WO2022077806A1 - 一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法 - Google Patents
一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法 Download PDFInfo
- Publication number
- WO2022077806A1 WO2022077806A1 PCT/CN2021/074284 CN2021074284W WO2022077806A1 WO 2022077806 A1 WO2022077806 A1 WO 2022077806A1 CN 2021074284 W CN2021074284 W CN 2021074284W WO 2022077806 A1 WO2022077806 A1 WO 2022077806A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cov
- sars
- pseudovirus
- mouse
- plasmid
- Prior art date
Links
- 241001112090 Pseudovirus Species 0.000 title claims abstract description 62
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 54
- 238000001727 in vivo Methods 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000013612 plasmid Substances 0.000 claims abstract description 71
- 241001678559 COVID-19 virus Species 0.000 claims abstract description 51
- 240000007019 Oxalis corniculata Species 0.000 claims abstract description 23
- 210000003494 hepatocyte Anatomy 0.000 claims abstract description 16
- 238000002347 injection Methods 0.000 claims abstract description 16
- 239000007924 injection Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 12
- 102000008579 Transposases Human genes 0.000 claims abstract description 10
- 108010020764 Transposases Proteins 0.000 claims abstract description 10
- 210000000056 organ Anatomy 0.000 claims abstract description 9
- 238000010171 animal model Methods 0.000 claims abstract description 7
- 239000013613 expression plasmid Substances 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 101710091045 Envelope protein Proteins 0.000 claims description 26
- 241000699666 Mus <mouse, genus> Species 0.000 claims description 26
- 101710188315 Protein X Proteins 0.000 claims description 26
- 102100021696 Syncytin-1 Human genes 0.000 claims description 26
- 241000699670 Mus sp. Species 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 14
- 238000012546 transfer Methods 0.000 claims description 13
- 101000629318 Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein Proteins 0.000 claims description 11
- 241001465754 Metazoa Species 0.000 claims description 8
- 210000003462 vein Anatomy 0.000 claims description 6
- 230000009545 invasion Effects 0.000 claims description 4
- 101000929928 Homo sapiens Angiotensin-converting enzyme 2 Proteins 0.000 claims description 3
- 102000048657 human ACE2 Human genes 0.000 claims description 3
- 238000010924 continuous production Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 208000025721 COVID-19 Diseases 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 5
- 241000711573 Coronaviridae Species 0.000 abstract description 4
- 230000001575 pathological effect Effects 0.000 abstract description 3
- 241000713666 Lentivirus Species 0.000 abstract description 2
- 238000011160 research Methods 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 108060001084 Luciferase Proteins 0.000 description 5
- 239000005089 Luciferase Substances 0.000 description 5
- 206010035664 Pneumonia Diseases 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000011503 in vivo imaging Methods 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 102100035765 Angiotensin-converting enzyme 2 Human genes 0.000 description 2
- 108090000975 Angiotensin-converting enzyme 2 Proteins 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 241000315672 SARS coronavirus Species 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000003956 transport vesicle Anatomy 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 241000494545 Cordyline virus 2 Species 0.000 description 1
- 102100031673 Corneodesmosin Human genes 0.000 description 1
- 101710139375 Corneodesmosin Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 108010027225 gag-pol Fusion Proteins Proteins 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0278—Knock-in vertebrates, e.g. humanised vertebrates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/20—Animal model comprising regulated expression system
- A01K2217/206—Animal model comprising tissue-specific expression system, e.g. tissue specific expression of transgene, of Cre recombinase
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0337—Animal models for infectious diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/20011—Coronaviridae
- C12N2770/20023—Virus like particles [VLP]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/20011—Coronaviridae
- C12N2770/20041—Use of virus, viral particle or viral elements as a vector
- C12N2770/20043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/20011—Coronaviridae
- C12N2770/20051—Methods of production or purification of viral material
- C12N2770/20052—Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/106—Plasmid DNA for vertebrates
- C12N2800/107—Plasmid DNA for vertebrates for mammalian
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/90—Vectors containing a transposable element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the invention belongs to the technical field of biomedicine, and in particular relates to a SARS-CoV-2 pseudovirus in vivo packaging system in mice and a preparation method thereof.
- the SARS-CoV-2 pseudovirus is a defective virus particle coated with the SARS-CoV-2 Spike protein (S protein) on its surface, so it can use the same virus entry mechanism of SARS-CoV-2 (with ACE2 as a receptor) to carry the virus.
- S protein SARS-CoV-2 Spike protein
- DNA or RNA sequences are introduced into cells, but they carry sequences that cannot guide the regeneration of viruses, so they can be used to study the mechanism of a single invasion process and test the effect of drug interventions. Generally, experimental animals and operators have no substantial risk of infection .
- pseudovirus packaging is usually done in cell lines cultured in vitro.
