WO2022075213A1 - Two-part curing composition set, thermally conductive cured article, and electronic device - Google Patents

Two-part curing composition set, thermally conductive cured article, and electronic device Download PDF

Info

Publication number
WO2022075213A1
WO2022075213A1 PCT/JP2021/036402 JP2021036402W WO2022075213A1 WO 2022075213 A1 WO2022075213 A1 WO 2022075213A1 JP 2021036402 W JP2021036402 W JP 2021036402W WO 2022075213 A1 WO2022075213 A1 WO 2022075213A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
agent
amino
organopolysiloxane
epoxy
Prior art date
Application number
PCT/JP2021/036402
Other languages
French (fr)
Japanese (ja)
Inventor
正雄 小野塚
雅士 久米
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022555438A priority Critical patent/JPWO2022075213A1/ja
Publication of WO2022075213A1 publication Critical patent/WO2022075213A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a two-component curable composition set, a heat conductive cured product, and an electronic device.
  • Room temperature curable liquid silicone rubber exhibits stable performance over a wide temperature range, so it is a CPU (central processing unit) for personal computers and batteries for automobiles. It is used for the purpose of improving the reliability of electrical and electronic devices such as LED devices. Specifically, it is used as a sealing material, a sealing material, a potting material, a coating material, and a heat radiating material for each electronic base material.
  • Room temperature curing type liquid silicone rubber is mainly classified into one-component type and two-component type, and the two-component type is further divided into condensation reaction type and addition reaction type.
  • the condensation reaction type can exhibit excellent adhesiveness to various substrates that come into contact during curing because the composition is cured by the humidity in the air.
  • a composition that is cured by dealcohol condensation using a titanium-based condensation reaction catalyst is suitable as a sealing material or coating material for electrical and electronic equipment because it does not generate an unpleasant odor or corrode metals during curing. Is.
  • the condensation reaction type is hermetically sealed because it gradually cures from the part that comes into contact with moisture in the air, so it takes a long time for uniform curing, and it generates outgas during curing. There is a problem that it is not suitable for various applications.
  • the addition reaction type has a low shrinkage rate due to curing, high uniform reactivity, and does not generate outgas, so it is suitable as a sealing material or heat radiating material for electrical / electronic equipment.
  • the addition reaction type requires a platinum catalyst, which is a precious metal, but the platinum catalyst is sensitive to temperature, and there is a problem that the catalytic activity is deactivated by transportation in a high temperature environment. Further, there is a problem that curing failure occurs on the substrate due to curing inhibitory substances such as nitrogen-containing compound, sulfur-containing compound, phosphorus-containing compound, tin-containing compound, sulfur and solder flux, alcohol, water, carboxylic acid and the like.
  • condensation reaction type and the addition reaction type each have advantages and disadvantages, and they are used according to the purpose and purpose, and improvement studies to overcome the disadvantages have been reported.
  • Patent Document 1 comprises a mixture of an organopolysiloxane containing an alkoxy group and an organopolysiloxane containing a lower alkenyl group, an organopolysiloxane containing a silicon base paper bonded hydrogen atom, an alkoxysilane, and a catalyst for a hydrosilylation reaction.
  • a composition that cures uniformly without causing curing inhibition and has excellent adhesiveness is described.
  • Patent Document 2 an addition consisting of an organopolysiloxane containing an alkenyl group, an organohydrogenpolysiloxane, a platinum catalyst, and an adhesive-imparting agent is less susceptible to the effects of curing inhibitors and has excellent adhesiveness.
  • Reactive silicone rubber compositions have been described.
  • Patent Documents 3 and 4 describe, as a silicone-based composition other than the condensation reaction type and the addition reaction type, a resin composition made of a silicone-modified epoxy resin and a silicone compound having a reactive functional group.
  • Japanese Unexamined Patent Publication No. 8-269337 Japanese Unexamined Patent Publication No. 2006-22284 Japanese Unexamined Patent Publication No. 10-0177776 Japanese Unexamined Patent Publication No. 55-90554
  • the two-component condensation reaction type and the two-component addition reaction type liquid silicone rubber have advantages and disadvantages, respectively, and it has been desired to develop a room temperature curable liquid silicone rubber that overcomes the disadvantages of both.
  • the present invention has been made in view of the above problems, and is a two-component curing type composition that does not require moisture for the curing reaction, has high uniform curing property, does not require a platinum catalyst, and is less likely to cause curing inhibition. It is an object of the present invention to provide a set, a cured product or a heat conductive cured product obtained from the two-component curable composition set, and an electronic device provided with the heat conductive cured product.
  • a first agent containing an epoxy-modified organopolysiloxane A1 having an epoxy group-containing group and a thermally conductive filler B1 It comprises an amino-modified organopolysiloxane A2 having an amino group-containing group and a second agent containing a thermally conductive filler B2.
  • the functional group equivalent of the epoxy group in one molecule of the epoxy-modified organopolysiloxane A1 is 100 to 11000 g / mol.
  • the functional group equivalent of the amino group in one molecule of the amino-modified organopolysiloxane A2 is 100 to 8000 g / mol.
  • the amino-modified organopolysiloxane A2 in the second agent has hydroxyl group-containing groups at both ends.
  • the thermally conductive filler B1 and the thermally conductive filler B2 exhibit a thermal conductivity of 10 W / m ⁇ K or more, such as aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, and oxidation. Containing at least one selected from the group consisting of magnesium, copper, silver and diamond, The two-component curable composition set according to any one of [1] to [4].
  • the two-component curable composition set according to any one of [1] to [5].
  • the thermal conductivity of the mixture of the first agent and the second agent after curing, measured according to ASTM D5470, is 1.0 W / mk or more.
  • [11] The electronic component, the cured product according to [10], and the housing for accommodating the electronic component and the cured product are provided. The electronic component and the housing are in contact with each other via the cured product. Electronics.
  • a two-component curing type composition set that does not require moisture for the curing reaction, has high uniform curing property, does not require a platinum catalyst, and is less likely to cause curing inhibition, and the two-component curing type composition. It is possible to provide a cured product or a heat conductive cured product obtained from a set, and an electronic device provided with the heat conductive cured product.
  • the present embodiment an embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist thereof.
  • the two-component curable composition set includes an epoxy-modified organopolysiloxane A1 having an epoxy group-containing group, a first agent containing a thermally conductive filler B1, and an amino-modified organopoly having an amino group-containing group. It comprises a second agent containing siloxane A2 and a thermally conductive filler B2.
  • the conventional two-component curable silicone composition utilizes a condensation reaction or an addition reaction.
  • the condensation reaction using an organopolysiloxane having a hydroxyl group, an alkoxy group, or the like requires moisture for curing, generates a reaction by-product (outgas), and has a high shrinkage rate.
  • an addition reaction using an organopolysiloxane having a vinyl group and an organopolysiloxane having a hydrosilyl group an addition reaction catalyst such as a platinum catalyst has an excellent shrinkage rate, does not generate outgas, and does not require moisture. It is necessary, and there is a problem that curing inhibition occurs depending on the coexisting compound.
  • an addition reaction catalyst such as a platinum catalyst is not required. It is possible to provide a two-component curing type composition set which does not cause curing inhibition, does not require moisture for curing, and does not generate outgas.
  • both the first agent and the second agent have an organopolysiloxane having a vinyl group at least at the terminal or side chain and an organopolysiloxane having a hydrosilyl group at least at the terminal or side chain. It is preferable that it does not contain polysiloxane.
  • the first agent contains an epoxy-modified organopolysiloxane A1 having an epoxy group-containing group and a thermally conductive filler B1, and optionally contains additives such as polydimethylsiloxane C, organosilane D, and a colorant E. But it may be.
  • Epoxy-modified organopolysiloxane A1 The epoxy-modified organopolysiloxane A1 of the present embodiment has a substituent (epoxy group-containing group) having an epoxy group at the terminal or side chain.
  • An organopolysiloxane having an epoxy group is a substituent in which at least a part of R of the Si—R moiety (where R is a substituted or unsubstituted monovalent hydrocarbon group) in the organopolysiloxane molecule has an epoxy group. Is what.
  • the epoxy group-containing group is not particularly limited, and examples thereof include an aliphatic epoxy group represented by the following formula (a11) and an alicyclic epoxy group represented by the following formula (a12).
  • an aliphatic epoxy group such as a glycidyl group is preferable from the viewpoint of curing reactivity
  • an alicyclic epoxy group such as an ethylcyclohexene oxide group is preferable from the viewpoint of increasing the glass transition point of the obtained cured product.
  • the epoxy-modified organopolysiloxane A1 may have both an aliphatic epoxy group and an alicyclic epoxy group.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms.
  • the epoxy-modified organopolysiloxane A1 may have any of a linear structure, a branched structure, and a cyclic structure, and may be a combination of a linear structure and a cyclic structure or a combination of a branched structure and a cyclic structure. It may have a structure. Among these, a linear structure is preferable from the viewpoint of handleability as a liquid, and a branched structure is preferable from the viewpoint of mechanical properties of the obtained cured product.
  • the bonding position of the epoxy group-containing group in the epoxy-modified organopolysiloxane A1 is not particularly limited, and may be a terminal or a side chain, or may be a terminal and a side chain.
  • the epoxy-modified organopolysiloxane A1 has, for example, a structural unit represented by the following general formula (a1-1) or (a1-2).
  • the epoxy-modified organopolysiloxane A1 has, for example, a terminal structure represented by the following general formula (a1-3) (where n is 1 or more). ..
  • examples of the structural unit to which the epoxy group-containing group is not bonded include a structural unit represented by the following general formula (a1-4).
  • the structural unit of the epoxy-modified organopolysiloxane A1 is not limited to the following, and for example, when it has a branched structure, it may have a branched structural unit, or when it has a cyclic structure. Does not have to have a terminal structure.
  • X independently represents an epoxy group-containing group
  • R 2 independently represents a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, or a polyether group.
  • n indicates an integer from 0 to 3.
  • the substituted or unsubstituted hydrocarbon group represented by R2 is not particularly limited, and for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and the like.
  • Alkyl groups such as decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, trill group, xylyl group and naphthyl group; benzyl group, 2-phenylethyl group and 2-phenylpropyl Aralkyl groups such as groups; examples thereof include alkyl halide groups such as chloromethyl group, 3,3,3-trifluoropropyl group and 3-chloropropyl group.
  • the polyether group represented by R 2 is not particularly limited, but for example, a polyethylene glycol group (-(C 2 H 4 O) l -CH 2 H 5 ,-(C 2 H 4 O) l -CH. 2 H 4 OH), polypropylene glycol group (-(C 3 H 6 O) l -CH 3 H 7 ,-(C 3 H 6 O) l -CH 3 H 6 OH), polyethylene glycol-polypropylene glycol copolymer group Can be mentioned.
  • l represents an integer of 2 to 1000.
  • an organopolysiloxane having a linear structure having an epoxy group-containing group in the side chain is preferable.
  • the functional group equivalent of the epoxy group of the epoxy-modified organopolysiloxane A1 is preferably 100 to 11000 g / mol, more preferably 200 to 6000 g / mol, and further preferably 250 to 5000 g / mol.
  • the functional group equivalent of the epoxy group is within the above range, the reactivity between the first agent and the second agent tends to be further improved, and the uniform reactivity tends to be further improved.
  • the viscosity of the epoxy-modified organopolysiloxane A1 at 25 ° C. is preferably 5 to 15000 mm 2 / s, more preferably 5 to 12000 mm 2 / s, and even more preferably 5 to 10000 mm 2 / s.
  • the handleability as a two-component curing type composition set tends to be further improved.
  • the thermally conductive filler B1 is, for example, a filler having a thermal conductivity of 10 W / m ⁇ K or more.
  • the heat conductive filler B1 is not particularly limited, and for example, aluminum oxide (hereinafter, also referred to as “alumina”), aluminum nitride, silica, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, and metallic aluminum. , Magnesium oxide, diamond, carbon, indium, gallium, copper, silver, iron, nickel, gold, tin, metallic silicon and the like.
  • heat conductive filler B1 it is preferable to contain at least one selected from the group consisting of aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, magnesium oxide, copper, silver and diamond, and alumina. Is more preferable.
  • a heat conductive filler B1 By using such a heat conductive filler B1, the filling property tends to be improved, and the thermal conductivity of the obtained cured product tends to be further improved.
  • These heat conductive fillers B1 may be used alone or in combination of two or more.
  • the average particle size of the heat conductive filler B1 is preferably 0.1 to 120 ⁇ m, more preferably 0.1 to 60 ⁇ m. When the average particle size of the heat conductive filler B1 is within the above range, the fluidity, dispersibility, and filling property tend to be further improved.
  • the thermally conductive filler B1 may be used by mixing fillers having different average particle sizes.
  • a heat conductive filler (B1-1) having an average particle size of 40 to 50 ⁇ m and a heat conductive filler (B1-2) having an average particle size of 1 to 10 ⁇ m in combination the content of the heat conductive filler (B1-1) is preferably 40 to 80% by mass, more preferably 50 to 70% by mass, based on the total amount of the heat conductive filler B1.
  • the content of the heat conductive filler (B1-1) is preferably 20 to 60% by mass, more preferably 30 to 50% by mass, based on the total amount of the heat conductive filler B1.
  • the average particle size in this embodiment means D50 (median diameter).
  • the content of the heat conductive filler B1 is preferably 400 to 3000 parts by weight, more preferably 600 to 2800 parts by weight, still more preferably, based on 100 parts by weight of the epoxy-modified organopolysiloxane A1. Is 700 to 2600 parts by weight.
  • the content of the heat conductive filler is 400 parts by weight or more with respect to the content of 100 parts by weight of the epoxy-modified organopolysiloxane A1
  • the thermal conductivity of the obtained cured product becomes better and 3000 parts by weight. If it is the following, the decrease in fluidity can be suppressed more effectively and the coatability can be ensured.
  • Polydimethylsiloxane C Polydimethylsiloxane C can be added to adjust the viscosity of the first agent and the hardness of the resulting cured product.
  • the viscosity of the polydimethylsiloxane is not particularly limited, and a plurality of types of polydimethylsiloxane having different viscosities may be used in combination.
  • the content of polydimethylsiloxane C is preferably 0 to 80 parts by weight with respect to 100 parts by weight of the total of the epoxy-modified organopolysiloxane A1 and polydimethylsiloxane.
  • Organosilane D can be added to adjust the wettability of the thermally conductive filler B1 and the epoxy-modified organopolysiloxane A1.
  • the organosilane is not particularly limited, but for example, an organosilane represented by the following general formula (d) is preferably used.
  • R 3 independently represents an alkyl group having 1 to 15 carbon atoms
  • R 4 independently represents an unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • R 5 independently represent an alkyl group having 1 to 6 carbon atoms
  • a is an integer of 1 to 3
  • b is an integer of 0 to 2
  • a + b is an integer of 1 to 3. .
  • the alkyl group having 1 to 15 carbon atoms represented by R 3 is not particularly limited, and is, for example, a methyl group, an ethyl group, a propyl group, a hexyl group, a nonyl group, a decyl group, a dodecyl group, or a tetradecyl. Examples thereof include a group, a 3,3,3-trifluoropropyl group, a 2- (perfluorobutyl) ethyl group, a 2- (perfluorooctyl) ethyl group and the like. Of these, R 3 is preferably an alkyl group having 6 to 12 carbon atoms.
