WO2022075175A1 - Electronic device and thermal diffusion device - Google Patents

Electronic device and thermal diffusion device Download PDF

Info

Publication number
WO2022075175A1
WO2022075175A1 PCT/JP2021/036118 JP2021036118W WO2022075175A1 WO 2022075175 A1 WO2022075175 A1 WO 2022075175A1 JP 2021036118 W JP2021036118 W JP 2021036118W WO 2022075175 A1 WO2022075175 A1 WO 2022075175A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
liquid flow
evaporation
heat diffusion
diffusion device
Prior art date
Application number
PCT/JP2021/036118
Other languages
French (fr)
Japanese (ja)
Inventor
慶次郎 小島
竜宏 沼本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022523236A priority Critical patent/JP7103549B1/en
Priority to CN202190000786.0U priority patent/CN220750894U/en
Publication of WO2022075175A1 publication Critical patent/WO2022075175A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to an electronic device and a heat diffusion device.
  • the vapor chamber has a structure in which a working medium and a wick that transports the working medium by capillary force are enclosed inside the housing.
  • the working medium absorbs heat from the heat generating element in the evaporation unit that absorbs heat from the heat generating element and evaporates in the vapor chamber, then moves in the vapor chamber, is cooled, and returns to the liquid phase.
  • the working medium that has returned to the liquid phase moves to the evaporation part on the heat generating element side again by the capillary force of the wick, and cools the heat generating element.
  • the vapor chamber operates independently without having external power, and can diffuse heat two-dimensionally at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium.
  • the vapor chamber is also required to be thinner in order to support the thinner mobile terminals such as smartphones and tablets. In such a thin vapor chamber, it becomes difficult to secure mechanical strength and heat transfer efficiency.
  • Patent Document 1 In the vapor chamber described in Patent Document 1, a pair of inner wall surfaces facing each other of the housing, a side surface of the wick that does not contact the pair of inner wall surfaces, and a facing surface formed with a gap from the side surface of the wick. It is characterized in that a liquid pool flow path of condensed working fluid is formed in the enclosed space. According to Patent Document 1, by combining the wick and the liquid pool flow path, it is possible to create a state in which the liquid is always supplied to the wick, so that the pressure loss of the liquid as a whole of the liquid flow path can be reduced, and the pressure loss of the liquid can be reduced. As a result, it is said that the maximum heat transport amount of the vapor chamber can be increased.
  • the above problem is not limited to the vapor chamber, but is a problem common to heat diffusion devices capable of diffusing heat by the same configuration as the vapor chamber.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electronic device provided with a heat diffusion device having high heat transfer efficiency while ensuring the mechanical strength of a housing. .. It is also an object of the present invention to provide a heat diffusion device having high heat transfer efficiency while ensuring the mechanical strength of the housing.
  • the electronic device of the present invention is an electronic device including a heat diffusion device and a heat generating element
  • the heat diffusion device includes a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction.
  • the housing includes a working medium enclosed in the internal space of the housing and a wick arranged in the internal space of the housing, and the housing has an evaporating part for evaporating the working medium.
  • the heat generating element is arranged on the outer wall surface of the housing located in the evaporating portion, and the wick includes a plurality of capillary structures linearly extending from the evaporating portion, and at least a part thereof is surrounded by the capillary structure.
  • the liquid flow path of the working medium is formed in the region and / or the inside of the capillary structure, and the total area of the liquid flow path in the evaporation portion is the total area of the liquid flow path in the plan view from the thickness direction.
  • the liquid flow path has a first liquid flow path and a second liquid flow path, and is an end portion of the first liquid flow path on the evaporation part side and the first liquid flow path. 2
  • the ends of the liquid flow path on the evaporation portion side are all located in the evaporation portion, and the first liquid from the point where the first liquid flow path reaches the evaporation portion to the end on the evaporation portion side.
  • the flow path length of the flow path is 30% or more of the shortest distance from the point where the first liquid flow path approaches the evaporation part to the center of gravity of the evaporation part, and the second liquid flow path is in the evaporation part.
  • the flow path length of the second liquid flow path from the approaching point to the end on the evaporation section side is the shortest distance from the point where the second liquid flow path approaches the evaporation section to the center of gravity of the evaporation section. It is characterized by being 10% or more and less than 30%.
  • the heat diffusion device of the present invention has a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction, a working medium enclosed in the internal space of the housing, and the internal space of the housing.
  • a thermal diffusion device comprising a wick, wherein the housing has an evaporative section that evaporates the working medium, wherein the wick is a plurality of capillary structures linearly extending from the evaporative section. And / or having a liquid phase portion constituting the liquid flow path of the working medium inside the capillary structure and / or a region surrounded by the capillary structure at least in part thereof, and having a liquid phase portion constituting the liquid flow path of the working medium, in the thickness direction.
  • the total area of the liquid flow path in the evaporative section is 15% or more of the area of the evaporative section, and the liquid flow path includes the first liquid flow path and the second liquid flow path.
  • the end of the first liquid flow path on the evaporation part side and the end of the second liquid flow path on the evaporation part side are both located in the evaporation part, and the first liquid flow path evaporates.
  • the flow path length of the first liquid flow path from the point approaching the portion to the end on the evaporation section side is the shortest from the point where the first liquid flow path approaches the evaporation section to the center of gravity of the evaporation section.
  • the flow path length of the second liquid flow path from the point where the second liquid flow path reaches the evaporation part to the end on the evaporation part side is 30% or more of the distance, and the flow path length of the second liquid flow path is the second liquid flow path. Is 10% or more and less than 30% of the shortest distance from the point approaching the evaporative part to the center of gravity of the evaporative part.
  • FIG. 1A is a perspective view schematically showing an example of an electronic device according to the first embodiment of the present invention.
  • FIG. 1B is a perspective view schematically showing an example of a heat diffusion device with a heat generating element, which is a part of the configuration of the electronic device according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II of the heat diffusion device constituting the heat diffusion device with the heat generating element shown in FIG. 1B.
  • FIG. 3 is a sectional view taken along line III-III of the heat diffusion device constituting the heat diffusion device with the heat generating element shown in FIG. 1B.
  • FIG. 4 is an enlarged view of the vicinity of the evaporation portion of the heat diffusion device shown in FIG. FIG.
  • FIG. 5 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the second embodiment of the present invention.
  • FIG. 6 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the third embodiment of the present invention.
  • FIG. 7 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the fourth embodiment of the present invention.
  • FIG. 8 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the fifth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing an example of the heat diffusion device according to the sixth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing an example of a heat diffusion device according to a seventh embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing an example of the heat diffusion device according to the eighth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the heat diffusion device according to the ninth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
  • FIG. 13 is a cross-sectional view of the heat diffusion device according to the tenth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
  • FIG. 14 is a cross-sectional view of the capillary structure in the heat diffusion device according to the tenth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
  • FIG. 15 is a partially enlarged cross-sectional view of the heat diffusion device according to the tenth embodiment of the present invention in the vicinity of the evaporation portion.
  • the present invention is not limited to the following configuration, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
  • a heat diffusion device such as a heat pipe may be used.
  • a vapor chamber will be described as an example.
  • the heat diffusion device of the present invention can also be applied to a heat diffusion device such as a heat pipe.
  • FIG. 1A is a perspective view schematically showing an example of an electronic device according to the first embodiment of the present invention.
  • the electronic device 100 shown in FIG. 1A includes a heat diffusion device 1 and an electronic component 110.
  • the electronic component 110 is attached to the outer wall surface of the housing 10 of the heat diffusion device 1.
  • the electronic component 110 may be directly attached to the outer wall surface of the housing 10, or may be attached via another member such as an adhesive, a sheet, or a tape having high thermal conductivity.
  • Examples of the electronic component 110 include heat generating elements such as a central processing unit (CPU), a light emitting diode (LED), and a power semiconductor.
  • heat generating elements such as a central processing unit (CPU), a light emitting diode (LED), and a power semiconductor.
  • Examples of the electronic device 100 include smartphones, tablet terminals, notebook computers, game devices, wearable devices, and the like.
  • the housing has an evaporation portion in the internal space, and the electronic component overlaps the evaporation portion in a plan view from the thickness direction.
  • the electronic component 110 corresponds to the heat generating element HE shown in FIG. 1B, which will be described later. That is, in a plan view from the thickness direction Z, the electronic component 110 overlaps the evaporation portion EP of the housing 10.
  • the electronic device 100 further has a device housing 120.
  • FIG. 1B is a heat diffusion device with a heat generating element, which is a part of the configuration of the electronic device shown in FIG. 1A.
  • the heat diffusion device shown in FIG. 1B is a heat diffusion device according to the first embodiment of the present invention.
  • the heat diffusion device with a heating element includes a heat diffusion device 1 and a heating element HE.
  • the heat generating element HE the above-mentioned electronic component 110 is used.
  • the heat diffusion device constituting the electronic device of the present invention is also the heat diffusion device of the present invention.
  • the heat diffusion device having the shape shown in FIG. 1 is also called a vapor chamber.
  • FIG. 2 is a sectional view taken along line II-II of the heat diffusion device constituting the heat diffusion device with the heat generating element shown in FIG. 1B.
  • FIG. 3 is a sectional view taken along line III-III of the heat diffusion device constituting the heat diffusion device with the heat generating element shown in FIG. 1B.
  • the heat diffusion device 1 includes a hollow housing 10 that is hermetically sealed.
  • the housing 10 has a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z.
  • the heat diffusion device 1 includes a wick 30 arranged in the internal space of the housing 10. Further, the working medium 20 is enclosed in the internal space of the housing 10.
  • the wick refers to a structure having a capillary structure that transports a working medium by capillary force.
  • the housing 10 is provided with an evaporation unit EP that evaporates the enclosed working medium. Further, the housing 10 may be set with a condensation portion CP for condensing the evaporated working medium 20.
  • the portion near the heat generating element HE and heated by the heat generating element HE corresponds to the evaporation part EP.
  • the portion away from the evaporation portion EP corresponds to the condensation portion CP. Since the portion heated by the heat generating element HE corresponds to the evaporation part EP, the size of the evaporation part EP and the size of the heat generating element HE do not have to be completely the same.
  • the evaporated working medium 20 can be condensed other than the condensed portion CP.
  • the portion where the evaporated working medium 20 is particularly easy to condense is also represented in FIG. 2 as a condensing portion CP.
  • the heat generating element HE is arranged on the outer wall surface of the housing 10.
  • the heat generating element HE may be in direct contact with the outer wall surface of the housing 10, or may be in contact with the heat conductive grease, a metal plate such as a copper plate, or the like.
  • the heat conductive grease or the metal plate can suppress a decrease in heat transport efficiency due to unevenness (gap) between the outer wall surface of the housing 10 and the surface of the heat generating element HE.
  • the outer wall surface of the housing 10 may be previously provided with a design such as an unevenness or a marker indicating a position where the heat generating element HE is arranged. Further, the outer wall surface of the housing 10 may be provided with a design such as an unevenness or a marker indicating the position of the evaporation portion EP.
  • the wick 30 includes a plurality of capillary structures 31 linearly extending from the evaporation unit EP.
  • the capillary structure 31 functions as a wick that transports the working medium 20 by the capillary force.
  • the porous body 31 is composed of, for example, a porous body such as a metal porous body, a ceramic porous body, or a resin porous body.
  • the porous body 31 may be composed of, for example, a sintered body such as a metal porous sintered body or a ceramic porous sintered body.
  • the porous body 31 is preferably composed of a porous sintered body of copper or nickel.
  • the capillary structure 31 may be composed of a fiber bundle in which a plurality of fibers are linearly bundled instead of the porous body.
  • the capillary structure 31 preferably contains a braided fiber bundle.
  • unevenness is likely to be present on the surface, so that when the capillary structure contains the crocheted fiber bundle, the working medium of the liquid phase is easily transported to the evaporation part. ..
  • the fibers constituting the fiber bundle include metal wires such as copper, aluminum and stainless steel, and non-metal wires such as carbon fibers and glass fibers. Above all, the metal wire is preferable because it has a high thermal conductivity.
  • a fiber bundle can be obtained by bundling about 200 copper wires having a diameter of about 0.03 mm.
  • the capillary structure is a porous body.
  • a liquid phase portion 51 is provided along the direction in which the capillary structure 31 extends.
  • the liquid phase portion 51 is partitioned by a first capillary structure 31a and a second capillary structure 31b constituting the capillary structure 31, and a first inner wall surface 11a and a second inner wall surface 12a of the housing 10. Therefore, it can be said that the liquid phase portion 51 is a region in which at least a part thereof is surrounded by the capillary structure 31.
  • the working medium of the liquid phase is transported toward the evaporation section EP.
  • the first capillary structure 31a and the second capillary structure 31b also have an action of transporting the working medium of the liquid phase. Therefore, the liquid phase portion 51 and the first capillary structure 31a and the second capillary structure 31b that partition the liquid phase portion 51 are collectively referred to as a liquid flow path 50.
  • the liquid flow path 50 includes a region (liquid phase portion 51) partially surrounded by the first capillary structure 31a and the second capillary structure 31b, and the first capillary structure 31a and the second capillary structure 31b. It can be said that it is formed inside.
  • the distance a between the first capillary structure 31a and the second capillary structure 31b corresponds to the width of the liquid phase portion 51.
  • the portion that is not the liquid flow path 50 becomes the steam flow path 52.
  • the distance b between the capillary structures 31 facing each other via the steam flow path 52 corresponds to the width of the steam flow path 52.
  • the width a of the liquid phase portion 51 is shorter than the width b of the vapor flow path 52.
  • the liquid flow path 50 may extend from the evaporation portion EP to the condensation portion CP.
  • the liquid flow paths 50 extend radially, and each liquid flow path 50 is not connected to the end portion on the evaporation section EP side in the evaporation section EP.
  • the ends of all the liquid flow paths 50 on the condensed portion CP side are connected to each other.
  • the liquid flow path 50 may extend in a different direction, or may be branched or merged, from the evaporation portion EP to the condensation portion CP.
  • the liquid flow path 50 and the steam flow path 52 adjacent to each other extend substantially in parallel. Further, the liquid flow path 50 and the steam flow path 52 are alternately arranged in a direction substantially perpendicular to the direction in which the liquid flow path 50 extends.
  • the heat diffusion device 1 is planar as a whole. That is, the housing 10 is planar as a whole.
  • the "plane” includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as "width") and the dimension in the length direction Y (hereinafter referred to as "length”) are in the thickness direction Z. It means a shape that is considerably larger than a dimension (hereinafter referred to as a thickness or a height), for example, a shape having a width and a length of 10 times or more, preferably 100 times or more the thickness.
  • the size of the heat diffusion device 1, that is, the size of the housing 10 is not particularly limited.
  • the width and length of the heat diffusion device 1 can be appropriately set according to the application.
  • the width and length of the heat diffusion device 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less, respectively.
  • the width and length of the heat diffusion device 1 may be the same or different.
  • the housing 10 is composed of the first sheet 11 and the second sheet 12 facing each other to which the outer edges are joined.
  • the materials constituting the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for use as a heat diffusion device, for example, thermal conductivity, strength, flexibility, flexibility and the like. ..
  • the material constituting the first sheet 11 and the second sheet 12 is preferably a metal, for example, copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component, and particularly preferably copper. Is.
  • the materials constituting the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
  • the first sheet 11 and the second sheet 12 are joined to each other at their outer edges.
  • the joining method is not particularly limited, but for example, laser welding, resistance welding, diffusion welding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic welding, or resin encapsulation can be used, and is preferable. Can use laser welding, resistance welding or low welding.
  • the thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but are preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 100 ⁇ m or less, and further preferably 40 ⁇ m or more and 60 ⁇ m or less, respectively.
  • the thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each of the first sheet 11 and the second sheet 12 may be the same throughout, or a part thereof may be thin.
  • the shapes of the first sheet 11 and the second sheet 12 are not particularly limited.
  • the first sheet 11 has a flat plate shape having a constant thickness
  • the second sheet 12 has a shape in which the outer edge portion is thicker than the portion other than the outer edge portion.
  • the thickness of the entire heat diffusion device 1 is not particularly limited, but is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10, and for example, water, alcohols, CFC substitutes, or the like can be used.
  • the working medium 20 is an aqueous compound, preferably water.
  • the wick 30 supports the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside.
  • the wick 30 supports the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside.
  • the first capillary structure 31a and the second capillary structure 31b are in contact with the first inner wall surface 11a and the second inner wall surface 12a.
  • the first capillary structure 31a and the second capillary structure 31b may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a, and may be in contact with the first inner wall surface 11a and the second inner wall surface 12a. It doesn't have to be.
  • the working medium 20 of the liquid phase located in the liquid phase unit 51 is heated and evaporated through the inner wall surface of the housing 10.
  • the pressure of the gas in the steam flow path 52 in the vicinity of the evaporation unit EP increases.
  • the working medium 20 of the gas phase moves in the steam flow path 52 toward the condensed portion CP side.
  • the gas phase working medium 20 that has reached the condensing portion CP is deprived of heat through the inner wall surface of the housing 10 and is condensed into droplets.
  • the working medium 20 of the liquid phase can be condensed other than the condensed portion CP.
  • the droplets of the working medium 20 permeate into the pores of the capillary structure 31 by the capillary force. Further, a part of the working medium 20 of the liquid phase that has penetrated into the pores of the capillary structure 31 flows into the liquid phase portion 51.
  • the working medium 20 of the liquid phase that has flowed into the liquid flow path 50 moves to the evaporation section EP by the capillary force, and is heated and evaporated in the evaporation section EP.
  • the working medium 20 that has evaporated and becomes a gas phase moves to the condensed portion CP side again through the steam flow path 52.
  • the heat diffusion device 1 can repeatedly use the gas-liquid phase change of the working medium 20 to repeatedly transport the heat recovered on the evaporation unit EP side to the condensation unit CP side.
  • the total area of the liquid flow path in the evaporation section is 15% or more of the area of the evaporation section EP.
  • the total area of the liquid flow paths in the evaporation section is preferably 80% or less of the area of the evaporation section. If the total area of the liquid flow path in the evaporation section exceeds 80% of the area of the evaporation section, it becomes difficult to secure a sufficient passage for the vapor flow path in the evaporation section. As a result, the gas-liquid exchange in the evaporation part is not sufficiently performed, and dryout is likely to occur.
  • the liquid flow path has a first liquid flow path and a second liquid flow path. Both the first liquid flow path and the second liquid flow path are liquid flow paths whose ends on the evaporation portion side are located in the evaporation portion.
  • the first liquid flow path and the second liquid flow path can be distinguished by the ratio of the flow path length in the evaporation section EP to the shortest distance from the point where the liquid flow path approaches the evaporation section to the center of gravity of the evaporation section.
  • the flow path length from the point where the liquid flow path reaches the evaporation section to the end of the evaporation section is from the point where the liquid flow path reaches the evaporation section to the center of gravity of the evaporation section.
  • the first liquid flow path The case where it is 30% or more of the shortest distance is the first liquid flow path. Further, the flow path length from the point where the liquid flow path reaches the evaporation part to the end of the evaporation part is 10% or more and 30% of the shortest distance from the point where the liquid flow path reaches the evaporation part to the center of gravity of the evaporation part. When it is less than, it is the second liquid flow path.
  • the first liquid flow path and the second liquid flow path will be described with reference to FIG.
  • FIG. 4 is an enlarged view of the vicinity of the evaporation portion of the heat diffusion device shown in FIG.
  • the liquid flow paths 50A, 50B, 50C, 50D, 50E, 50F, 50G, and 50H are present in the evaporation unit EP.
  • the end portion on the evaporation unit EP side is located in the evaporation unit EP.
  • the length of the flow path in the evaporation section EP of the liquid flow path 50A is the end T1A of the liquid phase section 51 at the end of the liquid flow path 50A on the evaporation section EP side from the point E1A where the liquid flow path 50A approaches the evaporation section EP. Is the length up to (the length indicated by the double arrow L1A in FIG. 4).
  • the shortest distance from the point E1A where the liquid flow path 50A approaches the evaporation section EP to the center of gravity C1 of the evaporation section EP is the distance indicated by the double - headed arrow D1A.
  • the length L1A / distance D1A is about 20%. Therefore, the liquid flow path 50A is the second liquid flow path.
  • the point where the liquid flow path reaches the evaporation part is a point where the line indicating the center in the width direction of the liquid flow path and the boundary line of the evaporation part intersect.
  • the shape of the liquid flow path 50C in the evaporation section EP is axisymmetric with the liquid flow path 50A with respect to a line segment extending in the direction along the length direction Y through the center of gravity C1 of the evaporation section EP. .. Further, the shapes of the liquid flow path 50G and the liquid flow path 50E in the evaporation section EP pass through the center of gravity C1 of the evaporation section EP and are liquid flow paths for the line segments extending in the width direction X, respectively . It is line-symmetrical with 50A and the liquid flow path 50C.
  • the flow path length in the evaporation section EP and the shortest distance from the points E1C, E1E, E1G where each liquid flow path reaches the evaporation section EP to the center of gravity C1 of the evaporation section EP. are the same as the liquid flow path 50A. Therefore, the liquid flow paths 50C, 50E, and 50G are all second liquid flow paths.
  • the length of the flow path in the evaporation section EP of the liquid flow path 50B is the end T1B of the liquid phase section 51 at the end of the liquid flow path 50B on the evaporation section EP side from the point E1B where the liquid flow path 50B approaches the evaporation section EP. (Length indicated by double arrow L1B in FIG. 4). Further, the shortest distance from the point E1B where the liquid flow path 50B approaches the evaporation unit EP to the center of gravity C1 of the evaporation unit EP is the distance indicated by the double - headed arrow D1B. The length L1B / distance D1B is about 75%. Therefore, the liquid flow path 50B is the first liquid flow path.
  • the shape of the liquid flow path 50F in the evaporation section EP is axisymmetric with the liquid flow path 50B with respect to a line segment extending in the direction along the width direction X through the center of gravity C1 of the evaporation section EP. Therefore, regarding the liquid flow path 50F, the flow path length in the evaporation section EP and the shortest distance from the point E1F where the liquid flow path 50F approaches the evaporation section EP to the center of gravity C1 of the evaporation section EP are the same as those of the liquid flow path 50B. Is. Therefore, the liquid flow path 50F is the first liquid flow path.
  • the length of the flow path in the evaporation section EP of the liquid flow path 50D is the end T1D of the liquid phase section 51 at the end of the liquid flow path 50D on the evaporation section EP side from the point E1D where the liquid flow path 50D approaches the evaporation section EP. Is the length up to (the length indicated by the double arrow L1D in FIG. 4). Further, the shortest distance from the point E1D where the liquid flow path 50D approaches the evaporation section EP to the center of gravity C1 of the evaporation section EP is the length indicated by the double-headed arrow D1D. The length L1D / distance D1D is about 28%. Therefore, the liquid flow path 50D is the second liquid flow path.
  • the shape of the liquid flow path 50H in the evaporation section EP is axisymmetric with the liquid flow path 50D with respect to a line segment extending in the direction along the length direction Y through the center of gravity C1 of the evaporation section EP. .. Therefore, regarding the liquid flow path 50H, the flow path length in the evaporation section EP and the shortest distance from the point E1H where the liquid flow path 50H approaches the evaporation section EP to the center of gravity C1 of the evaporation section EP are the same as those of the liquid flow path 50D. Is. Therefore, the liquid flow path 50H is the second liquid flow path.
  • liquid flow path 50B liquid flow path 50F
  • second liquid flow paths liquid flow paths 50A, 50C, 50D, 50E, 50G, 50H
  • the total area of the liquid flow path in the evaporation section EP is 46.6% of the area of the evaporation section EP.
  • the working medium of the liquid phase is directly refluxed into the evaporation portion to dry out.
  • the occurrence can be suppressed.
  • it has both a first liquid flow path and a second liquid flow path as the liquid flow path, and the area of the liquid flow path in the evaporation section is 15 of the area of the evaporation section in a plan view from the thickness direction. % Or more. In such a state, the circulation of the working medium of the gas phase and the circulation of the working medium of the liquid phase are well-balanced, and high heat transfer efficiency can be exhibited.
  • the steam flow path in the evaporation portion is likely to be blocked by the first liquid flow path, and the circulation efficiency of the working medium of the gas phase is not sufficient.
  • the liquid working medium cannot be refluxed to the vicinity of the center of the evaporation portion, so that the circulation efficiency of the working medium of the liquid phase is not sufficient.
  • the area of the liquid flow path in the evaporating part is less than 15% of the area of the evaporating part in a plan view from the thickness direction, sufficient heating cannot be performed on the working medium of the liquid phase, and the liquid cannot be sufficiently heated. The circulation efficiency of the working medium of the phase becomes insufficient.
  • the end portion of the second liquid flow path on the evaporation portion side is not connected to the first liquid flow path. If the end of the second liquid flow path on the evaporation part side is connected to the first liquid flow path, the steam passage is blocked in the steam part and the working medium is prevented from moving from the evaporation part to the condensing part. ..
  • the minimum width of the steam flow path in the evaporation part is preferably 500 ⁇ m or more.
  • the minimum width of the steam flow path in the evaporation portion is within the above range, the working medium of the gas phase easily passes through the working medium of the gas phase, and the circulation efficiency of the working medium of the gas phase is improved.
  • the number of the first liquid flow paths included in the liquid flow paths is not particularly limited, and may be one or a plurality.
  • the number of the first liquid flow paths included in the liquid flow paths is preferably 6 or less, and more preferably 4 or less.
  • the number of the second liquid flow paths included in the liquid flow path is not particularly limited, and may be one or a plurality, but a plurality of lines is preferable.
  • the circulation efficiency of the working medium of the liquid phase can be improved without increasing the ratio of the liquid flow paths in the evaporation portion so much.
  • the number of the second liquid flow paths included in the liquid flow paths is preferably 6 or less, and more preferably 4 or less.