- the systems that can be used for SARS-CoV-2 pseudovirus packaging are retroviruses such as human immunodeficiency virus-1 (HIV-1) or murine leukemia virus (MLV). transformed.
- HIV-1 human immunodeficiency virus-1
- MLV murine leukemia virus
- the commonly used lentiviral packaging plasmid system can be used to package SARS-CoV-2 pseudovirus after modification, that is, the VSV-G in the envelope protein plasmid is replaced with SARS-CoV-2
- S SARS-CoV-2 pseudovirus can be generated by transfecting HEK293T cells.
- the pseudovirus can only be injected successively (such as tail vein injection) to infect animals, and the time window of the experiment is short, and it cannot simulate the effect of SARS-CoV-2 virus on the animals.
- the continuous invasion of animal target organs, and the optimal time window is difficult to determine, to evaluate the effect of drug intervention.
- the purpose of the present invention is to transform the existing lentivirus packaging plasmid system into a SARS-CoV-2 pseudovirus packaging plasmid system, and introduce it into the liver of mice by injection method, so that the liver of mice can continue to produce and secrete SARS-CoV -2 pseudovirions.
- a preparation method of a pseudovirus mouse in vivo packaging system comprising the following steps:
- S1 constructs SARS-CoV-2 pseudovirus packaging plasmid system
- S2 mixes the SARS-CoV-2 pseudovirus packaging plasmid system with the Sleeping Beauty transposase (Sleeping Beauty transposase) expression plasmid to transfect mouse hepatocytes by hydrodynamic injection, and then the Sleeping Beauty transposon system transfects SARS-CoV -2
- the sequences required for pseudoviral packaging were integrated into the mouse hepatocyte genome in a cut-and-paste manner.
- the pseudovirus packaging plasmid system in the step S1 is composed of an envelope plasmid, a packaging plasmid and a transfer plasmid, wherein the envelope protein
- the envelope protein (ENV) in VSV-G was replaced by the SARS-CoV-2 S protein.
- the inventors first replaced the envelope protein of the commonly used lentiviral packaging system with the SARS-CoV-2 S protein, and then inserted the sequences involved in viral packaging in the envelope protein particle, packaging plasmid and transfer plasmid as target sequences, respectively, into Sleeping Beauty. Between a pair of inverted terminal repeats (ITRs) of the transposon vector, a SARS-CoV-2 S pseudovirus packaging plasmid system that can be integrated into the cell genome using the Sleeping Beauty transposon system is constructed.
- ITRs inverted terminal repeats
- step S2 the specific steps of step S2 are as follows: after mixing the Sleeping Beauty transposase expression plasmid and the pseudovirus packaging plasmid system constructed in step S1 in proportion, hydrodynamically inject into the mouse body from the tail vein, Obtain a SARS-CoV-2 pseudovirus that is continuously produced in mice.
- the hydrodynamic injection method (mixing the plasmids in 8%-10% of the mouse body weight and injecting them from the tail vein into the mouse within 10 seconds) allowed all the plasmids to enter the mouse hepatocytes together.
- the Sleeping Beauty transposase was expressed, and the sequences involved in viral packaging (ie, sequences between ITRs) in the envelope protein plasmid, the packaging plasmid and the transfer plasmid were inserted into the genome in a cut-and-paste manner.
- These SARS-CoV-2 pseudovirus packaging elements are continuously expressed from the genome of mouse hepatocytes, assembled into SARS-CoV-2 pseudoviruses, secreted from hepatocytes into the blood, and can infect and express human angiotensin-converting enzyme 2 ( ACE2) target organ.
- ACE2 human angiotensin-converting enzyme 2
- RNA sequence it carries only contains a partial sequence of the transfer plasmid, and cannot use the infected cell to make new virus particles, which is safe and controllable. If marker proteins such as luciferase and GFP are introduced into the transfer plasmid, in vivo/cell imaging technology can be used to easily track the infection of target organs by SARS-CoV-2 pseudovirus.
- the present invention also provides an application of the preparation method described in the present invention in simulating the continuous invasion of SARS-CoV-2 virus to animal target organs.
- the present invention also provides a SARS-CoV-2 pseudovirus mouse in vivo packaging system prepared by the above-mentioned preparation method, which is composed of an envelope plasmid, a packaging plasmid and a transfer plasmid. plasmid), wherein the envelope protein (ENV) in the envelope protein particle is the SARS-CoV-2 S protein.
- a SARS-CoV-2 pseudovirus mouse in vivo packaging system prepared by the above-mentioned preparation method, which is composed of an envelope plasmid, a packaging plasmid and a transfer plasmid. plasmid), wherein the envelope protein (ENV) in the envelope protein particle is the SARS-CoV-2 S protein.
- the pseudovirus packaging plasmid system in the step S1 is transfected into mouse hepatocytes by hydrodynamic injection, and integrated into the genome using the Sleeping Beauty transposon system for continuous expression.
