WO2022078026A1 - 显示装置及电子设备 - Google Patents

显示装置及电子设备 Download PDF

Info

Publication number
WO2022078026A1
WO2022078026A1 PCT/CN2021/110586 CN2021110586W WO2022078026A1 WO 2022078026 A1 WO2022078026 A1 WO 2022078026A1 CN 2021110586 W CN2021110586 W CN 2021110586W WO 2022078026 A1 WO2022078026 A1 WO 2022078026A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
layer
pixel definition
display device
Prior art date
Application number
PCT/CN2021/110586
Other languages
English (en)
French (fr)
Inventor
李志林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21879073.1A priority Critical patent/EP4228001A4/en
Publication of WO2022078026A1 publication Critical patent/WO2022078026A1/zh
Priority to US18/299,951 priority patent/US20230247891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present application relates to the field of electronic technologies, and in particular, to a display device and electronic equipment.
  • the electronic device can use its display device to display images.
  • the image sensor is arranged on the display back of the display device, and light entering the image sensor through the display device can realize the lighting and imaging of the image sensor.
  • the present application provides a display device and an electronic device, which can reduce the diffraction phenomenon formed by the display device.
  • the present application provides a display device, comprising:
  • a pixel definition layer including a first pixel definition area, the first pixel definition area is formed with at least one first pixel unit including an oval sub-pixel or a circular sub-pixel;
  • an anode layer which is stacked on one side of the pixel definition layer, the anode layer includes a plurality of transparent anodes, and each of the transparent anodes is connected to one of the sub-pixels;
  • a driving circuit layer arranged at intervals on the side of the anode layer away from the pixel definition layer, the driving circuit layer is provided with a plurality of first driving units in a region corresponding to the outside of the first pixel definition region ;
  • the first transparent conductive layer is arranged between the anode layer and the driving circuit layer, and forms a plurality of curved transparent conductive lines, each of the transparent anodes is electrically connected to one through one of the transparent conductive lines the first drive unit.
  • the present application provides an electronic device, comprising:
  • a display device includes a pixel definition layer, an anode layer, a first transparent conductive layer, and a driving circuit layer that are stacked in sequence
  • the pixel definition layer includes a first pixel definition area
  • the first pixel definition area is formed with At least one first pixel unit including elliptical sub-pixels or circular sub-pixels
  • the anode layer includes a plurality of transparent anodes, each of the transparent anodes is connected to one of the sub-pixels
  • the driving circuit layer corresponds to A plurality of first driving units are arranged in the area outside the first pixel definition area
  • the first transparent conductive layer is formed with a plurality of curved transparent conductive lines, and each of the transparent anodes passes through one of the transparent conductive lines.
  • conductive lines are electrically connected to one of the first drive units;
  • the image sensor is disposed on one side of the display device, and the image sensor is used for receiving the light passing through the display device.
  • FIG. 1 is a schematic diagram of a first structure of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first structure of the display device shown in FIG. 1 .
  • FIG. 3 is a first schematic cross-sectional view of the display device shown in FIG. 2 along the direction P1 to P2.
  • FIG. 4 is a schematic structural diagram of the pixel definition layer shown in FIG. 3 .
  • FIG. 5 is a schematic diagram of a first structure of the sub-pixel shown in FIG. 4 .
  • FIG. 6 is a schematic diagram of a second structure of the sub-pixel shown in FIG. 4 .
  • FIG. 7 is a schematic diagram of a third structure of the sub-pixel shown in FIG. 4 .
  • FIG. 8 is a schematic diagram of a fourth structure of the sub-pixel shown in FIG. 4 .
  • FIG. 9 is a first diffraction pattern of the first display area of the embodiment of the present application.
  • FIG. 10 is a second diffraction pattern of the first display area of the embodiment of the present application.
  • FIG. 11 is a third diffraction pattern of the first display area of the embodiment of the present application.
  • FIG. 12 is a second schematic cross-sectional view of the display device shown in FIG. 2 along the direction P1 to P2.
  • FIG. 13 is a schematic diagram of a second structure of the display device shown in FIG. 1 .
  • FIG. 14 is a third schematic cross-sectional view of the display device shown in FIG. 2 along the direction P1 to P2.
  • FIG. 15 is a first schematic cross-sectional view of the electronic device shown in FIG. 1 along M1 to M2.
  • FIG. 16 is a second schematic cross-sectional view of the electronic device shown in FIG. 1 along M1 to M2.
  • FIG. 17 is a third cross-sectional schematic diagram of the electronic device shown in FIG. 1 along M1 to M2.
  • FIG. 18 is a fourth schematic cross-sectional view of the electronic device shown in FIG. 1 along M1 to M2.
  • Embodiments of the present application provide an electronic device.
  • Electronic devices can be mobile terminal devices such as mobile phones and tablet computers, and can also be game devices, augmented reality (AR) devices, virtual reality (VR) devices, in-vehicle computers, laptop computers, data storage devices, audio A playback device, a video playback device, a wearable device, and other devices with a display device, where the wearable device can be a smart bracelet, smart glasses, and the like.
  • AR augmented reality
  • VR virtual reality
  • in-vehicle computers laptop computers
  • data storage devices audio A playback device, a video playback device, a wearable device, and other devices with a display device, where the wearable device can be a smart bracelet, smart glasses, and the like.
  • FIG. 1 is a schematic diagram of a first structure of an electronic device provided by an embodiment of the present application.
  • the electronic device 10 includes a cover plate 100 , a display device 200 , a middle frame 300 , a circuit board 400 , a battery 500 , a back cover 600 and an image sensor 700 .
  • the display device 200 may be used to display information such as images, texts, and the like.
  • the display device 200 may be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display device.
  • OLED Organic Light-Emitting Diode
  • the cover plate 100 may be installed on the middle frame 300, and the cover plate 100 covers the display device 200 to protect the display device 200 from being scratched or damaged by water.
  • the cover plate 100 may be a transparent glass cover plate 100 , so that the user can observe the content displayed by the display device 200 through the cover plate 100 .
  • the cover plate 100 may be a glass cover plate 100 made of sapphire.
  • the display device 200 can be installed on the middle frame 300 and connected to the back cover 600 through the middle frame 300 to form a display surface of the electronic device 10 .
  • the display device 200 is used as a front case of the electronic device 10 , and together with the rear cover 600 forms a case of the electronic device 10 , and is used for accommodating other electronic devices of the electronic device 10 .
  • the housing may be used to house electronic devices such as a processor, memory, one or more sensors, etc. of the electronic device 10 .
  • the middle frame 300 may be a thin plate or sheet structure, or may be a hollow frame structure.
  • the middle frame 300 is used to provide support for the electronic devices or electronic devices in the electronic device 10 , so as to mount the electronic components and electronic devices in the electronic device 10 together.
  • the image sensor 700 , the receiver, the circuit board 400 , the battery 500 and other electronic devices in the electronic device 10 can be mounted on the middle frame 300 for fixing.
  • the circuit board 400 may be mounted on the middle frame 300 .
  • the circuit board 400 may be the main board of the electronic device 10 .
  • the circuit board 400 may be integrated with one or two of electronic devices such as a microphone, a speaker, a receiver, a headphone interface, a universal serial bus interface (USB interface), a camera assembly, a distance sensor, an environmental sensor, a gyroscope, and a processor. one or more.
  • the display device 200 may be electrically connected to the circuit board 400 to control the display of the display device 200 through a processor on the circuit board 400 .
  • An image sensor 700 may be provided inside the display device 200 . Both the display device 200 and the image sensor 700 may be electrically connected to the processor, and the image sensor 700 may acquire signals transmitted through the display device 200 to implement corresponding functions of the image sensor 700 .
  • the image sensor 700 may be a front camera module of the electronic device 10.
  • the processor controls the front camera module to capture images through the display device 200;
  • the processor controls the display device 200 to display an image.
  • the image sensor 700 may include a lens, a color filter, a light sensor, a digital-to-analog conversion device, and a digital processing chip, and the lens may be composed of multiple lenses.
  • the lens may capture ambient light passing through the first display area 210 .
  • Color filters can decompose ambient light into monochromatic light such as red, blue, and green.
  • a light sensor is a semiconductor chip with hundreds of thousands to millions of photodiodes on its surface. When the photodiodes are illuminated by light, they can generate charges. Under the illumination of colored ambient light, it is converted into different electrical signals.
  • the digital-to-analog conversion device can convert electrical signals into digital image signals.
  • the digital processing chip can process the digital image signal and obtain the final image information.
  • the digital processing chip can obtain the final image information after processing such as white balance, demosaicing, noise reduction, color gamut conversion, gamma correction, and compression.
  • the battery 500 may be installed on the middle frame 300 . Meanwhile, the battery 500 is electrically connected to the circuit board 400 , so that the battery 500 can supply power to the electronic device 10 .
  • a power management circuit may be provided on the circuit board 400 . The power management circuit is used to distribute the voltage provided by the battery 500 to the various electronic devices in the electronic device 10 .
  • the battery 500 may be a rechargeable battery 500 .
  • the battery 500 may be a lithium-ion battery 500 .
  • the back cover 600 may be located on the side of the circuit board 400 away from the display device 200 , that is, the back cover 600 is located at the outermost part of the electronic device 10 and is used to form the outer contour of the electronic device 10 .
  • the back cover 600 may be integrally formed. During the molding process of the back cover 600 , structures such as a rear camera hole, a fingerprint identification module mounting hole and the like may be formed on the back cover 600 .
  • the back cover 600 may be made of metal, such as magnesium alloy, stainless steel and other metals. It should be noted that, the material of the back cover 600 in the embodiment of the present application is not limited to this, and other methods may also be used.
  • the back cover 600 can be made of plastic material.
  • the back cover 600 may be made of ceramic or glass.
  • the back cover 600 may include a plastic part and a metal part, and the back cover 600 may be a casing structure in which metal and plastic cooperate with each other.
  • a metal part may be formed first, for example, a magnesium alloy substrate is formed by injection molding, and plastic is then injected on the magnesium alloy substrate to form a plastic substrate to form a complete casing structure.
  • FIG. 2 is a schematic diagram of a first structure of the display device shown in FIG. 1 .
  • the display apparatus 200 may include a first display area 210 and a second display area 220 which are connected to each other.
  • the cover plate 100 is disposed outside the first display area 210 and the second display area 220 , and the cover plate 100 covers the first display area 210 and the second display area 220 .
  • Electronic devices such as the circuit board 400 and the battery 500 of the electronic device 10 may be disposed on the inner side of the first display area 210 . That is, electronic devices such as the circuit board 400 and the battery 500 may be disposed between the first display area 210 and the back cover 600 .
  • An image sensor 700 may be disposed on the inner side of the first display area 210 .
  • the lens of the image sensor 700 may be disposed toward the first display area 210, and the image sensor 700 is used to acquire the external light signal passing through the first display area 210 for imaging.
  • both the first display area 210 and the second display area 220 can be used to display text or images, and the first display area 210 and the second display area 220 can jointly display the same image, for example, the second display area 220 displays a preset image part of the preset image, the first display area 210 displays the remaining part of the preset image.
  • the first display area 210 and the second display area 220 may also display different images. For example, the second display area 220 displays a preset image, and the first display area 210 displays a taskbar image.
  • the area of the first display area 210 may be much smaller than that of the second display area 220 , the second display area 220 may be arranged around the first display area 210 , and the periphery of the first display area 210 may be adjacent to the second display area 220 .
  • the first display area 210 may be located in the middle of the second display area 220 .
  • the second display area 220 may also partially surround the first display area 210 , and a part of the edge of the first display area 210 is adjacent to the second display area 220 .
  • the corners of the second display area 220 may also be irregular in shape, such as having a gap, and the first display area 210 may be located in the gap.
  • first display area 210 and the second display area 220 are not limited to the above examples, and other solutions for enabling the display device 200 to include the first display area 210 and the second display area 220 are all described in this application. scope of protection.
  • the second display area 220 in the embodiment of the present application may be used as the main display area of the display device 200
  • the first display area 210 may be used as the auxiliary display area of the display device 200
  • the second display area 220 may be an active display area.
  • Driving (AMOLED) display area the first display area 210 may be an active driving (AMOLED) display area or a passive driving (PMOLED) display area.
  • AMOLED active driving
  • PMOLED passive driving
  • the first display area 210 may adopt PMOLED.
  • the passively driven first display area 210 only needs one thin film transistor (TFT) to drive, and the number of opaque thin film transistors is very small, which can greatly improve the light transmittance of the first display area 210 .
  • TFT thin film transistor
  • FIG. 3 is a first schematic cross-sectional view of the display device shown in FIG. 2 along the direction P1 to P2 .
  • the display device 200 may include a layered structure such as a driving circuit layer 291 , a first transparent conductive layer 292 , an anode layer 293 , a pixel definition layer 294 , and a common electrode layer 295 that are stacked in sequence.
  • the pixel definition layer 294 includes a first pixel definition area 2941 , and the first pixel definition area 2941 may be disposed corresponding to the first display area 210 of the display device 200 .
  • FIG. 4 is a schematic structural diagram of the pixel definition layer shown in FIG. 3 .
  • the first pixel definition area 2941 has a plurality of pixel holes, each pixel hole is provided with a pixel unit, and the pixel unit includes an organic light-emitting material.
  • the first pixel definition area 2941 can be formed with at least one first pixel unit a1, the first pixel
  • the unit a1 may include one or more sub-pixels 201, for example, the first pixel unit a1 may include red sub-pixels, green sub-pixels and blue sub-pixels.
  • the subpixels 201 may be at least oval subpixels or circular subpixels, so that the first pixel unit a1 may include oval subpixels or circular subpixels.
  • the anode layer 293 can be stacked on one side of the pixel definition layer 294 .
  • the anode layer 293 is electrically connected to the driving circuit layer 291 and used to control each first driving unit 2911 of the driving circuit layer 291 .
