WO2019010857A1 - 一种全息波导镜片及增强现实显示装置 - Google Patents

一种全息波导镜片及增强现实显示装置 Download PDF

Info

Publication number
WO2019010857A1
WO2019010857A1 PCT/CN2017/106809 CN2017106809W WO2019010857A1 WO 2019010857 A1 WO2019010857 A1 WO 2019010857A1 CN 2017106809 W CN2017106809 W CN 2017106809W WO 2019010857 A1 WO2019010857 A1 WO 2019010857A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
coupled
waveguide lens
holographic
lens according
Prior art date
Application number
PCT/CN2017/106809
Other languages
English (en)
French (fr)
Inventor
黄文彬
陈林森
乔文
赵铎
罗明辉
Original Assignee
苏州苏大维格光电科技股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格光电科技股份有限公司, 苏州大学 filed Critical 苏州苏大维格光电科技股份有限公司
Publication of WO2019010857A1 publication Critical patent/WO2019010857A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display

Definitions

  • the present invention relates to the field of display device technologies, and more particularly to a holographic waveguide lens and an augmented reality display device.
  • Augmented Reality (AR) technology is the use of computer graphics technology and visualization technology to generate virtual objects that do not exist in the physical world, and accurately "place" them in the physical world, presenting users with a new environment with more perceptual effects.
  • AR Augmented Reality
  • lenses with both transparency and imaging/light guiding effects are the most critical components for AR hardware implementation.
  • Domestic and foreign industry or scientific research circles have developed a series of AR devices, such as google glass using a single reflective prism to directly send side images to a single human eye, the implementation is simple, but has a strong sense of fatigue, small field of view, no 3D
  • the shortcomings of imaging are the use of computer graphics technology and visualization technology to generate virtual objects that do not exist in the physical world, and accurately "place" them in the physical world, presenting users with a new environment with more perceptual effects.
  • Meta2 uses a silver-coated transflective mask as the vertical axis reflection imaging element, projecting two images into the left and right eyes of the person, which has the advantage of large angle of view (90 degrees), but the volume is too large, and there is no expansion. ⁇ effect, poor viewing comfort.
  • US Patent No. 7,751,122 B2 discloses a waveguide AR display device in which a plurality of transflective prisms are embedded. When an image is propagated in a waveguide lens, each time a half-reverse half lens is encountered, an image is coupled and outputted through a portion. Modulate different positions The reflectivity of the lens is such that the exit image is uniform in intensity throughout the viewing range.
  • the waveguide AR lens has a dilation effect, but mainly relies on conventional optical processing.
  • a holographic waveguide AR display device is disclosed in US Patent No. US Pat. No. 2016/0231568 A1, US Pat. No. 2016/0231569 A1.
  • the lens structure is complicated in the device, and three regional gratings need to be fabricated on the monolithic holographic waveguide lens to respectively perform image coupling, X Directional image expansion and Y-direction image expansion and image output.
  • 6,169,613 B1 of Sony Corporation introduces an image into an optical waveguide by a bulk grating or a composite grating, and the image propagates through the waveguide, and outputs the image through a single or multiplexed body grating at the output end, which has a simple structure, coupling efficiency.
  • US 2006/0132914 A1 and CN 104280891 A propose a 1D expansion waveguide scheme using a relief grating, using only an input unit and an output unit, and using the relief grating depth or duty cycle control to achieve uniform output image intensity.
  • the waveguide lens based on the embossed grating generally has low luminous efficiency and low brightness. problem.
  • the invention proposes a holographic waveguide lens and an augmented reality display device suitable for mass production and high luminous efficiency.
  • a holographic waveguide lens comprising at least one holographic waveguide lens unit, the waveguide lens unit comprising a waveguide substrate and two grating regions disposed on the waveguide substrate, the two grating regions being a coupled incident grating region and a coupled exit grating region, respectively.
  • the waveguide lens unit further includes a film on the surface of the waveguide substrate.
  • the optical signal is incident from the coupled incident grating region, and is reflected from the waveguide substrate and then emitted from the coupled exit grating region.
  • the holographic waveguide lens unit further includes a reflection portion.
  • the reflecting portion is located at an end face of the substrate away from the side where the incident grating region is coupled, and the reflecting portion is for reflecting the optical signal into the waveguide substrate.
  • the reflecting portion is a dielectric layer that can be optically reflected.
  • the two grating regions enable a single coupling of the optical signal and two or more couplings out.
  • the two grating regions are provided with nano-scale gratings, and the nano-scale gratings are embossed gratings.
  • Embossed gratings can be copied in bulk by nanoimprinting processes.
  • the grating of the same waveguide lens unit that couples the incident grating region and the grating that couples the exiting grating region have the same period and orientation direction.
  • the grating coupled to the incident grating region is a tilted grating, and the grating duty ratio of the coupled incident grating region is between 0.4 and 0.6.
  • the grating tilt angle of the coupled incident grating region is between 20° and 45°.
  • the grating tilt angle of the coupled incident grating region is between 25° and 35°.
  • the grating depth of the coupled incident grating region is between 200 nm and 500 nm.
  • the grating depth of the coupled incident grating region is between 200 nm and 350 nm
  • the grating coupled to the exiting grating region is a positive grating.
  • the geometric center of the coupled incident grating region is on the same horizontal line as the geometric center of the coupled exit grating region.
  • the two grating regions are rectangular in shape.
  • the coupled incident grating region and the coupled exit grating region are arranged laterally along the waveguide substrate, and the longitudinal length of the coupled incident grating region is no greater than the longitudinal length of the coupled exit grating region.
  • the refractive index of the waveguide substrate is higher than the refractive index of the upper and lower substrate layers.
  • the waveguide substrate has a refractive index n1 ⁇ 1 + 2 sinFOV / 2, wherein the FOV is an imaging field of view of the augmented reality display device.
  • the waveguide substrate has a refractive index between 1.7 and 2.4.
  • the coupled incident grating region grating and the coupled exit grating region grating are located below the surface of the waveguide substrate, and may also be located above the surface of the waveguide substrate.
  • the grating coupled to the exiting grating region is a transmission diffraction grating or a reflective diffraction grating.
  • the coupled incident grating region and the coupled exit grating region are located on the same surface of the waveguide substrate, and may also be located on different surfaces of the waveguide substrate.
  • the present invention also provides an augmented reality display device comprising an image output source, an imaging element, and the holographic waveguide lens described above.
  • FIG. 1 is a schematic view of a holographic waveguide lens constructed with an augmented reality display device
  • Figure 2 is a schematic view of the front side of the holographic waveguide lens
  • Figure 3 is a schematic view of the side of the holographic waveguide lens
  • 4a-d are schematic illustrations of two embodiments of a grating structure coupled into an incident grating region
  • 5a-d are schematic illustrations of two embodiments of a grating structure coupled within an exit grating region
  • Figure 6 is a schematic diagram showing the variation of the grating depth with space in the region of the coupled exit grating
  • Figure 7 is a schematic illustration of a holographic waveguide lens that implements a color holographic display
  • Figure 8 is a schematic illustration of a coupled incident grating region and a coupled exit grating region disposed on different sides of the waveguide substrate.
  • a holographic waveguide lens comprising at least one holographic waveguide lens unit, as shown in Figures 1 and 2, the holographic waveguide lens being an example consisting of only one holographic waveguide lens unit, the holographic waveguide lens unit 1 a waveguide substrate 2, two functional grating regions and a reflection portion provided on the waveguide substrate 6 constituting, wherein the grating of the two functional grating regions can be directly formed on the waveguide substrate, or can be pre-made on the film, and then the film carrying the grating structure is combined with the waveguide substrate.
