WO2022078072A1 - 衍射光栅结构、成像装置及穿戴设备 - Google Patents

衍射光栅结构、成像装置及穿戴设备 Download PDF

Info

Publication number
WO2022078072A1
WO2022078072A1 PCT/CN2021/114215 CN2021114215W WO2022078072A1 WO 2022078072 A1 WO2022078072 A1 WO 2022078072A1 CN 2021114215 W CN2021114215 W CN 2021114215W WO 2022078072 A1 WO2022078072 A1 WO 2022078072A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
coupling
functional layer
light
waveguide sheet
Prior art date
Application number
PCT/CN2021/114215
Other languages
English (en)
French (fr)
Inventor
郑光
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022275408.3U external-priority patent/CN213149295U/zh
Priority claimed from CN202011091220.1A external-priority patent/CN112130246A/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21879118.4A priority Critical patent/EP4206760A4/en
Publication of WO2022078072A1 publication Critical patent/WO2022078072A1/zh
Priority to US18/123,382 priority patent/US20230221473A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic

Definitions

  • the present application relates to the technical field of diffractive optical waveguides, and more particularly, to a diffraction grating structure, an imaging device and a wearable device.
  • AR Augmented Reality
  • AR technology has been widely used in education, medical care, entertainment and other industries. Its main feature is to combine virtual images and real scenes to ensure that virtual images and real scenes can be viewed at the same time.
  • Embodiments of the present application provide a diffraction grating structure, an imaging device, and a wearable device.
  • the diffraction grating structure of the embodiment of the present application includes a waveguide sheet, an in-coupling grating, an out-coupling grating, and a functional layer.
  • the coupling-in grating is disposed at the first end of the waveguide sheet, and the coupling-in grating includes a tilt grating.
  • the coupling-out grating is disposed at the second end of the waveguide sheet, the first end and the second end are opposite ends of the waveguide sheet, and the coupling-out grating includes a blazed grating.
  • the functional layer is arranged on the coupling-out grating, wherein: the coupling-in grating is used for coupling light into the waveguide sheet, and the waveguide sheet is used for transmitting the light coupled in by the coupling-in grating to the
  • the coupling-out grating is used for coupling out the light in the waveguide sheet to the functional layer
  • the functional layer is used for refracting the light coupled out of the coupling-out grating to the outside and increasing the The outcoupling rate of the outcoupling grating.
  • the imaging device of the embodiment of the present application includes a diffraction grating structure, an image generation module, and an optical module.
  • the diffraction grating structure includes a waveguide sheet, an in-coupling grating, an out-coupling grating and a functional layer.
  • the coupling-in grating is disposed at the first end of the waveguide sheet, and the coupling-in grating includes a tilt grating.
  • the coupling-out grating is disposed at the second end of the waveguide sheet, the first end and the second end are opposite ends of the waveguide sheet, and the coupling-out grating includes a blazed grating.
  • the functional layer is disposed on the coupling-out grating, the coupling-in grating is used for coupling the grating into the waveguide sheet, and the waveguide sheet is used for transmitting the coupled-in light to the coupling an out-coupling grating, which is used to couple out the light in the waveguide sheet to the functional layer, and the functional layer is used to refract the light coupled out of the out-coupling grating to the outside and increase the coupling The optical outcoupling rate of the grating.
  • the image generating module is opposite to the coupling-in grating, and is used for emitting light toward the coupling-in grating.
  • the optical module is arranged between the image generating module and the coupling grating, and is used for adjusting the light emitted by the image generating module to be parallel light at a preset angle with the coupling grating.
  • the wearable device includes a casing and an imaging device.
  • the imaging device is provided on the housing.
  • the imaging device includes a diffraction grating structure, an image generation module and an optical module.
  • the diffraction grating structure includes a waveguide sheet, an in-coupling grating, an out-coupling grating and a functional layer.
  • the coupling-in grating is disposed at the first end of the waveguide sheet, and the coupling-in grating includes a tilt grating.
  • the coupling-out grating is disposed at the second end of the waveguide sheet, the first end and the second end are opposite ends of the waveguide sheet, and the coupling-out grating includes a blazed grating.
  • the functional layer is disposed on the coupling-out grating, the coupling-in grating is used for coupling light into the waveguide sheet, and the waveguide sheet is used for transmitting the light coupled in by the coupling-in grating to the coupling an out-coupling grating, which is used to couple out the light in the waveguide sheet to the functional layer, and the functional layer is used to refract the light coupled out of the out-coupling grating to the outside and increase the coupling The optical outcoupling rate of the grating.
  • the image generating module is opposite to the coupling-in grating, and is used for emitting light toward the coupling-in grating.
  • the optical module is arranged between the image generation module and the coupled grating, and is used to adjust the light emitted by the image generation module to be parallel light at a preset angle with the coupled grating.
  • FIG. 1 is a schematic structural diagram of a diffraction grating structure according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of an out-coupling grating of a diffraction grating structure according to some embodiments of the present application;
  • FIG. 3 is a schematic diagram of the diffraction efficiency of the coupling-out grating of the prior art solution under different incident angles and diffraction orders;
  • Fig. 4 is the schematic diagram of the diffraction efficiency of different wavelengths under the +1 diffraction order of the coupling-out grating of the prior art solution;
  • FIG. 5 is a schematic diagram of the diffraction uniformity of the outcoupling grating of the prior art solution at different incident angles and +1 diffraction orders;
  • FIG. 6 is a schematic diagram of the diffraction efficiency of the coupling-out grating under different incident angles and diffraction orders when the functional layer is titanium oxide in the diffraction grating structure of some embodiments of the present application;
  • FIG. 7 is a schematic diagram of the diffraction efficiency of the coupling-out grating at different wavelengths at the +1 diffraction level when the functional layer is titanium oxide in the diffraction grating structure of some embodiments of the present application;
  • FIG. 8 is a schematic diagram of the diffraction uniformity of the coupling-out grating under different incident angles and +1 diffraction orders when the functional layer is titanium oxide in the diffraction grating structure of some embodiments of the present application;
  • FIG. 9 is a schematic diagram of the diffraction efficiency of the coupling-out grating under different incident angles and diffraction orders when the functional layer is zirconia in the diffraction grating structure of some embodiments of the present application;
  • FIG. 10 is a schematic diagram of the diffraction efficiency of the coupling-out grating at different wavelengths at the +1 diffraction level when the functional layer is zirconia in the diffraction grating structure of some embodiments of the present application;
  • FIG. 11 is a schematic diagram of the diffraction uniformity of the coupling-out grating under different incident angles and +1 diffraction orders when the functional layer is zirconia in the diffraction grating structure of some embodiments of the present application;
  • FIG. 12 is a schematic structural diagram of an imaging device according to some embodiments of the present application.
  • FIG. 13 is a schematic structural diagram of an imaging device according to some embodiments of the present application.
  • FIG. 14 is a schematic structural diagram of an imaging device according to some embodiments of the present application.
  • FIG. 15 is a schematic structural diagram of a wearable device according to some embodiments of the present application.
  • the diffraction grating structure of the embodiment of the present application includes a waveguide sheet, an in-coupling grating, an out-coupling grating, and a functional layer.
  • An in-coupling grating is disposed at the first end of the waveguide sheet, and the coupling-in grating includes a tilted grating.
  • the coupling-out grating is arranged on the second end of the waveguide sheet, the first end and the second end are opposite ends of the waveguide sheet, and the coupling-out grating includes a blazed grating.
  • the functional layer is arranged on the coupling-out grating, wherein: the coupling-in grating is used for coupling light into the waveguide sheet, the waveguide sheet is used for transmitting the light coupled into the coupling-in grating to the coupling-out grating, and the coupling-out grating is used for coupling light into the waveguide sheet
  • the light from the coupling-out grating is coupled out to the functional layer, and the functional layer is used to refract the light coupled out of the coupling-out grating to the outside world and increase the light out-coupling rate of the coupling-out grating.
  • the period of the outcoupling grating is in the range of [300 nanometers, 500 nanometers].
  • the value range of the blaze angle of the outcoupling grating is [5 degrees, 40 degrees].
  • the value range of the anti-blaze angle of the out-coupled grating is [50 degrees, 85 degrees].
  • the functional layer includes a high refractive index film layer, wherein: the value range of the refractive index of the functional layer is greater than or equal to 1.8; and/or the value range of the thickness of the functional layer is [20 nm, 150 nm] .
  • the functional layer includes a titanium oxide film layer or a zirconium oxide film layer.
  • the thickness of the functional layer is 90 nanometers.
  • the functional layer when the functional layer includes a zirconia film layer, the functional layer has a thickness of 110 nanometers.
  • the diffraction grating structure includes three layers of waveguide sheets, and the coupling grating and the outcoupling grating are respectively distributed at both ends of each layer of the waveguide sheet, and the coupling gratings on each layer of the waveguide sheet
  • the coupling-in grating and the coupling-out grating are used for diffracting and reflecting any one of red, green, and blue light, so that the coupling-in grating and the coupling-out grating on the three-layer waveguide sheet
  • the gratings diffract and reflect red, green, and blue light, respectively.
  • the diffraction grating structure includes two layers of waveguide sheets, and the coupling grating and the outcoupling grating are respectively distributed at two ends of each layer of the waveguide sheet, wherein one layer of the waveguide sheet is on
  • the coupling-in grating and the coupling-out grating are used to diffract and reflect any one of red, green, and blue light, and the coupling-in grating and the coupling-out grating on the other layer of the waveguide sheet
  • the grating is used to diffract and reflect the remaining two of the red, green, and blue light.
  • the diffraction grating structure includes a layer of waveguide sheet, the coupling grating and the coupling-out grating are respectively distributed at two ends of the waveguide sheet, the coupling-in grating and the coupling-out grating Gratings are used to diffract and reflect red, green, and blue light.
  • the in-coupling grating and the out-coupling grating are disposed on the same side of the waveguide sheet.
  • the in-coupling grating and the out-coupling grating are disposed on different sides of the waveguide sheet.
  • the imaging device of the embodiment of the present application includes a diffraction grating structure, an image generation module, and an optical module.
  • the diffraction grating structure includes a waveguide sheet, an in-coupling grating, an out-coupling grating and a functional layer.
  • the coupling-in grating is disposed at the first end of the waveguide sheet, and the coupling-in grating includes a tilted grating.
  • the coupling-out grating is arranged on the second end of the waveguide sheet, the first end and the second end are opposite ends of the waveguide sheet, and the coupling-out grating includes a blazed grating.
  • the functional layer is arranged on the coupling-out grating, the coupling-in grating is used for coupling light into the waveguide sheet, the waveguide sheet is used for transmitting the light coupled into the coupling-in grating to the coupling-out grating, and the coupling-out grating is used for coupling the light in the waveguide sheet It is coupled out to the functional layer, and the functional layer is used to refract the light coupled out of the outcoupling grating to the outside and increase the light outcoupling rate of the outcoupling grating.
  • the image generating module is opposite to the coupling-in grating and is used for emitting light toward the coupling-in grating.
  • the optical module is arranged between the image generation module and the coupled grating, and is used for adjusting the light emitted by the image generation module to be parallel light with a preset angle to the coupled grating.
  • the period of the outcoupling grating is in the range of [300 nanometers, 500 nanometers].
  • the value range of the blaze angle of the outcoupling grating is [5 degrees, 40 degrees].
  • the value range of the anti-blaze angle of the out-coupled grating is [50 degrees, 85 degrees].
  • the functional layer includes a high refractive index film layer, wherein: the value range of the refractive index of the functional layer is greater than or equal to 1.8; and/or the value range of the thickness of the functional layer is [20 nm, 150 nm] .
  • the functional layer includes a titanium oxide film layer or a zirconium oxide film layer.
  • the thickness of the functional layer is 90 nanometers.
  • the functional layer when the functional layer includes a zirconia film layer, the functional layer has a thickness of 110 nanometers.
  • the diffraction grating structure includes three layers of waveguide sheets, and two ends of each waveguide sheet are respectively distributed with an in-coupling grating and an out-coupling grating, and the coupling-in grating and the out-coupling grating on each waveguide sheet are used for pairing Any one of the red, green and blue light is diffracted and reflected, so that the in-coupling grating and the out-coupling grating on the three-layer waveguide sheet diffract and reflect the red, green and blue light respectively.