  • the anode layer 293 includes a plurality of transparent anodes 2931 , and the plurality of transparent anodes 2931 may be disposed corresponding to the first display area 210 of the display device 200 , that is, the plurality of transparent anodes 2931 may be disposed corresponding to the first pixel definition area 2941 .
  • One transparent anode 2931 may be electrically connected to one sub-pixel 201 of the pixel definition layer 294 .
  • the driving circuit layer 291 is arranged at intervals on the side of the anode layer 293 away from the pixel definition layer 294, and the driving circuit layer 291 is provided with a plurality of first driving units in the area corresponding to the outside of the first pixel definition area 2941, wherein the so-called The area corresponding to the outside of the first pixel definition area 2941 may refer to the area corresponding to the outside of the first display area 210 or the area corresponding to the second display area 220 .
  • Each first driving unit 2911 is used for driving one sub-pixel 201 .
  • the first driving unit 2911 includes an opaque portion such as a thin film transistor TFT.
  • the first transparent conductive layer 292 is disposed between the anode layer 293 and the driving circuit layer 291 .
  • the first transparent conductive layer 292 is formed with a plurality of curved transparent conductive lines 2921 , and the transparent conductive lines 2921 may be partially disposed corresponding to the first display area 210 and partially disposed corresponding to the second display area 220 .
  • Each transparent anode 2931 is electrically connected to one first driving unit 2911 through a transparent conductive line 2921 .
  • the common electrode layer 295 is disposed on the pixel definition layer 294.
  • the common electrode layer 295 may be disposed corresponding to the first display area 210 and the second display area 220.
  • the anode layer 293 and the common electrode layer 295 are disposed on both sides of the pixel definition layer 294, respectively. and drives the plurality of sub-pixels 201 together with the plurality of first driving units 2911 of the driving circuit layer 291 .
  • the driving circuit layer 291 can be electrically connected to the positive electrode of the power supply, and the common electrode layer 295 can be electrically connected to the negative electrode of the power supply. 293 , the pixel definition layer 294 and the first transparent conductive layer 292 , so that under the action of current, the sub-pixels 201 of the pixel definition layer 294 are driven and can emit light to realize the display function of the display device 200 .
  • the anode layer 293 corresponding to the first display area 210 is transparent
  • the anode 2931 and the transparent anode 2931 have less diffraction interference to external light; and, the opaque first driving unit 2911 is set to correspond to the area outside the first display area 210, and the opaque first driving unit 2911 will not affect it at all
  • the incidence of external light makes the transmittance of the external light in the first display area 210 relatively high; at the same time, when the external light passes through the circular or elliptical sub-pixels 201 , in the diffraction spectrum formed by the external light, the energy is more concentrated in In the main-order diffraction fringes, the energy of each secondary diffraction fringe is lower, and each secondary diffraction fringe will be less, so that the diffraction phenomenon can be alleviated.
  • each sub-pixel 201 may include a main body portion 2011 and an edge portion 2012 that are connected to each other.
  • the cross section of the main body portion 2011 may be circular or elliptical.
  • the cross section of the edge portion 2012 can be approximately annular, the annular shape can include an outer contour and an inner contour, the inner contour surrounds and fits the outer periphery of the main body portion 2011, and the inner contour can be a closed circle or an elliptical curve; the The outer contour may include a plurality of curves with different curvatures, and the first of the plurality of curves with different curvatures may be connected to form a closed curve surrounding the main body portion 2011 .
  • the irregular closed curve may refer to a regular polygon such as a regular equilateral triangle, a regular quadrilateral, etc.; the irregular closed curve is also not a common triangle, square, rectangle, or parallelogram; nor is the irregular closed curve Regular circle or ellipse; the irregular curve is not a curve formed by connecting multiple identical arcs.
  • the curvatures of any two adjacent curves may be different. Furthermore, when the light passes through any two adjacent curves, the diffraction phenomenon formed is more likely to cancel each other out. Therefore, when the light passes through the entire edge portion 2012, the probability of diffraction is greatly reduced, and the diffraction phenomenon can be reduced to a great extent. .
  • the sub-pixel 201 when the sub-pixel 201 includes an edge portion 2012 formed by curves of different curvatures, it is affected by the curves of different curvatures. Diffraction phenomena formed in different parts will cancel each other out, thereby reducing the formation of diffraction fringes and reducing diffraction interference.
  • each sub-pixel 201 may include a main body portion 2011 and a protruding portion 2013 that are connected to each other.
  • the protruding portion 2013 may include a plurality of protrusions arranged at intervals, and the plurality of protrusions are arranged around and protruding from the outer periphery of the main body portion 2011 .
  • the plurality of protrusions may be formed by a plurality of curves with different curvatures, and each protrusion may be formed by extending from the outer edge of the main body portion 2011 toward a direction away from the main body portion 2011 .
  • the outer periphery of the sub-pixel 201 may include a plurality of protrusions.
  • the number of protrusions may be about 20 to 30.
  • the outer periphery of the edge portion 2012 may include 20 to 30 curves with the first connected to each other, and the outer edges of the sub-pixels 201 may be irregular curves. .
  • the sub-pixel 201 when the sub-pixel 201 includes an outer edge formed by a plurality of protrusions, the sub-pixel 201 has a larger bending curvature when the external light passes through the edge portion 2012 of the sub-pixel 201 .
  • the diffraction phenomena formed by different protrusions on the upper surface will cancel each other out, thereby reducing the formation of diffraction fringes and reducing diffraction interference.
  • the diameter of the cross section of the sub-pixel 201 in the direction parallel to the pixel definition layer 294 may be a non-integer multiple of half the target wavelength.
  • the light of the target wavelength may be a light within a certain wavelength range.
  • the cross-sectional diameter of the sub-pixel 201 can be a non-integer multiple of any half of the wavelength in the entire visible light band, that is, The cross-sectional diameter of the sub-pixel 201 can avoid a half integer multiple of any wavelength in the entire wavelength range.
  • the non-integer multiple of half of the target wavelength refers to an integer multiple of the target wavelength where the diameter of the cross section of the sub-pixel 201 is not one-half, that is, the diameter D ⁇ n ⁇ 1/2 ⁇ (target wavelength), and n is a positive integer.
  • the cross section of the sub-pixel 201 in the direction parallel to the pixel definition layer 294 is circular, that is, when the sub-pixel 201 is a cylindrical pixel, the sub-pixel 201 is parallel to the pixel definition layer 294 .
  • the diameter between any two points passing through the center on the cross section in the direction can be a non-integer multiple of half the target wavelength.
  • the center of the sub-pixel 201 may be the center of a circular cross-section of the sub-pixel 201 in a direction parallel to the pixel definition layer 294 .
  • the cross section of the sub-pixel 201 in the direction parallel to the pixel definition layer 294 is elliptical, that is, when the sub-pixel 201 is an elliptical cylinder pixel, the sub-pixel 201 is parallel to the pixel definition layer.
  • the diameter between any two points passing through the center on the cross section in the direction of 294 may also be a non-integer multiple of half the target wavelength.
  • the center of the sub-pixel 201 may be the intersection of the upper major axis and the semi-axis of the elliptical cross-section of the sub-pixel 201 in a direction parallel to the pixel definition layer 294 .
  • the sub-pixels 201 are obstacles to the air and the pixel space area, and the light When passing through the sub-pixel 201 of the obstacle, it will deviate from the original straight-line propagation trajectory to form a diffraction phenomenon.
  • the cross-section of the sub-pixel 201 is a circular or elliptical pixel.
  • the diameter of the cross-section of the sub-pixel 201 is a non-integer half of the target wavelength.
  • the first pixel unit a1 in the first pixel definition area 2941 may include the first sub-pixel 2014 , the second sub-pixel 2015 and the third sub-pixel 2016 arranged at intervals, or in other words, the sub-pixel 201 may include a first subpixel 2014 , a second subpixel 2015 and a third subpixel 2016 .
  • the cross-sectional area of the first sub-pixel 2014 and the second sub-pixel 2015 may be larger than the cross-sectional area of the third sub-pixel 2016 in a direction parallel to the pixel definition layer 294 .
  • the first sub-pixel 2014, the second sub-pixel 2015, and the third sub-pixel 2016 can be made of organic light-emitting materials, which can emit light by themselves under the action of current.
  • the first sub-pixel 2014 may emit light of a first color
  • the second sub-pixel 2015 may emit light of a second color
  • the third sub-pixel 2016 may emit light of a third color.
  • the first color, the second color and the third color may be different.
  • the cross-section of the first sub-pixel 2014 and the second sub-pixel 2015 may be circular, and the cross-section of the third sub-pixel 2016 may be an ellipse, wherein, The size of the major axis of the ellipse may be equal to the diameter of the circle, and the size of the minor axis of the ellipse may be smaller than the diameter of the circle, so that the cross-sectional area of the third subpixel 2016 is smaller than that of the first subpixel 2014 and the second subpixel 2015 cross-sectional area.
  • the thicknesses of the first sub-pixel 2014, the second sub-pixel 2015, and the third sub-pixel 2016 may be the same, that is, in the first pixel definition area 2941, the first sub-pixel 2014, the second sub-pixel 2015
  • the upper surfaces of the third sub-pixels 2016 may be in the same plane, and the lower surfaces of the first sub-pixels 2014 , the second sub-pixels 2015 and the third sub-pixels 2016 may also be in the same plane.
  • the cross-section of the third sub-pixel 2016 is smaller than that of the first sub-pixel 2014 and the second sub-pixel 2015 , so that the space occupied by the third sub-pixel 2016 Smaller, because the light diffracts only when it passes through obstacles, and further, the third sub-pixel 2016, which occupies a smaller space, is less likely to be diffracted, thereby reducing the probability of diffracting the entire display device 200 and reducing diffraction interference.
  • the first sub-pixel 2014 and the second sub-pixel 2015 when the cross-sectional area of the first sub-pixel 2014 and the second sub-pixel 2015 is larger than the cross-sectional area of the third sub-pixel 2016, the first sub-pixel 2014, the second sub-pixel 2014, the second sub-pixel
  • the pixel 2015 and the third sub-pixel 2016 can be made of different luminescent materials, so that the first sub-pixel 2014 can have a first luminescence decay frequency, the second sub-pixel 2015 can have a second luminescence decay frequency, and the third sub-pixel 2016 can have a The third emission attenuation frequency, and the first emission attenuation frequency and the second emission attenuation frequency may be greater than the third emission attenuation frequency.
  • the unit The intensity of the light emitted by the first sub-pixel 2014 and the second sub-pixel 2015 of the area will be weakened, and will be smaller than the intensity of the light emitted by the third sub-pixel 2016 per unit area.
  • the total intensity of light emitted by the first sub-pixel 2014 and the second sub-pixel 2015 can be the same as that of the third sub-pixel 2016.
  • the total intensity of the light emitted by the three sub-pixels 2016 is the same.
  • the first sub-pixel 2014, the second sub-pixel 2015 and the third sub-pixel 2016 can emit light of the same brightness, which can affect the light intensity of the pixels. To compensate for the attenuation, the service life of the entire display device 200 can be improved.
  • the first display area 210 may include a plurality of sub-pixels 201 arranged at intervals, that is, the plurality of sub-pixels 201 are arranged in the first pixel definition area 2941 at intervals.
  • the cross-sectional diameter d of the sub-pixel 201 may not be half of the distance a between two adjacent sub-pixels 201 , that is, the cross-section of the sub-pixel 201 The diameter may be larger or smaller than half of the spacing a between two adjacent sub-pixels 201 .
  • the cross-sectional diameter of the sub-pixel 201 can refer to the foregoing description, and details are not repeated here. It can be understood that, as shown in FIG. 8, in the direction parallel to the pixel definition layer 294, the distance a between two adjacent sub-pixels 201 may be the distance between two points located on the edges of the two sub-pixels 201, The lines connecting the two points on the edges of the two sub-pixels 201 pass through the centers of the two sub-pixels 201 respectively.
  • the cross-sections of the two sub-pixels 201 in this embodiment of the present application may both be elliptical or circular, or one may be circular and the other may be circular. Oval.
  • the two sub-pixels 201 in the embodiment of the present application may also be in other shapes, and the specific shapes thereof are not limited in the embodiment of the present application.
  • the transmittance function of the light passing through the first display area 210 can be expressed as:
  • FIGS. 9 to 11 wherein FIG. 9 is the first diffraction pattern of the first display area in the embodiment of the application, and FIG. 10 is the second diffraction pattern of the first display area in the embodiment of the application.
  • Figure 11 is a third diffraction pattern of the first display area of the embodiment of the present application.
  • the left side is the diffracted light intensity envelope diagram of the first display area 210
  • the right side is the diffraction order distribution diagram of the first display area 210 .
  • the distance a between two adjacent sub-pixels 201 is 18 ⁇ m, and the diameter d of the sub-pixels 201 is 23 ⁇ m.
  • the distance a between two adjacent sub-pixels 201 is 18 ⁇ m, and the diameter of the sub-pixels 201 is d and 33 ⁇ m.
  • the distance a between two adjacent sub-pixels 201 is 18 ⁇ m, and the diameter d of the sub-pixels 201 is 63 ⁇ m.
  • FIG. 12 is a second schematic cross-sectional view of the display device shown in FIG. 2 along the direction P1 to P2 .
  • the first display area 210 of the display device 200 includes a substrate 296 , a driving circuit layer 291 , a first planarization layer 298 , a first transparent conductive layer 292 , a second transparent conductive layer 297 , an anode layer 293 , and a pixel definition layer that are stacked in sequence. 294 , the common electrode layer 295 , the second planarization layer 299 and the touch layer 290 .
  • the substrate 296 can be used as a supporting platform for the display device 200, and the substrate 296 can be made of glass or plastic or resin or other materials.
