WO2022078427A1 - 制备过氧化氢的方法和系统 - Google Patents

制备过氧化氢的方法和系统 Download PDF

Info

Publication number
WO2022078427A1
WO2022078427A1 PCT/CN2021/123748 CN2021123748W WO2022078427A1 WO 2022078427 A1 WO2022078427 A1 WO 2022078427A1 CN 2021123748 W CN2021123748 W CN 2021123748W WO 2022078427 A1 WO2022078427 A1 WO 2022078427A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
hydrogenation
reactor
hydrogenated
slurry
Prior art date
Application number
PCT/CN2021/123748
Other languages
English (en)
French (fr)
Inventor
高国华
田雅楠
杨克勇
宗保宁
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020237016293A priority Critical patent/KR20230085199A/ko
Priority to US18/248,794 priority patent/US20230382731A1/en
Priority to EP21879470.9A priority patent/EP4230576A1/en
Priority to CA3198655A priority patent/CA3198655A1/en
Priority to JP2023523091A priority patent/JP2023545523A/ja
Publication of WO2022078427A1 publication Critical patent/WO2022078427A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present application relates to the field of hydrogen peroxide preparation, in particular to a method and system for preparing hydrogen peroxide.
  • Hydrogen peroxide also known as hydrogen peroxide
  • Hydrogen peroxide is a green chemical product. Its production and use process is almost pollution-free, so it is called a "clean" chemical product. It is used as an oxidant, bleach, disinfectant, deoxidizer, and polymer initiator. And cross-linking agent, widely used in chemical industry, papermaking, environmental protection, electronics, food, medicine, textile, mining, agricultural waste processing and other industries.
  • the anthraquinone method is the mainstream method for industrial hydrogen peroxide production, and more than 99% of the global industrial hydrogen peroxide is produced by the anthraquinone method in terms of output.
  • the known anthraquinone method usually includes steps such as hydrogenation, oxidation, extraction and post-processing of circulating working fluid, wherein the working fluid containing alkyl anthraquinone and hydrogen undergo hydrogenation reaction in a hydrogenation reactor equipped with a catalyst to generate the corresponding hydrogenation reaction.
  • Anthraquinone the obtained solution is called hydrogenation liquid;
  • the hydrogenation liquid is oxidized in an oxygen-containing atmosphere (such as air) in an oxidation reactor to restore the hydrogenated anthraquinone to the original alkyl anthraquinone, and at the same time generate hydrogen peroxide, the obtained solution It is called oxidizing liquid; using the difference in solubility of hydrogen peroxide in water and working liquid and the density difference between working liquid and water, the hydrogen peroxide in the oxidizing liquid is extracted with pure water to obtain an aqueous hydrogen peroxide solution;
  • the working fluid also known as the extraction liquid
  • the commonly used post-treatment processes in China include drying and dehydration of K 2 CO 3 solution to decompose H 2 O 2 and sedimentation to separate alkali, and then regenerate the degradation products by adsorption of activated alumina in the clay bed.
  • the domestic hydrogen peroxide production technology adopts the fixed bed hydrogenation process. Although the operation is simple and the catalyst does not need to be separated, there are also many defects:
  • the catalyst is easily deactivated and must be periodically regenerated or replaced, which not only consumes steam, but also causes the loss of working fluid and catalyst precious metals. At present, in the domestic fixed-bed hydrogenation process, the catalyst needs to be regenerated with steam once every 3-6 months.
  • the working fluid is easily degraded.
  • a large amount of activated alumina is used to continuously regenerate the circulating working fluid.
  • the activated alumina needs to be replaced frequently, resulting in a large amount of solid hazardous waste, resulting in the loss of the working fluid.
  • the production of 1 ton of hydrogen peroxide product consumes 5 kg of activated alumina, which will result in a loss of 3 kg of working fluid.
  • the use of slurry bed hydrogenation process can greatly improve the production efficiency of the device, reduce the amount of catalyst and circulating working fluid, reduce production costs, improve hydrogenation efficiency (>10g/L), and can offset the decline in catalyst activity by continuously introducing and withdrawing catalyst. .
  • the slurry bed process makes the hydrogenation reaction of anthraquinone uniform, it avoids the formation of local hot spots in the reaction process and causes the degradation of the working fluid.
  • Chinese Patent No. CN1233451C discloses a continuous operating slurry-bed process reactor.
  • the reactor includes one or more layers of heat exchange tube parts for heating/cooling the bed, and one or more layers of heat-exchange tube parts that can be cleaned automatically.
  • Liquid-solid separator components Liquid-solid separator components.
  • the structure of the reactor is complex, and a large number of supports need to be arranged in the reactor.
  • the reactor is similar to a plug flow. Although multi-layer heat exchange components are arranged, there will still be a bed temperature difference.
  • the liquid-solid separation component is located inside the reactor, which is not easy to dismantle and inspect. Once it needs to be dismantled and cleaned, the whole device needs to be shut down, and the flexibility is poor.
  • Chinese Patent No. CN1108984C discloses a method for regenerating working fluid. At least a part of the unreduced working solution is contacted with a catalyst mainly containing ⁇ -alumina at 40-150°C to realize the regeneration of by-products in the working fluid. If the regeneration of the working fluid is placed before the "unreduced", that is, before hydrogenation, the catalyst of ⁇ -alumina will inevitably generate a considerable amount of fine powder, which will block the filter once it enters the slurry bed reactor; and the working fluid is at 40 °C. Contact with the ⁇ -alumina catalyst at -150°C will not only regenerate the hydrogenation by-products, but also lead to secondary side reactions. The by-products entering the slurry bed reactor are likely to affect the hydrogenation catalyst. active.
  • Chinese Patent No. CN204237558U discloses a post-processing device for anthraquinone method hydrogen peroxide production process, the processing device includes an alkali tower and a vacuum dryer.
  • Chinese Patent Application No. CN1334235A discloses a post-processing technology for producing hydrogen peroxide by anthraquinone method, which adopts quantitative alkali injection to neutralize the acidity of the working liquid returned to hydrogenation, ensures the alkalinity required for hydrogenation, and decomposes part of the working liquid at the same time. Hydrogen peroxide; then dried under vacuum to remove moisture. Both of these two post-processing technologies need to introduce lye into the system, which is poor in safety and has serious potential safety hazards.
  • the purpose of this application is to provide a method and system for preparing hydrogen peroxide, which can overcome one or more defects in the above-mentioned prior art, for example, the temperature difference of the reactor bed can be basically eliminated, and the selectivity and device efficiency and hydrogenation efficiency, and/or prolong the life of the hydrogenation catalyst; at the same time, the system can also eliminate the serious safety hazard caused by the alkali string, simplify the device and effectively improve the safety of the system.
  • the present application provides a method for preparing hydrogen peroxide, comprising the following steps:
  • the working liquid containing the alkyl anthraquinone is fed into the hydrogenation reactor, and the alkyl anthraquinone is subjected to a hydrogenation reaction in the presence of hydrogenation catalyst particles and hydrogen to obtain a hydrogenated anthraquinone containing hydrogenated anthraquinone, a by-product and an additive; a slurry of hydrogen catalyst particles, recovering the hydrogenation catalyst particles from the slurry to obtain a circulating slurry rich in hydrogenation catalyst particles and a hydrogenation liquid substantially free of hydrogenation catalyst particles, and returning the circulating slurry to the hydrogenation reactor;
  • the volume flow ratio of the circulating slurry to the working fluid is 6-20:1;
  • the mass flow ratio of the first hydrogenated liquid to the second hydrogenated liquid is 10-50:50-90.
  • the step 1) further comprises: first cooling the circulating slurry to obtain a first cooling liquid, and then returning the first cooling liquid to the hydrogenation reactor. More preferably, the temperature of the first cooling liquid is 40-70°C.
  • Another aspect of the present application provides a system for preparing hydrogen peroxide, comprising a hydrogenation unit, a regeneration unit, an oxidation unit and a separation unit;
  • the hydrogenation unit is configured to carry out a hydrogenation reaction of the working liquid containing the alkyl anthraquinone in the presence of hydrogenation catalyst particles and hydrogen gas to obtain a slurry containing the hydrogenated anthraquinone, by-products and hydrogenation catalyst particles, and recover the obtained slurry from the obtained slurry.
  • the hydrogenation catalyst particles are obtained to obtain a circulating slurry rich in the hydrogenation catalyst particles and a hydrogenation liquid substantially free of the hydrogenation catalyst particles, and the circulating slurry is recycled;
  • the regeneration unit is configured to regenerate a portion of the hydrogenated liquid to convert at least a portion of the by-products contained therein into alkylanthraquinone to obtain a regenerated hydrogenated liquid;
  • the oxidation unit is configured to contact the remaining part of the hydrogenated liquid and the regenerated hydrogenated liquid with an oxygen-containing gas to carry out an oxidation reaction to obtain an oxidized liquid containing hydrogen peroxide and an alkylanthraquinone;
  • the separation unit is configured to extract and separate the oxidized liquid to obtain an extract containing hydrogen peroxide and an extract containing an alkylanthraquinone, and return the extract to the hydrogenation unit.
  • the circulating slurry is returned at a specific mass flow ratio and mixed into the working fluid, especially the circulating slurry after the first cooling is returned to the slurry bed reactor, which makes the state in the reactor close to full mixed flow, basically Eliminate the temperature difference of the reactor bed, improve the hydrogenation reaction selectivity, device efficiency and hydrogenation efficiency, especially the hydrogenation efficiency is as high as 10-18g/L;
  • the hydrogenation reaction of alkyl anthraquinone is carried out first, and then the partial hydrogenation liquid is regenerated, which can prevent the regenerated catalyst dust from entering the slurry bed reactor, and then block the filter and prevent secondary by-products.
  • Reduce the hydrogenation catalyst activity prolong the life of the hydrogenation catalyst, and reduce the cost loss caused by the regeneration of the deactivated catalyst;
  • the regeneration effect of the working fluid can be ensured by passing the hydrogenated liquid of 10-50% mass flow through the regeneration reactor, and the work of 40-80% mass flow is also reduced while ensuring the high hydrogenation efficiency of the device.
  • the amount of regenerated catalyst used in liquid regeneration greatly reduces the generation of waste and solids, and greatly improves the economy and environmental protection of the device;
  • the method and system of the present application completely cancel the alkali tower, provide a fully acidic environment of the device, and at the same time ensure the stability of the slurry bed hydrogenation reaction, eliminate the serious safety hazard caused by the system string alkali, and greatly improve the production of hydrogen peroxide
  • the intrinsic safety of the device especially the effective utilization of the removal liquid, water and/or organic matter obtained by vacuum drying at least part of the extract, which is both effective and environmentally friendly.
  • FIG. 1 is a schematic diagram of a preferred embodiment of the hydrogen peroxide preparation method and system of the present application
  • Figure 2 is a schematic diagram of a further preferred embodiment of the hydrogen peroxide production method and system of the present application.
  • any specific numerical value disclosed herein, including the endpoints of a numerical range, is not limited to the precise value of the numerical value, but is to be understood to encompass values approximating the precise value, such as within ⁇ 5% of the precise value. all possible values. And, for the disclosed numerical range, between the endpoint values of the range, between the endpoint values and the specific point values in the range, and between the specific point values, one or more new values can be obtained in any combination. Numerical ranges, these new numerical ranges should also be considered to be specifically disclosed herein.
  • the "hydrogenation efficiency" is expressed as the ratio of the weight of hydrogen peroxide obtained after the oxidation of the hydrogenation solution to the volume of the working solution, in g/L; that is, it is assumed that the hydrogenation during the oxidation process When the conversion rate and yield of the hydrogenated anthraquinone contained in the liquid are 100%, the amount (g) of hydrogen peroxide obtained when the oxidation process of 1 L working liquid is completed.
  • the given pressure values are all gauge pressures.
  • any matter or matter not mentioned is directly applicable to those known in the art without any change.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby are regarded as part of the original disclosure or original record of the present invention, and should not be It is considered to be new content not disclosed or anticipated herein, unless a person skilled in the art considers that the combination is obviously unreasonable.
  • the application provides a method for preparing hydrogen peroxide, comprising the following steps:
  • the working liquid containing the alkyl anthraquinone is fed into the hydrogenation reactor, and the alkyl anthraquinone is subjected to a hydrogenation reaction in the presence of hydrogenation catalyst particles and hydrogen to obtain a hydrogenated anthraquinone containing hydrogenated anthraquinone, a by-product and an additive; a slurry of hydrogen catalyst particles, recovering the hydrogenation catalyst particles from the slurry to obtain a circulating slurry rich in hydrogenation catalyst particles and a hydrogenation liquid substantially free of hydrogenation catalyst particles, and returning the circulating slurry to the hydrogenation reactor;
  • the working solution is a solution prepared by dissolving an alkylanthraquinone compound in an organic solvent, wherein the alkylanthraquinone compound may be those commonly used in the art, which is not strictly enforced in the present application. limits.
  • the alkylanthraquinone compound may be selected from 2-alkyl-9,10-anthraquinone (ie, 2-alkylanthraquinone), 9,10-dialkylanthraquinone (ie, dialkyl anthraquinone). anthraquinone), and at least one of their respective 5,6,7,8-tetrahydro derivatives.
  • the alkyl group can be a C1-C5 alkyl group, and non-limiting examples thereof include: methyl, ethyl, sec-butyl, tertiary Butyl, tert-amyl and isopentyl; in the 9,10-dialkylanthraquinone, the two alkyl groups may be the same or different, and are independently selected from C1-C5 alkyl groups, such as From methyl, ethyl and tert-butyl.
  • the two alkyl groups on the 9,10-dialkylanthraquinone can be 1,3-dimethyl, 1,4-dimethyl, 2,7-dimethyl, 1,3-dimethyl -diethyl, 2,7-di(tert-butyl) or 2-ethyl-6-tert-butyl.
  • the organic solvent used in the working solution can be those conventionally used in the art, which is not strictly limited in the present application.
  • the organic solvent is a mixture of non-polar and polar compounds.
  • the non-polar compound can be a petroleum fraction with a boiling point higher than 140°C, and its main components are aromatic hydrocarbons (heavy aromatic hydrocarbons) above C9, such as isomers of trimethylbenzene, tetramethylbenzene isomers, tert-butylbenzene, methylnaphthalene isomers and dimethylnaphthalene isomers.
  • the polar compound is selected from the group consisting of saturated alcohols, carboxylate esters, phosphate esters, tetra-substituted ureas, and various combinations thereof.
  • the saturated alcohol is usually a C7-C11 saturated alcohol, non-limiting examples of which include: diisobutylmethanol, 3,5,5-trimethylhexanol, isoheptanol.
  • the carboxylic acid ester is, for example, at least one of methylcyclohexyl acetate, heptyl acetate, butyl benzoate and ethyl heptanoate.
  • the phosphate is, for example, at least one of trioctyl phosphate, tri-2-ethylbutyl phosphate, tri-2-ethylhexyl phosphate and tri-n-octyl phosphate.
  • the tetra-substituted urea is, for example, tetra-n-butylurea.
  • the hydrogenation catalyst can be any suitable suspension catalyst system conventionally used in the art, for example, the hydrogenation catalyst can be selected from supported catalysts and/or unsupported catalysts, preferably supported catalysts catalyst.
  • the supported catalyst comprises a support and an active metal, the active metal is selected from the group VIII metals, the group IB metals, the group IIB metals or various combinations thereof, preferably selected from platinum, rhodium, palladium , cobalt, nickel, ruthenium, copper, rhenium or their various combinations;
  • the carrier is selected from activated carbon, silicon carbide, aluminum oxide, silicon oxide, silicon dioxide, titanium dioxide, zirconium dioxide, magnesium oxide, zinc oxide, carbonic acid Calcium, barium sulfate or various combinations thereof, preferably selected from alumina, silica or combinations thereof. More preferably, based on the weight of the hydrogenation catalyst, the active metal content of the hydrogenation catalyst is 0.01-30 wt%, preferably 0.01-5 wt%, more
  • the particle diameter of the hydrogenation catalyst is 0.1-5000 ⁇ m, preferably 0.1-500 ⁇ m, more preferably 1-200 ⁇ m.
  • step 1) the alkylanthraquinone compound in the working fluid is subjected to hydrogenation reaction with hydrogen in the presence of hydrogenation catalyst particles to obtain a slurry comprising hydrogenated anthraquinone, by-products and hydrogenation catalyst particles, wherein
  • the hydrogenated anthraquinone refers to a hydrogenation product that can generate hydrogen peroxide through oxidation, such as ethylhydroanthraquinone
  • the by-product refers to a hydrogenated product that cannot generate hydrogen peroxide through oxidation, such as tetrahydroalkylanthracene Quinones, octahydroalkylanthraquinones, decahydroalkylanthraquinones, alkylhydroxyanthraquinones, alkylanthraquinones, and the like.
  • the hydrogenation reaction described in step 1) is carried out in a slurry bed reactor.
  • the application does not have strict requirements on the specific form of the slurry bed reactor, for example, it can be a reactor that provides a driving force for slurry circulation in known forms such as mechanical stirring tank and gas lift.
  • the conditions of the hydrogenation reaction in step 1) include: the pressure is 0.03-0.35MPa, preferably 0.05-0.2MPa; the temperature is 40-70°C, preferably 45-65°C; the working fluid
  • the mass flow ratio to the hydrogenation catalyst is 25-700:1, preferably 30-500:1; the standard volume flow ratio of hydrogen to the volume flow ratio of the working liquid is 4-14:1, preferably 5-10:1.
  • the volume flow ratio of the circulating slurry to the working fluid in step 1) is 6-20:1, preferably 8-18:1, more preferably 12-18:1, for example, 12-15:1.
  • the slurry can be separated into a solid-liquid to obtain a hydrogenated liquid and a circulating slurry, wherein the hydrogenated liquid is composed of The organic solution of hydrogenated anthraquinone compounds and hydrogenation by-products and substantially free of hydrogenation catalyst particles, and the circulating slurry is an organic slurry rich in the hydrogenation catalyst particles, except for the hydrogenation catalyst particles, the composition of which may be the same as that of the hydrogenation catalyst particles.
  • the hydrogenation liquid is the same.
  • each filter is provided with an independent filter pressure difference detection and automatic backflushing switching valve, and the automatic backflushing between multiple filters is realized by using the filter pressure difference.
  • the filter media in the automatic backwash filter can be made of any known filter material such as ceramics, porous metals such as sintered stainless steel, or other materials.
  • the pore size of the filter medium should not allow the hydrogenation catalyst particles to pass through, so its size depends on the average particle size and particle size distribution of the hydrogenation catalyst particles.
  • the pore size of the filter medium may be in the range of 0.1-200 ⁇ m, preferably 0.5-100 ⁇ m, more preferably 0.5-50 ⁇ m.
  • the backflushing fluid used in the automatic backflushing filter can be a liquid or a gas, preferably a liquid.
  • the liquid may be fresh working liquid and/or filtered hydrogenated liquid, preferably filtered hydrogenated liquid.
  • the hydrogenation reaction in step 1) further obtains a hydrogen-containing tail gas, that is, the hydrogen-containing gas remaining after the hydrogenation reaction, and the step 1) further comprises discharging the hydrogen-containing tail gas and/or After being compressed, it is returned to the hydrogenation reactor, preferably, the hydrogen-containing tail gas is compressed and then returned to the hydrogenation reactor, for example, the hydrogen-containing tail gas is compressed and then returned to the hydrogen feed.
  • a hydrogen-containing tail gas that is, the hydrogen-containing gas remaining after the hydrogenation reaction
  • the step 1) further comprises discharging the hydrogen-containing tail gas and/or After being compressed, it is returned to the hydrogenation reactor, preferably, the hydrogen-containing tail gas is compressed and then returned to the hydrogenation reactor, for example, the hydrogen-containing tail gas is compressed and then returned to the hydrogen feed.
  • the temperature of the circulating slurry in order to further reduce the bed temperature of the hydrogenation reactor, can be adjusted to be the same as the temperature of the hydrogenation reaction.
  • the step 1) further comprises: first cooling the circulating slurry to obtain a first cooling liquid, and then returning the first cooling liquid to the hydrogenation reactor; further preferably, the The temperature of the first cooling liquid is 40-70°C, preferably 45-65°C.
  • step 2) the first hydrogenation liquid (herein also referred to as liquid A) is contacted and reacted with the regenerated catalyst, and at least a part of by-products generated by the hydrogenation reaction of alkylanthraquinone in liquid A are reacted
  • the regeneration is converted into an alkyl anthraquinone compound, thereby obtaining a regeneration hydrogenation liquid.
  • the mass flow ratio of the first hydrogenated liquid (ie, A liquid) to the second hydrogenated liquid (herein also referred to as B liquid) is 10-50:50-90, more Preferably it is 15-40:60-85, More preferably, it is 15-30:70-85, for example, it is 15-25:75-85.
  • the use of the above-mentioned specific mass flow ratio of liquid A and liquid B is beneficial to ensure the regeneration efficiency of the working liquid, ensure the long-term stable operation of the device with high hydrogenation efficiency, and at the same time reduce the amount of regenerated catalyst used for regeneration of the working liquid and reduce waste solids. production.
  • the regeneration reaction of step 2) is carried out in a regeneration reactor selected from a fixed bed reactor, a slurry bed reactor or a combination thereof.
  • the regenerated catalyst may be various regenerated catalysts commonly used in the art, which is not strictly limited in the present application, as long as the liquid A can be converted into a regenerated hydrogenated liquid.
  • the regenerated catalyst is selected from modified alumina, modified molecular sieve or a combination thereof.
  • the regeneration catalyst when the regeneration reactor is a fixed bed reactor, the regeneration catalyst is modified alumina, and the modified alumina may be selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals At least one metal-modified alumina; when the regeneration reactor is a slurry bed reactor, the regeneration catalyst is a modified molecular sieve, and the modified molecular sieve can be made of alkali metals, alkaline earth metals and At least one metal-modified molecular sieve of rare earth metals.
  • the conditions of the regeneration reaction include: a temperature of 60-120° C., preferably 80-100° C.; a pressure of 0.05-0.5 MPa, preferably 0.05-0.3 MPa; The mass ratio is 0.1-10:1, preferably 0.3-5:1.