  • the diffraction grating structure includes two layers of waveguide sheets, and two ends of each waveguide sheet are respectively distributed with an in-coupling grating and an out-coupling grating, wherein the in-coupling grating and the out-coupling grating on one layer of the waveguide sheet are used for Diffraction and reflection of any one of red, green, and blue light, and the coupling-in and out-coupling gratings on the other waveguide sheet are used to diffract and reflect the other two of red, green, and blue light.
  • the diffraction grating structure includes a layer of waveguide sheet, and two ends of the waveguide sheet are respectively distributed with an in-coupling grating and an out-coupling grating, and the coupling-in grating and the out-coupling grating are used to perform the processing of red, green and blue light. Diffraction and reflection.
  • the in-coupling grating and the out-coupling grating are disposed on the same side of the waveguide sheet.
  • the in-coupling grating and the out-coupling grating are disposed on different sides of the waveguide sheet.
  • the wearable device includes a casing and an imaging device.
  • An imaging device is provided on the housing.
  • the imaging device includes a diffraction grating structure, an image generating module and an optical module.
  • the diffraction grating structure includes a waveguide sheet, an in-coupling grating, an out-coupling grating and a functional layer.
  • the coupling-in grating is disposed at the first end of the waveguide sheet, and the coupling-in grating includes a tilted grating.
  • the coupling-out grating is arranged on the second end of the waveguide sheet, the first end and the second end are opposite ends of the waveguide sheet, and the coupling-out grating includes a blazed grating.
  • the functional layer is arranged on the coupling-out grating, the coupling-in grating is used for coupling light into the waveguide sheet, the waveguide sheet is used for transmitting the light coupled into the coupling-in grating to the coupling-out grating, and the coupling-out grating is used for coupling light into the waveguide sheet.
  • the light from the out-coupling grating is coupled out to the functional layer, and the functional layer is used to refract the light coupled out of the coupling-out grating to the outside and increase the light out-coupling rate of the coupling-out grating.
  • the image generating module is opposite to the coupling-in grating and is used for emitting light toward the coupling-in grating.
  • the optical module is arranged between the image generating module and the coupled grating, and is used to adjust the light emitted by the image generating module to be parallel light with a preset angle from the coupled grating.
  • an embodiment of the present application provides a diffraction grating structure 100 .
  • the diffraction grating structure 100 includes a waveguide sheet 10 , an in-coupling grating 20 , an out-coupling grating 30 and a functional layer 40 .
  • the coupling-in grating 20 is disposed at the first end 11 of the waveguide sheet 10, and the coupling-in grating 20 includes a tilted grating.
  • the coupling-out grating 30 is disposed at the second end 12 of the waveguide sheet 10 , the coupling-out grating 30 includes a blazed grating, and the first end 11 and the second end 12 are opposite ends of the waveguide sheet 10 .
  • the functional layer 40 is arranged on the coupling-out grating 30, wherein: the coupling-in grating 20 is used for coupling light into the waveguide sheet 10, and the waveguide sheet 10 is used for transmitting the light coupled into the coupling-in grating 10 to the coupling-out grating 30, and the coupling-out grating 30 is used for coupling out the light.
  • the grating 30 is used to couple out the light in the waveguide sheet 10 to the functional layer 40
  • the functional layer 40 is used to refract the light coupled out of the outcoupling grating 30 to the outside and increase the light outcoupling rate of the outcoupling grating 30 .
  • the virtual images generated by the virtual images generated by the current AR technology often have uneven brightness distribution. Therefore, improving the uniformity of the brightness distribution of the virtual image has become an urgent problem to be solved.
  • the diffraction grating structure 100 of the embodiment of the present application by disposing the functional layer 40 on the blazed grating, the light coupled out of the outcoupling grating 30 is refracted to the outside, and the light outcoupling rate of the outcoupling grating 30 is increased.
  • the grating 20 transmits light, thereby improving the diffraction efficiency of the diffraction grating structure 100 and reducing the uniformity error of the diffraction grating structure 100, so that the brightness distribution of the generated virtual image is uniform.
  • the coupling-in grating 20 may be a tilted grating as shown on the left side of FIG. 1 , or a blazed grating as shown on the right side of FIG. 1 .
  • the outcoupling grating 30 may be a blazed grating as shown on the right side of FIG. 1 , or a tilted grating as shown on the left side of FIG. 1 . That is to say, the coupling-in grating 20 and the coupling-out grating 30 may both be inclined gratings, or both may be blazed gratings, or one may be a tilted grating and the other may be a blazed grating.
  • the coupling-in grating 20 is an inclined grating
  • the coupling-out grating is a blazed grating as an example. It can be understood that the diffraction grating structure 100 is not limited to such a structure.
  • the value range of the period T of the outcoupling grating 30 is [300 nanometers, 500 nanometers], that is, the period T of the outcoupling grating 30 is greater than or equal to 300 nanometers, and less than or equal to 500 nanometers.
  • the value range of the blaze angle ⁇ of the coupling-out grating 30 is [5 degrees, 40 degrees], that is, the blaze angle ⁇ of the coupling-out grating 30 is greater than or equal to 5 degrees and less than or equal to 40 degrees.
  • the value range of the anti-blaze angle ⁇ of the coupling-out grating 30 is [50 degrees, 85 degrees], that is, the anti-blaze angle ⁇ of the coupling-out grating 30 is greater than or equal to 50 degrees and less than or equal to 85 degrees.
  • the period T of the outcoupling grating 30 may be any value between 300 nanometers and 500 nanometers.
  • the period T of the outcoupling grating 30 may be any one of 300 nm, 330 nm, 350 nm, 370 nm, 390 nm, 410 nm, 430 nm, 450 nm, 470 nm, 490 nm, 500 nm, etc. or others Any value between 300 nanometers and 500 nanometers.
  • the blaze angle ⁇ of the outcoupling grating 30 can be any value between 5 degrees and 40 degrees.
  • the blaze angle ⁇ of the outcoupling grating 30 may be any one of 5 degrees, 10 degrees, 17 degrees, 20 degrees, 25 degrees, 27 degrees, 30 degrees, 35 degrees, 37 degrees, 40 degrees, etc. Any value between degrees and 40 degrees.
  • the inverse blaze angle ⁇ of the outcoupling grating 30 can be any value between 50 degrees and 85 degrees.
  • the anti-blaze angle ⁇ of the outcoupling grating 30 may be any one of 50 degrees, 53 degrees, 55 degrees, 60 degrees, 65 degrees, 68 degrees, 75 degrees, 80 degrees, 83 degrees, 85 degrees, etc. Any value between 50 degrees and 85 degrees.
  • the period T of the outcoupling grating 30 is 370 nanometers
  • the blaze angle ⁇ of the outcoupling grating 30 is 37 degrees
  • the anti-blaze angle ⁇ of the outcoupling grating 30 is 85 degrees.
  • the depth H of the outcoupling grating 30 can be calculated to be 261 nm.
  • the diffraction grating structure 100 is not provided with the functional layer 40 , the period T of the outcoupling grating 30 is 370 nanometers, the blaze angle ⁇ of the outcoupling grating 30 is 37 degrees, and the anti-blaze of the outcoupling grating 30 is The angle ⁇ is 85 degrees and the depth H of the coupling-out grating 30 is 261 nm.
  • the abscissa is the incident angle
  • the ordinate is the diffraction efficiency. It can be seen from Fig. 3 that the incident angle varies from minus 10 degrees to 10 degrees, and the diffraction efficiency has a negative correlation with the incident angle change.
  • the abscissa is the wavelength of light
  • the ordinate is the diffraction efficiency. It can be seen from Figure 4 that when the wavelength changes from 400 nm to 700 nm, the diffraction efficiency also exhibits a negative correlation with the wavelength change. Moreover, the diffraction efficiency is very sensitive to the changes of the incident angle and wavelength. Under such an efficiency distribution relationship, it will not only increase the difficulty of designing the diffraction grating structure, but also the brightness distribution of the virtual image observed by the user is often uneven.
  • the abscissa is the field of view distribution along the grating vector direction, specifically plus or minus 10 degrees; the ordinate is the field of view distribution in the direction perpendicular to the grating vector, specifically plus or minus 18 degrees.
  • the maximum diffraction efficiency is 34% and the minimum diffraction efficiency is 10%, and then according to the formula: It can be calculated that the uniformity error of the outcoupling grating of the diffraction grating structure without the functional layer 40 is 0.55. Generally, the smaller the uniformity error, the better the uniformity of the field of view.
  • the uniformity error of the diffraction grating structure without the functional layer 40 is set to 0.55, the uniform brightness distribution of the virtual image will be affected. In order to generate a virtual image with uniform brightness distribution, it is necessary to improve the diffraction efficiency of the diffraction grating mechanism 100 and reduce the uniformity error.
  • the functional layer 40 is a high refractive index film layer disposed on the coupling-out grating 30 .
  • the refractive index n of the functional layer 40 is greater than or equal to 1.8.
  • the value range of the thickness D of the functional layer 40 is [20 nanometers, 150 nanometers], that is, the thickness D of the functional layer 40 is greater than or equal to 20 nanometers and less than or equal to 150 nanometers.
  • the refractive index n of the functional layer 40 may be any value greater than or equal to 1.8.
  • the refractive index n of the functional layer 40 may be any one of 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, etc. or any other value greater than 1.8.
  • the thickness D of the functional layer 40 may be any value between 20 nanometers and 150 nanometers.
  • the thickness D of the functional layer 40 may be 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm Any one of nanometers, etc., or any other value between 20 nanometers and 150 nanometers.
  • the thickness D of the functional layer 40 is less than 20 nanometers, on the one hand, it is difficult to process and design the diffraction grating structure 100; on the other hand, the diffraction efficiency of the diffraction grating structure 100 cannot be improved, and the uniformity error cannot be reduced. The brightness distribution uniformity of the obtained virtual image is also poor.
  • the thickness D of the functional layer 40 is greater than 150 nanometers, it is easy to fill the gap between the two triangles during processing, which also increases the difficulty of processing.
  • the processing difficulty of the diffraction grating structure 100 can be reduced, and the diffraction efficiency of the diffraction grating structure 100 is improved, and the uniformity error is also reduced. Furthermore, the obtained virtual image has better brightness distribution uniformity (specific analysis will be described below).
  • the functional layer 40 may be a titanium oxide film layer, and the thickness D of the functional layer 40 is 90 nanometers in this case.
  • the period T of the out-coupling grating 30 is 370 nm
  • the blaze angle ⁇ of the out-coupling grating 30 is 37 degrees
  • the anti-blaze angle ⁇ of the out-coupling grating 30 is 85 degrees
  • the depth H of the out-coupling grating 30 is 261 nm
  • the abscissa is the incident angle
  • the ordinate is the diffraction efficiency. It can be seen that when the incident angle changes from minus 10 degrees to 10 degrees, the change trend of the diffraction efficiency of +1 diffraction order is relatively flat, and when the incident angle is 0 degrees, the diffraction efficiency is greater than 65%.
  • the abscissa is the light wavelength
  • the ordinate is the diffraction efficiency. It can be seen from Figure 7 that when the wavelength changes from 480 nm to 640 nm, the change trend of the diffraction efficiency is relatively flat, and the diffraction efficiency is greater than 65%. It can be seen from this that after the functional layer 40 is disposed on the outcoupling grating 30, the diffraction efficiency of the diffraction grating structure 100 is significantly improved.
  • the abscissa is the field of view distribution along the grating vector direction, specifically plus or minus 10 degrees.
  • the ordinate is the distribution of the field of view in the direction perpendicular to the grating vector, specifically plus or minus 18 degrees. It can be seen from Figure 8 that the maximum diffraction efficiency is 73.5%, and the minimum diffraction efficiency is 65%. According to the formula: It can be concluded that the uniformity error of the coupling-out grating 30 of the diffraction grating structure 100 using the titanium oxide film layer as the functional layer 40 is 0.06.
  • the diffraction efficiency of the outcoupling grating 30 of the diffraction grating structure 100 using the titanium oxide film layer as the functional layer 40 is improved, and the uniformity error is reduced, thereby improving the diffraction efficiency.
  • the brightness distribution uniformity of the generated virtual image is improved.
  • the functional layer 40 may also be a zirconia film layer, and the thickness D of the functional layer 40 is 110 nanometers in this case.
  • the period T of the coupling-out grating 30 is 370 nm
  • the blaze angle ⁇ of the coupling-out grating 30 is 37 degrees
  • the anti-blaze angle ⁇ of the coupling-out grating 30 is 85 degrees
  • the depth H of the coupling-out grating 30 is 261 nm
  • the abscissa is the incident angle
  • the ordinate is the diffraction efficiency. It can be seen from Figure 9 that when the incident angle changes from minus 10 degrees to 10 degrees, the diffraction efficiency of +1 diffraction order shows a flat trend, and The diffraction efficiency is greater than 55%.
  • the abscissa is the light wavelength
  • the ordinate is the diffraction efficiency. It can be seen from Figure 10 that when the wavelength changes from 480 nm to 640 nm, the change trend of the diffraction efficiency is relatively flat, and the diffraction efficiency is greater than 55%. It can be seen from this that after the functional layer 40 is disposed on the outcoupling grating 30, the diffraction efficiency of the diffraction grating structure 100 is significantly improved.