  • the unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms shown by R4 is not particularly limited, but is not particularly limited, and is, for example, an alkenyl group such as a vinyl group or an allyl group; an aryl group such as a phenyl group or a trill group; 2 Examples thereof include an aralkyl group such as a phenylethyl group and a 2-methyl-2-phenylethyl group; and a halogenated hydrocarbon group such as a p-chlorophenyl group.
  • the alkyl group having 1 to 6 carbon atoms indicated by R 5 is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Of these, R5 is preferably a methyl group or an ethyl group.
  • A is an integer of 1 to 3, preferably 1.
  • b is an integer of 0 to 2, preferably 0.
  • a + b is an integer of 1 to 3, preferably 1.
  • the content of the organosilane D is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 5.0 parts by weight, based on 100 parts by weight of the epoxy-modified organopolysiloxane A1. Is. When the content of organosilane D is within the above range, the wettability can be effectively improved.
  • the colorant E is not particularly limited, and examples thereof include any pigment.
  • the content of the colorant E is not particularly limited, and is preferably 0.05 to 0.2 parts by weight with respect to a total of 100 parts by weight of the first agent and the second agent described later.
  • the second agent contains an amino-modified organopolysiloxane A2 having an amino group-containing group and a thermally conductive filler B2, and may contain additives such as polydimethylsiloxane C, organosilane D, and a colorant E, if necessary. good.
  • the amino-modified organopolysiloxane A2 of the present embodiment has a substituent (amino group-containing group) having an amino group at the terminal or side chain.
  • An organopolysiloxane having an amino group is a substituent in which at least a part of R of the Si—R moiety (where R is a substituted or unsubstituted monovalent hydrocarbon group) in the organopolysiloxane molecule has an amino group. Is what.
  • the amino group-containing group is not particularly limited, and examples thereof include an amino group represented by the following formula (a21). Such an amino group-containing group may be a primary amino group or a secondary amino group, and among these, a primary amino group in which R6 is a hydrogen atom is preferable.
  • R 6 indicates a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in which a hydrogen atom may be substituted with an amino group
  • R 7 indicates an alkyl group having 1 to 6 carbon atoms.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in which a hydrogen atom may be substituted with an amino group.
  • the amino group represented by the formula (a21) has a primary amino group at the terminal such as a 3-aminopropyl group.
  • the amino group represented by the formula (a21) has a secondary amino group.
  • the amino group represented by the formula (a21) is a primary amino group such as an aminoethylaminopropyl group. It may be a group having a secondary amino group, a group having a plurality of primary amino groups, or a group having a plurality of secondary amino groups.
  • the amino-modified organopolysiloxane A2 may have any of a linear structure, a branched structure, and a cyclic structure, and may be a combination of a linear structure and a cyclic structure or a combination of a branched structure and a cyclic structure. It may have a structure. Among these, a linear structure is preferable from the viewpoint of handleability as a liquid, and a branched structure is preferable from the viewpoint of mechanical properties of the obtained cured product.
  • the bonding position of the amino group-containing group in the amino-modified organopolysiloxane A2 is not particularly limited, and may be a terminal or a side chain, or may be a terminal and a side chain.
  • the amino-modified organopolysiloxane A2 has, for example, a structural unit represented by the following general formula (a2-1) or (a2-2).
  • the amino group-containing group is contained at the terminal, the amino-modified organopolysiloxane A2 has, for example, a terminal structure represented by the following general formula (a2-3) (provided that m is 1 or more). ..
  • examples of the structural unit to which the amino group-containing group is not bonded include a structural unit represented by the following general formula (a2-4).
  • the structural unit of the amino-modified organopolysiloxane A2 is not limited to the following, and for example, when it has a branched structure, it may have a branched structural unit, or when it has a cyclic structure. Does not have to have a terminal structure.
  • Y independently represents an amino group-containing group
  • R 8 independently represents a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms
  • m is 0 to 3. Indicates an integer of.
  • the substituted or unsubstituted hydrocarbon group represented by R8 is not particularly limited, and for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and the like.
  • Alkyl groups such as decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, trill group, xylyl group and naphthyl group; benzyl group, 2-phenylethyl group and 2-phenylpropyl Aralkyl groups such as groups; examples thereof include alkyl halide groups such as chloromethyl group, 3,3,3-trifluoropropyl group and 3-chloropropyl group.
  • the amino-modified organopolysiloxane A2 is an organopolysiloxane having a linear structure having an amino group-containing group at the terminal or side chain, or having a hydroxyl group at the terminal and having an amino group-containing group in the side chain.
  • Organopolysiloxanes with a linear structure are preferred.
  • the functional group equivalent of the amino group of the amino-modified organopolysiloxane A2 is preferably 100 to 8000 g / mol, more preferably 200 to 6000 g / mol, more preferably 300 to 4000 g / mol, and even more preferably. Is 300 to 2000 g / mol.
  • the functional group equivalent of the amino group is within the above range, the reactivity between the first agent and the second agent tends to be further improved, and the uniform reactivity tends to be further improved.
  • the viscosity of the amino-modified organopolysiloxane A2 at 25 ° C. is preferably 5 to 2000 mm 2 / s, more preferably 5 to 1750 mm 2 / s, and even more preferably 5 to 1500 mm 2 / s.
  • the handleability as a two-component curing type composition set tends to be further improved.
  • the amino-modified organopolysiloxane A2 further has a hydroxyl group-containing group in which a hydroxyl group is bonded to a silicon atom.
  • the bonding position of the hydroxyl group-containing group is not particularly limited, and may be a terminal or a side chain, or may be a terminal and a side chain.
  • amino-modified organopolysiloxane A2 having a linear structure having an amino group-containing group at both ends is preferable.
  • the heat conductive filler B2 is, for example, a filler having a thermal conductivity of 10 W / m ⁇ K or more, and examples thereof include the same ones as the heat conductive filler B1. Among these, it is preferable to contain at least one selected from the group consisting of aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, magnesium oxide, copper, silver and diamond.
  • the filling property tends to be improved, and the thermal conductivity of the obtained cured product tends to be further improved.
  • These thermally conductive fillers B2 may be used alone or in combination of two or more.
  • the average particle size and the content of the heat conductive filler B2 can be the same as those of the heat conductive filler B1, and the description regarding the heat conductive filler B1 is applied by replacing it with the heat conductive filler B2. be able to.
  • the types and contents of the polydimethylsiloxane C, the organosilane D, and the colorant E that can be contained in the second agent are the same as those of the first agent described above, and the description regarding these in the first agent is the second. Since it can be read and applied as related to a drug, a duplicate description is omitted here.
  • the heat conductive filler, polydimethylsiloxane, organosilane, and colorant as the second agent and the heat conductive filler, polydimethylsiloxane, organosilane, and colorant as the first agent are of the same type. It may be different.
  • the ratio of the epoxy-modified organopolysiloxane A1 in the first agent and the amino-modified organopolysiloxane A2 in the second agent is the epoxy-modified organopolysiloxane A1 in the first agent. It can be appropriately set according to the content of the epoxy group and the content of the amino group of the amino-modified organopolysiloxane A2 in the second agent.
  • Epoxide group content Epoxide-modified organopolysiloxane A1 content / functional group equivalent
  • Amino group content Amino-modified organopolysiloxane A2 content / functional group equivalent
  • the epoxy group content / amino group content satisfied by the combination of the first agent and the second agent is preferably 70/30 to 10/90, and more preferably 55/45 to 20/80.
  • the ratio of the epoxy group content and the amino group content is within the above range, uniform reactivity is improved and a cured product having a sufficiently crosslinked structure can be obtained.
  • the thermal conductivity of the mixture of the first agent and the second agent after curing is preferably 1.0 W / mk or more, more preferably 2.0 W / mk or more.
  • Such a two-component curing type composition set of the present embodiment can be suitably used as a heat conductive heat dissipation material.
  • the cured product according to the present embodiment can be obtained, for example, by mixing the first agent and the second agent in the above-mentioned two-component curing type composition set. More specifically, the cured product (crosslinked cured product) is the epoxy group of the epoxy-modified organopolysiloxane A1 contained in the first agent in the mixture obtained by mixing the first agent and the second agent.
  • the above-mentioned cured product is obtained by advancing the addition reaction of the amino-modified organopolysiloxane A2 contained in the two agents with the amino group to form a three-dimensional network structure having a cross-linking bond.
  • the cured product of the present embodiment may be formed into a desired shape after mixing the first agent and the second agent. Further, since the cured product according to the present embodiment contains a heat conductive filler, it can be suitably used as a heat conductive heat radiating material.
  • a mixer such as a roll mill, a kneader, a Banbury mixer, a line mixer, etc. is used.
  • the doctor blade method is preferable as the molding method, but an extrusion method, a press method, a calendar roll method, or the like can be used depending on the viscosity of the resin.
  • the reaction conditions in the progress of the addition reaction are not particularly limited, but are usually carried out from room temperature (for example, 25 ° C.) to 150 ° C. for 0.1 to 24 hours.
  • the mixing ratio of the first agent and the second agent can be appropriately set according to the type of the first agent and the second agent to be used and the purpose of use.
  • the first agent: the second agent 1.5 in terms of volume ratio. : 1.0 to 1.0: 1.5, and may be 1.0: 1.0.
  • the electronic device of the present embodiment includes an electronic component, the cured product, and a housing for accommodating the electronic component and the cured product, and the electronic component and the housing are in contact with each other via the cured product.
  • the electronic components are not particularly limited, and examples thereof include motors, battery packs, circuit boards sold in in-vehicle power supply systems, power transistors, electronic components that generate heat such as microprocessors, and the like.
  • the metal housing is not particularly limited, and examples thereof include a heat sink configured for heat dissipation and heat absorption.
  • ⁇ A1 component organopolysiloxane> A1-1: DOWNSIL BY 16-839 Fluid (manufactured by Dow Toray Co., Ltd., trade name), epoxy-modified organopolysiloxane, viscosity at 25 ° C.: 6000 mm 2 / s, functional group equivalent of epoxy group: 3700 g / mol, fat Cyclic type (ethylcyclohexene oxide group), epoxy group bond position: side chain A1-2: DOWNSIL BY 8411 Fluid (manufactured by Dow Toray Co., Ltd., trade name), epoxy-modified organopolysiloxane, viscosity at 25 ° C: 8000 mm 2 / S, Epoxide group functional group equivalent: 3300 g / mol, aliphatic type (glycidyl group), epoxy group bond position: side chain A1-3: DOWNSIL SE 1885A (manufactured by Dow Toray Co., Ltd., trade name)
  • ⁇ B1 component thermally conductive filler>
  • B1-1 Spherical alumina, average particle size: 45 ⁇ m, DAW45S (manufactured by Denka Co., Ltd., trade name), thermal conductivity 35 W / mK
  • B1-2 Spherical alumina, average particle size: 5 ⁇ m, DAW05 (manufactured by Denka Co., Ltd., trade name), thermal conductivity 35 W / mK
  • C1 Regino Black # 442 (Regino Color Industry Co., Ltd., product name)
  • ⁇ A2 component organopolysiloxane> A2-1: DOWNSIL BY 16-213 (manufactured by Dow Toray Co., Ltd., trade name), amino-modified organopolysiloxane, viscosity at 25 ° C.: 60 mm 2 / s, functional group equivalent of amino group: 2700 g / mol, primary amine (3-Aminopropyl group), Amino group bond position: Side chain A2-2: DOWNSIL BY 16-853U (manufactured by Dow Toray Co., Ltd., trade name), amino-modified organopolysiloxane, viscosity at 25 ° C.
  • ⁇ B2 component thermally conductive filler>
  • B2-1 Spherical alumina, average particle size: 45 ⁇ m
  • DAW45S manufactured by Denka Co., Ltd., trade name
  • B2-2 Spherical alumina, average particle size: 5 ⁇ m
  • DAW05 manufactured by Denka Co., Ltd., product name
  • the thermal conductivity of the heat conductive cured product was measured by a method compliant with ASTM D5470 using a resin material thermal resistance measuring device manufactured by Hitachi Technology Co., Ltd. Specifically, the mixture obtained by mixing the first agent and the second agent at the volume ratios described in each Example and Comparative Example was prepared into thicknesses of 0.2 mm, 0.5 mm and 1.0 mm, respectively. Molding was performed, and each of the obtained molded products was held at 25 ° C. for 24 hours to proceed with the curing reaction to obtain a thermally conductive cured product. The thermal resistance values of the obtained heat conductive cured products were measured in a measurement area of 10 mm ⁇ 10 mm. The slope of a straight line obtained with the thermal resistance value as the vertical axis and the thickness of the thermally conductive cured product as the horizontal axis was calculated and used as the thermal conductivity of the thermally conductive cured product.
  • the average particle size of the thermally conductive filler was measured using "Laser Diffraction Particle Size Distribution Measuring Device SALD-20" (trade name) manufactured by Shimadzu Corporation.
  • SALD-20 "Laser Diffraction Particle Size Distribution Measuring Device SALD-20” (trade name) manufactured by Shimadzu Corporation.
  • 50 ml of pure water and 5 g of the heat conductive filler powder to be measured were added to a glass beaker, the mixture was stirred with a spatula, and then dispersed with an ultrasonic cleaner for 10 minutes.
  • a solution of the heat conductive filler powder subjected to the dispersion treatment was added drop by drop to the sampler part of the apparatus using a dropper, and the measurement was performed when the absorbance became stable.
  • the particle size distribution is calculated from the data of the light intensity distribution of the diffraction / scattering holes by the particles detected by the sensor.
  • the average particle size is obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%).
  • the average particle size is the average diameter of the particles, and can be obtained as the cumulative weight average value D50 (or median diameter) which is the maximum value or the peak value. In addition, D50 has the particle diameter having the largest appearance rate.
  • the two-component curable composition set of the present invention of Examples 1 to 6 had good mixability and uniform reactivity, and was excellent in storage stability.
  • Comparative Example 1 is an addition reaction type two-component curing type composition set using a platinum catalyst, the catalyst was inactivated by high temperature storage and the storage stability was inferior.
  • Comparative Example 2 was a mixture of epoxy-modified organopolysiloxane and carbinol-modified organopolysiloxane, but a cured product was not formed and could not be evaluated.
  • Comparative Example 3 was a mixture of epoxy-modified organopolysiloxane and carboxyl-modified organopolysiloxane, but a cured product was not formed and could not be evaluated.
  • Examples 5 and 6 had better uniform reactivity than Examples 1 and 3 under substantially the same conditions except that the type of the amino-modified organopolysiloxane of the second agent was different.
  • Examples 5 and 6 are different from Examples 1 and 3 in that amino-modified organopolysiloxanes modified with OH at both ends are used as the second agent. From this, it was confirmed that the amino-modified organopolysiloxane used is more preferably double-ended OH-modified.
  • composition for a two-component curable heat conductive grease of the present invention heats a heat conductive cured product, particularly a heating element and a metal housing, by mixing and curing the first agent and the second agent. It has industrial applicability as a material for thermally conductive grease used by binding to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A two-part curing composition set which is equipped with: a first agent which contains an epoxy-modified organopolysiloxane A1 having an epoxy group-containing group and also contains a thermally conductive filler B1; and a second agent which contains an amino-modified organopolysiloxane A2 having an amino group-containing group and also contains a thermally conductive filler B2.