  • the liquid flow path has a plurality of first liquid flow paths. Further, the ends of the plurality of first liquid flow paths on the evaporation portion side are connected to each other by the center of gravity of the evaporation portion, and the first liquid flow paths communicate with each other.
  • FIG. 5 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the second embodiment of the present invention.
  • the heat diffusion device shown in FIG. 5 is also a modified example in which the shapes of the liquid flow paths 50B, 50D, 50F, and 50H are deformed from the heat diffusion device shown in FIG.
  • liquid flow paths 50A, 50B', 50C, 50D', 50E, 50F', 50G, 50H' are present in the evaporation unit EP.
  • the end portion on the evaporation portion EP side is located in the evaporation portion EP.
  • the end of the liquid flow path on the evaporation portion EP side reaches the center of gravity C1 of the evaporation portion EP.
  • the liquid flow paths 50B', 50D', 50F', and 50H' communicate with each other.
  • each end T1B', T1D', T1F', T1H'of the liquid phase portion at the end of the liquid flow path 50B', 50D', 50F', 50H'on the evaporation portion EP side is the center of gravity C of the evaporation portion EP. It overlaps with 1 .
  • the length of the flow path in the evaporation section EP of the liquid flow path 50B' is the liquid phase section at the end of the liquid flow path 50B'on the evaporation section EP side from the point E1B'where the liquid flow path 50B'appears to the evaporation section EP.
  • the length up to the end T1B'of 51 (the length indicated by the double arrow L1B' in FIG. 5).
  • the shortest distance from the point E1B'where the liquid flow path 50B'appears to the evaporation part EP to the center of gravity C1 of the evaporation part EP is the distance indicated by the double-headed arrow D1B'.
  • the liquid flow path 50B' is the first liquid flow path.
  • the liquid flow paths 50D', 50F', and 50H' where the points approaching the evaporation part EP are the points E1D', E1F', and E1H', respectively, the end T1D'of the liquid phase part 51 at the end on the evaporation part EP side.
  • T1F'and T1H ' overlap with the center of gravity C1 of the evaporation part EP. Therefore, the liquid flow paths 50D', 50F', and 50H'are also the first liquid flow paths like the liquid flow path 50B'.
  • the liquid flow paths 50A, 50C, 50E, and 50G are the same as the heat diffusion device shown in FIG. Therefore, the liquid flow paths 50A, 50C, 50E, and 50G are all second liquid flow paths.
  • liquid flow paths 50B', 50D', 50F', 50H' four first liquid flow paths (liquid flow paths 50B', 50D', 50F', 50H') and four second liquid flow paths (liquid flow) Roads 50A, 50C, 50E, 50G) exist.
  • the total area of the liquid flow path in the evaporation section EP is 55.7% of the area of the evaporation section EP.
  • the n liquid flow paths are connected to each other at predetermined positions.
  • the procedure for dividing the liquid flow path is as follows. By dividing the liquid flow path, the number of liquid flow paths arranged in the evaporation section and the end portion of each liquid flow path on the evaporation section side are determined. (1) Of the liquid flow path, the position closest to the center of gravity of the evaporation part is set as the reference point. (2) Divide the liquid flow path with reference to the specified reference point.
  • the point closest to the center of gravity of the evaporation part is set as a reference point.
  • a point having a large number of liquid flow paths divided by the reference point is selected.
  • the number of liquid flow paths divided by the reference point is the same, for each liquid flow path, the liquid flow path with respect to the distance from the point where the liquid flow path reaches the evaporation part to the center of gravity of the evaporation part.
  • the liquid flow path is divided by a defined reference point.
  • the number of liquid channels to be divided varies depending on the position of the reference point and the shape of the liquid channel. For example, when the reference point is located on the linear liquid flow path, the liquid flow path is divided into two by the reference point. When the reference point is located on the branch point of the Y-shaped liquid flow path, the liquid flow path is divided into three by the reference point.
  • the heat diffusion device shown in FIG. 5 has a cross-shaped liquid flow path in the evaporation unit EP.
  • This cross-shaped liquid flow path has four points (points E1B', E1D', E1F', E1H') approaching the evaporation part EP in the evaporation part EP.
  • the point closest to the center of gravity C 1 of the evaporation section EP is the center of gravity C 1 of the evaporation section EP. Therefore, the center of gravity C1 of the evaporation portion serves as a reference point for dividing the liquid flow path [procedure ( 1 )].
  • the cross-shaped liquid flow path is divided into four liquid flow paths (liquid flow paths 50B', 50D', 50F', 50H') with the center of gravity C 1 of the evaporation portion EP defined in this way as a reference point. [Procedure (2)].
  • Each liquid flow path divided by the above procedure (2) may have two or more points where the liquid flow path approaches the evaporation portion.
  • the liquid flow path is further divided by the following procedure (3) and procedure (4).
  • Procedure (3) When each liquid flow path divided by the procedure (2) has two or more points where the liquid flow path approaches the evaporation portion, the liquid flow path is divided so that the flow path length becomes the longest. Specifically, the length (flow path length) along the liquid flow path from each point where the liquid flow path reaches the evaporation part to the reference point is compared, and the liquid flow path having the longest flow path length is the parent. It is a flow path (primary flow path). The remaining liquid flow path is a child flow path (secondary flow path) that branches from the parent flow path at the branch point from the parent flow path. In the child flow path, it is considered that the end portion of the liquid flow path on the evaporation portion side is connected to the parent flow path at the branch point from the parent flow path.
  • Procedure (4) The operation of step (3) is repeated until the liquid flow path cannot be divided.
  • the child flow path remaining in the procedure (3) has two points approaching the evaporation portion
  • the child flow path is divided from the child flow path by the following procedure.
  • the liquid flow path having the longest flow path length is referred to as a child flow path (secondary flow path).
  • the remaining liquid flow path is a grandchild flow path (tertiary flow path) that branches from the child flow path at the branch point from the child flow path. It is considered that the end of the liquid flow path on the evaporation portion side of the grandchild flow path is connected to the child flow path at the branch point from the child flow path.
  • the liquid is a liquid flow path that passes through the reference point in the evaporation section, and when the reference point is regarded as one end, the other end is located in the evaporation section.
  • the flow path is not considered.
  • Such a liquid flow path is regarded as the upstream portion of the liquid flow path having the longest flow path length in the evaporation section among the liquid flow paths divided in the procedures (1) and (2).
  • the flow path length of the upstream portion and the flow path length (downstream portion of the downstream portion) in the evaporation portion of the liquid flow path divided by the procedures (1) and (2) is the longest.
  • the liquid flow path further has a third liquid flow path.
  • the third liquid flow path is a liquid flow path in which the end portion of the liquid flow path on the evaporation portion side is located outside the evaporation portion.
  • FIG. 6 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the third embodiment of the present invention. Further, FIG. 6 is also a modified example in which the shape of the liquid flow path 50B of the heat diffusion device shown in FIG. 4 is changed. As shown in FIG. 6, the liquid flow path 50B'' does not reach the evaporation section EP. That is, the end of the liquid flow path 50B'' on the EP side of the evaporation portion is located outside the evaporation portion. Of the liquid flow paths, the liquid flow path 50B'' whose end on the EP side of the evaporation portion is located outside the evaporation portion is the third liquid flow path.
  • the evaporation section EP shown in FIG. 6 has one first liquid flow path (liquid flow path 50F) and six second liquid flow paths (liquid flow paths 50A, 50C, 50D, 50E, 50G). , 50H) exists.
  • the total area of the liquid flow path in the evaporation section EP is 36.4% of the area of the evaporation section EP.
  • the first liquid flow path or the second liquid flow path is arranged for the purpose of increasing the circulation efficiency of the working medium of the liquid phase, the steam flow path will be blocked. , The circulation efficiency of the working medium of the gas phase in the evaporation part may be lowered.
  • the third liquid flow path is a liquid flow path that does not reach the evaporation part, the circulation efficiency of the working medium of the liquid phase in the evaporation part is improved without lowering the circulation efficiency of the working medium of the gas phase. Can be enhanced.
  • the heat diffusion device according to the fourth embodiment of the present invention further has a fourth liquid flow path in the evaporation unit.
  • the fourth liquid flow path is a liquid flow path in which the flow path length in the evaporation section exceeds 0% of the shortest distance from the point where the liquid flow path approaches the evaporation section to the center of gravity of the evaporation section and becomes less than 10%. ..
  • FIG. 7 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the fourth embodiment of the present invention. Further, FIG. 7 is also a modified example in which the shape of the liquid flow path 50B of the heat diffusion device shown in FIG. 4 is changed.
  • the liquid flow path 50B''' is approaching the evaporation portion EP.
  • the length of the flow path in the evaporation section EP of the liquid flow path 50'''' is the evaporation section EP of the liquid flow path 50B''''' from the point E1B'''' where the liquid flow path 50B'''' approaches the evaporation section EP. It is the length to the end T1B'''' of the liquid phase portion 51 at the side end portion (the length indicated by the double arrow L1B'' in FIG. 7).
  • the shortest distance from the point E1B'''' where the liquid flow path 50B'''' reaches the evaporation section EP to the center of gravity C1 of the evaporation section EP is D1B''''.
  • the length L1B'''/ distance D1B'''' is about 9%. Therefore, the liquid flow path 50B'''' is the fourth liquid flow path.
  • the evaporation section EP shown in FIG. 7 has one first liquid flow path (liquid flow path 50F) and six second liquid flow paths (liquid flow paths 50A, 50C, 50D, 50E, 50G). , 50H) and one fourth liquid flow path (liquid flow path 50B''').
  • the total area of the liquid flow path in the evaporation section EP is 37.5% of the area of the evaporation section EP.
  • the circulation of the liquid working medium in the evaporating part is performed. It may not be possible to balance efficiency with the circulation efficiency of the working medium of the gas. Even in such a case, if the fourth liquid flow path is used, it becomes easy to adjust the balance between the circulation efficiency of the liquid working medium and the circulation efficiency of the gas working medium.
  • FIG. 8 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the fifth embodiment of the present invention. As shown in FIG. 8, liquid flow paths 50I, 50J, 50K, 50L, 50M, and 50N exist in the evaporation unit EP.
  • the length of the flow path in the evaporation section EP of the liquid flow path 50I is the end T2I of the liquid phase section 51 at the end of the liquid flow path 50I on the evaporation section EP side from the point E2I where the liquid flow path 50I approaches the evaporation section EP. (Length indicated by double arrow L2I in FIG. 8). Further, the shortest distance from the point E2I where the liquid flow path 50I approaches the evaporation part EP to the center of gravity C2 of the evaporation part EP is the distance indicated by the double-headed arrow D2I. The length L2I / distance D2I is about 29%. Therefore, the liquid flow path 50I is the second liquid flow path.
  • the shape of the liquid flow path 50K in the evaporation section EP is axisymmetric with the liquid flow path 50I with respect to a line segment extending in the direction along the length direction Y through the center of gravity C2 of the evaporation section EP. .. Therefore, with respect to the liquid flow path 50K, the flow path length in the evaporation section EP and the shortest distance from the point where the liquid flow path 50K approaches the evaporation section EP to the center of gravity C2 of the evaporation section are the same as those of the liquid flow path 50I. .. Therefore, the liquid flow path 50K is the second liquid flow path.
  • the length of the flow path in the evaporation section EP of the liquid flow path 50J is the end T2J of the liquid phase section 51 at the end of the liquid flow path 50J on the evaporation section EP side from the point E2J where the liquid flow path 50J approaches the evaporation section EP. (Length indicated by double arrow L2J in FIG. 8).
  • the shortest distance from the point E2J where the liquid flow path 50J approaches the evaporation section EP to the center of gravity C2 of the evaporation section EP is the distance indicated by the double-headed arrow D2J.
  • the length L2J / D2J is about 9%. Therefore, the liquid flow path 50J is the fourth liquid flow path.
  • the length of the flow path in the evaporation section EP of the liquid flow path 50L is the end T2L of the liquid phase section 51 at the end of the liquid flow path 50L on the evaporation section EP side from the point E2L where the liquid flow path 50L approaches the evaporation section EP. Is the length up to L2L (in FIG. 8, the sum of the length indicated by the double arrow L2L1 and the length indicated by the double arrow L2L2). Further, the shortest distance from the point E2L where the liquid flow path 50L approaches the evaporation unit EP to the center of gravity C2 of the evaporation unit EP is the distance indicated by the double-headed arrow D2L. Here, the length L2L / distance D2L is about 110%. Therefore, the liquid flow path 50L is the first liquid flow path.
  • the shape of the liquid flow path 50N in the evaporation section EP is axisymmetric with the liquid flow path 50L with respect to a line segment extending in the direction along the length direction Y through the center of gravity C2 of the evaporation section EP. .. Therefore, regarding the liquid flow path 50N, the flow path length in the evaporation section EP and the shortest distance from the point where the liquid flow path 50N approaches the evaporation section to the center of gravity C2 of the evaporation section are the same as those of the liquid flow path 50L. Therefore, the liquid flow path 50N is the first liquid flow path.
  • the length of the flow path in the evaporation section EP of the liquid flow path 50M is the end T2M of the liquid phase section 51 at the end of the liquid flow path 50M on the evaporation section EP side from the point E2M where the liquid flow path 50M approaches the evaporation section EP. Is the length up to (the length indicated by the double arrow L2M in FIG. 8). Further, the shortest distance from the point E2M where the liquid flow path 50M approaches the evaporation unit EP to the center of gravity C2 of the evaporation unit EP is the length indicated by the double-headed arrow D2M. The length L2M / distance D2M is about 29%. Therefore, the liquid flow path 50M is the second liquid flow path.
  • the evaporation section EP shown in FIG. 8 includes two first liquid flow paths (liquid flow paths 50L, 50N) and three second liquid flow paths (liquid flow paths 50I, 50K, 50M). There is one fourth liquid flow path (liquid flow path 50J).
  • the total area of the liquid flow path in the evaporation section EP is 53.3% of the area of the evaporation section EP.
  • the flow path length in the evaporation section of the first liquid flow path is 100% of the shortest distance from the point where the liquid flow path approaches the evaporation section to the center of gravity of the evaporation section. It may be exceeded.
  • FIG. 9 is a cross-sectional view schematically showing an example of the heat diffusion device according to the sixth embodiment of the present invention.
  • the ends of the liquid phase portion on the condensed portion side do not have to be connected to each other. Further, the end portion of the liquid phase portion on the condensed portion side may not be closed by the capillary structure.
  • the housing has a plurality of evaporation parts.
  • FIG. 10 is a cross-sectional view schematically showing an example of a heat diffusion device according to a seventh embodiment of the present invention.
  • a plurality of evaporation units EP 1 and EP 2 and a condensation unit CP are set in the housing 10.
  • the number, arrangement, and size of the evaporated parts are not particularly limited.
  • the total area of the liquid flow paths in the evaporation section is 15% or more of the area of the evaporation section, and the evaporation section is the first liquid flow path. It suffices to have a second liquid flow path.
  • the evaporation unit EP 1 satisfies the above conditions.
  • the housing may include a plurality of evaporation units.
  • the planar shape of the housing is different from that of the first to seventh embodiments, and the vapor flow path and the liquid flow path are formed along the planar shape of the housing.
  • FIG. 11 is a cross-sectional view schematically showing an example of a heat diffusion device according to an eighth embodiment of the present invention.
  • the planar shape of the housing 10A is L-shaped.
  • the liquid flow path 50 extending from the evaporation unit EP to the condensation unit CP has a liquid flow path 501 extending along the length direction Y and a liquid flow path 502 extending along the width direction X.
  • the liquid flow path 501 and the liquid flow path 502 are connected at a substantially right angle, but the connection direction between the liquid flow path 501 and the liquid flow path 502 is not limited to the above direction.
  • the liquid flow path 501 and the liquid flow path 502 may be connected at an angle other than 90 °, or may be connected by a curved line.
  • the planar shape of the housing is not particularly limited, and examples thereof include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Further, the planar shape of the housing may be L-shaped, C-shaped (U-shaped), or the like. Further, a through hole may be provided inside the housing. The planar shape of the housing may be a shape corresponding to the application of the heat diffusion device, the shape of the place where the heat diffusion device is incorporated, and other components existing in the vicinity.
  • a liquid flow path is formed in a region surrounded by a capillary structure, a support, and a first inner wall surface of a housing, and inside the capillary structure.
  • FIG. 12 is a cross-sectional view of the heat diffusion device according to the ninth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
  • the heat diffusion device 2 has a housing 10 having a first inner wall surface 11a and a second inner wall surface 12a facing in the thickness direction Z, and a wick 30 arranged in the internal space of the housing 10. And prepare.
  • the wick 30 includes a capillary structure 131.
  • the capillary structure 131, the first inner wall surface 11a and the second inner wall surface 12a are supported from the inside via the capillary structure 131, and the support 140a extending in parallel with the capillary structure 131a. And the support 140b are arranged.
  • the support 140a and the support 140b face each other with a predetermined distance apart. The distance between the support 140a and the support 140b corresponds to the width of the liquid phase portion 151.
  • the region surrounded by the capillary structure 131, the support 140a and the support 140b, and the first inner wall portion 11a is the liquid phase portion 151.
  • the capillary structure 131 and the liquid phase portion 151 are collectively referred to as a liquid flow path 150. It is preferable that the width of the liquid phase portion 151 and the configuration of the liquid flow path 150 are the same as those of the first embodiment of the present invention.
  • the support 140a and the support 140b may be any material as long as they can support the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside, and the material thereof is not particularly limited.
  • Examples of the material constituting the support 140a and the support 140b include resins, metals, ceramics, mixtures thereof, and laminates.
  • the support may be integrated with the housing, and may be formed by, for example, etching the inner wall surface of the first sheet or the second sheet. Further, the support 140a and the support 140b may be composed of a capillary structure.
  • the capillary structure 131 may be arranged on the surface of the second inner wall surface 12a instead of the first inner wall surface 11a, or the capillary structure 131 may be arranged in the first inner wall surface.
  • a capillary structure may be further arranged on the surface of the second inner wall surface 12a, and the support 140a and / or the support 140b may be composed of the capillary structure.
  • the capillary structure is composed of a fiber bundle in which a plurality of fibers are bundled linearly.
  • a capillary structure composed of a fiber bundle in which a plurality of fibers are linearly bundled has a capillary structure similar to a porous body, and can transport an operating medium. Since the capillary structure composed of fiber bundles has a high ability to transport the working medium along the direction in which the fiber bundles extend, it is preferable to arrange the fibers constituting the fiber bundles along the direction in which the working medium is desired to be transported. ..
  • FIG. 13 is a cross-sectional view of the heat diffusion device according to the tenth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
  • the heat diffusion device 3 is arranged in the housing 10 having the first inner wall surface 11a and the second inner wall surface 12a facing the thickness direction Z, and the first inner space of the housing 10.
  • a wick 30 that supports the inner wall surface 11a and the second inner wall surface 12a from the inside is provided.
  • FIG. 14 is a cross-sectional view of an example of a capillary structure in the heat diffusion device according to the tenth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
  • the wick 30 has a fiber bundle 231 in which a plurality of fibers 235 are bundled.
  • the gap is a space in which the working medium of the liquid phase can move due to the action of capillary force, that is, the liquid phase portion 251.
  • the liquid phase portion 251 exists inside the fiber bundle 231 which is a capillary structure. Therefore, it can be said that the entire fiber bundle 231 including the gap between the fibers is the liquid flow path 250.
  • FIG. 15 is a partially enlarged cross-sectional view of the heat diffusion device according to the tenth embodiment of the present invention in the vicinity of the evaporation portion.
  • liquid flow paths 250A, 250B, 250C, 250D, 250E, 250F, 250G, 250H exist in the evaporation unit EP.
  • the end portion on the evaporation portion EP side is located in the evaporation portion EP.
  • the length of the flow path in the evaporation section EP of the liquid flow path 250A is from the point E1A where the liquid flow path 250A approaches the evaporation section EP to the end T3A of the liquid phase section at the end of the liquid flow path 250A on the evaporation section EP side. (The length indicated by the double arrow L3A in FIG. 15).
  • the position of the end T3A of the liquid phase portion at the end portion of the liquid flow path 250A on the evaporation portion EP side is the liquid phase portion at the end portion of the liquid flow path 50A on the evaporation portion EP side in the heat diffusion device shown in FIG. It is the same as the position of the terminal T1A of. That is, the length L3A in FIG. 15 is equal to the length L1A in FIG. Further, the position and size of the evaporation portion EP in FIG. 15 are also the same as those in FIG. Therefore, the length L3A / distance D3A is about 20% like the length L1A / distance D1A in FIG. Therefore, the liquid flow path 250A is the second liquid flow path.
  • the ratio of the flow path length from the point where the liquid flow path reaches the evaporation part to the end on the evaporation part side with respect to the shortest distance from the point where the liquid flow path reaches the evaporation part to the center of gravity of the evaporation part is shown in FIG.
  • the total area of the liquid flow paths in the evaporation section EP is smaller than that of the heat diffusion device 1 shown in FIG.
  • the total area of the liquid flow path in the evaporation section EP is 36.0% of the area of the evaporation section EP.
  • the capillary structure may have a constant width in the thickness direction, and may not have a constant width in the thickness direction. Further, the width of the end portion on the first inner wall surface side and the width of the end portion on the second inner wall surface side of the capillary structure may be the same or different. The width of the capillary structure may be continuously narrowed from the end portion on the first inner wall surface side to the end portion on the second inner wall surface side. The width of the capillary structure may be gradually narrowed from the end portion on the first inner wall surface side to the end portion on the second inner wall surface side. The ends of the capillary structure constituting the liquid phase portion on the first inner wall surface side may be connected to each other.
  • the capillary structure is a portion between the end portion on the first inner wall surface side and the end portion on the second inner wall surface side, which is wider than the end portion on the first inner wall surface side and the end portion on the second inner wall surface side. May have.
  • the capillary structure is a portion narrower than the end portion on the first inner wall surface side and the end portion on the second inner wall surface side between the end portion on the first inner wall surface side and the end portion on the second inner wall surface side. May have.
  • the wick in addition to the capillary structure, has a first wick arranged along the first inner wall surface and / or a second wick arranged along the second inner wall surface. You may be doing it.
  • the first wick and the second wick are not particularly limited as long as they have a capillary structure in which the working medium can be moved by a capillary force.
  • the wick's capillary structure may be a known structure used in conventional thermal diffusion devices. Examples of the capillary structure include microstructures having irregularities such as pores, grooves, and protrusions, such as a porous structure, a fiber structure, a groove structure, and a mesh structure.
  • the materials of the first wick and the second wick are not particularly limited, and for example, a metal porous film formed by etching or metal processing, a mesh, a non-woven fabric, a sintered body, a porous body, or the like is used.
  • the mesh used as the material of the wick may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, and is preferably composed of a copper mesh, a stainless (SUS) mesh, or a polyester mesh. ..
  • the sintered body used as the material of the wick may be composed of, for example, a metal porous sintered body and a ceramic porous sintered body, and is preferably composed of a copper or nickel porous sintered body. ..
  • the porous body used as the material of the wick may be, for example, a porous body made of a metal porous body, a ceramic porous body, a resin porous body, or the like.
  • the size and shape of the first wick and the second wick are not particularly limited, but for example, it is preferable to have a size and shape that can be continuously installed from the evaporation part to the condensation part inside the housing.
  • the thicknesses of the first wick and the second wick are not particularly limited, but are, for example, 2 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 40 ⁇ m or less, respectively.
  • the thickness of the first wick and the second wick may be partially different.
  • the thickness of the first wick may be the same as or different from the thickness of the second wick.
  • the heat diffusion device of the present invention may be further provided with a plurality of columns arranged in the steam flow path and supporting the first inner wall surface and the second inner wall surface of the housing from the inside.
  • the material forming the column is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, and a laminate.
  • the support column may be integrated with the housing, and may be formed by, for example, etching the inner wall surface of the first sheet or the second sheet.
  • the shape of the strut is not particularly limited as long as it can support the housing, but examples of the shape of the cross section perpendicular to the height direction of the strut include polygons such as rectangles, circles, and ellipses.
  • the height of the columns is not particularly limited, and may be the same as or different from the height of the capillary structure.
  • the height of the columns may be the same or different in one heat diffusion device.
  • the height of the stanchions in one area may be different from the height of the stanchions in another area.
  • the width of the strut is not particularly limited as long as it gives strength that can suppress the deformation of the housing of the heat diffusion device, but the equivalent circle diameter of the cross section perpendicular to the height direction of the end of the strut is, for example, 100 ⁇ m or more and 2000 ⁇ m. It is less than or equal to, preferably 300 ⁇ m or more and 1000 ⁇ m or less.
  • the diameter equivalent to the circle of the support column it is possible to further suppress the deformation of the housing of the heat diffusion device.
  • by reducing the diameter equivalent to the circle of the column it is possible to secure a wider space for the steam of the working medium to move.
  • the arrangement of the columns is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly over the entire area, for example, so that the distance between the columns is constant. By arranging the columns evenly, uniform strength can be ensured throughout the heat diffusion device.
  • the heat diffusion device of the present invention can be mounted on an electronic device for the purpose of heat dissipation. Therefore, the electronic device provided with the heat diffusion device of the present invention is the electronic device of the present invention. Examples of the electronic device of the present invention include smartphones, tablet terminals, notebook computers, game devices, wearable devices and the like. As described above, the heat diffusion device of the present invention operates independently without the need for external power, and can diffuse heat in two dimensions at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium. Therefore, in the electronic device of the present invention provided with the heat dissipation device or the heat diffusion device of the present invention, heat dissipation can be effectively realized in the limited space inside the electronic device.
  • the electronic device or heat diffusion device of the present invention can be used for a wide range of applications in the field of portable information terminals and the like. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the usage time of an electronic device, and can be used for smartphones, tablets, notebook PCs, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A thermal diffusion device (1) characterized by having: a first fluid flow path (50B) wherein the area of a fluid flow path (50) inside an evaporation unit is at least 15% of the area of the evaporation unit (EP), an end section of the fluid flow path (50), on the evaporation unit (EP) side, is positioned inside the evaporation unit (EP), and a flow path length (L1B) from a point (E1B) where the fluid flow path (50) reaches the evaporation unit (EP) to an end of the evaporation unit (EP) is at least 30% of the shortest distance (D1B) from a point (E1B) where the fluid flow path (50) reaches the evaporation unit (EP) to the center of gravity (C1) of the evaporation unit (EP); and a second fluid flow path (50A) wherein a flow path length (L1A) from a point (E1A) where the fluid flow path (50) reaches the evaporation unit (EP) to an end (T1A) of the evaporation unit (EP) is at least 10% and less than 30% of the shortest distance (D1A) from the point (E1A) where the fluid flow path (50) reaches the evaporation unit (EP) to the center of gravity (C1) of the evaporation unit (EP).

