覆層28の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 [第3の実施の形態]
 以下、第3の実施の形態に係るエレベータ用ロープ300について説明する。図7はエレベータ用ロープ300の長手方向に垂直な断面を示す断面図である。エレベータ用ロープ300は、繊維芯11と第1の鋼線層12の間、第1の鋼線層12と第1の繊維層13の間、及び第1の繊維層13と第2の鋼線層14の間にそれぞれ樹脂からなる緩衝層を備えている点において第1の実施の形態と相違する。以下の説明ではその相違点について説明し、第1の実施の形態と同様の構成については説明を省略する。
 図7に示すように、エレベータ用ロープ300は、繊維芯11と第1の鋼線層12の間に樹脂からなる第1の緩衝層37aを有している。これにより、繊維芯11と第1の鋼線層12が直接接触することによる繊維芯11の摩耗を抑制できる。また、第1の鋼線層12と第1の繊維層13の間に樹脂からなる第2の緩衝層37bを有している。これにより、第1の鋼線層12と第1の繊維層13が直接接触することによる第1の繊維層13の摩耗を抑制できる。また、第1の繊維層13と第2の鋼線層14との間に樹脂からなる第3の緩衝層37cを有している。これにより、第1の繊維層13と第2の鋼線層14が直接接触することによる第1の繊維層13の摩耗を抑制できる。第1の緩衝層37a、第2の緩衝層37bおよび第3の緩衝層37cの材料としては、耐摩耗性と低摩擦性を有する樹脂、例えばポリエチレン,ポリプロピレンなどを用いる。
 上記第3の実施の形態では、繊維芯11と第1の鋼線層12の間、第1の鋼線層12と第1の繊維層13の間、及び第1の繊維層13と第2の鋼線層14の間の3箇所にそれぞれ樹脂からなる緩衝層を備えている場合について説明している。しかし、これに代えて、そのいずれか1箇所又は2か所にのみ緩衝層を備えるようにしてもよい。これにより、その緩衝層を備える箇所において繊維芯11又は第1の繊維層13の摩耗を抑制できる。すなわち、繊維芯11と第1の鋼線層12の間、第1の鋼線層12と第1の繊維層13の間、及び第1の繊維層13と第2の鋼線層14の間の少なくとも1箇所に緩衝層を備えるようにすればよい。
 [第3の実施の形態の変形例]
 以下、第3の実施の形態の変形例であるエレベータ用ロープ301について説明する。図8はエレベータ用ロープ301の長手方向に垂直な断面を示す断面図である。図8に示すように、エレベータ用ロープ301は、最外層として樹脂製の被覆層38を備えている点において第3の実施の形態と相違する。すなわち、第3の実施の形態に係るエレベータ用ロープ300においては、第2の鋼線層14がエレベータ用ロープ300の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ301においては、第2の鋼線層14の外周が被覆層38により被覆されている。これにより、エレベータ用ロープ301は耐摩耗性が向上し、耐久性が向上する。
 被覆層38は、互いに隣接する第2の鋼製ストランド14aの間に入り込んでいる。被覆層38の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 [第4の実施の形態]
 以下、第4の実施の形態に係るエレベータ用ロープ400について説明する。図9はエレベータ用ロープ400の長手方向に垂直な断面を示す断面図である。図9に示すように、エレベータ用ロープ400は、第1の鋼線層12の各第1の鋼製ストランド12aをそれぞれ被覆する樹脂製の被覆体49を有している点において第1の実施の形態と相違し、その他の点に実質的な差異はない。これにより、繊維芯11と第1の鋼製ストランド12aが直接接触することによる繊維芯11の摩耗を抑制できる。また、第1の鋼製ストランド12aと第1の繊維層13が直接接触することによる第1の繊維層13の摩耗を抑制できる。被覆体49の材料としては、耐摩耗性と低摩擦性を有する樹脂、例えばポリエチレン,ポリプロピレンなどを用いる。
 [第4の実施の形態の変形例]
 以下、第4の実施の形態の変形例であるエレベータ用ロープ401について説明する。図10はエレベータ用ロープ401の長手方向に垂直な断面を示す断面図である。図10に示すように、エレベータ用ロープ401は、最外層として樹脂製の被覆層48を備えている点において第4の実施の形態と相違する。すなわち、第4の実施の形態に係るエレベータ用ロープ400においては、第2の鋼線層14がエレベータ用ロープ400の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ401においては、第2の鋼線層14の外周が被覆層48により被覆されている。これにより、エレベータ用ロープ401は耐摩耗性が向上し、耐久性が向上する。
 被覆層48は、互いに隣接する第2の鋼製ストランド14aの間に入り込んでいる。被覆層48の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 [第5の実施の形態]
 以下、第5の実施の形態に係るエレベータ用ロープ500について説明する。図11はエレベータ用ロープ500の長手方向に垂直な断面を示す断面図である。エレベータ用ロープ500は、第1の鋼線層52が、単一の鋼線52aを繊維芯11の外周に複数本巻き付けてなる点で第1の実施の形態のものと相違する。これに対し、第1の実施の形態では、第1の鋼線層12は、複数の鋼線を撚り合わせた第1の鋼製ストランド12aを繊維芯11の外周に複数本巻き付けてなる。
 [第5の実施の形態の変形例]
 以下、第5の実施の形態の変形例であるエレベータ用ロープ501について説明する。図12はエレベータ用ロープ501の長手方向に垂直な断面を示す断面図である。図12に示すように、エレベータ用ロープ501は、最外層として樹脂製の被覆層58を備えている点において第5の実施の形態と相違する。すなわち、第5の実施の形態に係るエレベータ用ロープ500においては、第2の鋼線層14がエレベータ用ロープ500の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ501においては、第2の鋼線層14の外周が被覆層58により被覆されている。これにより、エレベータ用ロープ501は耐摩耗性が向上し、耐久性が向上する。
