WO2022075107A1 - ポリアセタール樹脂組成物及び自動車部品 - Google Patents

ポリアセタール樹脂組成物及び自動車部品 Download PDF

Info

Publication number
WO2022075107A1
WO2022075107A1 PCT/JP2021/035360 JP2021035360W WO2022075107A1 WO 2022075107 A1 WO2022075107 A1 WO 2022075107A1 JP 2021035360 W JP2021035360 W JP 2021035360W WO 2022075107 A1 WO2022075107 A1 WO 2022075107A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
carbon
resin composition
polyacetal resin
Prior art date
Application number
PCT/JP2021/035360
Other languages
English (en)
French (fr)
Inventor
裕基 神田
智宏 門間
博樹 荒井
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2022517888A priority Critical patent/JP7217384B2/ja
Priority to US18/030,572 priority patent/US12037487B2/en
Priority to MX2023004042A priority patent/MX2023004042A/es
Priority to KR1020237012741A priority patent/KR102587117B1/ko
Publication of WO2022075107A1 publication Critical patent/WO2022075107A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/04Copolyoxymethylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a method for improving resistance to an acid component while imparting conductivity to a polyacetal resin composition, an automobile part formed by molding the polyacetal resin composition, and a polyacetal resin molded product.
  • POM resins Polyacetal resins or polyacetal copolymers (hereinafter, these are also referred to as "POM resins") are widely used as engineering plastics because they are excellent in various physical and mechanical properties, chemical resistance, and slidability. There is.
  • POM resin has excellent resistance to hydrocarbon fuels such as gasoline, and is therefore used for flanges and case-shaped molded products around fuel pumps of automobiles.
  • the toughness is significantly reduced. There is a problem of doing. That is, in the POM resin composition, if the antistatic effect and the durability against the acid component are simultaneously realized, the toughness will be significantly reduced.
  • the present invention has been made in view of the above-mentioned conventional problems, and the problems thereof are POM resin compositions and automobile parts, which are endowed with durability against acid components and antistatic effects without significantly reducing toughness.
  • Another object of the present invention is to provide a method for imparting an antistatic effect to a POM resin molded product and improving resistance to an acid component.
  • A With respect to 100 parts by mass of the polyacetal copolymer resin having a hemiformal terminal group amount of 0.8 mmol / kg or less.
  • B 0.2 to 2.0 parts by mass of a hindered phenolic antioxidant,
  • C At least one of magnesium oxide and zinc oxide is contained in an amount of more than 2.0 parts by mass and 20 parts by mass or less.
  • D A carbon-based conductive additive is blended in an amount of 0.3 to 2.5 parts by mass, and
  • E a polyalkylene glycol is blended in an amount of 0.5 to 3.0 parts by mass.
  • One of the (D) carbon-based conductive additives selected from only (D1) carbon nanostructures and a combination of (D1) carbon nanostructures and (D2) carbon black having a BET specific surface area of 300 m 2 / g or more. Is a polyacetal resin composition.
  • the POM resin composition and automobile parts to which the durability against the acid component and the antistatic effect are imparted, and the POM resin molded product are imparted with the antistatic effect without significantly reducing the toughness, and the antistatic effect is imparted. It is possible to provide a method for improving resistance to an acid component.
  • FIG. 1 is a diagram schematically showing the states of the carbon nanostructure before (A) melt-kneading, (B) immediately after the start of melt-kneading, and (C) after melt-kneading.
  • FIG. 2 is a top view (A) and a back view (B) of the test piece used for measuring the surface resistivity and the volume resistivity in the embodiment.
  • the POM resin composition of the present embodiment contains (A) 100 parts by mass of a polyacetal copolymer resin having a hemiformal terminal group amount of 0.8 mmol / kg or less, and (B) a hindered phenol-based antioxidant. 2 to 2.0 parts by mass, (C) at least one of magnesium oxide and zinc oxide is more than 2.0 parts by mass and 20 parts by mass or less, and (D) carbon-based conductive additive is 0.3 to 2.5. It is made by blending 0.5 to 3.0 parts by mass of (E) polyalkylene glycol.
  • the (D) carbon-based conductive additive is selected from only (D1) carbon nanostructures and a combination of (D1) carbon nanostructures and (D2) carbon black having a BET specific surface area of 300 m 2 / g or more. It is one.
  • durability against an acid component can be imparted by blending at least one of (C) magnesium oxide and zinc oxide with a predetermined POM resin. Further, by blending (D) a carbon-based conductive additive, conductivity can be imparted and an antistatic effect can be exhibited.
  • (C) magnesium oxide and zinc oxide with a predetermined POM resin.
  • (D) a carbon-based conductive additive conductivity can be imparted and an antistatic effect can be exhibited.
  • carbon black or the like is added in order to exhibit the antistatic effect, it causes a significant decrease in toughness in combination with magnesium oxide or the like.
  • the (D) carbon-based conductive additive imparts conductivity, a significant decrease in toughness can be suppressed. The mechanism will be described later.
  • each component of the POM resin composition of the present embodiment will be described.
  • the (A) polyacetal copolymer having specific terminal characteristics is used as the substrate resin.
  • the polyacetal copolymer is a resin having an oxymethylene group (-OCH 2- ) as a main constituent unit and having other comonomer units in addition to the oximethylene unit. Further, it is generally produced by copolymerizing formaldehyde or a cyclic oligomer of formaldehyde as a main monomer and a compound selected from cyclic ether or cyclic formal as a comonomer. Then, usually, the unstable portion at the end is removed and stabilized by hydrolysis.
  • trioxane which is a cyclic trimer of formaldehyde
  • Trioxane is generally obtained by reacting an aqueous formaldehyde solution in the presence of an acidic catalyst, and is purified by a method such as distillation before use.
  • the trioxane used for the polymerization preferably contains as little impurities as possible, such as water, methanol, and formic acid.
  • Examples of the comonomer cyclic ether and cyclic formal include ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, oxetane, tetrahydrofuran, trioxepan, 1,3-dioxane, 1,3-dioxolane, propylene glycol formal, diethylene glycol formal, and tri. Examples thereof include ethylene glycol formal, 1,4-butanediol formal, and 1,6-hexanediol formal.
  • a compound capable of forming a branched structure or a crosslinked structure can be used as a comonomer (or a tar monomer), and such compounds include methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, and 2-ethyl-hexyl.
  • alkyl or aryl glycidyl ethers such as glycidyl ether and phenyl glycidyl ether
  • alkylene glycols such as ethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether and butanediol diglycidyl ether
  • diglycidyl ethers of polyalkylene glycol examples thereof include alkyl or aryl glycidyl ethers such as glycidyl ether and phenyl glycidyl ether, alkylene glycols such as ethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether and butanediol diglycidyl ether, and diglycidyl ethers of polyalkylene glycol. These comonomer can be used alone or in combination of two or more.
  • the polyacetal copolymer as described above can generally be obtained by adding an appropriate amount of a molecular weight adjusting agent and cationically polymerizing using a cationic polymerization catalyst.
  • the molecular weight adjuster used, the cationic polymerization catalyst, the polymerization method, the polymerization apparatus, the deactivation treatment of the catalyst after the polymerization, the end stabilization treatment method of the crude polyacetal copolymer obtained by the polymerization, and the like are known from many documents. , Basically any of them can be used.
  • the molecular weight of the (A) polyacetal copolymer used in the present embodiment is not particularly limited, but a weight average molecular weight of about 10,000 to 400,000 is preferable.
  • the melt mass flow rate (MFR) (measured at 190 ° C. and a load of 2.16 kg according to ISO1133), which is an index of the fluidity of the resin, is preferably 0.1 to 100 g / 10 minutes, more preferably 0. .5-80g / 10 minutes.
  • the (A) polyacetal copolymer used in the present embodiment needs to have specific terminal characteristics as described above, and specifically, the hemiformal terminal group amount is 0.8 mmol / kg or less. It is essential to be there.
  • the hemiformal terminal group is represented by ⁇ OCH 2 OH, and the amount of such hemiformal terminal group can be determined by 1 H-NMR measurement, and a specific measurement method thereof is disclosed in JP-A-2001-11143. You can refer to the method described in.
  • the polyacetal copolymer (A) used in the present embodiment preferably has a hemiformal terminal group amount of 0.6 mmol / kg or less, and more preferably. It is 0.4 mmol / kg or less.
  • the lower limit of the amount of hemiformal terminal groups is not particularly limited.
  • the (A) polyacetal copolymer having specific terminal characteristics can be produced by reducing impurities contained in the monomer and the comonomer, selecting a production process, optimizing the production conditions thereof, and the like.