Description

二液硬化型組成物セット、熱伝導性硬化物及び電子機器Two-component curable composition set, heat conductive cured product and electronic equipment
 本発明は、二液硬化型組成物セット、熱伝導性硬化物及び電子機器に関する。 The present invention relates to a two-component curable composition set, a heat conductive cured product, and an electronic device.
 室温硬化型の液状シリコーンゴムは、広い温度範囲で安定した性能を発揮することから、パソコンのCPU(中央処理装置)や自動車のバッテリー。LEDデバイス等、電気・電子機器の信頼性を向上させる目的で使用される。具体的には各電子基材の封止材やシール材、ポッティング材、コーティング材、放熱材として使用されている。 Room temperature curable liquid silicone rubber exhibits stable performance over a wide temperature range, so it is a CPU (central processing unit) for personal computers and batteries for automobiles. It is used for the purpose of improving the reliability of electrical and electronic devices such as LED devices. Specifically, it is used as a sealing material, a sealing material, a potting material, a coating material, and a heat radiating material for each electronic base material.
 室温硬化型の液状シリコーンゴムは、主に一液タイプと二液タイプに分類され、二液タイプはさらに縮合反応型と付加反応型に分けられる。 Room temperature curing type liquid silicone rubber is mainly classified into one-component type and two-component type, and the two-component type is further divided into condensation reaction type and addition reaction type.
 縮合反応型は、空気中の湿気により組成物が硬化することで、硬化途上で接触する各種基材に対して優れた接着性を発揮することができる。特に、チタン系の縮合反応用触媒により脱アルコール縮合して硬化する組成物は、硬化時に不快臭の発生や金属類の腐食がないことから、電気・電子機器等のシール材やコーティング材として好適である。 The condensation reaction type can exhibit excellent adhesiveness to various substrates that come into contact during curing because the composition is cured by the humidity in the air. In particular, a composition that is cured by dealcohol condensation using a titanium-based condensation reaction catalyst is suitable as a sealing material or coating material for electrical and electronic equipment because it does not generate an unpleasant odor or corrode metals during curing. Is.
 一方、縮合反応型は、空気中の湿気と接触する部分から徐々に硬化するために、均一硬化するためには長い時間が必要であり、また、硬化途上でアウトガスを発生させることから、密閉される用途には適さないという問題がある。 On the other hand, the condensation reaction type is hermetically sealed because it gradually cures from the part that comes into contact with moisture in the air, so it takes a long time for uniform curing, and it generates outgas during curing. There is a problem that it is not suitable for various applications.
 付加反応型は、硬化による収縮率が低く、均一反応性が高く、また、アウトガスが発生しないことから、電気・電子機器等の封止材や放熱材として好適である。 The addition reaction type has a low shrinkage rate due to curing, high uniform reactivity, and does not generate outgas, so it is suitable as a sealing material or heat radiating material for electrical / electronic equipment.
 一方、付加反応型は、貴金属である白金触媒が必要であるが、白金触媒は温度に敏感であり、高温環境下での輸送により触媒活性が失活する問題がある。また、基材上に窒素含有化合物、硫黄含有化合物、リン含有化合物、スズ含有化合物、硫黄、ハンダフラックス等の硬化阻害物質やアルコール、水、カルボン酸などにより硬化不良を生じるという問題がある。 On the other hand, the addition reaction type requires a platinum catalyst, which is a precious metal, but the platinum catalyst is sensitive to temperature, and there is a problem that the catalytic activity is deactivated by transportation in a high temperature environment. Further, there is a problem that curing failure occurs on the substrate due to curing inhibitory substances such as nitrogen-containing compound, sulfur-containing compound, phosphorus-containing compound, tin-containing compound, sulfur and solder flux, alcohol, water, carboxylic acid and the like.
 上記のとおり、縮合反応型と付加反応型には、それぞれに長所と短所があり、用途や目的によって使い分がなされ、また、短所を克服する改良検討が報告されている。 As mentioned above, the condensation reaction type and the addition reaction type each have advantages and disadvantages, and they are used according to the purpose and purpose, and improvement studies to overcome the disadvantages have been reported.
 例えば、特許文献1では、アルコキシ基を含有するオルガノポリシロキサンと低級アルケニル基を含有するオルガノポリシロキサンの混合物、ケイ素原紙結合水素原子を含有するオルガノポリシロキサン、アルコキシシラン、ヒドロシリル化反応用触媒からなる組成物により、硬化阻害を生じることなく均一に硬化し、優れた接着性を有する組成物が記載されている。 For example, Patent Document 1 comprises a mixture of an organopolysiloxane containing an alkoxy group and an organopolysiloxane containing a lower alkenyl group, an organopolysiloxane containing a silicon base paper bonded hydrogen atom, an alkoxysilane, and a catalyst for a hydrosilylation reaction. A composition that cures uniformly without causing curing inhibition and has excellent adhesiveness is described.
 特許文献2では、アルケニル基を含有するオルガノポリシロキサンと、オルガノハイドロジェンポリシロキサン、白金触媒、接着性付与剤からなる組成物により、硬化阻害物質の影響を受けにくく、優れた接着性を有する付加反応型シリコーンゴム組成物が記載されている。 In Patent Document 2, an addition consisting of an organopolysiloxane containing an alkenyl group, an organohydrogenpolysiloxane, a platinum catalyst, and an adhesive-imparting agent is less susceptible to the effects of curing inhibitors and has excellent adhesiveness. Reactive silicone rubber compositions have been described.
 また、特許文献3、4では、上記縮合反応型や付加反応型以外のシリコーン系組成物として、シリコーン変性エポキシ樹脂と反応性官能基を有するシリコーン化合物による樹脂組成物が記載されている。 Further, Patent Documents 3 and 4 describe, as a silicone-based composition other than the condensation reaction type and the addition reaction type, a resin composition made of a silicone-modified epoxy resin and a silicone compound having a reactive functional group.
特開平8-269337号公報Japanese Unexamined Patent Publication No. 8-269337 特開2006-22284号公報Japanese Unexamined Patent Publication No. 2006-22284 特開平10-017776号公報Japanese Unexamined Patent Publication No. 10-0177776 特開昭55-90554号公報Japanese Unexamined Patent Publication No. 55-90554
 二液縮合反応型と二液付加反応型の液状シリコーンゴムは、上記のとおり、それぞれに長所と短所があり、両者の短所を克服した室温硬化型の液状シリコーンゴムの開発が望まれていた。 As mentioned above, the two-component condensation reaction type and the two-component addition reaction type liquid silicone rubber have advantages and disadvantages, respectively, and it has been desired to develop a room temperature curable liquid silicone rubber that overcomes the disadvantages of both.
 本発明は、上記問題点に鑑みてなされたものであり、硬化反応に湿気が不要で、均一硬化性が高く、また、白金触媒を必要とせず、硬化阻害が生じにくい二液硬化型組成物セット、及び当該二液硬化型組成物セットから得られる硬化物または熱伝導性硬化物、並びに当該熱伝導性硬化物を備える電子機器を提供することを目的とする。 The present invention has been made in view of the above problems, and is a two-component curing type composition that does not require moisture for the curing reaction, has high uniform curing property, does not require a platinum catalyst, and is less likely to cause curing inhibition. It is an object of the present invention to provide a set, a cured product or a heat conductive cured product obtained from the two-component curable composition set, and an electronic device provided with the heat conductive cured product.
 すなわち、本発明は以下のとおりである。
〔1〕
 エポキシ基含有基を有するエポキシ変性オルガノポリシロキサンA1、及び熱伝導性フィラーB1を含む第一剤と、
 アミノ基含有基を有するアミノ変性オルガノポリシロキサンA2、及び熱伝導性フィラーB2を含む第二剤と、を備える、
 二液硬化型組成物セット。
〔2〕
 前記エポキシ変性オルガノポリシロキサンA1の1分子中におけるエポキシ基の官能基当量が、100~11000g/molである、
 〔1〕に記載の二液硬化型組成物セット。
〔3〕
 前記アミノ変性オルガノポリシロキサンA2の1分子中におけるアミノ基の官能基当量が、100~8000g/molである、
 〔1〕又は〔2〕に記載の二液硬化型組成物セット。
〔4〕
 前記第二剤における前記アミノ変性オルガノポリシロキサンA2が、両末端に水酸基含有基を有する、
 〔1〕~〔3〕のいずれか一項に記載の二液硬化型組成物セット。
〔5〕
 前記熱伝導性フィラーB1及び熱伝導性フィラーB2が、熱伝導率が10W/m・K以上を示す、酸化アルミニウム、窒化アルミ、窒化ホウ素、窒化ケイ素、酸化亜鉛、水酸化アルミニウム、金属アルミニウム、酸化マグネシウム、銅、銀、ダイヤモンドからなる群より選ばれる少なくとも一種以上を含む、
 〔1〕~〔4〕のいずれか一項に記載の二液硬化型組成物セット。
〔6〕
 少なくとも末端又は側鎖にビニル基を有するオルガノポリシロキサンと、少なくとも末端又は側鎖にヒドロシリル基を有するオルガノポリシロキサンを含まない前記第一剤、及び、
 少なくとも末端又は側鎖にビニル基を有するオルガノポリシロキサンと、少なくとも末端又は側鎖にヒドロシリル基を有するオルガノポリシロキサンを含まない前記第二剤、を備える、
 〔1〕~〔5〕のいずれか一項に記載の二液硬化型組成物セット。
〔7〕
 ASTM D5470に準拠して測定した、前記第一剤と前記第二剤の混合物の硬化後の熱伝導率が、1.0W/mk以上である、
 〔1〕~〔6〕のいずれか一項に記載の二液硬化型組成物セット。
〔8〕
 熱伝導性放熱材料として使用される、
 〔1〕~〔7〕のいずれか一項に記載の二液硬化型組成物セット。
〔9〕
 〔1〕~〔8〕のいずれか一項に記載の二液硬化型組成物セットにおける、第一剤と第二剤の混合物から得られる、
 硬化物。
〔10〕
 熱伝導性放熱材料として使用される、
 〔9〕に記載の硬化物。
〔11〕
 電子部品と、〔10〕に記載の硬化物と、前記電子部品及び前記硬化物を収容する筐体と、を備え、
 前記電子部品及び前記筐体が、前記硬化物を介して接触している、
 電子機器。
That is, the present invention is as follows.
[1]
A first agent containing an epoxy-modified organopolysiloxane A1 having an epoxy group-containing group and a thermally conductive filler B1
It comprises an amino-modified organopolysiloxane A2 having an amino group-containing group and a second agent containing a thermally conductive filler B2.
Two-component curable composition set.
[2]
The functional group equivalent of the epoxy group in one molecule of the epoxy-modified organopolysiloxane A1 is 100 to 11000 g / mol.
The two-component curable composition set according to [1].
[3]
The functional group equivalent of the amino group in one molecule of the amino-modified organopolysiloxane A2 is 100 to 8000 g / mol.
The two-component curable composition set according to [1] or [2].
[4]
The amino-modified organopolysiloxane A2 in the second agent has hydroxyl group-containing groups at both ends.
The two-component curable composition set according to any one of [1] to [3].
[5]
The thermally conductive filler B1 and the thermally conductive filler B2 exhibit a thermal conductivity of 10 W / m · K or more, such as aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, and oxidation. Containing at least one selected from the group consisting of magnesium, copper, silver and diamond,
The two-component curable composition set according to any one of [1] to [4].
[6]
An organopolysiloxane having a vinyl group at least at the terminal or side chain, and the first agent containing no organopolysiloxane having a hydrosilyl group at least at the terminal or side chain, and
It comprises an organopolysiloxane having at least a vinyl group at the terminal or side chain and the second agent containing no organopolysiloxane having a hydrosilyl group at least at the terminal or side chain.
The two-component curable composition set according to any one of [1] to [5].
[7]
The thermal conductivity of the mixture of the first agent and the second agent after curing, measured according to ASTM D5470, is 1.0 W / mk or more.
The two-component curable composition set according to any one of [1] to [6].
[8]
Used as a heat-conducting heat-dissipating material,
The two-component curable composition set according to any one of [1] to [7].
[9]
Obtained from a mixture of the first agent and the second agent in the two-component curable composition set according to any one of [1] to [8].
Hardened product.
[10]
Used as a heat-conducting heat-dissipating material,
The cured product according to [9].
[11]
The electronic component, the cured product according to [10], and the housing for accommodating the electronic component and the cured product are provided.
The electronic component and the housing are in contact with each other via the cured product.
Electronics.
 本発明によれば、硬化反応に湿気が不要で、均一硬化性が高く、また、白金触媒を必要とせず、硬化阻害が生じにくい二液硬化型組成物セット、及び当該二液硬化型組成物セットから得られる硬化物または熱伝導性硬化物、並びに当該熱伝導性硬化物を備える電子機器を提供することが可能となる。 According to the present invention, a two-component curing type composition set that does not require moisture for the curing reaction, has high uniform curing property, does not require a platinum catalyst, and is less likely to cause curing inhibition, and the two-component curing type composition. It is possible to provide a cured product or a heat conductive cured product obtained from a set, and an electronic device provided with the heat conductive cured product.
 以下、本発明の実施形態(以下、「本実施形態」という。)について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, an embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist thereof.
[二液硬化型組成物セット]
 本実施形態に係る二液硬化型組成物セットは、エポキシ基含有基を有するエポキシ変性オルガノポリシロキサンA1、及び熱伝導性フィラーB1を含む第一剤と、アミノ基含有基を有するアミノ変性オルガノポリシロキサンA2、及び熱伝導性フィラーB2を含む第二剤と、を備える。
[Two-component curing type composition set]
The two-component curable composition set according to the present embodiment includes an epoxy-modified organopolysiloxane A1 having an epoxy group-containing group, a first agent containing a thermally conductive filler B1, and an amino-modified organopoly having an amino group-containing group. It comprises a second agent containing siloxane A2 and a thermally conductive filler B2.
 従来の二液硬化型のシリコーン組成物は、縮合反応や付加反応を利用する。しかしながら、水酸基やアルコキシ基等を有するオルガノポリシロキサンを用いた縮合反応は、硬化に湿気が必要であり、反応副生成物(アウトガス)が発生する上、収縮率が高いという問題がある。一方で、ビニル基を有するオルガノポリシロキサンとヒドロシリル基を有するオルガノポリシロキサンなどを用いた付加反応では、収縮率に優れアウトガスも発生せず、湿気も必要ないものの、白金触媒などの付加反応触媒が必要であり、共存する化合物によっては硬化阻害が生じるという問題がある。 The conventional two-component curable silicone composition utilizes a condensation reaction or an addition reaction. However, the condensation reaction using an organopolysiloxane having a hydroxyl group, an alkoxy group, or the like requires moisture for curing, generates a reaction by-product (outgas), and has a high shrinkage rate. On the other hand, in an addition reaction using an organopolysiloxane having a vinyl group and an organopolysiloxane having a hydrosilyl group, an addition reaction catalyst such as a platinum catalyst has an excellent shrinkage rate, does not generate outgas, and does not require moisture. It is necessary, and there is a problem that curing inhibition occurs depending on the coexisting compound.
 これに対して、本実施形態においては、上記のようにエポキシ基含有基を有するエポキシ変性オルガノポリシロキサンA1とアミノ変性オルガノポリシロキサンA2とを用いることにより、白金触媒などの付加反応触媒が不要であり、硬化阻害も生じないうえ、硬化に湿気が必要なく、アウトガスも発生しない二液硬化型組成物セットを提供することができる。 On the other hand, in the present embodiment, by using the epoxy-modified organopolysiloxane A1 having an epoxy group-containing group and the amino-modified organopolysiloxane A2 as described above, an addition reaction catalyst such as a platinum catalyst is not required. It is possible to provide a two-component curing type composition set which does not cause curing inhibition, does not require moisture for curing, and does not generate outgas.
 また、上記理由のため、本実施形態においては、第一剤及び第二剤が、共に、少なくとも末端又は側鎖にビニル基を有するオルガノポリシロキサンと、少なくとも末端又は側鎖にヒドロシリル基を有するオルガノポリシロキサンを含まないことが好ましい。 For the above reasons, in the present embodiment, both the first agent and the second agent have an organopolysiloxane having a vinyl group at least at the terminal or side chain and an organopolysiloxane having a hydrosilyl group at least at the terminal or side chain. It is preferable that it does not contain polysiloxane.
 以下、第一剤及び第二剤に含まれる各成分について詳説する。 Hereinafter, each component contained in the first agent and the second agent will be described in detail.
<第一剤>
 第一剤は、エポキシ基含有基を有するエポキシ変性オルガノポリシロキサンA1、及び熱伝導性フィラーB1を含み、必要に応じて、ポリジメチルシロキサンC、オルガノシランD、着色剤E等の添加剤を含んでもよい。
<First agent>
The first agent contains an epoxy-modified organopolysiloxane A1 having an epoxy group-containing group and a thermally conductive filler B1, and optionally contains additives such as polydimethylsiloxane C, organosilane D, and a colorant E. But it may be.
(エポキシ変性オルガノポリシロキサンA1)
 本実施形態のエポキシ変性オルガノポリシロキサンA1は、末端又は側鎖にエポキシ基を有する置換基(エポキシ基含有基)を有する。エポキシ基を有するオルガノポリシロキサンは、オルガノポリシロキサン分子におけるSi-R部分(ただし、Rは置換又は非置換の1価の炭化水素基である)のRの少なくとも一部がエポキシ基を有する置換基であるものである。
(Epoxy-modified organopolysiloxane A1)
The epoxy-modified organopolysiloxane A1 of the present embodiment has a substituent (epoxy group-containing group) having an epoxy group at the terminal or side chain. An organopolysiloxane having an epoxy group is a substituent in which at least a part of R of the Si—R moiety (where R is a substituted or unsubstituted monovalent hydrocarbon group) in the organopolysiloxane molecule has an epoxy group. Is what.
 エポキシ基含有基としては、特に制限されないが、例えば、下記式(a11)で表される脂肪族エポキシ基、下記式(a12)で表される脂環式エポキシ基が挙げられる。このなかでも、硬化反応性の観点からはグリシジル基などの脂肪族エポキシ基が好ましく、得られる硬化物のガラス転移点を高くする観点からはエチルシクロヘキセンオキシド基などの脂環式エポキシ基が好ましい。また、エポキシ変性オルガノポリシロキサンA1は、脂肪族エポキシ基と脂環式エポキシ基の両方を有していてもよい。
Figure JPOXMLDOC01-appb-C000001