  • the material of the substrate 296 can be polyimide (PI).
  • the driving circuit layer 291 is disposed on the substrate 296 .
  • the driving circuit layer 291 includes first driving units 2911 for driving the sub-pixels 201 of the first display area 210 , and each first driving unit 2911 includes at least one thin film transistor TFT.
  • the source electrode and the drain electrode of the thin film transistor are located in the same layer, and the gate electrode is located between the source electrode and the light-emitting layer.
  • the anode layer 293 is disposed on the driving circuit layer 291 .
  • the anode layer 293 is electrically connected to the driving circuit layer 291 and is used to control each first driving unit 2911 of the driving circuit layer 291 .
  • the anode layer 293 includes a plurality of transparent anodes 2931 , and the plurality of transparent anodes 2931 may be disposed corresponding to the first display area 210 of the display device 200 , that is, the plurality of transparent anodes 2931 may be disposed corresponding to the first pixel definition area 2941 .
  • One transparent anode 2931 may be electrically connected to one sub-pixel 201 of the pixel definition layer 294 .
  • the light-emitting layer 294 is disposed on the anode layer 293, and the light-emitting layer 294 includes a first pixel definition area 2941, the first pixel definition area 2941 has a plurality of pixel holes, each pixel hole is provided with a sub-pixel 201, and the sub-pixel 201 includes organic light-emitting Material.
  • the first transparent conductive layer 292 is disposed between the anode layer 293 and the driving circuit layer 291 .
  • the first transparent conductive layer 292 is formed with a plurality of curved transparent conductive lines 2921 , and the transparent conductive lines 2921 may partially correspond to the first display area 210 and partially correspond to the second display area 220 .
  • Each transparent anode 2931 is electrically connected to one first driving unit 2911 through a transparent conductive line 2921 .
  • the second transparent conductive layer 297 is disposed between the anode layer 293 and the driving circuit layer 291 .
  • the second transparent conductive layer 297 can be stacked with the first transparent conductive layer 292, that is, the second transparent conductive layer 297 can be disposed between the driving circuit layer 291 and the first transparent conductive layer 292, and the second transparent conductive layer 297 is also It may be disposed between the first transparent conductive layer 292 and the anode layer 293 .
  • the second transparent conductive layer 297 includes a plurality of transparent conductive sub-layers, and each transparent conductive sub-layer electrically connects one transparent anode 2931 to one first driving unit 2911 .
  • the first transparent conductive layer 292 cannot completely connect each sub-pixel 201 due to the volume limitation of the electronic device 10.
  • the first transparent conductive layer 292 and The mutual cooperation of the second transparent conductive layer 297 can be connected to each sub-pixel 201 of the high-resolution first display area 210 .
  • the first planarization layer 298 is disposed between the anode layer 293 and the driving circuit layer 291.
  • the first planarization layer 298 is provided with a plurality of via holes 2981 penetrating the first planarization layer 298 in the thickness direction of the planarization layer.
  • the via hole 2981 is used to pass through the transparent conductive line 2921 to electrically connect the first driving unit 2911 and the transparent anode 2931 .
  • the transparent conductive lines 2921 are routed through the via holes 2981 on the first planarization layer 298, and the routes of the transparent conductive lines 2921 can be shorter to further reduce the interference of the transparent conductive lines 2921 to light.
  • the common electrode layer 295 is disposed on the light emitting layer 294 , and the anode layer 293 and the common electrode layer 295 are disposed on both sides of the sub-pixel 201 and jointly drive the sub-pixel 201 .
  • the common electrode layer 295 may be an ITO material with high light transmittance.
  • a second planarization layer 299 may also be disposed on the common electrode layer 295. After the sub-pixels 201 are disposed in the pixel holes, the sub-pixels 201 do not fill the pixel holes. After the common electrode layer 295 is disposed on the sub-pixels 201, grooves will appear. , the second planarization layer 299 can fill the grooves and cover the entire layer of the light-emitting layer 294 to protect the light-emitting layer 294 and the like.
  • a touch layer 290 may also be disposed on the second planarization layer 299, and the touch layer 290 may be used to detect a user's touch operation.
  • a polarizer (not shown in the figure) may also be provided on the touch layer 290, and the polarizer may be used to prevent the internal light from being transmitted out and prevent the user from seeing the internal components such as the driving unit.
  • the touch layer 290 and the polarizer can be attached together and then disposed on the planarization layer 296 .
  • some structures may be added or removed as required, which is not limited in this embodiment of the present application.
  • at least one of the touch layer 290 and the polarizer can be reduced.
  • a protective layer can be added between the second planarization layer 299 and the touch layer 290 , and the protective layer can be made of the same material as the substrate 296 .
  • each layer structure in the first display area 210 adopts a light-transmitting material to improve the light transmittance of the first display area 210 .
  • the substrate 296 , the pixel definition layer 294 , the common electrode layer 295 , the first planarization layer 298 , the second planarization layer 299 , and the touch layer 290 of the first display area 210 can all be made of light-transmitting materials, and the anode layer
  • the signal lines in 293 can be made of light-transmitting materials such as ITO or nano-silver.
  • the TFTs of the driving circuit layer 291 cannot use light-transmitting materials, and other parts of the driving circuit layer 291 other than the TFTs can also use light-transmitting materials. It can be understood that the solution of improving the first display area 210 by improving the light transmittance of the material and changing the wiring arrangement is within the scope of the present application.
  • the second display area 220 may adopt a layered structure similar to that of the first display area 210 .
  • At least one of the substrate, pixel definition layer, common electrode layer, planarization layer, touch layer, etc. of the second display area 220 can be made of the same light-transmitting material as the first display area 210 .
  • the substrate can be made of Transparent materials such as glass or resin.
  • the signal lines in the layer 293 can be made of metal or alloy materials such as molybdenum, molybdenum aluminum molybdenum, and Ag.
  • the second display area 220 is not provided with a light shielding block, and the metal anode of the second display area 220 can be made of metal materials, such as Mg, Ag, and Al.
  • the common electrode layer of the second display area 220 can be made of Mg, Ag and other materials.
  • the common electrode layer of the second display area 220 is connected to the edge of the common electrode layer of the first display area 210 , and together form a complete common electrode layer 295 .
  • the light-emitting layer of the second display area 220 includes a plurality of sub-pixels, and the material of the sub-pixels of the second display area 220 may be the same as the material of the sub-pixels 201 of the first display area 210, and the light transmittance is also the same.
  • the sub-pixels of the second display area 220 may also be different from the sub-pixels 201 of the first display area 210 , so that the light transmittance of the first display area 210 is greater than that of the second display area 220 .
  • the pixel definition layer 294 may further include a second pixel definition area 2942, and the second pixel definition area 2942 may correspond to the driving circuit layer 291, and corresponds to the second pixel definition area 2942.
  • the area outside the first pixel definition area 2941 that is, the orthographic projection of the first driving unit 2911 on the pixel definition layer 294 is located in the second pixel definition area 2942 .
  • the second pixel definition area 2942 may be formed with at least one second pixel unit a2, and when there are multiple second pixel units a2, the multiple second pixel units a2 may be arranged at intervals.
  • the second pixel unit a2 may include a plurality of fourth sub-pixels 202, for example, the second pixel unit a2 may include red sub-pixels, green sub-pixels and blue sub-pixels. In a direction parallel to the pixel definition layer 294 , the cross-sectional area of the fourth sub-pixel 202 may be larger than that of the sub-pixel 201 .
  • the second pixel definition area 2942 may be disposed in the second display area 220, and the second pixel definition area 2942 may be disposed adjacent to and connected to the first pixel definition area 2941.
  • the first pixel definition area 2941 and the second pixel definition area 2942 may be located inside the cover plate 100 so that the cover plate 100 may protect the first pixel definition area 2941 and the second pixel definition area 2942 .
  • first pixel definition area 2941 and the second pixel definition area 2942 may be provided at the same layer.
  • the so-called same-layer setting may mean that the outer surface of the first pixel definition area 2941 and the outer surface of the second pixel definition area 2942 may be in the same plane, and the inner surface of the first pixel definition area 2941 may be in the same plane as the second pixel definition area 2942. The inner surfaces are in the same plane.
  • the cross-section of the fourth sub-pixel 202 of the second pixel unit a2 may be circular or elliptical like the sub-pixel 201 of the first pixel unit a1, so as to Mitigate diffraction interference.
  • a plurality of second driving units are disposed in the area of the driving circuit layer 291 corresponding to the second pixel definition area 2942, and each second driving unit is connected to a fourth one of the second pixel unit a2.
  • the sub-pixels 202 are electrically connected to drive a fourth sub-pixel 202 .
  • the anode layer 293 may be provided with a plurality of metal anodes (not shown), the metal anodes may be provided in the second display area 220, and each metal anode may be electrically connected to a fourth sub-pixel 202 of the second pixel unit a2. connect.
  • the display device 200 may also include a conductive layer (not shown), the conductive layer is disposed in the second display area 220, a plurality of curved conductive lines are formed in the conductive layer, and each metal anode is electrically connected to a fourth through a conductive line. Subpixel 202 .
  • the front projection of the opaque first driving unit 2911 is located in the second pixel definition area 2942 , and the opaque first driving unit 2911 will not affect the incident light entering the first pixel definition area 2941 at all. External light, so that the transmittance of the external light in the region corresponding to the first pixel definition region 2941 is higher.
  • the cross-sectional area of the second pixel unit a2 is larger than the cross-sectional area of the sub-pixel 201
  • the size of the sub-pixel 201 is smaller than the size of the second pixel unit a2
  • the area occupied by the sub-pixel 201 is smaller
  • the first display area 210 The interval between the pixels within is larger, the transmittance of the first display area 210 is higher, and the probability of occurrence of diffraction phenomenon is lower.
  • a luminescent material with a specific attenuation frequency can be selected, so that the fourth sub-pixel 202 has a cross-sectional area.
  • the attenuation frequency of the pixel 202 is greater than the attenuation frequency of the sub-pixel 201, which can ensure the consistency of the display of the first display area 210 and the second display area 220, and the first display area 210 and the second display area 220 will not appear when displaying information. A clear sense of boundaries.
  • the transmittance of the first display area 210 may be greater than the transmittance of the second display area 220 . It can be understood that, there may be various ways to realize that the transmittance of the first display area 210 is greater than the transmittance of the second display area 220 .
  • the first display area 210 may include a plurality of sub-pixels 201
  • the second display area 220 may include a plurality of fourth sub-pixels 202
  • the pixel density of the plurality of sub-pixels 201 may be smaller than that of the plurality of fourth sub-pixels 202, so as to
  • the interval area between the plurality of sub-pixels 201 in the first display area 210 is made larger, which in turn leads to an increase in the area through which light can pass, so that the light transmittance of the first display area 210 is greater than that of the second display area 220 .
  • the sub-pixels 201 of the first display area 210 use light-transmitting materials.
  • light-transmitting materials For example, indium tin oxide material is used.
  • the plurality of fourth sub-pixels 202 and the plurality of sub-pixels 201 may be arranged in an array manner.
  • the arrangement of the sub-pixels 201 of the first display area 210 may be one of standard RGB arrangement, Pentile arrangement or Delta arrangement
  • the arrangement of the fourth sub-pixels 202 of the second display area 220 may be standard RGB arrangement, Pentile arrangement or one of the Delta arrangements.
  • the sub-pixels 201 in the first display area 210 may also adopt other arrangements
  • the fourth sub-pixels 202 in the second display area 220 may also adopt other arrangements.
  • a plurality of driving circuit layers 291 are provided in the display device 200, the first driving layer (not shown) is connected to the sub-pixel 201 and drives the sub-pixel 201, and the second driving layer (not shown) is connected to the fourth sub-pixel 202 connects and drives the fourth sub-pixel 202, the first driving layer is arranged inside the second driving layer, the second driving layer is provided with a via hole 2981 running through its thickness direction, and the driving line passes through the via hole 2981 to connect the first sub-pixel 202.
  • the first driving unit 2911 in a driving layer is electrically connected to the sub-pixel 201 .
  • the driving unit may use one of the driving circuits such as 2T1C, 5T1C, and 7T1C.
  • the first driving unit 2911 may use one of 2T1C, 5T1C, and 7T1C
  • the second driving unit may use one of 2T1C, 5T1C, and 7T1C.
  • T represents the thin film transistor
  • C represents the capacitance.
  • the first driving unit 2911 disposed in the first display area 210 may be a simpler driving circuit than the main driving unit of the second display area 220, for example, the first driving unit 2911 includes The number of thin film transistors is less than that of the second driving unit.
  • the first driving unit 2911 may use one of 2T1C and 5T1C, and the second driving unit may use 7T1C.
  • the number of opaque thin film transistors in the first driving unit 2911 is less, and the opaque portion of the first display area 210 is less, which can improve the light transmittance of the first display area 210 .
  • the first display area 210 and the second display area 220 may have the same physical structure of pixels, but a plurality of sub-pixels 201 in the first display area 210 may be connected in parallel, and may be connected to a signal line in parallel to form a pixel set , the number of signal lines connecting the sub-pixels 201 to the signal lines can be reduced, so that the light transmittance of the first display area 210 can be improved.
  • FIG. 13 is a schematic diagram of a second structure of the display device shown in FIG. 1 .
  • the display device 200 may further include a non-display area 230 .
  • the non-display area 230 may be located at the periphery of the second display area 220 , and the non-display area 230 and the second display area 220 may be connected to each other.
  • the first driving unit 2911 is located in the non-display area 230, and the transparent conductive lines 2921 are respectively connected to the sub-pixel 201 and the first driving unit 2911, so that the first driving unit 2911 can drive the sub-pixel 201 to emit light.