Description

電子機器及び熱拡散デバイスElectronic devices and heat diffusion devices
 本発明は、電子機器及び熱拡散デバイスに関する。 The present invention relates to an electronic device and a heat diffusion device.
 近年、素子の高集積化および高性能化による発熱量が増加している。また、製品の小型化が進むことで、発熱密度が増加するため、放熱対策が重要となっている。この状況はスマートフォンおよびタブレットなどのモバイル端末の分野において特に顕著である。熱対策部材としては、グラファイトシートなどが用いられることが多いが、その熱輸送量は十分ではないため、様々な熱対策部材の使用が検討されている。中でも、非常に効果的に熱を拡散させることが可能である熱拡散デバイスとして、面状のヒートパイプであるベーパーチャンバーの使用の検討が進んでいる。 In recent years, the amount of heat generated has increased due to the high integration and high performance of devices. In addition, as the miniaturization of products progresses, the heat generation density increases, so heat dissipation measures are important. This situation is especially noticeable in the field of mobile terminals such as smartphones and tablets. As the heat countermeasure member, a graphite sheet or the like is often used, but since the heat transport amount is not sufficient, the use of various heat countermeasure members is being considered. Above all, the use of a vapor chamber, which is a planar heat pipe, is being studied as a heat diffusion device capable of diffusing heat very effectively.
 ベーパーチャンバーは、筐体の内部に、作動媒体と、毛細管力によって作動媒体を輸送するウィックとが封入された構造を有する。上記作動媒体は、発熱素子からの熱を吸収する蒸発部において発熱素子からの熱を吸収してベーパーチャンバー内で蒸発した後、ベーパーチャンバー内を移動し、冷却されて液相に戻る。液相に戻った作動媒体は、ウィックの毛細管力によって再び発熱素子側の蒸発部に移動し、発熱素子を冷却する。これを繰り返すことにより、ベーパーチャンバーは外部動力を有することなく自立的に作動し、作動媒体の蒸発潜熱および凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。 The vapor chamber has a structure in which a working medium and a wick that transports the working medium by capillary force are enclosed inside the housing. The working medium absorbs heat from the heat generating element in the evaporation unit that absorbs heat from the heat generating element and evaporates in the vapor chamber, then moves in the vapor chamber, is cooled, and returns to the liquid phase. The working medium that has returned to the liquid phase moves to the evaporation part on the heat generating element side again by the capillary force of the wick, and cools the heat generating element. By repeating this, the vapor chamber operates independently without having external power, and can diffuse heat two-dimensionally at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium.
 スマートフォンおよびタブレットなどのモバイル端末の薄型化に対応するため、ベーパーチャンバーにも薄型化が求められている。このような薄型のベーパーチャンバーでは、機械的強度および熱輸送効率の確保が難しくなる。 The vapor chamber is also required to be thinner in order to support the thinner mobile terminals such as smartphones and tablets. In such a thin vapor chamber, it becomes difficult to secure mechanical strength and heat transfer efficiency.
 そこで、特許文献1に記載されているように、ベーパーチャンバーを構成する筐体の機械的強度を確保するために、筐体の内部に配置されるウィックを、筐体の形状を保つための支持体として利用することが提案されている。 Therefore, as described in Patent Document 1, in order to secure the mechanical strength of the housing constituting the vapor chamber, the wick arranged inside the housing is supported to maintain the shape of the housing. It has been proposed to be used as a body.
 特許文献1に記載されたベーパーチャンバーでは、筐体の対向する一対の内壁面、上記一対の内壁面に接触しないウィックの側面、および、上記ウィックの側面と隙間をあけて形成された対向面によって囲まれた空間に、凝縮した作動流体の液溜まり流路が形成されていることを特徴としている。特許文献1によれば、ウィックと液溜まり流路を組み合わせることによって、ウィックに常に液体が供給される状態を作ることができるため、液体流路の全体としての液体の圧力損失を低減し、その結果、ベーパーチャンバーの最大熱輸送量を大きくすることができるとされている。 In the vapor chamber described in Patent Document 1, a pair of inner wall surfaces facing each other of the housing, a side surface of the wick that does not contact the pair of inner wall surfaces, and a facing surface formed with a gap from the side surface of the wick. It is characterized in that a liquid pool flow path of condensed working fluid is formed in the enclosed space. According to Patent Document 1, by combining the wick and the liquid pool flow path, it is possible to create a state in which the liquid is always supplied to the wick, so that the pressure loss of the liquid as a whole of the liquid flow path can be reduced, and the pressure loss of the liquid can be reduced. As a result, it is said that the maximum heat transport amount of the vapor chamber can be increased.
特開2019-113270号公報Japanese Unexamined Patent Publication No. 2019-11370
 特許文献1に記載されているように、ウィックの内部に液溜まり流路が設けられていると、該液溜まり流路が液相の作動媒体を移動させる液相部となるため、液相の作動媒体の流れが滞ることを防止することができる。しかし、液相の作動媒体だけでなく気相の作動媒体の循環効率も高め、ベーパーチャンバーの熱輸送効率を高くする観点からは、改善の余地がある。 As described in Patent Document 1, when a liquid pool flow path is provided inside the wick, the liquid pool flow path becomes a liquid phase portion for moving the working medium of the liquid phase, so that the liquid phase It is possible to prevent the flow of the working medium from becoming stagnant. However, there is room for improvement from the viewpoint of increasing the circulation efficiency of not only the working medium of the liquid phase but also the working medium of the gas phase and increasing the heat transport efficiency of the vapor chamber.
 なお、上記の問題は、ベーパーチャンバーに限らず、ベーパーチャンバーと同様の構成によって熱を拡散させることが可能な熱拡散デバイスに共通する問題である。 The above problem is not limited to the vapor chamber, but is a problem common to heat diffusion devices capable of diffusing heat by the same configuration as the vapor chamber.
 本発明は、上記の問題を解決するためになされたものであり、筐体の機械的強度を確保しつつ、高い熱輸送効率を有する熱拡散デバイスを備える電子機器を提供することを目的とする。本発明はまた、筐体の機械的強度を確保しつつ、高い熱輸送効率を有する熱拡散デバイスを提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an electronic device provided with a heat diffusion device having high heat transfer efficiency while ensuring the mechanical strength of a housing. .. It is also an object of the present invention to provide a heat diffusion device having high heat transfer efficiency while ensuring the mechanical strength of the housing.
 本発明の電子機器は、熱拡散デバイスと、発熱素子と、を備える電子機器であって、上記熱拡散デバイスは、厚さ方向に対向する第1内壁面および第2内壁面を有する筐体と、上記筐体の内部空間に封入された作動媒体と、上記筐体の上記内部空間に配置されるウィックと、を備え、上記筐体は、上記作動媒体を蒸発させる蒸発部を有し、上記発熱素子は、上記蒸発部に位置する上記筐体の外壁面に配置され、上記ウィックは、上記蒸発部から線状に延びる複数の毛細管構造体を含み、少なくとも一部が上記毛細管構造体に囲まれた領域、及び/又は、上記毛細管構造体の内部に、上記作動媒体の液体流路が形成され、上記厚さ方向からの平面視において、上記蒸発部内の上記液体流路の面積の合計が、上記蒸発部の面積の15%以上であり、上記液体流路は、第1液体流路および第2液体流路を有し、上記第1液体流路の蒸発部側の端部および上記第2液体流路の蒸発部側の端部は、いずれも上記蒸発部内に位置し、上記第1液体流路が上記蒸発部に差し掛かる地点から上記蒸発部側の端部までの上記第1液体流路の流路長は、上記第1液体流路が上記蒸発部に差し掛かる地点から上記蒸発部の重心までの最短距離の30%以上であり、上記第2液体流路が上記蒸発部に差し掛かる地点から上記蒸発部側の端部までの上記第2液体流路の流路長は、上記第2液体流路が上記蒸発部に差し掛かる地点から上記蒸発部の重心までの最短距離の10%以上、30%未満である、ことを特徴とする。 The electronic device of the present invention is an electronic device including a heat diffusion device and a heat generating element, and the heat diffusion device includes a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction. The housing includes a working medium enclosed in the internal space of the housing and a wick arranged in the internal space of the housing, and the housing has an evaporating part for evaporating the working medium. The heat generating element is arranged on the outer wall surface of the housing located in the evaporating portion, and the wick includes a plurality of capillary structures linearly extending from the evaporating portion, and at least a part thereof is surrounded by the capillary structure. The liquid flow path of the working medium is formed in the region and / or the inside of the capillary structure, and the total area of the liquid flow path in the evaporation portion is the total area of the liquid flow path in the plan view from the thickness direction. The liquid flow path has a first liquid flow path and a second liquid flow path, and is an end portion of the first liquid flow path on the evaporation part side and the first liquid flow path. 2 The ends of the liquid flow path on the evaporation portion side are all located in the evaporation portion, and the first liquid from the point where the first liquid flow path reaches the evaporation portion to the end on the evaporation portion side. The flow path length of the flow path is 30% or more of the shortest distance from the point where the first liquid flow path approaches the evaporation part to the center of gravity of the evaporation part, and the second liquid flow path is in the evaporation part. The flow path length of the second liquid flow path from the approaching point to the end on the evaporation section side is the shortest distance from the point where the second liquid flow path approaches the evaporation section to the center of gravity of the evaporation section. It is characterized by being 10% or more and less than 30%.
 本発明の熱拡散デバイスは、厚さ方向に対向する第1内壁面および第2内壁面を有する筐体と、上記筐体の内部空間に封入された作動媒体と、上記筐体の上記内部空間に配置されるウィックと、を備える熱拡散デバイスであって、上記筐体は、上記作動媒体を蒸発させる蒸発部を有し、上記ウィックは、上記蒸発部から線状に延びる複数の毛細管構造体を含み、少なくとも一部が前記毛細管構造体に囲まれた領域、及び/又は、前記毛細管構造体の内部に、上記作動媒体の液体流路を構成する液相部を有し、上記厚さ方向からの平面視において、上記蒸発部内の上記液体流路の面積の合計が、上記蒸発部の面積の15%以上であり、上記液体流路は、第1液体流路および第2液体流路を有し、上記第1液体流路の蒸発部側の端部および上記第2液体流路の蒸発部側の端部は、いずれも上記蒸発部内に位置し、上記第1液体流路が上記蒸発部に差し掛かる地点から上記蒸発部側の端部までの上記第1液体流路の流路長は、上記第1液体流路が上記蒸発部に差し掛かる地点から上記蒸発部の重心までの最短距離の30%以上であり、上記第2液体流路が上記蒸発部に差し掛かる地点から上記蒸発部側の端部までの上記第2液体流路の流路長は、上記第2液体流路が上記蒸発部に差し掛かる地点から上記蒸発部の重心までの最短距離の10%以上、30%未満である、ことを特徴とする。 The heat diffusion device of the present invention has a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction, a working medium enclosed in the internal space of the housing, and the internal space of the housing. A thermal diffusion device comprising a wick, wherein the housing has an evaporative section that evaporates the working medium, wherein the wick is a plurality of capillary structures linearly extending from the evaporative section. And / or having a liquid phase portion constituting the liquid flow path of the working medium inside the capillary structure and / or a region surrounded by the capillary structure at least in part thereof, and having a liquid phase portion constituting the liquid flow path of the working medium, in the thickness direction. The total area of the liquid flow path in the evaporative section is 15% or more of the area of the evaporative section, and the liquid flow path includes the first liquid flow path and the second liquid flow path. The end of the first liquid flow path on the evaporation part side and the end of the second liquid flow path on the evaporation part side are both located in the evaporation part, and the first liquid flow path evaporates. The flow path length of the first liquid flow path from the point approaching the portion to the end on the evaporation section side is the shortest from the point where the first liquid flow path approaches the evaporation section to the center of gravity of the evaporation section. The flow path length of the second liquid flow path from the point where the second liquid flow path reaches the evaporation part to the end on the evaporation part side is 30% or more of the distance, and the flow path length of the second liquid flow path is the second liquid flow path. Is 10% or more and less than 30% of the shortest distance from the point approaching the evaporative part to the center of gravity of the evaporative part.
 本発明によれば、筐体の機械的強度を確保しつつ、高い熱輸送効率を有する熱拡散デバイスを備える電子機器を提供することができる。 According to the present invention, it is possible to provide an electronic device provided with a heat diffusion device having high heat transfer efficiency while ensuring the mechanical strength of the housing.
図1Aは、本発明の第1実施形態に係る電子機器の一例を模式的に示す斜視図である。FIG. 1A is a perspective view schematically showing an example of an electronic device according to the first embodiment of the present invention. 図1Bは、本発明の第1実施形態に係る電子機器の構成の一部である発熱素子付き熱拡散デバイスの一例を模式的に示す斜視図である。FIG. 1B is a perspective view schematically showing an example of a heat diffusion device with a heat generating element, which is a part of the configuration of the electronic device according to the first embodiment of the present invention. 図2は、図1Bに示す発熱素子付き熱拡散デバイスを構成する熱拡散デバイスのII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the heat diffusion device constituting the heat diffusion device with the heat generating element shown in FIG. 1B. 図3は、図1Bに示す発熱素子付き熱拡散デバイスを構成する熱拡散デバイスのIII-III線断面図である。FIG. 3 is a sectional view taken along line III-III of the heat diffusion device constituting the heat diffusion device with the heat generating element shown in FIG. 1B. 図4は、図2に示す熱拡散デバイスの蒸発部近傍の拡大図である。FIG. 4 is an enlarged view of the vicinity of the evaporation portion of the heat diffusion device shown in FIG. 図5は、本発明の第2実施形態に係る熱拡散デバイスの一例の蒸発部近傍の部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the second embodiment of the present invention. 図6は、本発明の第3実施形態に係る熱拡散デバイスの一例の蒸発部近傍の部分拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the third embodiment of the present invention. 図7は、本発明の第4実施形態に係る熱拡散デバイスの一例の蒸発部近傍の部分拡大断面図である。FIG. 7 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the fourth embodiment of the present invention. 図8は、本発明の第5実施形態に係る熱拡散デバイスの一例の蒸発部近傍の部分拡大断面図である。FIG. 8 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the fifth embodiment of the present invention. 図9は、本発明の第6実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an example of the heat diffusion device according to the sixth embodiment of the present invention. 図10は、本発明の第7実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an example of a heat diffusion device according to a seventh embodiment of the present invention. 図11は、本発明の第8実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing an example of the heat diffusion device according to the eighth embodiment of the present invention. 図12は、本発明の第9実施形態に係る熱拡散デバイスの、毛細管構造体が延びる方向に垂直な方向における断面図である。FIG. 12 is a cross-sectional view of the heat diffusion device according to the ninth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends. 図13は、本発明の第10実施形態に係る熱拡散デバイスの、毛細管構造体が延びる方向に垂直な方向における断面図である。FIG. 13 is a cross-sectional view of the heat diffusion device according to the tenth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends. 図14は、本発明の第10実施形態に係る熱拡散デバイスにおける毛細管構造体を毛細管構造体が延びる方向に垂直な方向における断面図である。FIG. 14 is a cross-sectional view of the capillary structure in the heat diffusion device according to the tenth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends. 図15は、本発明の第10実施形態に係る熱拡散デバイスの、蒸発部近傍の部分拡大断面図である。FIG. 15 is a partially enlarged cross-sectional view of the heat diffusion device according to the tenth embodiment of the present invention in the vicinity of the evaporation portion.
 以下、本発明の電子機器および熱拡散デバイスについて説明する。
 しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the electronic device and the heat diffusion device of the present invention will be described.
However, the present invention is not limited to the following configuration, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
 以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。第2実施形態以降では、第1実施形態と共通の事項についての記述は省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。 It goes without saying that each embodiment shown below is an example, and partial replacement or combination of the configurations shown in different embodiments is possible. In the second and subsequent embodiments, the description of the matters common to the first embodiment will be omitted, and only the differences will be described. In particular, the same action and effect due to the same configuration will not be mentioned sequentially for each embodiment.
 以下の説明において、各実施形態を特に区別しない場合、単に「本発明の電子機器」または「本発明の熱拡散デバイス」という。 In the following description, unless each embodiment is particularly distinguished, it is simply referred to as "the electronic device of the present invention" or "the heat diffusion device of the present invention".
 以下では、本発明の電子機器の一実施形態として、熱拡散デバイスとしてベーパーチャンバーを用いた場合を例にとって説明する。本発明の電子機器では、ヒートパイプ等の熱拡散デバイスを用いてもよい。
 また、本発明の熱拡散デバイスの一実施形態として、ベーパーチャンバーを例にとって説明する。本発明の熱拡散デバイスは、ヒートパイプなどの熱拡散デバイスにも適用可能である。
Hereinafter, as an embodiment of the electronic device of the present invention, a case where a vapor chamber is used as a heat diffusion device will be described as an example. In the electronic device of the present invention, a heat diffusion device such as a heat pipe may be used.
Further, as an embodiment of the heat diffusion device of the present invention, a vapor chamber will be described as an example. The heat diffusion device of the present invention can also be applied to a heat diffusion device such as a heat pipe.
 以下に示す図面は模式的なものであり、その寸法や縦横比の縮尺などは実際の製品とは異なる場合がある。 The drawings shown below are schematic, and their dimensions and aspect ratio scale may differ from the actual product.
[第1実施形態]
 図1Aは、本発明の第1実施形態に係る電子機器の一例を模式的に示す斜視図である。
 図1Aに示す電子機器100は、熱拡散デバイス1と、電子部品110とを有している。
 電子部品110は、熱拡散デバイス1の筐体10の外壁面に取り付けられている。
 電子部品110は、筐体10の外壁面に直に取り付けられていてもよいし、熱伝導性の高い粘着剤、シート、テープ等の他の部材を介して取り付けられていてもよい。
[First Embodiment]
FIG. 1A is a perspective view schematically showing an example of an electronic device according to the first embodiment of the present invention.
The electronic device 100 shown in FIG. 1A includes a heat diffusion device 1 and an electronic component 110.
The electronic component 110 is attached to the outer wall surface of the housing 10 of the heat diffusion device 1.
The electronic component 110 may be directly attached to the outer wall surface of the housing 10, or may be attached via another member such as an adhesive, a sheet, or a tape having high thermal conductivity.
 電子部品110としては、例えば、中央処理装置(CPU)、発光ダイオード(LED)、パワー半導体等の発熱素子が挙げられる。 Examples of the electronic component 110 include heat generating elements such as a central processing unit (CPU), a light emitting diode (LED), and a power semiconductor.
 電子機器100としては、例えば、スマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等が挙げられる。 Examples of the electronic device 100 include smartphones, tablet terminals, notebook computers, game devices, wearable devices, and the like.
 本発明の電子機器において、上記筐体は、蒸発部を内部空間に有し、厚さ方向からの平面視で、上記電子部品は、上記蒸発部に重なる。 In the electronic device of the present invention, the housing has an evaporation portion in the internal space, and the electronic component overlaps the evaporation portion in a plan view from the thickness direction.
 電子機器100において、電子部品110は、後述する図1Bに示す発熱素子HEに相当する。つまり、厚さ方向Zからの平面視で、電子部品110は、筐体10の蒸発部EPに重なっている。 In the electronic device 100, the electronic component 110 corresponds to the heat generating element HE shown in FIG. 1B, which will be described later. That is, in a plan view from the thickness direction Z, the electronic component 110 overlaps the evaporation portion EP of the housing 10.
 なお、電子機器100は、図1Aに示すように、機器筐体120を更に有していることが好ましい。 As shown in FIG. 1A, it is preferable that the electronic device 100 further has a device housing 120.
 図1Bは、図1Aに示す電子機器の構成の一部である発熱素子付き熱拡散デバイスである。図1Bに示す熱拡散デバイスは、本発明の第1実施形態に係る熱拡散デバイスである。
 発熱素子付き熱拡散デバイスは、熱拡散デバイス1と、発熱素子(heating element)HEとを備える。
 発熱素子HEとしては、上述した電子部品110が用いられる。
FIG. 1B is a heat diffusion device with a heat generating element, which is a part of the configuration of the electronic device shown in FIG. 1A. The heat diffusion device shown in FIG. 1B is a heat diffusion device according to the first embodiment of the present invention.
The heat diffusion device with a heating element includes a heat diffusion device 1 and a heating element HE.
As the heat generating element HE, the above-mentioned electronic component 110 is used.
 本発明の電子機器を構成する熱拡散デバイスは、本発明の熱拡散デバイスでもある。
 なお、図1に示す形状の熱拡散デバイスは、ベーパーチャンバーとも呼ばれる。
The heat diffusion device constituting the electronic device of the present invention is also the heat diffusion device of the present invention.
The heat diffusion device having the shape shown in FIG. 1 is also called a vapor chamber.
 図2は、図1Bに示す発熱素子付き熱拡散デバイスを構成する熱拡散デバイスのII-II線断面図である。図3は、図1Bに示す発熱素子付き熱拡散デバイスを構成する熱拡散デバイスのIII-III線断面図である。
 図2に示すように、熱拡散デバイス1は、気密状態に密閉された中空の筐体10を備える。筐体10は、図3に示すように、厚さ方向Zに対向する第1内壁面11aおよび第2内壁面12aを有する。図2および図3に示すように、熱拡散デバイス1は、筐体10の内部空間に配置されるウィック30を備える。さらに、筐体10の内部空間には、作動媒体20が封入されている。ウィックとは、毛細管力により作動媒体を輸送する毛細管構造を有する構造体を指す。
FIG. 2 is a sectional view taken along line II-II of the heat diffusion device constituting the heat diffusion device with the heat generating element shown in FIG. 1B. FIG. 3 is a sectional view taken along line III-III of the heat diffusion device constituting the heat diffusion device with the heat generating element shown in FIG. 1B.
As shown in FIG. 2, the heat diffusion device 1 includes a hollow housing 10 that is hermetically sealed. As shown in FIG. 3, the housing 10 has a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z. As shown in FIGS. 2 and 3, the heat diffusion device 1 includes a wick 30 arranged in the internal space of the housing 10. Further, the working medium 20 is enclosed in the internal space of the housing 10. The wick refers to a structure having a capillary structure that transports a working medium by capillary force.
 筐体10には、図2に示すように、封入した作動媒体を蒸発させる蒸発部(evaporation portion)EPが設定されている。筐体10には、さらに、蒸発した作動媒体20を凝縮させる凝縮部(condensation portion)CPが設定されていてもよい。
 筐体10の内部空間のうち、発熱素子HEの近傍であって発熱素子HEによって加熱される部分が、蒸発部EPに相当する。
 一方、蒸発部EPから離れた部分が、凝縮部CPに相当する。
 なお、発熱素子HEによって加熱される部分が蒸発部EPに相当するため、蒸発部EPの大きさと、発熱素子HEの大きさとが完全に一致してなくてもよい。ただし、熱輸送効率の設計および発熱素子HEと蒸発部EPの位置合わせの検知の観点から、蒸発部EPの大きさと発熱素子HEの大きさは、ほぼ同等であることが好ましい。
 また、蒸発した作動媒体20は凝縮部CP以外でも凝縮され得る。本実施形態では、蒸発した作動媒体20を特に凝縮させやすい部分を凝縮部CPとして図2にも表現する。
As shown in FIG. 2, the housing 10 is provided with an evaporation unit EP that evaporates the enclosed working medium. Further, the housing 10 may be set with a condensation portion CP for condensing the evaporated working medium 20.
In the internal space of the housing 10, the portion near the heat generating element HE and heated by the heat generating element HE corresponds to the evaporation part EP.
On the other hand, the portion away from the evaporation portion EP corresponds to the condensation portion CP.
Since the portion heated by the heat generating element HE corresponds to the evaporation part EP, the size of the evaporation part EP and the size of the heat generating element HE do not have to be completely the same. However, from the viewpoint of designing the heat transport efficiency and detecting the alignment between the heat generating element HE and the evaporating part EP, it is preferable that the size of the evaporating part EP and the size of the heat generating element HE are almost the same.
Further, the evaporated working medium 20 can be condensed other than the condensed portion CP. In the present embodiment, the portion where the evaporated working medium 20 is particularly easy to condense is also represented in FIG. 2 as a condensing portion CP.
 発熱素子HEは、筐体10の外壁面に配置される。発熱素子HEは、筐体10の外壁面に直接接触していてもよく、熱伝導性グリスや銅板等の金属板等を介して接触していてもよい。熱伝導性グリスや金属板は、筐体10の外壁面と発熱素子HEの表面との間の凹凸(隙間)による熱輸送効率の低下を抑制することができる。
 筐体10の外壁面には、予め発熱素子HEを配置する位置を示す凹凸やマーカー等の意匠が施されていてもよい。また、筐体10の外壁面には、蒸発部EPの位置を示す凹凸やマーカー等の意匠が施されていてもよい。
The heat generating element HE is arranged on the outer wall surface of the housing 10. The heat generating element HE may be in direct contact with the outer wall surface of the housing 10, or may be in contact with the heat conductive grease, a metal plate such as a copper plate, or the like. The heat conductive grease or the metal plate can suppress a decrease in heat transport efficiency due to unevenness (gap) between the outer wall surface of the housing 10 and the surface of the heat generating element HE.
The outer wall surface of the housing 10 may be previously provided with a design such as an unevenness or a marker indicating a position where the heat generating element HE is arranged. Further, the outer wall surface of the housing 10 may be provided with a design such as an unevenness or a marker indicating the position of the evaporation portion EP.
 図2および図3では、ウィック30は、蒸発部EPから線状に延びる複数の毛細管構造体31を含む。毛細管構造体31は、毛細管力によって作動媒体20を輸送するウィックとして機能する。多孔体31は、例えば、金属多孔体、セラミックス多孔体または樹脂多孔体等の多孔体から構成される。多孔体31は、例えば、金属多孔質焼結体、セラミックス多孔質焼結体等の焼結体から構成されてもよい。多孔体31は、銅またはニッケルの多孔質焼結体から構成されることが好ましい。 In FIGS. 2 and 3, the wick 30 includes a plurality of capillary structures 31 linearly extending from the evaporation unit EP. The capillary structure 31 functions as a wick that transports the working medium 20 by the capillary force. The porous body 31 is composed of, for example, a porous body such as a metal porous body, a ceramic porous body, or a resin porous body. The porous body 31 may be composed of, for example, a sintered body such as a metal porous sintered body or a ceramic porous sintered body. The porous body 31 is preferably composed of a porous sintered body of copper or nickel.
 毛細管構造体31は、多孔体の代わりに、複数の繊維を線状に束ねた繊維束から構成されていてもよい。この場合、毛細管構造体31は、編み込み状の繊維束を含むことが好ましい。複数の繊維が編み込まれた編み込み状の繊維束では、表面に凹凸が存在しやすくなるため、毛細管構造体が編み込み状の繊維束を含む場合、液相の作動媒体が蒸発部に輸送されやすくなる。 The capillary structure 31 may be composed of a fiber bundle in which a plurality of fibers are linearly bundled instead of the porous body. In this case, the capillary structure 31 preferably contains a braided fiber bundle. In a crocheted fiber bundle in which a plurality of fibers are woven, unevenness is likely to be present on the surface, so that when the capillary structure contains the crocheted fiber bundle, the working medium of the liquid phase is easily transported to the evaporation part. ..
 繊維束を構成する繊維としては、例えば、銅、アルミニウム、ステンレス等の金属線、カーボン繊維、ガラス繊維等の非金属線等が挙げられる。中でも、金属線は、熱伝導率が高いことから好ましい。例えば、直径が0.03mm程度の銅線を200本程度束ねることにより、繊維束とすることができる。 Examples of the fibers constituting the fiber bundle include metal wires such as copper, aluminum and stainless steel, and non-metal wires such as carbon fibers and glass fibers. Above all, the metal wire is preferable because it has a high thermal conductivity. For example, a fiber bundle can be obtained by bundling about 200 copper wires having a diameter of about 0.03 mm.
 以下には、毛細管構造体が多孔体である場合の例を示す。
 毛細管構造体31の内部には、毛細管構造体31が延びる方向に沿った液相部51が設けられている。液相部51は、毛細管構造体31を構成する第1毛細管構造体31aおよび第2毛細管構造体31b、並びに、筐体10の第1内壁面11aおよび第2内壁面12aにより区画されている。従って、液相部51は、少なくとも一部が毛細管構造体31により囲まれた領域であるといえる。
 液相部51では液相の作動媒体が蒸発部EPへ向かって輸送される。また、第1毛細管構造体31a及び第2毛細管構造体31bも、液相の作動媒体を輸送する作用を有している。そのため、液相部51と、液相部51を区画する第1毛細管構造体31aおよび第2毛細管構造体31bとをあわせて液体流路50ともいう。液体流路50は、少なくとも一部が第1毛細管構造体31a及び第2毛細管構造体31bで囲まれた領域(液相部51)、並びに、第1毛細管構造体31a及び第2毛細管構造体31bの内部に形成されているといえる。
 1つの毛細管構造体31において、第1毛細管構造体31aと第2毛細管構造体31bとの間の距離aは、液相部51の幅に相当する。