  • the above-mentioned preferred reaction conditions are favorable for promoting the regeneration reaction of A liquid.
  • the step 2) further comprises: exchanging the A liquid with at least a part of the regenerated hydrogenation liquid to obtain a heat exchange liquid, and then performing a heat exchange operation on the obtained heat exchange liquid.
  • Regeneration reaction wherein in the heat exchange process, the A liquid is heated, and the regenerated hydrogenation liquid is cooled down, and the heat exchange liquid refers to the heated A liquid.
  • the step 2) further comprises: heating the heat exchange liquid before performing the regeneration reaction.
  • the purpose of exchanging and heating the liquid A is to make it reach the conditions of regeneration reaction, thereby saving steam consumption.
  • the oxygen content in the oxygen-containing gas used in step 3) is 20-100% by volume.
  • the oxygen-containing gas may be selected from oxygen, air, or a mixture of oxygen and an inert gas, and the inert gas may be selected from at least one of nitrogen, helium, argon, and neon, preferably nitrogen.
  • the oxygen-containing gas is air.
  • step 3 the B liquid and the regenerated hydrogenation liquid are contacted and reacted with oxygen in the oxygen-containing gas, wherein the hydrogenated anthraquinone is oxidized to obtain alkylanthraquinone and hydrogen peroxide, thereby obtaining the oxidized liquid .
  • the oxidation reaction of step 3) is carried out in an oxidation reactor, and the oxidation reactor can be selected from a bubble column, a packed column, a tray column and a stirred tank.
  • the conditions of the oxidation reaction in step 3) include: the temperature is 30-60°C, preferably 40-55°C; the pressure is 0.1-0.5MPa, preferably 0.2-0.5MPa.
  • the above-mentioned preferred reaction conditions are more favorable for the oxidation reaction of the hydrogenation liquid to increase the hydrogen peroxide content in the oxidation liquid.
  • the step 3) further comprises: before the oxidation reaction, combining the B liquid and the regenerated hydrogenation liquid to obtain a mixed liquid, and performing a The second cooling is obtained to obtain the second cooling liquid.
  • the temperature of the second cooling liquid is 40-55°C, preferably 40-50°C.
  • the mixed liquid obtained by combining the B liquid and the regenerated hydrogenation liquid or the second cooling liquid is preferably subjected to the oxidation reaction under slightly acidic conditions.
  • the step 3) further comprises: before the oxidation reaction, mixing the mixed liquid or the second cooling liquid with a first pH adjuster to obtain a adjusting liquid, wherein the first
  • the pH adjuster may be selected from organic acids, inorganic acids or combinations thereof, preferably inorganic acids.
  • the inorganic acid is preferably selected from phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid or a combination thereof, more preferably phosphoric acid.
  • the acid content is 1-10 mg/L, preferably 3-7 mg/L.
  • there is no strict limitation on the amount of the first regulator as long as the acid content in the regulator solution can meet the above requirements.
  • the first pH adjusting agent exists in the form of an aqueous solution, further preferably, the mass concentration of the inorganic acid and/or organic acid in the first pH adjusting agent aqueous solution is 40-90%.
  • the step 3) further comprises: before the oxidation reaction, filtering the mixed liquid, the second cooling liquid or the conditioning liquid obtained by combining the B liquid and the regenerated hydrogenation liquid .
  • the purpose of the filtration is to remove the fine catalyst particles contained in the hydrogenation liquid entering the oxidation reactor, especially the hydrogenation catalyst particles formed by abrasion, so as to ensure that the amount of solid particles therein does not exceed 10 mg/L, thereby ensuring that Safety of oxidation reactors.
  • the oxidation reaction in the step 3) also obtains an oxygen-containing tail gas, that is, the oxygen-containing gas remaining after the oxidation reaction, and the step 3) further comprises discharging the oxygen-containing tail gas and/or Or it is compressed and returned to the oxidation reactor, preferably, the oxygen-containing tail gas is directly discharged after being subjected to tail gas treatment.
  • the exhaust gas treatment can be condensation, carbon fiber adsorption, etc. to recover organic matter, or direct incineration.
  • the oxidizing liquid is contacted with an extractant to perform liquid-liquid extraction to obtain an extract containing hydrogen peroxide and an extract containing alkylanthraquinone.
  • the extraction agent is water
  • the extraction solution is an aqueous hydrogen peroxide solution.
  • the extraction in step 4) is carried out in an extraction column.
  • the oxidation solution is preferably extracted under slightly acidic conditions.
  • the extraction agent used in step 4) comprises water and a second pH adjusting agent, the second pH adjusting agent is selected from organic acids, inorganic acids or combinations thereof, preferably inorganic acids.
  • the inorganic acid is preferably selected from phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid or a combination thereof, more preferably phosphoric acid.
  • the acid content in the extractant is 100-200 ppm, preferably 120-180 ppm.
  • the amount of the second pH adjuster is not strictly limited, as long as the acid content in the extractant can meet the above requirements.
  • the second pH adjusting agent exists in the form of an aqueous solution, and the mass concentration of the inorganic acid and/or organic acid in the aqueous solution of the second pH adjusting agent is 40-90%.
  • the extraction conditions include: a temperature of 25-60° C., preferably 40-50° C.; a pressure of 0.01-0.15 MPa, preferably 0.05-0.12 MPa.
  • the step 4) further includes: before the extraction, the oxidation liquid is subjected to a third cooling to obtain a third cooling liquid.
  • the temperature of the third cooling liquid is 40-55°C, preferably 40-50°C.
  • the extract obtained in step 4) can be recycled back to step 1) as a part of the working solution for hydrogenation.
  • the step 4) further comprises: vacuum-drying at least 10% of the extract liquid by mass flow to obtain a removal liquid, and returning the removal liquid and the remaining extract liquid to the The hydrogenation reactor; further preferably, at least 30% mass flow of the extract is vacuum-dried.
  • the circulating working liquid refers to the extract liquid; when the extract liquid with at least 10% mass flow rate is vacuum-dried, When the obtained removal liquid and the remaining extraction liquid are returned to the hydrogenation reactor, the circulating working liquid refers to the removal liquid and the remaining extraction liquid.
  • step 4 the at least part of the extract liquid is heated and then heated up and then vacuum-dried, or the at least part of the extract liquid is heated with the circulating working liquid, and then passed through The heater is heated up and then vacuum dried.
  • the vacuum drying is carried out in a vacuum drying tower, wherein the vacuum drying tower may be any known form of tower or separation drum, such as a packed tower, a sieve tray and the like.
  • the vacuum drying conditions include: the temperature is 45-120°C, preferably 45-100°C; the pressure is -100kPa to -50kPa, preferably -98kPa to -81kPa, more preferably -98kPa to -86kPa.
  • the vacuum drying also obtains water and/or organic matter, in order to further save the consumption of the extractant, the step 4) also includes recycling the water and/or organic matter. Effective utilization of the moisture and/or organic matter removed by vacuum drying does not cause any material loss and does not generate waste water, which is both effective and environmentally friendly.
  • the inventors of the present application have found that by using a specific volume flow ratio of the circulating slurry to the working liquid, a part of the hydrogenated liquid (ie liquid A) is regenerated, and the specific partial hydrogenation liquid and the remaining partial hydrogenation are used.
  • the mass flow ratio of the liquid that is, the B liquid
  • the mass flow ratio of the A liquid to the B liquid and returning the extract to the hydrogenation reaction, especially vacuum drying the extract at least 10% of the mass flow, and Returning the obtained removal liquid to the hydrogenation reaction is beneficial to improve the reaction selectivity and the production efficiency of the device, so as to achieve a hydrogenation efficiency as high as 10-18g/L; prolong the life of the hydrogenation catalyst and reduce the cost loss caused by the regeneration of the deactivated catalyst; ensure the slurry While the hydrogenation reaction in the state bed is stable, the intrinsic safety of the hydrogen peroxide production device is improved, and the method is environmentally friendly and effective.
  • the present application provides a system for producing hydrogen peroxide, comprising a hydrogenation unit, a regeneration unit, an oxidation unit and a separation unit;
  • the hydrogenation unit is configured to carry out a hydrogenation reaction of the working liquid containing the alkyl anthraquinone in the presence of hydrogenation catalyst particles and hydrogen gas to obtain a slurry containing the hydrogenated anthraquinone, by-products and hydrogenation catalyst particles, and recover the obtained slurry from the obtained slurry.
  • the hydrogenation catalyst particles are obtained to obtain a circulating slurry rich in the hydrogenation catalyst particles and a hydrogenation liquid substantially free of the hydrogenation catalyst particles, and the circulating slurry is recycled;
  • the regeneration unit is configured to regenerate a portion of the hydrogenated liquid to convert at least a portion of the by-products contained therein into alkylanthraquinone to obtain a regenerated hydrogenated liquid;
  • the oxidation unit is configured to contact the remaining part of the hydrogenated liquid and the regenerated hydrogenated liquid with an oxygen-containing gas to carry out an oxidation reaction to obtain an oxidized liquid containing hydrogen peroxide and an alkylanthraquinone;
  • the separation unit is configured to extract and separate the oxidized liquid to obtain an extract containing hydrogen peroxide and an extract containing an alkylanthraquinone, and return the extract to the hydrogenation unit.
  • the hydrogenation unit is provided with a working liquid inlet, a hydrogen-containing gas inlet, a hydrogenated liquid outlet and an optional hydrogen-containing tail gas outlet;
  • the regeneration unit is provided with a hydrogenated liquid inlet and a regenerated hydrogenated liquid outlet;
  • the oxidation unit is provided with a hydrogenation liquid inlet, an oxygen-containing gas inlet, an oxidation liquid outlet and an oxygen-containing tail gas outlet;
  • the separation unit is provided with an oxidation liquid inlet, an extraction agent inlet, an extraction liquid outlet and an extraction liquid outlet; wherein the hydrogenation The hydrogenated liquid outlet of the unit is connected with the hydrogenated liquid inlet of the regeneration unit and the oxidation unit respectively, the regeneration hydrogenated liquid outlet of the regeneration unit is connected with the hydrogenated liquid inlet of the oxidation unit, and the oxidized liquid outlet of the oxidation unit is connected with the hydrogenated liquid inlet of the oxidation unit.
  • the oxidizing liquid inlet of the separation unit is in communication, and the extraction liquid outlet is in communication with the
  • the hydrogenation unit includes a hydrogenation reactor in the form of a slurry bed reactor and a filter, the hydrogenation reactor includes a reaction zone and a gas-liquid separation zone, and has a working liquid inlet, at least one hydrogen-containing gas Inlet, circulating slurry inlet, slurry outlet and hydrogen-containing tail gas outlet.
  • the working fluid, circulating slurry and hydrogen enter into the reaction cylinder (ie the reaction zone) of the hydrogenation reactor through the corresponding inlet, contact with the hydrogenation catalyst particles in the reaction cylinder and undergo a hydrogenation reaction, and the alkyl anthraquinone is hydrogenated to hydrogenated anthraquinone, At the same time, it flows upward; the reactant flows from the top opening of the reaction cylinder into the gas-liquid separation zone, and after gas-liquid separation, the slurry containing hydrogenated anthraquinone, by-products and hydrogenation catalyst particles is discharged from the slurry outlet, and the hydrogen-containing tail gas is separated from the gas-liquid After the hydrogen-containing tail gas outlet at the top of the zone is discharged, the hydrogen-containing tail gas is optionally cooled and then enters a gas pressurizing device for pressurization, and then returns to a hydrogen-containing gas inlet.
  • the slurry from the slurry bed reactor is filtered in the filter, and the clear liquid is led out of the hydrogenation unit from the hydrogenation liquid outlet; the circulating slurry flowing out of the circulating slurry outlet of the filter is returned to the reaction drum of the reactor as an external circulation to continue to participate in the reaction.
  • a preliminary solid-liquid separation zone is also included in the hydrogenation reactor, and after the preliminary separation of the slurry is carried out in the preliminary solid-liquid separation zone, it enters the filter from the slurry outlet for further separation.
  • the hydrogenation unit further comprises a compressor, which is communicated with the hydrogen-containing tail gas outlet of the hydrogenation reactor and a hydrogen-containing gas inlet of the hydrogenation reactor, or the compressor The machine is communicated with the hydrogen-containing tail gas outlet of the hydrogenation reactor and a hydrogen-containing tail gas inlet of the hydrogenation reactor, and is used for compressing the hydrogen-containing tail gas and recycling it back to the hydrogenation reactor.
  • the hydrogenation unit further comprises a first cooler, the first cooler is communicated with the circulating slurry outlet of the filter and the circulating slurry inlet of the hydrogenation reactor, for cooling the The circulating slurry is subjected to first cooling to obtain a first cooling liquid, which is recycled back to the hydrogenation reactor.
  • the regeneration unit includes a regeneration reactor having a hydrogenation liquid inlet and a regeneration hydrogenation liquid outlet corresponding to the hydrogenation liquid inlet and the regeneration hydrogenation liquid outlet of the regeneration unit.
  • the regeneration unit further comprises a heat exchanger, which is communicated with the hydrogenation liquid outlet of the hydrogenation unit, the hydrogenation liquid inlet of the regeneration reactor and the hydrogenation liquid inlet of the regeneration reactor.
  • the outlet of the regenerated hydrogenated liquid is used for exchanging heat with the regenerated hydrogenated liquid (ie, liquid A) to be regenerated.
  • the regeneration unit further includes a heater, the heater is connected to the hydrogenated liquid outlet of the heat exchanger and the hydrogenated liquid inlet of the regeneration reactor, and is used for regenerating the heat-exchanged liquid The hydrogenation liquid is heated.
  • the oxidation unit includes an oxidation reactor having a hydrogenation liquid inlet corresponding to a hydrogenation liquid inlet, an oxygen-containing gas inlet, an oxidation liquid outlet, and an oxygen-containing tail gas outlet of the oxidation unit , oxygen-containing gas inlet, oxidizing liquid outlet and oxygen-containing exhaust gas outlet.
  • the oxidation reactor may be any known type of reactor, such as stirred tank, packed column, tray column.
  • Gas-liquid distribution devices such as packing, sieve plate, gas distributor, and liquid distributor can be installed in the oxidation reactor.
  • the gas-liquid contact mode in the oxidation reactor can be co-current, counter-current or cross-current.
  • the oxidation reactor may be one or multiple.
  • the stream to be oxidized may enter the multiple oxidation reactors in series or in parallel, and the oxygen-containing gas may also enter the multiple oxidation reactors in series or in parallel.
  • the oxidation reactor may have a built-in or external heat exchanger, or a heat exchanger may be arranged between multiple oxidation reactors to remove the reaction heat generated by the oxidation reaction, so as to avoid overheating in the oxidation reactor.
  • the oxidation reactor can be equipped with an internal or external gas-liquid separator to separate the oxidizing liquid from the oxygen-containing tail gas, so as to avoid the loss of the working liquid caused by the oxidizing liquid being carried out of the system by the gas.
  • the oxidation unit further comprises a second cooler which communicates with the hydrogenation liquid outlet of the hydrogenation unit, the regenerated hydrogenation liquid outlet of the regeneration unit and the oxidation reactor
  • the hydrogenated liquid inlet is used to cool the mixed liquid obtained by combining the remaining part of the hydrogenated liquid (ie, B liquid) and the regenerated hydrogenated liquid for the second cooling to obtain the second cooling liquid, and then enter the oxidation reactor.
  • the oxidation unit further comprises a fine filter, the fine filter communicates with the outlet of the second cooler and the hydrogenation liquid inlet of the oxidation reactor, for The mixture of the two coolants is filtered.
  • the separation unit includes an extraction column, and the extraction column has an oxidation solution inlet, an extraction solution inlet, an extraction solution outlet, and an extraction solution outlet corresponding to the oxidation solution inlet, extractant inlet, extraction solution outlet and extraction solution outlet of the separation unit. Inlet, extraction liquid outlet and extraction liquid outlet.
  • the extraction column can be any known form of column, such as a packed column, a sieve tray column, a jet column, a pulse packed column, and the like.
  • a liquid distributor may be installed in the extraction column, and the oxidizing liquid and the extraction agent are in countercurrent contact in the extraction column.
  • the separation unit further includes a third cooler, the third cooler communicates with the oxidizing liquid outlet of the oxidation unit and the oxidizing liquid inlet of the extraction tower, and is used for the oxidation of the oxidation liquid.
  • the liquid undergoes a third cooling before it enters the extraction column.
  • the first cooler, the second cooler and the third cooler may be any known form of heat exchanger, preferably, the first cooler, the second cooler and the third cooler
  • the heat exchangers are each independently selected from fixed tube sheet heat exchangers, casing heat exchangers, plate heat exchangers, coil heat exchangers, and more preferably fixed tube sheet heat exchangers.
  • the separation unit further comprises a vacuum drying tower, the vacuum drying tower is connected to the extract liquid outlet of the extraction tower and the working liquid inlet of the hydrogenation unit, for removing at least 10% by mass of the liquid
  • the flow rate of the extract liquid is vacuum-dried, and the obtained removal liquid and the remaining extract liquid are returned to the hydrogenation unit.
  • the vacuum drying tower is also connected to the extraction agent inlet or the oxidizing liquid inlet of the extraction tower, and is used for vacuum drying the extract liquid with at least 10% mass flow rate. Water and/or organic matter are returned to the extraction tower; further preferably, the vacuum drying tower is also connected to the extraction agent inlet or the oxidizing liquid inlet of the extraction tower, and is used to convert the extraction liquid of at least 30% mass flow rate The water and/or organics obtained by vacuum drying are returned to the extraction column.
  • a working liquid 1 containing alkyl anthraquinone and hydrogen 2 are subjected to a hydrogenation reaction in a hydrogenation reactor 3 in the presence of hydrogenation catalyst particles to obtain a hydrogenation reaction containing Hydrogenation of the anthraquinone, by-products and the slurry of hydrogenation catalyst particles and the hydrogen-containing tail gas 4, which is discharged and/or compressed and then returned to the hydrogenation reactor 3.
  • the hydrogenated liquid 6 is divided into two strands, namely, the first strand of hydrogenated liquid (ie, liquid A) 7 and the second strand of hydrogenated liquid (ie, liquid B) 8 .
  • the A liquid 7 is regenerated in the regeneration reactor 9, so that the by-products contained therein are converted into alkyl anthraquinones to obtain a regenerated hydrogenated liquid 10, and the regenerated hydrogenated liquid 10 is combined with the B liquid 8 to obtain a mixed liquid 11.
  • the mixed liquid 11 and the oxygen-containing gas 12 are subjected to oxidation reaction in the oxidation reactor 13 to obtain an oxidation liquid 14 and an oxygen-containing tail gas 15 containing hydrogen peroxide and alkylanthraquinone.
  • the oxidizing liquid 14 is extracted with the extracting agent 17 in the extraction column 16 to obtain an extracting liquid 18 containing hydrogen peroxide and an extracting liquid 19 containing an alkylanthraquinone.
  • vacuum drying at least a part of the extraction liquid 19 in the vacuum drying tower 20 to remove the water and/or part of the organic matter therein to obtain a removal liquid 21, and optionally the removed Water and/or organics 22 are returned to extraction column 16.
  • the removal liquid 21 and the remaining part of the extract liquid 19 are returned to the hydrogenation reactor 3 as the circulating working liquid 23 .
  • the system of the present invention includes a hydrogenation unit, a regeneration unit, an oxidation unit and a separation unit connected in sequence, and the hydrogenation unit includes a hydrogenation reactor 3 and a filter 3', and the regeneration
  • the unit includes a regeneration reactor 9, an oxidation unit includes an oxidation reactor 13, and a separation unit includes an extraction column 16 and an optional vacuum drying column 20, the hydrogenation unit having a working liquid inlet, a hydrogen-containing gas inlet, a hydrogenation liquid outlet, and any The selected hydrogen-containing tail gas outlet, the regeneration unit has a hydrogenated liquid inlet and a regeneration hydrogenated liquid outlet, the oxidation unit has a hydrogenated liquid inlet, an oxygen-containing gas inlet, an oxidized liquid outlet and an oxygen-containing tail gas outlet, and the separation unit has an oxidation Liquid inlet, extractant inlet, extraction liquid outlet and raffinate outlet;
  • the hydrogenated liquid outlet of the hydrogenation unit is connected with the hydrogenated liquid inlet of the regeneration unit and the oxidation unit respectively, the regenerated hydrogenated liquid outlet of the regeneration unit is connected with the hydrogenated liquid inlet of the oxidation unit, and the oxidation unit of the oxidation unit
  • the liquid outlet is communicated with the oxidizing liquid inlet of the separation unit, and the extractive liquid outlet of the separation unit is communicated with the working liquid inlet of the hydrogenation unit;
  • the hydrogenation reactor 3 has a working liquid inlet and a hydrogen-containing gas inlet corresponding to the working liquid inlet and the hydrogen-containing gas inlet of the hydrogenation unit, and also has a circulating slurry inlet, a slurry outlet and a hydrogen-containing tail gas outlet.
  • the device 3' has a slurry inlet, a circulating slurry outlet and a hydrogenation liquid outlet corresponding to the hydrogenation liquid outlet of the hydrogenation unit, wherein the slurry outlet of the hydrogenation reactor is communicated with the slurry inlet of the filter, and the filter 3
  • the circulating slurry outlet of ' is in communication with the circulating slurry inlet of the hydrogenation reactor 3
  • the hydrogen-containing tail gas outlet of the hydrogenation reactor 3 is in communication with the hydrogen-containing gas inlet of the hydrogenation reactor 3 .
  • the working liquid 1 containing the alkyl anthraquinone and the hydrogen gas 2 are subjected to a hydrogenation reaction in the hydrogenation reactor 3 in the presence of hydrogenation catalyst particles to obtain a hydrogenation reaction containing
  • a circulating slurry 5 rich in hydrogenation catalyst particles and a hydrogenation liquid 6 substantially free of hydrogenation catalyst particles are obtained.
  • a cooler 25 is cooled and returned to the hydrogenation reactor 3 .
  • the hydrogenation liquid 6 is divided into two strands, namely A liquid 7 and B liquid 8 .
  • the A liquid 7 exchanges heat with the regenerated hydrogenated liquid 10 from the regeneration reactor 9 in the heat exchanger 26, and the A liquid 7 after the heat exchange is heated by the heater 27, and then enters the regeneration reactor 9 for regeneration, so that the The by-products contained therein are converted into alkylanthraquinones to obtain regenerated hydrogenation liquid 10 .