- the invention also provides the application of the above-mentioned SARS-CoV-2 pseudovirus in vivo packaging system in the production of SARS-CoV-2 pseudovirus.
- the present invention also provides an animal model for continuous production of SARS-CoV-2 pseudovirus, which is prepared by the method for preparing the pseudovirus in vivo packaging system in mice according to the present invention.
- the animal is a mouse.
- the mouse is a mouse capable of expressing human angiotensin-converting enzyme 2.
- the pseudovirus of SARS-CoV-2 can be continuously produced and secreted in mice. For example, combined with the technology of expressing hACE2 in the target organs of SARS-CoV-2 virus (such as hACE2 knock-in mice), it can simulate the target organs being affected by SARS-CoV-2.
- the CoV-2 virus continues to invade and attack the process, which can simulate the pathological characteristics of COVID-19.
- This invasive process can be easily tracked and quantified by in vivo imaging technology through labeled proteins, which is suitable for testing the effect of drug intervention.
- mice 3.
- the animal model based on the SARS-CoV-2 pseudovirus in vivo packaging system in mice is highly safe, and research can be carried out without the need for a P3-level laboratory.
- FIG. 1 is a schematic diagram of the construction of a SARS-CoV-2 pseudovirus packaging plasmid, which includes an envelope protein particle, a packaging plasmid and a transfer plasmid, wherein the envelope protein (ENV) in the envelope protein particle is SARS-CoV-2 S protein.
- ENV envelope protein
- Figure 3 is a map of the constructed envelope protein particle PH-TB-SARS-CoV-2-S.
- Figure 4 is the map of the constructed packaging plasmid PH-TB-GAG-POL.
- Figure 5 is the map of the constructed intermediate plasmid pCDH-CMV-LUC.
- FIG. 6 Map of the constructed transfer plasmid PH-TB-LUC.
- FIG. 7 is a schematic diagram of the working principle of the Sleeping Beauty transposon system.
- the target sequence (Gene X) is inserted between a pair of inverted terminal repeats (ITR) of the transposon vector, and Sleeping Beauty (SB) transposase It can bind to transposons (ie ITRs) and insert the target sequence into the genome in a cut-and-paste manner.
- ITR inverted terminal repeats
- SB Sleeping Beauty
- Figure 8 shows the schematic diagram of hepatocyte transfection by hydrodynamic injection.
- the SARS-CoV-2 pseudovirus packaging plasmid system will enter hepatocytes through endocytic vesicles, and then integrate with the Sleeping Beauty transposon system. into the genome and continue to generate pseudovirions.
- Figure 9 is a schematic diagram of the luciferase activity observed in the lungs by in vivo in vivo imaging technology.
- Fig. 10 is a schematic diagram showing the results of HE staining of non-tissue in mice.
- S1 construct a SARS-CoV-2 pseudovirus packaging plasmid system, the specific steps are as follows:
- the VSV-G sequence was excised by enzyme digestion, and then the excision sequence was replaced by the CDS region of the SARS-CoV-2 S protein in a gateway manner, and the replaced envelope protein particle pMD2
- the .G(SARS-CoV-2-S) map is shown in Figure 2.
- the sequence from CMV enhancer to SARS-CoV-2-S was fished from the plasmid pMD2.G (SARS-CoV-2-S) by PCR, and the sequence was obtained by gateway. Inserted between ITR(L) and ITR(R), the final plasmid map constructed is shown in Figure 3.
- the CMV enhancer was fished from the plasmid psPAX2 to the GAG-POL sequence by PCR, and the sequence was inserted between ITR(L) and ITR(R) by gateway.
- the final plasmid map As shown in Figure 4.
- the plasmid pCDH-CMV was used as the backbone, and the luciferase sequence was inserted into the CMV promoter in a gateway manner to construct an intermediate plasmid pCDH-CMV-LUC.
- the intermediate plasmid map is shown in Figure 5.
- SARS-CoV-2 pseudovirus packaging plasmid system constructed in step S1 (envelope protein particle PH-TB-SARS-CoV-2-S, packaging plasmid PH-TB-GAG-POL, transfer plasmid PH-TB- LUC) was mixed with Sleeping Beauty transposase (Sleeping Beauty transposase) expression plasmid to transfect mouse hepatocytes by injection, and then the Sleeping Beauty transposon system packaged the SARS-CoV-2 pseudovirus with the required sequence to cut and paste It integrates into the genome of mouse hepatocytes (as shown in Figure 7), and continuously produces SARS-CoV-2 pseudovirus in vivo.
- the specific operation is as follows.
- the expression plasmid of Sleeping Beauty transposase is pCMV/SB10
- each mouse needs a total of about 30 ⁇ g plasmid DNA, mix the plasmids to prepare about 2mL of liquid (about 8%-10% of mouse body weight), at 5-7 Injected into mice via tail vein within seconds.