  • the abscissa is the field of view distribution along the grating vector direction, specifically plus or minus 10 degrees.
  • the ordinate is the distribution of the field of view in the direction perpendicular to the grating vector, specifically plus or minus 18 degrees.
  • the diffraction efficiency of the outcoupling grating 30 of the diffraction grating structure 100 using the zirconia film layer as the functional layer 40 is also improved, and the uniformity error is reduced, thereby The brightness distribution uniformity of the generated virtual image is improved.
  • the diffraction grating structure 100 of the embodiment of the present application can increase the out-coupling by disposing the functional layer 40 on the blazed grating.
  • the specular reflection of the grating 30 is combined with the waveguide sheet 10 and the coupling grating 20 for light transmission, thereby improving the diffraction efficiency of the diffraction grating structure 100 and reducing the diffraction grating structure 100 compared with the diffraction grating structure without the functional layer. uniformity error, so that the brightness distribution of the generated virtual image is uniform.
  • an embodiment of the present application further provides an imaging device 1000 .
  • the imaging device 1000 includes the diffraction grating structure 100 of any of the above-mentioned embodiments, an image generating module 200 and an optical module 300 .
  • the image generation module 200 is opposite to the coupling grating 20 and is used for emitting light toward the coupling grating 20 .
  • the optical module 300 is disposed between the image generating module 200 and the coupling-in grating 20 , and is used to adjust the light emitted by the image-generating module 200 to be parallel light at a preset angle with the coupling-in grating 20 .
  • the image production module 200 will emit light toward the coupling grating 20, and the light will pass through the optical module 300 during transmission.
  • the optical module 300 collimates the incident light into parallel light and then enters the coupling at a preset angle.
  • the out-coupling grating 30 propagates to the out-coupling grating 30 in the form of total reflection in the waveguide plate 10.
  • the light diffracted from the functional layer 40 is coupled out into the air, thereby further obtaining a virtual image with uniform brightness distribution, and the virtual image can be observed by the human eye 600 .
  • the diffraction grating structure 100 in the imaging device 1000 includes a layer of waveguide sheet 10 , and two ends of the waveguide sheet 10 are respectively distributed with an in-coupling grating 20 and an out-coupling grating 30 .
  • the input grating 20 and the coupling-out grating 30 are used for diffracting and reflecting red, green and blue light.
  • the image production module 200 emits light to the coupled grating 20, and the light will pass through the optical module 300 during the transmission process.
  • the optical module 300 collimates the incident light into parallel light and then enters the coupled-in at a preset angle.
  • the functional layer 40 refracts the light coupled by the out-coupling grating into the air, and the functional layer 40 can increase the light out-coupling rate of the out-coupling grating 30, thereby further obtaining a virtual image with uniform brightness distribution.
  • the coupling grating 20 can be disposed on any side of the waveguide sheet 10, in an example, the coupling grating 20 can be disposed on the upper surface of the waveguide sheet 10, that is, disposed on the back of the image production module 200 surface. In another example, the coupling-in grating 20 may be disposed on the lower surface of the waveguide sheet 10 , that is, disposed on the surface facing the image production module 200 . Likewise, in some embodiments, the outcoupling grating 30 can also be disposed on any side of the waveguide sheet 10.
  • the outcoupling grating 30 can be disposed on the upper surface of the waveguide sheet 10, that is, disposed on the backside of the image production The surface of the module 200 .
  • the outcoupling grating 30 may be disposed on the lower surface of the waveguide sheet 10 , that is, disposed on the surface facing the image production module 200 .
  • the coupling-in grating 20 and the coupling-out grating 30 may be disposed on the same side of the waveguide sheet 10 , and in one example, the coupling-in grating 20 and the coupling-out grating 30 may be disposed on the same side of the waveguide sheet 10 .
  • the upper surface that is, the surface facing away from the image production module 200 .
  • the coupling-in grating 20 and the coupling-out grating 30 may both be disposed on the lower surface of the waveguide sheet 10 , that is, both are disposed on the surface facing the image production module 200 .
  • the coupling-in grating 20 and the coupling-out grating 30 may be disposed on different sides of the waveguide sheet 10.
  • the coupling-in grating 20 may be disposed on the upper surface of the waveguide sheet 10, that is, disposed on the back side.
  • the surface of the image production module 200 , and the coupling-out grating 30 may be disposed on the lower surface of the waveguide sheet 10 , that is, disposed on the surface facing the image production module 200 .
  • the out-coupling grating 30 can be disposed on the upper surface of the waveguide sheet 10, that is, disposed on the surface facing away from the image production module 200, and the coupling-in grating 20 can be disposed on the lower surface of the waveguide sheet 10, that is, disposed on the surface On the surface facing the image production module 200 .
  • the diffraction grating structure 100 includes two layers of waveguide sheets 10 , and two ends of each layer of waveguide sheets 10 are respectively distributed with an in-coupling grating 20 and an out-coupling grating 30 , one of which is
  • the coupling-in grating 20 and the coupling-out grating 30 on the layered waveguide sheet 10 are used to diffract and reflect any one of the red, green, and blue light, and the coupling-in grating 20 and the coupling-out grating on the other layer of the waveguide sheet 10
  • the grating 30 is used to diffract and reflect the remaining two of the red, green and blue light.
  • the image production module 200 emits light to the coupled grating 20, and the light will pass through the optical module 300 during the transmission process.
  • the optical module 300 collimates the incident light into parallel light and then enters the first
  • the coupling grating 20 on the layered waveguide sheet 101 the first layer of the waveguide sheet 101 totally reflects the light of the corresponding wavelength after coupling into the coupling grating 20, for example, it can totally reflect one of red light, green light and blue light , so that the light is propagated to the outcoupling grating 30 on the first layer of the waveguide sheet 101 , and the outcoupling grating 30 and the functional layer 40 on the first layer of the waveguide sheet 101 will then be diffracted and coupled out into the air by the totally reflected light.
  • the coupling grating 20 on the first layer of the waveguide sheet 101 After the light is totally reflected by the coupling grating 20 on the first layer of the waveguide sheet 101, the light that cannot be totally reflected enters the coupling grating 20 on the second layer of the waveguide sheet 102, and the second layer of the waveguide sheet 102 is coupled to the coupling grating. 20
  • the light of the corresponding wavelength after coupling can be totally reflected, for example, the remaining two kinds of red-green light, red-blue light, and green-blue light can be totally reflected, thus ensuring that the red light, green light and blue light are all reflected and diffracted.
  • the out-coupling grating 30 of the first-layer waveguide sheet 101 couples out the light in the air together to obtain a virtual image with uniform brightness distribution, and the virtual image can be observed by the human eye 600 .
  • the in-coupling gratings 20 and out-coupling gratings 30 in each layer of the waveguide sheet 10 are arranged in the same manner as described above.
  • the out-coupling grating 30 in the waveguide sheet 10 can be arranged on any side of the waveguide sheet 10
  • the coupling-in grating 20 and the out-coupling grating 30 in the same layer of the waveguide sheet 10 can be arranged on the same side of the waveguide sheet 10
  • the same layer of the waveguide sheet 10 The in-coupling grating 20 and the out-coupling grating 30 may be disposed on different sides of the waveguide sheet 10 .
  • For the specific arrangement method please refer to the foregoing description, which will not be described one by one here.
  • the diffraction grating structure 100 includes three layers of waveguide sheets 10 , and two ends of each layer of the waveguide sheet 10 are respectively distributed with an in-coupling grating 20 and an out-coupling grating 30 .
  • the coupling-in grating 20 and the coupling-out grating 30 on the waveguide sheet 10 are used to diffract and reflect any one of the red, green, and blue light, so that the coupling-in grating 20 and the coupling-out grating on the three-layer waveguide sheet 10
  • the grating 30 diffracts and reflects the red, green and blue light respectively.
  • the image production module 200 emits light to the coupled grating 20, and the light will pass through the optical module 300 during the transmission process.
  • the optical module 300 collimates the incident light into parallel light and then enters the first
  • the coupling grating 20 under the layered waveguide sheet 101 the first layer of the waveguide sheet 101 totally reflects the light of the corresponding wavelength after coupling into the coupling grating 20, for example, it can totally reflect one of red light, green light and blue light , so that the light is propagated to the outcoupling grating 30 on the first layer of the waveguide sheet 101 , and the outcoupling grating 30 and the functional layer 40 on the first layer of the waveguide sheet 101 then diffract the totally reflected light out into the air.
  • the light that cannot be reflected enters the coupling grating 20 on the second layer of waveguide sheet 102.
  • the second layer of waveguide sheet 102 is coupled to the coupling grating 20
  • the light of the corresponding wavelength is totally reflected, for example, it can totally reflect the other kind of red light, blue light, and green light, so that the other kind of light is propagated to the outcoupling grating 30 on the second-layer waveguide sheet 102,
  • the outcoupling grating 30 and the functional layer 40 on the second layer of the waveguide sheet 102 then diffract and outcouple the totally reflected light into the air.
  • the light that cannot be reflected enters the coupled grating 20 on the third layer of the waveguide sheet 103, and the third layer of the waveguide sheet 103 is coupled to the coupled grating 20.
  • the light of the corresponding wavelength is totally reflected, for example, another kind of red light, blue light, and green light can be totally reflected, so as to transmit the other light to the outcoupling grating 30 on the third layer of the waveguide sheet 102, and the third light
  • the outcoupling grating 30 and the functional layer 40 on the layered waveguide sheet 102 diffract the totally reflected light out into the air and couple with the outcoupling grating 30 of the first layer of the waveguide sheet 101 to the light in the air and the first.
  • the out-coupling grating 30 of the two-layer waveguide sheet 102 couples out the light in the air together to obtain a virtual image with uniform brightness distribution, and the virtual image can be observed by the human eye 600 .
  • the incoupling gratings 20 and outcoupling gratings 30 in each layer of the waveguide sheet 10 are arranged in the same manner as described above.
  • the out-coupling grating 30 in the layered waveguide sheet 10 can be arranged on any side of the waveguide sheet 10
  • the coupling-in grating 20 and the out-coupling grating 30 in the same layer of the waveguide sheet 10 can be arranged on the same side of the waveguide sheet 10, and the same layer of the waveguide sheet
  • the in-coupling grating 20 and the out-coupling grating 30 in 10 may be disposed on different sides of the waveguide sheet 10 . Please refer to the above for the specific arrangement method, and will not be described one by one here.
  • the imaging device 1000 of the embodiment of the present application refracts the light coupled out of the outcoupling grating 30 to the outside by disposing the functional layer 40 on the blazed grating, and increases the light outcoupling rate of the outcoupling grating 30 , and cooperates with the waveguide sheet 10 and the coupling in grating 20 for light transmission, thereby improving the diffraction efficiency of the diffraction grating structure 100 and reducing the uniformity error of the diffraction grating structure 100, thereby making the brightness distribution of the generated virtual image uniform.
  • an embodiment of the present application further provides a wearable device 2000 , which includes a housing 500 and the imaging device 1000 described in any of the above embodiments.
  • the imaging device 1000 is disposed on the housing 500 .
  • the wearable device 2000 may be devices such as smart glasses, AR glasses, head-mounted induction helmets, and other devices that have the function of combining virtual images with real scenes.
  • the wearable device 2000 is taken as an example of AR glasses for description, and it can be understood that the specific form of the wearable device 2000 is not limited to AR glasses.
  • the wearable device 2000 of the embodiment of the present application refracts the light coupled out of the out-coupling grating 30 to the outside by disposing the functional layer 40 on the blazed grating and increases the light outcoupling rate of the out-coupling grating 30 , and cooperates with the waveguide sheet 10 and the coupling-in grating 20 for light transmission, thereby improving the diffraction efficiency of the diffraction grating structure 100 and reducing the uniformity error of the diffraction grating structure 100, thereby making the brightness distribution of the generated virtual image uniform.
  • any description of a process or method in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a specified logical function or step of the process , and the scope of the preferred embodiments of the present application includes alternative implementations in which the functions may be performed out of the order shown or discussed, including performing the functions substantially concurrently or in the reverse order depending upon the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application belong.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种衍射光栅结构(100)、成像装置(1000)及穿戴设备(2000)。衍射光栅结构(100)包括波导片(10)、耦入光栅(20)、耦出光栅(30)及功能层(40)。耦入光栅(20)用于将光线耦合进波导片(10),波导片(10)和耦出光栅(30)将光线耦出至功能层(40),功能层(40)用于将光线折射至外界及增加耦出光栅(30)的光耦出率。