  • the two functional grating regions are respectively:
  • the incident grating region 3 is coupled to couple the optical signal of the external light source into the waveguide substrate, and propagates through the total reflection of the waveguide substrate toward the coupled exit grating, and has a width W1 and a length L1, and the hologram is provided in the grating region A grating, such as a nanoscale relief grating.
  • the exit grating region 4 is coupled to couple the optical signal from the coupled incident grating out of the waveguide substrate. It also has a width W2 and a length L2.
  • the reflecting portion 6 is a dielectric layer that can be optically reflected.
  • the dielectric layer has a reflectance of more than 10%.
  • the dielectric layer may be a silver mirror plated on the end face, and the reflectivity of the end face silver mirror is controlled by the thickness of the dielectric layer. In order to make the direction of propagation unaffected when the reflected light is coupled again, the surface roughness of the silver mirror of the end face is controlled to be less than 1 nm.
  • the number of functional grating regions can be limited to two, and the coupled incident grating region 3 couples the optical signal of the external light source into the waveguide substrate 2, and propagates through the total reflection of the waveguide substrate 2 toward the coupled exit grating region 4, coupling
  • the exit grating region 4 couples the optical signal from the coupled incident grating region 3 out of the waveguide substrate 2.
  • the grating in the functional grating region can adopt the surface relief grating and can be processed by the nanoimprinting process. Batch copying (refer to the patent documents previously filed by the present inventors and other previously disclosed technical documents and patent documents).
  • the structure of the grating and the thickness matching of the waveguide substrate 2 enable the optical signal to be coupled through the coupled incident grating region 3, and then totally reflected by the waveguide substrate 2 to the front portion of the coupled outgoing grating region 4, and a portion of the optical signal energy is The grating of the front region of the coupled exit grating region 4 is coupled out, and the remaining optical signal energy is reflected back to the waveguide substrate 2, and then totally reflected back through the waveguide substrate 2 back to the central (or rear) grating of the coupled exit grating region 4.
  • the optical signal energy is coupled out through the middle (or rear) grating of the coupled exit grating region 4, and the remaining optical signal energy is reflected back to the waveguide substrate 2 to continue the foregoing process.
  • the signal light propagates to the end of the coupled exit grating region 4, and some of the energy is still not coupled out and is still bound in the waveguide substrate 2.
  • the signal light travels to the end face reflecting portion 6, after the reflection, the signal light still propagates at the original total reflection angle, and the coupled exit grating region 4 continues to function, and the above process is repeated, thereby improving the light efficiency utilization. Since the propagation time within the waveguide is much smaller than the refresh interval of the image, crosstalk is not caused. The solution thus realizes the coupling of the prior art without one coupling, and the function of coupling/returning multiple times has the advantages of high luminous efficiency while realizing the expansion function.
  • the holographic waveguide lens is composed of a holographic waveguide lens unit 1, and based on this, a holographic waveguide augmented reality display device is constructed, wherein the optical signal generated by the light engine 5 (optical signal or image optical signal generating device), After the imaging element is imaged, the coupled incident grating region 3 is coupled into the waveguide substrate 2, and is totally reflected to the coupled exit grating region 4, and the leaked optical signal passes through the end surface reflecting portion 6, and the second and coupled outgoing grating regions 4 act. Finally, the optical signal is coupled to the holographic waveguide lens via the coupled exit grating region 4, and a virtual image is formed in the front space of the holographic waveguide lens, and can be further merged with the real scene to form an augmented reality image display.
  • the optical signal generated by the light engine 5 optical signal or image optical signal generating device
  • a holographic waveguide lens in a holographic waveguide augmented reality display device can include one or more holographic waveguide lens units as needed, and can realize a monochrome or color augmented reality display function.
  • a single chip can achieve color image output, but in real-life applications, in order to match the chromaticity of the image, it is preferable to use two pieces or The three-piece holographic waveguide lens unit realizes a color display function.
  • the coupled incident grating region and the coupled exit grating region may be located on the same surface of the waveguide substrate layer, as shown in FIGS. 1-3; or may be located on different surfaces, as shown in FIG.
  • the bottom of the grating structure of the relief grating in the functional grating region may be located above the surface of the waveguide substrate, as shown in FIG. 6; or may be located below the surface of the waveguide substrate, as shown in FIG.
  • a preferred grating (also referred to as a coupled grating) in the region of the incident grating is an oblique relief grating, and the image light signal is coupled into the grating position and coupled into the waveguide substrate by a diffraction process.
  • the waveguide substrate is non-destructively propagated to a grating (also referred to as a coupled-out grating) in the region of the coupled exit grating.
  • the coupled grating period, the grating orientation and the coupled grating are uniform, and may be a positive grating or a tilt grating.
  • the diffraction efficiency of the coupled-out grating has a certain distribution with space.
  • the holographic waveguide augmented reality display device has the advantages of low difficulty in implementation, easy copying production, and comfortable viewing.
  • the size of the two functional grating regions, the distance S between each other, the structure of the grating, and the thickness T of the waveguide substrate satisfy the following functional conditions: image light
  • the signal is coupled via the coupled incident grating region 3, and then totally reflected by the waveguide substrate 2 to the front region of the coupled exit grating region 4, and a portion of the optical signal energy is coupled out through the grating in the front region of the coupled exit grating region 4, leaving The optical signal energy is reflected back to the waveguide substrate 2, and then totally reflected back through the waveguide substrate 2 back to the central region or the rear region of the coupled exit grating region 4.
  • the optical signal energy is coupled to the central region of the exiting grating region 4.
  • the rear region grating is coupled out, and the remaining optical signal energy is reflected back to the waveguide substrate 2 to continue the foregoing process.
  • the residual optical signal continues to propagate in the waveguide substrate 2 under the condition of total reflection.
  • it is reflected by the reflecting portion 6, continues to act on the coupled outgoing grating region 4, and outputs a signal image.
  • one coupling of the optical signal is achieved, two or more coupling out.
  • the example in FIG. 3 is a case of one coupling, three couplings out, the case of two couplings and three or more couplings are the same, and will not be described again. of course, It is also convenient to realize one coupling and one coupling out.
  • the width W1 of the coupled incident grating region 3 may be selected from 1 mm to 5 mm, and/or the width W2 of the coupled exit grating region 4 is 5 mm to 3 cm. .
  • the spacing S between the coupled incident grating region 3 and the coupled exit grating region 4 may be selected from 5 mm to 2 cm.
  • Figure 3 is a side view of the holographic waveguide lens.
  • the entire optical waveguide is similar to a sandwich structure
  • the intermediate layer material has a higher refractive index than the upper and lower substrate layers
  • the intermediate layer can be used as a guiding core for propagating light energy, and only a specific beam satisfying the total reflection angle can propagate in the waveguide core.