- Hydrodynamic injection can efficiently transfect hepatocytes (possibly through the rapid injection of increased pressure to cause damage to the hepatocyte membrane or the formation of endocytic vesicles, as shown in Figure 8), and then the Sleeping Beauty transposon system re-transfects PH-TB-
- the sequences between ITR(L) and ITR(R) of LUC, PH-TB-GAG-POL and PH-TB-SARS-Cov-2-S plasmids were inserted into the mouse genome by cut and paste.
- novel coronavirus pneumonia (COVID-19) mouse model described in this example is a mouse that acquires novel coronavirus pneumonia after being infected with the virus SARS-CoV-2.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Environmental Sciences (AREA)
- Biophysics (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
提供了一种假病毒小鼠体内包装系统的制备方法,包括以下步骤:S1基于慢病毒包装质粒系统和睡美人转座子系统构建SARS-CoV-2假病毒包装质粒系统,S2将步骤S1中SARS-CoV-2假病毒包装质粒系统与睡美人转座酶表达质粒混合通过水动力注射的方式转染小鼠肝细胞,然后睡美人转座子系统将SARS-CoV-2假病毒包装所需序列以剪切粘贴的方式整合到小鼠肝细胞的基因组。可在小鼠体内持续制造分泌SARS-CoV-2假病毒,可模拟靶器官被SARS-CoV-2病毒持续侵入攻击的过程,从而可模拟出新冠肺炎(COVID-19)的病理特征。基于SARS-CoV-2假病毒小鼠体内包装系统的动物模型安全性高,不需要P3级实验室就能开展研究。利用水动力注射的方式引入SARS-CoV-2假病毒包装质粒系统操作简单,成本低。
Description
本发明属于生物医药技术领域,具体涉及一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法。
SARS-CoV-2假病毒是表面包裹着SARS-CoV-2 Spike蛋白(S蛋白)的缺陷病毒颗粒,因而可以利用SARS-CoV-2同样的病毒侵入机制(以ACE2作为受体)将携带的DNA或RNA序列导入细胞,但其携带的是不能指导再次生成病毒的序列,所以可用于研究单次侵入过程的机制及测试药物干预效果,一般情况下实验动物和操作者没有实质性感染的风险。
目前假病毒包装通常都是在体外培养的细胞系中完成,可用于SARS-CoV-2假病毒包装的体系由human immunodeficiency virus-1(HIV-1)或murine leukemia virus(MLV)等逆转录病毒改造而成。比如常用的慢病毒包装质粒系统(由HIV-1改造而成)经改造后就可用于包装SARS-CoV-2假病毒,即将包膜蛋白质粒中的VSV-G替换成SARS-CoV-2 S蛋白,转染HEK293T细胞,即可生成SARS-CoV-2假病毒。
但是,体外包装的SARS-CoV-2假病毒用于动物实验时,只能逐次注射假病毒(比如尾静脉注射)去感染动物,实验的时间窗口短,而不能模拟SARS-CoV-2病毒对动物靶器官的持续侵入,且最佳时间窗口难以确定,评估药物干预效果。
发明内容
本发明的目的是将现有的慢病毒包装质粒体系改造成SARS-CoV-2假病毒包装质粒体系,并通过注射方法导入到小鼠体内肝脏,让小鼠肝脏能持续产生并分泌SARS-CoV-2假病毒颗粒。
为实现本发明的目的采用以下技术方案:
一种假病毒小鼠体内包装系统的制备方法,包括以下步骤:
S1构建SARS-CoV-2假病毒包装质粒系统;
S2将SARS-CoV-2假病毒包装质粒系统与睡美人转座酶(Sleeping Beauty transposase)表达质粒混合通过水动力注射的方式转染小鼠肝细胞,然后睡美人转座子系统将SARS-CoV-2假病毒包装所需序列以剪切粘贴的方式整合到小鼠肝细胞的基因组。
作为本发明优选实施方式,所述步骤S1中的假病毒包装质粒系统由包膜蛋白质粒(envelope plasmid)、包装质粒(packaging plasmid)和转移质粒(transfer plasmid)组成,其中所述包膜蛋白质粒中的包膜蛋白(ENV)由VSV-G替换成SARS-CoV-2 S蛋白。发明人首先将常用的慢病毒包装系统的包膜蛋白替换成SARS-CoV-2 S蛋白,然后将包膜蛋白质粒、包装质粒和转移质粒中参与病毒包装的序列作为目标序列分别插入到睡美人转座子载体的一对反向末端重复序列(ITR)之间,构建成可以利用睡美人转座子系统整合到细胞基因组中的SARS-CoV-2 S假病毒包装质粒系统。
作为本发明优选实施方式,所述步骤S2具体步骤为:将睡美人转座酶表达质粒与步骤S1构建的假病毒包装质粒系统按比例混合后,从尾静脉采用水动力注射进小鼠体内,获得在小鼠体内持续生产的SARS-CoV-2假病毒。水动力注射方法(将质粒混合在小鼠体重8%-10%的液体中,在10秒内从尾静脉注射进小鼠体内)可以让所有质粒一起进入小鼠的肝细胞。随后睡美人转座酶表达,将包膜蛋白质粒、包装质粒和转移质粒中参与病毒包装的序列(即ITR之间的序列)以剪切粘贴的方式插入到到基因组中。这些SARS-CoV-2假病毒包装元件从小鼠肝细胞的基因组上持续表达,组装成SARS-CoV-2假病毒,从肝细胞分泌到血液中去,可感染表达有人血管紧张素转化酶2(ACE2)的靶器官。但其侵入细胞后,携带的RNA序列只包含转移质粒的部分序列,不能利用感染的细胞制造新的病毒颗粒,安全可控。如果将转移质粒中引入luciferase、GFP等标记蛋白,则可以利用活体/细胞成像技术方便追踪SARS-CoV-2假病毒感染靶器官 的情况。