Description

衍射光栅结构、成像装置及穿戴设备
优先权信息
本申请请求2020年10月13日向中国国家知识产权局提交的、专利申请号为202011091220.1和202022275408.3的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及衍射光波导技术领域,更具体而言,涉及一种衍射光栅结构、成像装置及穿戴设备。
背景技术
现如今,AR(Augmented Reality)增强现实技术在教育、医疗、娱乐等行业得到了广泛的应用。其主要特点为将虚拟图像和现实场景结合起来,保证可以同时观看虚拟图像及现实场景。
发明内容
本申请实施方式提供一种衍射光栅结构、成像装置及穿戴设备。
本申请实施方式的衍射光栅结构包括波导片、耦入光栅、耦出光栅及功能层。所述耦入光栅设置在所述波导片的第一端,所述耦入光栅包括倾斜光栅。所述耦出光栅设置在所述波导片的第二端,所述第一端与所述第二端为所述波导片相对的两端,所述耦出光栅包括闪耀光栅。所述功能层设置在所述耦出光栅上,其中:所述耦入光栅用于将光线耦合进所述波导片,所述波导片用于将所述耦入光栅耦合进的光线传输至所述耦出光栅,所述耦出光栅用于将所述波导片中的光线耦出至所述功能层,所述功能层用于将所述耦出光栅耦合出的光线折射至外界及增加所述耦出光栅的光耦出率。
本申请实施方式的成像装置包括衍射光栅结构、图像生成模组及光学模组。所述衍射光栅结构包括波导片、耦入光栅、耦出光栅及功能层。所述耦入光栅设置在所述波导片的第一端,所述耦入光栅包括倾斜光栅。所述耦出光栅设置在所述波导片的第二端,所述第一端与所述第二端为所述波导片相对的两端,所述耦出光栅包括闪耀光栅。所述功能层设置在所述耦出光栅上,所述耦入光栅用于将光栅耦合进所述波导片,所述波导片用于将所述耦入光线耦合进的光线传输至所述耦出光栅,所述耦出光栅用于将所述波导片中的光线耦出至所述功能层,所述功能层用于将所述耦出光栅耦合出的光线折射至外界并增加所述耦出光栅的光耦出率。所述图像生成模组与所述耦入光栅相对,并用于朝所述耦入光栅发射光线。所述光学模组设置在所述图像生成模组与所述耦入光栅之间,并用于将所述图像生成模组发出的光线调整为与所述耦入光栅成预设角度的平行光。
本申请实施方式的穿戴设备包括壳体及成像装置。所述成像装置设置在所述壳体上。所述成像装置包括衍射光栅结构、图像生成模组及光学模组。所述衍射光栅结构包括波导片、耦入光栅、耦出光栅及功能层。所述耦入光栅设置在所述波导片的第一端,所述耦入光栅包括倾斜光栅。所述耦出光栅设置在所述波导片的第二端,所述第一端与所述第二端为所述波导片相对的两端,所述耦出光栅包括闪耀光栅。所述功能层设置在所述耦出光栅上,所述耦入光栅用于将光线耦合进所述波导片,所述波导片用于将所述耦入光栅耦合进的光线传输至所述耦出光栅,所述耦出光栅用于将所述波导片中的光线耦出至所述功能层,所述功能层用于将所述耦出光栅耦合出的光线折射至外界并增加所述耦出光栅的光耦出率。所述图像生成模组与所述耦入光栅相对,并用于朝所述耦入光栅发射光线。所述光学模组设置在所述图像生成模组与所述耦入光栅之间,并用于将所述图像生成模组发出的光线调整为与所 述耦入光栅成预设角度的平行光。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的衍射光栅结构的结构示意图;
图2是本申请某些实施方式的衍射光栅结构的耦出光栅的结构示意图;
图3是现有技术方案的耦出光栅在不同入射角度和衍射级别下的衍射效率的示意图;
图4是现有技术方案的耦出光栅在+1衍射级别下不同波长的衍射效率的示意图;
图5是现有技术方案的耦出光栅在不同入射角度和+1衍射级别下的衍射均匀性的示意图;
图6是本申请某些实施方式的衍射光栅结构中功能层为氧化钛时,耦出光栅在不同入射角度和衍射级别下的衍射效率的示意图;
图7是本申请某些实施方式的衍射光栅结构中功能层为氧化钛时,耦出光栅在+1衍射级别下不同波长的衍射效率的示意图;
图8是本申请某些实施方式的衍射光栅结构中功能层为氧化钛时,耦出光栅在不同入射角度和+1衍射级别下的衍射均匀性的示意图;
图9是本申请某些实施方式的衍射光栅结构中功能层为氧化锆时,耦出光栅在不同入射角度和衍射级别下的衍射效率的示意图;
图10是本申请某些实施方式的衍射光栅结构中功能层为氧化锆时,耦出光栅在+1衍射级别下不同波长的衍射效率的示意图;
图11是本申请某些实施方式的衍射光栅结构中功能层为氧化锆时,耦出光栅在不同入射角度和+1衍射级别下的衍射均匀性的示意图;
图12是本申请某些实施方式的成像装置的结构示意图;
图13是本申请某些实施方式的成像装置的结构示意图;
图14是本申请某些实施方式的成像装置的结构示意图;
图15是本申请某些实施方式的穿戴设备的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
本申请实施方式的衍射光栅结构包括波导片、耦入光栅、耦出光栅及功能层。耦入光栅设置在所述波导片的第一端,耦入光栅包括倾斜光栅。耦出光栅设置在波导片的第二端,第一端与第二端为波导片相对的两端,耦出光栅包括闪耀光栅。功能层设置在耦出光栅上,其中:耦入光栅用于将光线耦合进波导片,波导片用于将耦入光栅耦合进的光线传输至耦出光栅,耦出光栅用于将波导片中的光线耦出至功能层,功能层用于将耦出光栅耦合出的光线折射至外界及增加耦出光栅的光耦出率。
在某些实施方式中,耦出光栅的周期的取值范围为[300纳米,500纳米]。
在某些实施方式中,耦出光栅的闪耀角的取值范围为[5度,40度]。
在某些实施方式中,耦出光栅的反闪耀角的取值范围为[50度,85度]。
在某些实施方式中,功能层包括高折射率膜层,其中:功能层的折射率的取值范围大于等于1.8;和/或功能层的厚度的取值范围为[20纳米,150纳米]。
在某些实施方式中,所述功能层包括氧化钛膜层或氧化锆膜层。
在某些实施方式中,当功能层包括氧化钛膜层时,功能层的厚度为90纳米。
在某些实施方式中,当功能层包括氧化锆膜层时,功能层的厚度为110纳米。
在某些实施方式中,所述衍射光栅结构包含三层波导片,且每层所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,每层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的任一种进行衍射及反射,以使三层所述波导片上的所述耦入光栅和所述耦出光栅分别对红、绿、蓝三色光进行衍射及反射。
在某些实施方式中,所述衍射光栅结构包含两层波导片,且每层所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,其中一层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的任一种进行衍射及反射,另一层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的其余两种进行衍射及反射。
在某些实施方式中,所述衍射光栅结构包含一层波导片,所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光进行衍射及反射。
在某些实施方式中,所述耦入光栅与所述耦出光栅设置在所述波导片的同一侧。
在某些实施方式中,所述耦入光栅与所述耦出光栅设置在所述波导片的不同侧。
本申请实施方式的成像装置包括衍射光栅结构、图像生成模组及光学模组。衍射光栅结构包括波导片、耦入光栅、耦出光栅及功能层。耦入光栅设置在波导片的第一端,耦入光栅包括倾斜光栅。耦出光栅设置在波导片的第二端,第一端与第二端为波导片相对的两端,耦出光栅包括闪耀光栅。功能层设置在耦出光栅上,耦入光栅用于将光线耦合进波导片,波导片用于将耦入光栅耦合进的光线传输至耦出光栅,耦出光栅用于将波导片中的光线耦出至功能层,功能层用于将耦出光栅耦合出的光线折射至外界并增加耦出光栅的光耦出率。图像生成模组与耦入光栅相对,并用于朝耦入光栅发射光线。光学模组设置在图像生成模组与所述耦入光栅之间,并用于将图像生成模组发出的光线调整为与耦入光栅成预设角度的平行光。
在某些实施方式中,耦出光栅的周期的取值范围为[300纳米,500纳米]。
在某些实施方式中,耦出光栅的闪耀角的取值范围为[5度,40度]。
在某些实施方式中,耦出光栅的反闪耀角的取值范围为[50度,85度]。
在某些实施方式中,功能层包括高折射率膜层,其中:功能层的折射率的取值范围大于等于1.8;和/或功能层的厚度的取值范围为[20纳米,150纳米]。
在某些实施方式中,所述功能层包括氧化钛膜层或氧化锆膜层。
在某些实施方式中,当功能层包括氧化钛膜层时,功能层的厚度为90纳米。
在某些实施方式中,当功能层包括氧化锆膜层时,功能层的厚度为110纳米。
在某些实施方式中,衍射光栅结构包含三层波导片,且每层波导片的两端分别分布有耦入光栅和耦出光栅,每层波导片上的耦入光栅和耦出光栅用于对红、绿、蓝三色光中的任一种进行衍射及反射,以使三层波导片上的耦入光栅和耦出光栅分别对红、绿、蓝三色光进行衍射及反射。
在某些实施方式中,衍射光栅结构包含两层波导片,且每层波导片的两端分别分布有耦入光栅和耦出光栅,其中一层波导片上的耦入光栅和耦出光栅用于对红、绿、蓝三色光中的任一种进行衍射及反射,另一层波导片上的耦入光栅和耦出光栅用于对红、绿、蓝三色光中的其余两种进行衍射及反射。
在某些实施方式中,衍射光栅结构包含一层波导片,波导片的两端分别分布有耦入光栅和耦出光栅,耦入光栅和耦出光栅用于对红、绿、蓝三色光进行衍射及反射。
在某些实施方式中,所述耦入光栅与所述耦出光栅设置在所述波导片的同一侧。