  • the core layer is a waveguide substrate of a holographic waveguide lens, and the upper and lower substrate layers utilize air.
  • the refractive index n1 of the waveguide substrate is between 1.7 and 2.4, and the refractive index of the waveguide substrate and the field of view FOV of the imaging system need to satisfy n1 ⁇ 1 + 2 sinFOV/2, where FOV is the imaging field of view of the augmented reality display device. Therefore, it is necessary to design a uniform view angle with the imaging system.
  • the waveguide substrate material may be selected from materials having a good transmittance in the visible light band of 400 nm to 700 nm, preferably 96% or more, and the material may be an inorganic material such as heavy flint glass or an organic material such as an episulfide resin.
  • FIGS. 4a-d are diagrams of coupled grating structures, having an asymmetric grating pattern, which is an oblique grating, having the advantage of concentrating energy on a single diffraction order.
  • Two inclined grating grooves and their corresponding parameter meanings are given in Figures 4a-d.
  • is the tilt angle, which is used to characterize the asymmetry of the grating
  • h is the grating depth
  • ⁇ 1 is the grating period
  • W is the grating groove width.
  • Figures 4a and 4c are straight long chutes
  • Figures 4b and 4d are oblique triangular troughs.
  • ⁇ 1 ⁇ / (1 + sin FOV / 2)
  • is the wavelength.
  • the preferred red lens is coupled into the grating ⁇ 1 between 400 nm and 540 nm, corresponding to the red light of 610 nm to 650 nm.
  • the green lens is coupled into the grating ⁇ 1 between 330 nm and 450 nm, corresponding to the regulation of green light from 500 nm to 540 nm.
  • the blue lens is coupled into the grating ⁇ 1 between 290 nm and 400 nm, corresponding to the regulation of blue light from 440 nm to 480 nm.
  • the grating duty ratio W/ ⁇ 1, the tilt angle ⁇ and the grating depth h are important parameters affecting the diffraction energy distribution.
  • the preferred grating duty ratio is Between 0.4 and 0.6, the tilt angle is between 20° and 45°, and the grating depth h is between 200 nm and 500 nm.
  • the depth of the coupled grating of the different color lenses does not need to be uniform.
  • the coupled grating can be fabricated directly in the substrate waveguide, so the grating material is identical to the waveguide substrate material. As shown in FIG.
  • the coupling grating can be fabricated on the surface of the substrate waveguide, and the distance d from the bottom of the grating groove to the upper surface of the waveguide substrate is between 0.2 ⁇ m and 2 ⁇ m, and the refractive index n2 of the grating material is 1.6 to 2.
  • the refractive index of the preferred grating material is consistent with the refractive index of the lens waveguide.
  • the output grating can be either a tilted grating or a positive grating, which is preferably a positive grating, as shown in Figures 5a-d.
  • FIG. 5 is a schematic view showing the structure in which the output grating is a positive grating, and the groove pattern is symmetric with the surface normal.
  • the output grating period ⁇ 2 is the same as the coupled grating period ⁇ 1.
  • the depth of the grating coupled into the exit grating region 4 varies linearly, or varies according to a curve in which the slope increases, or a curve in which the slope becomes smaller.
  • an optical signal eg, an image optical signal containing image information
  • the diffraction efficiency of the grating coupled to a position in the exiting grating region is determined by the total number of times the corresponding position of the optical signal in the coupled exit grating region, and the grating at the total reflection output of the jth optical signal
  • Figure 6 shows the uniform output obtained by raster depth adjustment.
  • the diffraction efficiency variation can be continuous, and the corresponding grating depth variation can be linear, or a curve with an increased slope or a curve with a small slope, with the output light intensity being as uniform as possible.
  • the coupled incident grating region 3 and the coupled exit grating region 4 may both be rectangular, which are arranged on the holographic waveguide lens along the same axis on both sides of the same side of the waveguide substrate or on both sides of different faces.
  • the coupled incident grating region may also adopt a circular shape or other shapes, as needed.
  • the length L1 of the coupled incident grating region 3 is less than or equal to the length L2 of the coupled exit grating region 4.
  • the waveguide substrate has a refractive index n1 that satisfies n1 ⁇ 1+2sinFOV/2, wherein the FOV is an imaging field of view of the augmented reality display device.
  • the waveguide substrate may have a refractive index of 1.7-2.4.
  • a single holographic waveguide lens unit 1 can be used to realize a monochrome augmented reality display device, and a red, green and blue holographic waveguide lens stack can also be used for color display.
  • Fig. 7 shows a holographic waveguide lens for realizing color display, in which three holographic waveguide lens units respectively corresponding to blue green red colors are included from top to bottom.
  • the color image light signal is incident from the position of the coupled incident grating region 3 of the uppermost blue lens (corresponding to the holographic waveguide lens unit of the main total reflection blue light signal, the red lens and the green lens below), and the signal of the blue component is Efficiently coupled into the first layer of holographic waveguide lens elements (ie, blue lenses), the green and red signals are inefficiently coupled into the grating in the blue lens, continuing to propagate to the coupled incident grating region 3 of the green lens, and the green signal is Coupling into the second layer of holographic waveguide lens unit (ie, green lens).
  • the red component signal continues to propagate and is placed in the red lens coupled incident grating region 3 and coupled into the third layer holographic waveguide lens unit (i.e., the red lens). Signals of different colors are output through different lenses, and finally a color display is achieved at the position of the human eye.
  • an anti-reflection layer can be placed at the coupled incident grating locations between the first and second layers and the second and third layers of lenses to reduce reflection of different color signals at the incident interface.
  • the coupled incident grating region 3 and the coupled exit grating region 4 on the same holographic waveguide lens unit are on the same surface of the waveguide substrate.
  • the coupled incident grating region 3 and the coupled exit grating region 4 on the same holographic waveguide lens unit are on different surfaces of the waveguide substrate.
  • the parameter design of the grating coupled in the incident grating region 3 is the same as that of the above embodiment, and the grating in the coupled exit grating region 4 is changed from transmission diffraction to reflection diffraction, and the latter grating depth is changed to half of the grating depth in the example of FIG. .
  • the optical signal generated by the optical signal or the image optical signal generating device is coupled to the incident grating region 3 by the imaging element and coupled into the waveguide substrate 2, and is totally reflected to the coupled exit grating region 4 to form a first coupling out, leakage.
  • the optical signal continues to propagate to the side of the waveguide.
  • the signal light travels to the end face reflecting portion 6, after the reflection, the signal light still propagates at the original total reflection angle, and the coupled exit grating region 4 continues to function, repeating the above process of emitting light.
  • a second coupling is formed to improve the efficiency of light efficiency. Since the propagation time within the waveguide is much smaller than the refresh interval of the image, crosstalk is not caused.
  • the optical signals include three times of total reflection coupling at different positions in the coupling and exiting regions to achieve the purpose of expanding.
  • a single incident, a function of coupling out a set number of times can be achieved. Thereby achieving the purpose of expanding and improving light efficiency.
  • the present invention also provides an augmented reality display device comprising an image output source, an imaging element, and the holographic waveguide lens of any of the above.
  • the width of the coupled incident grating region coincides with the width of the image exit pupil of the holographic waveguide lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种高光效全息波导镜片及增强现实显示装置,包括至少一片全息波导镜片单元(1),波导镜片单元(1)由波导衬底(2)和设于波导衬底(2)上的两个光栅区域(3,4)构成。中间无需经过中继光栅区域进行二次变向传送光信号,使得精确匹配相位条件的难度大大降低,光栅区域内的光栅可以采用表面浮雕光栅,并可以通过纳米压印制程批量复制。在全息波导镜片的出射端面,通过放置反射元件(6),使得原本从端面损失的光,继续和出射光栅(4)进行作用,有效克服了全息波导光效利用率低的缺点。并且通过两个光栅区域尺寸、相互之间的距离(S)、光栅的结构,以及波导衬底的厚度(T)尺寸配合,可以实现一次耦入,多次耦出的功能,非常方便的实现扩瞳的功能。