  • the regenerated hydrogenated liquid 10 after heat exchange is combined with the B liquid 8 to obtain a mixed liquid 11 .
  • the mixed liquid 11 is cooled in the second cooler 28, and then mixed with the first pH adjuster 29 to obtain the adjusted liquid.
  • the obtained conditioning solution is filtered by the precision filter 30, and then undergoes an oxidation reaction with the oxygen-containing gas 12 in the oxidation reactor 13 to obtain an oxidation solution 14 and an oxygen-containing tail gas 15 containing hydrogen peroxide and alkylanthraquinone.
  • the oxidation liquid 14 is cooled by the third cooler 31, it is extracted with the extractant 17 in the extraction tower 16 to obtain the extract liquid 18 containing hydrogen peroxide and the extract liquid 19 containing alkyl anthraquinone.
  • vacuum drying at least a part of the extract liquid 19 in the vacuum drying device 20 to remove water and/or part of the organic matter therein to obtain a removal liquid 21, and optionally the removed liquid Water and/or organics 22 are returned to extraction column 16.
  • the removal liquid 21 and the remaining part of the extract liquid 19 are returned to the hydrogenation reactor 3 as the circulating working liquid 23 .
  • the system of the present invention includes a hydrogenation unit, a regeneration unit, an oxidation unit and a separation unit connected in sequence, and the hydrogenation unit includes a hydrogenation reactor 3, a filter 3' , compressor 24 and first cooler 25, regeneration unit includes regeneration reactor 9, heat exchanger 26 and heater 27, oxidation unit includes oxidation reactor 13, second cooler 28 and fine filter 30, and separation unit Including extraction column 16, third cooler 31 and optional vacuum drying column 20;
  • the hydrogenation reactor 3 has a working liquid inlet and a hydrogen-containing gas inlet corresponding to the working liquid inlet and the hydrogen-containing gas inlet of the hydrogenation unit, and also has a circulating slurry inlet, a slurry outlet and a hydrogen-containing tail gas outlet.
  • the device 3' has a slurry inlet, a circulating slurry outlet and a hydrogenation liquid outlet corresponding to the hydrogenation liquid outlet of the hydrogenation unit, the slurry outlet of the hydrogenation reactor 3 is communicated with the slurry inlet of the filter 3', and the hydrogenation
  • the hydrogen-containing tail gas outlet of the reactor 3 is communicated with the hydrogen-containing gas inlet of the hydrogenation reactor 3 through the compressor 24, and the circulating slurry outlet of the filter 3' is circulated with the hydrogenation reactor through the first cooler 25.
  • the slurry inlet is connected;
  • the regeneration reactor 9 has a hydrogenation liquid inlet and a regeneration hydrogenation liquid outlet corresponding to the hydrogenation liquid inlet and the regeneration hydrogenation liquid outlet of the regeneration unit, and the heat exchanger 26 communicates with the hydrogenation liquid outlet of the hydrogenation unit and the regeneration hydrogenation liquid outlet.
  • the hydrogenated liquid inlet of the regeneration reactor and the regeneration hydrogenated liquid outlet of the regeneration reactor, the heater 27 is connected to the hydrogenated liquid outlet of the heat exchanger 26 and the hydrogenated liquid inlet of the regeneration reactor 9;
  • the oxidation reactor 13 has a hydrogenation liquid inlet, an oxygen-containing gas inlet, an oxidation liquid outlet and an oxygen-containing tail gas outlet corresponding to the hydrogenation liquid inlet, oxygen-containing gas inlet, oxidation liquid outlet and oxygen-containing tail gas outlet of the oxidation unit,
  • the second cooler 28 communicates with the hydrogenated liquid outlet of the hydrogenation unit, the regenerated hydrogenated liquid outlet of the regeneration unit and the fine filter 30 , and the fine filter 30 communicates with the outlet of the second cooler 28 and the hydrogenation liquid inlet of the oxidation reactor,
  • the extraction tower 16 has an oxidation liquid inlet, an extraction agent inlet, an extraction liquid outlet and an extraction liquid outlet corresponding to the oxidation liquid inlet, the extraction agent inlet, the extraction liquid outlet and the extraction liquid outlet of the separation unit.
  • the three coolers 31 communicate with the oxidizing liquid outlet of the oxidation unit and the oxidizing liquid inlet of the extraction tower, and the vacuum drying tower 20 communicates with the extraction liquid outlet of the extraction tower 16 and the working liquid inlet of the hydrogenation unit, Optionally, the vacuum drying tower is also communicated with the extraction agent inlet or the oxidizing liquid inlet of the extraction tower.
  • the hydrogenation catalyst is a supported catalyst, wherein the carrier is alumina, the active metal is palladium, and the content of the active metal is 2wt% based on the weight of the hydrogenation catalyst.
  • the working fluid is composed of heavy aromatic hydrocarbons, trioctyl phosphate, ethyl anthraquinone, tetrahydroethyl anthraquinone and amyl anthraquinone, and the mass ratio of each component is 59:21 :9:6:5.
  • the method for determining the hydrogenation efficiency includes: taking 5 mL of hydrogenated liquid into a separating funnel, then adding 10 mL of heavy aromatic hydrocarbons and 20 mL of 1+4H 2 SO 4 solution (the volume of H 2 SO 4 and water) ratio of 1:4); pass O 2 into the above mixed solution, bubble and oxidize until bright yellow or orange (about 10-15min); wash and extract the reaction solution with pure water 4-5 times, each time about 20mL of water ; Use KMnO 4 standard solution with a concentration of 0.1mol/L in the extract to titrate to reddish, and the color does not fade for 30s as the end point.
  • Hydrogenation selectivity measured hydrogenation efficiency/theoretical calculated hydrogenation efficiency
  • Theoretically calculated hydrogenation efficiency volume of hydrogen consumption/22.4 ⁇ 34.02/volume of working fluid.
  • the slurry is filtered through three groups of filters in parallel, and the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing program realizes continuous automatic backflushing to obtain the hydrogenated liquid and the circulating slurry; the filtered circulating slurry rich in catalyst particles After the first cooler is cooled to 59.3°C, it is circulated back to the reaction cylinder of the slurry bed reactor to continue to participate in the reaction, wherein the volume flow ratio of the circulating slurry to the working liquid is 12:1;
  • a liquid (a hydrogenated liquid with a mass flow rate of 15%) is subjected to a regeneration reaction through a hydrogenated clay bed (800 mm in diameter, 1500 mm in height) containing activated alumina to obtain a regenerated hydrogenated liquid, wherein the regeneration reaction temperature is 90° C., pressure is the autogenous pressure, the mass ratio of A liquid to the regenerated catalyst is 2:1;
  • the phosphoric acid aqueous solution that mass concentration is 85% is diluted to the acid-containing aqueous solution that phosphoric acid content is 120ppm, and the oxidation solution and the acid-containing aqueous solution are extracted in the extraction tower by the mass flow ratio of 25: 1, and the extraction temperature is 50 °C °C, the pressure at the top of the tower is normal pressure, and the hydrogen peroxide solution and the extraction liquid are obtained;
  • the obtained removal liquid is returned to the hydrogenation reaction unit as a circulating working liquid, wherein the pressure of the vacuum drying tower is -96kPa and the temperature is 70°C.
  • the axial temperature rise of the slurry bed reactor is 0.9°C; the hydrogenation efficiency of the hydrogenation liquid reaches 13-13.2g/L, and the hydrogenation selectivity is >99%; 560t of hydrogen oxide solution, 1t of activated alumina was replaced during the period; the catalyst activity and selectivity of the slurry bed reactor were stable, and there was no sign of deactivation.
  • the effective anthraquinone ie ethyl anthraquinone + The content of tetrahydroethylanthraquinone + amylanthraquinone is stable.
  • the liquid slurry is filtered through four sets of filters connected in parallel, and the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing procedure realizes continuous automatic backflushing to obtain the hydrogenated liquid and the circulating slurry.
  • the filtered circulating slurry rich in catalyst particles is cooled to 58.5 °C by the first cooler and then circulated back to the reaction cylinder to continue to participate in the reaction, wherein the volume flow ratio of the circulating slurry to the working fluid is 6:1;
  • a liquid (a hydrogenated liquid with a mass flow rate of 15%) is subjected to a regeneration reaction through a hydrogenated clay bed (800 mm in diameter, 1500 mm in height) containing activated alumina to obtain a regenerated hydrogenated liquid, wherein the regeneration reaction temperature is 90° C., pressure is the autogenous pressure, the mass ratio of A liquid to the regenerated catalyst is 2:1;
  • the obtained removal liquid is returned to the hydrogenation reaction unit as a circulating working liquid, wherein the pressure of the vacuum drying tower is -96kPa and the temperature is 50°C.
  • the axial temperature rise of the slurry bed reactor is 1.5°C; the hydrogenation efficiency of the hydrogenation liquid can reach 11.7-11.8g/L, and the hydrogenation selectivity is more than 98%;
  • the hydrogen peroxide solution was 506t, and 1.3t of activated alumina was replaced during the period; the catalyst activity and selectivity of the slurry bed reactor were stable, there was no sign of deactivation, and the effective anthraquinone content in the working solution was relatively stable.
  • the liquid slurry is filtered through three sets of filters in parallel, and the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing program realizes continuous automatic backflushing to obtain the hydrogenated liquid and the circulating slurry; the filtered circulating slurry rich in catalyst particles After the first cooler is cooled to 59°C, it is circulated back to the reaction cylinder to continue to participate in the reaction, wherein the volume flow ratio of the circulating slurry to the working fluid is 8:1;
  • a liquid (a hydrogenated liquid with a mass flow rate of 10%) is subjected to a regeneration reaction through a hydrogenated clay bed (800 mm in diameter, 1500 mm in height) containing activated alumina to obtain a regenerated hydrogenated liquid, wherein the regeneration reaction temperature is 60° C., pressure is the autogenous pressure, the mass ratio of A liquid to the regenerated catalyst is 2:1;
  • the obtained removal liquid is returned to the hydrogenation reaction unit as a circulating working liquid, wherein the pressure of the vacuum drying tower is -96kPa and the temperature is 50°C.
  • the axial temperature rise of the reactor is 1.2°C
  • the hydrogenation efficiency of the hydrogenation liquid can reach 10.7-10.8g/L
  • the hydrogenation selectivity is 98.5%.
  • the device was operated for 3200h, and a total of 468t of hydrogen peroxide solution with a mass concentration of 35% was produced, during which 1.3t of activated alumina was replaced; the catalyst activity of the slurry bed reactor decreased by 13% and the selectivity decreased by 1.4%. There are signs of deactivation, and the working fluid The effective anthraquinone decreased by 5%.
  • the slurry is filtered through three groups of filters in parallel, and the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing program realizes continuous automatic backflushing to obtain the hydrogenated liquid and the circulating slurry; the filtered circulating slurry rich in catalyst particles After the first cooler is cooled, it is circulated back to the reaction cylinder of the slurry bed reactor to continue to participate in the reaction, wherein the volume flow ratio of the circulating slurry to the working liquid is 18:1;
  • a liquid (a hydrogenated liquid with a mass flow rate of 15%) is subjected to a regeneration reaction through a hydrogenated clay bed (800 mm in diameter, 1500 mm in height) containing activated alumina to obtain a regenerated hydrogenated liquid, wherein the regeneration reaction temperature is 90° C., pressure is the autogenous pressure, the mass ratio of A liquid to the regenerated catalyst is 2:1;
  • the phosphoric acid aqueous solution that the mass concentration is 85% is diluted to the acid-containing aqueous solution that the phosphoric acid content is 120 ppm, and the oxidation solution and the acid-containing aqueous solution are extracted in the extraction tower at a mass flow ratio of 25:1, and the extraction temperature is 50 ° C. , the tower top atmospheric pressure, obtain hydrogen peroxide solution and extraction liquid;
  • the obtained removal liquid is returned to the hydrogenation reaction unit as a circulating working liquid, wherein the pressure of the vacuum drying tower is -96kPa and the temperature is 70°C.
  • the axial temperature rise of the slurry bed reactor is 0.7°C; the hydrogenation efficiency of the hydrogenation liquid can reach 13-13.2g/L, and the hydrogenation selectivity is >99%; the device runs for 3200h, and the total output mass concentration is 35 % hydrogen peroxide solution 560t, during which 700kg of activated alumina was replaced; the catalyst activity and selectivity of the slurry bed reactor were stable, there was no sign of deactivation, and the effective anthraquinone content in the reaction liquid in the working slurry bed reactor was stable.
  • the slurry is filtered through three groups of filters in parallel, and the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing program realizes continuous automatic backflushing to obtain the hydrogenated liquid and the circulating slurry; the filtered circulating slurry rich in catalyst particles After the first cooler is cooled, it is circulated back to the reaction drum of the slurry bed reactor to continue to participate in the reaction, wherein the volume flow ratio of the circulating slurry to the working liquid is 12:1;
  • a liquid (40% mass flow hydrogenated liquid) is subjected to regeneration reaction through a hydrogenated clay bed (800 mm in diameter, 1500 mm in height) containing activated alumina to obtain a regenerated hydrogenated liquid, wherein the regeneration reaction temperature is 90° C., pressure is the autogenous pressure, the mass ratio of liquid A and the regenerated catalyst is 5.3:1;
  • the mixed solution of liquid B (hydrogenated liquid of 60% mass flow rate) and the regenerated hydrogenated liquid obtained in step 2) is cooled to 45° C. through the second cooler to obtain the second cooling liquid, and the injection mass concentration is 85%
  • the phosphoric acid solution obtained by the phosphoric acid content is a conditioning solution of 5mg/L, and then the conditioning solution is filtered through a precision filter, enters the oxidation reactor, and carries out oxidation reaction with 238Nm 3 /h air, wherein, the temperature of the oxidation reaction The temperature is 50°C and the pressure is 0.3MPa to obtain oxygen-containing tail gas and oxidizing liquid;
  • the obtained removal liquid is returned to the hydrogenation reaction unit as a circulating working liquid, wherein the pressure of the vacuum drying tower is -96kPa and the temperature is 70°C.
  • the axial temperature rise of the slurry bed reactor is 0.9°C; the hydrogenation efficiency of the hydrogenation liquid can reach 12-12.2g/L, and the hydrogenation selectivity is >98.7%; the device runs for 3200h, and the total output mass concentration is 35 % of hydrogen peroxide solution 526t, during which 1.3t of activated alumina was replaced; the catalyst activity and selectivity of the slurry bed reactor were stable, there was no sign of deactivation, and the effective anthraquinone content in the reaction liquid in the working slurry bed reactor was stable. .
  • the liquid slurry is filtered through three sets of filters in parallel, and the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing procedure realizes continuous automatic backflushing to obtain the hydrogenated liquid and the circulating slurry; the filtered circulating slurry rich in catalyst particles After being cooled by the first cooler, it is circulated back into the reaction cylinder to continue to participate in the reaction, wherein the volume flow ratio of the circulating slurry to the working liquid is 8:1; the hydrogenated liquid is not regenerated, but directly enters the oxidation reaction unit;
  • step 2) the hydrogenation liquid obtained in step 1) is cooled to 45° C. through the second cooler to obtain the second cooling liquid, and the phosphoric acid solution with a mass concentration of 85% is injected to obtain a regulating liquid with a phosphoric acid content of 5 mg/L, and then the After the conditioning solution is filtered through a precision filter, it enters the oxidation reactor, and carries out an oxidation reaction with 145Nm 3 /h of air at an operating temperature of 45° C. and a pressure of 0.3 MPa to obtain oxygen-containing tail gas and oxidized liquid;
  • the obtained removal liquid is returned to the hydrogenation reaction unit as a circulating working liquid, wherein the pressure of the vacuum drying tower is -96kPa, and the temperature is 50°C.
  • the liquid slurry is filtered through three sets of filters connected in parallel, and the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing procedure realizes continuous automatic backflushing to obtain the hydrogenated liquid and the circulating slurry.
  • the filtered circulating slurry rich in catalyst particles is cooled by the first cooler and then circulated back to the reaction cylinder to continue to participate in the reaction, wherein the volume flow ratio of the circulating slurry to the working liquid is 8:1; the hydrogenation liquid is not regenerated and directly into the oxidation reaction unit;
  • step 2) the hydrogenation liquid obtained in step 1) is cooled to 45° C. through the second cooler to obtain the second cooling liquid, and the phosphoric acid solution with a mass concentration of 85% is injected to obtain a conditioning solution with a phosphoric acid content of 5 mg/L, and then the The conditioning solution was filtered through a precision filter, and then entered into an oxidation reactor, where it was subjected to an oxidation reaction with 195Nm 3 /h of air at an operating temperature of 50° C. and a pressure of 0.3 MPa to obtain oxygen-containing tail gas and oxidized liquid;
  • the obtained removal liquid is used as the circulating working liquid, wherein, the pressure of the vacuum drying tower is-96kPa, and the temperature is 50 °C;
  • step 4 the circulating working solution of step 4) gained is entered into 4 parallel working solution regeneration reactors to carry out regeneration reaction, obtain regeneration working solution and return to hydrogenation reactor, and regeneration reactor is a hydrogenated clay bed (diameter 800mm) of built-in activated alumina , height 1500mm), wherein, the regeneration reaction temperature is 60 °C.
  • the hydrogenation efficiency of the hydrogenation liquid can only be maintained at 9.8-10g/L, and the hydrogenation selectivity is less than 98%.
  • the device was operated for 300h, and a total of 50t of hydrogen peroxide solution with a mass concentration of 27.5% was produced; the catalyst activity of the slurry bed reactor decreased by 19%, the selectivity decreased by 1.8%, the deactivation phenomenon was obvious, and the effective anthraquinone content in the working fluid decreased by 5%. .
  • the slurry is filtered through a built-in filter, the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing procedure is used to realize continuous automatic backflushing, and the hydrogenated liquid is obtained by filtration, and the reaction temperature is controlled by the built-in coil cooler.
  • a liquid (the hydrogenated liquid of 15% mass flow) is subjected to regeneration reaction through a hydrogenated clay bed (800 mm in diameter, 1500 mm in height) containing activated alumina to obtain a regeneration hydrogenated liquid, wherein the regeneration reaction temperature is 90 ° C;
  • the obtained removal liquid is returned to the hydrogenation reaction unit as a circulating working liquid, wherein the pressure of the vacuum drying tower is -96kPa and the temperature is 50°C.
  • the axial temperature rise of the slurry bed reactor is more than 5°C; the hydrogenation efficiency of the hydrogenation liquid can only reach 9.8-9.9g/L, and the hydrogenation selectivity is less than 97%; the device runs for 300h, and the total output mass concentration is 27.5% 50t of hydrogen peroxide solution, and 500kg of activated alumina was replaced during the period; the catalyst activity of the slurry bed reactor decreased by 15%, the selectivity decreased by 1.5%, and there were signs of deactivation, and the effective anthraquinone content in the working fluid decreased by 5%.
  • the slurry is filtered through three sets of filters connected in parallel, and the hydrogenated liquid is used as the backflushing liquid, and the automatic backwashing procedure realizes continuous automatic backflushing to obtain the hydrogenated liquid and the circulating slurry.
  • the filtered circulating slurry rich in catalyst particles is cooled by the first cooler and circulated back into the reaction cylinder to continue to participate in the reaction, wherein the volume flow ratio of the circulating slurry to the working fluid is 4:1;
  • a liquid (a hydrogenated liquid with a mass flow rate of 15%) is subjected to a regeneration reaction through a hydrogenated clay bed (800 mm in diameter, 1500 mm in height) containing activated alumina to obtain a regenerated hydrogenated liquid, wherein the regeneration reaction temperature is 90° C., pressure is the autogenous pressure, the mass ratio of A liquid to the regenerated catalyst is 2:1;
  • the obtained removal liquid is returned to the hydrogenation reaction unit as a circulating working liquid, wherein the pressure of the vacuum drying tower is -96kPa and the temperature is 50°C.
  • the axial temperature rise of the slurry bed reactor is 3-4 °C.
  • the hydrogenation efficiency of the hydrogenation liquid can only reach 10.4-10.5g/L, and the hydrogenation selectivity is less than 97%; the device runs for 300h, and a total of 52t hydrogen peroxide solution with a mass concentration of 27.5% is produced, during which 350kg of activated alumina is replaced; slurry state
  • the catalyst activity of the bed reactor decreased by 14%, the selectivity decreased by 1.3%, and there were signs of deactivation, and the effective anthraquinone content in the working fluid was relatively stable.
  • a liquid (15% mass flow hydrogenated liquid) is regenerated through a hydrogenated clay bed (800 mm in diameter, 1500 mm in height) containing activated alumina to obtain a regenerated hydrogenated liquid, wherein the regeneration reaction temperature is 90° C.,
  • the pressure is the autogenous pressure, the mass ratio of A liquid and the regenerated catalyst is 2:1;
  • the phosphoric acid aqueous solution that mass concentration is 85% is diluted to the acid-containing aqueous solution that phosphoric acid content is 150ppm, and the oxidation solution and the acid-containing aqueous solution are extracted in the extraction tower by the mass flow ratio of 38: 1, and the final product is obtained as 27.5% hydrogen peroxide solution.
  • the extraction liquid After the extraction liquid is dehydrated by the coalescer, it enters the potassium carbonate drying tower for further dehydration and regeneration, and then all of it is regenerated through three working liquid clay beds (800mm in diameter, 1500mm in height) equipped with activated alumina, and finally recycled back to hydrogenation. reactor.
  • the hydrogen peroxide prepared by the method provided in this application can improve the hydrogenation efficiency to more than 10 g/L, the hydrogenation selectivity is more than 98%, and the reactor bed is basically eliminated.
  • the axial temperature difference can effectively improve the hydrogenation reaction selectivity, device efficiency and hydrogenation efficiency, and prolong the service life of the catalyst.
  • Example 1 By comparing Example 1 and Comparative Example 5, it can be seen that using the method for preparing hydrogen peroxide provided by the present application can effectively improve the hydrogenation efficiency, significantly improve the hydrogenation selectivity, prolong the service life of the catalyst, and increase the capacity of the device by 110%.
  • the consumption of activated alumina per ton of product is reduced by 72%, which greatly reduces the amount of solid waste generated by the device, which has good economic and social benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开了一种制备过氧化氢的方法和系统,所述方法包括:1)使包含烷基蒽醌的工作液在加氢催化剂颗粒和氢气存在下进行氢化反应,分离得到循环浆液和氢化液,并将循环浆液再循环;2)将所述氢化液分为两股,并对第一股氢化液进行再生得到再生氢化液;3)使第二股氢化液和再生氢化液与含氧气体接触进行氧化反应,得到氧化液;以及4)对所述氧化液进行萃取分离,得到包含过氧化氢的萃取液和萃余液,并将萃余液再循环。所述方法可以基本消除反应器床层温差,有效提高氢化反应选择性、装置效率以及氢化效率,延长加氢催化剂寿命。