(式中、Rは、炭素数1~6のアルキル基を示す。)
The epoxy group-containing group is not particularly limited, and examples thereof include an aliphatic epoxy group represented by the following formula (a11) and an alicyclic epoxy group represented by the following formula (a12). Among these, an aliphatic epoxy group such as a glycidyl group is preferable from the viewpoint of curing reactivity, and an alicyclic epoxy group such as an ethylcyclohexene oxide group is preferable from the viewpoint of increasing the glass transition point of the obtained cured product. Further, the epoxy-modified organopolysiloxane A1 may have both an aliphatic epoxy group and an alicyclic epoxy group.
Figure JPOXMLDOC01-appb-C000001

(In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms.)
 エポキシ変性オルガノポリシロキサンA1は、直鎖状構造、分岐状構造、又は環状構造のいずれを有していてもよく、直鎖状構造と環状構造を組み合わせた構造又は分岐状構造と環状構造を組み合わせた構造を有していてもよい。このなかでも、液体としての取扱性の観点からは直鎖状構造が好ましく、得られる硬化物の機械物性の観点からは分岐状構造が好ましい。 The epoxy-modified organopolysiloxane A1 may have any of a linear structure, a branched structure, and a cyclic structure, and may be a combination of a linear structure and a cyclic structure or a combination of a branched structure and a cyclic structure. It may have a structure. Among these, a linear structure is preferable from the viewpoint of handleability as a liquid, and a branched structure is preferable from the viewpoint of mechanical properties of the obtained cured product.
 エポキシ変性オルガノポリシロキサンA1におけるエポキシ基含有基の結合位置は、特に制限されず、末端又は側鎖であってもよいし、末端及び側鎖であってもよい。側鎖にエポキシ基含有基を有する場合には、エポキシ変性オルガノポリシロキサンA1は、例えば、下記一般式(a1-1)又は(a1-2)で表される構成単位を有する。また、末端にエポキシ基含有基を有する場合には、エポキシ変性オルガノポリシロキサンA1は、例えば、下記一般式(a1-3)で表される末端構造(但し、nが1以上のもの)を有する。さらに、エポキシ基含有基が結合していない構成単位としては、下記一般式(a1-4)で表される構成単位が挙げられる。なお、エポキシ変性オルガノポリシロキサンA1の有する構成単位は以下に限定されるもではなく、例えば、分岐状構造を有する場合には分岐型の構成単位を有していてもよい、環状構造を有する場合には末端構造を有しなくてもよい。
Figure JPOXMLDOC01-appb-C000002

(式中、Xは、各々独立して、エポキシ基含有基を示し、Rは、各々独立して、炭素数1~12の置換又は非置換の炭化水素基、又はポリエーテル基を示し、nは0~3の整数を示す。)
The bonding position of the epoxy group-containing group in the epoxy-modified organopolysiloxane A1 is not particularly limited, and may be a terminal or a side chain, or may be a terminal and a side chain. When the side chain has an epoxy group-containing group, the epoxy-modified organopolysiloxane A1 has, for example, a structural unit represented by the following general formula (a1-1) or (a1-2). When the epoxy group-containing group is provided at the terminal, the epoxy-modified organopolysiloxane A1 has, for example, a terminal structure represented by the following general formula (a1-3) (where n is 1 or more). .. Further, examples of the structural unit to which the epoxy group-containing group is not bonded include a structural unit represented by the following general formula (a1-4). The structural unit of the epoxy-modified organopolysiloxane A1 is not limited to the following, and for example, when it has a branched structure, it may have a branched structural unit, or when it has a cyclic structure. Does not have to have a terminal structure.
Figure JPOXMLDOC01-appb-C000002