Description

一种全息波导镜片及增强现实显示装置
本申请要求了申请日为2017年07月11日,申请号201710563451.X,发明名称为“一种全息波导镜片及增强现实显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示设备技术领域,更具体地说,涉及一种全息波导镜片及增强现实显示装置。
背景技术
增强现实(AR)技术,是借助计算机图形技术和可视化技术产生物理世界中不存在的虚拟对象,并将其准确“放置”在物理世界中,呈现给用户一个感知效果更丰富的新环境。在诸多领域,例如工业制造和维修领域、医疗领域、军事领域、娱乐游戏领域、教育领域等,有着巨大的潜在应用价值。在AR产业链中,同时具有透明效果和成像/导光效果的镜片是AR硬件得以实施的最关键部件。国内外工业界或者科研界已经开发了一系列AR装置,如google glass利用单个反射棱镜将侧面图像直接投送到单个人眼中,实现方式简单,但是有着疲劳感强、视场角小、无3D成像的缺点。而Meta2利用镀有银层的半反半透面罩为立轴反射成像元件,将两个图像投射到人左右两眼中,具有视场角大(90度)的优点,但是体积过于庞大,另外没有扩瞳效果,观察舒适度差。美国专利US 7,751,122 B2公开了一种嵌有多个半反半透棱镜的波导AR显示装置,图像在波导镜片中传播中,每遇到一个半反半透镜,图像就会被耦合输出一部分,通过调制不同位置半反半 透镜的反射率,使得出射图像在整个观察范围内强度均匀。该波导AR镜片具有扩瞳效果,但是主要依赖于传统光学加工制作,由于每个反射面的反射率,包括波长敏感性和角度敏感性,需要进行精确控制,因此加工难度极高,且不存在大批量复制生产的可能性,量产可能性极低。微软在美国专利US 2016/0231568 A1,US2016/0231569A1公开了一种全息波导AR显示装置,装置中镜片结构复杂,单片全息波导镜片上需要制作三个区域光栅,分别起到图像耦入、X方向图像扩瞳及Y方向图像扩瞳和图像输出的作用。如果中转区域的光栅周期/取向和耦入及出射区域光栅没有精确匹配符合相位条件,则会出现严重色散,从而导致图像质量急剧下降,如此高的加工精度导致全息波导镜片成本居高不下,难以在AR产业中取得普及。为了降低波导镜片的制作难度,除了以上2D波导扩瞳方案以外,1D扩瞳方案也得到了广泛关注。例如索尼公司的美国专利US 6,169,613 B1通过体光栅或者复合体光栅将图像导入到光波导,图像在波导中传播,在输出端通过单个或者复用体光栅将图像输出,有着结构简单、耦和效率高的优点,但是不同于浮雕光栅,体光栅无法通过纳米压印等制程进行复制,量产方面会是问题。US 2006/0132914 A1及CN 104280891 A提出用浮雕光栅实现1D扩瞳波导方案,仅采用了输入单元和输出单元,并且利用浮雕光栅深度或者占空比调控,实现输出图像光强均匀。由于浮雕光栅本身效率问题,首先导致单次耦入效率低,其次在输出单元末端,仍然有大量能量的光从镜片端面出射,因此基于浮雕光栅的波导镜片,普遍有着光效低,亮度低的问题。
发明内容
本发明提出了一种适于批量生产且高光效的全息波导镜片及增强现实显示装置。
一种全息波导镜片,包括至少一片全息波导镜片单元,波导镜片单元包括波导衬底和设于波导衬底上的两个光栅区域,两个光栅区域分别为耦合入射光栅区域和耦合出射光栅区域。
波导镜片单元还包括薄膜,薄膜位于所述波导衬底表面。
光信号自耦合入射光栅区域射入,在波导衬底内反射后,自耦合出射光栅区域射出。
全息波导镜片单元还包括反射部。
反射部位于远离耦合入射光栅区域一侧的衬底的端面,反射部用于将光信号反射入波导衬底。
反射部为可进行光学反射的介质层。
两个光栅区域实现光信号的一次耦入,两次或多次耦出。
两个光栅区域设有纳米级的光栅,纳米级的光栅为浮雕光栅。
浮雕光栅可以通过纳米压印制程批量复制。
同一片波导镜片单元的耦合入射光栅区域的光栅和耦合出射光栅区域的光栅的周期及取向方向一致。
耦合入射光栅区域的光栅为倾斜光栅,耦合入射光栅区域的光栅占空比在0.4到0.6之间。
耦合入射光栅区域的光栅倾斜角在20°到45°之间。
优选的,耦合入射光栅区域的光栅倾斜角在25°到35°之间。
耦合入射光栅区域的光栅深度在200nm到500nm之间。
优选的,耦合入射光栅区域的光栅深度在200nm到350nm之间
耦合出射光栅区域的光栅为正光栅。
耦合入射光栅区域的几何中心与耦合出射光栅区域的几何中心在同一条水平线上。
两个光栅区域的形状为矩形。
耦合入射光栅区域和耦合出射光栅区域沿波导衬底横向排布,耦合入射光栅区域的纵向长度不大于耦合出射光栅区域的纵向长度。
波导衬底的折射率高于上下衬底层的折射率。
波导衬底折射率n1≥1+2sinFOV/2,其中FOV为增强现实显示装置的成像视场角。
优选的,波导衬底折射率在1.7到2.4之间。
波导衬底的厚度T与光信号经全息波导镜片的出瞳宽度W1的关系满足W1=2tanβT,其中β为最大全反射角,波导衬底的厚度T在0.3mm到2mm之间。
耦合入射光栅区域光栅和耦合出射光栅区域光栅位于波导衬底表面以下,也可以位于波导衬底表面以上。
耦合出射光栅区域的光栅为透射衍射光栅,也可以为反射衍射光栅。
耦合入射光栅区域和耦合出射光栅区域位于波导衬底的同一表面,也可以位于波导衬底的不同表面。
本发明还提供了一种增强现实显示装置,包括图像输出源、成像元件,和上述的全息波导镜片。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是全息波导镜片构建增强现实显示装置的示意图;
图2是全息波导镜片正面的示意图;
图3是全息波导镜片侧面的示意图;
图4a-d是耦合入射光栅区域内光栅结构的两种实施例的示意图;
图5a-d是耦合出射光栅区域内光栅结构的两种实施例的示意图;
图6耦合出射光栅区域内光栅深度随空间变化的示意图;
图7是实现彩色全息显示的全息波导镜片的示意图;
图8是耦合入射光栅区域与耦合出射光栅区域设置在波导衬底不同面的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种全息波导镜片,所述全息波导镜片包括至少一片全息波导镜片单元,如图1和图2所示,该全息波导镜片是只由一个全息波导镜片单元构成的示例,全息波导镜片单元1由波导衬底2,设于波导衬底上的两个功能性光栅区域和反射部 6构成,其中两个功能性光栅区域的光栅可以直接制作在波导衬底上,也可以预先制作在薄膜上,再将载有光栅结构的薄膜与波导衬底结合。所述两个功能性光栅区域分别为:
耦合入射光栅区域3,用于将外部光源的光信号耦合入波导衬底,并经过波导衬底的全反射向耦合出射光栅方向传播,其具有宽度W1和长度L1,该光栅区域内设有全息光栅,如纳米级的浮雕光栅。
耦合出射光栅区域4,将来自于耦合入射光栅的光信号耦出波导衬底。其也具有宽度W2和长度L2。
一般情况下,可以采用L1=L2,或者L1小于L2。如果根据需要,L1大于L2也未尝不可。
所述反射部6为可进行光学反射的介质层,优选的,所述介质层反射率大于10%。所述介质层可以是镀在端面的银镜,端面银镜的反射率通过介质层的厚度来控制。为了使得反射光再次耦出时候传播方向不受影响,端面银镜的表面粗糙度控制在1nm以下。
可将功能性光栅区域的数量限定在两个,耦合入射光栅区域3将外部光源的光信号耦合入波导衬底2,并经过波导衬底2的全反射向耦合出射光栅区域4方向传播,耦合出射光栅区域4将来自于耦合入射光栅区域3的光信号耦出波导衬底2。中间无需经过中继光栅区域或其它部件进行二次变向传送光信号,使得精确匹配相位条件的难度大大降低,功能性光栅区域内的光栅可以采用表面浮雕光栅,并可以通过纳米压印制程批量复制(可参考本发明人在先申请的专利文献及其它在先公开的技术文献及专利文献)。因此克服了现有技术中的相关缺陷。并且通过两个功能性光栅区域尺寸(宽度W1、W2;长度L1、L2)、相互之间的距离(S)、 光栅的结构,以及波导衬底2的厚度尺寸配合,可以实现光信号经耦合入射光栅区域3耦入,再经波导衬底2全反射传送到耦合出射光栅区域4前部,一部分光信号能量经耦合出射光栅区域4的前部区域的光栅耦出,剩余的光信号能量反射回波导衬底2,再经波导衬底2全反射回到耦合出射光栅区域4的中部(或后部)光栅,同理,一部分光信号能量经耦合出射光栅区域4的中部(或后部)光栅耦出,剩余的光信号能量反射回波导衬底2,继续前述过程。信号光在传播到耦合出射光栅区域4的末端,仍然有部分能量没有被耦合出射,仍然束缚在波导衬底2内。当信号光行进到端面反射部6,经过反射后,信号光仍然以原来的全反射角传播,和耦合出射光栅区域4继续进行作用,重复上述过程出光,从而提高光效利用率。由于波导内传播时间远小于图像的刷新间隔,因此不会引起串扰。本方案从而实现现有技术没有的一次耦入,来/回多次耦出的功能,在实现扩瞳功能的同时,有着光效高的优点。
如图1所示,全息波导镜片由一片全息波导镜片单元1构成,并以此为基础构建全息波导增强现实显示装置,其中光引擎5(光信号或图像光信号发生装置)生成的光信号,经成像元件成像后耦合入射光栅区域3耦入波导衬底2中,经全反射向耦合出射光栅区域4传播,泄露的光信号经过端面反射部6,二次和耦合出射光栅区域4进行作用,光信号最后经耦合出射光栅区域4耦出全息波导镜片,在全息波导镜片的前方空间中形成虚拟图像,并可进一步和现实景物融合,形成增强现实的图像显示。
一个全息波导增强现实显示装置中的全息波导镜片可以根据需要包含一片或者多片全息波导镜片单元,可实现单色或者彩色增强现实显示功能。单片可以实现彩色图像输出,但在现实应用中为了匹配图像的色度,优选的采用二片或者 三片全息波导镜片单元实现彩色显示功能。其中耦合入射光栅区域和耦合出射光栅区域可位于波导衬底层的同一表面,如图1-3所示;也可以位于不同表面,如图8所示。功能性光栅区域内的浮雕光栅的光栅结构底部可位于波导衬底表面以上,如图6所示;也可位于波导衬底表面以下,如图3所示。优选的耦合入射光栅区域内的光栅(也称为耦入光栅)为倾斜浮雕光栅,图像光信号在耦入光栅位置,通过衍射过程被耦合至波导衬底内,由于满足全反射条件,图像在波导衬底中无损传播至耦合出射光栅区域内的光栅(也称为耦出光栅)。耦出光栅周期、光栅取向和耦入光栅一致,可为正光栅或者倾斜光栅。耦出光栅的衍射效率随空间有一定的分布,图像每次全反射打在耦出光栅上,就会有部分能量图像耦出,通过多次全反射,可以对输出图像进行有效扩瞳。相比于以往技术,该全息波导增强现实显示装置有着实现难度低、易于复制生产、观察舒适的优点。
因此,在实际应用中,如图2和图3所示,两个功能性光栅区域尺寸、相互之间的距离S、光栅的结构,以及波导衬底的厚度T尺寸满足以下功能条件:图像光信号经耦合入射光栅区域3耦入,再经波导衬底2全反射传送到耦合出射光栅区域4前部区域,一部分光信号能量经耦合出射光栅区域4的前部区域内的光栅耦出,剩余的光信号能量反射回波导衬底2,再经波导衬底2全反射回到耦合出射光栅区域4的中部区域或后部区域,同理,一部分光信号能量经耦合出射光栅区域4的中部区域或后部区域光栅耦出,剩余的光信号能量反射回波导衬底2,继续前述过程。在耦合出射光栅区域4的末端,残留光信号继续满足全反射条件在波导衬底2内传播,到达端面时候,被反射部6反射,继续与耦合出射光栅区域4作用,输出信号图像。从而实现光信号的一次耦入,两次或多次耦出。图3的示例为一次耦入,三次耦出的情形,两次耦出及三次以上耦出的情形同理,不再赘述。当然, 也可以方便的实现一次耦入,一次耦出。
在实际应用中,在构建头戴式全息三维显示装置时,所述耦合入射光栅区域3的宽度W1可以选择1mm-5mm,和/或,所述耦合出射光栅区域4的宽度W2为5mm-3cm。
进一步的,所述耦合入射光栅区域3和耦合出射光栅区域4之间的间距S可以选择5mm-2cm。
上述尺寸的选择,根基实际的需要来确定。
图3所示为全息波导镜片侧面示意图。一般整个光波导类似三明治结构,中间层材料折射率高于上下衬底层折射率,中间层可以作为导芯用于传播光能量,只有满足全反射角的特定光束才能在波导导芯中传播。本发专利中导芯层为全息波导镜片的波导衬底,上下衬底层利用空气。优选波导衬底的折射率n1在1.7到2.4之间,波导衬底折射率和成像系统视场角FOV需要满足n1≥1+2sinFOV/2,其中FOV为增强现实显示装置的成像视场角。因此需要和成像系统的视场角进行统一设计。波导衬底材料可以选择在可见光波段400nm到700nm有良好的透过率的材质,优选的在96%以上,材料可以为无机材料,例如重火石玻璃,也可以是有机材料,例如环硫树脂。波导衬底厚度T和成像系统出瞳宽度W1满足W1=2tanβT,其中β为最大全反射角,使得在输出区域的任何位置,都可以观看到整个图像,一般衬底厚度数值在0.3mm到2mm之间。