  • the non-display area 230 may not have a display function and cannot display a picture. It can be understood that the non-display area 230 can be arranged on the top area of the electronic device 10 , the non-display area 230 can also be arranged on the bottom area of the electronic device 10 , and the non-display area 230 can also be arranged on the top and bottom of the electronic device 10 at the same time. The non-display area 230 may also be provided with the top, bottom and two opposite sides of the electronic device 10 .
  • the transparent conductive line 2921 may be an arc-shaped line.
  • the transparent conductive circuit 2921 is made of a transparent material, for example, a fumed tin oxide material.
  • the first driving unit 2911 is disposed in the non-display area 230, the first driving unit 2911 does not need to occupy the space of the first display area 210, and the transmittance of the first display area 210 can be higher,
  • the external light will not encounter the first driving unit 2911 in the first display area 210 to form a diffraction phenomenon, and further, the diffraction interference to the first display area 210 can also be reduced.
  • the transparent conductive line 2921 uses an arc-shaped trace. When the external light encounters the arc-shaped trace, the diffraction phenomena formed by different parts of the arc-shaped trace will cancel each other out, which can also reduce the formation of diffraction fringes and reduce diffraction interference.
  • the first pixel definition area 2941 and the second pixel definition area 2942 of the first display area 210 and the second display area 220 may be OLED display layers, and the OLED display layers may include stacked hole transport layers and organic light-emitting layers. , electron transport layer and other layered structures, when a current is passed between the anode layer 293 and the common electrode layer 295, the electrons and holes injected by the electrode recombine in the light-emitting layer to form excitons, and the excitons are de-excited by radiation to emit photons and produce visible light.
  • the OLED pixels can emit light by themselves, the light emitted therefrom can be transmitted toward the outside of the display device 200 and absorbed by human eyes. The light it emits can also be transmitted toward the interior of the display device 200. The light transmitted to the interior of the display device 200 is generally called screen light leakage. This part of the light is not received by the human eye. On the one hand, it will affect the brightness of the display device 200. On the other hand, the transmittance of the pixel is also lowered, resulting in a diffraction phenomenon. In order to improve the brightness of the display device 200, a reflective material, such as silver material, is often added to the anode layer 293 in the related art.
  • the first pixel definition area 2941 and the first pixel definition area 2941 and the second pixel can be separated.
  • the screen leakage of the two-pixel definition area 2942 is reflected to the outside of the display device 200 .
  • Adding a reflective material to the anode layer 293 can improve the brightness of the display device 200, but it will reduce the transmittance of the pixels in the display layer. When the light passes through the display device 200, a diffraction phenomenon will be formed. The lighting and shooting effects of the image sensor 700 will be seriously affected.
  • FIG. 14 is a third schematic cross-sectional view of the display device shown in FIG. 2 along the direction P1 to P2 .
  • a reflective material may be provided in the anode layer 293 of the second pixel definition area 2942 in the second display area 220 and a reflective layer 270 may be formed in the second pixel definition area 2942 to ensure the display of the display device 200 brightness.
  • the reflective layer 270 may also be disposed on one side of the second pixel definition area 2942 , such as the inner side, to ensure the display brightness of the display device 200 .
  • no reflective material may be provided in the anode layer 293, so that the reflective layer 270 is not formed.
  • the display device 200 in this embodiment of the present application may further include a blocking member 240 , and the blocking member 240 may be disposed between the first pixel definition area 2941 and the image sensor 700 .
  • the blocking member 240 can be switched between the first state and the second state, and the blocking member 240 in the first state can reflect the light emitted from the first pixel definition area 2941 and the second pixel definition area 2942 to the outside of the display device 200 or Absorbed; blocking member 240 in the second state may allow at least a portion of ambient light energy to pass through display device 200 and into image sensor 700 .
  • FIG. 15 is a first cross-sectional schematic diagram of the electronic device shown in FIG. 1 along M1 to M2
  • FIG. 16 is a second cross-sectional view of the electronic device shown in FIG. 1 along M1 to M2 Schematic.
  • the blocking member 240 may be an electro-reflective layer 241
  • the electro-reflective layer 241 may be disposed between the display device 200 such as the first pixel definition area 2941 and the image sensor 700
  • the electro-reflective layer 241 may be facing the first pixel
  • the definition area 2941 and the first display area 210 are set.
  • the electro-reflective layer 241 can realize a reversible change from a colored state with low light transmittance to an achromatic state with high light transmittance.
  • the electro-reflective layer 241 in the embodiment of the present application may exhibit a colored first state in a state of no electricity.
  • the electro-reflective layer 241 In the first state, the electro-reflective layer 241 has a lower transmittance. light rate, the light emitted from the first pixel definition area 2941 and the second pixel definition area 2942 cannot pass through the electro-reflective layer 241; and the electro-reflective layer 241 can preferably be made of a material with a reflective function, so that in the first In one state, the electro-reflective layer 241 can also reflect the light emitted by the organic light-emitting layer to the outside of the display device 200 .
  • the electro-reflective layer 241 of the embodiment of the present application can present a second transparent state, and in the second state, the electro-reflective layer 241 has a high transmittance, Ambient light can pass through the electro-reflective layer 241 and enter the image sensor 700, and further, in the second state, the electro-reflective layer 241 can enable at least part of the ambient light to pass through the display device 200 and enter the image sensor within 700.
  • the blocking member 240 may also be an electro-absorption layer (not shown), the electro-absorption layer may be disposed between the display device 200 such as the first pixel definition region 2941 and the image sensor 700, and the electro-absorption layer may be It is set facing the first pixel definition area 2941 and the first display area 210 .
  • the electroabsorption layer can also realize a reversible change from a colored state with low light transmittance to an achromatic state with high light transmittance.
  • the electro-absorption layer of the embodiment of the present application may exhibit a colored first state.
  • the electro-absorption layer has a lower light transmittance, and the first pixel defines the region. 2941.
  • the light emitted from the second pixel definition region 2942 cannot pass through the electro-absorption layer and can be absorbed by the electro-absorption layer.
  • the electro-absorption layer of the embodiment of the present application can present a transparent second state.
  • the electro-absorption layer has a high light transmittance, and ambient light can pass through the electro-absorption layer.
  • the absorbing layer and into the image sensor 700 and in turn, in the second state, the electro-absorbing layer may allow at least a portion of ambient light energy to pass through the display device 200 and into the image sensor 700 .
  • FIG. 18 is a schematic diagram of a third cross-sectional view of the electronic device shown in FIG. 1 along M1 to M2
  • FIG. 18 is a fourth cross-sectional view of the electronic device shown in FIG. 1 along M1 to M2 Schematic.
  • the blocking member 240 may also be a reflective element 242, and the electronic device 10 may further include a driving mechanism 260, the driving mechanism 260 may be electrically connected with the reflective element 242, and under the action of the driving mechanism 260, the reflective element 242 may be in the first Switching between the state and the second state, the first state is that the reflective element 242 is disposed facing the first pixel definition area 2941 , and the second state is that the reflective element 242 is at least partially offset from the first pixel definition area 2941 .
  • the reflective surface of the reflective element 242 may be disposed facing the light-emitting surface of the first pixel definition area 2941, and the reflective surface of the reflective element 242 is located in the first pixel definition area.
  • the projection on 2941 may cover the first pixel definition area 2941 and the light emitting surface, so that the reflective element 242 may reflect all the light emitted by the first pixel definition area 2941 to the outside of the display device 200 .
  • the reflective surface of the reflective element 242 may be completely or partially staggered from the light-emitting surface of the first pixel definition area 2941 .
  • the staggered arrangement may mean that the projection of the reflective element 242 on the first pixel definition area 2941 does not intersect with the first pixel definition area 2941 at all, and the projection of the reflective surface on the first pixel definition area 2941 and the light-emitting surface on the first pixel definition area The projections of 2941 are completely disjoint.
  • the reflective element 242 does not block the first pixel definition area 2941 at all, and the light emitted by the first pixel definition area 2941 can directly enter the interior of the display device 200 without being reflected and be received and detected by the image sensor 700 .
  • the staggered arrangement may also mean that the projection of the reflective element 242 on the first pixel definition area 2941 does not intersect with the first pixel definition area 2941, and the projection of the reflective surface on the first pixel definition area 2941 and the light emitting surface The projected portions of the first pixel definition area 2941 do not intersect.
  • the reflective element 242 does not completely block the first pixel definition area 2941, and part of the light emitted from the first pixel definition area 2941 may directly enter the display device 200 without being reflected and be received and detected by the sensor.
  • the staggered setting may also mean that the reflective surface of the reflective element 242 forms a preset angle with the light-emitting surface, and the preset angle may be greater than zero and less than 360 degrees, so that the reflective surface is not completely Directly facing the light emitting surface, some of the light emitted by the first pixel definition area 2941 may pass through the reflective element 242 without being reflected, so that it may enter the display device 200 and be received and detected by the image sensor 700 .
  • the driving mechanism 260 may be a motor driving mechanism.
  • the driving mechanism 260 may include a motor and a sliding rail, and the sliding rail may be arranged on one side of the first pixel definition area 2941, such as the inner side, and the rotating shaft of the motor may be
  • the reflective element 242 is connected, and the motor drives the reflective element 242 to slide on the slide rail, so that the reflective element 242 can be set directly facing the first pixel definition area 2941 and cover the first display area 210, or the reflective element 242 can be staggered from the first pixel definition area
  • the area 2941 is disposed away from the first display area 210 .
  • the driving mechanism 260 may also be an electromagnetic driving mechanism.
  • the driving mechanism 260 may include two magnets, a spring and an electromagnetic circuit.
  • the two magnets are respectively disposed on the reflective element 242 and the first pixel definition area 2941.
  • One end of the spring is connected to the reflective element 242 , and the other end of the spring can be fixed on the structure of the second display area 220 .
  • the electromagnetic circuit is turned on, the reflective element 242 and the first pixel definition area 2941 are under the action of magnetic attraction, and the reflective element 242 is disposed facing the first pixel definition area 2941 and covers the first display area 210. At this time, the spring is pulled stretch.
  • the magnetic attraction between the reflective element 242 and the first pixel definition area 2941 disappears, and the reflective element 242 is pulled back to the initial position by the spring, that is, the reflective element 242 and the first pixel definition area 2941 are staggered. and away from the first display area 210 .
  • the driving mechanism 260 in the embodiment of the present application is not limited to the above examples, and the driving mechanism 260 may also be other driving mechanisms, such as a cylinder driving mechanism, a motor gear driving mechanism, a motor belt driving mechanism, and the like. Any driving mechanism 260 that can switch the reflective element 242 between the first state and the second state falls within the protection scope of the present application.
  • the blocking member 240 can be switched between the first state and the second state.
  • the blocking member 240 When the blocking member 240 is in the first state, the blocking member 240 can completely block the first pixel definition area 2941, the blocking member 240 can completely reflect or completely absorb the light emitted by the first pixel definition area 2941 to the outside of the display device 200, thereby ensuring the brightness of the display device 200 and reducing reflection;
  • the blocking member 240 when the blocking member 240 is in the second state, blocking The block 240 cannot completely block the first pixel definition area 2941 , and light can directly enter the display device 200 without passing through the block 240 and be received by the image sensor 700 .
  • the transmittance of the display device 200 can be improved, and on the other hand, the plurality of sub-pixels 201 in the first pixel definition area 2941 will not form a diffraction grating and will not affect the photographing effect of the image sensor 700 .