 一方、筐体10の内部空間のうち、液体流路50ではない部分が蒸気流路52となる。蒸気流路52を介して対向する毛細管構造体31同士の距離bは、蒸気流路52の幅に相当する。
 図3に示すように、液相部51の幅aは、蒸気流路52の幅bよりも短い。
The following is an example of the case where the capillary structure is a porous body.
Inside the capillary structure 31, a liquid phase portion 51 is provided along the direction in which the capillary structure 31 extends. The liquid phase portion 51 is partitioned by a first capillary structure 31a and a second capillary structure 31b constituting the capillary structure 31, and a first inner wall surface 11a and a second inner wall surface 12a of the housing 10. Therefore, it can be said that the liquid phase portion 51 is a region in which at least a part thereof is surrounded by the capillary structure 31.
In the liquid phase section 51, the working medium of the liquid phase is transported toward the evaporation section EP. Further, the first capillary structure 31a and the second capillary structure 31b also have an action of transporting the working medium of the liquid phase. Therefore, the liquid phase portion 51 and the first capillary structure 31a and the second capillary structure 31b that partition the liquid phase portion 51 are collectively referred to as a liquid flow path 50. The liquid flow path 50 includes a region (liquid phase portion 51) partially surrounded by the first capillary structure 31a and the second capillary structure 31b, and the first capillary structure 31a and the second capillary structure 31b. It can be said that it is formed inside.
In one capillary structure 31, the distance a between the first capillary structure 31a and the second capillary structure 31b corresponds to the width of the liquid phase portion 51.
On the other hand, in the internal space of the housing 10, the portion that is not the liquid flow path 50 becomes the steam flow path 52. The distance b between the capillary structures 31 facing each other via the steam flow path 52 corresponds to the width of the steam flow path 52.
As shown in FIG. 3, the width a of the liquid phase portion 51 is shorter than the width b of the vapor flow path 52.
 図2に示すように、液体流路50は、蒸発部EPから凝縮部CPまで延びていてもよい。蒸発部EPにおいて、液体流路50は放射状に延びており、各液体流路50は、蒸発部EP内において、蒸発部EP側の端部が接続されていない。一方、凝縮部CPにおいて、全ての液体流路50の凝縮部CP側の端部は、互いに接続されている。
 液体流路50は、蒸発部EPから凝縮部CPに到達するまでの間に、延びる方向が変わってもよく、分岐または合流していてもよい。
 互いに隣接する液体流路50と蒸気流路52は、略平行に延びている。また、液体流路50が延びる方向に略垂直な方向において、液体流路50と蒸気流路52は交互に配置されている。
As shown in FIG. 2, the liquid flow path 50 may extend from the evaporation portion EP to the condensation portion CP. In the evaporation section EP, the liquid flow paths 50 extend radially, and each liquid flow path 50 is not connected to the end portion on the evaporation section EP side in the evaporation section EP. On the other hand, in the condensed portion CP, the ends of all the liquid flow paths 50 on the condensed portion CP side are connected to each other.
The liquid flow path 50 may extend in a different direction, or may be branched or merged, from the evaporation portion EP to the condensation portion CP.
The liquid flow path 50 and the steam flow path 52 adjacent to each other extend substantially in parallel. Further, the liquid flow path 50 and the steam flow path 52 are alternately arranged in a direction substantially perpendicular to the direction in which the liquid flow path 50 extends.
 熱拡散デバイス1は、全体として面状である。すなわち、筐体10は、全体として面状である。ここで、「面状」とは、板状およびシート状を包含し、幅方向Xの寸法(以下、幅という)および長さ方向Yの寸法(以下、長さという)が厚さ方向Zの寸法(以下、厚さまたは高さという)に対して相当に大きい形状、例えば幅および長さが、厚さの10倍以上、好ましくは100倍以上である形状を意味する。 The heat diffusion device 1 is planar as a whole. That is, the housing 10 is planar as a whole. Here, the "plane" includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as "width") and the dimension in the length direction Y (hereinafter referred to as "length") are in the thickness direction Z. It means a shape that is considerably larger than a dimension (hereinafter referred to as a thickness or a height), for example, a shape having a width and a length of 10 times or more, preferably 100 times or more the thickness.
 熱拡散デバイス1の大きさ、すなわち、筐体10の大きさは、特に限定されない。熱拡散デバイス1の幅および長さは、用途に応じて適宜設定することができる。熱拡散デバイス1の幅および長さは、各々、例えば、5mm以上500mm以下、20mm以上300mm以下または50mm以上200mm以下である。熱拡散デバイス1の幅および長さは、同じであっても、異なっていてもよい。 The size of the heat diffusion device 1, that is, the size of the housing 10 is not particularly limited. The width and length of the heat diffusion device 1 can be appropriately set according to the application. The width and length of the heat diffusion device 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less, respectively. The width and length of the heat diffusion device 1 may be the same or different.
 筐体10は、外縁部が接合された対向する第1シート11および第2シート12から構成されることが好ましい。第1シート11および第2シート12を構成する材料は、熱拡散デバイスとして用いるのに適した特性、例えば熱伝導性、強度、柔軟性、可撓性等を有するものであれば、特に限定されない。第1シート11および第2シート12を構成する材料は、好ましくは金属であり、例えば銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、またはそれらを主成分とする合金等であり、特に好ましくは銅である。第1シート11および第2シート12を構成する材料は、同じであっても、異なっていてもよいが、好ましくは同じである。 It is preferable that the housing 10 is composed of the first sheet 11 and the second sheet 12 facing each other to which the outer edges are joined. The materials constituting the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for use as a heat diffusion device, for example, thermal conductivity, strength, flexibility, flexibility and the like. .. The material constituting the first sheet 11 and the second sheet 12 is preferably a metal, for example, copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component, and particularly preferably copper. Is. The materials constituting the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
 第1シート11および第2シート12は、これらの外縁部において互いに接合されている。かかる接合の方法は、特に限定されないが、例えば、レーザー溶接、抵抗溶接、拡散接合、ロウ接、TIG溶接(タングステン-不活性ガス溶接)、超音波接合または樹脂封止を用いることができ、好ましくはレーザー溶接、抵抗溶接またはロウ接を用いることができる。 The first sheet 11 and the second sheet 12 are joined to each other at their outer edges. The joining method is not particularly limited, but for example, laser welding, resistance welding, diffusion welding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic welding, or resin encapsulation can be used, and is preferable. Can use laser welding, resistance welding or low welding.
 第1シート11および第2シート12の厚さは、特に限定されないが、各々、好ましくは10μm以上200μm以下、より好ましくは30μm以上100μm以下、さらに好ましくは40μm以上60μm以下である。第1シート11および第2シート12の厚さは、同じであっても、異なっていてもよい。また、第1シート11および第2シート12の各シートの厚さは、全体にわたって同じであってもよく、一部が薄くてもよい。 The thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but are preferably 10 μm or more and 200 μm or less, more preferably 30 μm or more and 100 μm or less, and further preferably 40 μm or more and 60 μm or less, respectively. The thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each of the first sheet 11 and the second sheet 12 may be the same throughout, or a part thereof may be thin.
 第1シート11および第2シート12の形状は、特に限定されない。例えば、図3に示す例では、第1シート11は、厚みが一定の平板形状であり、第2シート12は、外縁部が外縁部以外の部分よりも厚い形状である。 The shapes of the first sheet 11 and the second sheet 12 are not particularly limited. For example, in the example shown in FIG. 3, the first sheet 11 has a flat plate shape having a constant thickness, and the second sheet 12 has a shape in which the outer edge portion is thicker than the portion other than the outer edge portion.
 熱拡散デバイス1全体の厚さは、特に限定されないが、好ましくは50μm以上500μm以下である。 The thickness of the entire heat diffusion device 1 is not particularly limited, but is preferably 50 μm or more and 500 μm or less.
 作動媒体20は、筐体10内の環境下において気-液の相変化を生じ得るものであれば特に限定されず、例えば、水、アルコール類、代替フロン等を用いることができる。例えば、作動媒体20は水性化合物であり、好ましくは水である。 The working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10, and for example, water, alcohols, CFC substitutes, or the like can be used. For example, the working medium 20 is an aqueous compound, preferably water.
 ウィック30は、本実施形態では筐体10の第1内壁面11aおよび第2内壁面12aを内側から支持している。ウィック30を筐体10の内部空間に配置することにより、筐体10の機械的強度を確保しつつ、筐体10外部からの衝撃を吸収することができる。さらに、筐体10の支持体としてウィック30を利用することにより、熱拡散デバイス1の軽量化を図ることができる。 In this embodiment, the wick 30 supports the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside. By arranging the wick 30 in the internal space of the housing 10, it is possible to absorb the impact from the outside of the housing 10 while ensuring the mechanical strength of the housing 10. Further, by using the wick 30 as the support of the housing 10, the weight of the heat diffusion device 1 can be reduced.
 図3に示す例では、第1毛細管構造体31aおよび第2毛細管構造体31bは、第1内壁面11aおよび第2内壁面12aに接している。第1毛細管構造体31aおよび第2毛細管構造体31bは、第1内壁面11aおよび第2内壁面12aのいずれか一方に接していてもよく、第1内壁面11aおよび第2内壁面12aに接していなくてもよい。 In the example shown in FIG. 3, the first capillary structure 31a and the second capillary structure 31b are in contact with the first inner wall surface 11a and the second inner wall surface 12a. The first capillary structure 31a and the second capillary structure 31b may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a, and may be in contact with the first inner wall surface 11a and the second inner wall surface 12a. It doesn't have to be.
 蒸発部EPでは、液相部51に位置する液相の作動媒体20が、筐体10の内壁面を介して加熱されて蒸発する。作動媒体20が蒸発することで、蒸発部EP近傍における蒸気流路52内の気体の圧力が高まる。これにより、気相の作動媒体20が、蒸気流路52内を凝縮部CP側に向かって移動する。 In the evaporation unit EP, the working medium 20 of the liquid phase located in the liquid phase unit 51 is heated and evaporated through the inner wall surface of the housing 10. As the working medium 20 evaporates, the pressure of the gas in the steam flow path 52 in the vicinity of the evaporation unit EP increases. As a result, the working medium 20 of the gas phase moves in the steam flow path 52 toward the condensed portion CP side.
 凝縮部CPに到達した気相の作動媒体20は、筐体10の内壁面を介して熱を奪われて凝縮し、液滴となる。上述のとおり、液相の作動媒体20は凝縮部CP以外でも凝縮され得る。作動媒体20の液滴は、毛細管力によって毛細管構造体31の細孔内に浸み込む。また、毛細管構造体31の細孔内に浸み込んだ液相の作動媒体20の一部は、液相部51内に流入する。 The gas phase working medium 20 that has reached the condensing portion CP is deprived of heat through the inner wall surface of the housing 10 and is condensed into droplets. As described above, the working medium 20 of the liquid phase can be condensed other than the condensed portion CP. The droplets of the working medium 20 permeate into the pores of the capillary structure 31 by the capillary force. Further, a part of the working medium 20 of the liquid phase that has penetrated into the pores of the capillary structure 31 flows into the liquid phase portion 51.
 液体流路50内に流入した液相の作動媒体20は、毛細管力によって蒸発部EPまで移動し、蒸発部EPにおいて加熱されて蒸発する。 The working medium 20 of the liquid phase that has flowed into the liquid flow path 50 moves to the evaporation section EP by the capillary force, and is heated and evaporated in the evaporation section EP.
 蒸発して気相となった作動媒体20は、再び蒸気流路52を通って凝縮部CP側へと移動する。このように、熱拡散デバイス1は、作動媒体20の気-液の相変化を繰り返し利用して、蒸発部EP側で回収した熱を凝縮部CP側に繰り返し輸送することができる。 The working medium 20 that has evaporated and becomes a gas phase moves to the condensed portion CP side again through the steam flow path 52. In this way, the heat diffusion device 1 can repeatedly use the gas-liquid phase change of the working medium 20 to repeatedly transport the heat recovered on the evaporation unit EP side to the condensation unit CP side.
 本発明の熱拡散デバイスにおいて、蒸発部には液体流路の一部が差し掛かっている。
 厚さ方向からの平面視において、蒸発部内の液体流路の面積の合計は、蒸発部EPの面積の15%以上である。
 蒸発部内の液体流路の面積の合計を、蒸発部の面積の15%以上とすることにより、蒸発部内に、液相の作動媒体を充分な量供給することができるため、ドライアウトの発生を抑制することができる。
In the heat diffusion device of the present invention, a part of the liquid flow path is approaching the evaporation part.
In a plan view from the thickness direction, the total area of the liquid flow path in the evaporation section is 15% or more of the area of the evaporation section EP.
By setting the total area of the liquid flow path in the evaporation section to 15% or more of the area of the evaporation section, a sufficient amount of the working medium of the liquid phase can be supplied into the evaporation section, so that dryout occurs. It can be suppressed.
 厚さ方向からの平面視において、蒸発部内の液体流路の面積の合計は、蒸発部の面積の80%以下であることが好ましい。
 蒸発部内の液体流路の面積の合計が、蒸発部の面積の80%を超えると、蒸発部内において蒸気流路の充分な通り道を確保しにくくなる。その結果、蒸発部内における気液交換が充分に行われず、ドライアウトが発生しやすくなる。
In a plan view from the thickness direction, the total area of the liquid flow paths in the evaporation section is preferably 80% or less of the area of the evaporation section.
If the total area of the liquid flow path in the evaporation section exceeds 80% of the area of the evaporation section, it becomes difficult to secure a sufficient passage for the vapor flow path in the evaporation section. As a result, the gas-liquid exchange in the evaporation part is not sufficiently performed, and dryout is likely to occur.
 液体流路は、第1液体流路および第2液体流路を有する。
 第1液体流路および第2液体流路は、いずれも、蒸発部側の端部が蒸発部内に位置する液体流路である。
 第1液体流路および第2液体流路は、蒸発部EP内における流路長が、液体流路が蒸発部に差し掛かる地点から蒸発部の重心までの最短距離に占める割合によって区別できる。
 蒸発部に差し掛かる液体流路のうち、液体流路が蒸発部に差し掛かる地点から蒸発部の末端までの流路長が、液体流路が蒸発部に差し掛かる地点から蒸発部の重心までの最短距離の30%以上である場合が、第1液体流路である。また、液体流路が蒸発部に差し掛かる地点から蒸発部の末端までの流路長が、液体流路が蒸発部に差し掛かる地点から蒸発部の重心までの最短距離の10%以上、30%未満である場合が、第2液体流路である。
 第1液体流路および第2液体流路について、図4を参照しながら説明する。
The liquid flow path has a first liquid flow path and a second liquid flow path.
Both the first liquid flow path and the second liquid flow path are liquid flow paths whose ends on the evaporation portion side are located in the evaporation portion.
The first liquid flow path and the second liquid flow path can be distinguished by the ratio of the flow path length in the evaporation section EP to the shortest distance from the point where the liquid flow path approaches the evaporation section to the center of gravity of the evaporation section.
Of the liquid flow paths approaching the evaporation section, the flow path length from the point where the liquid flow path reaches the evaporation section to the end of the evaporation section is from the point where the liquid flow path reaches the evaporation section to the center of gravity of the evaporation section. The case where it is 30% or more of the shortest distance is the first liquid flow path. Further, the flow path length from the point where the liquid flow path reaches the evaporation part to the end of the evaporation part is 10% or more and 30% of the shortest distance from the point where the liquid flow path reaches the evaporation part to the center of gravity of the evaporation part. When it is less than, it is the second liquid flow path.
The first liquid flow path and the second liquid flow path will be described with reference to FIG.
 図4は、図2に示す熱拡散デバイスの蒸発部近傍の拡大図である。
 図4に示すように、蒸発部EP内には、液体流路50A、50B、50C、50D、50E、50F、50G、50Hが存在する。液体流路50A、50B、50C、50D、50E、50F、50G、50Hはいずれも、蒸発部EP側の端部が、蒸発部EP内に位置している。
FIG. 4 is an enlarged view of the vicinity of the evaporation portion of the heat diffusion device shown in FIG.
As shown in FIG. 4, the liquid flow paths 50A, 50B, 50C, 50D, 50E, 50F, 50G, and 50H are present in the evaporation unit EP. In each of the liquid flow paths 50A, 50B, 50C, 50D, 50E, 50F, 50G, and 50H, the end portion on the evaporation unit EP side is located in the evaporation unit EP.
 液体流路50Aの蒸発部EP内における流路長は、液体流路50Aが蒸発部EPに差し掛かる地点E1Aから、液体流路50Aの蒸発部EP側の端部における液相部51の末端T1Aまでの長さ(図4中、両矢印L1Aで示す長さ)である。また、液体流路50Aが蒸発部EPに差し掛かる地点E1Aから蒸発部EPの重心Cまでの最短距離は、両矢印D1Aで示す距離である。長さL1A/距離D1Aは約20%である。したがって、液体流路50Aは第2液体流路である。なお、液体流路が蒸発部に差し掛かる地点とは、液体流路の幅方向の中央を示す線と蒸発部の境界線とが交わる地点である。 The length of the flow path in the evaporation section EP of the liquid flow path 50A is the end T1A of the liquid phase section 51 at the end of the liquid flow path 50A on the evaporation section EP side from the point E1A where the liquid flow path 50A approaches the evaporation section EP. Is the length up to (the length indicated by the double arrow L1A in FIG. 4). The shortest distance from the point E1A where the liquid flow path 50A approaches the evaporation section EP to the center of gravity C1 of the evaporation section EP is the distance indicated by the double - headed arrow D1A. The length L1A / distance D1A is about 20%. Therefore, the liquid flow path 50A is the second liquid flow path. The point where the liquid flow path reaches the evaporation part is a point where the line indicating the center in the width direction of the liquid flow path and the boundary line of the evaporation part intersect.
 液体流路50Cの蒸発部EP内における形状は、蒸発部EPの重心Cを通り、長さ方向Yに沿った方向に延びる線分に対して、液体流路50Aと線対称となっている。また、液体流路50Gおよび液体流路50Eの蒸発部EP内における形状は、蒸発部EPの重心Cを通り、幅方向Xに沿った方向に延びる線分に対して、それぞれ、液体流路50Aおよび液体流路50Cと線対称となっている。
 したがって、液体流路50C、50E、50Gに関して、蒸発部EP内における流路長および各液体流路が蒸発部EPに差し掛かる地点E1C、E1E、E1Gから蒸発部EPの重心Cまでの最短距離はいずれも、液体流路50Aと同様である。そのため、液体流路50C、50E、50Gはいずれも、第2液体流路である。
The shape of the liquid flow path 50C in the evaporation section EP is axisymmetric with the liquid flow path 50A with respect to a line segment extending in the direction along the length direction Y through the center of gravity C1 of the evaporation section EP. .. Further, the shapes of the liquid flow path 50G and the liquid flow path 50E in the evaporation section EP pass through the center of gravity C1 of the evaporation section EP and are liquid flow paths for the line segments extending in the width direction X, respectively . It is line-symmetrical with 50A and the liquid flow path 50C.
Therefore, with respect to the liquid flow paths 50C, 50E, 50G, the flow path length in the evaporation section EP and the shortest distance from the points E1C, E1E, E1G where each liquid flow path reaches the evaporation section EP to the center of gravity C1 of the evaporation section EP. Are the same as the liquid flow path 50A. Therefore, the liquid flow paths 50C, 50E, and 50G are all second liquid flow paths.
 液体流路50Bの蒸発部EP内における流路長は、液体流路50Bが蒸発部EPに差し掛かる地点E1Bから、液体流路50Bの蒸発部EP側の端部における液相部51の末端T1Bまでの長さ(図4中、両矢印L1Bで示す長さ)である。また、液体流路50Bが蒸発部EPに差し掛かる地点E1Bから蒸発部EPの重心Cまでの最短距離は、両矢印D1Bで示す距離である。長さL1B/距離D1Bは約75%である。したがって、液体流路50Bは第1液体流路である。 The length of the flow path in the evaporation section EP of the liquid flow path 50B is the end T1B of the liquid phase section 51 at the end of the liquid flow path 50B on the evaporation section EP side from the point E1B where the liquid flow path 50B approaches the evaporation section EP. (Length indicated by double arrow L1B in FIG. 4). Further, the shortest distance from the point E1B where the liquid flow path 50B approaches the evaporation unit EP to the center of gravity C1 of the evaporation unit EP is the distance indicated by the double - headed arrow D1B. The length L1B / distance D1B is about 75%. Therefore, the liquid flow path 50B is the first liquid flow path.
 液体流路50Fの蒸発部EP内における形状は、蒸発部EPの重心Cを通り、幅方向Xに沿った方向に延びる線分に対して、液体流路50Bと線対称となっている。したがって、液体流路50Fに関して、蒸発部EP内における流路長および液体流路50Fが蒸発部EPに差し掛かる地点E1Fから蒸発部EPの重心Cまでの最短距離は、液体流路50Bと同様である。そのため、液体流路50Fは第1液体流路である。 The shape of the liquid flow path 50F in the evaporation section EP is axisymmetric with the liquid flow path 50B with respect to a line segment extending in the direction along the width direction X through the center of gravity C1 of the evaporation section EP. Therefore, regarding the liquid flow path 50F, the flow path length in the evaporation section EP and the shortest distance from the point E1F where the liquid flow path 50F approaches the evaporation section EP to the center of gravity C1 of the evaporation section EP are the same as those of the liquid flow path 50B. Is. Therefore, the liquid flow path 50F is the first liquid flow path.
 液体流路50Dの蒸発部EP内における流路長は、液体流路50Dが蒸発部EPに差し掛かる地点E1Dから、液体流路50Dの蒸発部EP側の端部における液相部51の末端T1Dまでの長さ(図4中、両矢印L1Dで示す長さ)である。また、液体流路50Dが蒸発部EPに差し掛かる地点E1Dから蒸発部EPの重心Cまでの最短距離は、両矢印D1Dで示す長さである。長さL1D/距離D1Dは約28%となる。したがって、液体流路50Dは第2液体流路である。 The length of the flow path in the evaporation section EP of the liquid flow path 50D is the end T1D of the liquid phase section 51 at the end of the liquid flow path 50D on the evaporation section EP side from the point E1D where the liquid flow path 50D approaches the evaporation section EP. Is the length up to (the length indicated by the double arrow L1D in FIG. 4). Further, the shortest distance from the point E1D where the liquid flow path 50D approaches the evaporation section EP to the center of gravity C1 of the evaporation section EP is the length indicated by the double-headed arrow D1D. The length L1D / distance D1D is about 28%. Therefore, the liquid flow path 50D is the second liquid flow path.
 液体流路50Hの蒸発部EP内における形状は、蒸発部EPの重心Cを通り、長さ方向Yに沿った方向に延びる線分に対して、液体流路50Dと線対称となっている。したがって、液体流路50Hに関して、蒸発部EP内における流路長および液体流路50Hが蒸発部EPに差し掛かる地点E1Hから蒸発部EPの重心Cまでの最短距離は、液体流路50Dと同様である。そのため、液体流路50Hは第2液体流路である。 The shape of the liquid flow path 50H in the evaporation section EP is axisymmetric with the liquid flow path 50D with respect to a line segment extending in the direction along the length direction Y through the center of gravity C1 of the evaporation section EP. .. Therefore, regarding the liquid flow path 50H, the flow path length in the evaporation section EP and the shortest distance from the point E1H where the liquid flow path 50H approaches the evaporation section EP to the center of gravity C1 of the evaporation section EP are the same as those of the liquid flow path 50D. Is. Therefore, the liquid flow path 50H is the second liquid flow path.
 以上より、図4に示す蒸発部EPには、2本の第1液体流路(液体流路50B、液体流路50F)と、6本の第2液体流路(液体流路50A、50C、50D、50E、50G、50H)が存在する。また、蒸発部EP内の液体流路の面積の合計は、蒸発部EPの面積の46.6%となっている。 From the above, in the evaporation section EP shown in FIG. 4, two first liquid flow paths (liquid flow path 50B, liquid flow path 50F) and six second liquid flow paths ( liquid flow paths 50A, 50C, 50D, 50E, 50G, 50H) exist. The total area of the liquid flow path in the evaporation section EP is 46.6% of the area of the evaporation section EP.
 本発明の第1実施形態に係る放熱デバイスでは、液体流路の蒸発部側の端部が蒸発部内に位置しているため、蒸発部内まで液相の作動媒体を直接還流させて、ドライアウトの発生を抑制することができる。さらに、液体流路として第1液体流路と第2液体流路の両方を有し、かつ、厚さ方向からの平面視において、蒸発部内の液体流路の面積が、蒸発部の面積の15%以上である。このような状態であると、気相の作動媒体の循環と液相の作動媒体の循環のバランスがよく、高い熱輸送効率を発揮することができる。
 液体流路が第2液体流路を有していない場合には、第1液体流路によって蒸発部内の蒸気流路を塞いでしまいやすく、気相の作動媒体の循環効率が充分ではない。
 液体流路が第1液体流路を有していない場合、蒸発部の中央付近まで液体の作動媒体を還流させることができないため、液相の作動媒体の循環効率が充分ではない。
 厚さ方向からの平面視において、蒸発部内の液体流路の面積が、蒸発部の面積の15%未満であると、液相の作動媒体に対して充分な加熱を行うことができず、液相の作動媒体の循環効率が充分ではなくなる。
In the heat dissipation device according to the first embodiment of the present invention, since the end portion of the liquid flow path on the evaporation portion side is located in the evaporation portion, the working medium of the liquid phase is directly refluxed into the evaporation portion to dry out. The occurrence can be suppressed. Further, it has both a first liquid flow path and a second liquid flow path as the liquid flow path, and the area of the liquid flow path in the evaporation section is 15 of the area of the evaporation section in a plan view from the thickness direction. % Or more. In such a state, the circulation of the working medium of the gas phase and the circulation of the working medium of the liquid phase are well-balanced, and high heat transfer efficiency can be exhibited.
When the liquid flow path does not have the second liquid flow path, the steam flow path in the evaporation portion is likely to be blocked by the first liquid flow path, and the circulation efficiency of the working medium of the gas phase is not sufficient.
When the liquid flow path does not have the first liquid flow path, the liquid working medium cannot be refluxed to the vicinity of the center of the evaporation portion, so that the circulation efficiency of the working medium of the liquid phase is not sufficient.
When the area of the liquid flow path in the evaporating part is less than 15% of the area of the evaporating part in a plan view from the thickness direction, sufficient heating cannot be performed on the working medium of the liquid phase, and the liquid cannot be sufficiently heated. The circulation efficiency of the working medium of the phase becomes insufficient.
 本発明の放熱デバイスにおいて、第2液体流路の蒸発部側の端部は、第1液体流路と接続されていないことが好ましい。
 第2液体流路の蒸発部側の端部が第1液体流路と接続されていると、蒸気部内において蒸気の通り道を塞ぎ、作動媒体が蒸発部から凝縮部に移動することを妨げてしまう。
In the heat dissipation device of the present invention, it is preferable that the end portion of the second liquid flow path on the evaporation portion side is not connected to the first liquid flow path.
If the end of the second liquid flow path on the evaporation part side is connected to the first liquid flow path, the steam passage is blocked in the steam part and the working medium is prevented from moving from the evaporation part to the condensing part. ..
 蒸発部内における蒸気流路の最小幅は、500μm以上であることが好ましい。蒸発部内における蒸気流路の最小幅が上記範囲であると、蒸気流路中を気相の作動媒体が通過しやすくなり、気相の作動媒体の循環効率が向上する。 The minimum width of the steam flow path in the evaporation part is preferably 500 μm or more. When the minimum width of the steam flow path in the evaporation portion is within the above range, the working medium of the gas phase easily passes through the working medium of the gas phase, and the circulation efficiency of the working medium of the gas phase is improved.
 液体流路が有する第1液体流路の数は特に限定されず、1本であってもよく、複数本であってもよい。
 液体流路が有する第1液体流路の数は、6本以下であることが好ましく、4本以下であることがさらに好ましい。
The number of the first liquid flow paths included in the liquid flow paths is not particularly limited, and may be one or a plurality.
The number of the first liquid flow paths included in the liquid flow paths is preferably 6 or less, and more preferably 4 or less.
 液体流路が有する第2液体流路の数は特に限定されず、1本であってもよく、複数本であってもよいが、複数本であることが好ましい。
 液体流路が、第2液体流路を複数本有していると、蒸発部内に占める液体流路の割合をそれほど高めることなく、液相の作動媒体の循環効率を向上させることができる。
 液体流路が有する第2液体流路の数は、6本以下であることが好ましく、4本以下であることがさらに好ましい。
The number of the second liquid flow paths included in the liquid flow path is not particularly limited, and may be one or a plurality, but a plurality of lines is preferable.
When the liquid flow path has a plurality of second liquid flow paths, the circulation efficiency of the working medium of the liquid phase can be improved without increasing the ratio of the liquid flow paths in the evaporation portion so much.
The number of the second liquid flow paths included in the liquid flow paths is preferably 6 or less, and more preferably 4 or less.