(In the formula, X independently represents an epoxy group-containing group, and R 2 independently represents a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, or a polyether group. n indicates an integer from 0 to 3.)
 Rで示される置換又は非置換の炭化水素基としては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基;クロロメチル基、3,3,3-トリフルオロプロピル基、3-クロロプロピル基等のハロゲン化アルキル基が挙げられる。 The substituted or unsubstituted hydrocarbon group represented by R2 is not particularly limited, and for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and the like. Alkyl groups such as decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, trill group, xylyl group and naphthyl group; benzyl group, 2-phenylethyl group and 2-phenylpropyl Aralkyl groups such as groups; examples thereof include alkyl halide groups such as chloromethyl group, 3,3,3-trifluoropropyl group and 3-chloropropyl group.
 また、Rで示されるポリエーテル基としては、特に制限されないが、例えば、ポリエチレングリコール基(-(CO)-CH,-(CO)-CHOH)、ポリプロピレングリコール基(-(CO)-CH,-(CO)-CHOH)、ポリエチレングリコール-ポリプロピレングリコール共重合基が挙げられる。なお、lは2~1000の整数を示す。 The polyether group represented by R 2 is not particularly limited, but for example, a polyethylene glycol group (-(C 2 H 4 O) l -CH 2 H 5 ,-(C 2 H 4 O) l -CH. 2 H 4 OH), polypropylene glycol group (-(C 3 H 6 O) l -CH 3 H 7 ,-(C 3 H 6 O) l -CH 3 H 6 OH), polyethylene glycol-polypropylene glycol copolymer group Can be mentioned. In addition, l represents an integer of 2 to 1000.
 このなかでも、エポキシ変性オルガノポリシロキサンA1としては、側鎖にエポキシ基含有基を有する直鎖状構造のオルガノポリシロキサンが好ましい。このようなエポキシ変性オルガノポリシロキサンA1を用いることにより、第一剤と第二剤の反応性がより向上する傾向にある。 Among these, as the epoxy-modified organopolysiloxane A1, an organopolysiloxane having a linear structure having an epoxy group-containing group in the side chain is preferable. By using such an epoxy-modified organopolysiloxane A1, the reactivity between the first agent and the second agent tends to be further improved.
 エポキシ変性オルガノポリシロキサンA1のエポキシ基の官能基当量は、好ましくは100~11000g/molであり、より好ましくは200~6000g/molであり、さらに好ましくは250~5000g/molである。エポキシ基の官能基当量が上記範囲内であることにより、第一剤と第二剤の反応性がより向上し、均一反応性がより向上する傾向にある。 The functional group equivalent of the epoxy group of the epoxy-modified organopolysiloxane A1 is preferably 100 to 11000 g / mol, more preferably 200 to 6000 g / mol, and further preferably 250 to 5000 g / mol. When the functional group equivalent of the epoxy group is within the above range, the reactivity between the first agent and the second agent tends to be further improved, and the uniform reactivity tends to be further improved.
 また、エポキシ変性オルガノポリシロキサンA1の25℃における粘度は、好ましくは5~15000mm/sであり、より好ましくは5~12000mm/sであり、さらに好ましくは5~10000mm/sである。粘度が上記範囲内であることにより、二液硬化型の組成物セットとしての取扱性がより向上する傾向にある。 The viscosity of the epoxy-modified organopolysiloxane A1 at 25 ° C. is preferably 5 to 15000 mm 2 / s, more preferably 5 to 12000 mm 2 / s, and even more preferably 5 to 10000 mm 2 / s. When the viscosity is within the above range, the handleability as a two-component curing type composition set tends to be further improved.
(熱伝導性フィラーB1)
 熱伝導性フィラーB1は、例えば熱伝導率が10W/m・K以上のフィラーである。このような熱伝導性フィラーB1としては、特に制限されないが、例えば、酸化アルミニウム(以下、「アルミナ」ともいう)、窒化アルミニウム、シリカ、窒化ホウ素、窒化ケイ素、酸化亜鉛、水酸化アルミニウム、金属アルミニウム、酸化マグネシウム、ダイヤモンド、カーボン、インジウム、ガリウム、銅、銀、鉄、ニッケル、金、錫、金属ケイ素等が挙げられる。
(Thermal Conductive Filler B1)
The thermally conductive filler B1 is, for example, a filler having a thermal conductivity of 10 W / m · K or more. The heat conductive filler B1 is not particularly limited, and for example, aluminum oxide (hereinafter, also referred to as “alumina”), aluminum nitride, silica, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, and metallic aluminum. , Magnesium oxide, diamond, carbon, indium, gallium, copper, silver, iron, nickel, gold, tin, metallic silicon and the like.
 このなかでも、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化亜鉛、水酸化アルミニウム、金属アルミニウム、酸化マグネシウム、銅、銀、ダイヤモンドからなる群より選ばれる少なくとも一種以上を含むことが好ましく、アルミナがより好ましい。このような熱伝導性フィラーB1を用いることにより、充填性が向上し、得られる硬化物の熱伝導率がより向上する傾向にある。これら熱伝導性フィラーB1は1種単独で用いても、2種以上を併用してもよい。 Among these, it is preferable to contain at least one selected from the group consisting of aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, magnesium oxide, copper, silver and diamond, and alumina. Is more preferable. By using such a heat conductive filler B1, the filling property tends to be improved, and the thermal conductivity of the obtained cured product tends to be further improved. These heat conductive fillers B1 may be used alone or in combination of two or more.
 熱伝導性フィラーB1の平均粒径は、好ましくは0.1~120μmであり、より好ましくは0.1~60μmである。熱伝導性フィラーB1の平均粒径が上記範囲内であることにより、流動性や分散性、充填性がより向上する傾向にある。 The average particle size of the heat conductive filler B1 is preferably 0.1 to 120 μm, more preferably 0.1 to 60 μm. When the average particle size of the heat conductive filler B1 is within the above range, the fluidity, dispersibility, and filling property tend to be further improved.
 また、熱伝導性フィラーB1は、平均粒径の異なるフィラーを混合して用いてもよい。例えば、平均粒径が40~50μmである熱伝導性フィラー(B1-1)、及び平均粒径が1~10μmである熱伝導性フィラー(B1-2)を組み合わせて用いることがより好ましい。この場合、熱伝導性フィラー(B1-1)の含有量は、熱伝導性フィラーB1の総量に対して、好ましくは40~80質量%であり、より好ましくは50~70質量%である。また、熱伝導性フィラー(B1-1)の含有量は、熱伝導性フィラーB1の総量に対して、好ましくは20~60質量%であり、より好ましくは30~50質量%である。このような熱伝導性フィラーB1を用いることにより、流動性や分散性、充填性がより向上する傾向にある。なお、本実施形態における平均粒径は、D50(メジアン径)を意味するものとする。 Further, the thermally conductive filler B1 may be used by mixing fillers having different average particle sizes. For example, it is more preferable to use a heat conductive filler (B1-1) having an average particle size of 40 to 50 μm and a heat conductive filler (B1-2) having an average particle size of 1 to 10 μm in combination. In this case, the content of the heat conductive filler (B1-1) is preferably 40 to 80% by mass, more preferably 50 to 70% by mass, based on the total amount of the heat conductive filler B1. The content of the heat conductive filler (B1-1) is preferably 20 to 60% by mass, more preferably 30 to 50% by mass, based on the total amount of the heat conductive filler B1. By using such a heat conductive filler B1, the fluidity, dispersibility, and filling property tend to be further improved. The average particle size in this embodiment means D50 (median diameter).
 熱伝導性フィラーB1の含有量は、上記エポキシ変性オルガノポリシロキサンA1の含有量100重量部に対して、好ましくは400~3000重量部であり、より好ましくは600~2800重量部であり、更に好ましくは700~2600重量部である。熱伝導性フィラーの含有量が、上記エポキシ変性オルガノポリシロキサンA1の含有量100重量部に対して、400重量部以上であれば、得られる硬化物の熱伝導率がより良好となり、3000重量部以下であれば、流動性の低下をより効果的に抑え、塗布性を確保することができる。 The content of the heat conductive filler B1 is preferably 400 to 3000 parts by weight, more preferably 600 to 2800 parts by weight, still more preferably, based on 100 parts by weight of the epoxy-modified organopolysiloxane A1. Is 700 to 2600 parts by weight. When the content of the heat conductive filler is 400 parts by weight or more with respect to the content of 100 parts by weight of the epoxy-modified organopolysiloxane A1, the thermal conductivity of the obtained cured product becomes better and 3000 parts by weight. If it is the following, the decrease in fluidity can be suppressed more effectively and the coatability can be ensured.
(ポリジメチルシロキサンC)
 ポリジメチルシロキサンCは、第一剤の粘度や得られる硬化物の硬度を調整するために添加することができる。ポリジメチルシロキサンの粘度は特に制限されず、粘度の異なる複数種類のポリジメチルシロキサンを併用してもよい。
(Polydimethylsiloxane C)
Polydimethylsiloxane C can be added to adjust the viscosity of the first agent and the hardness of the resulting cured product. The viscosity of the polydimethylsiloxane is not particularly limited, and a plurality of types of polydimethylsiloxane having different viscosities may be used in combination.
 ポリジメチルシロキサンCの含有量は、上記エポキシ変性オルガノポリシロキサンA1とポリジメチルシロキサンの合計100重量部に対して、好ましくは0~80重量部である。 The content of polydimethylsiloxane C is preferably 0 to 80 parts by weight with respect to 100 parts by weight of the total of the epoxy-modified organopolysiloxane A1 and polydimethylsiloxane.
(オルガノシランD)
 オルガノシランDは、上記熱伝導性フィラーB1とエポキシ変性オルガノポリシロキサンA1との濡れ性を調整するために添加することができる。このようなオルガノシランとしては、特に制限されないが、例えば、下記一般式(d)で表されるオルガノシランが好適に用いられる。
  R Si(OR4-(a+b)   (d)
(式中、Rは、各々独立して、炭素数1~15のアルキル基を示し、Rは、各々独立して、炭素数1~8の不飽和の一価の炭化水素基を示し、Rは、各々独立して、炭素数1~6のアルキル基を示し、aは1~3の整数であり、bは0~2の整数であり、a+bは1~3の整数である。)
(Organosilane D)
Organosilane D can be added to adjust the wettability of the thermally conductive filler B1 and the epoxy-modified organopolysiloxane A1. The organosilane is not particularly limited, but for example, an organosilane represented by the following general formula (d) is preferably used.
R 3 a R 4 b Si (OR 5 ) 4- (a + b) (d)
(In the formula, R 3 independently represents an alkyl group having 1 to 15 carbon atoms, and R 4 independently represents an unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms. , R 5 independently represent an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, and a + b is an integer of 1 to 3. .)
 式(d)中、Rが示す炭素数1~15のアルキル基としては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基、3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基等が挙げられる。このなかでもRは、炭素数6~12のアルキル基であることが好ましい。 In the formula (d), the alkyl group having 1 to 15 carbon atoms represented by R 3 is not particularly limited, and is, for example, a methyl group, an ethyl group, a propyl group, a hexyl group, a nonyl group, a decyl group, a dodecyl group, or a tetradecyl. Examples thereof include a group, a 3,3,3-trifluoropropyl group, a 2- (perfluorobutyl) ethyl group, a 2- (perfluorooctyl) ethyl group and the like. Of these, R 3 is preferably an alkyl group having 6 to 12 carbon atoms.
 Rが示す炭素数1~8の不飽和の一価の炭化水素基としては、特に制限されないが、例えば、ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;、p-クロロフェニル基等のハロゲン化炭化水素基等が挙げられる。 The unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms shown by R4 is not particularly limited, but is not particularly limited, and is, for example, an alkenyl group such as a vinyl group or an allyl group; an aryl group such as a phenyl group or a trill group; 2 Examples thereof include an aralkyl group such as a phenylethyl group and a 2-methyl-2-phenylethyl group; and a halogenated hydrocarbon group such as a p-chlorophenyl group.
 Rが示す炭素数1~6のアルキル基としては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。このなかでも、Rはメチル基又はエチル基であることが好ましい。 The alkyl group having 1 to 6 carbon atoms indicated by R 5 is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Of these, R5 is preferably a methyl group or an ethyl group.
 aは1~3の整数であり、好ましくは1である。bは0~2の整数であり、好ましくは0である。a+bは1~3の整数であり、好ましくは1である。 A is an integer of 1 to 3, preferably 1. b is an integer of 0 to 2, preferably 0. a + b is an integer of 1 to 3, preferably 1.
 上記オルガノシランDの含有量は、上記エポキシ変性オルガノポリシロキサンA1の含有量100重量部に対して、好ましくは0.01~30重量部であり、より好ましくは0.1~5.0重量部である。オルガノシランDの含有量が上記範囲内であれば、濡れ性を効果的に向上させることができる。 The content of the organosilane D is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 5.0 parts by weight, based on 100 parts by weight of the epoxy-modified organopolysiloxane A1. Is. When the content of organosilane D is within the above range, the wettability can be effectively improved.
(着色剤E)
 着色剤Eとしては、特に制限されないが、例えば、任意の顔料が挙げられる。着色剤Eの含有量は、特に限定されず、例えば、第一剤及び後述する第二剤の合計100重量部に対して、好ましくは0.05~0.2重量部である。
(Colorant E)
The colorant E is not particularly limited, and examples thereof include any pigment. The content of the colorant E is not particularly limited, and is preferably 0.05 to 0.2 parts by weight with respect to a total of 100 parts by weight of the first agent and the second agent described later.
<第二剤>
 第二剤は、アミノ基含有基を有するアミノ変性オルガノポリシロキサンA2及び熱伝導性フィラーB2を含み、必要に応じて、ポリジメチルシロキサンC、オルガノシランD、着色剤E等の添加剤を含んでもよい。
<Second agent>
The second agent contains an amino-modified organopolysiloxane A2 having an amino group-containing group and a thermally conductive filler B2, and may contain additives such as polydimethylsiloxane C, organosilane D, and a colorant E, if necessary. good.
(アミノ変性オルガノポリシロキサンA2)
 本実施形態のアミノ変性オルガノポリシロキサンA2は、末端又は側鎖にアミノ基を有する置換基(アミノ基含有基)を有する。アミノ基を有するオルガノポリシロキサンは、オルガノポリシロキサン分子におけるSi-R部分(ただし、Rは置換又は非置換の1価の炭化水素基である)のRの少なくとも一部がアミノ基を有する置換基であるものである。
(Amino-modified organopolysiloxane A2)
The amino-modified organopolysiloxane A2 of the present embodiment has a substituent (amino group-containing group) having an amino group at the terminal or side chain. An organopolysiloxane having an amino group is a substituent in which at least a part of R of the Si—R moiety (where R is a substituted or unsubstituted monovalent hydrocarbon group) in the organopolysiloxane molecule has an amino group. Is what.
 アミノ基含有基としては、特に制限されないが、例えば、下記式(a21)で表されるアミノ基が挙げられる。このようなアミノ基含有基は、1級アミノ基及び2級アミノ基であってもよいが、このなかでもRが水素原子である1級アミノ基が好ましい。
Figure JPOXMLDOC01-appb-C000003

(式中、Rは、水素原子、又は水素原子がアミノ基に置換されていてもよい炭素数1~6のアルキル基を示し、Rは、炭素数1~6のアルキル基を示す。)
The amino group-containing group is not particularly limited, and examples thereof include an amino group represented by the following formula (a21). Such an amino group-containing group may be a primary amino group or a secondary amino group, and among these, a primary amino group in which R6 is a hydrogen atom is preferable.
Figure JPOXMLDOC01-appb-C000003

(In the formula, R 6 indicates a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in which a hydrogen atom may be substituted with an amino group, and R 7 indicates an alkyl group having 1 to 6 carbon atoms. )
 Rは、水素原子又は水素原子がアミノ基に置換されていてもよい炭素数1~6のアルキル基を示す。Rが水素原子の場合、式(a21)で表されるアミノ基は3-アミノプロピル基のような末端に1級アミノ基を有する。また、Rが炭素数1~6のアルキル基の場合、式(a21)で表されるアミノ基は2級アミノ基を有する。さらに、Rが水素原子がアミノ基に置換された炭素数1~6のアルキル基の場合、式(a21)で表されるアミノ基はアミノエチルアミノプロピル基のように、1級アミノ基と2級アミノ基を有する基や、複数の1級アミノ基を有する基又は複数2級アミノ基を有する基となる。 R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in which a hydrogen atom may be substituted with an amino group. When R 6 is a hydrogen atom, the amino group represented by the formula (a21) has a primary amino group at the terminal such as a 3-aminopropyl group. When R 6 is an alkyl group having 1 to 6 carbon atoms, the amino group represented by the formula (a21) has a secondary amino group. Further, when R 6 is an alkyl group having 1 to 6 carbon atoms in which a hydrogen atom is substituted with an amino group, the amino group represented by the formula (a21) is a primary amino group such as an aminoethylaminopropyl group. It may be a group having a secondary amino group, a group having a plurality of primary amino groups, or a group having a plurality of secondary amino groups.
 アミノ変性オルガノポリシロキサンA2は、直鎖状構造、分岐状構造、又は環状構造のいずれを有していてもよく、直鎖状構造と環状構造を組み合わせた構造又は分岐状構造と環状構造を組み合わせた構造を有していてもよい。このなかでも、液体としての取扱性の観点からは直鎖状構造が好ましく、得られる硬化物の機械物性の観点からは分岐状構造が好ましい。 The amino-modified organopolysiloxane A2 may have any of a linear structure, a branched structure, and a cyclic structure, and may be a combination of a linear structure and a cyclic structure or a combination of a branched structure and a cyclic structure. It may have a structure. Among these, a linear structure is preferable from the viewpoint of handleability as a liquid, and a branched structure is preferable from the viewpoint of mechanical properties of the obtained cured product.
 アミノ変性オルガノポリシロキサンA2におけるアミノ基含有基の結合位置は、特に制限されず、末端又は側鎖であってもよいし、末端及び側鎖であってもよい。側鎖にアミノ基含有基を有する場合には、アミノ変性オルガノポリシロキサンA2は、例えば、下記一般式(a2-1)又は(a2-2)で表される構成単位を有する。また、末端にアミノ基含有基を有する場合には、アミノ変性オルガノポリシロキサンA2は、例えば、下記一般式(a2-3)で表される末端構造(但し、mが1以上のもの)を有する。さらに、アミノ基含有基が結合していない構成単位としては、下記一般式(a2-4)で表される構成単位が挙げられる。なお、アミノ変性オルガノポリシロキサンA2の有する構成単位は以下に限定されるもではなく、例えば、分岐状構造を有する場合には分岐型の構成単位を有していてもよい、環状構造を有する場合には末端構造を有しなくてもよい。
Figure JPOXMLDOC01-appb-C000004