Abstract

一种显示装置及电子设备,显示装置的像素定义层的第一像素定义区域形成有至少一个包含椭圆形子像素或圆形子像素的第一像素单元,阳极层的每一个透明阳极与一个子像素连接,驱动电路层在对应于第一像素定义区域之外的区域内设置有多个第一驱动单元,每一个透明阳极通过一条透明导电线路电连接至一个第一驱动单元。

Description

显示装置及电子设备
本申请要求于2020年10月14日提交中国专利局、申请号为202011097946.6、发明名称为“显示装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种显示装置及电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备越来越普及。在电子设备的使用过程中,电子设备可以采用其显示装置显示画面。
为了更好的显示效果以及更多显示内容,需要提高电子设备的屏占比。相关技术中,将图像传感器设置在显示装置的显示背面,光线透过显示装置进入图像传感器中可实现图像传感器的采光及成像。
发明内容
本申请提供一种显示装置及电子设备,可以减轻显示装置形成的衍射现象。
第一方面,本申请提供了一种显示装置,包括:
像素定义层,包括第一像素定义区域,所述第一像素定义区域形成有至少一个包含椭圆形子像素或圆形子像素的第一像素单元;
阳极层,层叠设置于所述像素定义层一侧,所述阳极层包括多个透明阳极,每一个所述透明阳极与一个所述子像素连接;
驱动电路层,间隔地设置于所述阳极层背离所述像素定义层的一侧,所述驱动电路层在对应于所述第一像素定义区域之外的区域内设置有多个第一驱动单元;
第一透明导电层,设置于所述阳极层和所述驱动电路层之间,并形成有多条曲线形的透明导电线路,每一个所述透明阳极通过一条所述透明导电线路电连接至一个所述第一驱动单元。
第二方面,本申请提供了一种电子设备,包括:
显示装置,所述显示装置包括依次层叠设置的像素定义层、阳极层、第一透明导电层和驱动电路层,所述像素定义层包括第一像素定义区域,所述第一像素定义区域形成有至少一个包含椭圆形子像素或圆形子像素的第一像素单元,所述阳极层包括多个透明阳极,每一个所述透明阳极与一个所述子像素连接,所述驱动电路层在对应于所述第一像素定义区域之外的区域内设置有多个第一驱动单元,所述第一透明导电层形成有多条曲线形的透明导电线路,每一个所述透明阳极通过一条所述透明导电线路电连接至一个所述第一驱动单元;及
图像传感器,所述图像传感器设置于所述显示装置的一侧,所述图像传感器用于接收透过所述显示装置的光线。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的电子设备的第一种结构示意图。
图2为图1所示的显示装置的第一种结构示意图。
图3为图2所示的显示装置沿P1至P2方向的第一种剖面示意图。
图4为图3所示的像素定义层的一种结构示意图。
图5为图4所示的子像素的第一种结构示意图。
图6为图4所示的子像素的第二种结构示意图。
图7为图4所示的子像素的第三种结构示意图。
图8为图4所示的子像素的第四种结构示意图。
图9为本申请实施例的第一显示区的第一种衍射图样。
图10为本申请实施例的第一显示区的第二种衍射图样。
图11为本申请实施例的第一显示区的第三种衍射图样。
图12为图2所示的显示装置沿P1至P2方向的第二种剖面示意图。
图13为图1所示的显示装置的第二种结构示意图。
图14为图2所示的显示装置沿P1至P2方向的第三种剖面示意图。
图15为图1所示的电子设备沿M1至M2的第一种剖面示意图。
图16为图1所示的电子设备沿M1至M2的第二种剖面示意图。
图17为图1所示的电子设备沿M1至M2的第三种剖面示意图。
图18为图1所示的电子设备沿M1至M2的第四种剖面示意图。
具体实施方式
下面将结合本申请实施例中的附图1至18,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。
本申请实施例提供一种电子设备。电子设备可以是手机、平板电脑等运动终端设备,还可以是游戏设备、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备、车载电脑、笔记本电脑、数据存储装置、音频播放装置、视频播放装置、可穿戴设备等具有显示装置的设备,其中可穿戴设备可以是智能手环、智能眼镜等。
请参考图1,图1为本申请实施例提供的电子设备的第一种结构示意图。电子设备10包括盖板100、显示装置200、中框300、电路板400、电池500、后盖600和图像传感器700。
显示装置200可以用于显示图像、文本等信息。显示装置200可以是有机发光二极管(Organic Light-Emitting Diode,OLED)显示装置。
盖板100可以安装在中框300上,并且盖板100覆盖显示装置200,以对显示装置200进行保护,防止显示装置200被刮伤或者被水损坏。盖板100可以为透明玻璃盖板100, 从而用户可以透过盖板100观察到显示装置200显示的内容。盖板100可以为蓝宝石材质的玻璃盖板100。
显示装置200可以安装在中框300上,并通过中框300连接至后盖600上,以形成电子设备10的显示面。显示装置200作为电子设备10的前壳,与后盖600共同形成电子设备10的壳体,用于容纳电子设备10的其他电子器件。例如,壳体可以用于容纳电子设备10的处理器、存储器、一个或多个传感器等电子器件。
中框300可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框300用于为电子设备10中的电子器件或电子器件提供支撑作用,以将电子设备10中的电子元件、电子器件安装到一起。例如,电子设备10中的图像传感器700、受话器、电路板400、电池500等电子器件都可以安装到中框300上以进行固定。
电路板400可以安装在中框300上。电路板400可以为电子设备10的主板。其中,电路板400上可以集成有麦克风、扬声器、受话器、耳机接口、通用串行总线接口(USB接口)、摄像头组件、距离传感器、环境传感器、陀螺仪以及处理器等电子器件中的一个、两个或多个。
其中,显示装置200可以电连接至电路板400,以通过电路板400上的处理器对显示装置200的显示进行控制。显示装置200的内侧可以设置图像传感器700。显示装置200和图像传感器700可以均与处理器电性连接,图像传感器700可以获取透过显示装置200的信号以实现图像传感器700的相应功能。
示例性的,图像传感器700可以是电子设备10的前置摄像头模组,当处理器接收到拍摄指令时,处理器控制前置摄像头模组透过显示装置200采集图像;当处理器未接收到拍摄指令,且接收到显示图像指令时,处理器控制显示装置200显示图像。
其中,图像传感器700可以包括镜头、滤色膜、光线传感器、数模转换装置、数字处理芯片,镜头可以有多片透镜组成。镜头可以采集透过第一显示区210的环境光。滤色膜可以将环境光分解为红光、蓝光和绿光等单色光。光线传感器是一种半导体芯片,其表面包含几十万至几百万的光电二极管,光电二极管收到光线照射时,可以产生电荷,光线传感器可以接收滤色后的三色环境光,并在三色环境光的照射下转换为不同的电信号。数模转换装置可以将电信号转换为数字图像信号。数字处理芯片可以对数字图像信号进行处理并可得到最终的图像信息。
可以理解的是,光线传感器采集到环境光后,数字处理芯片可以经过白平衡、去马赛克、降噪、色域转换、伽马校正、压缩等处理后得到最终的图像信息。
电池500可以安装在中框300上。同时,电池500电连接至电路板400,以实现电池500为电子设备10供电。电路板400上可以设置有电源管理电路。电源管理电路用于将电池500提供的电压分配到电子设备10中的各个电子器件。其中,电池500可以为可充电电池500。例如,电池500可以为锂离子电池500。
后盖600可以位于电路板400远离显示装置200的一侧,也即,后盖600位于电子设备10的最外部,并用于形成电子设备10的外部轮廓。后盖600可以一体成型。在后盖600 的成型过程中,可以在后盖600上形成后置摄像头孔、指纹识别模组安装孔等结构。
后盖600可以为金属材质,比如镁合金、不锈钢等金属。需要说明的是,本申请实施例的后盖600的材料并不限于此,还可以采用其它方式。例如,后盖600可以为塑胶材质。再例如,后盖600可以为陶瓷或玻璃材质。再例如,后盖600可以包括塑胶部分和金属部分,后盖600可以为金属和塑胶相互配合的壳体结构。具体的,可以先成型金属部分,比如采用注塑的方式形成镁合金基板,在镁合金基板上再注塑塑胶,形成塑胶基板,以形成完整的壳体结构。
请结合图1并参考图2,图2为图1所示的显示装置的第一种结构示意图。显示装置200可以包括相互连接的第一显示区210和第二显示区220。盖板100设置在第一显示区210和第二显示区220的外侧,盖板100覆盖第一显示区210和第二显示区220。第一显示区210的内侧可以设置电子设备10的电路板400、电池500等电子器件。也即,电路板400、电池500等电子器件可以设置在第一显示区210与后盖600之间。第一显示区210的内侧可以设置图像传感器700。图像传感器700的镜头可以朝向第一显示区210设置,图像传感器700用于获取透过第一显示区210的外界光信号进行成像。
其中,第一显示区210和第二显示区220都可以用于显示文字或图像,第一显示区210和第二显示区220可以共同显示同一图像,例如,第二显示区220显示预设图像的一部分,第一显示区210显示预设图像剩下的部分。第一显示区210和第二显示区220也可以显示不同的图像,例如,第二显示区220显示预设图像,第一显示区210显示任务栏图像。
可以理解的是,第一显示区210的面积可以远小于第二显示区220,第二显示区220可以围绕第一显示区210设置,第一显示区210周缘可以都与第二显示区220邻接。第一显示区210可以位于第二显示区220的中间。第二显示区220也可以部分围绕第一显示区210,第一显示区210的部分边缘与第二显示区220邻接。第二显示区220的边角也可以为不规则形状,例如具有一个缺口,第一显示区210可以位于该缺口内。
可以理解的是,第一显示区210和第二显示区220的位置关系并不局限于上述举例,其他可使显示装置200包括第一显示区210和第二显示区220的方案均在本申请的保护范围。
需要说明的是,本申请实施例中的第二显示区220可以作为显示装置200的主要显示区,第一显示区210可以作为显示装置200的辅助显示区,第二显示区220可以为主动式驱动(AMOLED)显示区,第一显示区210可以为主动式驱动(AMOLED)显示区或被动式驱动(PMOLED)显示区。PMOLED的显示效果虽然低于AMOLED,但是因为第一显示区210的面积很小,显示的内容也很少,而且第一显示区210位于显示装置200的边缘,显示的内容重要性较低,所以第一显示区210可以采用PMOLED。被动式驱动的第一显示区210只需要一个薄膜晶体管(TFT)驱动,不透光的薄膜晶体管数量极少,可以极大的提升第一显示区210的透光率。
需要理解的是,在本申请的描述中,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
请参阅图3,图3为图2所示的显示装置沿P1至P2方向的第一种剖面示意图。显示装置200可以包括依次层叠设置的驱动电路层291、第一透明导电层292、阳极层293、像素定义层294、公共电极层295等层状结构。
像素定义层294包括第一像素定义区域2941,该第一像素定义区域2941可以对应显示装置200的第一显示区210设置。请结合图3并请参考4,图4为图3所示的像素定义层的一种结构示意图。第一像素定义区域2941具有多个像素孔,每个像素孔内设置有像素单元,像素单元包括有机发光材料,第一像素定义区域2941可以形成有至少一个第一像素单元a1,该第一像素单元a1可以包括一个或多个子像素201,例如,第一像素单元a1可以包括红光子像素、绿光子像素和蓝光子像素。子像素201可以至少为椭圆形子像素或圆形子像素,以使得第一像素单元a1可以包含椭圆形子像素或圆形子像素。
阳极层293可以层叠设置于像素定义层294一侧,阳极层293与驱动电路层291电连接,并用于控制驱动电路层291的每一个第一驱动单元2911。阳极层293包括多个透明阳极2931,多个透明阳极2931可以对应显示装置200的第一显示区210设置,也即,多个透明阳极2931可以对应第一像素定义区域2941设置。一个透明阳极2931可以与像素定义层294的一个子像素201电连接。
驱动电路层291间隔地设置于阳极层293背离像素定义层294的一侧,驱动电路层291在对应于第一像素定义区域2941之外的区域内设置有多个第一驱动单元,其中,所谓对应于第一像素定义区域2941之外的区域可以是指对应第一显示区210外的区域,也可以是对应第二显示区220的区域。每一第一驱动单元2911用于驱动一个子像素201。第一驱动单元2911包括不透光的部分如薄膜晶体管TFT。
第一透明导电层292设置于阳极层293和驱动电路层291之间。第一透明导电层292形成有多条曲线形的透明导电线路2921,该透明导电线路2921可以部分对应第一显示区210设置、部分对应第二显示区设220置。每一个透明阳极2931通过一条透明导电线路2921电连接至一个第一驱动单元2911。
公共电极层295设置在像素定义层294上,公共电极层295可以对应第一显示区210和第二显示区220设置,阳极层293和公共电极层295分别设置在像素定义层294的两侧,并与驱动电路层291的多个第一驱动单元2911共同驱动多个子像素201。
本申请实施例的显示装置200,驱动电路层291可以与电源正极电连接,公共电极层295可以与电源负极电连接,当电源正极和电源负极通电时,电流会在驱动电路层291、阳极层293、像素定义层294和第一透明导电层292中流动,以使得在电流作用下,像素定义层294的子像素201被驱动并可以发出光线,以实现显示装置200的显示功能。
本申请实施例的电子设备10,当图像传感器700设置于显示装置的内侧时,外部光线经过显示装置200的第一显示区210时,对应第一显示区210的阳极层293内设置的是透明阳极2931,透明阳极2931对外部光线的衍射干扰较小;并且,不透光的第一驱动单元2911设置对应第一显示区210外部的区域,不透光的第一驱动单元2911完全不会影响外部光线的入射,使得外部光线在第一显示区210的透过率较高;同时,外部光线经过圆形或 椭圆的子像素201时,外部光线形成的衍射光谱中,能量更够更加集中在主级衍射条纹内,各次级衍射条纹的能量较低,各次级衍射条纹会更少,从而可以减轻衍射现象。
为了进一步地减轻衍射干扰,请参考图5,图5为图4所示的子像素的第一种结构示意图。本申请实施例的显示装置200,每一子像素201可以包括相互连接主体部2011和边缘部2012。其中,在平行于像素定义层294的方向上,主体部2011的横截面可以为圆形或椭圆形。边缘部2012的横截面可以近似为环形,该环形可以包括外部轮廓和内部轮廓,该内部轮廓环绕并贴合主体部2011的外周缘,该内部轮廓可以是闭合的圆形或椭圆形曲线;该外部轮廓可以包括多条曲率不同的曲线,多条曲率不同的曲线首位相连可以形成环绕主体部2011的闭合曲线。
可以理解的是,多条曲率不同的曲线可以形成环绕主体部2011的不规则闭合曲线。该不规则闭合曲线可以是指该曲线不为规则的正三角形、正四边形等正多边形;该不规则闭合曲线也不为常见的三角形、正方形、长方形、平行四边形;该不规则闭合曲线也不为规则的圆形、椭圆形;该不规则曲线也不为多个相同弧形连接而成的曲线。