  • impurities such as water, alcohol (for example, methanol), and acid (for example, formic acid) contained in the monomer and comonomer. be.
  • a chain transfer agent that does not form an unstable terminal for example, a low molecular weight linear acetal having an alkoxy group at both ends such as methylal, contains an arbitrary amount to adjust the molecular weight of the polyacetal copolymer. be able to.
  • the amount of catalyst used during the polymerization reaction is also an important requirement. If the amount of the catalyst is too large, it becomes difficult to properly control the polymerization temperature, the decomposition reaction during the polymerization becomes predominant, and it becomes difficult to obtain a polyacetal copolymer having few unstable terminals. On the other hand, if the amount of the catalyst is too small, the polymerization reaction rate is lowered and the polymerization yield is lowered, which is not preferable.
  • any conventionally known method is possible, but a continuous lumpy polymerization method in which a liquid monomer is used to obtain a solid powder lumpy polymer as the polymerization progresses is industrially preferable, and the polymerization temperature is 60 to 60 to. It is desirable to keep it at 105 ° C, especially 65-100 ° C.
  • a method such as adding the polymer after polymerization to an aqueous solution containing a basic compound is possible as a method for deactivating the catalyst after polymerization.
  • the polymer obtained by the polymerization reaction is pulverized and subdivided into contact with an inactivating agent to promptly deactivate the catalyst.
  • a polymer to be deactivated by a catalyst is crushed, and 80% by mass or more, preferably 90% by mass, has a particle size of 1.5 mm or less, and 15% by mass or more, preferably 20% by mass or more is 0. It is desirable that the particles are subdivided to a particle size of 3 mm or less.
  • Examples of the basic compound for neutralizing and inactivating the polymerization catalyst include ammonia, amines such as triethylamine, tributylamine, triethanolamine, and tributanolamine, or oxides of alkali metals and alkaline earth metals. , Hydroxides, salts and other known catalytic deactivating agents can be used. These basic compounds are preferably added as an aqueous solution of 0.001 to 0.5% by mass, particularly 0.02 to 0.3% by mass.
  • the temperature of the preferable aqueous solution is 10 to 80 ° C, particularly preferably 15 to 60 ° C. Further, after the completion of the polymerization, it is preferable to immediately add the aqueous solution to these aqueous solutions to inactivate the catalyst.
  • a polyacetal copolymer having a small amount of unstable terminals can be produced by reducing impurities contained in the monomers and comonomer as described above, selecting a production process, and optimizing the production conditions thereof. Then, it is possible to further reduce the amount of hemiformal terminal groups through the stabilization step.
  • Stabilization steps include heating the polyacetal copolymer to a temperature above its melting point and treating it in a molten state to decompose and remove only unstable portions, or maintaining a heterogeneous system in an insoluble liquid medium at 80 ° C.
  • Known methods such as decomposing and removing only the unstable end portion by heat treatment at the above temperature can be mentioned.
  • (B) Hindered phenolic antioxidant examples include 2,2'-methylenebis (4-methyl-6-t-butylphenol) and hexamethylene-bis [3- (3,5-).
  • At least one or two or more selected from these antioxidants can be used.
  • the blending amount of the (B) hindered phenolic antioxidant in the present embodiment is 0.2 to 2.0 parts by mass and 0.2 to 1.5 parts by mass with respect to 100 parts by mass of the (A) POM resin. It is more preferable that it is a part.
  • the POM resin composition of the present embodiment contains at least one of magnesium oxide and zinc oxide (hereinafter, also referred to as “component (C)”).
  • component (C) used in the present embodiment has an excellent balance between improvement in detergent resistance (durability against acid components (hereinafter, also referred to as “acid resistance”)) and performance such as mechanical properties and moldability. It is preferable.
  • the BET specific surface area is 100 m 2 / g or more and the average particle size is 1.5 ⁇ m or less. By satisfying these conditions, acid resistance can be obtained while suppressing a decrease in toughness.
  • the BET specific surface area of magnesium oxide is preferably 100 to 500 m 2 / g, more preferably 120 to 300 m 2 / g.
  • the average particle size of magnesium oxide is preferably 0.2 to 1.3 ⁇ m, more preferably 0.3 to 1.0 ⁇ m.
  • the average particle size is determined by the particle size of 50% of the integrated value in the particle size distribution (volume basis) measured by the laser diffraction / scattering method.
  • the blending amount of the component (C) in the present embodiment is more than 2.0 parts by mass and 20 parts by mass or less, and 4.0 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of (A) POM resin. Is preferable.
  • the blending amount of the component (C) exceeds 2.0 parts by mass, it is particularly excellent in acid resistance, stable production is possible within 20 parts by mass, and it is particularly excellent in the balance of mechanical properties within 10 parts by mass. ..
  • the amount of the component (C) increased, the decomposition of unstable terminals in the POM resin was sometimes promoted, but the (A) POM resin of the present embodiment can suppress the decomposition.
  • (C) It was possible to find the property of improving acid resistance by increasing the amount of the component.
  • (D) Carbon-based conductive additive In the POM resin composition of the present embodiment, a predetermined amount of (D) carbon-based conductive additive is blended with respect to (A) POM resin.
  • the (D) carbon-based conductive additive is only (D1) carbon nanostructure (hereinafter, also referred to as "CNS"), and (D1) carbon nanostructure and (D2) carbon having a BET specific surface area of 300 m 2 / g or more. It is one selected from the combination with black. Then, by adding the (D) carbon-based conductive additive to the POM resin composition, conductivity is imparted and an antistatic effect is exhibited.
  • the CNS used in the present embodiment is a structure containing a plurality of carbon nanotubes in a bonded state, and the carbon nanotubes are bonded to other carbon nanotubes by a branched bond or a crosslinked structure. Details of such CNS are described in US Patent Application Publication No. 2013-0071565, US Pat. No. 9,133,031, US Pat. No. 9,447,259, US Pat. No. 9,111,658. It is described in the specification.
  • FIG. 1 schematically shows the CNS used in the present embodiment
  • (A) is a state before melt-kneading with a POM resin
  • (B) is a state immediately after the start of melt-kneading
  • (C) is after melt-kneading. Indicates the state of.
  • the CNS 10 before melt-kneading forms a structure in which a large number of branched carbon nanotubes 12 are entangled and bonded.
  • the CNS 10 is poured into the POM resin 20 and melt-kneaded, the CNS 10 is divided into a large number as shown in FIG. 1 (B).
  • each of the carbon nanotubes 12 is in contact with each other via the contact point 14. That is, in the state of FIG. 1C, in the POM resin, a large number of carbon nanotubes 12 are in contact with each other over a wide range to form a conductive path, so that conductivity is exhibited. Further, it is considered that the carbon nanotubes 12 are randomly entangled to form a three-dimensional network structure, so that the decrease in toughness can be suppressed.
  • the CNS shown in FIG. 1 (A) has a predetermined flake shape.
  • the flake-shaped CNS shown in FIG. 1 (A) contains a plurality of carbon nanotubes, and the carbon nanotubes are branched, crosslinked, and share a common wall with each other.
  • not all of the carbon nanotubes have structural characteristics such as branching, cross-linking, and sharing a common wall, and the carbon nanotubes as a whole have at least one of these structural characteristics. It suffices to have.
  • the form shown in FIG. 1 (C) is obtained by melt-kneading.
  • the flake-shaped CNS as described above is obtained by growing the CNS on a growth substrate such as a fiber material and extracting the grown CNS from the growth substrate.
  • Growth substrates such as fibers, tow, yarn, woven fabrics, non-woven fabrics, sheets, tapes and belts can be used in the CNS growth process. That is, the growth base material can be a fiber material having a size that can be spooled, and the formation of CNS can be continuously performed while the growth base material is conveyed. More specifically, the catalyst can be applied to the growth substrate and the CNS can be grown by the pore CVD process. Then, the growth substrate on which the CNS is formed can be stored and then rolled up to remove the CNS.
  • a catalyst containing a plurality of transition metal nanoparticles When growing CNS on a growth substrate, it is preferable to use a catalyst containing a plurality of transition metal nanoparticles.
  • the catalyst can be applied onto the growth substrate via particle adsorption, for example, direct catalyst application using vapor deposition with a liquid or colloidal precursor.
  • Transition metal nanoparticle catalysts include d-block transition metals or d-block transition metal salts.
  • the transition metal salt may be applied to the growth substrate without heat treatment, or the transition metal salt may be converted to a zero-valent transition metal on the growth substrate by heat treatment.