Description

制备过氧化氢的方法和系统
相关申请的交叉引用
本申请要求2020年10月14日提交的、申请号为202011095895.3、名称为“制备过氧化氢的方法和系统”的专利申请的优先权,其内容经此引用全文并入本文。
技术领域
本申请涉及过氧化氢制备领域,具体涉及一种制备过氧化氢的方法和系统。
背景技术
过氧化氢又称双氧水,是一种绿色化工产品,其生产和使用过程几乎没有污染,故被称为“清洁”的化工产品,作为氧化剂、漂白剂、消毒剂、脱氧剂、聚合物引发剂和交联剂,广泛应用于化工、造纸、环境保护、电子、食品、医药、纺织、矿业、农业废料加工等行业。
蒽醌法是工业过氧化氢生产的主流方法,全球工业过氧化氢以产量计99%以上是由蒽醌法生产的。已知的蒽醌法通常包括氢化、氧化、萃取及循环工作液后处理等步骤,其中包含烷基蒽醌的工作液与氢气在装有催化剂的氢化反应器内进行氢化反应,生成相应的氢化蒽醌,所得溶液称氢化液;氢化液在氧化反应器中在含氧气氛(如空气)下进行氧化反应,使氢化蒽醌恢复成原来的烷基蒽醌,同时生成过氧化氢,所得溶液称为氧化液;利用过氧化氢在水和工作液中溶解度的不同及工作液与水的密度差,用纯水萃取氧化液中的过氧化氢,得到过氧化氢水溶液;经水萃取后的工作液(也称萃佘液)经过后处理工序后再循环使用。国内常用后处理工艺包括K 2CO 3溶液干燥脱水分解H 2O 2和沉降分离碱,再经白土床内的活性氧化铝吸附再生降解物。
国内的过氧化氢生产技术采用固定床氢化工艺,虽然操作简单、催化剂不用分离,但也存在很多缺陷:
(1)反应床层存在较大温升(8-10℃),床层内存在局部热点,导致氢化效率受限(6-8g/L),装置效率低。相比高氢化效率的相同规模装置,循环工作液量则更大,机泵的电耗更大。
(2)催化剂易失活,必须定期再生或更换,不仅消耗蒸汽,还造成工作液及催化剂贵金属流失。目前国内固定床氢化工艺中,催化剂需要3-6个月用蒸汽再生一次。
(3)工作液容易降解,工业上采用大量活性氧化铝对循环工作液进行连续再生,活性氧化铝需要频繁更换,产生大量固体危废,造成工作液损失。例如,生产1吨双氧水产品要消耗5kg活性氧化铝,会造成3kg工作液损失。
(4)装置安全性差,需要采用碳酸钾干燥塔,脱除循环工作液中的饱和水分,强化工作液再生。由于过氧化氢遇碱分解,具有严重的安全隐患。过氧化氢装置每年都有安全事故发生,80%安全事故是由于系统串碱至氧化、萃取单元导致。
采用浆态床加氢工艺能大大提高装置生产效率,降低催化剂与循环工作液用量,降低生产成本,提高氢化效率(>10g/L),并可通过连续引入和抽出催化剂来抵消催化剂活性的下降。同时,由于浆态床工艺使蒽醌氢化反应均匀,避免反应过程局部热点形成而导致工作液降解。
中国专利No.CN1233451C公开了一种连续操作的浆态床工艺反应器,反应器内包括一层或多层对床层进行加热/冷却的换热管部件,一层或多层可以自动清洗的液固分离器部件。但是,该反应器结构复杂,需要在反应器内设置大量支撑,反应器内类似平推流,虽然设置了多层换热部件,但仍会存在床层温差。液固分离部件设在反应器内部,不易拆检,一旦需要拆除清洗需全装置停车,灵活性差。
中国专利No.CN1108984C公开了一种工作液再生的方法,至少一部分未还原的工作溶液与主要含有γ-氧化铝的催化剂在40-150℃下接触,以实现对工作液中副产物的再生。将工作液再生放在“未还原”也就是加氢之前,γ-氧化铝的催化剂不可避免会产生相当量的细粉,一旦进入浆态床反应器内会堵塞过滤器;而且工作液在40-150℃下与γ-氧化铝催化剂接触,除了对加氢副产物有再生作用,又会导致二次副反应发生,所产生的副产物进入浆态床反应器很有可能会影响加氢催化剂活性。
中国专利No.CN204237558U公开了一种蒽醌法过氧化氢生产工艺的后处理装置,处理装置包括碱塔和真空干燥器。中国专利申请No. CN1334235A公开了一种蒽醌法生产过氧化氢的后处理技术,采用定量注碱以中和返回氢化的工作液酸性,保证氢化所需的碱度,同时分解工作液中部分过氧化氢;然后经过真空干燥脱除水分。这两种后处理技术均需向系统内引入碱液,安全性差,具有严重的安全隐患。
因此,本领域仍然需要一种安全、稳定和高效的制备过氧化氢方法和系统。
发明内容
本申请的目的是提供一种制备过氧化氢的方法和系统,其可以克服上述现有技术中的一个或多个缺陷,例如可基本消除反应器床层温差,有效提高氢化反应选择性、装置效率以及氢化效率,和/或延长加氢催化剂寿命;同时,所述系统还可以消除由于串碱造成严重的安全隐患,简化装置且有效提高系统的安全性。
为了实现上述目的,本申请一方面提供了一种制备过氧化氢的方法,包括以下步骤:
1)将包含烷基蒽醌的工作液进料到氢化反应器中,并使所述烷基蒽醌在加氢催化剂颗粒和氢气存在下进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液,从所述浆液中回收所述加氢催化剂颗粒,得到富含加氢催化剂颗粒的循环浆液和基本不含加氢催化剂颗粒的氢化液,并将所述循环浆液返回所述氢化反应器;
2)将所述氢化液分为两股,并对第一股氢化液进行再生以将第一股氢化液中所含的副产物的至少一部分转化为烷基蒽醌,得到再生氢化液;
3)使第二股氢化液和再生氢化液与含氧气体接触进行氧化反应,得到包含过氧化氢和烷基蒽醌的氧化液;以及
4)对所述氧化液进行萃取分离,得到包含过氧化氢的萃取液和包含烷基蒽醌的萃佘液,并将所述萃佘液返回所述氢化反应器作为所述工作液的一部分;
其中,所述循环浆液与所述工作液的体积流量比为6-20∶1;
其中,所述第一股氢化液与第二股氢化液的质量流量比为10-50∶50-90。
优选地,所述步骤1)还包括:对所述循环浆液进行第一冷却得到 第一冷却液,再将所述第一冷却液返回所述氢化反应器。更优选地,所述第一冷却液的温度为40-70℃。
本申请另一方面提供了一种制备过氧化氢的系统,包括氢化单元、再生单元、氧化单元和分离单元;
所述氢化单元设置为使包含烷基蒽醌的工作液在加氢催化剂颗粒和氢气存在下进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液,从所得浆液中回收所述加氢催化剂颗粒,得到富含加氢催化剂颗粒的循环浆液和基本不含加氢催化剂颗粒的氢化液,并将所述循环浆液再循环;
所述再生单元设置为对所述氢化液的一部分进行再生以将其中所含的副产物的至少一部分转化为烷基蒽醌,得到再生氢化液;
所述氧化单元设置为使剩余部分的氢化液和再生氢化液与含氧气体接触进行氧化反应,得到包含过氧化氢和烷基蒽醌的氧化液;以及
所述分离单元设置为对所述氧化液进行萃取分离,得到包含过氧化氢的萃取液和包含烷基蒽醌的萃佘液,并将所述萃佘液返回所述氢化单元。
相比现有技术,本申请的方法和系统具有以下优势:
1)在本申请中,将循环浆液以特定的质量流量比返回并混入工作液,尤其是将第一冷却后的循环浆液返回浆态床反应器,更使得反应器内状态接近全混流,基本消除反应器床层温差,提高氢化反应选择性、装置效率和氢化效率,尤其是氢化效率高达10-18g/L;
2)在本申请的方法中,先进行烷基蒽醌的氢化反应,再将部分氢化液进行再生,可避免再生催化剂粉尘进入浆态床反应器,进而堵塞过滤器,并防止二次副产物降低加氢催化剂活性,延长加氢催化剂寿命,减少失活催化剂再生造成的成本损失;
3)在本申请中,将10-50%质量流量的氢化液经过再生反应器即可保证工作液的再生效果,在保障装置高氢化效率运转的同时,还减少40-80%质量流量的工作液再生所用再生催化剂的量,大大减少废固的产生,大幅提高装置经济性和环保性;
4)本申请的方法和系统完全取消了碱塔,提供装置全酸性环境,在保证浆态床加氢反应稳定的同时,消除了系统串碱造成的严重安全隐患,大大提高了过氧化氢生产装置的本质安全性;尤其是对至少部 分萃佘液进行真空干燥得到脱除液、水和/或有机物进行有效利用,既有效又环保。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请的过氧化氢制备方法和系统的一种优选实施方式的示意图;
图2是本申请的过氧化氢制备方法和系统的进一步优选的实施方式的示意图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
在本申请中,如无其他说明,所述“氢化效率”以氢化液经氧化后所得过氧化氢的重量与工作液的体积的比值来表示,单位g/L;即,假定氧化过程中氢化液中所含氢化蒽醌的转化率和收率为100%的情况下,1L工作液在氧化过程完成时所得到的过氧化氢的量(g)。
在本申请中,如无其它说明,所给压力值均为表压。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,在第一方面,本申请提供了一种制备过氧化氢的方法,包括以下步骤:
1)将包含烷基蒽醌的工作液进料到氢化反应器中,并使所述烷基蒽醌在加氢催化剂颗粒和氢气存在下进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液,从所述浆液中回收所述加氢催化剂颗粒,得到富含加氢催化剂颗粒的循环浆液和基本不含加氢催化剂颗粒的氢化液,并将所述循环浆液返回所述氢化反应器;
2)将所述氢化液分为两股,并对第一股氢化液进行再生以将第一股氢化液中所含的副产物的至少一部分转化为烷基蒽醌,得到再生氢化液;
3)使第二股氢化液和再生氢化液与含氧气体接触进行氧化反应,得到包含过氧化氢和烷基蒽醌的氧化液;以及
4)对所述氧化液进行萃取分离,得到包含过氧化氢的萃取液和包含烷基蒽醌的萃佘液,并将所述萃佘液返回所述氢化反应器作为所述工作液的一部分。
根据本申请,通常地,所述工作液为烷基蒽醌化合物溶于有机溶剂配制而成的溶液,其中所述烷基蒽醌化合物可以是本领域惯用的那些,本申请对此并没有严格的限制。优选地,所述烷基蒽醌化合物可以选自2-烷基-9,10-蒽醌(即,2-烷基蒽醌)、9,10-二烷基蒽醌(即,二烷基蒽醌),以及它们各自的5,6,7,8-四氢衍生物中的至少一种。进一步优选地,所述2-烷基-9,10-蒽醌中,所述烷基可以为C1-C5的烷基,其非限制性实例包括:甲基、乙基、仲丁基、叔丁基、叔戊基和异戊基;所述9,10-二烷基蒽醌中,所述两个烷基可以相同或不同,并且相互独立地选自C1-C5的烷基,例如选自甲基、乙基和叔丁基。特别优 选地,所述9,10-二烷基蒽醌上的两个烷基可以为1,3-二甲基、1,4-二甲基、2,7-二甲基、1,3-二乙基、2,7-二(叔丁基)或2-乙基-6-叔丁基。
根据本申请,所述工作液中所用的有机溶剂可以为本领域惯用的那些,本申请对此并没有严格的限制。在优选的实施方式中,所述有机溶剂为非极性化合物和极性化合物的混合物。优选地,所述非极性化合物可以为沸点高于140℃的石油馏分,其主要组分为C9以上的芳香烃(重芳烃),例如为三甲基苯的异构体、四甲基苯的异构体、叔丁基苯、甲基萘的异构体和二甲基萘的异构体。优选地,所述极性化合物选自饱和醇、羧酸酯、磷酸酯、四取代的脲和它们的各种组合。所述饱和醇通常为C7-C11的饱和醇,其非限制性实例包括:二异丁基甲醇、3,5,5-三甲基己醇、异庚醇。所述羧酸酯例如为乙酸甲基环己酯、乙酸庚酯、苯甲酸丁酯和庚酸乙酯中的至少一种。所述磷酸酯例如为磷酸三辛酯、磷酸三-2-乙基丁酯、磷酸三-2-乙基己酯和磷酸三-正辛酯中的至少一种。所述四取代的脲例如为四-正丁基脲。
根据本申请,优选地,所述加氢催化剂可以为本领域常规采用的任何适合悬浮的催化剂体系,例如所述加氢催化剂可以选自负载型催化剂和/或非负载型催化剂,优选为负载型催化剂。进一步优选地,所述负载型催化剂包括载体和活性金属,所述活性金属选自第VIII族金属、第IB族金属、第IIB族金属或它们的各种组合,优选选自铂、铑、钯、钴、镍、钌、铜、铼或它们的各种组合;所述载体选自活性炭、碳化硅、氧化铝、氧化硅、二氧化硅、二氧化钛、二氧化锆、氧化镁、氧化锌、碳酸钙、硫酸钡或它们的各种组合,优选选自氧化铝、氧化硅或者它们的组合。更进一步优选地,以所述加氢催化剂的重量为基准,所述加氢催化剂的活性金属含量为0.01-30wt%,优选为0.01-5wt%,更优选为0.1-5wt%。
在优选的实施方式中,所述加氢催化剂的颗粒直径为0.1-5000μm,优选0.1-500μm,更优选1-200μm。
根据本申请,在步骤1)中,所述工作液中烷基蒽醌化合物在加氢催化剂颗粒存在下与氢气进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液,其中所述氢化蒽醌是指可以通过氧化产生过氧化氢的加氢产物,例如乙基氢蒽醌;所述副产物是指通过氧化不能产生过氧化氢的加氢产物,例如四氢烷基蒽醌、八氢烷基蒽醌、十 氢烷基蒽醌、烷基羟基蒽酮、烷基蒽酮等等。
在优选的实施方式中,为了进一步提高生产效率和氢化效率,降低生产成本,步骤1)中所述的氢化反应在浆态床反应器中进行。本申请对所述浆态床反应器的具体形式没有严格的要求,例如可以是机械搅拌釜、气体提升等已知形式为浆液循环提供推动力的反应器形式。
在进一步优选的实施方式中,步骤1)的氢化反应的条件包括:压力为0.03-0.35MPa,优选为0.05-0.2MPa;温度为40-70℃,优选为45-65℃;所述工作液与加氢催化剂的质量流量比为25-700∶1,优选为30-500∶1;氢气的标准体积流量与工作液的体积流量比为4-14∶1,优选为5-10∶1。
在优选的实施方式中,步骤1)中所述循环浆液与所述工作液的体积流量比为6-20∶1,优选为8-18∶1,更优选为12-18∶1,例如为12-15∶1。
在本申请中,对步骤1)中所述回收加氢催化剂颗粒的方式没有严格的限制,只要能够将所述浆液进行固液分离得到氢化液和循环浆液即可,其中所述氢化液为包含氢化蒽醌化合物和氢化副产物、且基本不含加氢催化剂颗粒的有机溶液,而所述循环浆液为富含所述加氢催化剂颗粒的有机浆液,除了加氢催化剂颗粒外,其组成可以与所述氢化液相同。
根据本申请,步骤1)中所述加氢催化剂颗粒的回收,即所述浆液的固液分离,可以在氢化反应器的器内或器外进行,优选在氢化反应器的器外进行。在优选的实施方式中,所述浆液的固液分离在氢化反应器外的过滤器中进行,更优选在自动反冲洗过滤器中进行。
在进一步优选的实施方式中,可以采用2-50台,优选4-40台,所述自动反冲洗过滤器。设置多个过滤器使得操作方便,便于安装检修,使浆态床反应器长期稳定运行。优选地,每个过滤器设有独立的过滤压差检测和自动反冲切换阀,利用过滤器压差实现多路过滤器之间的轮流在线自动反冲洗。
根据本申请,所述自动反冲洗过滤器中的过滤介质可以由任何已知的过滤材料如陶瓷、多孔金属如烧结的不锈钢或其它材料制成。过滤介质孔径应满足不允许加氢催化剂颗粒通过,因此其大小取决于加氢催化剂颗粒平均粒度及粒度分布。例如,所述过滤介质孔径范围可以为0.1-200μm,优选0.5-100μm,更优选0.5-50μm。
根据本申请,所述自动反冲洗过滤器所用的反冲流体可以是液体或气体,优选液体。例如,所述液体可以是新鲜工作液和/或过滤后的氢化液,优选为过滤后的氢化液。
在优选的实施方式中,步骤1)的所述氢化反应还得到含氢尾气,即氢化反应后剩余的含氢气体,且所述步骤1)还包括将所述含氢尾气外排和/或经压缩后再返回所述氢化反应器,优选将含氢尾气经压缩后再返回所述氢化反应器,例如将所述含氢尾气经压缩后返回加入所述氢气进料中。
在本申请中,为了进一步降低所述氢化反应器的床层温度,可以将所述循环浆液的温度调整为与加氢反应的温度相同。在优选的实施方式中,所述步骤1)还包括:将所述循环浆液进行第一冷却后得到第一冷却液,再将该第一冷却液返回所述氢化反应器;进一步优选地,所述第一冷却液的温度为40-70℃,优选为45-65℃。
根据本申请,在步骤2)中,所述第一股氢化液(本文中也简称为A液)与再生催化剂接触进行反应,将A液中烷基蒽醌氢化反应产生的副产物的至少一部分再生转化为烷基蒽醌化合物,从而得到再生氢化液。
在优选的实施方式中,所述第一股氢化液(即A液)与所述第二股氢化液(本文中也简称为B液)的质量流量比为10-50∶50-90,更优选为15-40∶60-85,进一步优选为15-30∶70-85,例如为15-25∶75-85。采用上述特定的A液与B液的质量流量比,有利于保证工作液的再生效率,保障装置高氢化效率下的长期稳定运转,同时减少了工作液再生所用再生催化剂的量,减少了废固的产生。
在优选的实施方式中,步骤2)的所述再生反应在再生反应器中进行,所述再生反应器选自固定床反应器、浆态床反应器或者它们的组合。
根据本申请,所述再生催化剂可以是本领域惯用的各种再生催化剂,本申请对此没有严格限制,只要能将A液转化为再生氢化液即可。优选地,所述再生催化剂选自改性氧化铝、改性分子筛或者它们的组合。在优选的实施方式中,当所述再生反应器为固定床反应器时,所述再生催化剂为改性氧化铝,所述改性氧化铝可以是由选自碱金属、碱土金属和稀土金属中的至少一种金属改性的氧化铝;当所述再生反 应器为浆态床反应器时,所述再生催化剂为改性分子筛,所述改性分子筛可以是由选自碱金属、碱土金属和稀土金属中的至少一种金属改性的分子筛。
在优选的实施方式中,所述再生反应的条件包括:温度为60-120℃,优选为80-100℃;压力为0.05-0.5MPa,优选0.05-0.3MPa;所述A液与再生催化剂的质量比为0.1-10∶1,优选0.3-5∶1。上述优选的反应条件有利于促进A液进行再生反应。
在进一步优选的实施方式中,为了满足再生反应的条件,所述步骤2)进一步包括:将所述A液与至少一部分再生氢化液进行换热得到换热液,再对所得的换热液进行再生反应;其中在所述换热过程中,所述A液被加热,而所述再生氢化液被降温,所述换热液是指被加热的A液。
在更进一步优选的实施方式中,所述步骤2)进一步包括:将所述换热液加热后再进行所述再生反应。在本申请中,对所述A液进行换热和加热的目的,旨在使其达到再生反应的条件,从而节约蒸汽消耗。
在优选的实施方式中,步骤3)中所用含氧气体中的氧气含量为20-100体积%。例如,所述含氧气体可以选自氧气、空气、或氧气与惰性气体的混合物,所述惰性气体可以选自氮气、氦气、氩气和氖气中的至少一种,优选为氮气。特别优选地,所述含氧气体为空气。
根据本申请,在步骤3)中,所述B液和再生氢化液与含氧气体中氧气接触反应,其中氢化蒽醌被氧化得到烷基蒽醌和过氧化氢,由此得到所述氧化液。
在优选的实施方式中,步骤3)的所述氧化反应在氧化反应器中进行,所述氧化反应器可以选自鼓泡塔、填料塔、板式塔和搅拌釜。
在优选的实施方式中,步骤3)的氧化反应的条件包括:温度为30-60℃,优选为40-55℃;压力为0.1-0.5MPa,优选为0.2-0.5MPa。上述优选的反应条件更有利于氢化液进行氧化反应,提高氧化液中过氧化氢含量。
在优选的实施方式中,为了满足氧化反应的条件,所述步骤3)还包括:在所述氧化反应之前,将所述B液和再生氢化液合并得到混合液,并对所述混合液进行第二冷却,得到第二冷却液。优选地,所述第二冷却液的温度为40-55℃,优选40-50℃。
根据本申请,为了避免氧化过程中过氧化氢的分解,所述B液和再生氢化液合并得到的混合液或者所述第二冷却液优选在微酸性条件下进行氧化反应。在优选的实施方式中,所述步骤3)还包括:在所述氧化反应之前,将所述混合液或者所述第二冷却液与第一pH调节剂混合得到调节液,其中所述第一pH调节剂可以选自有机酸、无机酸或者它们的组合,优选为无机酸。所述无机酸优选选自磷酸、盐酸、硫酸、硝酸或者它们的组合,更优选为磷酸。进一步优选地,所述调节液中,酸含量为1-10mg/L,优选为3-7mg/L。在本申请中,对于所述第一调节剂的用量没有严格的限制,只要能够使得所述调节液中的酸含量满足上述要求即可。
在进一步优选的实施方式中,所述第一pH调节剂以水溶液的形式存在,进一步优选地在所述第一pH调节剂水溶液中,无机酸和/有机酸的质量浓度为40-90%。