图4a-d为耦入光栅结构图,具有非对称光栅槽型,为倾斜光栅,具有将能量集中在单一衍射级次上的优点。图4a-d中给出了两种倾斜光栅槽型及相应的参数含义。其中α为倾斜角,用来表征光栅的非对称性,h为光栅深度,Λ1为光栅周期,W为光栅槽宽度。图4a和图4c为直长条斜槽型,图4b和图4d为斜三角形槽型, 实际使用中,只要能将衍射能量集中到某一级次的非对称倾斜光栅槽型都能满足要求。耦入光栅周期和视场角及入射光波长需要满足以下要求:Λ1=λ/(1+sin FOV/2),λ为波长。在实际应用中,由红绿蓝三色全息波导镜片单元构建全息波导镜片时,优选的红色镜片耦入光栅Λ1在400nm到540nm之间,对应调控610nm到650nm的红光。绿色镜片耦入光栅Λ1在330nm到450nm之间,对应调控500nm到540nm的绿光。蓝色镜片耦入光栅Λ1在290nm到400nm之间,对应调控440nm到480nm的蓝光。光栅占空比W/Λ1,倾斜角度α和光栅深度h是影响衍射能量分配的重要参数,为了保证耦入级次效率高于50%,对于耦合入射光栅区域3,优选的光栅占空比在0.4到0.6之间,倾斜角在20°到45°之间,光栅深度h在200nm到500nm之间,不同颜色镜片的耦入光栅深度不需要一致。如图4a、c所示,耦入光栅可在衬底波导中直接制作获得,因此光栅材料和波导衬底材料一致。如图4b、d所示,耦入光栅可在衬底波导表面制作,光栅槽底到波导衬底上表面的距离d在0.2微米到2微米之间,光栅材料折射率n2在1.6到2之间,为了降低界面入射损失,优选的光栅材料折射率和镜片波导折射率一致。
输出光栅可为倾斜光栅也可为正光栅,考虑到制作成本,优选为正光栅,如图5a-d所示。图5中给出了输出光栅为正光栅的结构示意图,槽型呈现和表面法线对称。在同一个全息镜片上,输出光栅周期Λ2和耦入光栅周期Λ1一致。
进一步的,如图6所示,耦合出射光栅区域4内的光栅的深度是按线性变化的,或是按斜率增加的曲线变化,或是按斜率变小的曲线变化。其目的是,光信号(例如含图像信息的图像光信号)需要多次和耦合出射光栅区域4内的光栅进行作用(即多次耦出),相应的,每次输出对入射图像光信号的能量有一定的损失。虽然经过端面反射部6的返回光信号,和耦合出射光栅区域4作用顺序相反, 但是由于入射总能量不同,为了使得输出图像在整个观察范围内均匀,输出光栅衍射效率需要根据空间进行调控。在实际应用中,耦合出射光栅区域内的某一位置的光栅的衍射效率,由其所在位置对应光信号在耦合出射光栅区域内的全反射次数决定,第j次光信号全反射输出处的光栅衍射效率ηj=η1(1-(j-1)η1),其中,η1为第一次全反射位置光栅的衍射效率,第一次出射衍射效率η1=1/N,其中N为总的全反射输出次数。图6中所示为通过光栅深度调控获得均匀输出。为了在整个区域内均匀,衍射效率变化可连续化,相应的光栅深度变化可以是线性的,也可以是斜率增加的曲线或者斜率变小的曲线,以输出光强尽量均匀为标准。
在实际应用中,所述耦合入射光栅区域3和耦合出射光栅区域4可以均为矩形,其在全息波导镜片上沿同一轴线排布在波导衬底的同一面的两侧或不同面的两侧。其中,耦合入射光栅区域也可以采用圆形或其它形状,根据需要而定。
一般而言,所述耦合入射光栅区域3的长度L1小于或等于耦合出射光栅区域4的长度L2。
在实际应用中,所述波导衬底发折射率n1满足n1≥1+2sinFOV/2,其中FOV为增强现实显示装置的成像视场角。
进一步的,所述波导衬底的厚度T与光信号经全息波导镜片的出瞳宽度W1的关系满足W1=2tanβT,其中β为最大全反射角,T优选0.3mm-2mm。
在实际应用中,所述波导衬底发折射率可以选择1.7-2.4。
在实际应用中,可利用单个全息波导镜片单元1实现单色增强现实显示装置,也可以利用红绿蓝全息波导镜片堆叠实现彩色显示。图7所示为实现彩色显示的全息波导镜片,其中由上至下包含了分别对应显示蓝绿红颜色的三片全息波导镜片单元。如何通过纳米衍射光栅的设置来构建对应不同衍射的全息波导镜片单元 在本申请人在先的专利文献中已经有相应的说明,在此不再赘述。彩色图像光信号从最上面的蓝色镜片(对应主要全反射蓝色光信号的全息波导镜片单元,下面红色镜片及绿色镜片同理)的耦合入射光栅区域3位置入射,蓝色组分的信号被高效耦合到第一层全息波导镜片单元(即蓝色镜片)内,绿色和红色的信号在蓝色镜片耦入光栅的效率很低,继续传播到绿色镜片的耦合入射光栅区域3,绿色信号被耦入到第二层全息波导镜片单元(即绿色镜片)内。红色组分信号继续传播,在红色镜片耦合入射光栅区域位3置,被耦入到第三层全息波导镜片单元(即红色镜片)内。不同颜色的信号通过不同镜片输出,最终在人眼位置实现彩色显示。在第一层和第二层以及第二层和第三层镜片之间的耦合入射光栅位置,可以放置增透层,来降低不同颜色信号在入射界面处的反射。
在图7的示例中,同一全息波导镜片单元上的耦合入射光栅区域3和耦合出射光栅区域4在波导衬底的同一表面。也可以如图8所示,同一全息波导镜片单元上的耦合入射光栅区域3和耦合出射光栅区域4在波导衬底的不同表面。其中耦合入射光栅区域3内的光栅的参数设计和上述实施例相同,耦合出射光栅区域4内的光栅由透射衍射改成反射衍射,后者光栅深度改为图7示例中的光栅深度一半即可。
光信号或图像光信号发生装置生成的光信号,经成像元件成像后耦合入射光栅区域3耦入波导衬底2中,经全反射向耦合出射光栅区域4传播,形成第一次耦出,泄漏的光信号继续传播到波导的侧面,当信号光行进到端面反射部6,经过反射后,信号光仍然以原来的全反射角传播,和耦合出射光栅区域4继续进行作用,重复上述过程出光,形成第二次耦出,从而提高光效利用率。由于波导内传播时间远小于图像的刷新间隔,因此不会引起串扰。本方案从而实现现有技术 没有的一次耦入,来/回多次耦出的功能,在实现扩瞳功能的同时,有着光效高的优点。由图8和图7可以看出,上述第一次耦出和第二次耦出,光信号均包括3次在耦合出射区域不同位置的全反射耦出,实现扩瞳的目的。根据本发明的原理,可以实现一次入射,按设定次数耦出的功能。从而实现扩瞳及提高光效的目的。
本发明还提供了一种增强现实显示装置,包括图像输出源、成像元件,和上述任一所述的全息波导镜片。
在实际应用中,可以选择,所述耦合入射光栅区域的宽度和全息波导镜片的图像出瞳的宽度一致。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制与本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (33)