 続いて、本発明の他の実施形態に係る電子機器および熱拡散デバイスについて説明する。ただし、本発明の他の実施形態に係る電子機器において、熱拡散デバイス以外の構成は本発明の第1実施形態に係る電子機器と同様である。したがって、以降では、本発明の他の実施形態に係る熱拡散デバイスを説明する。 Subsequently, an electronic device and a heat diffusion device according to another embodiment of the present invention will be described. However, in the electronic device according to the other embodiment of the present invention, the configuration other than the heat diffusion device is the same as the electronic device according to the first embodiment of the present invention. Therefore, the heat diffusion device according to another embodiment of the present invention will be described below.
[第2実施形態] [Second Embodiment]
 本発明の第2実施形態に係る熱拡散デバイスにおいては、液体流路は、複数本の第1液体流路を有している。さらに、複数の第1液体流路の蒸発部側の端部同士が、蒸発部の重心で接続され、第1液体流路同士が連通している。 In the heat diffusion device according to the second embodiment of the present invention, the liquid flow path has a plurality of first liquid flow paths. Further, the ends of the plurality of first liquid flow paths on the evaporation portion side are connected to each other by the center of gravity of the evaporation portion, and the first liquid flow paths communicate with each other.
 図5は、本発明の第2実施形態に係る熱拡散デバイスの一例の蒸発部近傍の部分拡大断面図である。図5に示す熱拡散デバイスは、図4に示す熱拡散デバイスから、液体流路50B、50D、50F、50Hの形状を変形させた変形例でもある。
 図5に示すように、蒸発部EP内には、液体流路50A、50B’、50C、50D’、50E、50F’、50G、50H’が存在する。液体流路50A、50B’、50C、50D’、50E、50F’、50G、50H’はいずれも、蒸発部EP側の端部が、蒸発部EP内に位置している。
 液体流路50B’、50D’、50F’、50H’はいずれも、液体流路の蒸発部EP側の端部が蒸発部EPの重心Cまで到達している。さらに液体流路50B’、50D’、50F’、50H’は、液体流路同士が連通している。すなわち、液体流路50B’、50D’、50F’、50H’の蒸発部EP側の端部における液相部の各末端T1B’、T1D’、T1F’、T1H’は、蒸発部EPの重心Cで重なっている。
FIG. 5 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the second embodiment of the present invention. The heat diffusion device shown in FIG. 5 is also a modified example in which the shapes of the liquid flow paths 50B, 50D, 50F, and 50H are deformed from the heat diffusion device shown in FIG.
As shown in FIG. 5, liquid flow paths 50A, 50B', 50C, 50D', 50E, 50F', 50G, 50H'are present in the evaporation unit EP. In each of the liquid flow paths 50A, 50B', 50C, 50D', 50E, 50F', 50G, and 50H', the end portion on the evaporation portion EP side is located in the evaporation portion EP.
In each of the liquid flow paths 50B', 50D', 50F', and 50H', the end of the liquid flow path on the evaporation portion EP side reaches the center of gravity C1 of the evaporation portion EP. Further, in the liquid flow paths 50B', 50D', 50F', and 50H', the liquid flow paths communicate with each other. That is, each end T1B', T1D', T1F', T1H'of the liquid phase portion at the end of the liquid flow path 50B', 50D', 50F', 50H'on the evaporation portion EP side is the center of gravity C of the evaporation portion EP. It overlaps with 1 .
 液体流路50B’の蒸発部EP内における流路長は、液体流路50B’が蒸発部EPに差し掛かる地点E1B’から、液体流路50B’の蒸発部EP側の端部における液相部51の末端T1B’までの長さ(図5中、両矢印L1B’で示す長さ)である。また、液体流路50B’が蒸発部EPに差し掛かる地点E1B’から蒸発部EPの重心Cまでの最短距離は、両矢印D1B’で示す距離である。液体流路50B’においては、蒸発部EP側の端部における液相部51の末端T1B’が蒸発部EPの重心Cと重なっているから、長さL1B’と距離D1B’は等しく、長さL1B’/距離D1B’は100%である。したがって、液体流路50B’は第1液体流路である。
 蒸発部EPに差し掛かる地点がそれぞれ地点E1D’、E1F’、E1H’である液体流路50D’、50F’、50H’に関しても、蒸発部EP側の端部における液相部51の末端T1D’、T1F’、T1H’が蒸発部EPの重心Cと重なっている。したがって、液体流路50D’、50F’、50H’も液体流路50B’と同様に第1液体流路である。
The length of the flow path in the evaporation section EP of the liquid flow path 50B'is the liquid phase section at the end of the liquid flow path 50B'on the evaporation section EP side from the point E1B'where the liquid flow path 50B'appears to the evaporation section EP. The length up to the end T1B'of 51 (the length indicated by the double arrow L1B' in FIG. 5). Further, the shortest distance from the point E1B'where the liquid flow path 50B'appears to the evaporation part EP to the center of gravity C1 of the evaporation part EP is the distance indicated by the double-headed arrow D1B'. In the liquid flow path 50B', since the end T1B'of the liquid phase portion 51 at the end on the EP side of the evaporation portion overlaps with the center of gravity C1 of the evaporation portion EP, the length L1B'and the distance D1B' are equal and the length. The L1B'/ distance D1B' is 100%. Therefore, the liquid flow path 50B'is the first liquid flow path.
Regarding the liquid flow paths 50D', 50F', and 50H'where the points approaching the evaporation part EP are the points E1D', E1F', and E1H', respectively, the end T1D'of the liquid phase part 51 at the end on the evaporation part EP side. , T1F'and T1H ' overlap with the center of gravity C1 of the evaporation part EP. Therefore, the liquid flow paths 50D', 50F', and 50H'are also the first liquid flow paths like the liquid flow path 50B'.
 液体流路50A、50C、50E、50Gは図4に示す熱拡散デバイスと同様である。したがって、液体流路50A、50C、50E、50Gはいずれも、第2液体流路である。 The liquid flow paths 50A, 50C, 50E, and 50G are the same as the heat diffusion device shown in FIG. Therefore, the liquid flow paths 50A, 50C, 50E, and 50G are all second liquid flow paths.
 以上より、図5に示す蒸発部EPには、4本の第1液体流路(液体流路50B’、50D’、50F’、50H’)と、4本の第2液体流路(液体流路50A、50C、50E、50G)が存在する。また、蒸発部EP内の液体流路の面積の合計は、蒸発部EPの面積の55.7%となっている。 From the above, in the evaporation section EP shown in FIG. 5, four first liquid flow paths (liquid flow paths 50B', 50D', 50F', 50H') and four second liquid flow paths (liquid flow) Roads 50A, 50C, 50E, 50G) exist. The total area of the liquid flow path in the evaporation section EP is 55.7% of the area of the evaporation section EP.
 本明細書において、蒸発部に差し掛かる地点をn箇所有する液体流路については、n本の液体流路が所定の位置で互いに接続されていると考える。液体流路を分割する手順は、以下の通りである。液体流路を分割することで、蒸発部内に配置される液体流路の本数、および、各液体流路の蒸発部側の端部が決定される。
 (1)液体流路のうち、蒸発部の重心に最も近い位置を基準点と定める。
 (2)定められた基準点を基準として、液体流路を分割する。
In the present specification, with respect to the liquid flow paths having n points approaching the evaporation part, it is considered that the n liquid flow paths are connected to each other at predetermined positions. The procedure for dividing the liquid flow path is as follows. By dividing the liquid flow path, the number of liquid flow paths arranged in the evaporation section and the end portion of each liquid flow path on the evaporation section side are determined.
(1) Of the liquid flow path, the position closest to the center of gravity of the evaporation part is set as the reference point.
(2) Divide the liquid flow path with reference to the specified reference point.
 手順(1)
 まず、蒸発部に差し掛かる地点をn箇所有する液体流路のうち、蒸発部の重心に最も近い地点を基準点と定める。
 蒸発部の重心に最も近い地点が液体流路上に2箇所以上ある場合、該基準点によって分割される液体流路の数が多い地点を選択する。一方、基準点によって分割される液体流路の数が同じである場合には、各液体流路について、液体流路が蒸発部に差し掛かる地点から蒸発部の重心までの距離に対する、液体流路が蒸発部に差し掛かる地点から液体流路の蒸発部側の端部における液相部の末端までの距離の割合を求め、この割合の合計値が最も高くなる地点を選択する。
Procedure (1)
First, among the liquid flow paths having n points approaching the evaporation part, the point closest to the center of gravity of the evaporation part is set as a reference point.
When there are two or more points on the liquid flow path closest to the center of gravity of the evaporation unit, a point having a large number of liquid flow paths divided by the reference point is selected. On the other hand, when the number of liquid flow paths divided by the reference point is the same, for each liquid flow path, the liquid flow path with respect to the distance from the point where the liquid flow path reaches the evaporation part to the center of gravity of the evaporation part. Find the ratio of the distance from the point where the liquid reaches the evaporation part to the end of the liquid phase part at the end of the liquid flow path on the evaporation part side, and select the point where the total value of this ratio is the highest.
 手順(2)
 続いて、定められた基準点によって、液体流路を分割する。
 基準点の位置および液体流路の形状によって、分割される液体流路の数は異なる。例えば、直線状の液体流路上に基準点が位置する場合は、該基準点によって液体流路を2分割する。また、Y字形状の液体流路の分岐点上に基準点が位置する場合、該基準点によって液体流路を3分割する。
Procedure (2)
Subsequently, the liquid flow path is divided by a defined reference point.
The number of liquid channels to be divided varies depending on the position of the reference point and the shape of the liquid channel. For example, when the reference point is located on the linear liquid flow path, the liquid flow path is divided into two by the reference point. When the reference point is located on the branch point of the Y-shaped liquid flow path, the liquid flow path is divided into three by the reference point.
 上記手順を、図5に示す熱拡散デバイスに当てはめて説明する。
 図5に示す熱拡散デバイスは、蒸発部EP内に十字形状の液体流路を有している。この十字形状の液体流路は、蒸発部EP内に、蒸発部EPに差し掛かる地点を4箇所(地点E1B’、E1D’、E1F’、E1H’)有している。この十字形状の液体流路のうち、蒸発部EPの重心Cに最も近い地点は、蒸発部EPの重心Cである。従って、蒸発部の重心Cが、液体流路を分割する基準点となる[手順(1)]。
 このように定められた蒸発部EPの重心Cを基準点として、十字形状の液体流路が、4本の液体流路(液体流路50B’、50D’、50F’、50H’)に分割される[手順(2)]。
 その結果、図5に示す十字形状の液体流路では、4本の液体流路(液体流路50B’、50D’、50F’、50H’)の蒸発部EP側の端部における液相部51の末端(それぞれT1B’、T1D’、T1F’、T1H’)同士が、蒸発部EPの重心Cにおいて、接続し、連通している、と考える。
The above procedure will be described by applying it to the heat diffusion device shown in FIG.
The heat diffusion device shown in FIG. 5 has a cross-shaped liquid flow path in the evaporation unit EP. This cross-shaped liquid flow path has four points (points E1B', E1D', E1F', E1H') approaching the evaporation part EP in the evaporation part EP. In this cross-shaped liquid flow path, the point closest to the center of gravity C 1 of the evaporation section EP is the center of gravity C 1 of the evaporation section EP. Therefore, the center of gravity C1 of the evaporation portion serves as a reference point for dividing the liquid flow path [procedure ( 1 )].
The cross-shaped liquid flow path is divided into four liquid flow paths (liquid flow paths 50B', 50D', 50F', 50H') with the center of gravity C 1 of the evaporation portion EP defined in this way as a reference point. [Procedure (2)].
As a result, in the cross-shaped liquid flow path shown in FIG. 5, the liquid phase portion 51 at the end of the four liquid flow paths (liquid flow paths 50B', 50D', 50F', 50H') on the EP side of the evaporation part. It is considered that the ends of the above (T1B', T1D', T1F', T1H ', respectively) are connected and communicate with each other at the center of gravity C1 of the evaporation unit EP.
 上記手順(2)によって分割された各液体流路は、液体流路が蒸発部に差し掛かる地点を2箇所以上有していてもよい。この場合、以下の手順(3)および手順(4)によって液体流路をさらに分割する。 Each liquid flow path divided by the above procedure (2) may have two or more points where the liquid flow path approaches the evaporation portion. In this case, the liquid flow path is further divided by the following procedure (3) and procedure (4).
 手順(3)
 手順(2)によって分割された各液体流路が、液体流路が蒸発部に差し掛かる地点を2箇所以上有している場合、流路長が最も長くなるように液体流路を分割する。
 具体的には、液体流路が蒸発部に差し掛かる各地点から基準点までの液体流路に沿った長さ(流路長)を比較して、流路長が最も長い液体流路を親流路(1次流路)とする。残った液体流路については、親流路からの分岐点において、親流路から分岐する子流路(2次流路)とする。子流路は、液体流路の蒸発部側の端部が、親流路からの分岐点において親流路に接続していると考える。
Procedure (3)
When each liquid flow path divided by the procedure (2) has two or more points where the liquid flow path approaches the evaporation portion, the liquid flow path is divided so that the flow path length becomes the longest.
Specifically, the length (flow path length) along the liquid flow path from each point where the liquid flow path reaches the evaporation part to the reference point is compared, and the liquid flow path having the longest flow path length is the parent. It is a flow path (primary flow path). The remaining liquid flow path is a child flow path (secondary flow path) that branches from the parent flow path at the branch point from the parent flow path. In the child flow path, it is considered that the end portion of the liquid flow path on the evaporation portion side is connected to the parent flow path at the branch point from the parent flow path.
 手順(4)
 手順(3)の操作を、液体流路が分割できなくなるまで繰り返す。
 例えば、手順(3)において残った子流路が、蒸発部に差し掛かる地点を2箇所有する場合、以下の手順で子流路から孫流路を分割する。
 流路長が最も長い液体流路が子流路(2次流路)とする。残った液体流路については、子流路からの分岐点において子流路から分岐する孫流路(3次流路)とする。孫流路は、液体流路の蒸発部側の端部が、子流路からの分岐点において子流路に接続していると考える。
Procedure (4)
The operation of step (3) is repeated until the liquid flow path cannot be divided.
For example, when the child flow path remaining in the procedure (3) has two points approaching the evaporation portion, the child flow path is divided from the child flow path by the following procedure.
The liquid flow path having the longest flow path length is referred to as a child flow path (secondary flow path). The remaining liquid flow path is a grandchild flow path (tertiary flow path) that branches from the child flow path at the branch point from the child flow path. It is considered that the end of the liquid flow path on the evaporation portion side of the grandchild flow path is connected to the child flow path at the branch point from the child flow path.
 上記手順(1)および(2)では、蒸発部内において、基準点を通る液体流路であり、かつ、基準点を一方の端部とみたときに、他方の端部が蒸発部内に位置する液体流路を考慮していない。
 このような液体流路は、手順(1)および(2)で分割された液体流路のうち、蒸発部内における流路長が最も長い液体流路の上流部分であるとみなす。また、このような液体流路が2本以上存在する場合、上流部分の流路長と、手順(1)および(2)で分割された液体流路の蒸発部内における流路長(下流部分の流路長)の合計が、最も長くなる組み合わせとする。
In the above procedures (1) and (2), the liquid is a liquid flow path that passes through the reference point in the evaporation section, and when the reference point is regarded as one end, the other end is located in the evaporation section. The flow path is not considered.
Such a liquid flow path is regarded as the upstream portion of the liquid flow path having the longest flow path length in the evaporation section among the liquid flow paths divided in the procedures (1) and (2). Further, when there are two or more such liquid flow paths, the flow path length of the upstream portion and the flow path length (downstream portion of the downstream portion) in the evaporation portion of the liquid flow path divided by the procedures (1) and (2). The combination in which the total of the flow path lengths) is the longest.
[第3実施形態]
 本発明の第3実施形態に係る熱拡散デバイスにおいては、液体流路は、第3液体流路をさらに有している。
 第3液体流路は、液体流路の蒸発部側の端部が蒸発部の外側に位置する液体流路である。
[Third Embodiment]
In the heat diffusion device according to the third embodiment of the present invention, the liquid flow path further has a third liquid flow path.
The third liquid flow path is a liquid flow path in which the end portion of the liquid flow path on the evaporation portion side is located outside the evaporation portion.
 図6は、本発明の第3実施形態に係る熱拡散デバイスの一例の蒸発部近傍の部分拡大断面図である。また、図6は、図4に示した熱拡散デバイスの液体流路50Bの形状を変更した変形例でもある。
 図6に示すように、液体流路50B’’は、蒸発部EPに差し掛かっていない。すなわち、液体流路50B’’の蒸発部EP側の端部が、蒸発部の外側に位置している。
 液体流路のうち、蒸発部EP側の端部が蒸発部の外側に位置している液体流路50B’’は、第3液体流路である。
FIG. 6 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the third embodiment of the present invention. Further, FIG. 6 is also a modified example in which the shape of the liquid flow path 50B of the heat diffusion device shown in FIG. 4 is changed.
As shown in FIG. 6, the liquid flow path 50B'' does not reach the evaporation section EP. That is, the end of the liquid flow path 50B'' on the EP side of the evaporation portion is located outside the evaporation portion.
Of the liquid flow paths, the liquid flow path 50B'' whose end on the EP side of the evaporation portion is located outside the evaporation portion is the third liquid flow path.
 以上より、図6に示す蒸発部EPには、1本の第1液体流路(液体流路50F)と、6本の第2液体流路(液体流路50A、50C、50D、50E、50G、50H)が存在する。また、蒸発部EP内の液体流路の面積の合計は、蒸発部EPの面積の36.4%となっている。 Based on the above, the evaporation section EP shown in FIG. 6 has one first liquid flow path (liquid flow path 50F) and six second liquid flow paths ( liquid flow paths 50A, 50C, 50D, 50E, 50G). , 50H) exists. The total area of the liquid flow path in the evaporation section EP is 36.4% of the area of the evaporation section EP.
 筐体の形状並びに蒸発部の形状および位置によっては、液相の作動媒体の循環効率を高める目的で第1液体流路または第2液体流路を配置しようとすると、蒸気流路を塞いでしまい、蒸発部における気相の作動媒体の循環効率を低下させてしまう場合がある。これに対して、第3液体流路は蒸発部に差し掛からない液体流路であるため、気相の作動媒体の循環効率を低下させることなく、蒸発部における液相の作動媒体の循環効率を高めることができる。 Depending on the shape of the housing and the shape and position of the evaporation part, if the first liquid flow path or the second liquid flow path is arranged for the purpose of increasing the circulation efficiency of the working medium of the liquid phase, the steam flow path will be blocked. , The circulation efficiency of the working medium of the gas phase in the evaporation part may be lowered. On the other hand, since the third liquid flow path is a liquid flow path that does not reach the evaporation part, the circulation efficiency of the working medium of the liquid phase in the evaporation part is improved without lowering the circulation efficiency of the working medium of the gas phase. Can be enhanced.
[第4実施形態]
 本発明の第4実施形態に係る熱拡散デバイスは、蒸発部内に第4液体流路をさらに有している。第4液体流路は、蒸発部内における流路長が、液体流路が蒸発部に差し掛かる地点から蒸発部の重心までの最短距離の0%を超えて10%未満となる液体流路である。
[Fourth Embodiment]
The heat diffusion device according to the fourth embodiment of the present invention further has a fourth liquid flow path in the evaporation unit. The fourth liquid flow path is a liquid flow path in which the flow path length in the evaporation section exceeds 0% of the shortest distance from the point where the liquid flow path approaches the evaporation section to the center of gravity of the evaporation section and becomes less than 10%. ..
 図7は、本発明の第4実施形態に係る熱拡散デバイスの一例の蒸発部近傍の部分拡大断面図である。また、図7は、図4に示した熱拡散デバイスの液体流路50Bの形状を変更した変形例でもある。 FIG. 7 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the fourth embodiment of the present invention. Further, FIG. 7 is also a modified example in which the shape of the liquid flow path 50B of the heat diffusion device shown in FIG. 4 is changed.
 図7に示すように、液体流路50B’’’は、蒸発部EPに差し掛かっている。液体流路50’’’の蒸発部EP内における流路長は、液体流路50B’’’が蒸発部EPに差し掛かる地点E1B’’’から、液体流路50B’’’の蒸発部EP側の端部における液相部51の末端T1B’’’までの長さ(図7中、両矢印L1B’’’で示す長さ)である。また、液体流路50B’’’が蒸発部EPに差し掛かる地点E1B’’’から蒸発部EPの重心Cまでの最短距離はD1B’’’である。長さL1B’’’/距離D1B’’’は約9%である。したがって、液体流路50B’’’は第4液体流路である。 As shown in FIG. 7, the liquid flow path 50B'''is approaching the evaporation portion EP. The length of the flow path in the evaporation section EP of the liquid flow path 50'''' is the evaporation section EP of the liquid flow path 50B'''' from the point E1B'''' where the liquid flow path 50B'''' approaches the evaporation section EP. It is the length to the end T1B'''' of the liquid phase portion 51 at the side end portion (the length indicated by the double arrow L1B'' in FIG. 7). Further, the shortest distance from the point E1B'''' where the liquid flow path 50B'''' reaches the evaporation section EP to the center of gravity C1 of the evaporation section EP is D1B''''. The length L1B'''/ distance D1B'''' is about 9%. Therefore, the liquid flow path 50B'''' is the fourth liquid flow path.
 以上より、図7に示す蒸発部EPには、1本の第1液体流路(液体流路50F)と、6本の第2液体流路(液体流路50A、50C、50D、50E、50G、50H)と1本の第4液体流路(液体流路50B’’’)が存在する。また、蒸発部EP内の液体流路の面積の合計は、蒸発部EPの面積の37.5%となっている。 Based on the above, the evaporation section EP shown in FIG. 7 has one first liquid flow path (liquid flow path 50F) and six second liquid flow paths ( liquid flow paths 50A, 50C, 50D, 50E, 50G). , 50H) and one fourth liquid flow path (liquid flow path 50B'''). The total area of the liquid flow path in the evaporation section EP is 37.5% of the area of the evaporation section EP.
 筐体の形状並びに蒸発部の形状および位置によっては、蒸発部内に配置される第1液体流路および第2液体流路の位置および本数を調整しても、蒸発部における液体の作動媒体の循環効率と気体の作動媒体の循環効率のバランスを取れない場合がある。そのような場合であっても、第4液体流路を用いると、液体の作動媒体の循環効率と気体の作動媒体の循環効率のバランスを調整しやすくなる。 Depending on the shape of the housing and the shape and position of the evaporating part, even if the positions and numbers of the first liquid flow path and the second liquid flow path arranged in the evaporating part are adjusted, the circulation of the liquid working medium in the evaporating part is performed. It may not be possible to balance efficiency with the circulation efficiency of the working medium of the gas. Even in such a case, if the fourth liquid flow path is used, it becomes easy to adjust the balance between the circulation efficiency of the liquid working medium and the circulation efficiency of the gas working medium.
[第5実施形態]
 図8は、本発明の第5実施形態に係る熱拡散デバイスの一例の蒸発部近傍の部分拡大断面図である。
 図8に示すように、蒸発部EP内には、液体流路50I、50J、50K、50L、50M、50Nが存在している。
[Fifth Embodiment]
FIG. 8 is a partially enlarged cross-sectional view of the vicinity of the evaporation portion of an example of the heat diffusion device according to the fifth embodiment of the present invention.
As shown in FIG. 8, liquid flow paths 50I, 50J, 50K, 50L, 50M, and 50N exist in the evaporation unit EP.
 液体流路50Iの蒸発部EP内における流路長は、液体流路50Iが蒸発部EPに差し掛かる地点E2Iから、液体流路50Iの蒸発部EP側の端部における液相部51の末端T2Iまでの長さ(図8中、両矢印L2Iで示す長さ)である。また、液体流路50Iが蒸発部EPに差し掛かる地点E2Iから蒸発部EPの重心Cまでの最短距離は、両矢印D2Iで示す距離である。長さL2I/距離D2Iは約29%である。したがって、液体流路50Iは第2液体流路である。 The length of the flow path in the evaporation section EP of the liquid flow path 50I is the end T2I of the liquid phase section 51 at the end of the liquid flow path 50I on the evaporation section EP side from the point E2I where the liquid flow path 50I approaches the evaporation section EP. (Length indicated by double arrow L2I in FIG. 8). Further, the shortest distance from the point E2I where the liquid flow path 50I approaches the evaporation part EP to the center of gravity C2 of the evaporation part EP is the distance indicated by the double-headed arrow D2I. The length L2I / distance D2I is about 29%. Therefore, the liquid flow path 50I is the second liquid flow path.
 蒸発部EP内における液体流路50Kの形状は、蒸発部EPの重心Cを通り、長さ方向Yに沿った方向に延びる線分に対して、液体流路50Iと線対称となっている。したがって、液体流路50Kに関して、蒸発部EP内における流路長および液体流路50Kが蒸発部EPに差し掛かる地点から蒸発部の重心Cまでの最短距離は、液体流路50Iと同様である。そのため、液体流路50Kは第2液体流路である。 The shape of the liquid flow path 50K in the evaporation section EP is axisymmetric with the liquid flow path 50I with respect to a line segment extending in the direction along the length direction Y through the center of gravity C2 of the evaporation section EP. .. Therefore, with respect to the liquid flow path 50K, the flow path length in the evaporation section EP and the shortest distance from the point where the liquid flow path 50K approaches the evaporation section EP to the center of gravity C2 of the evaporation section are the same as those of the liquid flow path 50I. .. Therefore, the liquid flow path 50K is the second liquid flow path.
 液体流路50Jの蒸発部EP内における流路長は、液体流路50Jが蒸発部EPに差し掛かる地点E2Jから、液体流路50Jの蒸発部EP側の端部における液相部51の末端T2Jまでの長さ(図8中、両矢印L2Jで示す長さ)である。また、液体流路50Jが蒸発部EPに差し掛かる地点E2Jから蒸発部EPの重心Cまでの最短距離は、両矢印D2Jで示す距離である。ここで、長さL2J/D2Jは約9%である。したがって、液体流路50Jは第4液体流路である。 The length of the flow path in the evaporation section EP of the liquid flow path 50J is the end T2J of the liquid phase section 51 at the end of the liquid flow path 50J on the evaporation section EP side from the point E2J where the liquid flow path 50J approaches the evaporation section EP. (Length indicated by double arrow L2J in FIG. 8). The shortest distance from the point E2J where the liquid flow path 50J approaches the evaporation section EP to the center of gravity C2 of the evaporation section EP is the distance indicated by the double-headed arrow D2J. Here, the length L2J / D2J is about 9%. Therefore, the liquid flow path 50J is the fourth liquid flow path.
 液体流路50Lの蒸発部EP内における流路長は、液体流路50Lが蒸発部EPに差し掛かる地点E2Lから、液体流路50Lの蒸発部EP側の端部における液相部51の末端T2Lまでの長さL2L(図8中、両矢印L2L1で示される長さと、両矢印L2L2で示される長さの合計)である。また、液体流路50Lが蒸発部EPに差し掛かる地点E2Lから蒸発部EPの重心Cまでの最短距離は、両矢印D2Lで示す距離である。ここで、長さL2L/距離D2Lは約110%となる。したがって、液体流路50Lは第1液体流路である。 The length of the flow path in the evaporation section EP of the liquid flow path 50L is the end T2L of the liquid phase section 51 at the end of the liquid flow path 50L on the evaporation section EP side from the point E2L where the liquid flow path 50L approaches the evaporation section EP. Is the length up to L2L (in FIG. 8, the sum of the length indicated by the double arrow L2L1 and the length indicated by the double arrow L2L2). Further, the shortest distance from the point E2L where the liquid flow path 50L approaches the evaporation unit EP to the center of gravity C2 of the evaporation unit EP is the distance indicated by the double-headed arrow D2L. Here, the length L2L / distance D2L is about 110%. Therefore, the liquid flow path 50L is the first liquid flow path.
 蒸発部EP内における液体流路50Nの形状は、蒸発部EPの重心Cを通り、長さ方向Yに沿った方向に延びる線分に対して、液体流路50Lと線対称となっている。したがって、液体流路50Nに関して、蒸発部EP内における流路長および液体流路50Nが蒸発部に差し掛かる地点から蒸発部の重心Cまでの最短距離は、液体流路50Lと同様である。そのため、液体流路50Nは第1液体流路である。 The shape of the liquid flow path 50N in the evaporation section EP is axisymmetric with the liquid flow path 50L with respect to a line segment extending in the direction along the length direction Y through the center of gravity C2 of the evaporation section EP. .. Therefore, regarding the liquid flow path 50N, the flow path length in the evaporation section EP and the shortest distance from the point where the liquid flow path 50N approaches the evaporation section to the center of gravity C2 of the evaporation section are the same as those of the liquid flow path 50L. Therefore, the liquid flow path 50N is the first liquid flow path.
 液体流路50Mの蒸発部EP内における流路長は、液体流路50Mが蒸発部EPに差し掛かる地点E2Mから、液体流路50Mの蒸発部EP側の端部における液相部51の末端T2Mまでの長さ(図8中、両矢印L2Mで示される長さ)である。また、液体流路50Mが蒸発部EPに差し掛かる地点E2Mから蒸発部EPの重心Cまでの最短距離は、両矢印D2Mで示す長さである。長さL2M/距離D2Mは約29%となる。したがって、液体流路50Mは第2液体流路である。 The length of the flow path in the evaporation section EP of the liquid flow path 50M is the end T2M of the liquid phase section 51 at the end of the liquid flow path 50M on the evaporation section EP side from the point E2M where the liquid flow path 50M approaches the evaporation section EP. Is the length up to (the length indicated by the double arrow L2M in FIG. 8). Further, the shortest distance from the point E2M where the liquid flow path 50M approaches the evaporation unit EP to the center of gravity C2 of the evaporation unit EP is the length indicated by the double-headed arrow D2M. The length L2M / distance D2M is about 29%. Therefore, the liquid flow path 50M is the second liquid flow path.
 以上より、図8に示す蒸発部EPには、2本の第1液体流路(液体流路50L、50N)と、3本の第2液体流路(液体流路50I、50K、50M)と、1本の第4液体流路(液体流路50J)が存在する。
 また、蒸発部EP内の液体流路の面積の合計は、蒸発部EPの面積の53.3%である。
From the above, the evaporation section EP shown in FIG. 8 includes two first liquid flow paths ( liquid flow paths 50L, 50N) and three second liquid flow paths ( liquid flow paths 50I, 50K, 50M). There is one fourth liquid flow path (liquid flow path 50J).