在优选的实施方式中,所述步骤3)进一步包括:在所述氧化反应之前,对所述B液和再生氢化液合并得到的混合液、所述第二冷却液或所述调节液进行过滤。所述过滤的目的是脱除进入氧化反应器的氢化液中所含的细小的催化剂颗粒,特别是磨损所形成的加氢催化剂颗粒,以确保其中的固体颗粒量不超过10mg/L,进而保证氧化反应器的安全。
在优选的实施方式中,所述步骤3)的氧化反应还得到含氧尾气,即经氧化反应后剩余的含氧气体,且所述步骤3)还包括将所述含氧尾气外排和/或经压缩再返回所述氧化反应器,优选将含氧尾气进行尾气处理后直接外排。例如,所述尾气处理可以为冷凝、碳纤维吸附等方式回收有机物,也可以直接焚烧。
根据本申请,在步骤4)中,所述氧化液与萃取剂接触进行液液萃取,得到包含过氧化氢的萃取液和包含烷基蒽醌的萃佘液。优选地,所述萃取剂为水,所述萃取液为过氧化氢水溶液。
在优选的实施方式中,步骤4)的所述萃取在萃取塔中进行。
根据本申请,为了避免萃取过程中过氧化氢的分解,优选在微酸性条件下对所述氧化液进行萃取。在优选的实施方式中,步骤4)中所用的萃取剂包含水和第二pH调节剂,所述第二pH调节剂选自有机酸、无机酸或者它们的组合,优选为无机酸。所述无机酸优选选自磷酸、 盐酸、硫酸、硝酸或者它们的组合,更优选为磷酸。
在进一步优选的实施方式中,所述萃取剂中的酸含量为100-200ppm,优选为120-180ppm。在本申请中,对所述第二pH调节剂的用量没有严格的限定,只要使得所述萃取剂中的酸含量能够满足上述要求即可。
在优选的实施方式中,所述第二pH调节剂以水溶液的形式存在,在所述第二pH调节剂的水溶液中,无机酸和/有机酸的质量浓度为40-90%。
在优选的实施方式中,所述萃取的条件包括:温度为25-60℃,优选为40-50℃;压力为0.01-0.15MPa,优选为0.05-0.12MPa。
在优选的实施方式中,为了满足所述萃取的条件,所述步骤4)还包括:在进行所述萃取之前,将所述氧化液进行第三冷却后,得到第三冷却液。优选地,所述第三冷却液的温度为40-55℃,优选40-50℃。
根据本申请,步骤4)所得的萃佘液可以循环回步骤1)中作为所述工作液的一部分进行氢化反应。在优选的实施方式中,所述步骤4)还包括:将至少10%质量流量的所述萃佘液进行真空干燥得到脱除液,并将所述脱除液与剩余萃佘液一起返回所述氢化反应器;进一步优选地,将至少30%质量流量的所述萃佘液进行真空干燥。
在本申请中,当将所述萃佘液返回所述氢化反应器时,所述循环工作液是指所述萃佘液;当将至少10%质量流量的所述萃佘液进行真空干燥,并将得到的脱除液与剩余萃佘液返回所述氢化反应器时,所述循环工作液是指脱除液与剩余萃佘液。
在进一步优选的实施方式中,在步骤4)中,将所述至少部分萃佘液进行加热升温后再进行真空干燥,或将所述至少部分萃佘液与循环工作液换热后,再通过加热器升温,然后进行真空干燥。
在进一步优选的实施方式中,所述真空干燥在真空干燥塔中进行,其中,所述真空干燥塔可以是任何已知形式的塔器或分离罐,如填料塔、筛板塔等。进一步优选地,所述真空干燥的条件包括:温度为45-120℃,优选为45-100℃;压力为-100kPa至-50kPa,优选-98kPa至-81kPa,更优选为-98kPa至-86kPa。
在进一步优选的实施方式中,所述真空干燥还得到水和/或有机物,为了进一步节省萃取剂的消耗,所述步骤4)还包括将所述水和/或有 机物循环。对真空干燥所脱除的水分和/或有机物进行有效利用,未造成任何物料损失,也未产生废水,既有效又环保。
本申请的发明人研究发现,通过采用特定的循环浆液与工作液的体积流量比,再结合将一部分氢化液(即A液)进行再生反应,并采用特定的所述部分氢化液与剩余部分氢化液(即B液)的质量流量比,即A液与B液的质量流量比,以及将萃佘液返回氢化反应,尤其是将至少10%质量流量的所述萃佘液进行真空干燥,并将得到的脱除液返回氢化反应,有利于提高反应选择性和装置生产效率,从而实现氢化效率高达10-18g/L;延长加氢催化剂寿命,减少失活催化剂再生造成的成本损失;保证浆态床加氢反应稳定的同时,提高了过氧化氢生产装置的本质安全性,且环保有效。
在第二方面,本申请提供了一种制备过氧化氢的系统,包括氢化单元、再生单元、氧化单元和分离单元;
所述氢化单元设置为使包含烷基蒽醌的工作液在加氢催化剂颗粒和氢气存在下进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液,从所得浆液中回收所述加氢催化剂颗粒,得到富含加氢催化剂颗粒的循环浆液和基本不含加氢催化剂颗粒的氢化液,并将所述循环浆液再循环;
所述再生单元设置为对所述氢化液的一部分进行再生以将其中所含的副产物的至少一部分转化为烷基蒽醌,得到再生氢化液;
所述氧化单元设置为使剩余部分的氢化液和再生氢化液与含氧气体接触进行氧化反应,得到包含过氧化氢和烷基蒽醌的氧化液;以及
所述分离单元设置为对所述氧化液进行萃取分离,得到包含过氧化氢的萃取液和包含烷基蒽醌的萃佘液,并将所述萃佘液返回所述氢化单元。
在优选的实施方式中,所述氢化单元设置有工作液入口、含氢气体入口、氢化液出口和任选的含氢尾气出口;所述再生单元设置有氢化液入口和再生氢化液出口;所述氧化单元设置有氢化液入口、含氧气体入口、氧化液出口和含氧尾气出口;所述分离单元设置有氧化液入口、萃取剂入口、萃取液出口和萃佘液出口;其中所述氢化单元的氢化液出口分别与所述再生单元和氧化单元的氢化液入口连通,所述再生单元的再生氢化液出口与所述氧化单元的氢化液入口连通,所述 氧化单元的氧化液出口与所述分离单元的氧化液入口连通,所述萃佘液出口与所述氢化单元的工作液入口连通。
在优选的实施方式中,所述氢化单元包括浆态床反应器形式的氢化反应器和过滤器,所述氢化反应器包括反应区和气液分离区,并且具有工作液入口、至少一个含氢气体入口、循环浆液入口、浆液出口和含氢尾气出口。工作液、循环浆液和氢气经由相应的入口进入氢化反应器的反应筒(即反应区)内,与反应筒中的加氢催化剂颗粒接触并发生氢化反应,烷基蒽醌加氢为氢化蒽醌,同时向上流动;反应物流从反应筒顶部开口流入气液分离区中,进行气液分离后,包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液从浆液出口排出,含氢尾气从气液分离区顶部的含氢尾气出口排出后,含氢尾气可选地经冷却后进入气体增压设备增压,然后返回一个含氢气体入口。来自浆态床反应器的浆液在过滤器中过滤,清液由氢化液出口引出氢化单元;由过滤器的循环浆液出口流出的循环浆液作为外循环返回反应器的反应筒中继续参与反应。更优选地,在氢化反应器内还包括初步固液分离区,浆液在初步固液分离区进行初步分离后,再从浆液出口进入过滤器中进一步分离。
在进一步优选的实施方式中,所述氢化单元还包括压缩机,所述压缩机连通于所述氢化反应器的含氢尾气出口和所述氢化反应器的一个含氢气体入口,或者所述压缩机连通于所述氢化反应器的含氢尾气出口和所述氢化反应器的一个含氢尾气入口,用于将所述含氢尾气进行压缩并循环回所述氢化反应器。
在进一步优选的实施方式中,所述氢化单元还包括第一冷却器,所述第一冷却器连通于所述过滤器的循环浆液出口和所述氢化反应器的循环浆液入口,用于将所述循环浆液进行第一冷却后得到第一冷却液,并将其循环回所述氢化反应器。
在优选的实施方式中,所述再生单元包括再生反应器,所述再生反应器具有与所述再生单元的氢化液入口和再生氢化液出口对应的氢化液入口和再生氢化液出口。
在进一步优选的实施方式中,所述再生单元还包括换热器,所述换热器连通于所述氢化单元的氢化液出口、所述再生反应器的氢化液入口和所述再生反应器的再生氢化液出口,用于将待进行再生的氢化 液(即A液)与所述再生氢化液进行换热。
在进一步优选的实施方式中,所述再生单元还包括加热器,所述加热器连通于所述换热器的氢化液出口和所述再生反应器的氢化液入口,用于将换热后的氢化液进行加热。
在优选的实施方式中,所述氧化单元包括氧化反应器,所述氧化反应器具有与所述氧化单元的氢化液入口、含氧气体入口、氧化液出口和含氧尾气出口对应的氢化液入口、含氧气体入口、氧化液出口和含氧尾气出口。
所述氧化反应器可以是任何已知形式的反应器,如搅拌釜、填料塔、板式塔。所述氧化反应器内可以安装填料、筛板、气体分布器、液体分布器等气液分布装置。氧化反应器内气液接触方式可以是顺流,也可以是逆流或错流。
根据本申请,所述氧化反应器可以是一台,也可以是多台。当氧化反应器为多台时,待氧化的物流可以以串联或并联的方式进入多台氧化反应器,所述含氧气体也可以以串联或并联的方式进入多台氧化反应器。
在本申请中,所述氧化反应器可以内置或外置换热器,或在多台氧化反应器之间设置换热器,取走氧化反应产生的反应热,以避免氧化反应器内超温。氧化反应器可以内设或外设气液分离器,用于将氧化液与含氧尾气分开,以避免氧化液被气体带出系统造成工作液损失。
在进一步优选的实施方式中,所述氧化单元还包括第二冷却器,所述第二冷却器连通所述氢化单元的氢化液出口、所述再生单元的再生氢化液出口和所述氧化反应器的氢化液入口,用于对所述剩余部分的氢化液(即B液)和再生氢化液合并得到的混合液进行冷却第二冷却后得到第二冷却液,再进入所述氧化反应器。
在进一步优选的实施方式中,所述氧化单元还包括精密过滤器,所述精密过滤器连通所述第二冷却器的出口和所述氧化反应器的氢化液入口,用于将经过所述第二冷却液的混合液进行过滤。
在优选的实施方式中,所述分离单元包括萃取塔,所述萃取塔具有与所述分离单元的氧化液入口、萃取剂入口、萃取液出口和萃佘液出口对应的氧化液入口、萃取剂入口、萃取液出口和萃佘液出口。
根据本申请,所述萃取塔可以是任何已知形式的塔器,如填料塔、 筛板塔、喷射塔、脉冲填料塔等。萃取塔内可以安装液体分布器,所述氧化液和萃取剂在萃取塔内逆流接触。
在进一步优选的实施方式中,所述分离单元还包括第三冷却器,所述第三冷却器连通所述氧化单元的氧化液出口和所述萃取塔的氧化液入口,用于对所述氧化液进行第三冷却,而后再使其进入所述萃取塔。
在本申请中,所述第一冷却器、第二冷却器和第三冷却器可以是任何已知的换热器形式,优选地,所述第一冷却器、第二冷却器和第三冷却器各自独立地选自固定管板式换热器、套管式换热器、板式换热器、盘管换热器,更优选为固定管板式换热器。
在进一步优选的实施方式中,所述分离单元还包括真空干燥塔,所述真空干燥塔连通所述萃取塔的萃佘液出口和所述氢化单元的工作液入口,用于将至少10%质量流量的所述萃佘液进行真空干燥,并将得到的脱除液与剩余萃佘液返回所述氢化单元。
在更进一步优选的实施方式中,所述真空干燥塔还连通于所述萃取塔的萃取剂入口或氧化液入口,用于将至少10%质量流量的所述萃佘液经真空干燥而得的水和/或有机物返回所述萃取塔;进一步优选地,所述真空干燥塔还连通于所述萃取塔的萃取剂入口或氧化液入口,用于将至少30%质量流量的所述萃佘液经真空干燥而得的水和/或有机物返回所述萃取塔。
下面结合附图对本申请的制备过氧化氢的方法和系统的优选实施方式进行阐述。
如图1所示,在本申请方法的一种优选实施方式中,包含烷基蒽醌的工作液1和氢气2在氢化反应器3中,在加氢催化剂颗粒存在下进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液和含氢尾气4,所述含氢尾气4外排和/或经压缩后再返回所述氢化反应器3。所述浆液在氢化反应器3外的过滤器3’中进行催化剂回收后得到富含加氢催化剂颗粒的循环浆液5和基本不含加氢催化剂颗粒的氢化液6,所述循环浆液5任选经冷却后返回所述氢化反应器3。所述氢化液6分为两股,即第一股氢化液(即A液)7和第二股氢化液(即B液)8。所述A液7在再生反应器9中再生,使其中所含的副产物转化为烷基蒽醌,得到再生氢化液10,所述再生氢化液10与B液8合并得 到混合液11。所述混合液11与含氧气体12在氧化反应器13中进行氧化反应,得到包含过氧化氢和烷基蒽醌的氧化液14和含氧尾气15。所述氧化液14在萃取塔16中用萃取剂17进行萃取,得到包含过氧化氢的萃取液18和包含烷基蒽醌的萃佘液19。任选地,在真空干燥塔20中对所述萃佘液19的至少一部分进行真空干燥,脱除其中的水和/或部分有机物,得到脱除液21,并任选地将所脱除的水和/或有机物22返回萃取塔16。所述脱除液21和剩余部分的萃佘液19作为循环工作液23返回所述氢化反应器3。
相应地,在图1所示的优选实施方式中,本发明的所述系统包括依次连接的氢化单元、再生单元、氧化单元和分离单元,氢化单元包括氢化反应器3和过滤器3’,再生单元包括再生反应器9,氧化单元包括氧化反应器13,且分离单元包括萃取塔16和任选的真空干燥塔20,所述氢化单元具有工作液入口、含氢气体入口、氢化液出口和任选的含氢尾气出口,所述再生单元具有氢化液入口和再生氢化液出口,所述氧化单元具有氢化液入口、含氧气体入口、氧化液出口和含氧尾气出口,所述分离单元具有氧化液入口、萃取剂入口、萃取液出口和萃余液出口;
其中所述氢化单元的氢化液出口分别与所述再生单元和氧化单元的氢化液入口连通,所述再生单元的再生氢化液出口与所述氧化单元的氢化液入口连通,所述氧化单元的氧化液出口与所述分离单元的氧化液入口连通,所述分离单元的萃佘液出口与所述氢化单元的工作液入口连通;
所述氢化反应器3具有与所述氢化单元的工作液入口和含氢气体入口对应的工作液入口和含氢气体入口,同时还具有循环浆液入口、浆液出口和含氢尾气出口,所述过滤器3’具有浆液入口、循环浆液出口和与所述氢化单元的氢化液出口对应的氢化液出口,其中所述氢化反应器的浆液出口与所述过滤器的浆液入口连通,所述过滤器3’的循环浆液出口与所述氢化反应器3的循环浆液入口连通,并且任选地,所述氢化反应器3的含氢尾气出口与所述氢化反应器3的含氢气体入口连通。
如图2所示,在本申请方法的进一步优选的实施方式中,包含烷基蒽醌的工作液1和氢气2在氢化反应器3中,在加氢催化剂颗粒存 在下进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液和含氢尾气4,所述含氢尾气4经压缩机24压缩后再返回所述氢化反应器3。所述浆液在氢化反应器3外的过滤器3’中进行催化剂回收后得到富含加氢催化剂颗粒的循环浆液5和基本不含加氢催化剂颗粒的氢化液6,所述循环浆液5经第一冷却器25冷却后返回所述氢化反应器3。所述氢化液6分为两股,即A液7和B液8。所述A液7在换热器26中与来自再生反应器9的再生氢化液10换热,经换热后的A液7再经加热器27加热,而后进入再生反应器9中再生,使其中所含的副产物转化为烷基蒽醌,得到再生氢化液10。经换热后的再生氢化液10与B液8合并得到混合液11。所述混合液11在第二冷却器28中冷却,而后与第一pH调节剂29混合得到调节液。所得调节液经精密过滤器30过滤后,与含氧气体12在氧化反应器13中进行氧化反应,得到包含过氧化氢和烷基蒽醌的氧化液14和含氧尾气15。所述氧化液14经第三冷却器31冷却后,在萃取塔16中用萃取剂17进行萃取,得到包含过氧化氢的萃取液18和包含烷基蒽醌的萃佘液19。任选地,在真空干燥装置20中对所述萃佘液19的至少一部分进行真空干燥,脱除其中的水和/或部分有机物,得到脱除液21,并任选地将所脱除的水和/或有机物22返回萃取塔16。所述脱除液21和剩余部分的萃佘液19作为循环工作液23返回所述氢化反应器3。
相应地,在图2所示的进一步优选的实施方式中,本发明的所述系统包括依次连接的氢化单元、再生单元、氧化单元和分离单元,氢化单元包括氢化反应器3、过滤器3’、压缩机24和第一冷却器25,再生单元包括再生反应器9、换热器26和加热器27,氧化单元包括氧化反应器13、第二冷却器28和精密过滤器30,且分离单元包括萃取塔16、第三冷却器31和任选的真空干燥塔20;
所述氢化反应器3具有与所述氢化单元的工作液入口和含氢气体入口对应的工作液入口和含氢气体入口,同时还具有循环浆液入口、浆液出口和含氢尾气出口,所述过滤器3’具有浆液入口、循环浆液出口和与所述氢化单元的氢化液出口对应的氢化液出口,所述氢化反应器3的浆液出口与所述过滤器3’的浆液入口连通,所述氢化反应器3的含氢尾气出口经压缩机24与所述氢化反应器3的含氢气体入口连通,所述过滤器3’的循环浆液出口经第一冷却器25与所述氢化反应器 的循环浆液入口连通;
所述再生反应器9具有与所述再生单元的氢化液入口和再生氢化液出口对应的氢化液入口和再生氢化液出口,所述换热器26连通所述氢化单元的氢化液出口、所述再生反应器的氢化液入口和所述再生反应器的再生氢化液出口,所述加热器27连通所述换热器26的氢化液出口和所述再生反应器9的氢化液入口;
所述氧化反应器13具有与所述氧化单元的氢化液入口、含氧气体入口、氧化液出口和含氧尾气出口对应的氢化液入口、含氧气体入口、氧化液出口和含氧尾气出口,所述第二冷却器28连通所述氢化单元的氢化液出口、所述再生单元的再生氢化液出口和所述精密过滤器30,所述精密过滤器30连通所述第二冷却器28的出口和所述氧化反应器的氢化液入口,
所述萃取塔16具有与所述分离单元的氧化液入口、萃取剂入口、萃取液出口和萃佘液出口对应的氧化液入口、萃取剂入口、萃取液出口和萃佘液出口,所述第三冷却器31连通所述氧化单元的氧化液出口和所述萃取塔的氧化液入口,所述真空干燥塔20连通所述萃取塔16的萃佘液出口和所述氢化单元的工作液入口,任选地,所述真空干燥塔还与所述萃取塔的萃取剂入口或氧化液入口连通。
实施例
以下将结合实施例对本申请进行详细描述,但本申请并不限于此。
在以下实施例和对比例中,加氢催化剂为负载型催化剂,其中,载体为氧化铝,活性金属为钯,以加氢催化剂的重量为基准,所述活性金属的含量为2wt%。
在以下实施例和对比例中,所述工作液由重芳烃、磷酸三辛酯、乙基蒽醌、四氢乙基蒽醌和戊基蒽醌组成,各组分的质量比为59∶21∶9∶6∶5。
在以下实施例和对比例中氢化效率的测定方法包括:取5mL氢化液于分液漏斗中,再加入10mL的重芳烃和20mL的1+4H 2SO 4溶液(H 2SO 4与水的体积比为1∶4);向上述混合溶液中通O 2,鼓泡氧化至亮黄色或橘黄色为止(约10-15min);用纯水洗涤萃取反应液4-5次,每次约20mL水;向萃取液中用浓度0.1mol/L的KMnO 4标准溶液滴定 至微红色,30s不褪色为终点。
计算方式:氢化效率(g/L)=KMnO 4标准溶液浓度(0.1mol/L)×KMnO 4标准溶液体积(mL)×17.01/5。
在以下实施例和对比例中,加氢选择性的计算方法如下:
加氢选择性=测定的氢化效率/理论计算氢化效率,
理论计算氢化效率=耗氢体积量/22.4×34.02/工作液体积量。
实施例1
(1)在加氢催化剂存在下,将42Nm 3/h氢气经含氢气体入口进入浆态床反应器,4.8m 3/h工作液和57.6m 3/h循环浆液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在温度60℃、压力0.3MPa、工作液与加氢催化剂的质量流量比110∶1的条件下进行氢化反应,得到浆液和含氢尾气;
将所述浆液经过三组并联的过滤器过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,得到氢化液和循环浆液;过滤后的富含催化剂颗粒的循环浆液经第一冷却器冷却至59.3℃后循环回浆态床反应器的反应筒内继续参与反应,其中,循环浆液与工作液的体积流量比为12∶1;
(2)将A液(15%质量流量的氢化液)经过内装活性氧化铝的氢化白土床(直径800mm,高度1500mm)进行再生反应,得到再生氢化液,其中,再生反应温度为90℃、压力为自生压力、A液与再生催化剂的质量比2∶1;
(3)将B液(85%质量流量的氢化液)与步骤2)所得到的再生氢化液的混合液经第二冷却器降温至45℃,得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器过滤后,进入氧化反应器中,与260Nm 3/h空气进行氧化反应,其中,氧化反应的温度为50℃,压力为0.3MPa,得到含氧尾气和氧化液;
(4)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为120ppm的含酸水溶液,并将氧化液与含酸水溶液按25∶1的质量流量比在萃取塔中进行萃取,萃取温度为50℃、塔顶压力为常压,得到过氧化氢溶液和萃佘液;