本发明还提供了一种由本发明所述的制备方法在模拟SARS-CoV-2病毒对动物靶器官的持续侵入方面的应用。
本发明还提供了一种如上述所述制备方法制备的SARS-CoV-2假病毒小鼠体内包装系统,是由包膜蛋白质粒(envelope plasmid)、包装质粒(packaging plasmid)和转移质粒(transfer plasmid)组成,其中所述包膜蛋白质粒中的包膜蛋白(ENV)为SARS-CoV-2 S蛋白。
作为本发明优选实施方式,所述步骤S1中的假病毒包装质粒系统通过水动力注射的方式转染小鼠肝细胞,并利用睡美人转座子系统整合到基因组中持续表达。
本发明还提供了上述SARS-CoV-2假病毒小鼠体内包装系统在生产SARS-CoV-2假病毒方面的应用。
本发明还提供了一种持续生产SARS-CoV-2假病毒的动物模型,由如本发明所述的假病毒小鼠体内包装系统的制备方法制备而成。
作为本发明优选实施方式,所述动物为小鼠。
作为本发明优选实施方式,所述小鼠为能表达人血管紧张素转化酶2的小鼠。
本发明的有益效果为:
1.可在小鼠体内持续制造分泌SARS-CoV-2假病毒,如结合在SARS-CoV-2病毒靶器官表达hACE2的技术(比如hACE2 knock-in小鼠),可模拟靶器官被SARS-CoV-2病毒持续侵入攻击的过程,从而可模拟出COVID-19的病理特征。
2.这个侵入过程可方便通过标记蛋白被活体成像技术追踪定量,适合用于测试药物干预效果。
3.基于SARS-CoV-2假病毒小鼠体内包装系统的动物模型安全性高,不需要P3级实验室就能开展研究。
4.利用水动力注射的方式引入SARS-CoV-2假病毒包装质粒体系操作简单,成本低。
图1为SARS-CoV-2假病毒包装质粒构建示意图,其中包括包膜蛋白质粒、包装质粒和转移质粒,其中所述包膜蛋白质粒中的包膜蛋白(ENV)为SARS-CoV-2 S蛋白。
图2为替换后的包膜蛋白质粒pMD2.G(SARS-CoV-2-S)图谱。
图3为构建的包膜蛋白质粒PH-TB-SARS-CoV-2-S图谱。
图4为构建的包装质粒PH-TB-GAG-POL图谱。
图5为构建的中间质粒pCDH-CMV-LUC图谱。
图6构建的转移质粒PH-TB-LUC图谱。
图7为睡美人转座子系统工作原理示意图,将目标序列(Gene X)插入到转座子载体一对反向末端重复序列(ITR)之间,睡美人(Sleeping Beauty,SB)转座酶能够结合到转座子(即ITR)上,将目标序列以剪切粘贴的方式插入到基因组。
图8为水动力注射实现肝细胞转染原理图,水动力注射后,SARS-CoV-2假病毒包装质粒系统会通过内吞小泡中进入到肝细胞,随后借助睡美人转座子系统整合到基因组中,持续生成假病毒颗粒。
图9为体内活体成像技术在肺部观察到的luciferase活性示意图。
图10为小鼠给不组织HE染色结果示意图。
为了更加简洁明了的展示本发明的技术方案、目的和优点,下面结合具体实施例和附图详细说明本发明的技术方案。
实施例1
S1:构建SARS-CoV-2假病毒包装质粒系统,具体步骤如下:
(1)将包膜蛋白替换成SARS-CoV-2 S蛋白,具体步骤如下:
以pMD2.G载体为骨架,用酶切的方式将VSV-G序列切除,再以gateway的方式用SARS-CoV-2 S蛋白的CDS区替换所述切除序列,替换后的包膜蛋白质粒pMD2.G(SARS-CoV-2-S)图谱如图2所示。
(2)构建包膜蛋白质粒PH-TB-SARS-CoV-2-S,具体步骤如下:
以质粒PH-TB为骨架,以PCR的方式从质粒pMD2.G(SARS-CoV-2-S)上钓取从CMV enhancer到SARS-CoV-2-S序列,用gateway的方式将该段序列插入到ITR(L)和ITR(R)之间,构建的最终质粒图谱如图3所示。
(3)构建包装质粒PH-TB-GAG-POL,具体步骤如下:
以质粒PH-TB为骨架,以PCR的方式从质粒psPAX2上钓取CMV enhancer到GAG-POL序列,用gateway的方式将序列插入到ITR(L)和ITR(R)之间,其最终质粒图谱如图4所示。
(4)构建转移质粒PH-TB-LUC,具体步骤如下:
先以质粒pCDH-CMV为骨架,以gateway的方式将luciferase序列插入到CMV promoter之后构建成中间质粒pCDH-CMV-LUC。中间质粒图谱如图5所示。
再以质粒PH-TB为骨架,以PCR的方式从中间质粒pCDH-CMV-LUC上钓取5’LTR到3’LTR的序列,最后用gateway的方式将序列插入到ITR(L)和ITR(R)之间,最终转移质粒图谱如图6所示。
S2:将步骤S1构建的SARS-CoV-2假病毒包装质粒系统(包膜蛋白质粒PH-TB-SARS-CoV-2-S、包装质粒PH-TB-GAG-POL、转移质粒PH-TB-LUC)与睡美人转座酶(Sleeping Beauty transposase)表达质粒混合通过注射的方式转染 小鼠肝细胞,然后睡美人转座子系统将SARS-CoV-2假病毒包装所需序列以剪切粘贴的方式整合到小鼠肝细胞的基因组(如图7所示),在体内持续产生SARS-CoV-2假病毒,具体操作如下。
本实施例中睡美人转座酶表达质粒选择的是pCMV/SB10,各种质粒的混合比例为PH-TB-LUC:PH-TB-GAG-POL:PH-TB-SARS-Cov-2-S:pCMV/SB10=12:9:6:2,每只小鼠共需要约30μg质粒DNA,将质粒混合后制备成约2mL液体(约占小鼠体重8%-10%),在5-7秒内从尾静脉注射进小鼠体内。水动力注射可以高效转染肝细胞(可能是通过快速注射压强增高导致肝细胞膜破损或形成内吞小泡的方式,如图8所示),随后睡美人转座子系统再将PH-TB-LUC、PH-TB-GAG-POL和PH-TB-SARS-Cov-2-S质粒的ITR(L)和ITR(R)之间序列以剪切粘贴的方式插入到小鼠基因组中。