在某些实施方式中,所述耦入光栅与所述耦出光栅设置在所述波导片的不同侧。
本申请实施方式的穿戴设备包括壳体及成像装置。成像装置设置在所述壳体上。成像装置包括衍射光栅结构、图像生成模组及光学模组。衍射光栅结构包括波导片、耦入光栅、耦出光栅及功能层。耦入光栅设置在波导片的第一端,耦入光栅包括倾斜光栅。耦出光栅设置在波导片的第二端,第一端与第二端为波导片相对的两端,耦出光栅包括闪耀光栅。功能层设置在所述耦出光栅上,耦入光栅用于将光线耦合进波导片,波导片用于将耦入光栅耦合进的光线传输至耦出光栅,耦出光栅用于将波导片中的光线耦出至功能层,功能层用于将耦出光栅耦合出的光线折射至外界并增加耦出光栅的光耦出率。图像生成模组与耦入光栅相对,并用于朝耦入光栅发射光线。光学模组设置在图像生成模组与耦入光栅之间,并用于将图像生成模组发出的光线调整为与耦入光栅成预设角度的平行光。
请参阅图1,本申请实施方式提供一种衍射光栅结构100。衍射光栅结构100包括波导片10、耦入光栅20、耦出光栅30及功能层40。耦入光栅20设置在波导片10的第一端11,耦入光栅20包括倾斜光栅。耦出光栅30设置在波导片10的第二端12,耦出光栅30包括闪耀光栅,第一端11和第二端12是波导片10相对的两端。功能层40设置在耦出光栅30上,其中:耦入光栅20用于将光线耦合进波导片10,波导片10用于将耦入光栅10耦合进的光线传输至耦出光栅30,耦出光栅30用于将波导片10中的光线耦出至功能层40,功能层40用于将耦出光栅30耦合出的光线折射至外界并增加耦出光栅30的光耦出率。
目前AR技术生成的虚拟图像产生的虚拟图像往往亮度分布不均匀。因此,提高虚拟图像的亮度分布的均匀性成为现在亟需解决的问题。
本申请实施方式的衍射光栅结构100通过在闪耀光栅上设置功能层40将耦出光栅30耦合出的光线折射至外界并增加耦出光栅30的光耦出率,及配合波导片10及耦入光栅20进行光线传输,由此提高了衍射光栅结构100的衍射效率及降低了衍射光栅结构100的均一性误差,从而使得生成的虚拟图像的亮度分布均匀。
其中,耦入光栅20可以是如图1左侧的所示的倾斜光栅,也可以是如图1右侧所示的闪耀光栅。耦出光栅30可以是如图1右侧的所示的闪耀光栅,也可以是如图1左侧所示的倾斜光栅。也即是说,耦入光栅20和耦出光栅30可以都是倾斜光栅,也可以都是闪耀光栅,或者可以一个是倾斜光栅,另一个是闪耀光栅。本申请以耦入光栅20为倾斜光栅,耦出光栅为闪耀光栅为例,可以理解,衍射光栅结构100并不限于此种结构一种。
请参阅图2,具体地,在某些实施方式中,耦出光栅30的周期T的取值范围为[300纳米,500纳米],即,耦出光栅30的周期T大于等于300纳米,且小于等于500纳米。耦出光栅30的闪耀角α的取值范围为[5度,40度],即,耦出光栅30的闪耀角α大于等于5度,且小于等于40度。耦出光栅30的反闪耀角β的取值范围为[50度,85度],即,耦出光栅30的反闪耀角β大于等于50度,且小于等于85度。
具体地,耦出光栅30的周期T可以是300纳米至500纳米之间的任意值。例如,耦出光栅30的周期T可以是300纳米、330纳米、350纳米、370纳米、390纳米、410纳米、430纳米、450纳米、470纳米、490纳米、500纳米等中的任意一个或其他在300纳米与500纳米之间的任意值。
耦出光栅30的闪耀角α可以是5度至40度之间的任意值。例如,耦出光栅30的闪耀角α可以是5度、10度、17度、20度、25度、27度、30度、35度、37度、40度等中的任意一个或其他在5度至40度之间的任意值。
耦出光栅30的反闪耀角β可以是50度至85度之间的任意值。例如,耦出光栅30的反闪耀角β可以是50度、53度、55度、60度、65度、68度、75度、80度、83度、85度等中的任意一个或其他在50度至85度之间的任意值。
在一个实施例中,耦出光栅30的周期T为370纳米、耦出光栅30的闪耀角α为37度及耦出光栅30的反闪耀角β为85度,根据耦出光栅30的周期T、闪耀角α及反闪耀角β则可计算出耦出光栅30的深度H为261纳米。
请参阅图3至图5,假设衍射光栅结构100不设置功能层40,且耦出光栅30的周期T为370纳米、耦出光栅30的闪耀角α为37度、耦出光栅30的反闪耀角β为85度及耦出光栅30的深度H为261纳米,请参阅图3,横坐标为入射角度,纵坐标为衍射效率。从图3可以看出,入射角度从负10度到10度变化,衍射效率与入射角度变化呈现负相关关系。请参阅图4,横坐标为光线波长,纵坐标为衍射效率。从图4可以看出,波长从400纳米到700纳米变化时,衍射效率与波长变化也呈现负相关关系。而且,衍射效率对入射角度和波长的变化都非常敏感,在这样的效率分布关系下,不仅会增加衍射光栅结构的设计难度,同时用户观察到的虚拟图像往往亮度分布不均匀。
请参阅图5,横坐标为沿光栅矢量方向上的视场分布,具体为正负10度;纵坐标为垂直于光栅矢量方向上的视场分布,具体为正负18度。从图5中可以看出最大衍射效率为34%,最小衍射效率为10%,再根据公式:
Figure PCTCN2021114215-appb-000001
可计算出不设置功能层40的衍射光栅结构的耦出光栅的均一性误差为0.55。通常,均一性误差越小,则代表视场的均一性越好,而不设置功能层40的衍射光栅结构的均一性误差为0.55时,会影响到虚拟图像的亮度均匀分布。为了生成亮度分布均匀的虚拟图像,则需要提高衍射光栅机构100的衍射效率并降低均一性误差。
请继续参阅图2,本申请实施方式的衍射光栅结构100,功能层40为设置在耦出光栅30上的高折射率膜层。在某些实施方式中,功能层40的折射率n大于等于1.8。功能层40的厚度D的取值范围为[20纳米,150纳米],即,功能层40的厚度D大于等于20纳米,小于等于150纳米。
具体地,功能层40的折射率n可以是大于等于1.8的任意值。例如,功能层40的折射率n可以是1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0等中的任意一个或其他在大于1.8的任意值。
再具体地,功能层40的厚度D可以是20纳米至150纳米之间的任意值。例如,功能层40的厚度D可以是20纳米、30纳米、40纳米、50纳米、60纳米、70纳米、80纳米、90纳米、100纳米、110纳米、120纳米、130纳米、140纳米、150纳米等中的任意一个或其他在20纳米至150纳米之间的任意值。当功能层40的厚度D小于20纳米时,一方面,衍射光栅结构100难以加工设计,另一方面,衍射光栅结构100的衍射效率得不到提高,均一性误差也得不到减小,进而得到的虚拟图像的亮度分布均匀性也不佳。当功能层40的厚度D大于150纳米时,在加工时容易填满两个三角形之间的间隙,同样也加大了加工难度。因此,功能层40的厚度D可以是20纳米至150纳米之间时,一方面能降低 衍射光栅结构100的加工难度,而且衍射光栅结构100的衍射效率得到提高,均一性误差也得到减小,进而得到的虚拟图像的亮度分布均匀性较佳(具体分析如下文介绍)。
请参阅图6至图8,在一个实施例中,功能层40可以是氧化钛膜层,此时功能层40的厚度D为90纳米。同样地,耦出光栅30的周期T为370纳米、耦出光栅30的闪耀角α为37度、耦出光栅30的反闪耀角β为85度、及耦出光栅30的深度H为261纳米时,请结合图6,横坐标为入射角度,纵坐标为衍射效率。可以看出,入射角度从负10度到10度变化时,+1衍射级别的衍射效率的变化趋势比较平坦,且在入射角度为0度时,衍射效率大于65%。
请结合图7,横坐标为光线波长,纵坐标为衍射效率,从图7可以看出,波长从480纳米到640纳米变化时,衍射效率的变化趋势也比较平坦,且衍射效率大于65%。由此可以看出,功能层40设置在耦出光栅30上后,衍射光栅结构100的衍射效率得到明显改善。
请再结合图8,横坐标为沿光栅矢量方向上的视场分布,具体为正负10度。纵坐标为垂直于光栅矢量方向上的视场分布,具体为正负18度。从图8中可以看出最大衍射效率为73.5%,最小衍射效率为65%,再根据公式:
Figure PCTCN2021114215-appb-000002
可以得出采用氧化钛膜层作为功能层40的衍射光栅结构100的耦出光栅30的均一性误差为0.06。相较于不设置功能层40的衍射光栅结构而言,采用氧化钛膜层作为功能层40的衍射光栅结构100的耦出光栅30的衍射效率得到了提高,且降低了均一性误差,从而提高了生成的虚拟图像的亮度分布均匀性。
请参阅图9至图11,在另一个实施例中,功能层40还可以是氧化锆膜层,此时功能层40的厚度D为110纳米。同样地,耦出光栅30的周期T为370纳米、耦出光栅30的闪耀角α为37度、耦出光栅30的反闪耀角β为85度及耦出光栅30的深度H为261纳米时,请结合图9,横坐标为入射角度,纵坐标为衍射效率,从图9可以看出,入射角度从负10度到10度变化时,+1衍射级别的衍射效率的呈现平坦趋势,且衍射效率大于55%。
请结合图10,横坐标为光线波长,纵坐标为衍射效率,从图10可以看出,波长从480纳米到640纳米变化时,衍射效率的变化趋势也比较平坦,且衍射效率大于55%。由此可以看出,功能层40设置在耦出光栅30上后,衍射光栅结构100的衍射效率得到明显改善。
请再结合图11,横坐标为沿光栅矢量方向上的视场分布,具体为正负10度。纵坐标为垂直于光栅矢量方向上的视场分布,具体为正负18度。则图11中可以看出最大衍射效率为61.5%和最小衍射效率为57.5%,再根据公式:
Figure PCTCN2021114215-appb-000003