 被覆層58は、互いに隣接する第2の鋼製ストランド14aの間に入り込んでいる。被覆層58の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 [第6の実施の形態]
 以下、第6の実施の形態に係るエレベータ用ロープ600について説明する。図13はエレベータ用ロープ600の長手方向に垂直な断面を示す断面図である。エレベータ用ロープ600は、第1の鋼線層62を構成する各第1の鋼製ストランド62aの内部に高強度合成繊維からなる心線621を有し、第2の鋼線層64を構成する各第2の鋼製ストランド64aの内部に高強度合成繊維からなる心線641を有している点で第1の実施の形態のものと相違する。以下の説明ではその相違点について説明し、第1の実施の形態と同様の構成については説明を省略する。
 第1の鋼線層62は、繊維芯11の外周に、6本の第1の鋼製ストランド62aが巻き付けられている。各第1の鋼製ストランド62aは、心線621と、この心線621の外周に巻き付けられた12本の第1の側線622と、さらにその外周に巻き付けられた12本の第2の側線623を有する。ここで、心線621は高強度合成繊維からなり、第1の側線622と第2の側線623はいずれも鋼線からなる。
 第2の鋼線層64は、第1の繊維層13の外周に、18本の第2の鋼製ストランド64aが巻き付けられている。各第2の鋼製ストランド64aは、心線641と、この心線641の外周に巻き付けられた12本の第1の側線642と、さらにその外周に巻き付けられた12本の第2の側線643を有する。ここで、心線641は高強度合成繊維からなり、第1の側線642と第2の側線643はいずれも鋼線からなる。第6の実施の形態においては、この第2の鋼線層64が、エレベータ用ロープ600の最外層に位置し、外部に露出している。
 以上説明したように、エレベータ用ロープ600は、各第1の鋼製ストランド62aの内部に高強度合成繊維からなる心線621を備えるとともに、各第2の鋼製ストランド64aの内部に高強度合成繊維からなる心線641を備えている。これにより、第1の鋼製ストランド62a又は第2の鋼製ストランド64aの内部に鋼線からなる心線を有する場合に比べて、高強度合成繊維の使用量を増やして軽量化を図ることができる。
 なお、上記第6の実施の形態においては、第1の鋼線層62を構成する第1の鋼製ストランド62aと、第2の鋼線層64を構成する第2の鋼製ストランド64aの両方において、内部に高強度合成繊維からなる心線を備えた場合について説明したが、片方においてのみ内部に高強度合成繊維からなる心線を備えるようにしてもよい。
 また、各第1の鋼製ストランド62aにおいて、心線621を被覆する樹脂製の被覆体を設けるようにしてもよい。これにより、心線621と第1の側線622が直接接触することによる心線621の摩耗を抑制することができる。また、各第2の鋼製ストランド64aにおいて、心線641を被覆する樹脂製の被覆体を設けるとうにしてもよい。これにより、心線641と第1の側線642が直接接触することによる心線641の摩耗を抑制することができる。
 [第6の実施の形態の変形例]
 以下、第6の実施の形態の変形例であるエレベータ用ロープ601について説明する。図14はエレベータ用ロープ601の長手方向に垂直な断面を示す断面図である。図14に示すように、エレベータ用ロープ601は、最外層として樹脂製の被覆層68を備えている点において第6の実施の形態と相違する。すなわち、第6の実施の形態に係るエレベータ用ロープ600においては、第2の鋼線層64がエレベータ用ロープ600の最外層として外部に露出している。これに対し、この変形例に係るエレベータ用ロープ601においては、第2の鋼線層64の外周が被覆層68により被覆されている。これにより、エレベータ用ロープ601は耐摩耗性が向上し、耐久性が向上する。
 被覆層68は、互いに隣接する第2の鋼製ストランド64aの間に入り込んでいる。被覆層68の材料としては、綱車との間のトラクション能力を確保するため、十分な摩擦係数を有する樹脂、例えばエラストマー系樹脂,ポリウレタンなどを用いる。
 上記第1、3~6の各実施の形態では、エレベータ用ロープの大径化の際に高強度合成繊維の使用量を増やして軽量化を実現できる構造として、繊維芯、第1の鋼線層、第1の繊維層及び第2の鋼線層を順に備えている場合について説明している。この構造では、高強度繊維の層は繊維芯を含めて実質2層となる。また、上記第2の実施の形態では、さらに第2の繊維層と第3の鋼線層を備えている場合について説明している。この構造では、高強度繊維の層は繊維芯を含めて実質3層となる。繊維層と鋼線層の数は、エレベータ用ロープの大径化の程度に応じて適宜増やすことができる。
 また、上記第3~6の各実施の形態に記載の特徴的構成は、第2の実施の形態に記載のような繊維層と鋼線層が1層ずつ追加された構造の場合や、エレベータ用ロープの大径化の程度に応じて繊維層と鋼線層をさらに増やした構造の場合に適用することができる。
 また、上記各実施の形態においては、高強度合成繊維からなる層と鋼線からなる層とが隣接する複数箇所の少なくとも1箇所に緩衝層を備えるようにしてもよい。これにより、緩衝層を備えた箇所では、隣接する層同士が直接接触することによる高強度合成繊維からなる層の摩耗を抑制できる。
 11、21  繊維芯
 12、22、52、62  第1の鋼線層
 12a、22a、62a  第1の鋼製ストランド
 52a  鋼線
 13、23  第1の繊維層
 14、24、64   第2の鋼線層
 14a、24a、64a  第2の鋼製ストランド
 18、28、38,48,58,68  被覆層
 25   第2の繊維層
 26   第3の鋼線層
 26a  第3の鋼製ストランド
 37a  第1の緩衝層
 37b  第2の緩衝層
 37c  第3の緩衝層
 49   被覆体
 100,101、200、201、300、301、400、401、500、501、600、601  エレベータ用ロープ
 621、641  心線
 622、642  第1の側線
 623、643  第2の側線