The total area of the liquid flow path in the evaporation section EP is 53.3% of the area of the evaporation section EP.
 上述したように、本発明の熱拡散デバイスでは、第1液体流路の蒸発部内における流路長は、液体流路が蒸発部内に差し掛かる地点から蒸発部の重心までの最短距離の100%を超えていてもよい。 As described above, in the heat diffusion device of the present invention, the flow path length in the evaporation section of the first liquid flow path is 100% of the shortest distance from the point where the liquid flow path approaches the evaporation section to the center of gravity of the evaporation section. It may be exceeded.
[第6実施形態]
 図9は、本発明の第6実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。
[Sixth Embodiment]
FIG. 9 is a cross-sectional view schematically showing an example of the heat diffusion device according to the sixth embodiment of the present invention.
 図9に示す熱拡散デバイス1Aでは、図2に示す熱拡散デバイス1と異なり、液相部51の凝縮部CP側の端部が互いに接続されていない。 In the heat diffusion device 1A shown in FIG. 9, unlike the heat diffusion device 1 shown in FIG. 2, the ends of the liquid phase portion 51 on the CP side of the condensed portion are not connected to each other.
 すなわち、本発明の熱拡散デバイスでは、液相部の凝縮部側の端部は互いに接続されていなくてもよい。また、液相部の凝縮部側の端部は、毛細管構造体で閉じられていなくてもよい。 That is, in the heat diffusion device of the present invention, the ends of the liquid phase portion on the condensed portion side do not have to be connected to each other. Further, the end portion of the liquid phase portion on the condensed portion side may not be closed by the capillary structure.
[第7実施形態]
 本発明の第7実施形態では、筐体は、複数の蒸発部を有する。
[7th Embodiment]
In the seventh embodiment of the present invention, the housing has a plurality of evaporation parts.
 図10は、本発明の第7実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。 FIG. 10 is a cross-sectional view schematically showing an example of a heat diffusion device according to a seventh embodiment of the present invention.
 図10に示す熱拡散デバイス1Bでは、筐体10には、複数の蒸発部EPおよびEPと凝縮部CPとが設定されている。蒸発部の数、配置、サイズは特に限定されない。
 蒸発部EPおよび蒸発部EPの少なくとも一方において、蒸発部内の液体流路の面積の合計が、蒸発部の面積の15%以上であり、かつ、該蒸発部が、第1液体流路と第2液体流路を有していればよい。熱拡散デバイス1Bでは、蒸発部EPが上記条件を満たしている。
In the heat diffusion device 1B shown in FIG. 10, a plurality of evaporation units EP 1 and EP 2 and a condensation unit CP are set in the housing 10. The number, arrangement, and size of the evaporated parts are not particularly limited.
In at least one of the evaporation section EP 1 and the evaporation section EP 2 , the total area of the liquid flow paths in the evaporation section is 15% or more of the area of the evaporation section, and the evaporation section is the first liquid flow path. It suffices to have a second liquid flow path. In the heat diffusion device 1B, the evaporation unit EP 1 satisfies the above conditions.
 すなわち、本発明の熱拡散デバイスでは、筐体が複数の蒸発部を備えていてもよい。 That is, in the heat diffusion device of the present invention, the housing may include a plurality of evaporation units.
[第8実施形態]
 本発明の第8実施形態では、筐体の平面形状が第1実施形態~第7実施形態と異なり、筐体の平面形状に沿った蒸気流路および液体流路が形成されている。
[Eighth Embodiment]
In the eighth embodiment of the present invention, the planar shape of the housing is different from that of the first to seventh embodiments, and the vapor flow path and the liquid flow path are formed along the planar shape of the housing.
 図11は、本発明の第8実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。 FIG. 11 is a cross-sectional view schematically showing an example of a heat diffusion device according to an eighth embodiment of the present invention.
 図11に示す熱拡散デバイス1Cでは、筐体10Aの平面形状がL字型である。蒸発部EPから凝縮部CPに向かう液体流路50は、長さ方向Yに沿って延びる液体流路501と、幅方向Xに沿って延びる液体流路502とを有する。 In the heat diffusion device 1C shown in FIG. 11, the planar shape of the housing 10A is L-shaped. The liquid flow path 50 extending from the evaporation unit EP to the condensation unit CP has a liquid flow path 501 extending along the length direction Y and a liquid flow path 502 extending along the width direction X.
 液体流路501と液体流路502とは、略直角に接続されているが、液体流路501と液体流路502の接続方向は、上記方向に限定されない。例えば、液体流路501と液体流路502とが90°以外の角度で接続されていてもよいし、曲線により接続していてもよい。 The liquid flow path 501 and the liquid flow path 502 are connected at a substantially right angle, but the connection direction between the liquid flow path 501 and the liquid flow path 502 is not limited to the above direction. For example, the liquid flow path 501 and the liquid flow path 502 may be connected at an angle other than 90 °, or may be connected by a curved line.
 本発明の熱拡散デバイスにおいて、筐体の平面形状は特に限定されず、例えば、三角形または矩形などの多角形、円形、楕円形、これらを組み合わせた形状などが挙げられる。また、筐体の平面形状は、L字型、C字型(コの字型)などであってもよい。また、筐体の内部に貫通口を有していてもよい。筐体の平面形状は、熱拡散デバイスの用途、熱拡散デバイスの組み入れ箇所の形状、近傍に存在する他の部品に応じた形状であってもよい。 In the heat diffusion device of the present invention, the planar shape of the housing is not particularly limited, and examples thereof include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Further, the planar shape of the housing may be L-shaped, C-shaped (U-shaped), or the like. Further, a through hole may be provided inside the housing. The planar shape of the housing may be a shape corresponding to the application of the heat diffusion device, the shape of the place where the heat diffusion device is incorporated, and other components existing in the vicinity.
[第9実施形態]
 本発明の第9実施形態では、毛細管構造体と支持体と筐体の第1内壁面に囲まれた領域、及び、毛細管構造体の内部に、液体流路が形成されている。
[9th Embodiment]
In the ninth embodiment of the present invention, a liquid flow path is formed in a region surrounded by a capillary structure, a support, and a first inner wall surface of a housing, and inside the capillary structure.
 図12は、本発明の第9実施形態に係る熱拡散デバイスの、毛細管構造体が延びる方向に垂直な方向における断面図である。
 図12に示すように、熱拡散デバイス2は、厚さ方向Zに対向する第1内壁面11a及び第2内壁面12aを有する筐体10と、筐体10の内部空間に配置されるウィック30とを備える。ウィック30は、毛細管構造体131を含む。
FIG. 12 is a cross-sectional view of the heat diffusion device according to the ninth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
As shown in FIG. 12, the heat diffusion device 2 has a housing 10 having a first inner wall surface 11a and a second inner wall surface 12a facing in the thickness direction Z, and a wick 30 arranged in the internal space of the housing 10. And prepare. The wick 30 includes a capillary structure 131.
 筐体10の内部空間には、毛細管構造体131と、毛細管構造体131を介して第1内壁面11a及び第2内壁面12aを内側から支持し、毛細管構造体131と平行に延びる支持体140a及び支持体140bが配置されている。支持体140aと支持体140bは、所定の距離だけ離れて対向している。支持体140aと支持体140bとの距離が液相部151の幅に相当する。 In the internal space of the housing 10, the capillary structure 131, the first inner wall surface 11a and the second inner wall surface 12a are supported from the inside via the capillary structure 131, and the support 140a extending in parallel with the capillary structure 131a. And the support 140b are arranged. The support 140a and the support 140b face each other with a predetermined distance apart. The distance between the support 140a and the support 140b corresponds to the width of the liquid phase portion 151.
 毛細管構造体131、支持体140a及び支持体140b、並びに、第1内壁部11aに囲まれた領域が液相部151となる。毛細管構造体131及び液相部151をまとめて、液体流路150ともいう。
 液相部151の幅や液体流路150に関する構成は、本発明の第1実施形態と同様であることが好ましい。
The region surrounded by the capillary structure 131, the support 140a and the support 140b, and the first inner wall portion 11a is the liquid phase portion 151. The capillary structure 131 and the liquid phase portion 151 are collectively referred to as a liquid flow path 150.
It is preferable that the width of the liquid phase portion 151 and the configuration of the liquid flow path 150 are the same as those of the first embodiment of the present invention.
 支持体140a及び支持体140bは、筐体10の第1内壁面11a及び第2内壁面12aを内側から支持することができるものであればよく、その材料は特に限定されない。
 支持体140a及び支持体140bを構成する材料としては、例えば、樹脂、金属、セラミックス、またはそれらの混合物、積層物等が挙げられる。また、支持体は、筐体と一体であってもよく、例えば、第1シートまたは第2シートの内壁面をエッチング加工すること等により形成されていてもよい。
 さらに、支持体140a及び支持体140bは、毛細管構造体で構成されていてもよい。
The support 140a and the support 140b may be any material as long as they can support the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside, and the material thereof is not particularly limited.
Examples of the material constituting the support 140a and the support 140b include resins, metals, ceramics, mixtures thereof, and laminates. Further, the support may be integrated with the housing, and may be formed by, for example, etching the inner wall surface of the first sheet or the second sheet.
Further, the support 140a and the support 140b may be composed of a capillary structure.
 本発明の熱拡散デバイスは、図12に示した熱拡散デバイスにおいて、第1内壁面11aに代わって第2内壁面12aの表面に毛細管構造体131が配置されていてもよいし、第1内壁面11aに加えて第2内壁面12aの表面にさらに毛細管構造体が配置されていてもよいし、支持体140a及び/又は支持体140bが毛細管構造体で構成されていてもよい。 In the heat diffusion device of the present invention, in the heat diffusion device shown in FIG. 12, the capillary structure 131 may be arranged on the surface of the second inner wall surface 12a instead of the first inner wall surface 11a, or the capillary structure 131 may be arranged in the first inner wall surface. In addition to the wall surface 11a, a capillary structure may be further arranged on the surface of the second inner wall surface 12a, and the support 140a and / or the support 140b may be composed of the capillary structure.
[第10実施形態]
 本発明の第10実施形態では、毛細管構造体が複数の繊維を線状に束ねた繊維束から構成されている。
 複数の繊維を線状に束ねた繊維束から構成される毛細管構造体は、多孔体と同様に毛細管構造を有し、作動媒体を輸送することができる。繊維束から構成される毛細管構造体は、繊維束が延びる方向に沿って作動媒体を輸送する能力が高いため、作動媒体を輸送したい方向に沿って繊維束を構成する繊維を配置することが好ましい。
[10th Embodiment]
In the tenth embodiment of the present invention, the capillary structure is composed of a fiber bundle in which a plurality of fibers are bundled linearly.
A capillary structure composed of a fiber bundle in which a plurality of fibers are linearly bundled has a capillary structure similar to a porous body, and can transport an operating medium. Since the capillary structure composed of fiber bundles has a high ability to transport the working medium along the direction in which the fiber bundles extend, it is preferable to arrange the fibers constituting the fiber bundles along the direction in which the working medium is desired to be transported. ..
 図13は、本発明の第10実施形態に係る熱拡散デバイスの、毛細管構造体が延びる方向に垂直な方向における断面図である。
 図13に示すように、熱拡散デバイス3は、厚さ方向Zに対向する第1内壁面11a及び第2内壁面12aを有する筐体10と、筐体10の内部空間に配置されて第1内壁面11aと第2内壁面12aを内側から支持するウィック30を備える。
FIG. 13 is a cross-sectional view of the heat diffusion device according to the tenth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
As shown in FIG. 13, the heat diffusion device 3 is arranged in the housing 10 having the first inner wall surface 11a and the second inner wall surface 12a facing the thickness direction Z, and the first inner space of the housing 10. A wick 30 that supports the inner wall surface 11a and the second inner wall surface 12a from the inside is provided.
 繊維束からなる液体流路について、図14を参照しながら説明する。
 図14は、本発明の第10実施形態に係る熱拡散デバイスにおける毛細管構造体の一例の、毛細管構造体が延びる方向に垂直な方向における断面図である。
 図14に示すように、ウィック30は、複数の繊維235を束ねた繊維束231を有している。複数の繊維231の間には隙間が存在している。該隙間は、毛細管力が作用し液相の作動媒体が移動することのできる空間、すなわち液相部251である。液相部251は毛細管構造体である繊維束231の内部に存在している。そのため、繊維間の隙間を含む繊維束231全体が、液体流路250であるといえる。
A liquid flow path composed of fiber bundles will be described with reference to FIG.
FIG. 14 is a cross-sectional view of an example of a capillary structure in the heat diffusion device according to the tenth embodiment of the present invention in a direction perpendicular to the direction in which the capillary structure extends.
As shown in FIG. 14, the wick 30 has a fiber bundle 231 in which a plurality of fibers 235 are bundled. There is a gap between the plurality of fibers 231. The gap is a space in which the working medium of the liquid phase can move due to the action of capillary force, that is, the liquid phase portion 251. The liquid phase portion 251 exists inside the fiber bundle 231 which is a capillary structure. Therefore, it can be said that the entire fiber bundle 231 including the gap between the fibers is the liquid flow path 250.
 図15は、本発明の第10実施形態に係る熱拡散デバイスの、蒸発部近傍の部分拡大断面図である。
 図15に示すように、蒸発部EP内には、液体流路250A、250B、250C、250D、250E、250F、250G、250Hが存在する。
 液体流路250A、250B、250C、250D、250E、250F、250G、250Hはいずれも、蒸発部EP側の端部が、蒸発部EP内に位置している。
FIG. 15 is a partially enlarged cross-sectional view of the heat diffusion device according to the tenth embodiment of the present invention in the vicinity of the evaporation portion.
As shown in FIG. 15, liquid flow paths 250A, 250B, 250C, 250D, 250E, 250F, 250G, 250H exist in the evaporation unit EP.
In each of the liquid flow paths 250A, 250B, 250C, 250D, 250E, 250F, 250G, and 250H, the end portion on the evaporation portion EP side is located in the evaporation portion EP.
 液体流路250Aの蒸発部EP内における流路長は、液体流路250Aが蒸発部EPに差し掛かる地点E1Aから、液体流路250Aの蒸発部EP側の端部における液相部の末端T3Aまでの長さ(図15中、両矢印L3Aで示す長さ)である。 The length of the flow path in the evaporation section EP of the liquid flow path 250A is from the point E1A where the liquid flow path 250A approaches the evaporation section EP to the end T3A of the liquid phase section at the end of the liquid flow path 250A on the evaporation section EP side. (The length indicated by the double arrow L3A in FIG. 15).
 ここで、液体流路250Aの蒸発部EP側の端部における液相部の末端T3Aの位置は、図4に示す熱拡散デバイスにおける液体流路50Aの蒸発部EP側の端部における液相部の末端T1Aの位置と同じである。すなわち、図15における長さL3Aは、図4における長さL1Aに等しい。また、図15における蒸発部EPの位置及び大きさも図4と同じである。そのため、長さL3A/距離D3Aは、図4における長さL1A/距離D1Aと同様に約20%となる。従って、液体流路250Aは第2液体流路である。 Here, the position of the end T3A of the liquid phase portion at the end portion of the liquid flow path 250A on the evaporation portion EP side is the liquid phase portion at the end portion of the liquid flow path 50A on the evaporation portion EP side in the heat diffusion device shown in FIG. It is the same as the position of the terminal T1A of. That is, the length L3A in FIG. 15 is equal to the length L1A in FIG. Further, the position and size of the evaporation portion EP in FIG. 15 are also the same as those in FIG. Therefore, the length L3A / distance D3A is about 20% like the length L1A / distance D1A in FIG. Therefore, the liquid flow path 250A is the second liquid flow path.
 液体流路が蒸発部に差し掛かる地点から蒸発部の重心までの最短距離に対する液体流路が蒸発部に差し掛かる地点から蒸発部側の端部までの流路長の割合は、図15に示す他の液体流路(250B~250H)でも、図4と同様である。すなわち、図4に示す熱拡散デバイスと同様に、液体流路250A、250C、250D、250E、250G、250Hは第2液体流路であり、液体流路250B及び250Fは第1液体流路である。 The ratio of the flow path length from the point where the liquid flow path reaches the evaporation part to the end on the evaporation part side with respect to the shortest distance from the point where the liquid flow path reaches the evaporation part to the center of gravity of the evaporation part is shown in FIG. The same applies to the other liquid flow paths (250B to 250H) as in FIG. That is, similarly to the heat diffusion device shown in FIG. 4, the liquid flow paths 250A, 250C, 250D, 250E, 250G, 250H are the second liquid flow paths, and the liquid flow paths 250B and 250F are the first liquid flow paths. ..
 なお、蒸発部EP内の毛細管構造体の長さが短くなっているため、蒸発部EP内に占める液体流路の面積の合計は、図4に示す熱拡散デバイス1よりも低下している。蒸発部EP内の液体流路の面積の合計は、蒸発部EPの面積の36.0%である。 Since the length of the capillary structure in the evaporation section EP is shortened, the total area of the liquid flow paths in the evaporation section EP is smaller than that of the heat diffusion device 1 shown in FIG. The total area of the liquid flow path in the evaporation section EP is 36.0% of the area of the evaporation section EP.
[その他の実施形態]
 本発明の熱拡散デバイスにおいて、毛細管構造体は厚さ方向で幅が一定であってもよく、厚さ方向で幅が一定でなくてもよい。また、毛細管構造体の第1内壁面側の端部の幅と第2内壁面側の端部の幅は同じであってもよいし、異なっていてもよい。
 毛細管構造体は、第1内壁面側の端部から第2内壁面側の端部に向かって幅が連続的に狭くなっていてもよい。
 毛細管構造体は、第1内壁面側の端部から第2内壁面側の端部に向かって幅が段階的に狭くなっていてもよい。
 液相部を構成する毛細管構造体の第1内壁面側の端部は、互いに接続されていてもよい。毛細管構造体の端部が互いに接続されていると、毛細管構造体と第1内壁面との接触面積が増えることにより、接着強度が増すため、曲げまたは振動などの機械的なストレスに対する耐性を向上させることができる。
 毛細管構造体は、第1内壁面側の端部と第2内壁面側の端部との間に、第1内壁面側の端部および第2内壁面側の端部よりも幅が広い部分を有していてもよい。
 毛細管構造体は、第1内壁面側の端部と第2内壁面側の端部との間に、第1内壁面側の端部および第2内壁面側の端部よりも幅が狭い部分を有していてもよい。
[Other embodiments]
In the heat diffusion device of the present invention, the capillary structure may have a constant width in the thickness direction, and may not have a constant width in the thickness direction. Further, the width of the end portion on the first inner wall surface side and the width of the end portion on the second inner wall surface side of the capillary structure may be the same or different.
The width of the capillary structure may be continuously narrowed from the end portion on the first inner wall surface side to the end portion on the second inner wall surface side.
The width of the capillary structure may be gradually narrowed from the end portion on the first inner wall surface side to the end portion on the second inner wall surface side.
The ends of the capillary structure constituting the liquid phase portion on the first inner wall surface side may be connected to each other. When the ends of the capillary structure are connected to each other, the contact area between the capillary structure and the first inner wall surface increases, which increases the adhesive strength and thus improves resistance to mechanical stress such as bending or vibration. Can be made to.
The capillary structure is a portion between the end portion on the first inner wall surface side and the end portion on the second inner wall surface side, which is wider than the end portion on the first inner wall surface side and the end portion on the second inner wall surface side. May have.
The capillary structure is a portion narrower than the end portion on the first inner wall surface side and the end portion on the second inner wall surface side between the end portion on the first inner wall surface side and the end portion on the second inner wall surface side. May have.
 本発明の熱拡散デバイスにおいては、ウィックが、毛細管構造体のほかに、第1内壁面に沿って配置される第1ウィックおよび/または第2内壁面に沿って配置される第2ウィックを有していてもよい。
 第1ウィックおよび第2ウィックは、毛細管力により作動媒体を移動させることができる毛細管構造を有するウィックであれば特に限定されない。ウィックの毛細管構造は、従来の熱拡散デバイスにおいて用いられている公知の構造であってよい。毛細管構造としては、細孔、溝、突起などの凹凸を有する微細構造、例えば、多孔構造、繊維構造、溝構造、網目構造などが挙げられる。
In the heat diffusion device of the present invention, in addition to the capillary structure, the wick has a first wick arranged along the first inner wall surface and / or a second wick arranged along the second inner wall surface. You may be doing it.
The first wick and the second wick are not particularly limited as long as they have a capillary structure in which the working medium can be moved by a capillary force. The wick's capillary structure may be a known structure used in conventional thermal diffusion devices. Examples of the capillary structure include microstructures having irregularities such as pores, grooves, and protrusions, such as a porous structure, a fiber structure, a groove structure, and a mesh structure.
 第1ウィックおよび第2ウィックの材料は特に限定されず、例えば、エッチング加工または金属加工により形成される金属多孔膜、メッシュ、不織布、焼結体、多孔体などが用いられる。ウィックの材料となるメッシュは、例えば、金属メッシュ、樹脂メッシュ、もしくは表面コートしたそれらのメッシュから構成されるものであってよく、好ましくは銅メッシュ、ステンレス(SUS)メッシュまたはポリエステルメッシュから構成される。ウィックの材料となる焼結体は、例えば、金属多孔質焼結体、セラミックス多孔質焼結体から構成されるものであってよく、好ましくは銅またはニッケルの多孔質焼結体から構成される。ウィックの材料となる多孔体は、例えば、金属多孔体、セラミックス多孔体、樹脂多孔体から構成されるもの等であってもよい。 The materials of the first wick and the second wick are not particularly limited, and for example, a metal porous film formed by etching or metal processing, a mesh, a non-woven fabric, a sintered body, a porous body, or the like is used. The mesh used as the material of the wick may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, and is preferably composed of a copper mesh, a stainless (SUS) mesh, or a polyester mesh. .. The sintered body used as the material of the wick may be composed of, for example, a metal porous sintered body and a ceramic porous sintered body, and is preferably composed of a copper or nickel porous sintered body. .. The porous body used as the material of the wick may be, for example, a porous body made of a metal porous body, a ceramic porous body, a resin porous body, or the like.
 第1ウィックおよび第2ウィックの大きさおよび形状は、特に限定されないが、例えば、筐体の内部において蒸発部から凝縮部まで連続して設置できる大きさおよび形状を有することが好ましい。 The size and shape of the first wick and the second wick are not particularly limited, but for example, it is preferable to have a size and shape that can be continuously installed from the evaporation part to the condensation part inside the housing.
 第1ウィックおよび第2ウィックの厚さは、特に限定されないが、各々、例えば2μm以上200μm以下であり、好ましくは5μm以上100μm以下、より好ましくは10μm以上40μm以下である。第1ウィックおよび第2ウィックの厚さは、部分的に異なっていてもよい。第1ウィックの厚さは、第2ウィックの厚さと同じでもよく、異なっていてもよい。 The thicknesses of the first wick and the second wick are not particularly limited, but are, for example, 2 μm or more and 200 μm or less, preferably 5 μm or more and 100 μm or less, and more preferably 10 μm or more and 40 μm or less, respectively. The thickness of the first wick and the second wick may be partially different. The thickness of the first wick may be the same as or different from the thickness of the second wick.
 本発明の熱拡散デバイスは、蒸気流路内に配置され、筐体の第1内壁面および第2内壁面を内側から支持する複数の支柱をさらに備えていてもよい。 The heat diffusion device of the present invention may be further provided with a plurality of columns arranged in the steam flow path and supporting the first inner wall surface and the second inner wall surface of the housing from the inside.
 支柱を形成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、またはそれらの混合物、積層物等が挙げられる。また、支柱は、筐体と一体であってもよく、例えば、第1シートまたは第2シートの内壁面をエッチング加工すること等により形成されていてもよい。 The material forming the column is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, and a laminate. Further, the support column may be integrated with the housing, and may be formed by, for example, etching the inner wall surface of the first sheet or the second sheet.
 支柱の形状は、筐体を支持できる形状であれば特に限定されないが、支柱の高さ方向に垂直な断面の形状としては、例えば、矩形等の多角形、円形、楕円形等が挙げられる。 The shape of the strut is not particularly limited as long as it can support the housing, but examples of the shape of the cross section perpendicular to the height direction of the strut include polygons such as rectangles, circles, and ellipses.
 支柱の高さは、特に限定されず、毛細管構造体の高さと同じでもよく、異なっていてもよい。 The height of the columns is not particularly limited, and may be the same as or different from the height of the capillary structure.
 支柱の高さは、一の熱拡散デバイスにおいて、同じであってもよく、異なっていてもよい。例えば、ある領域における支柱の高さと、別の領域における支柱の高さが異なっていてもよい。 The height of the columns may be the same or different in one heat diffusion device. For example, the height of the stanchions in one area may be different from the height of the stanchions in another area.
 支柱の幅は、熱拡散デバイスの筐体の変形を抑制できる強度を与えるものであれば特に限定されないが、支柱の端部の高さ方向に垂直な断面の円相当径は、例えば100μm以上2000μm以下であり、好ましくは300μm以上1000μm以下である。支柱の円相当径を大きくすることにより、熱拡散デバイスの筐体の変形をより抑制することができる。一方、支柱の円相当径を小さくすることにより、作動媒体の蒸気が移動するための空間をより広く確保することができる。 The width of the strut is not particularly limited as long as it gives strength that can suppress the deformation of the housing of the heat diffusion device, but the equivalent circle diameter of the cross section perpendicular to the height direction of the end of the strut is, for example, 100 μm or more and 2000 μm. It is less than or equal to, preferably 300 μm or more and 1000 μm or less. By increasing the diameter equivalent to the circle of the support column, it is possible to further suppress the deformation of the housing of the heat diffusion device. On the other hand, by reducing the diameter equivalent to the circle of the column, it is possible to secure a wider space for the steam of the working medium to move.
 支柱の配置は、特に限定されないが、好ましくは所定の領域において均等に、より好ましくは全体にわたって均等に、例えば支柱間の距離が一定となるように配置される。支柱を均等に配置することにより、熱拡散デバイス全体にわたって均一な強度を確保することができる。 The arrangement of the columns is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly over the entire area, for example, so that the distance between the columns is constant. By arranging the columns evenly, uniform strength can be ensured throughout the heat diffusion device.
 本発明の熱拡散デバイスは、放熱を目的として電子機器に搭載され得る。したがって、本発明の熱拡散デバイスを備える電子機器は本発明の電子機器である。本発明の電子機器としては、例えばスマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等が挙げられる。本発明の熱拡散デバイスは上記のとおり、外部動力を必要とせず自立的に作動し、作動媒体の蒸発潜熱および凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。そのため、本発明の放熱デバイスまたは熱拡散デバイスを備える本発明の電子機器では、電子機器内部の限られたスペースにおいて、放熱を効果的に実現することができる。 The heat diffusion device of the present invention can be mounted on an electronic device for the purpose of heat dissipation. Therefore, the electronic device provided with the heat diffusion device of the present invention is the electronic device of the present invention. Examples of the electronic device of the present invention include smartphones, tablet terminals, notebook computers, game devices, wearable devices and the like. As described above, the heat diffusion device of the present invention operates independently without the need for external power, and can diffuse heat in two dimensions at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium. Therefore, in the electronic device of the present invention provided with the heat dissipation device or the heat diffusion device of the present invention, heat dissipation can be effectively realized in the limited space inside the electronic device.
 本発明の電子機器または熱拡散デバイスは、携帯情報端末等の分野において、広範な用途に使用できる。例えば、CPU等の熱源の温度を下げ、電子機器の使用時間を延ばすために使用することができ、スマートフォン、タブレット、ノートPC等に使用することができる。 The electronic device or heat diffusion device of the present invention can be used for a wide range of applications in the field of portable information terminals and the like. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the usage time of an electronic device, and can be used for smartphones, tablets, notebook PCs, and the like.
 1、1A、1B、1C、2、3 熱拡散デバイス(ベーパーチャンバー)
 10 筐体
 11 第1シート
 12 第2シート
 20 作動媒体
 30 ウィック
 31、131 毛細管構造体(多孔体)
 31a 第1毛細管構造体(多孔体)
 31b 第2毛細管構造体(多孔体)
 231 毛細管構造体(繊維束)
 235 繊維
 50、150、250、501、502 液体流路
 50B、50B’、50D’、50F、50F’、50H’、50L、50N、250B、250F 第1液体流路
 50A、50C、50D、50E、50G、50H、50I、50K、50M、250A、250C、250D、250E、250G、250H 第2液体流路
 50B’’ 第3液体流路
 50B’’’、50J 第4液体流路
 51、151、251 液相部
 52 蒸気流路
 100 電子機器
 110 電子部品(発熱素子)
 120 機器筐体
 140a、140b 支持体
 a 液相部の幅
 b 蒸気流路の幅
 C、C 蒸発部の重心
 CP 凝縮部
 D1A、D1B、D1B’、D1B’’’、D1D、D2I、D2J、D2L、D2M 液体流路が蒸発部に差し掛かる地点から蒸発部の重心までの最短距離
 E1A、E1B、E1B’、E1B’’’、E1C、E1D、E1D’、E1E、E1F、E1F’、E1G、E1H、E1H’、E2I、E2J、E2L、E2M 液体流路が蒸発部内に差し掛かる地点
 EP、EP、EP 蒸発部
 HE 発熱素子
 L1A、L3A、L1B、L1B’、L1B’’’、L3B、L1D、L2I、L2J、L2L、L2M、L3D 液体流路の蒸発部内における流路長
 T1A、T1B、T1B’、T1B’’’、T1D、T1D’、T1F’、T1H’、T2I、T2J、T2L、T2M、T3A、T3B、T3D 液体流路の蒸発部側の端部における液相部の末端
 X 幅方向
 Y 長さ方向
 Z 厚さ方向