可以得出采用氧化锆膜层作为功能层40的衍射光栅结构100的耦出光栅30的均一性误差为0.03。相较于不设置功能层40的衍射光栅结构而言,采用氧化锆膜层作为功能层40的衍射光栅结构100的耦出光栅30的衍射效率也得到了提高,且降低了均一性误差,从而提高了生成的虚拟图像的亮度分布均匀性。
综上,无论是采用氧化钛膜层作为功能层40,还是采用氧化锆膜层作为功能层40,本申请实施方式的衍射光栅结构100通过在闪耀光栅上设置功能层40,均能增加耦出光栅30的镜面反射,并配合波导片10及耦入光栅20进行光线传输,由此相较于不设置功能层的衍射光栅结构,提高了衍射光栅结构100的衍射效率及降低了衍射光栅结构100的均一性误差,从而使得生成的虚拟图像的亮度分布均匀。
请参阅图12,本申请实施方式还提供一种成像装置1000。成像装置1000包括上述任一实施方式的衍射光栅结构100、图像生成模组200及光学模组300。请结合图1,图像生成模组200与耦入光栅 20相对,并用于朝耦入光栅20发射光线。光学模组300设置在图像生成模组200与耦入光栅20之间,并用于将图像生成模组200发出的光线调整为与耦入光栅20成预设角度的平行光。
具体地,图像生产模组200会朝耦入光栅20发射光线,光线在传输的过程中会经过光学模组300,光学模组300将入射光线准直成平行光线后以预设角度射入耦入光栅20,光线经过耦入光栅20衍射后,在波导片10中以全反射的形式传播至耦出光栅30,通过在耦出光栅30上设置功能层40,从而使经过耦出光栅30及功能层40的光线衍射耦出至空气中,从而进一步得到亮度均匀分布的虚拟图像,该虚拟图像可被人眼600观察到。
请继续参阅12及图1,在一个实施方式中,成像装置1000中的衍射光栅结构100包含一层波导片10,波导片10的两端分别分布有耦入光栅20和耦出光栅30,耦入光栅20和耦出光栅30用于对红、绿、蓝三色光进行衍射及反射。
具体地,图像生产模组200会对耦入光栅20发射光线,光线在传输过程中会经过光学模组300,光学模组300将入射光线准直成平行光线后以预设角度射入耦入光栅20,光线经过耦入光栅20衍射后,波导片10对耦入光栅20耦合后的相应波长的光线进行全反射,例如可以对红光、绿光和蓝光三种光线进行全反射,进而传播至耦出光栅30,功能层40再将耦出光栅耦合后的光线折射至空气中,功能层40能够增加耦出光栅30的光耦出率,从而进一步得到亮度均匀分布的虚拟图像,该虚拟图像可被人眼600观察到。其中,在一些实施方式中,耦入光栅20可以设置在波导片10任意一面上,在一个例子中,耦入光栅20可设置在波导片10的上表面,即设置在背向图像生产模组200的表面。在另一个例子中,耦入光栅20可设置在波导片10的下表面,即设置在朝向图像生产模组200的表面。同样地,在一些实施方式中,耦出光栅30也可以设置在波导片10任意一面上,在一个例子中,耦出光栅30可设置在波导片10的上表面,即设置在背向图像生产模组200的表面。在另一个例子中,耦出光栅30可设置在波导片10的下表面,即设置在朝向图像生产模组200的表面。
另外,在某些实施方式中,耦入光栅20和耦出光栅30可以设置在波导片10的同一侧,在一个例子中,耦入光栅20和耦出光栅30可均设置在波导片10的上表面,即均设置在背向图像生产模组200的表面。在另一个例子中,耦入光栅20和耦出光栅30可均设置在波导片10的下表面,即均设置在朝向图像生产模组200的表面。在另一些实施方式中,耦入光栅20和耦出光栅30可以设置在波导片10的不同侧,在一个例子中,耦入光栅20可设置在波导片10的上表面,即设置在背向图像生产模组200的表面,而耦出光栅30可设置在波导片10的下表面,即设置在朝向图像生产模组200的表面。在另一个例子中,耦出光栅30可设置在波导片10的上表面,即设置在背向图像生产模组200的表面,而耦入光栅20可设置在波导片10的下表面,即设置在朝向图像生产模组200的表面。
请参阅图13及图1,在另一个实施方式中,衍射光栅结构100包含两层波导片10,且每层波导片10的两端分别分布有耦入光栅20和耦出光栅30,其中一层波导片10上的耦入光栅20和耦出光栅30用于对红、绿、蓝三色光中的任一种进行衍射及反射,另一层波导片10上的耦入光栅20和耦出光栅30用于对红、绿、蓝三色光中的其余两种进行衍射及反射。
具体地,图像生产模组200会对耦入光栅20发射光线,光线在传输过程中会经过光学模组300,光学模组300将入射光线准直成平行光线后以预设角度射入第一层波导片101上的耦入光栅20,第一层波导片101对耦入光栅20耦合后的相应波长的光线进行全反射,例如可以对红光、绿光、蓝光其中的一种进行全反射,从而将光线传播至第一层波导片101上的耦出光栅30,第一层波导片101上的耦出光栅30及功能层40再将被全反射光线衍射耦出至空气中。
光线在经过第一层波导片101上的耦入光栅20全反射后,无法被全反射的光线则进入第二层波导片102上的耦入光栅20,第二层波导片102对耦入光栅20耦合后的相应波长的光线进行全反射,例如可以对红绿光、红蓝光、绿蓝光中剩余的两种进行全反射,由此保证对红光、绿光和蓝光都进行了反射和衍射,从而将光线传播至第二层波导片102上的耦出光栅30,第二层波导片102上的耦出光栅30及功能层40再将被全反射光线衍射耦出至空气中并与从第一层波导片101的耦出光栅30耦出至空气中的光线一起得到亮度均匀分布的虚拟图像,该虚拟图像可被人眼600观察到。
其中,每层波导片10中的耦入光栅20和耦出光栅30的设置方式与前述相同,例如,每层波导片10中的耦入光栅20可以设置在波导片10任意一面上,每层波导片10中的耦出光栅30可以设置在波导片10任意一面上,同一层波导片10中的耦入光栅20与耦出光栅30可以设置在波导片10的同一侧,同一层波导片10中的耦入光栅20与耦出光栅30可以设置在波导片10的不同侧,具体设置方式请参见前述,在此不一一展开说明。
请参阅图14及图1,在再一个实施方式中,衍射光栅结构100包含三层波导片10,且每层波导片10的两端分别分布有耦入光栅20和耦出光栅30,每层波导片10上的耦入光栅20和耦出光栅30用于对红、绿、蓝三色光中的任一种进行衍射及反射,以使三层波导片10上的耦入光栅20和耦出光栅30分别对红、绿、蓝三色光进行衍射及反射。
具体地,图像生产模组200会对耦入光栅20发射光线,光线在传输过程中会经过光学模组300,光学模组300将入射光线准直成平行光线后以预设角度射入第一层波导片101下的耦入光栅20,第一层波导片101对耦入光栅20耦合后的相应波长的光线进行全反射,例如可以对红光、绿光、蓝光其中的一种进行全反射,从而将光线传播至第一层波导片101上的耦出光栅30,第一层波导片101上的耦出光栅30及功能层40再将被全反射的光线衍射耦出至空气中。
光线在经过第一层波导片101上的耦入光栅20后,无法被反射的光线则进入第二层波导片102上的耦入光栅20,第二层波导片102对耦入光栅20耦合后的相应波长的光线进行全反射,例如可以是对红光、蓝光、绿光中的另一种进行全反射,从而将另一种光线传播至第二层波导片102上的耦出光栅30,第二层波导片102上的耦出光栅30及功能层40再将被全反射的光线衍射耦出至空气中。
光线在经过第二层波导片102下耦入光栅20后,无法被反射的光线则进入第三层波导片103上的耦入光栅20,第三层波导片103对耦入光栅20耦合后的相应波长的光线进行全反射,例如可以对红光、蓝光、绿光中的再一种进行全反射,从而将再一种光线传播至第三层波导片102上的耦出光栅30,第三层波导片102上的耦出光栅30及功能层40再将被全反射的光线衍射耦出至空气中并与从第一层波导片101的耦出光栅30耦出至空气中的光线及第二层波导片102的耦出光栅30耦出至空气中的光线一起得到亮度均匀分布的虚拟图像,该虚拟图像可被人眼600观察到。
同样地,每层波导片10中的耦入光栅20和耦出光栅30的设置方式与前述相同,例如,每层波导片10中的耦入光栅20可以设置在波导片10任意一面上,每层波导片10中的耦出光栅30可以设置在波导片10任意一面上,同一层波导片10中的耦入光栅20与耦出光栅30可以设置在波导片10的同一侧,同一层波导片10中的耦入光栅20与耦出光栅30可以设置在波导片10的不同侧,具体设置方式请参见前述,在此不一一展开说明。
本申请实施方式的成像装置1000通过在闪耀光栅上设置功能层40将耦出光栅30耦合出的光线折射至外界并增加耦出光栅30的光耦出率,及配合波导片10及耦入光栅20进行光线传输,由此提高了衍射光栅结构100的衍射效率及降低了衍射光栅结构100的均一性误差,从而使得生成的虚拟图像的 亮度分布均匀。
请参考图15,本申请实施方式还提供一种穿戴设备2000,包括壳体500和上述任一实施方式所述的成像装置1000,成像装置1000设置在壳体500上。
穿戴设备2000可以是智能眼镜、AR眼镜、头戴式感应头盔等设备以及其他具有虚拟画面与现实场景结合功能的设备。本申请以穿戴设备2000为AR眼镜为例进行说明,可以理解穿戴设备2000的具体形式并不限于AR眼镜。
本申请实施方式的穿戴设备2000通过在闪耀光栅上设置功能层40将耦出光栅30耦合出的光线折射至外界并增加耦出光栅30的光耦出率,及配合波导片10及耦入光栅20进行光线传输,由此提高了衍射光栅结构100的衍射效率及降低了衍射光栅结构100的均一性误差,从而使得生成的虚拟图像的亮度分布均匀。
在本说明书的描述中,参考术语“某些实施方式”、“一个例子中”、“示例地”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (21)