应用实例
初步尝试了用体内假病毒感染方式构建新冠肺炎(COVID-19)小鼠模型。按本发明所述方法水动力注射SARS-CoV-2假病毒包装质粒系统后,再通过Ad5-hACE2腺病毒载体经鼻感染BALB/c小鼠肺部,使其肺部高表达hACE2,3天后通过体内活体成像技术在肺部可观察到luciferase活性(见下图),且2周后信号仍未衰减,证明体内包装的SARS-CoV-2假病毒可以入侵表达hACE2的靶器官。
进一步尝试了用体外假病毒感染和体内假病毒感染两种方式构建新冠肺炎(COVID-19)小鼠模型。体外假病毒感染组用体外包装SARS-CoV-2假病毒按1×106TCID50的剂量尾静脉注射感染用Ad5-ACE2腺病毒载体经鼻感染BALB/c小鼠,一次注射后其肺部也会持续观察到luciferase活性,但其肺部的HE染色和正常对照小鼠相比没有差异,而体内假病毒感染组则可以观察到炎症,提示在体内持续产生SARS-CoV-2的假病毒可诱导新冠肺炎相关病理特征,更适合模拟SARS-CoV-2的感染过程。
本实施例所述的新冠肺炎(COVID-19)小鼠模型即经病毒SARS-CoV-2感染后获得新冠肺炎病症的小鼠。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (9)
- 一种假病毒小鼠体内包装系统的制备方法,其特征在于,包括以下步骤:S1构建SARS-CoV-2假病毒包装质粒系统;S2将SARS-CoV-2假病毒包装质粒系统与睡美人转座酶表达质粒混合通过水动力注射的方式转染小鼠肝细胞,然后睡美人转座子系统将SARS-CoV-2假病毒包装所需序列以剪切粘贴的方式整合到小鼠肝细胞的基因组。
- 如权利要求1所述的制备方法,其特征在于,所述步骤S1中的假病毒包装质粒系统由包膜蛋白质粒、包装质粒和转移质粒组成,其中所述包膜蛋白质粒中的包膜蛋白为SARS-CoV-2S蛋白。
- 如权利要求1所述的制备方法,其特征在于,所述步骤S2具体步骤为:将睡美人转座子表达质粒与步骤S1构建的假病毒包装质粒系统按比例混合后,从尾静脉采用水动力注射进小鼠体内,获得在小鼠体内持续生产的SARS-CoV-2假病毒。
- 一种如权利要求1~3任一项所述的制备方法在模拟SARS-CoV-2病毒对动物靶器官的持续侵入方面的应用。
- 一种由权利要求1~3任一项所述的制备方法制备的SARS-CoV-2S假病毒小鼠体内包装系统,其特征在于,所述步骤S1中的假病毒包装质粒系统由包膜蛋白质粒、包装质粒和转移质粒组成,其中所述包膜蛋白质粒中的包膜蛋白为SARS-CoV-2S蛋白。
- 如权利要求5所述的SARS-CoV-2S假病毒小鼠体内包装系统在生产SARS-CoV-2假病毒方面的应用。
- 一种持续生产SARS-CoV-2假病毒的动物模型,其特征在于,由如权利要求1~3任一项所述的制备方法制备而成。
- 如权利要求7所述的动物模型,其特征在于,所述动物为小鼠。
- 如权利要求8所述的动物模型,其特征在于,所述小鼠为能表达人血管紧张素转化酶2的小鼠。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011106870.9 | 2020-10-16 | ||
CN202011106870.9A CN111926041B (zh) | 2020-10-16 | 2020-10-16 | 一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022077806A1 true WO2022077806A1 (zh) | 2022-04-21 |
Family
ID=73334489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/074284 WO2022077806A1 (zh) | 2020-10-16 | 2021-01-29 | 一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111926041B (zh) |
WO (1) | WO2022077806A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111926041B (zh) * | 2020-10-16 | 2020-12-25 | 广州吉妮欧生物科技有限公司 | 一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法 |
CN112442514B (zh) * | 2020-11-25 | 2022-04-12 | 云舟生物科技(广州)股份有限公司 | 慢病毒包装载体系统、慢病毒及其构建方法、试剂盒 |
CN113475463B (zh) * | 2021-02-03 | 2023-02-24 | 湖州市中心医院 | 一种新型冠状病毒致肺损伤动物模型的建立方法及其小鼠模型 |
CN113293178A (zh) * | 2021-04-14 | 2021-08-24 | 中国食品药品检定研究院 | 基于SARS-CoV-2假病毒的中和抗体检测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010151793A1 (en) * | 2009-06-26 | 2010-12-29 | Five Prime Therapeutics, Inc. | Therapeutic antibody target validation and screening in vivo |
WO2014064277A1 (en) * | 2012-10-26 | 2014-05-01 | Vrije Universiteit Brussel | Vector for liver-directed gene therapy of hemophilia and methods and use thereof |