Claims (8)

  1.  高強度合成繊維からなる繊維芯と、      
     複数の鋼線を撚り合わせた第1の鋼製ストランド又は単一の鋼線を、前記繊維芯の外周に複数本巻き付けてなる第1の鋼線層と、
     前記第1の鋼線層の外周に配置された高強度合成繊維からなる第1の繊維層と、
     複数の鋼線を撚り合わせた第2の鋼製ストランド又は単一の鋼線を、前記第1の繊維層の外周に複数本巻き付けてなる第2の鋼線層と
    を備えたエレベータ用ロープ。
  2.  前記繊維芯は、複数の高強度合成繊維の束を撚り合わせてなる請求項1記載のエレベータ用ロープ。
  3.  前記第1の鋼製ストランドは、心線と、当該心線の外周に巻き付けられた複数本の側線からなり、前記心線と前記側線はいずれも鋼線からなる請求項1または2記載のエレベータ用ロープ。
  4.  前記第1の鋼製ストランドにおいて、鋼線からなる前記心線に代えて、高強度合成繊維からなる心線を備えた請求項3記載のエレベータ用ロープ。
  5.  前記繊維芯と前記第1の鋼線層の間、前記第1の鋼線層と前記第1の繊維層の間、及び前記第1の繊維層と前記第2の鋼線層との間の少なくとも一箇所に樹脂からなる緩衝層を備えた請求項1から4のいずれか一項記載のエレベータ用ロープ。
  6.  前記第2の鋼線層の外周に配置された高強度合成繊維からなる第2の繊維層と、
     複数の鋼線を撚り合わせた第3の鋼製ストランドを前記第2の繊維層の外周に複数本巻き付けてなる第3の鋼線層と
    をさらに備えた請求項1から5のいずれか一項記載のエレベータ用ロープ。
  7.  前記第2の鋼線層と前記第2の繊維層の間、及び前記第2の繊維層と前記第3の鋼線層の間の少なくとも一箇所に樹脂からなる緩衝層を備えた請求項6記載のエレベータ用ロープ。
  8.  最外層として樹脂製の被覆層を備えた請求項1から7のいずれか一項記載のエレベータ用ロープ。
PCT/JP2020/038790 2020-10-14 2020-10-14 エレベータ用ロープ WO2022079835A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080105932.6A CN116348407A (zh) 2020-10-14 2020-10-14 电梯用绳索
PCT/JP2020/038790 WO2022079835A1 (ja) 2020-10-14 2020-10-14 エレベータ用ロープ
JP2022556756A JP7321390B2 (ja) 2020-10-14 2020-10-14 エレベータ用ロープ
DE112020007682.2T DE112020007682T5 (de) 2020-10-14 2020-10-14 Aufzugseil
KR1020237012080A KR20230066069A (ko) 2020-10-14 2020-10-14 엘리베이터용 로프