(式中、Yは、各々独立して、アミノ基含有基を示し、Rは、各々独立して、炭素数1~12の置換又は非置換の炭化水素基を示し、mは0~3の整数を示す。)
The bonding position of the amino group-containing group in the amino-modified organopolysiloxane A2 is not particularly limited, and may be a terminal or a side chain, or may be a terminal and a side chain. When the side chain has an amino group-containing group, the amino-modified organopolysiloxane A2 has, for example, a structural unit represented by the following general formula (a2-1) or (a2-2). When the amino group-containing group is contained at the terminal, the amino-modified organopolysiloxane A2 has, for example, a terminal structure represented by the following general formula (a2-3) (provided that m is 1 or more). .. Further, examples of the structural unit to which the amino group-containing group is not bonded include a structural unit represented by the following general formula (a2-4). The structural unit of the amino-modified organopolysiloxane A2 is not limited to the following, and for example, when it has a branched structure, it may have a branched structural unit, or when it has a cyclic structure. Does not have to have a terminal structure.
Figure JPOXMLDOC01-appb-C000004

(In the formula, Y independently represents an amino group-containing group, R 8 independently represents a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, and m is 0 to 3. Indicates an integer of.)
 Rで示される置換又は非置換の炭化水素基としては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基;クロロメチル基、3,3,3-トリフルオロプロピル基、3-クロロプロピル基等のハロゲン化アルキル基が挙げられる。 The substituted or unsubstituted hydrocarbon group represented by R8 is not particularly limited, and for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and the like. Alkyl groups such as decyl group and dodecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, trill group, xylyl group and naphthyl group; benzyl group, 2-phenylethyl group and 2-phenylpropyl Aralkyl groups such as groups; examples thereof include alkyl halide groups such as chloromethyl group, 3,3,3-trifluoropropyl group and 3-chloropropyl group.
 このなかでも、アミノ変性オルガノポリシロキサンA2としては、末端又は側鎖にアミノ基含有基を有する直鎖状構造のオルガノポリシロキサン、あるいは、末端に水酸基を有し側鎖にアミノ基含有基を有する直鎖状構造のオルガノポリシロキサンが好ましい。このようなアミノ変性オルガノポリシロキサンA2を用いることにより、第一剤と第二剤の反応性がより向上する傾向にある。 Among these, the amino-modified organopolysiloxane A2 is an organopolysiloxane having a linear structure having an amino group-containing group at the terminal or side chain, or having a hydroxyl group at the terminal and having an amino group-containing group in the side chain. Organopolysiloxanes with a linear structure are preferred. By using such an amino-modified organopolysiloxane A2, the reactivity between the first agent and the second agent tends to be further improved.
 アミノ変性オルガノポリシロキサンA2のアミノ基の官能基当量は、好ましくは100~8000g/molであり、より好ましくは200~6000g/molであり、より好ましくは300~4000g/molであり、よりさらに好ましくは300~2000g/molである。アミノ基の官能基当量が上記範囲内であることにより、第一剤と第二剤の反応性がより向上し、均一反応性がより向上する傾向にある。 The functional group equivalent of the amino group of the amino-modified organopolysiloxane A2 is preferably 100 to 8000 g / mol, more preferably 200 to 6000 g / mol, more preferably 300 to 4000 g / mol, and even more preferably. Is 300 to 2000 g / mol. When the functional group equivalent of the amino group is within the above range, the reactivity between the first agent and the second agent tends to be further improved, and the uniform reactivity tends to be further improved.
 また、アミノ変性オルガノポリシロキサンA2の25℃における粘度は、好ましくは5~2000mm/sであり、より好ましくは5~1750mm/sであり、さらに好ましくは5~1500mm/sである。粘度が上記範囲内であることにより、二液硬化型の組成物セットとしての取扱性がより向上する傾向にある。 The viscosity of the amino-modified organopolysiloxane A2 at 25 ° C. is preferably 5 to 2000 mm 2 / s, more preferably 5 to 1750 mm 2 / s, and even more preferably 5 to 1500 mm 2 / s. When the viscosity is within the above range, the handleability as a two-component curing type composition set tends to be further improved.
 また、アミノ変性オルガノポリシロキサンA2は、ケイ素原子に水酸基が結合した水酸基含有基をさらに有することが好ましい。水酸基含有基の結合位置は、特に制限されず、末端又は側鎖であってもよいし、末端及び側鎖であってもよい。このなかでも、両末端にアミノ基含有基を有する直鎖状構造のアミノ変性オルガノポリシロキサンA2が好ましい。このようなアミノ変性オルガノポリシロキサンA2を使用することにより、エポキシ変性オルガノポリシロキサンA1との相溶性がより向上し、均一反応性がより向上する傾向にある。 Further, it is preferable that the amino-modified organopolysiloxane A2 further has a hydroxyl group-containing group in which a hydroxyl group is bonded to a silicon atom. The bonding position of the hydroxyl group-containing group is not particularly limited, and may be a terminal or a side chain, or may be a terminal and a side chain. Among these, amino-modified organopolysiloxane A2 having a linear structure having an amino group-containing group at both ends is preferable. By using such an amino-modified organopolysiloxane A2, the compatibility with the epoxy-modified organopolysiloxane A1 tends to be further improved, and the uniform reactivity tends to be further improved.
(熱伝導性フィラーB2)
 熱伝導性フィラーB2は、例えば熱伝導率が10W/m・K以上のフィラーであり、熱伝導性フィラーB1と同様のものが挙げられる。このなかでも、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化亜鉛、水酸化アルミニウム、金属アルミニウム、酸化マグネシウム、銅、銀、ダイヤモンドからなる群より選ばれる少なくとも一種以上を含むことが好ましい。このような熱伝導性フィラーB2を用いることにより、充填性が向上し、得られる硬化物の熱伝導率がより向上する傾向にある。これら熱伝導性フィラーB2は1種単独で用いても、2種以上を併用してもよい。
(Thermal conductive filler B2)
The heat conductive filler B2 is, for example, a filler having a thermal conductivity of 10 W / m · K or more, and examples thereof include the same ones as the heat conductive filler B1. Among these, it is preferable to contain at least one selected from the group consisting of aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, magnesium oxide, copper, silver and diamond. By using such a heat conductive filler B2, the filling property tends to be improved, and the thermal conductivity of the obtained cured product tends to be further improved. These thermally conductive fillers B2 may be used alone or in combination of two or more.
 また、熱伝導性フィラーB2の平均粒径及び含有量についても、熱伝導性フィラーB1と同様とすることができ、上記熱伝導性フィラーB1に関する記載は、熱伝導性フィラーB2に読み替えて適用することができる。 Further, the average particle size and the content of the heat conductive filler B2 can be the same as those of the heat conductive filler B1, and the description regarding the heat conductive filler B1 is applied by replacing it with the heat conductive filler B2. be able to.
(添加剤)
 その他、第二剤に含まれ得る、ポリジメチルシロキサンC、オルガノシランD、及び着色剤Eの種類や含有量は、上述した第一剤と同様であり、第一剤におけるこれらに関する記載は第二剤に関するものとして読み替えて適用することができるため、ここでは重複する説明を省略する。
(Additive)
In addition, the types and contents of the polydimethylsiloxane C, the organosilane D, and the colorant E that can be contained in the second agent are the same as those of the first agent described above, and the description regarding these in the first agent is the second. Since it can be read and applied as related to a drug, a duplicate description is omitted here.
 なお、第二剤としての熱伝導性フィラー、ポリジメチルシロキサン、オルガノシラン、着色剤と、第一剤としての熱伝導性フィラー、ポリジメチルシロキサン、オルガノシラン、着色剤とは、同種のものであっても異種のものであってもよい。 The heat conductive filler, polydimethylsiloxane, organosilane, and colorant as the second agent and the heat conductive filler, polydimethylsiloxane, organosilane, and colorant as the first agent are of the same type. It may be different.
<第一剤と第二剤の比率>
 本実施形態の二液硬化型組成物セットにおいて、第一剤におけるエポキシ変性オルガノポリシロキサンA1と、第二剤におけるアミノ変性オルガノポリシロキサンA2の割合は、第一剤におけるエポキシ変性オルガノポリシロキサンA1のエポキシ基の含有量および第二剤におけるアミノ変性オルガノポリシロキサンA2のアミノ基の含有量に応じて適宜設定することができる。
 エポキシ基の含有量=エポキシ変性オルガノポリシロキサンA1の含有量/官能基当量
 アミノ基の含有量 =アミノ変性オルガノポリシロキサンA2の含有量/官能基当量
<Ratio of first agent to second agent>
In the two-component curable composition set of the present embodiment, the ratio of the epoxy-modified organopolysiloxane A1 in the first agent and the amino-modified organopolysiloxane A2 in the second agent is the epoxy-modified organopolysiloxane A1 in the first agent. It can be appropriately set according to the content of the epoxy group and the content of the amino group of the amino-modified organopolysiloxane A2 in the second agent.
Epoxide group content = Epoxide-modified organopolysiloxane A1 content / functional group equivalent Amino group content = Amino-modified organopolysiloxane A2 content / functional group equivalent
 第一剤と第二剤の組み合わせが満たすエポキシ基の含有量/アミノ基の含有量は、好ましくは70/30~10/90であり、より好ましくは55/45~20/80である。エポキシ基の含有量及びアミノ基の含有量の比が上記範囲内であることにより、均一反応性が向上し、十分に架橋構造が形成された硬化物を得ることができる。 The epoxy group content / amino group content satisfied by the combination of the first agent and the second agent is preferably 70/30 to 10/90, and more preferably 55/45 to 20/80. When the ratio of the epoxy group content and the amino group content is within the above range, uniform reactivity is improved and a cured product having a sufficiently crosslinked structure can be obtained.
<用途>
 ASTM D5470に準拠して測定した、第一剤と第二剤の混合物の硬化後の熱伝導率は、好ましくは1.0W/mk以上であり、より好ましくは2.0W/mk以上である。このような本実施形態の二液硬化型組成物セットは、熱伝導性放熱材料として好適に使用することができる。
<Use>
The thermal conductivity of the mixture of the first agent and the second agent after curing, measured according to ASTM D5470, is preferably 1.0 W / mk or more, more preferably 2.0 W / mk or more. Such a two-component curing type composition set of the present embodiment can be suitably used as a heat conductive heat dissipation material.
[硬化物]
 本実施形態に係る硬化物は、例えば、上述した二液硬化型組成物セットにおける第一剤及び第二剤を混合することにより得られる。より具体的には、硬化物(架橋硬化物)は、当該第一剤及び第二剤を混合して得られる混合物において、第一剤に含まれるエポキシ変性オルガノポリシロキサンA1のエポキシ基と、第二剤に含まれるアミノ変性オルガノポリシロキサンA2のアミノ基との付加反応が進行し、架橋結合を有する3次元網目構造を形成することにより、上記硬化物が得られる。
[Cursed product]
The cured product according to the present embodiment can be obtained, for example, by mixing the first agent and the second agent in the above-mentioned two-component curing type composition set. More specifically, the cured product (crosslinked cured product) is the epoxy group of the epoxy-modified organopolysiloxane A1 contained in the first agent in the mixture obtained by mixing the first agent and the second agent. The above-mentioned cured product is obtained by advancing the addition reaction of the amino-modified organopolysiloxane A2 contained in the two agents with the amino group to form a three-dimensional network structure having a cross-linking bond.
 本実施形態の硬化物は、第一剤及び第二剤を混合した後に、所望の形に成形してもよい。また、本実施形態に係る硬化物は熱伝導性フィラーを含むため熱伝導性放熱材料として好適に用いることができる。 The cured product of the present embodiment may be formed into a desired shape after mixing the first agent and the second agent. Further, since the cured product according to the present embodiment contains a heat conductive filler, it can be suitably used as a heat conductive heat radiating material.
 混合には、例えば、ロールミル、ニーダー、バンバリーミキサー、ラインミキサー等の混合機が用いられ、例えば、万能混合撹拌機、ハイブリッドミキサー、トリミックス(井上製作所製)、スタティックミキサーを用いて混練する方法等が挙げられる。成形方法はドクターブレード法が好ましいが、樹脂の粘度によって押出法、プレス法、カレンダーロール法等を用いることができる。付加反応の進行における反応条件は、特に限定されないが、通常、室温(例えば25℃)から150℃、0.1~24時間で行われる。 For mixing, for example, a mixer such as a roll mill, a kneader, a Banbury mixer, a line mixer, etc. is used. Can be mentioned. The doctor blade method is preferable as the molding method, but an extrusion method, a press method, a calendar roll method, or the like can be used depending on the viscosity of the resin. The reaction conditions in the progress of the addition reaction are not particularly limited, but are usually carried out from room temperature (for example, 25 ° C.) to 150 ° C. for 0.1 to 24 hours.
 第一剤と第二剤の混合割合は、用いる第一剤及び第二剤の種類、及び使用目的に応じて適宜設定できるが、例えば、体積比で第一剤:第二剤=1.5:1.0~1.0:1.5であってよく、1.0:1.0であってよい。 The mixing ratio of the first agent and the second agent can be appropriately set according to the type of the first agent and the second agent to be used and the purpose of use. For example, the first agent: the second agent = 1.5 in terms of volume ratio. : 1.0 to 1.0: 1.5, and may be 1.0: 1.0.
[電子機器]
 本実施形態の電子機器は、電子部品と上記硬化物と電子部品及び硬化物を収容する筐体とを備え、電子部品及び筐体が前記硬化物を介して接触しているものである。
[Electronics]
The electronic device of the present embodiment includes an electronic component, the cured product, and a housing for accommodating the electronic component and the cured product, and the electronic component and the housing are in contact with each other via the cured product.
 ここで、電子部品としては、特に制限されないが、例えば、モーター、電池パック、車載電源システムに持つ売られる回路基板、パワートランジスタ、マイクロプロセッサ等の発熱する電子部品等が挙げられる。また、金属筐体としては、特に制限されないが、例えば、放熱や吸熱を目的として構成されたヒートシンクなどが挙げられる。 Here, the electronic components are not particularly limited, and examples thereof include motors, battery packs, circuit boards sold in in-vehicle power supply systems, power transistors, electronic components that generate heat such as microprocessors, and the like. The metal housing is not particularly limited, and examples thereof include a heat sink configured for heat dissipation and heat absorption.
 以下、実施例により本発明を更に詳述するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[第一剤]
 以下に示す、A1成分~C1成分を、表1に記載の配合比(重量部)に基づき混合し、第一剤I-1~I~3を作製した。各成分の混合はハイブリッドミキサーARE-310(シンキー株式会社製、商品名)を用いて行った。
[First agent]