 
1,1A, 1B, 1C, 2,3 heat diffusion device (vapor chamber)
10 Housing 11 1st sheet 12 2nd sheet 20 Working medium 30 Wick 31, 131 Capillary structure (porous)
31a First capillary structure (porous)
31b Second capillary structure (porous)
231 Capillary structure (fiber bundle)
235 Fiber 50, 150, 250, 501, 502 Liquid flow path 50B, 50B', 50D', 50F, 50F', 50H', 50L, 50N, 250B, 250F First liquid flow path 50A, 50C, 50D, 50E, 50G, 50H, 50I, 50K, 50M, 250A, 250C, 250D, 250E, 250G, 250H 2nd liquid flow path 50B `` 3rd liquid flow path 50B'''', 50J 4th liquid flow path 51, 151, 251 Liquid phase part 52 Steam flow path 100 Electronic equipment 110 Electronic parts (heating element)
120 Equipment housing 140a, 140b Support a Width of liquid phase part b Width of steam flow path C 1 , C 2 Center of gravity of evaporation part CP Condensing part D1A, D1B, D1B', D1B''', D1D, D2I, D2J , D2L, D2M The shortest distance from the point where the liquid flow path reaches the evaporation part to the center of gravity of the evaporation part E1A, E1B, E1B', E1B''', E1C, E1D, E1D', E1E, E1F, E1F', E1G , E1H, E1H', E2I, E2J, E2L, E2M Point where the liquid flow path reaches the inside of the evaporation part EP, EP 1 , EP2 Evaporation part HE heating element L1A, L3A , L1B, L1B', L1B''', L3B , L1D, L2I, L2J, L2L, L2M, L3D Flow path lengths in the evaporation part of the liquid flow path T1A, T1B, T1B', T1B''', T1D, T1D', T1F', T1H', T2I, T2J, T2L , T2M, T3A, T3B, T3D The end of the liquid phase part at the end of the liquid flow path on the evaporation part side X Width direction Y Length direction Z Thickness direction