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038790 WO2022079835A1 (ja) 2020-10-14 2020-10-14 エレベータ用ロープ

Publications (1)

Publication Number Publication Date
WO2022079835A1 true WO2022079835A1 (ja) 2022-04-21

Family

ID=81207841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038790 WO2022079835A1 (ja) 2020-10-14 2020-10-14 エレベータ用ロープ

Country Status (5)

Country Link
JP (1) JP7321390B2 (ja)
KR (1) KR20230066069A (ja)
CN (1) CN116348407A (ja)
DE (1) DE112020007682T5 (ja)
WO (1) WO2022079835A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046462A (ja) * 2009-08-26 2011-03-10 Toshiba Elevator Co Ltd エレベータ装置およびエレベータ用ワイヤロープ
WO2014033853A1 (ja) * 2012-08-29 2014-03-06 三菱電機株式会社 エレベータ用ロープ及びそれを用いたエレベータ装置
WO2017138228A1 (ja) * 2016-02-10 2017-08-17 三菱電機株式会社 エレベータロープ及びその製造方法
CN209114237U (zh) * 2018-09-28 2019-07-16 天津市金鼎线材制品科技开发股份有限公司 一种耐高温型航空用金属绳
CN110846913A (zh) * 2019-11-26 2020-02-28 江苏赛福天钢索股份有限公司 一种高分子绳芯起重用钢丝绳

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628533B2 (ja) 2015-09-28 2020-01-08 キヤノン株式会社 移動装置、切断装置、およびプリント装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046462A (ja) * 2009-08-26 2011-03-10 Toshiba Elevator Co Ltd エレベータ装置およびエレベータ用ワイヤロープ
WO2014033853A1 (ja) * 2012-08-29 2014-03-06 三菱電機株式会社 エレベータ用ロープ及びそれを用いたエレベータ装置
WO2017138228A1 (ja) * 2016-02-10 2017-08-17 三菱電機株式会社 エレベータロープ及びその製造方法
CN209114237U (zh) * 2018-09-28 2019-07-16 天津市金鼎线材制品科技开发股份有限公司 一种耐高温型航空用金属绳
CN110846913A (zh) * 2019-11-26 2020-02-28 江苏赛福天钢索股份有限公司 一种高分子绳芯起重用钢丝绳

Also Published As

Publication number Publication date
JPWO2022079835A1 (ja) 2022-04-21
DE112020007682T5 (de) 2023-07-27
JP7321390B2 (ja) 2023-08-04
KR20230066069A (ko) 2023-05-12
CN116348407A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
KR100656726B1 (ko) 로프 시브에 의해 구동되는 합성 섬유 로프
AU756246B2 (en) Stranded synthetic fiber rope
AU758414B2 (en) Sheathless synthetic fiber rope
US7086217B2 (en) Rope of synthetic fiber with reinforcement element for frictionally engaged power transmission and rope of synthetic fiber with reinforcement element for positively engaged power transmission
KR100680926B1 (ko) 엘리베이터용 로프
KR101665837B1 (ko) 엘리베이터용 로프
EP1586526B1 (en) Elevator rope
WO2011145224A1 (ja) ハイブリッドロープおよびその製造方法
SK286081B6 (sk) Dopravné lano
WO2006061888A1 (ja) エレベータ用ロープ及びエレベータ装置
EP2776354B1 (en) Elevator system belt
JPH10140490A (ja) 繊維芯入りワイヤロープ
WO2022079836A1 (ja) エレベータ用ロープ及びその製造方法
WO2022079835A1 (ja) エレベータ用ロープ
JP7357803B2 (ja) ベルト、その製造方法、及びエレベーター
WO2019180783A1 (ja) エレベータロープ
EP1329413A1 (en) Hoisting rope
JP4034629B2 (ja) ハイブリッドロープ
US2022683A (en) Rope
KR200224820Y1 (ko) 코어와의 접촉압이 완화된 와이어 로프
JP2002060163A (ja) エレベータ用繊維ロープ
WO2024154350A1 (ja) エレベーターロープ及びそれを用いたエレベーターベルト
WO2022097296A1 (ja) 複合ストランド、その製造方法、ロープ、ベルト、及びエレベーター
CN218404830U (zh) 一种起重机高强度钢丝绳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556756

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237012080

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20957664

Country of ref document: EP

Kind code of ref document: A1