  1. 一种衍射光栅结构,其特征在于,包括:
    波导片;
    耦入光栅,所述耦入光栅设置在所述波导片的第一端,所述耦入光栅包括倾斜光栅;
    耦出光栅,所述耦出光栅设置在所述波导片的第二端,所述第一端与所述第二端为所述波导片相对的两端,所述耦出光栅包括闪耀光栅;及
    功能层,所述功能层设置在所述耦出光栅上;其中:
    所述耦入光栅用于将光线耦合进所述波导片,所述波导片用于将所述耦入光栅耦合进的光线传输至所述耦出光栅,所述耦出光栅用于将所述波导片中的光线耦出至所述功能层,所述功能层用于将所述耦出光栅耦合出的光线折射至外界并增加所述耦出光栅的光耦出率。
  2. 根据权利要求1所述的衍射光栅结构,其特征在于,
    所述耦出光栅的周期的取值范围为[300纳米,500纳米];和/或
    所述耦出光栅的闪耀角的取值范围为[5度,40度];和/或
    所述耦出光栅的反闪耀角的取值范围为[50度,85度]。
  3. 根据权利要求1所述的衍射光栅结构,其特征在于,所述功能层包括高折射率膜层,其中:
    所述功能层的折射率的取值范围大于等于1.8;和/或
    所述功能层的厚度的取值范围为[20纳米,150纳米]。
  4. 根据权利要求1所述的衍射光栅结构,其特征在于,所述功能层包括氧化钛膜层或氧化锆膜层。
  5. 根据权利要求4所述的衍射光栅结构,其特征在于,当所述功能层包括氧化钛膜层时,所述功能层的厚度为90纳米。
  6. 根据权利要求4所述的衍射光栅结构,其特征在于,当所述功能层包括氧化锆膜层时,所述功能层的厚度为110纳米。
  7. 根据权利要求1至6任意一项所述的衍射光栅结构,其特征在于,所述衍射光栅结构包含三层波导片,且每层所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,每层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的任一种进行衍射及反射,以使三层所述波导片上的所述耦入光栅和所述耦出光栅分别对红、绿、蓝三色光进行衍射及反射。
  8. 根据权利要求1至6任意一项所述的衍射光栅结构,其特征在于,所述衍射光栅结构包含两层波导片,且每层所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,其中一层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的任一种进行衍射及反射,另一层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的其余两种进行衍射及反射。
  9. 根据权利要求1至6任意一项所述的衍射光栅结构,其特征在于,所述衍射光栅结构包含一层 波导片,所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光进行衍射及反射。
  10. 根据权利要求7至9任意一项所述的衍射光栅结构,其特征在于,包括,
    所述耦入光栅与所述耦出光栅设置在所述波导片的同一侧;或
    所述耦入光栅与所述耦出光栅设置在所述波导片的不同侧。
  11. 一种成像装置,其特征在于,包括:
    波导片;
    耦入光栅,所述耦入光栅设置在所述波导片的第一端,所述耦入光栅包括倾斜光栅;
    耦出光栅,所述耦出光栅设置在所述波导片的第二端,所述第一端与所述第二端为所述波导片相对的两端,所述耦出光栅包括闪耀光栅;及
    功能层,所述功能层设置在所述耦出光栅上;其中:
    所述耦入光栅用于将光线耦合进所述波导片,所述波导片用于将所述耦入光栅耦合进的光线传输至所述耦出光栅,所述耦出光栅用于将所述波导片中的光线耦出至所述功能层,所述功能层用于将所述耦出光栅耦合出的光线折射至外界并增加所述耦出光栅的光耦出率;
    图像生成模组,所述图像生成模组与所述耦入光栅相对,并用于朝所述耦入光栅发射光线;及
    光学模组,所述光学模组设置在所述图像生成模组与所述耦入光栅之间,并用于将所述图像生成模组发出的光线调整为与所述耦入光栅成预设角度的平行光。
  12. 根据权利要求11所述的成像装置,其特征在于,
    所述耦出光栅的周期的取值范围为[300纳米,500纳米];和/或
    所述耦出光栅的闪耀角的取值范围为[5度,40度];和/或
    所述耦出光栅的反闪耀角的取值范围为[50度,85度]。
  13. 根据权利要求11所述的成像装置,其特征在于,所述功能层包括高折射率膜层,其中:
    所述功能层的折射率的取值范围大于等于1.8;和/或
    所述功能层的厚度的取值范围为[20纳米,150纳米]。
  14. 根据权利要求11所述的成像装置,其特征在于,所述功能层包括氧化钛膜层或氧化锆膜层。
  15. 根据权利要求14所述的成像装置,其特征在于,当所述功能层包括氧化钛膜层时,所述功能层的厚度为90纳米。
  16. 根据权利要求14所述的成像装置,其特征在于,当所述功能层包括氧化锆膜层时,所述功能层的厚度为110纳米。
  17. 根据权利要求11至16任意一项所述的成像装置,其特征在于,所述衍射光栅结构包含三层波导片,且每层所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,每层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的任一种进行衍射及反射,以使三层所述波导片 上的所述耦入光栅和所述耦出光栅分别对红、绿、蓝三色光进行衍射及反射。
  18. 根据权利要求11至16任意一项所述的成像装置,其特征在于,所述衍射光栅结构包含两层波导片,且每层所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,其中一层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的任一种进行衍射及反射,另一层所述波导片上的所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光中的其余两种进行衍射及反射。
  19. 根据权利要求11至16任意一项所述的成像装置,其特征在于,所述衍射光栅结构包含一层波导片,所述波导片的两端分别分布有所述耦入光栅和所述耦出光栅,所述耦入光栅和所述耦出光栅用于对红、绿、蓝三色光进行衍射及反射。
  20. 根据权利要求17至19任意一项所述的成像装置,其特征在于,包括,
    所述耦入光栅与所述耦出光栅设置在所述波导片的同一侧;或
    所述耦入光栅与所述耦出光栅设置在所述波导片的不同侧。
  21. 一种穿戴设备,其特征在于,包括:
    壳体;及
    权利要求11-20任一项所述的成像装置,所述成像装置设置在所述壳体上。
PCT/CN2021/114215 2020-10-13 2021-08-24 衍射光栅结构、成像装置及穿戴设备 WO2022078072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21879118.4A EP4206760A4 (en) 2020-10-13 2021-08-24 DIFFRACTION GRATE STRUCTURE, IMAGING DEVICE AND WEARABLE DEVICE
US18/123,382 US20230221473A1 (en) 2020-10-13 2023-03-20 Diffraction grating structure, imaging device, and wearable apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022275408.3U CN213149295U (zh) 2020-10-13 2020-10-13 衍射光栅结构、成像装置及穿戴设备
CN202011091220.1A CN112130246A (zh) 2020-10-13 2020-10-13 衍射光栅结构、成像装置及穿戴设备
CN202022275408.3 2020-10-13
CN202011091220.1 2020-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/123,382 Continuation US20230221473A1 (en) 2020-10-13 2023-03-20 Diffraction grating structure, imaging device, and wearable apparatus