可以理解的是,当边缘部2012的外部轮廓包括多条曲线时,任意相邻的两条曲线的曲率可以不同。进而,光线在经过任意相邻的两条曲线时,形成的衍射现象更加容易相互抵消,从而,光线在经过整个边缘部2012时,其产生衍射的概率大大降低,可以较大限度的减轻衍射现象。
本申请实施例的显示装置200,子像素201包括由不同曲率的曲线构成的边缘部2012时,受到不同曲率的曲线的影响,当外界光线经过子像素201的边缘部2012时,边缘部2012上不同部位形成的衍射现象会相互抵消,进而可以减轻衍射条纹的形成,降低衍射干扰。
其中,请参考图6,图6为图4所示的子像素的第二种结构示意图。本申请实施例的显示装置200,每一子像素201可以包括相互连接的主体部2011和凸起部2013。凸起部2013可以包括多个间隔设置的凸起,多个凸起环绕并凸出主体部2011的外周缘设置。
可以理解的是,多个凸起可以由多条曲率不同的曲线构成,每一凸起可以从主体部2011的外边缘朝着远离主体部2011的方向延伸而成。此时,子像素201的外周缘可以包括多个凸起。
可以理解的是,凸起的数量可以在20至30个左右,此时,边缘部2012的外周缘可以包括20至30条首位相互连接的曲线,子像素201的外边缘可为不规则的曲线。
本申请实施例的显示装置200,子像素201包括由多个凸起构成的外边缘时,由于凸起的弯折曲率更大,当外界光线经过子像素201的边缘部2012时,子像素201上不同凸起形成的衍射现象会相互抵消,进而可以减轻衍射条纹的形成,降低衍射干扰。
其中,请继续参考图5和图6,子像素201在平行于像素定义层294的方向上的横截面的直径可以为目标波长一半的非整数倍。可以理解的是,目标波长的光线可以是某一波段范围内的一种光线。例如,当目标波长的光线为可见光波段(380纳米至750纳米波段)的光线,此时,子像素201的横截面直径可为整个可见光波段范围内任一波长一半的非整 数倍,也即,子像素201的横截面直径可以避开整个波段范围内任一波长一半整数倍。
可以理解的是,目标波长一半的非整数倍是指子像素201的横截面的直径不为二分之一的目标波长的整数倍,也即,直径D≠n·1/2·λ(目标波长),n为正整数。
可以理解的是,当子像素201在平行于像素定义层294的方向上的横截面为圆形时,也即,子像素201为圆柱像素时,该子像素201在平行于像素定义层294的方向上的横截面上任意经过中心的两个点之间的直径均可以为目标波长一半的非整数倍。子像素201的中心可以是子像素201在平行于像素定义层294的方向上的圆形横截面的圆心。
可以理解的是,当子像素201在平行于像素定义层294的方向上的横截面为椭圆形时,也即,该子像素201为椭圆柱像素时,该子像素201在平行于像素定义层294的方向上的横截面上任意经过中心的两个点之间的直径也可以为目标波长一半的非整数倍。子像素201的中心可以是子像素201在平行于像素定义层294的方向上的椭圆形横截面的上长轴和半轴的交点。
基于光学原理,显示装置200外部的光线经过子像素201时,由于子像素201的透过率与空气、像素间隔区域的透过率不同,子像素201相对空气、像素间隔区域为障碍物,光线在经过障碍物的子像素201时会偏离原来直线传播轨迹而形成衍射现象。本申请实施例的显示装置200,子像素201的横截面为圆形或椭圆形像素,当子像素201阻挡目标波长的光线时,由于子像素201的横截面的直径为目标波长一半的非整数倍时,可以使得能量更加集中在主级衍射条纹内,各次级衍射条纹的能量较低,各次级衍射条纹会更少,从而可以减轻衍射现象。
其中,请参考图7,图7为图4所示的子像素的第三种结构示意图。本申请实施例的显示装置200,第一像素定义区域2941内的第一像素单元a1可以包括间隔设置的第一子像素2014、第二子像素2015和第三子像素2016,或者说,子像素201可以包括第一子像素2014、第二子像素2015和第三子像素2016。在平行于像素定义层294的方向上,第一子像素2014和第二子像素2015的横截面积可以大于第三子像素2016的横截面积。
可以理解的是,第一子像素2014、第二子像素2015、第三子像素2016可以由有机发光材料制成,其在电流作用下可以自发光。例如,第一子像素2014可以发出第一颜色的光线,第二子像素2015可以发出第二颜色的光线,第三子像素2016可以发出第三颜色的光线。第一颜色、第二颜色和第三颜色可以各不相同。
可以理解的是,在平行于像素定义层294的方向上,第一子像素2014和第二子像素2015的横截面可以为圆形,第三子像素2016的横截面可以为椭圆形,其中,椭圆形的长轴尺寸可以与圆形的直径相等,椭圆形的短轴尺寸可以小于圆形的直径,以使得第三子像素2016的横截面积小于第一子像素2014、第二子像素2015的横截面积。
可以理解的是,第一子像素2014、第二子像素2015、第三子像素2016的厚度可以相同,也即,在第一像素定义区域2941内,第一子像素2014、第二子像素2015、第三子像素2016的上表面可以处以同一平面,第一子像素2014、第二子像素2015、第三子像素2016的下表面也可以处于同一平面。
本申请实施例的显示装置200,在平行于像素定义层294的方向上,第三子像素2016的横截面小于第一子像素2014和第二子像素2015,使得第三子像素2016占据的空间更小,由于光线在经过障碍物时才会发生衍射,进而,占据空间更小的第三子像素2016产生衍射的概率更小,从而可以降低整个显示装置200产生衍射的概率,降低衍射干扰。
其中,在平行于像素定义层294的方向上,当第一子像素2014和第二子像素2015的横截面积大于第三子像素2016的横截面积时,第一子像素2014、第二子像素2015和第三子像素2016可以采用不同的发光材料制作,使得第一子像素2014可以具有第一发光衰减频率,第二子像素2015可以具有第二发光衰减频率,第三子像素2016可以具有第三发光衰减频率,并且,第一发光衰减频率、第二发光衰减频率可以大于第三发光衰减频率。
本申请实施例的显示装置200,当第一子像素2014和第二子像素2015的发光衰减频率大于第三子像素2016的发光衰减频率时,经过相同使用时长后,在相同电流作用下,单位面积的第一子像素2014和第二子像素2015发出的光线的强度会减弱,会小于单位面积第三子像素2016发出光线的强度。由于第一子像素2014和第二子像素2015的横截面积大于第三子像素2016的横截面积,使得,第一子像素2014和第二子像素2015的发出的总体光线总强度可以与第三子像素2016发出的光线总强度相同,进而,本申请实施例的显示装置200,第一子像素2014、第二子像素2015和第三子像素2016可以发出相同亮度的光线,能对像素的衰减进行补偿,可以提高整个显示装置200的使用寿命。
其中,请参考图8,图8为图4所示的子像素的第四种结构示意图。本申请实施例的显示装置200,第一显示区210内可以包括间隔设置的多个子像素201,也即,多个子像素201间隔设置在第一像素定义区域2941内。其中,在平行于像素定义层294的方向上,子像素201的横截面直径d可以不为相邻两个子像素201之间的间距a的二分之一,也即,子像素201的横截面直径可以大于或小于相邻两个子像素201之间的间距a的二分之一。
可以理解的是,在平行于像素定义层294的方向上,子像素201的横截面直径可以参见前述的记载,在此不再赘述。可以理解的是,如图8所示,在平行于像素定义层294的方向上,相邻两个子像素201之间的间距a可以是位于两个子像素201边缘上的两点之间的距离,其中,两个子像素201边缘上的两点的连线会分别经过两个子像素201的圆心。
可以理解的是,在平行于像素定义层294的方向上,本申请实施例的两个子像素201的横截面可以均是椭圆形,也可以均是圆形,还可以一个为圆形,一个为椭圆形。当然,本申请实施例的两个子像素201还可以是其他的形状,本申请实施例对其具体形状并不做限定。
可以理解的是,假设第一显示区210的像素间隔区域的折射率为n 1,厚度为d 1,子像素201的折射率为n 2,厚度为d 2,两相邻子像素201的间距为a,子像素201的直径为d,光源距离第一显示区210的距离为n 0,则光线经过第一显示区210的透过率函数可以表示为:
Figure PCTCN2021110586-appb-000001
分别改变a和d的值,可以得到不同的衍射图样。示例性的,请参考图9至图11,其中,图9为本申请实施例的第一显示区的第一种衍射图样,图10为本申请实施例的第一显示区的第二种衍射图样,图11为本申请实施例的第一显示区的第三种衍射图样。并且,在图9至图11中,左边为第一显示区210的衍射光强包络图,右边为第一显示区210的衍射级次分布图。
在图9中,两相邻子像素201的间距为a为18微米,子像素201的直径为d为23微米。在图10中,两相邻子像素201的间距为a为18微米,子像素201的直径为d为33微米。在图11中,两相邻子像素201的间距为a为18微米,子像素201的直径为d为63微米。
对比图9至图11可以看出,衍射级次间距和d成反比关系,随着d的增大,衍射级次间距在逐渐缩小,当a与d的比例接近a=0.5d时,±1级衍射光强最强。基于此,本申请实施例的显示装置200,子像素201的横截面的直径可以不为相邻两个子像素201之间的间距a的二分之一,光线在经过第一显示区210时,可以使得次级衍射光强较弱,从而可以减轻衍射。
其中,请参考图2并请参考图12,图12为图2所示的显示装置沿P1至P2方向的第二种剖面示意图。
显示装置200的第一显示区210包括依次层叠设置的基板296、驱动电路层291、第一平坦化层298、第一透明导电层292、第二透明导电层297、阳极层293、像素定义层294、公共电极层295、第二平坦化层299和触控层290。
基板296可以作为显示装置200的承载平台,基板296可以采用玻璃或塑料或树脂或其他材料制成。例如基板296的材料可以采用聚酰亚胺(polyimide,PI)。
驱动电路层291设置于基板296上,驱动电路层291中包括驱动第一显示区210的子像素201的第一驱动单元2911,每个第一驱动单元2911包括至少一个薄膜晶体管TFT。其中,薄膜晶体管的源极和漏极位于同一层,栅极位于源极和发光层之间。
阳极层293设置在驱动电路层291上,阳极层293与驱动电路层291电连接,并用于控制驱动电路层291的每一个第一驱动单元2911。阳极层293包括多个透明阳极2931,多个透明阳极2931可以对应显示装置200的第一显示区210设置,也即,多个透明阳极2931可以对应第一像素定义区域2941设置。一个透明阳极2931可以与像素定义层294的一个子像素201电连接。
发光层294设置在阳极层293上,发光层294包括第一像素定义区域2941,第一像素定义区域2941具有多个像素孔,每个像素孔内设置有子像素201,子像素201包括有机发光材料。
第一透明导电层292设置于阳极层293和驱动电路层291之间。第一透明导电层292形成有多条曲线形的透明导电线路2921,该透明导电线路2921可以部分对应第一显示区210设置、部分对应第二显示区220设置。每一个透明阳极2931通过一条透明导电线路2921电连接至一个第一驱动单元2911。
第二透明导电层297设置于阳极层293和驱动电路层291之间。第二透明导电层297可以和第一透明导电层292层叠设置,也即,第二透明导电层297可以设置在驱动电路层291与第一透明导电层292之间,第二透明导电层297也可以设置在第一透明导电层292与阳极层293之间。第二透明导电层297包括多个透明导电子层,每一透明导电子层将一个透明阳极2931电连接至一个第一驱动单元2911。随着第一显示区210的分辨率的提高,受到电子设备10体积的限制,第一透明导电层292并不能完全连接每一个子像素201,本申请实施例中,第一透明导电层292和第二透明导电层297的相互配合可以连接于高分辨率的第一显示区210的每一子像素201。
第一平坦化层298,设置于阳极层293和驱动电路层291之间,第一平坦化层298上设有多个在平坦化层厚度方向上贯穿第一平坦化层298的过孔2981,过孔2981用于穿过透明导电线路2921以将第一驱动单元2911和透明阳极2931电连接。透明导电线路2921通过第一平坦化层298上的过孔2981来走线,透明导电线路2921的走线可以更短,以进一步降低透明导电线路2921对光线的干扰。
公共电极层295设置在发光层294上,阳极层293和公共电极层295设置在子像素201两侧,并共同驱动子像素201。公共电极层295可以采用高透光率的ITO材料。
公共电极层295上还可以设置第二平坦化层299,子像素201设置在像素孔后,子像素201并未填满像素孔,公共电极层295设置在子像素201上后,会出现凹槽,第二平坦化层299可以将凹槽填平,并覆盖整层发光层294,用以保护发光层294等。
在第二平坦化层299上还可以设置触控层290,触控层290可以用于检测用户触控操作。在触控层290上还可以设置偏光片(图中未示出),偏光片可以用于防止内部光线透射出去,防止用户看到内部的驱动单元等元件。触控层290和偏光片可以贴合在一起,然后再设置在平坦化层296上。
需要说明的是,在其他一些实施例中,可以根据需要增加或减少部分结构,本申请实施例在此不做限定。例如,可以减少触控层290、偏光片中的至少一项。又例如,可以在第二平坦化层299和触控层290之间增加一层保护层,保护层可以采用与基板296一样的材料。
第一显示区210内各层结构中除了驱动电路层291中的第一驱动单元2911,都采用透光材料,以提高第一显示区210的透光率。例如,第一显示区210的基板296、像素定义层294、公共电极层295、第一平坦化层298、第二平坦化层299、触控层290都可以采用透光材料制成,阳极层293中的信号线可以采用ITO或纳米银等透光材料制。驱动电路层291的TFT无法采用透光材料,驱动电路层291中除了TFT其他部分也可以采用透光材料。可以理解的是,通过提高材料的透光率以及改变布线的排布以提高第一显示区210的方案均在本申请的范围内。
需要说明的是,第二显示区220可以采用和第一显示区210类似的层叠结构,具体可参阅上述实施例,在此不再赘述。第二显示区220的基板、像素定义层、公共电极层、平坦化层、触控层等中的至少一项可以和第一显示区210采用一样的透光材料,示例性地,基板可 以采用玻璃或树脂等透光材料。第二显示区220的基板、像素定义层、公共电极层、平坦化层、触控层等中的至少一项可以和第一显示区210采用不同的材料,例如,第二显示区220的阳极层293中的信号线可以采用钼、钼铝钼、Ag等金属或合金材料,第二显示区220没有设置遮光块,第二显示区220金属阳极可以采用金属材料,比如Mg、Ag、Al。第二显示区220的公共电极层可以采用Mg、Ag等材料。第二显示区220的公共电极层和第一显示区210的公共电极层边缘处是相连的,共同构成一个完整的公共电极层295。其中,第二显示区220的发光层包括多个子像素,第二显示区220的子像素的材料可以和第一显示区210的子像素201的材料相同,透光率也相同。第二显示区220的子像素也可以和第一显示区210的子像素201不同,以实现第一显示区210的透光率大于第二显示区220的透光率。
其中,请再次参考图4,本申请实施例的显示装置200,像素定义层294还可以包括第二像素定义区域2942,该第二像素定义区域2942可以对应于驱动电路层291,并在对应于第一像素定义区域2941之外的区域,也即,第一驱动单元2911在像素定义层294的正投影位于第二像素定义区域2942。