The components A1 to C1 shown below were mixed based on the compounding ratio (part by weight) shown in Table 1 to prepare the first agents I-1 to I-3. Mixing of each component was carried out using a hybrid mixer ARE-310 (manufactured by Shinky Co., Ltd., trade name).
<A1成分:オルガノポリシロキサン>
 A1-1:DOWSIL BY 16-839 Fluid(ダウ・東レ株式会社製、商品名)、エポキシ変性オルガノポリシロキサン、25℃における粘度:6000mm/s、エポキシ基の官能基当量:3700g/mol、脂環式タイプ(エチルシクロヘキセンオキシド基)、エポキシ基結合位置:側鎖
 A1-2:DOWSIL BY 8411 Fluid(ダウ・東レ株式会社製、商品名)、エポキシ変性オルガノポリシロキサン、25℃における粘度:8000mm/s、エポキシ基の官能基当量:3300g/mol、脂肪族タイプ(グリシジル基)、エポキシ基結合位置:側鎖
 A1-3:DOWSIL SE 1885A(ダウ・東レ株式会社製、商品名)ビニル基を有するオルガノポリシロキサン(白金触媒含有)
<A1 component: organopolysiloxane>
A1-1: DOWNSIL BY 16-839 Fluid (manufactured by Dow Toray Co., Ltd., trade name), epoxy-modified organopolysiloxane, viscosity at 25 ° C.: 6000 mm 2 / s, functional group equivalent of epoxy group: 3700 g / mol, fat Cyclic type (ethylcyclohexene oxide group), epoxy group bond position: side chain A1-2: DOWNSIL BY 8411 Fluid (manufactured by Dow Toray Co., Ltd., trade name), epoxy-modified organopolysiloxane, viscosity at 25 ° C: 8000 mm 2 / S, Epoxide group functional group equivalent: 3300 g / mol, aliphatic type (glycidyl group), epoxy group bond position: side chain A1-3: DOWNSIL SE 1885A (manufactured by Dow Toray Co., Ltd., trade name) Vinyl group Organopolysiloxane (containing platinum catalyst)
<B1成分:熱伝導性フィラー>
 B1-1:球状アルミナ、平均粒径:45μm、DAW45S(デンカ株式会社製、商品名)、熱伝導率35W/mK
 B1-2:球状アルミナ、平均粒径:5μm、DAW05(デンカ株式会社製、商品名)、熱伝導率35W/mK
<B1 component: thermally conductive filler>
B1-1: Spherical alumina, average particle size: 45 μm, DAW45S (manufactured by Denka Co., Ltd., trade name), thermal conductivity 35 W / mK
B1-2: Spherical alumina, average particle size: 5 μm, DAW05 (manufactured by Denka Co., Ltd., trade name), thermal conductivity 35 W / mK
<C1成分:着色剤>
 C1:レジノブラック#442(レジノカラー工業株式会社、商品名)
<C1 component: colorant>
C1: Regino Black # 442 (Regino Color Industry Co., Ltd., product name)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[第二剤]
 以下に示す、A2成分~B2成分を、表2に記載の配合比(重量部)に基づき混合し、第二剤II-1~II-6を作製した。各成分の混合はハイブリッドミキサーARE-310(シンキー株式会社製、商品名)を用いて行った。
[Second agent]
The components A2 to B2 shown below were mixed based on the compounding ratio (part by weight) shown in Table 2 to prepare the second agents II-1 to II-6. Mixing of each component was carried out using a hybrid mixer ARE-310 (manufactured by Shinky Co., Ltd., trade name).
<A2成分:オルガノポリシロキサン>
 A2-1:DOWSIL BY 16-213(ダウ・東レ株式会社製、商品名)、アミノ変性オルガノポリシロキサン、25℃における粘度:60mm/s、アミノ基の官能基当量:2700g/mol、一級アミン(3-アミノプロピル基)、アミノ基結合位置:側鎖
 A2-2:DOWSIL BY 16-853U(ダウ・東レ株式会社製、商品名)、アミノ変性オルガノポリシロキサン、25℃における粘度14mm/s、アミノ基の官能基当量450g/mol、一級アミン(3-アミノプロピル基)、アミノ基結合位置:末端
 A2-3:DOWSIL BY 16-892(ダウ・東レ株式会社製、商品名)、アミノ変性オルガノポリシロキサン、25℃における粘度1400mm/s、アミノ基の官能基当量1900g/mol、一級アミン及び二級アミン(アミノエチルアミノプロピル基)、アミノ基結合位置:側鎖、両末端OH含有
 A2-4:DOWSIL SE 1885B(ダウ・東レ株式会社製、商品名)ビニル基を有するオルガノポリシロキサンとヒドロシリル基を有するオルガノポリシロキサンの混合物
 A2-5:DOWSIL BY 8428 Fluid(ダウ・東レ株式会社製、商品名)、カルビノール変性オルガノポリシロキサン、25℃における粘度140mm/s、官能基当量1600g/mol
 A2-6:DOWSIL BY 16-880 Fluid(ダウ・東レ株式会社製、商品名)カルボキシル変性オルガノポリシロキサン25℃における粘度2500mm/s、官能基当量3300g/mol
<A2 component: organopolysiloxane>
A2-1: DOWNSIL BY 16-213 (manufactured by Dow Toray Co., Ltd., trade name), amino-modified organopolysiloxane, viscosity at 25 ° C.: 60 mm 2 / s, functional group equivalent of amino group: 2700 g / mol, primary amine (3-Aminopropyl group), Amino group bond position: Side chain A2-2: DOWNSIL BY 16-853U (manufactured by Dow Toray Co., Ltd., trade name), amino-modified organopolysiloxane, viscosity at 25 ° C. 14 mm 2 / s , Functional group equivalent of amino group 450 g / mol, primary amine (3-aminopropyl group), amino group bond position: terminal A2-3: DOWNSIL BY 16-892 (manufactured by Dow Toray Co., Ltd., trade name), amino modification Organopolysiloxane, viscosity at 25 ° C. 1400 mm 2 / s, functional group equivalent of amino group 1900 g / mol, primary amine and secondary amine (aminoethylaminopropyl group), amino group bond position: side chain, containing OH at both ends A2 -4: DOWNSIL SE 1885B (manufactured by Dow Toray Co., Ltd., trade name) Mixture of organopolysiloxane having a vinyl group and organopolysiloxane having a hydrosilyl group A2-5: DOWNIL BY 8428 Fluid (manufactured by Dow Toray Co., Ltd., Product name), carbinol-modified organopolysiloxane, viscosity at 25 ° C. 140 mm 2 / s, functional group equivalent 1600 g / mol
A2-6: DOWNSIL BY 16-880 Fluid (trade name, manufactured by Dow Toray Co., Ltd.) Viscosity of carboxyl-modified organopolysiloxane at 25 ° C. 2500 mm 2 / s, functional group equivalent 3300 g / mol
<B2成分:熱伝導性フィラー>
 B2-1:球状アルミナ、平均粒径:45μm、DAW45S(デンカ株式会社製、商品名)
 B2-2:球状アルミナ、平均粒径:5μm、DAW05(デンカ株式会社製、商品名)
<B2 component: thermally conductive filler>
B2-1: Spherical alumina, average particle size: 45 μm, DAW45S (manufactured by Denka Co., Ltd., trade name)
B2-2: Spherical alumina, average particle size: 5 μm, DAW05 (manufactured by Denka Co., Ltd., product name)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<熱伝導率>
 株式会社日立テクノロジー社製の樹脂材料熱抵抗測定装置を用い、ASTM D5470に準拠した方法により、熱伝導性硬化物の熱伝導率を測定した。具体的には、第一剤及び第二剤を各実施例および比較例に記載の体積比で混合して得られた混合物を、0.2mm、0.5mm及び1.0mmの厚さにそれぞれ成形し、得られたそれぞれの成形物を25℃で24時間保持して硬化反応を進行させ、熱伝導性硬化物を得た。得られた熱伝導性硬化物に対し、測定面積10mm×10mmでそれぞれの熱抵抗値を測定した。熱抵抗値を縦軸とし、熱伝導性硬化物の厚さを横軸として得られる直線の傾きを算出し、熱伝導性硬化物の熱伝導率とした。
<Thermal conductivity>
The thermal conductivity of the heat conductive cured product was measured by a method compliant with ASTM D5470 using a resin material thermal resistance measuring device manufactured by Hitachi Technology Co., Ltd. Specifically, the mixture obtained by mixing the first agent and the second agent at the volume ratios described in each Example and Comparative Example was prepared into thicknesses of 0.2 mm, 0.5 mm and 1.0 mm, respectively. Molding was performed, and each of the obtained molded products was held at 25 ° C. for 24 hours to proceed with the curing reaction to obtain a thermally conductive cured product. The thermal resistance values of the obtained heat conductive cured products were measured in a measurement area of 10 mm × 10 mm. The slope of a straight line obtained with the thermal resistance value as the vertical axis and the thickness of the thermally conductive cured product as the horizontal axis was calculated and used as the thermal conductivity of the thermally conductive cured product.
[平均粒径の測定]
 熱伝導性フィラーの平均粒径は、島津製作所製「レーザー回折式粒度分布測定装置SALD-20」(商品名)を用いて測定を行った。評価サンプルは、ガラスビーカーに50mlの純水と測定する熱伝導性フィラー粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性フィラー粉末の溶液を、スポイトを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が安定したところで測定を行った。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱孔の光強度分布のデータから粒度分布を計算する。平均粒径は、測定される粒子径の値に相対粒子量(差分%)を掛け、相対粒子量の合計(100%)で割って求められる。なお、平均粒径は粒子の平均直径であり、極大値又はピーク値である累積重量平均値D50(又はメジアン径)として求めることができる。なお、D50は、出現率が最も大きい粒子径になる。
[Measurement of average particle size]
The average particle size of the thermally conductive filler was measured using "Laser Diffraction Particle Size Distribution Measuring Device SALD-20" (trade name) manufactured by Shimadzu Corporation. For the evaluation sample, 50 ml of pure water and 5 g of the heat conductive filler powder to be measured were added to a glass beaker, the mixture was stirred with a spatula, and then dispersed with an ultrasonic cleaner for 10 minutes. A solution of the heat conductive filler powder subjected to the dispersion treatment was added drop by drop to the sampler part of the apparatus using a dropper, and the measurement was performed when the absorbance became stable. In the laser diffraction type particle size distribution measuring device, the particle size distribution is calculated from the data of the light intensity distribution of the diffraction / scattering holes by the particles detected by the sensor. The average particle size is obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle size is the average diameter of the particles, and can be obtained as the cumulative weight average value D50 (or median diameter) which is the maximum value or the peak value. In addition, D50 has the particle diameter having the largest appearance rate.
[硬化物]
 上記で得られた第一剤及び第二剤を、表3及び表4に示す組合せおよび体積比で混合して混合物を得た。得られた混合物を150℃で1時間保持して硬化反応を進行させ、硬化物を得た。なお、硬化反応における各評価を以下の方法に従って実施した。評価結果を表3及び表4にまとめて示す。
[Cursed product]
The first agent and the second agent obtained above were mixed in the combinations and volume ratios shown in Tables 3 and 4 to obtain a mixture. The obtained mixture was kept at 150 ° C. for 1 hour to proceed with the curing reaction to obtain a cured product. Each evaluation in the curing reaction was carried out according to the following method. The evaluation results are summarized in Tables 3 and 4.
<均一反応性の評価>
 上記第一剤及び第二剤を混合した混合物を厚さ5mm、縦横2cm程度に成形し、150℃で1時間保持して硬化反応を進行させ、硬化物を得た。得られた硬化物の場所による硬化状態の違いを確認し、硬化物全体で硬化反応が均一に進行しているかどうか(均一反応性)を以下の基準で評価した。
(評価基準)
 ◎:完全に硬化し、中央部と端部の硬さが同等であった
 〇:完全に硬化したが、中央部が端部よりも少し柔らかかった
 ×:硬化しなかった
<Evaluation of uniform reactivity>
A mixture of the first agent and the second agent was formed into a thickness of about 5 mm and a length and width of about 2 cm, and held at 150 ° C. for 1 hour to proceed with the curing reaction to obtain a cured product. The difference in the curing state depending on the location of the obtained cured product was confirmed, and whether or not the curing reaction proceeded uniformly in the entire cured product (uniform reactivity) was evaluated according to the following criteria.
(Evaluation criteria)
⊚: Completely cured and the hardness of the central part and the edge was the same. 〇: Completely cured, but the central part was a little softer than the edge. ×: Not cured.
<高温安定性の評価>
 上記第一剤及び第二剤をそれぞれ60℃の乾燥機で7日間加熱状態で保管した。加熱保管後の第一剤及び第二剤を上記と同様の手法にて混合し、150℃で1時間保持して硬化反応を進行させた。その際の硬化状態を確認し、第一剤及び第二剤が加熱保管後においても硬化性能を有するかどうか(高温安定性)を以下の基準で評価した。
(評価基準)
 〇:硬化した
 ×:硬化しなかった
<Evaluation of high temperature stability>
The first agent and the second agent were stored in a dryer at 60 ° C. for 7 days in a heated state. The first agent and the second agent after heat storage were mixed by the same method as described above, and kept at 150 ° C. for 1 hour to proceed with the curing reaction. The cured state at that time was confirmed, and whether or not the first agent and the second agent had curing performance even after heat storage (high temperature stability) was evaluated according to the following criteria.
(Evaluation criteria)
〇: Hardened ×: Not cured
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記表3,4から明らかなように、実施例1~6の本発明の二液硬化型組成物セットは、混合性および均一反応性が良く、保存安定性に優れていた。 As is clear from Tables 3 and 4 above, the two-component curable composition set of the present invention of Examples 1 to 6 had good mixability and uniform reactivity, and was excellent in storage stability.
 比較例1は白金触媒による付加反応型の二液硬化型組成物セットであるため、高温保存により触媒が失活し保存安定性が劣っていた。 Since Comparative Example 1 is an addition reaction type two-component curing type composition set using a platinum catalyst, the catalyst was inactivated by high temperature storage and the storage stability was inferior.
 比較例2はエポキシ変性オルガノポリシロキサンとカルビノール変性オルガノポリシロキサンとの混合物であるが、硬化物が形成されず、評価できなかった。 Comparative Example 2 was a mixture of epoxy-modified organopolysiloxane and carbinol-modified organopolysiloxane, but a cured product was not formed and could not be evaluated.
 比較例3はエポキシ変性オルガノポリシロキサンとカルボキシル変性オルガノポリシロキサンとの混合物であるが、硬化物が形成されず、評価できなかった。 Comparative Example 3 was a mixture of epoxy-modified organopolysiloxane and carboxyl-modified organopolysiloxane, but a cured product was not formed and could not be evaluated.
 実施例5および実施例6は第二剤のアミノ変性オルガノポリシロキサンの種類が異なること以外は略同条件である実施例1および実施例3よりも均一反応性が良好であった。実施例5および実施例6では第二剤に両末端OH変性のアミノ変性オルガノポリシロキサンを使用している点が実施例1および実施例3と相違している。このことから、使用するアミノ変性オルガノポリシロキサンは両末端OH変性であるものがより好ましいことが確認された。 Examples 5 and 6 had better uniform reactivity than Examples 1 and 3 under substantially the same conditions except that the type of the amino-modified organopolysiloxane of the second agent was different. Examples 5 and 6 are different from Examples 1 and 3 in that amino-modified organopolysiloxanes modified with OH at both ends are used as the second agent. From this, it was confirmed that the amino-modified organopolysiloxane used is more preferably double-ended OH-modified.
 本発明の二液硬化型熱伝導性グリース用組成物は、第一剤と第二剤を混合して硬化させることで熱伝導性の硬化物、特には、発熱体と金属筐体とを熱的に結合して用いる熱伝導性グリースの材料として産業上の利用可能性を有する。 The composition for a two-component curable heat conductive grease of the present invention heats a heat conductive cured product, particularly a heating element and a metal housing, by mixing and curing the first agent and the second agent. It has industrial applicability as a material for thermally conductive grease used by binding to each other.