  • CNS contains carbon nanotubes in a network having a complex structural morphology, which is a CNS on a growth substrate under the growth conditions of carbon nanotubes produced at a rapid growth rate of several microns per second. It is considered that it is derived from the formation of.
  • the CNS that grows on the fiber can be formed by techniques such as microcavities, heat and plasma enhanced CVD techniques, laser ablation, arc discharge, and high pressure carbon monoxide (HiPCO). It is also possible to ionize the acetylene gas to generate a low temperature carbon plasma for synthesizing carbon nanotubes. At this time, the plasma is directed at the fiber material having a catalyst.
  • the carbon nanotubes are formed by the size of the carbon nanotube forming catalyst. Further, the synthesis of CNS can be facilitated by heating the sized fiber material to about 550 to 800 ° C.
  • a process gas such as argon, helium, or nitrogen
  • a carbon-containing gas such as acetylene, ethylene, ethanol, or methane. Then, the carbon nanotube grows at the position of the carbon nanotube forming catalyst.
  • the CNS used in this embodiment may be a commercially available product.
  • ATHLOS 200, ATHLOS 100, etc. manufactured by CABOT can be used.
  • carbon black having a BET specific surface area of 300 m 2 / g or more is used among the carbon blacks.
  • the carbon black is not used alone, but in combination with CNS. Since the POM resin composition containing the carbon black has high conductivity, the conductivity can be maintained even when used in combination with CNS. On the contrary, the POM resin composition containing carbon black having a BET specific surface area of less than 300 m 2 / g has low conductivity, and it is necessary to increase the amount to ensure sufficient conductivity, so that the toughness is increased. The decline cannot be suppressed.
  • the BET specific surface area is preferably 310 m 2 / g or more, more preferably 350 m 2 / g or more, and the upper limit is not particularly limited, but is about 2000 m 2 / g.
  • the BET specific surface area can be measured according to ASTM D4820.
  • Specific carbon blacks as described above include Ketjen Black EC300J (BET specific surface area: 800 m 2 / g), Ketjen Black EC600JD (BET specific surface area: 1270 m 2 / g), Lionite EC200L manufactured by Lion Corporation. (BET specific surface area: 377 m 2 / g) and the like.
  • the (D) carbon-based conductive additive is blended with respect to 100 parts by mass of the POM resin.
  • the blending amount of the CNS is preferably 0.5 to 2.0 parts by mass, more preferably 0.6 to 1.8 parts by mass, still more preferably 0.8 to 1.5 parts by mass.
  • the mass ratio ((D2) / (D1)) of (D1) CNS and (D2) carbon black is preferably 10 or less. , It is more preferable that it is more than 0 and 5 or less. When the mass ratio is 10 or less, the balance between conductivity and toughness can be ensured. Further, the closer the value of D2 / D1 is to 0, the more the CNS is blended in an excessive amount, but the CNS may be blended in an excessive amount as such. However, considering that CNS is expensive, the lower limit of the value of D2 / D1 is preferably 0.1 from the viewpoint of cost effectiveness.
  • (E) Polyalkylene Glycol In the POM resin composition of the present embodiment, a predetermined amount of (E) polyalkylene glycol is blended with respect to (A) POM resin.
  • These types are not particularly limited, but from the viewpoint of affinity with the POM resin, those containing polyethylene glycol or polypropylene glycol are preferable, and those containing polyethylene glycol are more preferable.
  • the number average molecular weight (Mn) of the polyalkylene glycol is not particularly limited, but is preferably 1,000 or more and 50,000 or less, and 5,000 or more and 30,000 or less, from the viewpoint of dispersibility in the polyacetal resin. It is more preferable to have.
  • the number average molecular weight is assumed to be a polystyrene-equivalent number average molecular weight determined by size exclusion chromatography (SEC) using tetrahydrofuran (THF) as a solvent.
  • the blending amount of (E) polyalkylene glycol in the present embodiment is 0.5 to 3.0 parts by mass and 0.8 to 2.5 parts by mass with respect to 100 parts by mass of (A) POM resin. Is preferable.
  • the upper limit of the blending amount is selected in consideration of the balance with the mechanical properties of the molded product. These may be used by mixing two or more kinds.
  • the POM resin composition of the present embodiment may contain other components, if necessary.
  • One or more known stabilizers for the POM resin composition can be added as long as the purpose and effect of the POM resin composition of the present embodiment are not impaired.
  • the method for producing a molded product using the POM resin composition of the present embodiment is not particularly limited, and a known method can be adopted.
  • the POM resin composition of the present embodiment may be put into an extruder, melt-kneaded and pelletized, and the pellets may be put into an injection molding machine equipped with a predetermined mold and injection-molded. can.
  • the above-mentioned POM resin composition of the present embodiment can be used as an automobile part described later, or can be a molded product having an antistatic function and resistance to an acid component.
  • the automobile parts of the present embodiment are molded by a conventional molding method, for example, injection molding, extrusion molding, compression molding, blow molding, vacuum molding, foam molding, rotary molding, etc., using the POM resin composition. Can be obtained by Even if the automobile parts of the present embodiment come into contact with a strong acid cleaning agent having a pH of 2 or less, deterioration is suppressed and a good surface appearance of the molded product can be maintained.
  • a strong acid cleaning agent having a pH of 2 or less, deterioration is suppressed and a good surface appearance of the molded product can be maintained.
  • the above-mentioned POM resin composition of the present embodiment is used as a method for imparting an antistatic effect to the polyacetal resin molded product of the present embodiment and improving resistance to an acid component.
  • the molded product obtained by molding the POM resin composition of the present embodiment is imparted with durability against an acid component and an antistatic effect without significantly reducing the toughness. That is, by using the POM resin composition of the present embodiment, the durability and antistatic effect of the POM resin composition with respect to the acid component can be exhibited, and the toughness is not significantly reduced.
  • the acid component one derived from an acidic detergent can be used.
  • each component with respect to the POM resin, a preferable content thereof, and other components are as described in the above-mentioned POM resin composition of the present embodiment.
  • Examples 1 to 15, Comparative Examples 1 to 12 In each Example / Comparative Example, the raw material components shown in Tables 1 and 2 were dry-blended, then put into a twin-screw extruder having a cylinder temperature of 200 ° C., melt-kneaded, and pelletized. In Tables 1 and 2, the numerical values of each component indicate parts by mass. The details of each raw material component used are shown below.
  • POM resin Polyacetal copolymer resin
  • A-1 Polyacetal copolymer resin
  • POM resin with hemiformal terminal group amount 0.7 mmol / kg
  • POM resin with hemiformal terminal group amount 1.0 mmol / kg
  • ISO1133 the MFR measured at 190 ° C. and a load of 2.16 kg is Both A-1 and A-2 were 9 g / 10 minutes.
  • the polyacetal copolymers A-1 to A-2 were obtained as follows.
  • A-1 A mixture of 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane was continuously supplied to a biaxial paddle type continuous polymerizer, and 10 ppm of boron trifluoride was added as a catalyst. Polymerization was performed. The mixture of trioxane and 1,3-dioxolane to be subjected to polymerization contained 10 ppm of water, 3.5 ppm of methanol and 5 ppm of formic acid as impurities.
  • the polymer discharged from the discharge port of the polymer is immediately added with an aqueous solution containing 1000 ppm of triethylamine, pulverized and stirred to deactivate the catalyst, and then centrifuged and dried to obtain both crude polyoxymethylene. A polymer was obtained.
  • this crude polyoxymethylene copolymer was supplied to a twin-screw extruder having a vent port.
  • 0.4% of a 0.3% aqueous solution of triethylamine was added to the crude polyoxymethylene copolymer, and the mixture was melt-kneaded at a resin temperature of about 220 ° C. to decompose unstable ends and a decomposition product.
  • the volatile matter containing the above was devolatile from the vent port under reduced pressure.
  • the polymer taken out from the die of the extruder was cooled and shredded to obtain a pellet-shaped polyacetal copolymer A-1 from which the unstable end portion was removed.
  • a mixture of 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane was continuously supplied to a twin-screw paddle type continuous polymerizer, and 15 ppm of boron trifluoride was added as a catalyst. Polymerization was performed.
  • the mixture of trioxane and 1,3-dioxolane to be subjected to polymerization contained 10 ppm of water, 3.5 ppm of methanol and 5 ppm of formic acid as impurities. Then, the polymer discharged from the discharge port of the polymerizer was subjected to the same treatment as in A-1 to obtain a pellet-shaped polyacetal copolymer A-2.