(5)将所述萃佘液经真空干燥塔脱水后,得到的脱除液作为循环工作液返回氢化反应单元,其中,真空干燥塔的压力为-96kPa,温度70℃。
实验结果:浆态床反应器轴向温升在0.9℃;氢化液的氢化效率达到13-13.2g/L,加氢选择性>99%;装置运行3200h,共产出质量浓度为35%的过氧化氢溶液560t,期间更换活性氧化铝1t;浆态床反应器催化剂活性、选择性稳定,未出现失活迹象,浆态床反应器内反应液中的有效蒽醌(即乙基蒽醌+四氢乙基蒽醌+戊基蒽醌)含量稳定。
实施例2
(1)在加氢催化剂存在下,将39Nm 3/h氢气经气体入口进行浆态床反应器,4.8m 3/h工作液和28.8m 3/h循环浆液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在60℃和0.3MPa,工作液与加氢催化剂的质量流量比110∶1的加氢反应条件下进行氢化反应,得到浆液和含氢尾气;
将所述液浆液经过四组并联的过滤器过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,得到氢化液和循环浆液。过滤后的富含催化剂颗粒的循环浆液经第一冷却器冷却至58.5℃后循环回反应筒内继续参与反应,其中,循环浆液与工作液的体积流量比为6∶1;
(2)将A液(15%质量流量的氢化液)经过内装活性氧化铝的氢化白土床(直径800mm,高度1500mm)进行再生反应,得到再生氢化液,其中,再生反应温度为90℃、压力为自生压力、A液与再生催化剂的质量比2∶1;
(3)将B液(85%质量流量的氢化液)与步骤2)所得到的再生氢化液的混合液经第二冷却器降温至45℃,得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器后过滤后,进入氧化反应器中,与230Nm 3/h空气进行氧化反应,其中,氧化反应的温度为48℃,压力为0.3MPa,得到含氧尾气和氧化液;
(4)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为150ppm的含酸水溶液,并将氧化液与含酸水溶液按27∶1的质量流量比在萃取 塔中进行萃取,得到过氧化氢溶液和萃佘液;
(5)将所述萃佘液经真空干燥塔脱水后,得到的脱除液作为循环工作液返回氢化反应单元,其中,真空干燥塔的压力为-96kPa,温度50℃。
实验结果:浆态床反应器轴向温升在1.5℃;氢化液的氢化效率可达11.7-11.8g/L,加氢选择性>98%;装置运行3200h,共产出质量浓度为35%的过氧化氢溶液506t,期间更换活性氧化铝1.3t;浆态床反应器催化剂活性、选择性稳定,未出现失活迹象,工作液中有效蒽醌含量比较稳定。
实施例3
(1)在加氢催化剂存在下,将35Nm 3/h氢气经气体入口进行浆态床反应器,4.8m 3/h工作液和38.4m 3/h循环浆液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在60℃和0.3MPa、工作液与加氢催化剂的质量流量比110∶1的加氢反应条件下进行氢化反应,得到浆液和含氢尾气;
将所述液浆液经过三组并联的滤器过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,得到氢化液和循环浆液;过滤后的富含催化剂颗粒的循环浆液经第一冷却器冷却至59℃后循环回反应筒内继续参与反应,其中,循环浆液与工作液的体积流量比为8∶1;
(2)将A液(10%质量流量的氢化液)经过内装活性氧化铝的氢化白土床(直径800mm,高度1500mm)进行再生反应,得到再生氢化液,其中,再生反应温度为60℃、压力为自生压力、A液与再生催化剂的质量比2∶1;
(3)将B液(90%质量流量的氢化液)与步骤2)所得到的再生氢化液的混合液经第二冷却器降温至45℃,得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器后过滤后,进入氧化反应器中,与209Nm 3/h空气进行氧化反应,其中,氧化反应的温度为48℃,压力为0.3MPa,得到含氧尾气和氧化液;
(4)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为180ppm的含酸水溶液,并将氧化液与含酸水溶液按30∶1的质量流量比在萃取 塔中进行萃取,得到过氧化氢溶液和萃佘液;
(5)将所述萃佘液经真空干燥塔脱水后,得到的脱除液作为循环工作液返回氢化反应单元,其中,真空干燥塔的压力为-96kPa,温度50℃。
实验结果:反应器轴向温升1.2℃,氢化液的氢化效率可达10.7-10.8g/L,加氢选择性98.5%。装置运行3200h,共产出质量浓度为35%的过氧化氢溶液468t,期间更换活性氧化铝1.3t;浆态床反应器催化剂活性下降13%、选择性下降1.4%,存在失活迹象,工作液中有效蒽醌下降5%。
实施例4
(1)在加氢催化剂存在下,将42Nm 3/h氢气经含氢气体入口进入浆态床反应器,4.8m 3/h工作液和86.4m 3/h循环浆液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在温度60℃、压力0.3MPa、工作液与加氢催化剂的质量流量比110∶1的加氢反应条件下进行氢化反应,得到浆液和含氢尾气;
将所述浆液经过三组并联的过滤器过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,得到氢化液和循环浆液;过滤后的富含催化剂颗粒的循环浆液经第一冷却器冷却后循环回浆态床反应器的反应筒内继续参与反应,其中,循环浆液与工作液的体积流量比为18∶1;
(2)将A液(15%质量流量的氢化液)经过内装活性氧化铝的氢化白土床(直径800mm,高度1500mm)进行再生反应,得到再生氢化液,其中,再生反应温度为90℃、压力为自生压力、A液与再生催化剂的质量比2∶1;
(3)将B液(85%质量流量的氢化液)与步骤2)所得到的再生氢化液的混合液经第二冷却器降温至45℃,得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器过滤后,进入氧化反应器中,与260Nm 3/h空气进行氧化反应,其中,氧化反应的温度为50℃,压力为0.3MPa,得到含氧尾气和氧化液;
(4)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为120ppm 的含酸水溶液,并将氧化液与含酸水溶液按25∶1的质量流量比在萃取塔中进行萃取,萃取温度50℃、塔顶常压,得到过氧化氢溶液和萃佘液;
(5)将所述萃佘液经真空干燥塔脱水后,得到的脱除液作为循环工作液返回氢化反应单元,其中,真空干燥塔的压力为-96kPa,温度70℃。
技术效果实验结果:浆态床反应器轴向温升在0.7℃;氢化液的氢化效率可达到13-13.2g/L,加氢选择性>99%;装置运行3200h,共产出质量浓度为35%的过氧化氢溶液560t,期间更换活性氧化铝700kg;浆态床反应器催化剂活性、选择性稳定,未出现失活迹象,工作浆态床反应器内反应液中的有效蒽醌含量稳定。
实施例5
(1)在加氢催化剂存在下,将40Nm 3/h氢气经含氢气体入口进入浆态床反应器,4.8m 3/h工作液和57.6m 3/h循环浆液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在温度60℃、压力0.3MPa、工作液与加氢催化剂的质量流量比110∶1的加氢反应条件下进行氢化反应,得到浆液和含氢尾气;
将所述浆液经过三组并联的过滤器过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,得到氢化液和循环浆液;过滤后的富含催化剂颗粒的循环浆液经第一冷却器冷却后循环回浆态床反应器的反应筒内继续参与反应,其中,循环浆液与工作液的体积流量比为12∶1;
(2)将A液(40%质量流量的氢化液)经过内装活性氧化铝的氢化白土床(直径800mm,高度1500mm)进行再生反应,得到再生氢化液,其中,再生反应温度为90℃、压力为自生压力、A液与再生催化剂的质量比5.3∶1;
(3)将B液(60%质量流量的氢化液)与步骤2)所得到的再生氢化液的混合液经第二冷却器降温至45℃,得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器过滤后,进入氧化反应器中,与238Nm 3/h空气进行氧化反应,其中,氧化反应的温度为50℃,压力为0.3MPa,得到 含氧尾气和氧化液;
(4)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为120ppm的含酸水溶液,并将氧化液与含酸水溶液按26∶1的质量流量比在萃取塔中进行萃取,萃取温度50℃、塔顶常压,得到过氧化氢溶液和萃佘液;
(5)将所述萃佘液经真空干燥塔脱水后,得到的脱除液作为循环工作液返回氢化反应单元,其中,真空干燥塔的压力为-96kPa,温度70℃。
技术效果实验结果:浆态床反应器轴向温升在0.9℃;氢化液的氢化效率可达到12-12.2g/L,加氢选择性>98.7%;装置运行3200h,共产出质量浓度为35%的过氧化氢溶液526t,期间更换活性氧化铝1.3t;浆态床反应器催化剂活性、选择性稳定,未出现失活迹象,工作浆态床反应器内反应液中的有效蒽醌含量稳定。
对比例1
(1)在加氢催化剂存在下,将24.5Nm 3/h氢气经气体入口进行浆态床反应器,4.8m 3/h工作液38.4m 3/h循环浆液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在60℃和0.3MPa、工作液与加氢催化剂的质量流量比110∶1的加氢反应条件下进行氢化反应,得到浆液和含氢尾气;
将所述液浆液经过三组并联的过滤器过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,得到氢化液和循环浆液;过滤后的富含催化剂颗粒的循环浆液经第一冷却器冷却后循环回反应筒内继续参与反应,其中,循环浆液与工作液的体积流量比为8∶1;氢化液不进行再生处理,直接进入氧化反应单元;
(2)将步骤1)所得的氢化液经第二冷却器降温至45℃得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器后过滤后,进入氧化反应器中,与145Nm 3/h空气进行氧化反应,操作温度为45℃,压力为0.3MPa,得到含氧尾气和氧化液;
(3)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为185ppm的含酸水溶液,并将氧化液与含酸水溶液按35∶1的质量流量比在萃取 塔中进行萃取,得到过氧化氢溶液和萃佘液;
(4)将所述萃佘液经真空干燥塔脱水后,得到的脱除液作为循环工作液返回氢化反应单元,其中,真空干燥塔的压力为-96kPa,温度50℃。
实验结果:氢化液的氢化效率只能维持7.1-7.3g/L,加氢选择性<97%;装置运行300h,共产出质量浓度为27.5%的过氧化氢溶液37t;浆态床反应器催化剂活性下降20%、选择性下降1.8%,失活现象明显,工作液中有效蒽醌含量下降10%。
对比例2
(1)在加氢催化剂存在下,将33Nm 3/h氢气经气体入口进行浆态床反应器,4.8m 3/h工作液和38.4m 3/h循环浆液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在60℃和0.3MPa、工作液与加氢催化剂的质量流量比110∶1的加氢反应条件下进行氢化反应,得到浆液和含氢尾气;
将所述液浆液经过三组并联的滤器过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,得到氢化液和循环浆液。过滤后的富含催化剂颗粒的循环浆液经第一冷却器冷却后循环回反应筒内继续参与反应,其中,循环浆液与工作液的体积流量比为8∶1;氢化液不进行再生处理,直接进入氧化反应单元;
(2)将步骤1)所得的氢化液经第二冷却器降温至45℃,得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器后过滤后,进入氧化反应器中,与195Nm 3/h空气进行氧化反应,操作温度为50℃,压力为0.3MPa,得到含氧尾气和氧化液;
(3)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为180ppm的含酸水溶液,并将氧化液与含酸水溶液按26∶1的质量流量比在萃取塔中进行萃取,得到过氧化氢溶液和萃佘液;
(4)将所述萃佘液经真空干燥塔脱水,得到的脱除液作为循环工作液,其中,真空干燥塔的压力为-96kPa,温度50℃;
(5)将步骤4)所得的循环工作液进入4台并联的工作液再生反应器进行再生反应,得到再生工作液返回氢化反应器,再生反应器为 内装活性氧化铝的氢化白土床(直径800mm,高度1500mm),其中,再生反应温度为60℃。
实验结果:氢化液的氢化效率只能维持9.8-10g/L,加氢选择性<98%。装置运行300h,共产出质量浓度为27.5%的过氧化氢溶液50t;浆态床反应器催化剂活性下降19%、选择性下降1.8%,失活现象明显,工作液中有效蒽醌含量下降5%。
对比例3
(1)在加氢催化剂存在下,将33Nm 3/h氢气经气体入口进行浆态床反应器,4.8m 3/h工作液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在60℃和0.3MPa、工作液与加氢催化剂的质量流量比110∶1的加氢反应条件下进行氢化反应,得到浆液和含氢尾气;
将所述浆液经过内置的过滤器进行过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,过滤得到氢化液,反应温度靠内置盘管冷却器控制。
(2)将A液(15%质量流量的氢化液)经过内装活性氧化铝的氢化白土床(直径800mm,高度1500mm)进行再生反应,得到再生氢化液,其中,再生反应温度为90℃;
(3)将B液(85%质量流量的氢化液)与步骤2)所得到的再生氢化液的混合液经第二冷却器降温至45℃,注得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器后过滤后,进入氧化反应器中,与195Nm 3/h空气进行氧化反应,操作温度为48℃,压力为0.3MPa,得到含氧尾气和氧化液;
(4)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为150ppm的含酸水溶液,并将氧化液与含酸水溶液按26∶1的质量流量比在萃取塔中进行萃取,得到过氧化氢溶液和萃佘液;
(5)将所述萃佘液经真空干燥塔脱水后,得到的脱除液作为循环工作液返回氢化反应单元,其中,真空干燥塔的压力为-96kPa,温度50℃。
实验结果:浆态床反应器轴向温升5℃以上;氢化液的氢化效率只 能达到9.8-9.9g/L,加氢选择性<97%;装置运行300h,共产出质量浓度为27.5%的过氧化氢溶液50t,期间更换活性氧化铝500kg;浆态床反应器催化剂活性下降15%、选择性下降1.5%,有失活迹象,工作液中有效蒽醌含量下降5%。
对比例4
(1)在加氢催化剂存在下,将34Nm 3/h氢气经气体入口进行浆态床反应器,4.8m 3/h工作液和19m 3/h循环浆液经相应入口进入浆态床反应器,其中,浆态床反应器中反应筒直径为300mm,在60℃和0.3MPa的加氢反应条件下进行氢化反应,得到浆液和含氢尾气;
将所述浆液经过三组并联的过滤器过滤,采用氢化液作为反冲液,由自动反冲洗程序实现连续自动反冲,得到氢化液和循环浆液。过滤后的富含催化剂颗粒的循环浆液经第一冷却器冷却后循环回反应筒内继续参与反应,其中,循环浆液与工作液的体积流量比为4∶1;
(2)将A液(15%质量流量的氢化液)经过内装活性氧化铝的氢化白土床(直径800mm,高度1500mm)进行再生反应,得到再生氢化液,其中,再生反应温度为90℃、压力为自生压力、A液与再生催化剂的质量比2∶1;
(3)将B液(85%质量流量的氢化液)与步骤2)所得到的再生氢化液的混合液经第二冷却器降温至45℃,得到第二冷却液,注入质量浓度为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液经精密过滤器后过滤后,进入氧化反应器中,与205Nm 3/h空气进行氧化反应,操作温度为48℃,压力为0.3MPa,得到含氧尾气和氧化液;
(4)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为150ppm的含酸水溶液,并将氧化液与含酸水溶液按25∶1的质量流量比在萃取塔中进行萃取,得到过氧化氢溶液和萃佘液;
(5)将所述萃佘液经真空干燥塔脱水后,得到的脱除液作为循环工作液返回氢化反应单元,其中,真空干燥塔的压力为-96kPa,温度50℃。
实验结果:浆态床反应器轴向温升3-4℃。氢化液的氢化效率只能达到10.4-10.5g/L,加氢选择性<97%;装置运行300h,共产出质量浓 度为27.5%的过氧化氢溶液52t,期间更换活性氧化铝350kg;浆态床反应器催化剂活性降低14%、选择性下降1.3%,有失活迹象,工作液中有效蒽醌含量比较稳定。
对比例5
(1)将22Nm 3/h纯氢与4.8m 3/h工作液,在40-60℃和0.3MPa的反应条件下,在固定床反应器(直径300mm,高8000mm的固定床反应器,内装平均粒径为3-5mm的加氢催化剂颗粒)内发生反应后,经气液分离后,含氢尾气外排;
(2)将A液(15%质量流量的氢化液)经过一台内装活性氧化铝的氢化白土床(直径800mm,高度1500mm)再生反应,得到再生氢化液,其中,再生反应温度为90℃、压力为自生压力、A液与再生催化剂的质量比2∶1;
(3)将B液(85%质量流量的氢化液)与步骤2)所得到的再生氢化液的混合液,一部分经取热后循环回反应器,一部分经冷却至45℃,得到第二冷却液,再注入质量分数为85%的磷酸溶液,得到磷酸含量为5mg/L的调节液,再将所述调节液进入氧化反应器;在氧化反应器内,与100Nm 3/h空气发生反应,得到含有过氧化氢的氧化液;
(4)将质量浓度为85%的磷酸水溶液稀释至磷酸含量为150ppm的含酸水溶液,并将氧化液与含酸水溶液按38∶1的质量流量比在萃取塔中进行萃取,得到最终产品为27.5%的过氧化氢溶液。萃佘液经聚结器脱水后,进入碳酸钾干燥塔进一步脱水再生,然后再全部经过3台装有活性氧化铝的工作液白土床(直径800mm,高度1500mm)进行再生处理,最后循环回氢化反应器。
实验结果:固定床反应器床层进出口温升7-8℃,氢化液的氢化效率为6.0-6.4g/L,加氢选择性89-92%;装置运行3200h,共产出27.5%的过氧化氢溶液340t,期间更换活性氧化铝1.7t;固定床反应器催化剂已出现失活迹象,床层进口温度由开车时的45℃,已提高至58℃。
通过比较实施例1-5和对比例1-5可知,采用本申请提供的方法制备过氧化氢,可提高氢化效率至10g/L以上,加氢选择性>98%,基本消除反应器床层轴向温差,有效提高氢化反应选择性、装置效率及氢化效率,并延长催化剂的使用寿命。
通过比较实施例1与对比例5可知,采用本申请提供的制备过氧化氢的方法,能够有效提高氢化效率,加氢选择性显著提高,并延长催化剂的使用寿命,装置产能提高110%,每吨产品消耗活性氧化铝量下降72%,大幅减少装置废固产生量,具有很好的经济效益和社会效益。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (13)