CN104862336A (zh) * | 2015-04-29 | 2015-08-26 | 中国人民解放军第四五八医院 | 一种表达乙肝病毒受体——人ntcp的小鼠模型的构建方法 |
CN111471717A (zh) * | 2020-04-17 | 2020-07-31 | 复百澳(苏州)生物科技有限公司 | 一种用于2019新冠病毒核酸检测的假病毒的制备方法 |
CN111662884A (zh) * | 2020-06-18 | 2020-09-15 | 中吉当康(北京)基因技术有限公司 | 一种假病毒及其包装方法和药物评估系统 |
CN111926041A (zh) * | 2020-10-16 | 2020-11-13 | 广州吉妮欧生物科技有限公司 | 一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101289671B (zh) * | 2008-05-30 | 2010-12-22 | 扬州大学 | 一种转基因动物的制备方法 |
SG11201807134RA (en) * | 2016-02-26 | 2018-09-27 | Poseida Therapeutics Inc | Transposon system and methods of use |
US12018061B2 (en) * | 2019-03-08 | 2024-06-25 | St Phi Therapeutics Co., Ltd. | Chimeric endocytic receptors and method of use thereof |
CN110747232A (zh) * | 2019-11-27 | 2020-02-04 | 宁夏医科大学 | 一种长效稳定表达的杆状病毒载体及其构建方法 |
CN111593073B (zh) * | 2020-03-18 | 2022-03-08 | 睿丰康生物医药科技(浙江)有限公司 | 双报告基因骨架载体、四质粒假病毒包装系统、包装新冠肺炎假病毒 |
-
2020
- 2020-10-16 CN CN202011106870.9A patent/CN111926041B/zh active Active
-
2021
- 2021-01-29 WO PCT/CN2021/074284 patent/WO2022077806A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010151793A1 (en) * | 2009-06-26 | 2010-12-29 | Five Prime Therapeutics, Inc. | Therapeutic antibody target validation and screening in vivo |
WO2014064277A1 (en) * | 2012-10-26 | 2014-05-01 | Vrije Universiteit Brussel | Vector for liver-directed gene therapy of hemophilia and methods and use thereof |
CN104862336A (zh) * | 2015-04-29 | 2015-08-26 | 中国人民解放军第四五八医院 | 一种表达乙肝病毒受体——人ntcp的小鼠模型的构建方法 |
CN111471717A (zh) * | 2020-04-17 | 2020-07-31 | 复百澳(苏州)生物科技有限公司 | 一种用于2019新冠病毒核酸检测的假病毒的制备方法 |
CN111662884A (zh) * | 2020-06-18 | 2020-09-15 | 中吉当康(北京)基因技术有限公司 | 一种假病毒及其包装方法和药物评估系统 |
CN111926041A (zh) * | 2020-10-16 | 2020-11-13 | 广州吉妮欧生物科技有限公司 | 一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法 |
Non-Patent Citations (2)
Title |
---|
"Metabolomics : Methods and Protocols", vol. 2099, 1 January 2020, SPRINGER NEW YORK, New York, NY, ISBN: 978-1-4939-9488-5, ISSN: 1064-3745, article ALMASAUD ABDULRAHMAN, ALHARBI NAIF KHALAF, HASHEM ANWAR M.: "Generation of MERS-CoV Pseudotyped Viral Particles for the Evaluation of Neutralizing Antibodies in Mammalian Sera : Methods and Protocols", pages: 117 - 126, XP055921985, DOI: 10.1007/978-1-0716-0211-9_10 * |
JIA SHUAIZHENG: "Long-Term and High Efficient Expression of Hydrodynamics Transfected Genes in vivo", LETTERS IN BIOTECHNOLOGY, JUNSHI YIXUE KEXUEYUAN, CN, vol. 16, no. 3, 31 May 2005 (2005-05-31), CN , XP055921981, ISSN: 1009-0002 * |
Also Published As
Publication number | Publication date |