  1. 一种全息波导镜片,其特征在于,所述全息波导镜片包括至少一片全息波导镜片单元,所述波导镜片单元包括波导衬底和设于波导衬底上的两个光栅区域,所述两个光栅区域分别为耦合入射光栅区域和耦合出射光栅区域。
  2. 根据权利要求1所述的全息波导镜片,其特征在于,所述波导镜片单元还包括薄膜,所述薄膜位于所述波导衬底表面。
  3. 根据权利要求1所述的全息波导镜片,其特征在于,光信号自所述耦合入射光栅区域射入,在所述波导衬底内反射后,自所述耦合出射光栅区域射出。
  4. 根据权利要求1所述的全息波导镜片,其特征在于,所述全息波导镜片单元还包括反射部。
  5. 根据权利要求4所述的全息波导镜片,其特征在于,所述反射部位于远离耦合入射光栅区域一侧的衬底的端面,所述反射部用于将光信号反射入波导衬底。
  6. 根据权利要求5所述的全息波导镜片,其特征在于,所述反射部为可进行光学反射的介质层。
  7. 根据权利要求1所述的全息波导镜片,其特征在于,所述两个光栅区域实现光信号的一次耦入,两次或多次耦出。
  8. 根据权利要求1所述的全息波导镜片,其特征在于,所述两个光栅区域设有纳米级的光栅。
  9. 根据权利要求8所述的全息波导镜片,其特征在于,所述纳米级的光栅为浮雕光栅。
  10. 根据权利要求9所述的全息波导镜片,其特征在于,所述浮雕光栅可以通过纳米压印制程批量复制。
  11. 根据权利要求8所述的全息波导镜片,其特征在于,同一片波导镜片单元的耦合入射光栅区域的光栅和耦合出射光栅区域的光栅的周期及取向方向一致。
  12. 根据权利要求8所述的全息波导镜片,其特征在于,所述耦合入射光栅区域的光栅为倾斜光栅。
  13. 根据权利要求12所述的全息波导镜片,其特征在于,所述耦合入射光栅区域的光栅占空比在0.4到0.6之间。
  14. 根据权利要求12所述的全息波导镜片,其特征在于,所述耦合入射光栅区域的光栅倾斜角在20°到45°之间。
  15. 根据权利要求14所述的全息波导镜片,其特征在于,所述耦合入射光栅区域的光栅倾斜角在25°到35°之间。
  16. 根据权利要求12所述的全息波导镜片,其特征在于,所述耦合入射光栅区域的光栅深度在200nm到500nm之间。
  17. 根据权利要求16所述的全息波导镜片,其特征在于,所述耦合入射光栅区域的光栅深度在200nm到350nm之间。
  18. 根据权利要求8所述的全息波导镜片,其特征在于,所述耦合出射光栅区域的光栅为正光栅。
  19. 根据权利要求1所述的全息波导镜片,其特征在于,所述耦合入射光栅区域的几何中心与耦合出射光栅区域的几何中心在同一条水平线上。
  20. 根据权利要求19所述的全息波导镜片,其特征在于,所述两个光栅区域的形状为矩形。
  21. 根据权利要求20所述的全息波导镜片,其特征在于,所述耦合入射光栅区域和耦合出射光栅区域沿波导衬底横向排布,所述耦合入射光栅区域的纵向长度不大于所述耦合出射光栅区域的纵向长度。
  22. 根据权利要求1所述的全息波导镜片,其特征在于,所述波导衬底的折射率高于上下衬底层折射率。
  23. 根据权利要求1所述的全息波导镜片,其特征在于,所述波导衬底折射率n1≥1+2sinFOV/2,其中FOV为增强现实显示装置的成像视场角。
  24. 根据权利要求23所述的全息波导镜片,其特征在于,所述波导衬底折射率在1.7到2.4之间。
  25. 根据权利要求1所述的全息波导镜片,其特征在于,所述波导衬底的厚度T与光信号经全息波导镜片的出瞳宽度W1的关系满足W1=2tanβT,其中β为最大全反射角。
  26. 根据权利要求25所述的全息波导镜片,其特征在于,所述波导衬底的厚度T在0.3mm到2mm之间。
  27. 根据权利要求1所述的全息波导镜片,其特征在于,所述耦合入射光栅区域光栅和耦合出射光栅区域光栅位于波导衬底表面以下。
  28. 根据权利要求1所述的全息波导镜片,其特征在于,所述耦合入射光栅区域光栅和耦合出射光栅区域光栅位于波导衬底表面以上。
  29. 根据权利要求1所述的全息波导镜片,其特征在于,所述耦合出射光栅区域的光栅为透射衍射光栅。
  30. 根据权利要求1所述的全息波导镜片,其特征在于,所述耦合出射光栅区域的光栅为反射衍射光栅。
  31. 根据权利要求1-30任一项所述的全息波导镜片,其特征在于,所述耦合入射光栅区域和耦合出射光栅区域位于波导衬底的同一表面。
  32. 根据权利要求1-30任一项所述的全息波导镜片,其特征在于,所述耦合入射光栅区域和耦合出射光栅区域位于波导衬底的不同表面。
  33. 一种增强现实显示装置,包括图像输出源、成像元件,和权利要求1-32任一所述的全息波导镜片。
PCT/CN2017/106809 2017-07-11 2017-10-19 一种全息波导镜片及增强现实显示装置 WO2019010857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710563451.XA CN109239920A (zh) 2017-07-11 2017-07-11 一种全息波导镜片及增强现实显示装置
CN201710563451.X 2017-07-11