  1. 一种制备过氧化氢的方法,包括以下步骤:
    1)将包含烷基蒽醌的工作液进料到氢化反应器中,并使所述烷基蒽醌在加氢催化剂颗粒和氢气存在下进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液,从所述浆液中回收所述加氢催化剂颗粒,得到富含加氢催化剂颗粒的循环浆液和基本不含加氢催化剂颗粒的氢化液,并将所述循环浆液返回所述氢化反应器;
    2)将所述氢化液分为两股,并对第一股氢化液进行再生以将第一股氢化液中所含的副产物的至少一部分转化为烷基蒽醌,得到再生氢化液;
    3)使第二股氢化液和再生氢化液与含氧气体接触进行氧化反应,得到包含过氧化氢和烷基蒽醌的氧化液;以及
    4)对所述氧化液进行萃取分离,得到包含过氧化氢的萃取液和包含烷基蒽醌的萃余液,并将所述萃余液返回所述氢化反应器作为所述工作液的一部分;
    其中,所述循环浆液与所述工作液的体积流量比为6-20∶1,优选为8-18∶1,所述第一股氢化液与第二股氢化液的质量流量比为10-50∶50-90,优选为15-40∶60-85。
  2. 根据权利要求1所述的方法,其中,步骤1)中,所述氢化反应在浆态床反应器中进行;
    优选地,所述氢化反应的条件包括:压力为0.03-0.35MPa,优选为0.05-0.2MPa;温度为40-70℃,优选为45-65℃;所述工作液与加氢催化剂的质量流量比为25-700∶1,优选为30-500∶1;所述氢气的标准体积流量与工作液的体积流量比为4-14∶1,优选为5-10∶1;
    优选地,所述氢化反应还得到含氢尾气,并且所述步骤1)还包括将所述含氢尾气外排和/或经压缩后再返回所述氢化反应器。
  3. 根据在先权利要求中任一项所述的方法,其中所述步骤1)还包括:对所述循环浆液进行第一冷却得到第一冷却液,再将所述第一冷却液返回所述氢化反应器;
    优选地,所述第一冷却液的温度为40-70℃,优选为45-65℃。
  4. 根据在先权利要求中任一项所述的方法,其中,步骤2)中, 所述再生在再生反应器中在再生催化剂存在下进行,所述再生反应器选自固定床反应器、浆态床反应器或者它们的组合;
    优选地,当所述再生反应器为固定床反应器时,所述再生催化剂为改性氧化铝,进一步优选地,所述改性氧化铝为由选自碱金属、碱土金属和稀土金属中的至少一种金属改性的氧化铝;
    优选地,当所述再生反应器为浆态床反应器时,所述再生催化剂为改性分子筛,进一步优选地,所述改性分子筛为由选自碱金属、碱土金属和稀土金属中的至少一种金属改性的分子筛。
  5. 根据在先权利要求中任一项所述的方法,其中所述步骤3)还包括:在所述氧化反应之前,将所述第二股氢化液和再生氢化液合并得到混合液,并对所述混合液进行第二冷却,得到第二冷却液;
    优选地,所述步骤3)还包括:在所述氧化反应之前,将所述第二冷却液与第一pH调节剂进行混合得到调节液,任选地再对所述调节液进行过滤。
  6. 根据在先权利要求中任一项所述的方法,其中,步骤4)所用的萃取剂包含水和可选的第二pH调节剂;
    优选地,所述步骤4)还包括:在进行所述萃取之前,对所述氧化液进行第三冷却,得到第三冷却液。
  7. 根据在先权利要求中任一项所述的方法,其中,所述步骤4)还包括:将至少10%质量流量的所述萃余液进行真空干燥得到脱除液,并将所述脱除液与剩余萃余液一起返回所述氢化反应器;
    优选地,将至少30%质量流量的所述萃余液进行真空干燥;
    优选地,所述真空干燥还得到水和/或有机物,并且所述步骤4)还包括将所述水和/或有机物循环。
  8. 一种制备过氧化氢的系统,包括氢化单元、再生单元、氧化单元和分离单元;
    所述氢化单元设置为使包含烷基蒽醌的工作液在加氢催化剂颗粒和氢气存在下进行氢化反应,得到包含氢化蒽醌、副产物和加氢催化剂颗粒的浆液,从所得浆液中回收所述加氢催化剂颗粒,得到富含加氢催化剂颗粒的循环浆液和基本不含加氢催化剂颗粒的氢化液,并将所述循环浆液再循环;
    所述再生单元设置为对所述氢化液的一部分进行再生以将其中所 含的副产物的至少一部分转化为烷基蒽醌,得到再生氢化液;
    所述氧化单元设置为使剩余部分的氢化液和再生氢化液与含氧气体接触进行氧化反应,得到包含过氧化氢和烷基蒽醌的氧化液;以及
    所述分离单元设置为对所述氧化液进行萃取分离,得到包含过氧化氢的萃取液和包含烷基蒽醌的萃余液,并将所述萃余液返回所述氢化单元。
  9. 根据权利要求8所述的系统,其中:
    所述氢化单元设置有工作液入口、含氢气体入口、氢化液出口和任选的含氢尾气出口;
    所述再生单元设置有氢化液入口和再生氢化液出口;
    所述氧化单元设置有氢化液入口、含氧气体入口、氧化液出口和含氧尾气出口;
    所述分离单元设置有氧化液入口、萃取剂入口、萃取液出口和萃余液出口;
    其中所述氢化单元的氢化液出口分别与所述再生单元和氧化单元的氢化液入口连通,所述再生单元的再生氢化液出口与所述氧化单元的氢化液入口连通,所述氧化单元的氧化液出口与所述分离单元的氧化液入口连通,所述分离单元的萃余液出口与所述氢化单元的工作液入口连通。
  10. 根据权利要求8或9所述的系统,其中,所述氢化单元包括浆态床反应器形式的氢化反应器和过滤器,所述氢化反应器包括反应区和气液分离区,并且具有工作液入口、至少一个含氢气体入口、循环浆液入口、浆液出口和含氢尾气出口,所述过滤器具有浆液入口、循环浆液出口和氢化液出口,其中所述氢化反应器的浆液出口与所述过滤器的浆液入口连通,所述过滤器的循环浆液出口与所述氢化反应器的循环浆液入口连通,并且任选地,所述氢化反应器的含氢尾气出口与所述氢化反应器的一个含氢气体入口连通;
    优选地,所述氢化单元还包括压缩机,所述压缩机连通所述氢化反应器的含氢尾气出口和所述氢化反应器的一个含氢气体入口,用于将含氢尾气进行压缩并循环回所述氢化反应器;
    优选地,所述氢化单元还包括第一冷却器,所述第一冷却器连通所述过滤器的循环浆液出口和所述氢化反应器的循环浆液入口,用于 在将所述循环浆液循环回所述氢化反应器之前对其进行冷却。
  11. 根据权利要求8-10中任一项所述的系统,其中,所述再生单元包括再生反应器,所述再生反应器具有氢化液入口和再生氢化液出口;
    优选地,所述再生单元还包括换热器,所述换热器连通所述氢化单元的氢化液出口、所述再生反应器的氢化液入口和所述再生反应器的再生氢化液出口,用于将待进行再生的氢化液与所述再生氢化液进行换热;
    进一步优选地,所述再生单元还包括加热器,所述加热器连通所述换热器的氢化液出口和所述再生反应器的氢化液入口,用于将换热后的氢化液进行加热。
  12. 根据权利要求8-11中任一项所述的系统,其中,所述氧化单元包括氧化反应器,所述氧化反应器具有氢化液入口、含氧气体入口、氧化液出口和含氧尾气出口;
    优选地,所述氧化单元还包括第二冷却器,所述第二冷却器连通所述氢化单元的氢化液出口、所述再生单元的再生氢化液出口和所述氧化反应器的氢化液入口,用于对所述剩余部分的氢化液和再生氢化液合并得到的混合液进行冷却;
    进一步优选地,所述氧化单元还包括精密过滤器,所述精密过滤器连通所述第二冷却器出口和所述氧化反应器的氢化液入口,用于对经冷却的混合液进行过滤。
  13. 根据权利要求8-12中任意一项所述的系统,其中,所述分离单元包括萃取塔,所述萃取塔具有氧化液入口、萃取剂入口、萃取液出口和萃余液出口;
    优选地,所述分离单元还包括第三冷却器,所述第三冷却器连通所述氧化单元的氧化液出口和所述萃取塔的氧化液入口,用于对所述氧化液进行冷却;
    优选地,所述分离单元还包括真空干燥塔,所述真空干燥塔连通所述萃取塔的萃余液出口和所述氢化单元的工作液入口,用于将至少10%质量流量的所述萃余液进行真空干燥,并将得到的脱除液返回所述氢化单元;
    进一步优选地,所述真空干燥塔还与所述萃取塔的萃取剂入口或 氧化液入口连通,用于将至少10%质量流量的所述萃余液经真空干燥而得的水和/或有机物返回所述萃取塔。
PCT/CN2021/123748 2020-10-14 2021-10-14 制备过氧化氢的方法和系统 WO2022078427A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237016293A KR20230085199A (ko) 2020-10-14 2021-10-14 과산화수소 제조 방법 및 시스템
US18/248,794 US20230382731A1 (en) 2020-10-14 2021-10-14 Method and system for preparing hydrogen peroxide
EP21879470.9A EP4230576A1 (en) 2020-10-14 2021-10-14 Method and system for preparing hydrogen peroxide
CA3198655A CA3198655A1 (en) 2020-10-14 2021-10-14 Method and system for preparing hydrogen peroxide
JP2023523091A JP2023545523A (ja) 2020-10-14 2021-10-14 過酸化水素を生成するための方法およびシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011095895.3 2020-10-14
CN202011095895.3A CN114426259B (zh) 2020-10-14 2020-10-14 制备过氧化氢的方法和系统