---|---|
CN111926041B (zh) | 2020-12-25 |
CN111926041A (zh) | 2020-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022077806A1 (zh) | 一种SARS-CoV-2假病毒小鼠体内包装系统及其制备方法 | |
JP6585237B2 (ja) | 哺乳動物細胞へのパッケージングされたrnaの新規の送達 | |
Kamimura et al. | Advances in gene delivery systems | |
Nowakowski et al. | Genetic engineering of stem cells for enhanced therapy | |
Lu et al. | Non-viral gene delivery in skeletal muscle: a protein factory | |
JP6463421B2 (ja) | 核酸送達の区画化方法ならびにその組成物および使用 | |
Xu et al. | Optimization of transcriptional regulatory elements for constructing plasmid vectors | |
CA3105953A1 (en) | Fusosome compositions and uses thereof | |
JP4700888B2 (ja) | ヘマグルチニン活性を有する膜蛋白質を含むシュードタイプレトロウイルスベクター | |
ES2939617T3 (es) | Líneas celulares estables para producción retroviral | |
Lee et al. | Systemic delivery of CRISPR/Cas9 to hepatic tumors for cancer treatment using altered tropism of lentiviral vector | |
Kim et al. | Rapid generation of circulating and mucosal decoy ACE2 using mRNA nanotherapeutics for the potential treatment of SARS-CoV-2 | |
Khattak et al. | Foamy virus for efficient gene transfer in regeneration studies | |
JP2001509009A (ja) | 二機能性レトロウイルス/アデノウイルス系 | |
Lim et al. | Human fetal trachea-SCID mouse xenografts: efficacy of vesicular stomatitis virus-G pseudotyped lentiviral-mediated gene transfer | |
Borok et al. | Vesicular stomatitis virus G-pseudotyped lentivirus vectors mediate efficient apical transduction of polarized quiescent primary alveolar epithelial cells | |
Kim et al. | Real-time in vivo bioluminescence imaging of lentiviral vector–mediated gene transfer in mouse testis | |
AU2005309485A1 (en) | Viral vectors | |
US20240299581A1 (en) | Lentiviral vector technology for inner ear gene therapy | |
Waddington et al. | Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus | |
Jamour et al. | Comparing chemical transfection, electroporation, and lentiviral vector transduction to achieve optimal transfection conditions in the Vero cell line | |
Mastrobattista et al. | Advanced Therapy Medicinal Products: Clinical, Non-clinical, and Quality Considerations | |
Roche et al. | Lentiviral vectors efficiently transduce human gonadotroph and somatotroph adenomas in vitro. Targeted expression of transgene by pituitary hormone promoters | |
JP4766297B2 (ja) | 非ウィルス由来のエンハンサーと、cPPTと、CTSとを含むことを特徴とするベクター | |
US20090191169A1 (en) | Methods for gene transfer to mammals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21878865 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21878865 Country of ref document: EP Kind code of ref document: A1 |