  • Hindered Phenolic Antioxidant B-1 Tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane (product name: Irganox1010, manufactured by BASF)
  • C Magnesium oxide, etc.
  • C-1 Magnesium oxide, specific surface area 135 m 2 / g, average particle size 0.9 ⁇ m (Kyowa Chemical Industry Co., Ltd., Kyowa Mag MF150)
  • C-2 Magnesium oxide, specific surface area 30 m 2 / g, average particle size 0.6 ⁇ m (Kyowa Chemical Industry Co., Ltd., Kyowa Mag MF30)
  • C-3 Magnesium oxide, specific surface area 155 m 2 / g, average particle size 7 ⁇ m (Kyowa Chemical Industry Co., Ltd., Kyowa Mag 150)
  • C-4 Zinc oxide (BET specific surface area 60-90 m 2 / g) (manufactured by Shodo Chemical Industry Co., Ltd., active zinc flower AZO)
  • D Carbon Nanostructure, Carbon Black
  • D-1 Carbon Nanostructure (manufactured by CABOT, ATHLOS 200)
  • D-2 Carbon black (manufactured by Lion Corporation, Ketjen Black EC300J, BET specific surface area: 800 m 2 / g)
  • D-3 Carbon black (manufactured by Lion Corporation, Lionite EC200L, BET specific surface area: 377m 2 / g)
  • D-4 Carbon black (manufactured by Denka Co., Ltd., Denka black, BET specific surface area: 65 m 2 / g)
  • the following acidic cleaning agents were used as the acidic cleaning agents.
  • Detergent Sulfuric acid: 1.5%
  • Hydrofluoric acid 1.5%
  • Phosphoric acid 10%
  • Spray of acid detergent-Leave the multipurpose test piece at 60 ° C for 4 hours-Leave the multipurpose test piece at 23 ° C and 50% RH for 4 hours-Spray the acid cleaner again-Leave the multipurpose test piece at 23 ° C and 50% RH for 16 hours One cycle was set, and each time this one cycle was completed, the state of crack generation on the surface of the dumbbell test piece was visually observed. Then, based on the number of cycles in which cracks were confirmed, evaluation was performed according to the following evaluation criteria. The evaluation results are shown in Tables 1 and 2. [Evaluation criteria] A; Number of cycles: 10 or more B; Number of cycles: 4-9 C; Number of cycles: 3 or less
  • FIG. 2 (A) shows the front surface
  • FIG. 2 (B) shows the back surface
  • a conductive paint Dotite D500, manufactured by Fujikura Kasei Co., Ltd.
  • a predetermined region hatchched region in FIG. 2 on each surface of the test piece and dried.
  • DIGITAL MULTIMETER R6450 manufactured by Advantest
  • Mold deposit A mold deposit test piece (disk type) was molded under the following conditions using the POM resin compositions prepared in Examples and Comparative Examples. [Evaluation methods] After 3000 shot molding, the surface of the cavity portion on the mold moving side was visually observed, and the amount of deposits was determined according to the following criteria. A: No deposits or slight deposits are confirmed. B: A large amount of deposits are confirmed * Molding machine: FANUC ROBOSHOT S-2000i 50B (FANUC Corporation) * Molding conditions: Cylinder temperature (° C) Nozzle-C1-C2-C3 205 215 205 185 ° C Injection pressure: 40 (MPa) Injection speed: 1.5 (m / min) Mold temperature: 60 (° C)
  • Comparative Example 1 is different from Example 1 in that the components (C) to (E) are not blended, and is inferior in acid resistance and conductivity.
  • Comparative Example 2 is inferior in conductivity to Example 1 in that the components (D) and (E) are not blended.
  • Comparative Example 3 is different from Example 1 in that the component (D) is not blended, and is inferior in conductivity.
  • Comparative Example 4 is inferior in acid resistance to Example 1 in that the components (C) and (E) are not blended.
  • Comparative Examples 5 and 6 are different from Example 1 in that the component (C) is not blended or is insufficient, respectively, and both are inferior in acid resistance.
  • Comparative Example 7 is inferior in acid resistance unlike Example 1 in that the component (C) is excessive.
  • Comparative Example 8 is inferior in conductivity to Example 1 in that the component (D) is too small.
  • Comparative Example 9 is different from Example 1 in that the component (D) is excessive, and is inferior in toughness.
  • Comparative Example 10 is different from Examples 11 and 13 in that the carbon black of the component (D) having a BET specific surface area of less than 300 m 2 / g is inferior in conductivity.