Publications (1)

Publication Number Publication Date
WO2022078427A1 true WO2022078427A1 (zh) 2022-04-21

Family

ID=81207684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123748 WO2022078427A1 (zh) 2020-10-14 2021-10-14 制备过氧化氢的方法和系统

Country Status (7)

Country Link
US (1) US20230382731A1 (zh)
EP (1) EP4230576A1 (zh)
JP (1) JP2023545523A (zh)
KR (1) KR20230085199A (zh)
CN (1) CN114426259B (zh)
CA (1) CA3198655A1 (zh)
WO (1) WO2022078427A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334235A (zh) 2000-07-15 2002-02-06 中国石油化工股份有限公司巴陵分公司 蒽醌法生产过氧化氢的后处理
CN1108984C (zh) 1996-04-12 2003-05-21 三菱瓦斯化学株式会社 工作溶液的再生方法
CN1233451C (zh) 2003-09-22 2005-12-28 上海兖矿能源科技研发有限公司 一种连续操作的气液固三相浆态床工业反应器
CN101037190A (zh) * 2007-04-13 2007-09-19 福州大学 蒽醌法生产过氧化氢的工作液配方及工艺
CN101177246A (zh) * 2007-11-02 2008-05-14 山东百川汇通化工科技有限公司 一种蒽醌法生产双氧水的方法
CN104370276A (zh) * 2013-08-13 2015-02-25 中国石油化工股份有限公司 一种过氧化氢的制备方法
CN204237558U (zh) 2014-11-27 2015-04-01 山东晋煤明水化工集团有限公司 蒽醌法过氧化氢生产工艺的后处理装置
CN105540551A (zh) * 2014-11-03 2016-05-04 中国石油化工股份有限公司 一种双氧水生产中的高效氢化工艺
CN107098317A (zh) * 2017-06-15 2017-08-29 扬州惠通化工科技股份有限公司 蒽醌法生产过氧化氢的系统及方法
CN109678119A (zh) * 2017-10-19 2019-04-26 中国石油化工股份有限公司 一种蒽醌法生产双氧水系统及蒽醌法生产双氧水方法
EP3543209A1 (en) * 2018-03-22 2019-09-25 Solvay Sa Process for manufacturing an aqueous hydrogen peroxide solution

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108984C (zh) 1996-04-12 2003-05-21 三菱瓦斯化学株式会社 工作溶液的再生方法
CN1334235A (zh) 2000-07-15 2002-02-06 中国石油化工股份有限公司巴陵分公司 蒽醌法生产过氧化氢的后处理
CN1233451C (zh) 2003-09-22 2005-12-28 上海兖矿能源科技研发有限公司 一种连续操作的气液固三相浆态床工业反应器
CN101037190A (zh) * 2007-04-13 2007-09-19 福州大学 蒽醌法生产过氧化氢的工作液配方及工艺
CN101177246A (zh) * 2007-11-02 2008-05-14 山东百川汇通化工科技有限公司 一种蒽醌法生产双氧水的方法
CN104370276A (zh) * 2013-08-13 2015-02-25 中国石油化工股份有限公司 一种过氧化氢的制备方法
CN105540551A (zh) * 2014-11-03 2016-05-04 中国石油化工股份有限公司 一种双氧水生产中的高效氢化工艺
CN204237558U (zh) 2014-11-27 2015-04-01 山东晋煤明水化工集团有限公司 蒽醌法过氧化氢生产工艺的后处理装置
CN107098317A (zh) * 2017-06-15 2017-08-29 扬州惠通化工科技股份有限公司 蒽醌法生产过氧化氢的系统及方法
CN109678119A (zh) * 2017-10-19 2019-04-26 中国石油化工股份有限公司 一种蒽醌法生产双氧水系统及蒽醌法生产双氧水方法
EP3543209A1 (en) * 2018-03-22 2019-09-25 Solvay Sa Process for manufacturing an aqueous hydrogen peroxide solution

Also Published As

Publication number Publication date
EP4230576A1 (en) 2023-08-23
CN114426259B (zh) 2023-09-05
CN114426259A (zh) 2022-05-03
JP2023545523A (ja) 2023-10-30
KR20230085199A (ko) 2023-06-13
US20230382731A1 (en) 2023-11-30
CA3198655A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
CN100371309C (zh) 一种蒽醌法生产过氧化氢流化床氢化工艺
CN101037190A (zh) 蒽醌法生产过氧化氢的工作液配方及工艺
TWI462874B (zh) 過氧化氫之製造方法
EP1245534B1 (en) Hydrogenation of a working solution in a hydrogen peroxide production process
CN104418309B (zh) 一种过氧化氢的制备方法
CN103974899B (zh) 过氧化氢的生产方法
CN102911013A (zh) 一种乙二醇精制的方法
CN205099601U (zh) 一种氢化反应装置以及一种生产过氧化氢的系统
US8664137B2 (en) Regenerating method for activated alumina used in regenerating working fluid of hydrogen peroxide
CN104370276A (zh) 一种过氧化氢的制备方法
CN114560765B (zh) 采用微通道反应器工业生产巴豆酸的方法
WO2022078427A1 (zh) 制备过氧化氢的方法和系统
CN106431920B (zh) 合成气制备草酸二甲酯并副产碳酸二甲酯的方法
CN114506820A (zh) 一种从氢气、氧气直接生产电子级过氧化氢的方法
CN111732083A (zh) 一种流化床双氧水工艺
KR890000790B1 (ko) 과산화수소의 제조방법
JP2018135230A (ja) アントラキノン法による過酸化水素製造方法及び製造システム
Gao et al. Development and application of slurry–bed production technology of hydrogen peroxide by anthraquinone auto-oxidation process
CN112142564A (zh) 一种提高乙二醇产品塔侧采乙二醇产品质量的装置及方法
CN217829949U (zh) 蒽醌法制取过氧化氢的系统
KR101567589B1 (ko) Co/SiO2 폐촉매제로부터 고순도의 코발트 니트레이트 결정을 제조하는 방법
CN117842935A (zh) 制备过氧化氢的系统和方法
CN218579646U (zh) 一种bdo加氢装置尾气回收设备
CN102219682A (zh) Co偶联制备草酸酯的方法
CN106588574A (zh) 一种浆态床甲醇合成工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3198655

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023523091

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237016293

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879470

Country of ref document: EP

Effective date: 20230515

WWE Wipo information: entry into national phase

Ref document number: 523440370

Country of ref document: SA