可以理解的是,第二像素定义区域2942可以形成有至少一个第二像素单元a2,当第二像素单元a2包括多个时,多个第二像素单元a2可以间隔设置。其中,第二像素单元a2可以包括多个第四子像素202,例如,第二像素单元a2可以包括红光子像素、绿光子像素和蓝光子像素。在平行于像素定义层294的方向上,第四子像素202的横截面积可以大于子像素201的横截面积。
可以理解的是,第二像素定义区域2942可以设置于第二显示区220,该第二像素定义区域2942可以与第一像素定义区域2941相邻设置并相互连接。第一像素定义区域2941和第二像素定义区域2942可以位于盖板100的内侧,以使盖板100可以保护第一像素定义区域2941和第二像素定义区域2942。
可以理解的是,第一像素定义区域2941与第二像素定义区域2942可以同层设置。所谓同层设置,可以是指第一像素定义区域2941的外表面可以与第二像素定义区域2942的外表面处于同一平面、第一像素定义区域2941的内表面可以与第二像素定义区域2942的内表面处于同一平面。
可以理解的是,在平行于像素定义层294的方向上,第二像素单元a2的第四子像素202的横截面可以如第一像素单元a1的子像素201一样为圆形或椭圆形,以减轻衍射干扰。
可以理解的是,驱动电路层291对应于第二像素定义区域2942的区域内设置有多个第二驱动单元(图未示),每一第二驱动单元与第二像素单元a2的一个第四子像素202电连接以驱动一个第四子像素202。
可以理解的是,阳极层293可以设置多个金属阳极(图未示),金属阳极可以设置于第二显示区220,每一金属阳极可以与第二像素单元a2的一个第四子像素202电连接。显示装置200也可以包括导电层(图未示),导电层设置于第二显示区220,导电层形成有多条曲线形的导电线路,每一金属阳极通过一条导电线路电连接至一个第四子像素202。
本申请实施例的显示装置200,不透光的第一驱动单元2911正投影位于第二像素定义 区域2942,不透光的第一驱动单元2911完全不会影响入射至第一像素定义区域2941的外部光线,使得外部光线在与第一像素定义区域2941对应的区域时的透过率较高。并且,第二像素单元a2的横截面积大于子像素201的横截面积,子像素201的尺寸小于第二像素单元a2的尺寸,进而,子像素201占据的面积更小,第一显示区210内的像素间隔更大,第一显示区210的透过率更高,衍射现象发生的概率更低。
可以理解的是,在平行于像素定义层294的方向上,当第四子像素202的横截面积可以大于子像素201的横截面积时,可以选择特定衰减频率的发光材料,使得第四子像素202的衰减频率大于子像素201的衰减频率,进而可以保证第一显示区210和第二显示区220显示的一致性,第一显示区210和第二显示区220在显示信息时不会出现明显的边界感。
其中,第一显示区210的透过率可以大于第二显示区220的透过率。可以理解的是,实现第一显示区210的透过率大于第二显示区220的透过率的方式可以有多种。
例如,第一显示区210可以包括多个子像素201,第二显示区220可以包括多个第四子像素202,多个子像素201的像素密度可以小于多个第四子像素202的像素密度,以使得第一显示区210内多个子像素201之间的间隔区域更大,进而导致可透过光线的区域增多,从而实现第一显示区210的透光率大于第二显示区220的透光率。
可以理解的是,为了进一步提高第一显示区210的透光率,第一显示区210的子像素201采用透光材料。例如采用氧化铟锡材料。
可以理解的是,多个第四子像素202和多个子像素201均可以采用阵列的方式排布。第一显示区210的子像素201的排列方式可以为标准RGB排列、Pentile排列或Delta排列中的一种,第二显示区220的第四子像素202的排列方式可以为标准RGB排列、Pentile排列或Delta排列中的一种。需要说明的是,第一显示区210中子像素201还可以采用其他排列方式,第二显示区220中第四子像素202还可以采用其他排列方式。
再例如,在显示装置200中设置多个驱动电路层291,第一驱动层(图未示)与子像素201连接并驱动子像素201,第二驱动层(图未示)与第四子像素202连接并驱动第四子像素202,第一驱动层设置于第二驱动层的内侧,第二驱动层设有贯穿其厚度方向的过孔2981,驱动走线穿过该过孔2981处将第一驱动层内的第一驱动单元2911与子像素201电连接。
可以理解的是,驱动单元可以采用2T1C、5T1C、7T1C等驱动电路中的一种。诸如第一驱动单元2911可以采用2T1C、5T1C、7T1C中的一种,第二驱动单元采用2T1C、5T1C、7T1C中的一种。其中,T表示薄膜晶体管,其中C表示电容。为了提高第一显示区210的透光率,设置在第一显示区210的第一驱动单元2911可以为比第二显示区220的主驱动单元简略的驱动电路,比如第一驱动单元2911包括的薄膜晶体管的数量少于第二驱动单元的薄膜晶体管的数量。诸如第一驱动单元2911可以采用2T1C、5T1C中的一种,第二驱动单元采用7T1C。第一驱动单元2911中不透光的薄膜晶体管的数量更少,第一显示区210中不透光的部分更少,可以提高第一显示区210的透光率。
又例如,第一显示区210和第二显示区220可以具有相同的像素物理结构,但是,第 一显示区210中的多个子像素201可以并联,可以并联连接到一个信号线,形成一像素集合,可以减少子像素201与信号线连接的信号线条数,从而可以提高第一显示区210的透光率。
可以理解的是,以上仅为实现第一显示区210的透光率大于第二显示区220的透光率的方案举例,本申请实施例的方案并不局限于此,其他可以实现第一显示区210的透光率大于第二显示区220的透光率的方案都在本申请的保护范围内。
其中,请参考图13,图13为图1所示的显示装置的第二种结构示意图。显示装置200还可以包括非显示区230。非显示区230可以位于第二显示区220的周缘,非显示区230可以与第二显示区220相互连接。
可以理解的是,第一驱动单元2911位于该非显示区230内,透明导电线路2921分别与子像素201和第一驱动单元2911连接,使得第一驱动单元2911可以驱动子像素201发光。
可以理解的是,非显示区230可以没有显示功能,并不能显示画面。可以理解的是,非显示区230可以设置在电子设备10的顶部区域,非显示区230也可以设置在电子设备10的底部区域,非显示区230也可以同时设置在电子设备10的顶部和底部区域,非显示区230也可以设置电子设备10的顶部、底部以及两个相对设置的侧部。
可以理解的是,透明导电线路2921可以为弧形走线。透明导电线路2921以采用透明材料制成,例如采用氧化烟锡材料制成。
本申请实施例的显示装置200,将第一驱动单元2911设置于非显示区230,第一驱动单元2911不用占据第一显示区210的空间,第一显示区210的透过率可以更高,外部光线也不会在第一显示区210内遇到第一驱动单元2911而形成衍射现象,进而,也可以降低对第一显示区210的衍射干扰。同时,透明导电线路2921用弧形走线,外部光线遇到弧形走线,弧形走线上的不同部位形成的衍射现象会相互抵消,也可以减轻衍射条纹的形成,降低衍射干扰。
其中,第一显示区210和第二显示区220的第一像素定义区域2941和第二像素定义区域2942,可以为OLED显示层,OLED显示层可以包括层叠设置的空穴传输层、有机发光层、电子传输层等层状结构,当在阳极层293和公共电极层295之间通过电流时,由电极注入的电子和空穴在发光层中复合形成激子,激子辐射退激发而发出光子并产生可见光。
由于OLED像素可以自发光,其发出的光线可以朝着显示装置200的外部传输并被人眼吸收。其发出的光线也可以朝着显示装置200内部传输,传输至显示装置200内部的光线一般被称为屏幕漏光,这一部分光线没有被人眼接收,一方面会影响显示装置200的亮度,另一方面也使得像素的透过率变低而产生衍射现象。为了提高显示装置200的亮度,相关技术中往往是在阳极层293中添加反光材料,例如银材料,光线经过OLED像素时,在银材料的反射作用下,可以将第一像素定义区域2941和第二像素定义区域2942的屏幕漏光反射至显示装置200外部。
在阳极层293中添加反光材料可以提高显示装置200的亮度,但是随之而来的是,会 降低显示层中像素的透光率,当光线经过显示装置200时,会形成衍射现象,该衍射会严重图像传感器700的采光及拍摄效果。
因此,请参考图14,图14为图2所示的显示装置沿P1至P2方向的第三种剖面示意图。本申请实施例的显示装置200,第二显示区220可以在第二像素定义区域2942的阳极层293内设置反光材料而在第二像素定义区域2942形成反光层270,以保证显示装置200的显示亮度。
可以理解的是,反光层270也可以设置在第二像素定义区域2942的一侧,例如内侧,以保证显示装置200的显示亮度。
可以理解的是,第一像素定义区域2941可以在阳极层293内不设置反光材料,从而不形成反光层270。
为了同时兼顾显示亮度和图像传感器700拍摄效果,本申请实施例的显示装置200还可以包括阻挡件240,该阻挡件240可以设置在第一像素定义区域2941与图像传感器700之间。该阻挡件240可以在第一状态与第二状态下切换,处于第一状态下的阻挡件240可以将第一像素定义区域2941、第二像素定义区域2942发出的光线反射至显示装置200外或者被吸收;处于第二状态下的阻挡件240可以使得至少部分环境光能穿过显示装置200并进入到图像传感器700内。
其中,请参考图15和图16,图15为图1所示的电子设备沿M1至M2的第一种剖面示意图,图16为图1所示的电子设备沿M1至M2的第二种剖面示意图。该阻挡件240可以是电致反射层241,该电致反射层241可以设置于显示装置200例如第一像素定义区域2941与图像传感器700之间,该电致反射层241可以正对第一像素定义区域2941、第一显示区210设置。并且,在电流作用下,电致反射层241可以实现从低透光率的着色状态到高透光率的消色状态之间的可逆变化。
例如,如图15所示,在不通电的状态下,本申请实施例的电致反射层241可以呈现有颜色的第一状态,在第一状态下,电致反射层241具有较低的透光率,第一像素定义区域2941、第二像素定义区域2942发出的光线不能透过该电致反射层241;并且,该电致反射层241可以优选具有反射功能的材料制作,以使得在第一状态下,该电致反射层241还可以将有机发光层发出的光线反射至显示装置200外。
如图16所示,在通电的状态下,本申请实施例的电致反射层241可以呈现出透明的第二状态,在第二状态下,电致反射层241具有较高的透光率,环境光可以透过该电致反射层241并进入到图像传感器700中,进而,在第二状态下,该电致反射层241可以使得至少部分环境光能穿过显示装置200并进入到图像传感器700内。
其中,该阻挡件240也可以是电致吸收层(图未示),该电致吸收层可以设置于显示装置200例如第一像素定义区域2941与图像传感器700之间,该电致吸收层可以正对第一像素定义区域2941、第一显示区210设置。并且,在电流作用下,电致吸收层也可以实现从低透光率的着色状态到高透光率的消色状态之间的可逆变化。
例如,在不通电的状态下,本申请实施例的电致吸收层可以呈现有颜色的第一状态, 在第一状态下,电致吸收层具有较低的透光率,第一像素定义区域2941、第二像素定义区域2942发出的光线不能透过该电致吸收层,并可被电致吸收层吸收。在通电的状态下,本申请实施例的电致吸收层可以呈现出透明的第二状态,在第二状态下,电致吸收层具有较高的透光率,环境光可以透过该电致吸收层并进入到图像传感器700中,进而,在第二状态下,该电致吸收层可以使得至少部分环境光能穿过显示装置200并进入到图像传感器700内。
其中,请参考图17和图18,图18为图1所示的电子设备沿M1至M2的第三种剖面示意图,图18为图1所示的电子设备沿M1至M2的第四种剖面示意图。该阻挡件240也可以是反光元件242,电子设备10还可以包括一驱动机构260,该驱动机构260可以与反光元件242电连接,在驱动机构260的作用下,该反光元件242可以在第一状态与第二状态之间切换,第一状态为反光元件242正对第一像素定义区域2941设置,第二状态为反光元件242至少部分错开第一像素定义区域2941设置。
如图17所示,当反光元件242处于第一状态时,该反光元件242的反光面可以正对第一像素定义区域2941的发光面设置,该反光元件242的反光面在第一像素定义区域2941上的投影可以覆盖该第一像素定义区域2941和发光面,以使得反光元件242可以将第一像素定义区域2941发射光线全部反射至显示装置200的外部。
如图18所示,当反光元件242处于第二状态时,该反光元件242的反光面可以与第一像素定义区域2941的发光面完全错开或部分错开设置。该错开设置可以是指反光元件242在第一像素定义区域2941上的投影与第一像素定义区域2941完全不相交,反光面在第一像素定义区域2941的投影与发光面在第一像素定义区域2941的投影完全不相交。此时,反光元件242完全未遮挡第一像素定义区域2941,第一像素定义区域2941发出的光线可以不经反射而直接进入到显示装置200的内部并被图像传感器700接收并检测。
可以理解的是,该错开设置也可以是指反光元件242在第一像素定义区域2941上的投影与第一像素定义区域2941部分不相交,反光面在第一像素定义区域2941的投影与发光面在第一像素定义区域2941的投影部分不相交。此时,反光元件242未完全遮挡第一像素定义区域2941,第一像素定义区域2941发出的光线中部分光线可以不经反射而直接进入到显示装置200的内部并被传感器接收并检测。
当然,该错开设置也可以是指反光元件242的反光面与发光面之间呈预设夹角,该预设夹角可以大于零度而小于三百六十度,以使得该反光面并没有完全正对发光面设置,此时第一像素定义区域2941发出的光线中存在部分光线可以穿过反光元件242而未被反射,从而可以进入显示装置200的内部并被图像传感器700接收并检测。
可以理解的是,驱动机构260可以是电机驱动机构,示例性的,驱动机构260可以包括电机和滑轨,滑轨可以设置在第一像素定义区域2941的一侧例如内侧,电机的转轴可以与反光元件242连接,电机带动反光元件242在滑轨上滑动,以使反光元件242可以正对第一像素定义区域2941设置并覆盖第一显示区210,或者可以使反光元件242错开第一像素定义区域2941设置并远离第一显示区210。
示例性的,驱动机构260也可以是电磁驱动机构,例如,驱动机构260可以包括两块磁铁、弹簧和电磁电路,两块磁铁分别设置在反光元件242与第一像素定义区域2941上,弹簧的一端与反光元件242连接,弹簧的另一端可固定在第二显示区220的结构上。当电磁电路接通时,反光元件242和第一像素定义区域2941在磁引力的作用下,反光元件242正对第一像素定义区域2941设置并覆盖在第一显示区210,此时弹簧被拉伸。当电磁电路断开时,反光元件242与第一像素定义区域2941之间的磁引力消失,反光元件242被弹簧拉回至初始位置,也即,反光元件242与第一像素定义区域2941错开设置并远离第一显示区210。
当然,本申请实施例的驱动机构260并不局限于上述举例,驱动机构260也可以是其他的驱动机构,例如气缸驱动机构、电机齿轮驱动机构、电机皮带驱动机构等。凡是可使反光元件242在第一状态与第二状态之间切换的驱动机构260都在本申请的保护范围内。
本申请实施例的显示装置200和电子设备10,阻挡件240可以在第一状态和第二状态之间切换,当阻挡件240处于第一状态时,阻挡件240可以完全遮挡第一像素定义区域2941,阻挡件240可以将第一像素定义区域2941发出的光线完全反射至显示装置200外或完全吸收,从而可以保证显示装置200的亮度及降低反射;当阻挡件240处于第二状态时,阻挡件240不能完全遮挡第一像素定义区域2941,光线可以不经过阻挡件240而直接进入到显示装置200内并被图像传感器700接收。从而,一方面,可以提高显示装置200的透光率,另一方面,第一像素定义区域2941的多个子像素201不会形成衍射光栅,也不会影响图像传感器700的拍摄效果。