  • Comparative Example 11 is different from Example 1 in that a POM resin having an excessive amount of hemiformal terminal groups is used, and is inferior in moldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)ヘミホルマール末端基量が0.8mmol/kg以下であるポリアセタール共重合体樹脂100質量部に対し、(B)ヒンダードフェノール系酸化防止剤を0.2~2.0質量部、(C)酸化マグネシウム及び酸化亜鉛のうちの少なくとも1種を2.0質量部超20質量部以下、(D)炭素系導電添加剤を0.3~2.5質量部、及び(E)ポリアルキレングリコールを0.5~3.0質量部、を配合してなり、(D)炭素系導電添加剤が、(D1)カーボンナノストラクチャーのみ、及び(D1)カーボンナノストラクチャーと(D2)BET比表面積が300m2/g以上のカーボンブラックとの組合せから選ばれる一つである、ポリアセタール樹脂組成物である。

Description

ポリアセタール樹脂組成物及び自動車部品
 本発明は、ポリアセタール樹脂組成物、それを成形してなる自動車部品、並びにポリアセタール樹脂成形品に導電性を付与しつつ、酸成分に対する耐性を向上させる方法に関する。
 ポリアセタール樹脂又はポリアセタール共重合体(以下、これらを「POM樹脂」とも呼ぶ。)は、種々の物理的・機械特性、耐薬品性、摺動性に優れることからエンジニアリングプラスチックとして多方面で利用されている。例えば、POM樹脂はガソリンなどの炭化水素系燃料に対する耐性に優れるため、自動車の燃料ポンプ周辺のフランジやケース状の成形品に使用される。
 一方、諸外国では、自動車のホイールの洗剤として強酸性(pH=1程度)のクリーナーが使用されることが多い。そして、そのクリーナーの使用時に、上記のようなフランジの露出部分にクリーナーの飛沫が付着した場合、POM樹脂は酸成分に対する耐久性に劣るため、フランジ表面が劣化(分解)してしまう。そして、劣化した部分が起点となって、フランジに割れが発生することがある。
 そこで、POM樹脂の酸成分に対する耐久性を向上するため、本出願人は、塩基である酸化マグネシウム等を多量に添加したPOM樹脂組成物を提案した(特許文献1、2参照)。
 一方、上記のような燃料ポンプ周辺に用いられる成形品としては、静電気による燃料の引火を防止するため、成形品に導電性を付与し、帯電しないようにすることが求められる。POM樹脂に導電性を付与するための一策として、カーボンブラックや炭素繊維等の導電性フィラーを添加することが知られている(特許文献3、4参照)。
特許第6386124号公報 特許第6691171号公報 特公平07-002891号公報 特表2004-526596号公報
 しかしながら、POM樹脂組成物において、酸成分に対する耐久性を付与するために酸化マグネシウム等を添加し、さらに帯電防止効果を発現させるためにカーボンブラック等の導電性フィラーを添加すると、靭性が大幅に低下するという問題がある。すなわち、POM樹脂組成物において、帯電防止効果の発現と、酸成分に対する耐久性の発現とを同時に実現しようとすると靭性の著しい低下を招くこととなる。
 本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、靭性が大きく低下することなく、酸成分に対する耐久性と帯電防止効果が付与されたPOM樹脂組成物及び自動車部品、並びにPOM樹脂成形品に帯電防止効果を付与し、かつ、酸成分に対する耐性を向上させる方法を提供することにある。
 前記課題を解決する本発明の一態様は以下の通りである。
(1)(A)ヘミホルマール末端基量が0.8mmol/kg以下であるポリアセタール共重合体樹脂100質量部に対し、
 (B)ヒンダードフェノール系酸化防止剤を0.2~2.0質量部、
 (C)酸化マグネシウム及び酸化亜鉛のうちの少なくとも1種を2.0質量部超20質量部以下、
 (D)炭素系導電添加剤を0.3~2.5質量部、及び
 (E)ポリアルキレングリコールを0.5~3.0質量部、を配合してなり、
 前記(D)炭素系導電添加剤が、(D1)カーボンナノストラクチャーのみ、及び(D1)カーボンナノストラクチャーと(D2)BET比表面積が300m/g以上のカーボンブラックとの組合せから選ばれる一つである、ポリアセタール樹脂組成物。
(2)前記(D1)カーボンナノストラクチャーと前記(D2)カーボンブラックとの質量比((D2)/(D1))が10以下である、前記(1)に記載のポリアセタール樹脂組成物。
(3)前記酸化マグネシウムのBET比表面積が100m/g以上であり、平均粒径が1.5μm以下である、前記(1)又は(2)に記載のポリアセタール樹脂組成物。
(4)前記(1)~(3)のいずれかに記載のポリアセタール樹脂組成物の成形品からなる自動車部品。
(5)酸性洗浄剤と接触し得る環境下で用いられる、前記(4)に記載の自動車部品。
(6)前記(1)~(3)のいずれかに記載のポリアセタール樹脂組成物を用いる、ポリアセタール樹脂成形品に帯電防止効果を付与し、かつ、酸成分に対する耐性を向上させる方法。
(7)前記酸成分が、酸性洗浄剤由来である、前記(6)に記載の方法。
 本発明によれば、靭性が大きく低下することなく、酸成分に対する耐久性と帯電防止効果が付与されたPOM樹脂組成物及び自動車部品、並びにPOM樹脂成形品に帯電防止効果を付与し、かつ、酸成分に対する耐性を向上させる方法を提供することができる。
図1は、カーボンナノストラクチャーについて、(A)溶融混練前、(B)溶融混練開始直後、(C)溶融混練後の状態を模式的に示す図である。 図2は、実施例において、表面抵抗率及び体積抵抗率の測定に使用した試験片の(A)上面図、(B)裏面図である。
<ポリアセタール樹脂組成物>
 本実施形態のPOM樹脂組成物は、(A)ヘミホルマール末端基量が0.8mmol/kg以下であるポリアセタール共重合体樹脂100質量部に対し、(B)ヒンダードフェノール系酸化防止剤を0.2~2.0質量部、(C)酸化マグネシウム及び酸化亜鉛のうちの少なくとも1種を2.0質量部超20質量部以下、(D)炭素系導電添加剤を0.3~2.5質量部、及び(E)ポリアルキレングリコールを0.5~3.0質量部、を配合してなる。そして、(D)炭素系導電添加剤が、(D1)カーボンナノストラクチャーのみ、及び(D1)カーボンナノストラクチャーと(D2)BET比表面積が300m/g以上のカーボンブラックとの組合せから選ばれる一つである。
 本実施形態のPOM樹脂組成物においては、所定のPOM樹脂に対して(C)酸化マグネシウム及び酸化亜鉛のうちの少なくとも1種を配合することで酸成分に対する耐久性を付与することができる。また、(D)炭素系導電添加剤を配合することで、導電性を付与することができ、帯電防止効果を発現させることができる。ここで、従来であれば、帯電防止効果を発現させるためにカーボンブラック等を添加すると、酸化マグネシウム等と相まって靭性の著しい低下を招く。しかし、本実施形態においては、(D)炭素系導電添加剤により導電性を付与しているため、靭性の著しい低下を抑えることができる。そのメカニズムについては後述する。
 以下、本実施形態のPOM樹脂組成物の各成分について説明する。
[(A)ポリアセタール共重合体]
 本実施形態においては、基体樹脂として特定の末端特性を有する(A)ポリアセタール共重合体が用いられる。ポリアセタール共重合体は、オキシメチレン基(-OCH-)を主たる構成単位とし、オキシメチレン単位以外に他のコモノマー単位を有する樹脂である。また、一般的にはホルムアルデヒド又はホルムアルデヒドの環状オリゴマーを主モノマーとし、環状エーテルや環状ホルマールから選ばれた化合物をコモノマーとして共重合させることによって製造される。そして、通常、加水分解によって末端の不安定部分を除去して安定化される。
 特に、主モノマーとしてはホルムアルデヒドの環状三量体であるトリオキサンを用いるのが一般的である。トリオキサンは、一般的には酸性触媒の存在下でホルムアルデヒド水溶液を反応させることにより得られ、これを蒸留などの方法で精製して使用される。重合に用いるトリオキサンは、後述する如く、水、メタノール、蟻酸などの不純物の含有量が極力少ないものが好ましい。
 また、コモノマーである環状エーテル及び環状ホルマールとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、シクロヘキセンオキシド、オキセタン、テトラヒドロフラン、トリオキセパン、1,3-ジオキサン、1,3-ジオキソラン、プロピレングリコールホルマール、ジエチレングリコールホルマール、トリエチレングリコールホルマール、1,4-ブタンジオールホルマール、1,6-ヘキサンジオールホルマールなどが挙げられる。
 さらに、分岐構造や架橋構造を形成可能な化合物をコモノマー(或いはターモノマー)として使用することが可能であり、かかる化合物としては、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、2-エチル-ヘキシルグリシジルエーテル、フェニルグリシジルエーテルなどのアルキル又はアリールグリシジルエーテル、エチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテルなどのアルキレングリコール又はポリアルキレングリコールのジグリシジルエーテルなどが挙げられる。これらのコモノマーは、単独で又は二種以上組み合わせて使用できる。
 上記の如きポリアセタール共重合体は、一般には適量の分子量調整剤を添加し、カチオン重合触媒を用いてカチオン重合することにより得ることができる。使用される分子量調整剤、カチオン重合触媒、重合方法、重合装置、重合後の触媒の失活化処理、重合によって得られた粗ポリアセタールコポリマーの末端安定化処理法などは多くの文献によって公知であり、基本的にはそれらが何れも利用できる。