Claims (11)

  1.  エポキシ基含有基を有するエポキシ変性オルガノポリシロキサンA1、及び熱伝導性フィラーB1を含む第一剤と、
     アミノ基含有基を有するアミノ変性オルガノポリシロキサンA2、及び熱伝導性フィラーB2を含む第二剤と、を備える、
     二液硬化型組成物セット。
    A first agent containing an epoxy-modified organopolysiloxane A1 having an epoxy group-containing group and a thermally conductive filler B1
    It comprises an amino-modified organopolysiloxane A2 having an amino group-containing group and a second agent containing a thermally conductive filler B2.
    Two-component curable composition set.
  2.  前記エポキシ変性オルガノポリシロキサンA1の1分子中におけるエポキシ基の官能基当量が、100~11000g/molである、
     請求項1に記載の二液硬化型組成物セット。
    The functional group equivalent of the epoxy group in one molecule of the epoxy-modified organopolysiloxane A1 is 100 to 11000 g / mol.
    The two-component curable composition set according to claim 1.
  3.  前記アミノ変性オルガノポリシロキサンA2の1分子中におけるアミノ基の官能基当量が、100~8000g/molである、
     請求項1又は2に記載の二液硬化型組成物セット。
    The functional group equivalent of the amino group in one molecule of the amino-modified organopolysiloxane A2 is 100 to 8000 g / mol.
    The two-component curable composition set according to claim 1 or 2.
  4.  前記第二剤における前記アミノ変性オルガノポリシロキサンA2が、両末端に水酸基含有基を有する、
     請求項1~3のいずれか一項に記載の二液硬化型組成物セット。
    The amino-modified organopolysiloxane A2 in the second agent has hydroxyl group-containing groups at both ends.
    The two-component curable composition set according to any one of claims 1 to 3.
  5.  前記熱伝導性フィラーB1及び熱伝導性フィラーB2が、熱伝導率が10W/m・K以上を示す、酸化アルミニウム、窒化アルミ、窒化ホウ素、窒化ケイ素、酸化亜鉛、水酸化アルミニウム、金属アルミニウム、酸化マグネシウム、銅、銀、ダイヤモンドからなる群より選ばれる少なくとも一種以上を含む、
     請求項1~4のいずれか一項に記載の二液硬化型組成物セット。
    The thermally conductive filler B1 and the thermally conductive filler B2 exhibit a thermal conductivity of 10 W / m · K or more, such as aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, and oxidation. Containing at least one selected from the group consisting of magnesium, copper, silver and diamond,
    The two-component curable composition set according to any one of claims 1 to 4.
  6.  少なくとも末端又は側鎖にビニル基を有するオルガノポリシロキサンと、少なくとも末端又は側鎖にヒドロシリル基を有するオルガノポリシロキサンを含まない前記第一剤、及び、
     少なくとも末端又は側鎖にビニル基を有するオルガノポリシロキサンと、少なくとも末端又は側鎖にヒドロシリル基を有するオルガノポリシロキサンを含まない前記第二剤、を備える、
     請求項1~5のいずれか一項に記載の二液硬化型組成物セット。
    An organopolysiloxane having a vinyl group at least at the terminal or side chain, and the first agent containing no organopolysiloxane having a hydrosilyl group at least at the terminal or side chain, and
    It comprises an organopolysiloxane having at least a vinyl group at the terminal or side chain and the second agent containing no organopolysiloxane having a hydrosilyl group at least at the terminal or side chain.
    The two-component curable composition set according to any one of claims 1 to 5.
  7.  ASTM D5470に準拠して測定した、前記第一剤と前記第二剤の混合物の硬化後の熱伝導率が、1.0W/mk以上である、
     請求項1~6のいずれか一項に記載の二液硬化型組成物セット。
    The thermal conductivity of the mixture of the first agent and the second agent after curing, measured according to ASTM D5470, is 1.0 W / mk or more.
    The two-component curable composition set according to any one of claims 1 to 6.
  8.  熱伝導性放熱材料として使用される、
     請求項1~7のいずれか一項に記載の二液硬化型組成物セット。
    Used as a heat-conducting heat-dissipating material,
    The two-component curable composition set according to any one of claims 1 to 7.
  9.  請求項1~8のいずれか一項に記載の二液硬化型組成物セットにおける、第一剤と第二剤の混合物から得られる、
     硬化物。
    The two-component curable composition set according to any one of claims 1 to 8, which is obtained from a mixture of the first agent and the second agent.
    Hardened product.
  10.  熱伝導性放熱材料として使用される、
     請求項9に記載の硬化物。
    Used as a heat-conducting heat-dissipating material,
    The cured product according to claim 9.
  11.  電子部品と、請求項10に記載の硬化物と、前記電子部品及び前記硬化物を収容する筐体と、を備え、
     前記電子部品及び前記筐体が、前記硬化物を介して接触している、
     電子機器。
     
    The electronic component, the cured product according to claim 10, and the housing for accommodating the electronic component and the cured product are provided.
    The electronic component and the housing are in contact with each other via the cured product.
    Electronics.
PCT/JP2021/036402 2020-10-05 2021-10-01 Two-part curing composition set, thermally conductive cured article, and electronic device WO2022075213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555438A JPWO2022075213A1 (en) 2020-10-05 2021-10-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020168548 2020-10-05
JP2020-168548 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075213A1 true WO2022075213A1 (en) 2022-04-14

Family

ID=81126900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036402 WO2022075213A1 (en) 2020-10-05 2021-10-01 Two-part curing composition set, thermally conductive cured article, and electronic device

Country Status (2)

Country Link
JP (1) JPWO2022075213A1 (en)
WO (1) WO2022075213A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590554A (en) * 1978-12-29 1980-07-09 Toray Silicone Co Ltd Silicone-epoxy resin composition
JPS60179417A (en) * 1984-02-27 1985-09-13 Shin Etsu Chem Co Ltd Liquid silicone rubber composition
JPH06321518A (en) * 1993-03-25 1994-11-22 Sigri Great Lakes Carbon Gmbh Preparation of metal-graphite laminated material
JPH09296114A (en) * 1996-04-30 1997-11-18 Denki Kagaku Kogyo Kk Silicone rubber composition and its use
JPH10189838A (en) * 1996-12-25 1998-07-21 Siegel:Kk Heat conductive gel
JP2003528198A (en) * 2000-03-16 2003-09-24 クロムプトン コーポレイション Silicone amino-epoxy crosslinkable system
JP2011151280A (en) * 2010-01-25 2011-08-04 Denki Kagaku Kogyo Kk Heat dissipating member and method of manufacturing the same
CN107325782A (en) * 2017-05-19 2017-11-07 天永诚高分子材料(常州)有限公司 A kind of bi-component casting glue and preparation method thereof
WO2019097852A1 (en) * 2017-11-14 2019-05-23 株式会社高木化学研究所 Filler-filled highly thermally conductive dispersion composition having excellent segregation stability, method for producing said dispersion composition, filler-filled highly thermally conductive material using said dispersion composition, method for producing said material, and molded article obtained using said material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590554A (en) * 1978-12-29 1980-07-09 Toray Silicone Co Ltd Silicone-epoxy resin composition
JPS60179417A (en) * 1984-02-27 1985-09-13 Shin Etsu Chem Co Ltd Liquid silicone rubber composition
JPH06321518A (en) * 1993-03-25 1994-11-22 Sigri Great Lakes Carbon Gmbh Preparation of metal-graphite laminated material
JPH09296114A (en) * 1996-04-30 1997-11-18 Denki Kagaku Kogyo Kk Silicone rubber composition and its use
JPH10189838A (en) * 1996-12-25 1998-07-21 Siegel:Kk Heat conductive gel
JP2003528198A (en) * 2000-03-16 2003-09-24 クロムプトン コーポレイション Silicone amino-epoxy crosslinkable system
JP2011151280A (en) * 2010-01-25 2011-08-04 Denki Kagaku Kogyo Kk Heat dissipating member and method of manufacturing the same
CN107325782A (en) * 2017-05-19 2017-11-07 天永诚高分子材料(常州)有限公司 A kind of bi-component casting glue and preparation method thereof
WO2019097852A1 (en) * 2017-11-14 2019-05-23 株式会社高木化学研究所 Filler-filled highly thermally conductive dispersion composition having excellent segregation stability, method for producing said dispersion composition, filler-filled highly thermally conductive material using said dispersion composition, method for producing said material, and molded article obtained using said material

Also Published As

Publication number Publication date
JPWO2022075213A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP6531238B2 (en) One-component curable heat conductive silicone grease composition and electronic / electrical parts
JP4656340B2 (en) Thermally conductive silicone grease composition
JP7134582B2 (en) Thermally conductive polyorganosiloxane composition
TWI828778B (en) Two-component curable composition group, thermally conductive cured material and electronic equipment
US20100006798A1 (en) Heat-conductive silicone composition
JPH0536456B2 (en)
JPH08208993A (en) Heat-conductive silicone composition
KR20080006482A (en) Thermal conductive silicone grease composition and cured products thereof
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
CN112867765B (en) Heat-conductive silicone composition and cured product thereof
JP2010150399A (en) Thermally conductive silicone grease composition
JP2008150439A (en) Thermally-conductive silicone composition and coater using the same
JP2011122000A (en) Silicone composition for high thermal conductivity potting material and method for selecting high thermal conductivity potting material
JP2016089127A (en) Ultraviolet-viscosity-increasing-type thermo-conductive silicone grease composition
CN110709474A (en) Thermally conductive polyorganosiloxane composition
KR20140133931A (en) Thermally conductive silicone composition
JP2022060340A (en) Thermally conductive silicone composition
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
TW201943768A (en) Heat-conductive silicone composition and cured product thereof
JP6692512B1 (en) Thermally conductive composition and thermally conductive sheet using the same
WO2020153217A1 (en) Highly thermally conductive silicone composition and method for producing same
JP4162955B2 (en) Adhesive silicone composition for heat dissipation member
JP2022042170A (en) Thermosetting silicone composition
WO2022075213A1 (en) Two-part curing composition set, thermally conductive cured article, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877512

Country of ref document: EP

Kind code of ref document: A1