以上对本申请实施例提供的显示装置及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示装置,包括:
    像素定义层,包括第一像素定义区域,所述第一像素定义区域形成有至少一个包含椭圆形子像素或圆形子像素的第一像素单元;
    阳极层,层叠设置于所述像素定义层一侧,所述阳极层包括多个透明阳极,每一个所述透明阳极与一个所述子像素连接;
    驱动电路层,间隔地设置于所述阳极层背离所述像素定义层的一侧,所述驱动电路层在对应于所述第一像素定义区域之外的区域内设置有多个第一驱动单元;
    第一透明导电层,设置于所述阳极层和所述驱动电路层之间,并形成有多条曲线形的透明导电线路,每一个所述透明阳极通过一条所述透明导电线路电连接至一个所述第一驱动单元。
  2. 根据权利要求1所述的显示装置,其中,所述子像素包括主体部和凸起部,所述凸起部包括多个间隔设置的凸起,多个所述凸起环绕并凸出所述主体部的外周缘设置。
  3. 根据权利要求1所述的显示装置,其中,所述子像素包括主体部和边缘部,所述边缘部环绕所述主体部的外周缘设置,所述边缘部的外周缘包括多条首尾相连的曲线,至少两条所述曲线的曲率不同。
  4. 根据权利要求1所述的显示装置,其中,所述子像素在平行于所述像素定义层的方向上的横截面的直径为目标波长一半的非整数倍,以使所述目标波长的光线入射至所述子像素时的能量集中在主级衍射光谱中。
  5. 根据权利要求1所述的显示装置,其中,所述第一像素单元包括间隔设置的第一子像素、第二子像素和第三子像素,在平行于所述像素定义层的方向上,所述第一子像素和所述第二子像素的横截面积大于所述第三子像素的横截面积。
  6. 根据权利要求5所述的显示装置,其中,所述第一子像素和所述第二子像素的发光衰减频率大于所述第三子像素的发光衰减频率。
  7. 根据权利要求1所述的显示装置,其中,所述子像素包括多个,多个所述子像素间隔设置,在平行于所述像素定义层的方向上,每一所述子像素的横截面直径不等于相邻两个子像素之间间距的二分之一。
  8. 根据权利要求1所述的显示装置,其中,还包括:
    第二透明导电层,设置于所述阳极层与所述驱动电路层之间,所述第二透明导电层包括多个透明导电子层,每一所述透明导电子层将一个所述透明阳极电连接至一个所述第一驱动单元。
  9. 根据权利要求1所述的显示装置,其中,还包括:
    平坦化层,设置于所述阳极层和所述驱动电路层之间,所述平坦化层上设有多个在所述平坦化层厚度方向上贯穿所述平坦化层的过孔,所述过孔用于穿过所述透明导电线路以将所述第一驱动单元和所述透明阳极电连接。
  10. 根据权利要求1所述的显示装置,其中,所述像素定义层还包括第二像素定义区 域,所述第一驱动单元在所述像素定义层的正投影位于所述第二像素定义区域。
  11. 根据权利要求10所述的显示装置,其中,所述第二像素定义区域形成有至少一个包括多个第四子像素的第二像素单元,所述驱动电路层对应于所述第二像素定义区域的区域内设置有多个第二驱动单元,每一所述第二驱动单元与一个所述第四子像素电连接以驱动所述第四子像素。
  12. 根据权利要求10所述的显示装置,其中,还包括:
    阻挡件,设置于所述像素定义层远离所述阳极层一侧;
    驱动机构,与所述阻挡件电连接,所述驱动机构用于使所述阻挡件在第一状态与第二状态之间切换,所述第一状态为所述阻挡件对应所述第一像素定义区域设置,所述第二状态为所述阻挡件对应所述第二像素定义区域设置。
  13. 一种电子设备,包括:
    显示装置,所述显示装置包括依次层叠设置的像素定义层、阳极层、第一透明导电层和驱动电路层,所述像素定义层包括第一像素定义区域,所述第一像素定义区域形成有至少一个包含椭圆形子像素或圆形子像素的第一像素单元,所述阳极层包括多个透明阳极,每一个所述透明阳极与一个所述子像素连接,所述驱动电路层在对应于所述第一像素定义区域之外的区域内设置有多个第一驱动单元,所述第一透明导电层形成有多条曲线形的透明导电线路,每一个所述透明阳极通过一条所述透明导电线路电连接至一个所述第一驱动单元;及
    图像传感器,所述图像传感器设置于所述显示装置的一侧,所述图像传感器用于接收透过所述显示装置的光线。
  14. 根据权利要求13所述的电子设备,其中,所述子像素包括主体部和凸起部,所述凸起部包括多个间隔设置的凸起,多个所述凸起环绕并凸出所述主体部的外周缘设置。
  15. 根据权利要求13所述的电子设备,其中,所述子像素包括主体部和边缘部,所述边缘部环绕所述主体部的外周缘设置,所述边缘部的外周缘包括多条首尾相连的曲线,至少两条所述曲线的曲率不同。
  16. 根据权利要求13所述的电子设备,其中,所述子像素在平行于所述像素定义层的方向上的横截面的直径为目标波长一半的非整数倍,以使所述目标波长的光线入射至所述子像素时的能量集中在主级衍射光谱中。
  17. 根据权利要求13所述的电子设备,其中,所述第一像素单元包括间隔设置的第一子像素、第二子像素和第三子像素,在平行于所述像素定义层的方向上,所述第一子像素和所述第二子像素的横截面积大于所述第三子像素的横截面积。
  18. 根据权利要求13所述的电子设备,其中,所述子像素包括多个,多个所述子像素间隔设置,在平行于所述像素定义层的方向上,每一所述子像素的横截面直径不等于相邻两个子像素之间间距的二分之一。
  19. 根据权利要求13所述的电子设备,其中,所述像素定义层还包括第二像素定义区域,所述第一驱动单元在所述像素定义层的正投影位于所述第二像素定义区域。
  20. 根据权利要求19所述的电子设备,其中,所述显示装置还包括:
    阻挡件,设置于所述像素定义层远离所述阳极层一侧;及
    驱动机构,与所述阻挡件电连接,所述驱动机构用于使所述阻挡件在第一状态与第二状态之间切换,所述第一状态为所述阻挡件对应所述第一像素定义区域设置,所述第二状态为所述阻挡件对应所述第二像素定义区域设置。
PCT/CN2021/110586 2020-10-14 2021-08-04 显示装置及电子设备 WO2022078026A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21879073.1A EP4228001A4 (en) 2020-10-14 2021-08-04 DISPLAY DEVICE AND ELECTRONIC DEVICE
US18/299,951 US20230247891A1 (en) 2020-10-14 2023-04-13 Display apparatus and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011097946.6 2020-10-14
CN202011097946.6A CN114373784A (zh) 2020-10-14 2020-10-14 显示装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/299,951 Continuation US20230247891A1 (en) 2020-10-14 2023-04-13 Display apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2022078026A1 true WO2022078026A1 (zh) 2022-04-21

Family

ID=81138186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110586 WO2022078026A1 (zh) 2020-10-14 2021-08-04 显示装置及电子设备

Country Status (4)

Country Link
US (1) US20230247891A1 (zh)
EP (1) EP4228001A4 (zh)
CN (1) CN114373784A (zh)
WO (1) WO2022078026A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115273692A (zh) * 2022-07-29 2022-11-01 云谷(固安)科技有限公司 显示面板及显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112102783B (zh) * 2020-11-05 2021-02-02 武汉华星光电半导体显示技术有限公司 显示装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017969A (zh) * 2019-05-05 2019-07-16 清华大学 透明oled的参数确定方法和装置
CN110767714A (zh) * 2019-03-25 2020-02-07 昆山国显光电有限公司 透明阵列基板、透明显示面板、显示面板及显示终端
CN110767672A (zh) * 2018-08-06 2020-02-07 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110767729A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 显示装置及电子设备
CN111046599A (zh) * 2020-03-17 2020-04-21 昆山国显光电有限公司 像素排布优化方法、装置、透光显示面板和显示面板
CN111341936A (zh) * 2020-03-10 2020-06-26 昆山国显光电有限公司 一种显示面板及显示装置
CN111381702A (zh) * 2018-12-29 2020-07-07 北京小米移动软件有限公司 显示屏、电子设备及其控制方法
CN111710276A (zh) * 2020-06-24 2020-09-25 武汉天马微电子有限公司 显示面板及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767825B (zh) * 2018-08-06 2022-06-21 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110189639B (zh) * 2019-06-28 2020-12-04 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN110649074B (zh) * 2019-09-25 2021-10-01 上海天马有机发光显示技术有限公司 一种显示面板和显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767672A (zh) * 2018-08-06 2020-02-07 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN111381702A (zh) * 2018-12-29 2020-07-07 北京小米移动软件有限公司 显示屏、电子设备及其控制方法
CN110767714A (zh) * 2019-03-25 2020-02-07 昆山国显光电有限公司 透明阵列基板、透明显示面板、显示面板及显示终端
CN110017969A (zh) * 2019-05-05 2019-07-16 清华大学 透明oled的参数确定方法和装置
CN110767729A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 显示装置及电子设备
CN111341936A (zh) * 2020-03-10 2020-06-26 昆山国显光电有限公司 一种显示面板及显示装置
CN111046599A (zh) * 2020-03-17 2020-04-21 昆山国显光电有限公司 像素排布优化方法、装置、透光显示面板和显示面板
CN111710276A (zh) * 2020-06-24 2020-09-25 武汉天马微电子有限公司 显示面板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228001A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115273692A (zh) * 2022-07-29 2022-11-01 云谷(固安)科技有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
EP4228001A4 (en) 2024-04-03
EP4228001A1 (en) 2023-08-16
CN114373784A (zh) 2022-04-19
US20230247891A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US20220093682A1 (en) Display substrates, display panels and display devices
EP3993079A1 (en) Display apparatus and electronic device
WO2021083003A1 (zh) 显示装置及电子设备
CN111726502B (zh) 电子设备及显示装置
US20230247891A1 (en) Display apparatus and electronic device
CN110767729A (zh) 显示装置及电子设备
CN108962951B (zh) 显示装置与包含其的电子装置
CN110752240B (zh) 显示装置及电子设备
CN111540778A (zh) 显示装置及电子设备
WO2021082983A1 (zh) 显示装置及电子设备
US20190243496A1 (en) Display apparatus
WO2021083007A1 (zh) 显示装置及电子设备
CN111584609A (zh) 显示装置、显示装置的制程方法及电子设备
CN113325602B (zh) 悬浮显示装置及电子设备
CN112071888B (zh) 显示屏、显示屏的制备方法及电子设备
CN212230433U (zh) 显示装置及电子设备
US11108025B2 (en) Display device
CN212083820U (zh) 基于眼球追踪技术的显示面板、显示装置
CN114373786A (zh) 显示装置及电子设备
WO2021252172A1 (en) Display device
WO2021249016A1 (zh) 显示装置、显示装置的制程方法及电子设备
CN114373785A (zh) 显示装置和电子设备
CN212542439U (zh) 显示装置及电子设备
CN210575027U (zh) 显示装置及电子设备
US20230089394A1 (en) Display apparatus and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879073

Country of ref document: EP

Effective date: 20230515