 本実施形態で使用する(A)ポリアセタール共重合体の分子量は特に限定されないが、重量平均分子量が10,000~400,000程度のものが好ましい。また、樹脂の流動性の指標となるメルトマスフローレート(MFR)(ISO1133に準じ、190℃、荷重2.16kgで測定)が0.1~100g/10分であるものが好ましく、さらに好ましくは0.5~80g/10分である。
 本実施形態において使用する(A)ポリアセタール共重合体は、前記の如く特定の末端特性を有していることが必要であり、具体的には、ヘミホルマール末端基量が0.8mmol/kg以下であることが必須である。
 ここでヘミホルマール末端基は-OCHOHで示されるものであり、かかるヘミホルマール末端基の量は1H-NMR測定により求めることができ、その具体的な測定方法は、特開2001-11143号公報に記載された方法を参照できる。
 使用する(A)ポリアセタール共重合体が上記の末端特性を有するものではなく、上限値を上回る場合、ホルムアルデヒド発生量が十分に低減されたPOM樹脂組成物を得ることができない。さらに、熱履歴の繰返しによって生じるホルムアルデヒドの発生量を低レベルに維持することが困難となる。
 この場合、成形時のモールドデポジットの発生が過大となり成形に支障をきたす。また、ホルムアルデヒドの発生が成形品中のボイド発生を促進し、機械物性においても不具合をもたらす場合もある。
 このような耐酸性を維持しながら成形性も維持する観点から、本実施形態において用いる(A)ポリアセタール共重合体は、ヘミホルマール末端基量が0.6mmol/kg以下のものが好ましく、さらに好ましくは0.4mmol/kg以下である。ヘミホルマール末端基量の下限は特に限定されるものではない。
 前記の如く特定の末端特性を有する(A)ポリアセタール共重合体は、モノマー及びコモノマーに含まれる不純物を低減し、製造プロセスの選択およびその製造条件の最適化などを行うことにより製造できる。
 以下に、本実施形態に係る、特定の末端特性を有する(A)ポリアセタール共重合体を製造する方法の具体例を挙げるが、何らこの方法に限定されるものではない。
 先ず、重合系で不安定末端を形成する活性不純物、具体的には、前記モノマー及びコモノマー中に含まれる水、アルコール(例えばメタノール)、酸(例えばギ酸)などの不純物を少なくすることが重要である。
 この含有量が過大であると当然ながら不安定末端部の少ないポリアセタール共重合体を得るのに好ましくない。なお、不安定末端を形成することの無い連鎖移動剤、例えば、メチラールの如き両末端がアルコキシ基を有する低分子量線状アセタール等は任意の量を含有させ、ポリアセタール共重合体の分子量を調整することができる。
 次に、重合反応時に使用する触媒の量も重要な要件である。触媒量が多すぎると重合温度の適正な制御を困難にし、重合中の分解反応が優勢となって、不安定末端部の少ないポリアセタール共重合体を得ることが困難となる。一方、触媒量が少なすぎると重合反応速度の低下や重合収率が低下を招くため好ましくない。
 重合法としては、従来公知の方法が何れも可能であるが、液状モノマーを用いて重合の進行と共に固体粉塊状のポリマーを得る連続式塊状重合法が工業的には好ましく、重合温度は60~105℃、特に65~100℃に保つことが望ましい。
 三フッ化ホウ素又はその配位化合物からなる触媒を用いた場合、重合後の触媒の失活法としては、塩基性化合物を含む水溶液中に重合後のポリマーを加える等の方法が可能である。ただし、本実施形態に係るポリアセタール共重合体を得るためには、重合反応により得られた重合体を粉砕し細分化して失活剤と接触させ、速やかに触媒の失活を図るのが好ましい。
 例えば、触媒の失活に供する重合体を粉砕し、その80質量%以上、好ましくは90質量%が1.5mm以下の粒径であり、15質量%以上、好ましくは20質量%以上が0.3mm以下の粒径に細分化されていることが望ましい。
 重合触媒を中和し失活するための塩基性化合物としては、アンモニア、あるいは、トリエチルアミン、トリブチルアミン、トリエタノールアミン、トリブタノールアミン等のアミン類、あるいは、アルカリ金属、アルカリ土類金属の酸化物、水酸化物、塩類、その他公知の触媒失活剤を用いることができる。これら塩基性化合物は、0.001~0.5質量%、特に0.02~0.3質量%の水溶液として加えるのが好ましい。
 また、好ましい水溶液の温度は10~80℃、特に好ましくは15~60℃である。また、重合終了後、これらの水溶液に速やかに投入し触媒を失活させることが好ましい。
 以上のようなモノマー及びコモノマーに含まれる不純物の低減、製造プロセスの選択およびその製造条件の最適化などにより不安定末端量の少ないポリアセタール共重合体を製造することができる。そして、安定化工程を経ることで更にヘミホルマール末端基量を低減することが可能である。
 安定化工程としては、ポリアセタール共重合体をその融点以上の温度に加熱して溶融状態で処理して不安定部分のみを分解除去することや、不溶性液体媒体中で不均一系を保って80℃以上の温度で加熱処理することで不安定末端部分のみを分解除去すること等公知の方法が挙げられる。
[(B)ヒンダードフェノール系酸化防止剤]
 本実施形態において使用される(B)ヒンダードフェノール系酸化防止剤としては、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、ヘキサメチレン-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール-ビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、1,3,5-トリメチル-2,4,6-トリス(3’,5’-ジ-t-ブチル-4-ヒドロキシ-ベンジル)ベンゼン、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-ブチリデンビス(6-t-ブチル-3-メチル-フェノール)、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、2-t-ブチル-6-(3-t-ブチル-5-メチル-2-ヒドロキシベンジル)-4-メチルフェニルアクリレート、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン等が例示され、中でも、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、ヘキサメチレン-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]が好ましい。
 本実施形態においては、これらの酸化防止剤から選ばれた少なくとも一種又は二種以上を使用することができる。
 本実施形態における(B)ヒンダードフェノール系酸化防止剤の配合量は、(A)POM樹脂100質量部に対し、0.2~2.0質量部であり、0.2~1.5質量部であることがより好ましい。
[(C)酸化マグネシウム、酸化亜鉛]
 本実施形態のPOM樹脂組成物には、酸化マグネシウム及び酸化亜鉛のうちの少なくとも1種(以下、「(C)成分」とも呼ぶ。)が配合される。本実施形態において使用される(C)成分は、耐洗浄剤性(酸成分に対する耐久性(以下、「耐酸性」とも呼ぶ。))の改善と機械物性や成形性等の性能のバランスが優れており好ましい。
 酸化マグネシウムに関しては、BET比表面積が100m/g以上であり、平均粒径が1.5μm以下であることが好ましい。これらの条件を満たすことで、靭性の低下を抑制しつつ耐酸性が得られることとなる。酸化マグネシウムのBET比表面積は、100~500m/gが好ましく、120~300m/gがより好ましい。また、酸化マグネシウムの平均粒径は、0.2~1.3μmが好ましく、0.3~1.0μmがより好ましい。平均粒径は、レーザー回折/散乱法より測定した粒度分布(体積基準)における積算値50%の粒径によって定めたものである。
 本実施形態における(C)成分の配合量は、(A)POM樹脂100質量部に対し、2.0質量部超20質量部以下であり、4.0質量部以上15質量部以下であることが好ましい。(C)成分の配合量は、2.0質量部を超えることで耐酸性において特に優れ、また20質量部以内で安定的な生産が可能となり、10質量部以内で機械特性のバランスにおいて特に優れる。これまでは(C)成分が多くなるとPOM樹脂中の不安定末端の分解を促進することがあったが、本実施形態の(A)POM樹脂であれば、その分解を抑制することができることから、(C)成分を増量することによる耐酸性向上の特性を見出すことができた。
[(D)炭素系導電添加剤]
 本実施形態のPOM樹脂組成物には、(A)POM樹脂に対して所定量の(D)炭素系導電添加剤が配合される。(D)炭素系導電添加剤は、(D1)カーボンナノストラクチャー(以下、「CNS」とも呼ぶ。)のみ、及び(D1)カーボンナノストラクチャーと(D2)BET比表面積が300m/g以上のカーボンブラックとの組合せから選ばれる一つである。そして、POM樹脂組成物に(D)炭素系導電添加剤を添加することにより、導電性が付与され、帯電防止効果が発揮される。また、カーボンブラックを単独で添加すると、得られる成形品の靭性が低下するが、(D)炭素系導電添加剤の添加によっては靭性の低下を抑えることができる。
 以下に、(D1)カーボンナノストラクチャー及び(D2)BET比表面積が300m/g以上のカーボンブラックのそれぞれについて説明する。
((D1)カーボンナノストラクチャー(CNS))