Publications (1)

Publication Number Publication Date
WO2022078072A1 true WO2022078072A1 (zh) 2022-04-21

Family

ID=81208879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114215 WO2022078072A1 (zh) 2020-10-13 2021-08-24 衍射光栅结构、成像装置及穿戴设备

Country Status (3)

Country Link
US (1) US20230221473A1 (zh)
EP (1) EP4206760A4 (zh)
WO (1) WO2022078072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115469389A (zh) * 2022-11-11 2022-12-13 北京亮亮视野科技有限公司 二维耦出光栅、超表面光波导和近眼显示设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765421A (zh) * 2013-10-29 2016-07-13 瑞士Csem电子显微技术研发中心 光栅耦合结构
CN109696717A (zh) * 2019-03-07 2019-04-30 深圳珑璟光电技术有限公司 一种多矩形结构周期的衍射光栅及ar成像装置
US20190227321A1 (en) * 2018-01-23 2019-07-25 Facebook Technologies, Llc Rainbow reduction in waveguide displays
CN110764260A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种增强现实装置
CN210835313U (zh) * 2019-08-22 2020-06-23 苏州苏大维格科技集团股份有限公司 全息衍射波导镜片、波导镜片组及增强现实彩色显示装置
CN111474711A (zh) * 2020-04-09 2020-07-31 谷东科技有限公司 全息波导显示装置和增强现实显示设备
US20200271847A1 (en) * 2017-09-26 2020-08-27 tooz technologies GmbH Optical transmission assembly for transmitting a source image
CN112130246A (zh) * 2020-10-13 2020-12-25 Oppo广东移动通信有限公司 衍射光栅结构、成像装置及穿戴设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690831B2 (en) * 2018-11-20 2020-06-23 Facebook Technologies, Llc Anisotropically formed diffraction grating device
US11307357B2 (en) * 2018-12-28 2022-04-19 Facebook Technologies, Llc Overcoating slanted surface-relief structures using atomic layer deposition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765421A (zh) * 2013-10-29 2016-07-13 瑞士Csem电子显微技术研发中心 光栅耦合结构
US20200271847A1 (en) * 2017-09-26 2020-08-27 tooz technologies GmbH Optical transmission assembly for transmitting a source image
US20190227321A1 (en) * 2018-01-23 2019-07-25 Facebook Technologies, Llc Rainbow reduction in waveguide displays
CN110764260A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种增强现实装置
CN109696717A (zh) * 2019-03-07 2019-04-30 深圳珑璟光电技术有限公司 一种多矩形结构周期的衍射光栅及ar成像装置
CN210835313U (zh) * 2019-08-22 2020-06-23 苏州苏大维格科技集团股份有限公司 全息衍射波导镜片、波导镜片组及增强现实彩色显示装置
CN111474711A (zh) * 2020-04-09 2020-07-31 谷东科技有限公司 全息波导显示装置和增强现实显示设备
CN112130246A (zh) * 2020-10-13 2020-12-25 Oppo广东移动通信有限公司 衍射光栅结构、成像装置及穿戴设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206760A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115469389A (zh) * 2022-11-11 2022-12-13 北京亮亮视野科技有限公司 二维耦出光栅、超表面光波导和近眼显示设备

Also Published As

Publication number Publication date
US20230221473A1 (en) 2023-07-13
EP4206760A1 (en) 2023-07-05
EP4206760A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP7325427B2 (ja) 射出瞳拡大器
CN112130246A (zh) 衍射光栅结构、成像装置及穿戴设备
JP2019522811A (ja) 光変換のためのウェッジ
CN107966820B (zh) 波导显示装置
CN111656253A (zh) 用于显示应用的波导元件和波导叠置件
WO2019010857A1 (zh) 一种全息波导镜片及增强现实显示装置
WO2019144596A1 (zh) 一种光波导结构及显示装置
JP2021508082A (ja) 改善された輝度の導波路表示装置
CN213149295U (zh) 衍射光栅结构、成像装置及穿戴设备
CN112817152A (zh) 一种全息波导及ar显示装置
CN113485015A (zh) 一种具有高耦合效率的波导显示装置
CN217443725U (zh) 光机系统
WO2022078072A1 (zh) 衍射光栅结构、成像装置及穿戴设备
WO2022161056A1 (zh) 波导模组和显示系统
CN112987165B (zh) 波导片、波导片的加工方法和头戴显示设备
CN212647164U (zh) 一种近眼显示设备
EP4127820A1 (en) Waveguide display system with wide field of view
TW202238191A (zh) 顯示結構及顯示裝置
WO2023143616A1 (zh) 一种光波导模组及ar显示装置
WO2022147719A1 (zh) 波导系统与近眼显示设备
JP2024503684A (ja) 複合インカップリング回折光学素子を有する画像光ガイド
CN115373062A (zh) 衍射光波导装置及其方法
CN221199994U (zh) 一种波导显示模组及显示设备
CN217007745U (zh) 波导基板和增强现实显示装置
US20230114190A1 (en) Waveguide and augmented reality device employing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021879118

Country of ref document: EP

Effective date: 20230330

NENP Non-entry into the national phase

Ref country code: DE