Publications (1)

Publication Number Publication Date
WO2019010857A1 true WO2019010857A1 (zh) 2019-01-17

Family

ID=65001083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106809 WO2019010857A1 (zh) 2017-07-11 2017-10-19 一种全息波导镜片及增强现实显示装置

Country Status (2)

Country Link
CN (1) CN109239920A (zh)
WO (1) WO2019010857A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044121A1 (en) * 2019-09-06 2021-03-11 Bae Systems Plc Waveguide and method for fabricating a waveguide master grating tool
EP3809039A1 (en) * 2019-10-17 2021-04-21 BAE SYSTEMS plc Waveguide and method for fabricating a waveguide master grating tool
CN113589524A (zh) * 2021-10-08 2021-11-02 南昌大学 面向LiFi通信的全息光栅光波导平面聚光系统的设计方法
US12055751B2 (en) 2019-09-06 2024-08-06 Bae Systems Plc Waveguide and method for fabricating a waveguide

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581669B (zh) * 2019-01-23 2021-07-13 歌尔股份有限公司 投影光路及头戴显示设备
CN111665625A (zh) * 2019-03-07 2020-09-15 苏州苏大维格科技集团股份有限公司 一种双片波导镜片及三维显示装置
GB201905773D0 (en) * 2019-04-25 2019-06-05 Wave Optics Ltd Display for augmented reality
JP7297548B2 (ja) * 2019-06-21 2023-06-26 株式会社日立エルジーデータストレージ 導光板の製造方法、導光板モジュールの製造方法、および画像表示装置の製造方法
CN112213855B (zh) * 2019-07-11 2022-07-12 苏州苏大维格科技集团股份有限公司 显示装置及光波导镜片
CN112394510B (zh) * 2019-08-14 2024-10-18 苏州苏大维格科技集团股份有限公司 用于呈现图像的装置和用于实现增强现实显示的系统
CN112444980A (zh) * 2019-09-05 2021-03-05 苏州苏大维格科技集团股份有限公司 波导镜片及ar显示装置
CN111158144A (zh) * 2019-12-27 2020-05-15 瑞声科技(南京)有限公司 微镜激光扫描近眼显示系统
CN110780449A (zh) * 2019-12-31 2020-02-11 平行现实(杭州)科技有限公司 一种适配vr设备的波导显示装置
CN111175897A (zh) * 2020-02-26 2020-05-19 浙江水晶光电科技股份有限公司 光栅波导出瞳扩展器及增强现实显示模组
CN113325506A (zh) * 2020-02-28 2021-08-31 苏州苏大维格科技集团股份有限公司 一种全息光波导镜片及增强现实显示装置
CN111323920B (zh) * 2020-03-12 2021-07-30 深圳市光舟半导体技术有限公司 一种ar显示的衍射光波导
CN113448087A (zh) * 2020-03-27 2021-09-28 深圳光峰科技股份有限公司 增强现实显示光学器件、光学系统、眼镜及hud显示系统
CN113568167B (zh) * 2020-04-29 2022-09-02 宁波舜宇光电信息有限公司 镜片单元和包括镜片单元的ar设备
CN111965750B (zh) * 2020-07-20 2022-10-11 天津大学 一种提高传输视场的全息波导成像结构
WO2022045707A1 (en) 2020-08-25 2022-03-03 Samsung Electronics Co., Ltd. Augmented reality device based on waveguide with holographic diffractive grating structure and apparatus for recording the holographic diffractive grating structure
CN112799229A (zh) * 2021-01-29 2021-05-14 深圳光子晶体科技有限公司 一种光波导出光扩瞳装置
CN112987179A (zh) * 2021-02-09 2021-06-18 Oppo广东移动通信有限公司 波导制备方法、波导及增强现实显示装置
CN112684536B (zh) * 2021-03-19 2021-06-04 北京至格科技有限公司 一种光波导器件及近眼显示设备
CN115542539A (zh) * 2021-06-29 2022-12-30 上海海思技术有限公司 一种可穿戴设备及其制备方法
CN113625447B (zh) * 2021-07-15 2022-11-01 嘉兴驭光光电科技有限公司 Ar光波导耦出光栅的设计方法及ar光波导的设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938252A (zh) * 2016-07-04 2016-09-14 北京理工大学 增强现实显示系统
CN106338832A (zh) * 2016-11-09 2017-01-18 苏州苏大维格光电科技股份有限公司 一种单片全息衍射光波导镜片及三维显示装置
CN106707518A (zh) * 2017-02-28 2017-05-24 华为技术有限公司 一种信息显示设备及信息显示方法
CN106842397A (zh) * 2017-01-05 2017-06-13 苏州苏大维格光电科技股份有限公司 一种树脂全息波导镜片及其制备方法、及三维显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156320B (zh) * 2011-02-25 2013-06-26 深圳市华星光电技术有限公司 侧入式导光板组件及背光模块
CN104180241A (zh) * 2013-05-22 2014-12-03 扬升照明股份有限公司 背光模块
JP6287487B2 (ja) * 2014-03-31 2018-03-07 セイコーエプソン株式会社 光学デバイス、画像投影装置及び電子機器
CN103995354B (zh) * 2014-05-16 2016-05-04 北京理工大学 基于全息衍射光学元件的消色差的波导显示系统
GB2529003B (en) * 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
US9791696B2 (en) * 2015-11-10 2017-10-17 Microsoft Technology Licensing, Llc Waveguide gratings to improve intensity distributions
CN106483660B (zh) * 2016-11-25 2019-10-25 北京理工大学 一种大视场全息波导近眼显示系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938252A (zh) * 2016-07-04 2016-09-14 北京理工大学 增强现实显示系统
CN106338832A (zh) * 2016-11-09 2017-01-18 苏州苏大维格光电科技股份有限公司 一种单片全息衍射光波导镜片及三维显示装置
CN106842397A (zh) * 2017-01-05 2017-06-13 苏州苏大维格光电科技股份有限公司 一种树脂全息波导镜片及其制备方法、及三维显示装置
CN106707518A (zh) * 2017-02-28 2017-05-24 华为技术有限公司 一种信息显示设备及信息显示方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044121A1 (en) * 2019-09-06 2021-03-11 Bae Systems Plc Waveguide and method for fabricating a waveguide master grating tool
US12055751B2 (en) 2019-09-06 2024-08-06 Bae Systems Plc Waveguide and method for fabricating a waveguide
EP3809039A1 (en) * 2019-10-17 2021-04-21 BAE SYSTEMS plc Waveguide and method for fabricating a waveguide master grating tool
CN113589524A (zh) * 2021-10-08 2021-11-02 南昌大学 面向LiFi通信的全息光栅光波导平面聚光系统的设计方法
CN113589524B (zh) * 2021-10-08 2022-01-11 南昌大学 面向LiFi通信的全息光栅光波导平面聚光系统的设计方法

Also Published As

Publication number Publication date
CN109239920A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2019010857A1 (zh) 一种全息波导镜片及增强现实显示装置
US10866419B2 (en) Optical combiner and applications thereof
JP6072346B2 (ja) 平面光導波路回路を用いた立体画像形成方法及び装置
CN108254925B (zh) 一种高衍射效率的全息波导显示装置及其光栅耦合方法
WO2019179136A1 (zh) 显示装置及显示方法
TW202212884A (zh) 一種用於製造光導光學元件的方法
CN110727116A (zh) 一种基于偏振体全息光栅的二维扩瞳方法
CN112630969B (zh) 一种光栅波导显示装置
CN107797287A (zh) 光波导镜片及显示装置
WO2022151920A1 (zh) 增强现实的显示设备
US20230176382A1 (en) Waveguide display with cross-polarized eye pupil expanders
CN113544551A (zh) 光学设备
CN214335370U (zh) 一种实现均匀出光的波导显示结构
US11867912B2 (en) Metasurface waveguide couplers
TW202016593A (zh) 光導裝置及具該裝置之照明裝置
CN113009694A (zh) 一种基于彩色双层光栅波导片的光机模组
WO2023123920A1 (zh) 光传输结构和头戴显示设备
CN114355613A (zh) 一种用于衍射波导型增强现实眼镜的光学器件及应用
US20240210612A1 (en) Waveguide display system with wide field of view
Zhou et al. Design of a dual-focal geometrical waveguide near-eye see-through display
US20230400618A1 (en) Single mode full color waveguide combiner using asymmetric transmissive and reflective diffraction gratings
CN214846067U (zh) 一种光栅波导元件及近眼显示设备
US12007565B2 (en) Optical waveguide, manufacturing method of optical waveguide, and head-mounted display device
JP2024511586A (ja) ディスプレイ構造及びディスプレイ装置
Wang et al. Study on the adaptability of augmented reality smartglasses for astigmatism based on holographic waveguide grating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917419

Country of ref document: EP

Kind code of ref document: A1