 本実施形態で使用するCNSは、複数のカーボンナノチューブが結合した状態で含む構造体であり、カーボンナノチューブは分岐結合や架橋構造で他のカーボンナノチューブと結合している。このようなCNSの詳細は、米国特許出願公開第2013-0071565号明細書、米国特許第9,133,031号明細書、同第9,447,259号明細書、同第9,111,658号明細書に記載されている。
 CNSの形態について図面を参照して説明する。図1は本実施形態で使用するCNSを模式的に示しており、(A)はPOM樹脂と溶融混練する前の状態、(B)は溶融混練開始直後の状態、(C)は溶融混練後の状態を示す。図1(A)に示すように、溶融混練前のCNS10は、分岐したカーボンナノチューブ12が多数絡み合って結合した構造体をなす。そして、CNS10をPOM樹脂20中に投じて溶融混練すると、図1(B)に示すようにCNS10は多数に分断される。溶融混練が進むと、CNS10はさらに分断され、図1(C)に示すように各カーボンナノチューブ12の1本1本が接点14を介して接した状態となる。すなわち、図1(C)の状態では、POM樹脂中において、広範囲にわたりカーボンナノチューブ12が多数接した状態となり導電経路を形成するため、導電性が発現する。また、カーボンナノチューブ12が無秩序に絡み合うことで三次元網目構造を形成するため、靭性の低下を抑えることができると考えられる。
 図1(C)に示す形態のCNSを得るには、図1(A)に示すCNSが所定のフレーク状であることが好ましい。図1(A)に示すフレーク状のCNSは、複数のカーボンナノチューブを含み、カーボンナノチューブは枝分かれし、架橋結合され、及び相互に共通の壁を共有している。この場合、複数のカーボンナノチューブのすべてが枝分かれ、架橋結合、及び共通の壁を共有するといった構造的特徴を有するものではなく、複数のカーボンナノチューブが全体としてこれらの構造的特徴のうち、少なくとも1つを有していればよい。そして、上記のようなフレーク状のCNSを用いることで、溶融混練により図1(C)に示す形態となる。
 
 上記のようなフレーク状のCNSは、繊維材料等の成長基材上に成長させ、成長したCNSを成長基材からCNSを取り出すことで得られる。CNSの成長プロセスでは、繊維、トウ、糸、織物、不織布、シート、テープ、ベルト等の成長基材を使用することができる。すなわち、成長基材はスプール可能な寸法の繊維材料とすることができ、成長基材を搬送させながら、CNSの形成を連続的に実行することができる。
 より具体的には、触媒を成長基材に塗布し、細孔CVDプロセスによりCNSの成長を図ることができる。そして、CNSを形成した成長基材を保存して、その後、CNSを取り出すために巻き取ることができる。
 CNSを成長基材上で成長させるに際し、複数の遷移金属ナノ粒子を含む触媒を用いることが好ましい。成長基材上に触媒を塗布するには、例えば、液体又はコロイド状前駆物質による蒸着を使用した直接的な触媒塗布などの粒子吸着を介して実行すればよい。遷移金属ナノ粒子触媒としては、d-ブロック遷移金属又はd-ブロック遷移金属塩が含まれる。遷移金属塩を、熱処理せずに成長基材に塗布してもよいし、あるいは、遷移金属塩を、熱処理により成長基材上でゼロ価の遷移金属に転換してもよい。
 CNSは、複雑な構造形態を有するネットワーク中にカーボンナノチューブを含むが、この複雑な構造形態は、毎秒数ミクロン程度の急速な成長速度で生成するカーボンナノチューブの成長条件で、成長基材上にCNSを形成したことに由来するものと考えられる。
 繊維材料上でカーボンナノチューブを合成するに当たり、米国特許出願公開第2004/0245088号に開示されている内容を含め、カーボンナノチューブを形成する様々な技術を採用することができる。繊維上で成長するCNSは、例えばマイクロキャビティ、熱及びプラズマ強化CVD技術、レーザアブレーション、アーク放電、及び高圧一酸化炭素(HiPCO)等の技術によって形成することができる。アセチレンガスを電離して、カーボンナノチューブ合成用の低温カーボンプラズマを生成することもできる。このとき、プラズマは、触媒を有する繊維材料に向けられる。このように、繊維材料上でCNSを合成するには、(a)カーボンプラズマを形成することと、(b)繊維材料に配置された触媒にカーボンプラズマを向けること、の2つの条件を含むことが好ましい。成長するカーボンナノチューブの直径は、カーボンナノチューブ形成触媒のサイズによって規定される。また、サイジングされた繊維材料を550~800℃程度に加熱することによりCNSの合成を容易にすることができる。カーボンナノチューブの成長を開始するには、2つのガスを反応器内に流入させる。すなわち、アルゴン、ヘリウム、又は窒素などのプロセスガスと、アセチレン、エチレン、エタノール又はメタンなどの炭素含有ガスである。そして、カーボンナノチューブは、カーボンナノチューブ形成触媒の位置で成長する。
 本実施形態において使用するCNSは市販品としてもよい。例えば、CABOT社製のATHLOS 200、ATHLOS 100等を使用することができる。
((D2)BET比表面積が300m/g以上のカーボンブラック)
 本実施形態においては、カーボンブラックの中でも、BET比表面積が300m/g以上のカーボンブラックを用いる。ただし、当該カーボンブラックは単独で用いるのではなく、CNSと組合せて用いる。当該カーボンブラックが配合されたPOM樹脂組成物は導電性が高いため、CNSと併用しても導電性を保持することができる。逆に、BET比表面積が300m/g未満のカーボンブラックが配合されたPOM樹脂組成物は導電性が低く、導電性を十分に確保するには配合量を増加させる必要があり、そうすると靭性の低下を抑えることができない。当該BET比表面積は、310m/g以上が好ましく、350m/g以上がより好ましく、上限としては特に限定はないが、2000m/g程度である。
 なお、BET比表面積は、ASTM D4820に準拠して測定することができる。
 上記のような特定のカーボンブラックとしては、ライオン(株)製、ケッチェンブラックEC300J(BET比表面積:800m/g)、ケッチェンブラックEC600JD(BET比表面積:1270m/g)、ライオナイトEC200L(BET比表面積:377m/g)等が挙げられる。
 本実施形態のPOM樹脂組成物において、(D)炭素系導電添加剤はPOM樹脂100質量部に対して0.3~2.5質量部が配合される。(D)炭素系導電添加剤の配合量が0.3質量部未満であると導電性に劣り、2.5質量部を超えると靭性が低下する。当該CNSの配合量は0.5~2.0質量部が好ましく、0.6~1.8質量部がより好ましく、0.8~1.5質量部がさらに好ましい。
 また、(D1)CNSと(D2)カーボンブラックとの組合せで用いる場合、(D1)CNSと(D2)カーボンブラックとの質量比((D2)/(D1))が10以下であることが好ましく、0超5以下であることがより好ましい。当該質量比が10以下であると、導電性と靭性とのバランスを確保することができる。また、D2/D1の値が0に近づくほど、CNSが過剰量配合されることを意味するが、そのようにCNSが過剰量配合されてもよい。ただ、CNSは高価であることを考慮すれば、費用対効果の兼ね合いから、D2/D1の値の下限は、0.1であることが好ましい。
[(E)ポリアルキレングリコール]
 本実施形態のPOM樹脂組成物には、(A)POM樹脂に対して所定量の(E)ポリアルキレングリコールが配合される。これらの種類は特に限定されないが、POM樹脂との親和性の観点から、ポリエチレングリコール又はポリプロピレングリコールを含有するものが好ましく、ポリエチレングリコールを含有するものがより好ましい。
 ポリアルキレングリコールの数平均分子量(Mn)は特に限定されないが、ポリアセタール樹脂中での分散性の観点から、1,000以上50,000以下であることが好ましく、5,000以上30,000以下であることがより好ましい。なお、本明細書において、数平均分子量は、テトラヒドロフラン(THF)を溶媒とするサイズ排除クロマトグラフィ(SEC)によって求めたポリスチレン換算の数平均分子量であるものとする。
 本実施形態における(E)ポリアルキレングリコールの配合量は、(A)POM樹脂100質量部に対し、0.5~3.0質量部であり、0.8~2.5質量部であることが好ましい。(E)ポリアルキレングリコールの配合量が0.5質量部未満であると耐酸性及び靭性が低下し、3.0質量部を超えると引張強度が低下する。配合量の上限は、成形体の機械物性とのバランスで選択される。これらは2種以上を混合して使用してもよい。
[その他の成分]
 本実施形態のPOM樹脂組成物は、必要に応じて他の成分を含有するものであってもよい。本実施形態のPOM樹脂組成物の目的・効果を阻害しない限り、POM樹脂組成物に対する公知の安定剤を1種又は2種以上添加することができる。
 本実施形態のPOM樹脂組成物を用いて成形品を作製する方法としては特に限定はなく、公知の方法を採用することができる。例えば、本実施形態のPOM樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。
 以上の本実施形態のPOM樹脂組成物は、後記の自動車部品とすることもできるし、あるいは帯電防止機能及び酸成分に対する耐性を有する成形品とすることもできる。
<自動車部品>
 本実施形態の自動車部品は、上述の本実施形態のPOM樹脂組成物の成形品からなる。従って、本実施形態の自動車部品は、靭性が大きく低下することなく、酸成分に対する耐久性と帯電防止効果が付与される。従って、自動車の燃料ポンプ周辺のフランジやケース状の成形品に使用されることが好適である。すなわち、帯電防止効果に優れるため、静電気による燃料の引火を防止することができるし、酸成分に対する耐久性に優れるため、強酸性(pH=1程度)のクリーナーが付着した場合であっても、表面の劣化を防止することができる。すなわち、本実施形態の自動車部品は、酸性洗浄剤に接触し得る環境下で用いることができる。