Claims (10)

  1.  熱拡散デバイスと、発熱素子と、を備える電子機器であって、
     前記熱拡散デバイスは、厚さ方向に対向する第1内壁面および第2内壁面を有する筐体と、前記筐体の内部空間に封入された作動媒体と、前記筐体の前記内部空間に配置されるウィックと、を備え、
     前記筐体は、前記作動媒体を蒸発させる蒸発部を有し、
     前記発熱素子は、前記蒸発部に位置する前記筐体の外壁面に配置され、
     前記ウィックは、前記蒸発部から線状に延びる複数の毛細管構造体を含み、
     少なくとも一部が前記毛細管構造体に囲まれた領域、及び/又は、前記毛細管構造体の内部に、前記作動媒体の液体流路が形成され、
     前記厚さ方向からの平面視において、前記蒸発部内の前記液体流路の面積の合計が、前記蒸発部の面積の15%以上であり、
     前記液体流路は、第1液体流路および第2液体流路を有し、
     前記第1液体流路の蒸発部側の端部および前記第2液体流路の蒸発部側の端部は、いずれも前記蒸発部内に位置し、
     前記第1液体流路が前記蒸発部に差し掛かる地点から前記蒸発部側の端部までの前記第1液体流路の流路長は、前記第1液体流路が前記蒸発部に差し掛かる地点から前記蒸発部の重心までの最短距離の30%以上であり、
     前記第2液体流路が前記蒸発部に差し掛かる地点から前記蒸発部側の端部までの前記第2液体流路の流路長は、前記第2液体流路が前記蒸発部に差し掛かる地点から前記蒸発部の重心までの最短距離の10%以上、30%未満である、ことを特徴とする電子機器。
    An electronic device including a heat diffusion device and a heat generating element.
    The heat diffusion device is arranged in a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction, an actuating medium enclosed in the internal space of the housing, and the internal space of the housing. With a wick that will be
    The housing has an evaporation unit that evaporates the working medium.
    The heat generating element is arranged on the outer wall surface of the housing located at the evaporation portion.
    The wick comprises a plurality of capillary structures linearly extending from the evaporation section.
    A liquid flow path of the working medium is formed in a region partially surrounded by the capillary structure and / or inside the capillary structure.
    In a plan view from the thickness direction, the total area of the liquid flow path in the evaporation section is 15% or more of the area of the evaporation section.
    The liquid flow path has a first liquid flow path and a second liquid flow path, and has a first liquid flow path and a second liquid flow path.
    The end portion of the first liquid flow path on the evaporation portion side and the end portion of the second liquid flow path on the evaporation portion side are both located in the evaporation portion.
    The flow path length of the first liquid flow path from the point where the first liquid flow path reaches the evaporation part to the end on the evaporation part side is the point where the first liquid flow path approaches the evaporation part. It is 30% or more of the shortest distance from the evaporating part to the center of gravity of the evaporation part.
    The flow path length of the second liquid flow path from the point where the second liquid flow path reaches the evaporation part to the end on the evaporation part side is the point where the second liquid flow path approaches the evaporation part. An electronic device characterized in that it is 10% or more and less than 30% of the shortest distance from the evaporating part to the center of gravity of the evaporation part.
  2.  前記液体流路は、複数本の前記第1液体流路を有し、
     前記第1液体流路の前記蒸発部側の端部同士は前記蒸発部の重心で接続され、前記第1液体流路同士が連通している、請求項1に記載の電子機器。
    The liquid flow path has a plurality of the first liquid flow paths.
    The electronic device according to claim 1, wherein the ends of the first liquid flow path on the evaporation portion side are connected to each other by the center of gravity of the evaporation portion, and the first liquid flow paths communicate with each other.
  3.  前記液体流路は、第3液体流路をさらに有し、
     前記第3液体流路の蒸発部側の端部は、前記蒸発部の外側に位置する、請求項1または2に記載の電子機器。
    The liquid flow path further has a third liquid flow path.
    The electronic device according to claim 1 or 2, wherein the end portion of the third liquid flow path on the evaporation portion side is located outside the evaporation portion.
  4.  前記第2液体流路の前記蒸発部側の端部は、前記第1液体流路と接続されていない、請求項1~3のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 3, wherein the end portion of the second liquid flow path on the evaporation portion side is not connected to the first liquid flow path.
  5.  前記厚さ方向からの平面視において、前記蒸発部内の前記液体流路の面積の合計が、前記蒸発部の面積の80%以下である、請求項1~4のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 4, wherein the total area of the liquid flow path in the evaporation section is 80% or less of the area of the evaporation section in a plan view from the thickness direction.
  6.  厚さ方向に対向する第1内壁面および第2内壁面を有する筐体と、前記筐体の内部空間に封入された作動媒体と、前記筐体の前記内部空間に配置されるウィックと、を備える熱拡散デバイスであって、
     前記筐体は、前記作動媒体を蒸発させる蒸発部を有し、
     前記ウィックは、前記蒸発部から線状に延びる複数の毛細管構造体を含み、
     少なくとも一部が前記毛細管構造体に囲まれた領域、及び/又は、前記毛細管構造体の内部に、前記作動媒体の液体流路が形成され、
     前記厚さ方向からの平面視において、前記蒸発部内の前記液体流路の面積の合計が、前記蒸発部の面積の15%以上であり、
     前記液体流路は、第1液体流路および第2液体流路を有し、
     前記第1液体流路の蒸発部側の端部および前記第2液体流路の蒸発部側の端部は、いずれも前記蒸発部内に位置し、
     前記第1液体流路が前記蒸発部に差し掛かる地点から前記蒸発部側の端部までの前記第1液体流路の流路長は、前記第1液体流路が前記蒸発部に差し掛かる地点から前記蒸発部の重心までの最短距離の30%以上であり、
     前記第2液体流路が前記蒸発部に差し掛かる地点から前記蒸発部側の端部までの前記第2液体流路の流路長は、前記第2液体流路が前記蒸発部に差し掛かる地点から前記蒸発部の重心までの最短距離の10%以上、30%未満である、ことを特徴とする熱拡散デバイス。
    A housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction, an actuating medium enclosed in the internal space of the housing, and a wick arranged in the internal space of the housing. It is a heat diffusion device equipped with
    The housing has an evaporation unit that evaporates the working medium.
    The wick comprises a plurality of capillary structures linearly extending from the evaporation section.
    A liquid flow path of the working medium is formed in a region partially surrounded by the capillary structure and / or inside the capillary structure.
    In a plan view from the thickness direction, the total area of the liquid flow path in the evaporation section is 15% or more of the area of the evaporation section.
    The liquid flow path has a first liquid flow path and a second liquid flow path, and has a first liquid flow path and a second liquid flow path.
    The end portion of the first liquid flow path on the evaporation portion side and the end portion of the second liquid flow path on the evaporation portion side are both located in the evaporation portion.
    The flow path length of the first liquid flow path from the point where the first liquid flow path reaches the evaporation part to the end on the evaporation part side is the point where the first liquid flow path approaches the evaporation part. It is 30% or more of the shortest distance from the evaporating part to the center of gravity of the evaporation part.
    The flow path length of the second liquid flow path from the point where the second liquid flow path reaches the evaporation part to the end on the evaporation part side is the point where the second liquid flow path approaches the evaporation part. A heat diffusion device, characterized in that the shortest distance from the evaporation unit to the center of gravity is 10% or more and less than 30%.
  7.  前記液体流路は、複数本の前記第1液体流路を有し、
     前記第1液体流路の前記蒸発部側の端部同士は前記蒸発部の重心で接続され、前記第1液体流路同士が連通している、請求項6に記載の熱拡散デバイス。
    The liquid flow path has a plurality of the first liquid flow paths.
    The heat diffusion device according to claim 6, wherein the ends of the first liquid flow path on the evaporation portion side are connected to each other by the center of gravity of the evaporation portion, and the first liquid flow paths communicate with each other.
  8.  前記液体流路は、第3液体流路をさらに有し、
     前記第3液体流路の蒸発部側の端部は、前記蒸発部の外側に位置する、請求項6または7に記載の熱拡散デバイス。
    The liquid flow path further has a third liquid flow path.
    The heat diffusion device according to claim 6 or 7, wherein the end portion of the third liquid flow path on the evaporation portion side is located outside the evaporation portion.
  9.  前記第2液体流路の前記蒸発部側の端部は、前記第1液体流路と接続されていない、請求項6~8のいずれかに記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 6 to 8, wherein the end portion of the second liquid flow path on the evaporation portion side is not connected to the first liquid flow path.
  10.  前記厚さ方向からの平面視において、前記蒸発部内の前記液体流路の面積の合計が、前記蒸発部の面積の80%以下である、請求項6~9のいずれかに記載の熱拡散デバイス。
     

     
    The heat diffusion device according to any one of claims 6 to 9, wherein the total area of the liquid flow paths in the evaporation section is 80% or less of the area of the evaporation section in a plan view from the thickness direction. ..


PCT/JP2021/036118 2020-10-06 2021-09-30 Electronic device and thermal diffusion device WO2022075175A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022523236A JP7103549B1 (en) 2020-10-06 2021-09-30 Electronic devices and heat diffusion devices
CN202190000786.0U CN220750894U (en) 2020-10-06 2021-09-30 Electronic device and heat diffusion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169337 2020-10-06
JP2020-169337 2020-10-06

Publications (1)

Publication Number Publication Date
WO2022075175A1 true WO2022075175A1 (en) 2022-04-14

Family

ID=81126003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036118 WO2022075175A1 (en) 2020-10-06 2021-09-30 Electronic device and thermal diffusion device

Country Status (4)

Country Link
JP (1) JP7103549B1 (en)
CN (1) CN220750894U (en)
TW (1) TWI796798B (en)
WO (1) WO2022075175A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050682A (en) * 2014-08-28 2016-04-11 東芝ホームテクノ株式会社 Sheet-type heat pipe
WO2017104819A1 (en) * 2015-12-18 2017-06-22 株式会社フジクラ Vapor chamber
JP6442594B1 (en) * 2017-12-25 2018-12-19 株式会社フジクラ Heat dissipation module
WO2019131599A1 (en) * 2017-12-25 2019-07-04 株式会社フジクラ Heatsink module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110088557A (en) * 2016-12-20 2019-08-02 株式会社藤仓 Radiating module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050682A (en) * 2014-08-28 2016-04-11 東芝ホームテクノ株式会社 Sheet-type heat pipe
WO2017104819A1 (en) * 2015-12-18 2017-06-22 株式会社フジクラ Vapor chamber
JP6442594B1 (en) * 2017-12-25 2018-12-19 株式会社フジクラ Heat dissipation module
WO2019131599A1 (en) * 2017-12-25 2019-07-04 株式会社フジクラ Heatsink module

Also Published As

Publication number Publication date
TW202223323A (en) 2022-06-16
TWI796798B (en) 2023-03-21
CN220750894U (en) 2024-04-09
JP7103549B1 (en) 2022-07-20
JPWO2022075175A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
JP6564879B2 (en) Vapor chamber
US8780559B2 (en) Heat exchange assembly for use with electrical devices and methods of assembling an electrical device
US20060196640A1 (en) Vapor chamber with boiling-enhanced multi-wick structure
CN108291785A (en) Integral type multicell heat exchanger
WO2021256126A1 (en) Vapor chamber
WO2022075175A1 (en) Electronic device and thermal diffusion device
JP7111266B2 (en) vapor chamber
WO2023238626A1 (en) Heat diffusion device and electronic appliance
JP6213807B2 (en) heat pipe
US20190376750A1 (en) Water heat exchanger
JP7120494B1 (en) heat spreading device
JP7260062B2 (en) heat spreading device
JP7311057B2 (en) Heat spreading devices and electronics
WO2022107479A1 (en) Heat spreading device
WO2023037887A1 (en) Loop heat pipe
WO2022097417A1 (en) Heat spreading device
WO2024034279A1 (en) Heat dissipation device and electronic apparatus
WO2022230295A1 (en) Thermal diffusion device
WO2023074645A1 (en) Thermal diffusion device and electronic apparatus
KR20200030192A (en) Cooling device
WO2022230296A1 (en) Heat dissipation device
WO2023171408A1 (en) Thermal diffusion device and electronic apparatus
TWI839928B (en) Heat dissipation device and electronic device
WO2023058595A1 (en) Thermal diffusion device
WO2023182029A1 (en) Heat diffusing device, and electronic apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022523236

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202190000786.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877476

Country of ref document: EP

Kind code of ref document: A1