 本実施形態の自動車部品は、上記POM樹脂組成物を用いて、慣用の成形方法、例えば、射出成形、押出成形、圧縮成形、ブロー成形、真空成形、発泡成形、回転成形等の方法で成形することにより得ることができる。
 本実施形態の自動車部品は、例えばpH2以下の強酸性洗浄剤に接触したとしても、劣化が抑制され、良好な成形品表面外観を保持できる。
<ポリアセタール樹脂成形品に帯電防止効果を付与し、かつ、酸成分に対する耐性を向上させる方法>
 本実施形態のポリアセタール樹脂成形品に帯電防止効果を付与し、かつ、酸成分に対する耐性を向上させる方法は、上述の本実施形態のPOM樹脂組成物を用いる。
 上述の通り、本実施形態のPOM樹脂組成物を成形して得られる成形品は、靭性が大きく低下することなく、酸成分に対する耐久性と帯電防止効果が付与される。つまり、本実施形態のPOM樹脂組成物を用いることにより、POM樹脂組成物の酸成分に対する耐久性と帯電防止効果を発現することができ、かつ、靭性が大きく低下することもない。酸成分としては、酸性洗浄剤由来のものを用いることができる。
 本実施形態の方法において、POM樹脂に対する各成分及びその好ましい含有量、及び他の成分は上述の本実施形態のPOM樹脂組成物で説明した通りである。
 以下に、実施例により本実施形態をさらに具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。
[実施例1~15、比較例1~12]
 各実施例・比較例において、表1及び表2に示す各原料成分をドライブレンドした後、シリンダー温度200℃の二軸押出機に投入して、溶融混練し、ペレット化した。なお、表1、表2において、各成分の数値は質量部を示す。
 また、使用した各原料成分の詳細を以下に示す。
(A)ポリアセタール共重合体樹脂(POM樹脂)
 A-1;ヘミホルマール末端基量:0.7mmol/kgのPOM樹脂
 A-2;ヘミホルマール末端基量:1.0mmol/kgのPOM樹脂
 ISO1133に準じ、190℃、荷重2.16kgで測定したMFRはA-1、A-2ともに9g/10分であった。
 ポリアセタール共重合体A-1~A-2は、次のようにして得た。
 A-1:二軸パドルタイプの連続式重合機にトリオキサン96.7質量%と1,3-ジオキソラン3.3質量%の混合物を連続的に供給し、触媒として三フッ化ホウ素10ppmを添加し重合を行った。また、重合に供するトリオキサンと1,3-ジオキソランの混合物は、不純物として水10ppm、メタノール3.5ppm、ギ酸5ppmを含有するものであった。
 重合機吐出口より排出された重合体は、直ちにトリエチルアミン1000ppm含有水溶液を加えて粉砕、攪拌処理を行うことにより触媒の失活を行い、次いで、遠心分離、乾燥を行うことにより粗ポリオキシメチレン共重合体を得た。
 次いで、この粗ポリオキシメチレン共重合体を、ベント口を有する二軸押出機に供給した。次いで、0.3%のトリエチルアミン水溶液を粗ポリオキシメチレン共重合体に対し、0.4%添加し、樹脂温度約220℃で溶融混練することにより不安定末端部を分解すると共に、分解生成物を含む揮発分をベント口から減圧脱揮した。押出機のダイから取り出した重合体を冷却、細断することにより、不安定末端部の除去されたペレット状のポリアセタール共重合体A-1を得た。
 A-2:二軸パドルタイプの連続式重合機にトリオキサン96.7質量%と1,3-ジオキソラン3.3質量%の混合物を連続的に供給し、触媒として三フッ化ホウ素15ppmを添加し重合を行った。また、重合に供するトリオキサンと1,3-ジオキソランの混合物は、不純物として水10ppm、メタノール3.5ppm、ギ酸5ppmを含有するものであった。その後、重合機吐出口より排出された重合体に対して上記A-1と同様の処理を行い、ペレット状のポリアセタール共重合体A-2を得た。
(B)ヒンダードフェノール系酸化防止剤
 B-1:テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(製品名:Irganox1010,BASF社製)
(C)酸化マグネシウム等
 C-1:酸化マグネシウム、比表面積135m/g、平均粒径0.9μm(協和化学工業(株)製、キョーワマグMF150)
 C-2:酸化マグネシウム、比表面積30m/g、平均粒径0.6μm(協和化学工業(株)製、キョーワマグMF30)
 C-3:酸化マグネシウム、比表面積155m/g、平均粒径7μm(協和化学工業(株)製、キョーワマグ150)
 C-4:酸化亜鉛(BET比表面積 60~90m/g)(正同化学工業(株)製、活性亜鉛華AZO)
(平均粒径の測定)
 (株)堀場製作所製、レーザー回折/散乱式粒度分布測定装置LA-920を用いて、以下の測定条件の下、レーザー回折/散乱法により粒度分布を測定し、積算値50%の平均粒径(50%d)を求めた。
~測定条件~
 ・循環速度:5
 ・レーザー光源:632.8nmHe-Neレーザー1mW、タングステンランプ50W・検出器:リング状75分割シリコンフォトダイオード×1、シリコンフォトダイオード×12
 ・分散媒:蒸留水
 ・超音波:有り
 ・透過率:75~90%
 ・水との相対屈折率:1.32
 ・粒子径基準:体積
(D)カーボンナノストラクチャー、カーボンブラック
 D-1:カーボンナノストラクチャー(CABOT社製、ATHLOS 200)
 D-2:カーボンブラック(ライオン(株)製、ケッチェンブラックEC300J、BET比表面積:800m/g)
 D-3:カーボンブラック(ライオン(株)製、ライオナイトEC200L、BET比表面積:377m/g)
 D-4:カーボンブラック(デンカ(株)製、デンカブラック、BET比表面積:65m/g)
(E)ポリアルキレングリコール
 E-1:ポリエチレングリコール(三洋化成工業(株)製、PEG6000S)
<評価>
 実施例及び比較例で調製したPOM樹脂組成物を用い、ISO294-1に記載の多目的試験片を、ISO9988-1,2に準じた条件で射出成形機(EC40,東芝機械(株)製)にて射出成形により作製し、以下の(1)から(3)の評価に用いた。
(1)酸性洗浄剤への耐性(耐酸性)の評価
 POM樹脂組成物の酸性洗浄剤への耐性を評価するため、上記多目的試験片の両端を固定し、負荷歪み:2.0%の割合で湾曲させた。そして、多目的試験片の表面に酸性洗浄剤をスプレーし、スプレー後の多目的試験片を60℃の条件下で4時間放置した。その後、多目的試験片を23℃50%RHの条件下で4時間放置した。その後、酸性洗浄剤を再度スプレーし、23℃50%RHの条件下で16時間放置した。
 酸性洗浄剤として、以下の酸性洗浄剤を用いた。
  洗浄剤:硫酸:1.5%、フッ化水素酸:1.5%、リン酸:10%
 酸性洗浄剤のスプレー-多目的試験片の60℃4時間の放置-多目的試験片の23℃50%RH4時間の放置-再度酸性洗浄剤のスプレー-多目的試験片の23℃50%RH16時間の放置を1サイクルとし、この1サイクルが終了する毎に、ダンベル試験片表面のクラック発生状況を目視で観察した。そして、クラックが確認されたサイクル数を基に、以下の評価基準に従い評価した。評価結果を表1及び表2に示す。
[評価基準]
 A;サイクル数:10以上
 B;サイクル数:4~9
 C;サイクル数:3以下
(2)引張破壊呼び歪(靭性)の評価
 上記多目的試験片を用いてISO527-1、2に準拠した引張破壊呼び歪の測定を実施し、以下の評価基準に従い評価した。評価結果を表1及び表2に示す。
[評価基準]
 A:10%以上
 B:6~9%
 C:5%未満
(3)導電性
 上記多目的試験片を用いて以下の評価をした。
(表面抵抗率・体積抵抗率)
 上記のようにして得た多目的試験片の外観を図2に示す。図2(A)は表面を示し、図2(B)は裏面を示す。当該試験片の各面の所定領域(図2のハッチング領域)に導電塗料(ドータイトD500、藤倉化成(株)製)を塗布して乾燥した。その後、低抵抗率測定装置(DIGITAL MULTIMETER R6450、アドバンテスト製)を使用し、図2(A)のA-B間の抵抗を測定し、これを表面抵抗率とした。また、図2のC-D間の抵抗を測定し、これを体積抵抗率とした。表面抵抗率及び体積抵抗率のそれぞれについて、以下の評価基準に従い評価した。評価結果を表1及び表2に示す。なお、表面抵抗率の測定上限は5.0×10Ω/□であり、体積抵抗率の測定上限は1.8×1011Ω・cmである。
[表面抵抗率の評価基準]
 A:1.0×10Ω/□以下
 B:1.0×10Ω/□超1.0×10Ω/□以下
 C:1.0×10Ω/□超
[体積抵抗率の評価基準]
 A:1.0×10Ω・cm以下
 B:1.0×10Ω・cm超1.0×10Ω・cm以下
 C:1.0×10Ω・cm超
(4)成形性:モールドデポジット
 実施例及び比較例で調製したPOM樹脂組成物を用い、下記条件でモールドデポジット試験片(円盤型)を成形した。
[評価方法]
 3000shot成形した後、金型移動側のCavity部表面を目視にて観察し、以下の基準に従って付着物量を判定した。
 A:付着物は確認されないもしくはわずかに確認される。
 B:多量の付着物が確認される
  *成形機: FANUC ROBOSHOT S-2000i 50B(ファナック(株))
  *成形条件:シリンダー温度(℃) ノズル-C1-C2-C3
                  205 215 205 185℃
   射出圧力:40(MPa)
   射出速度:1.5(m/min)
   金型温度:60(℃)
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 表1及び表2より、実施例1~15においてはいずれの評価も良好な結果が得られたことが分かる。これに対して、比較例1~12においては、すべての評価を同時に良好な結果とすることができなかった。
 比較例1は、(C)~(E)成分が配合されていない点で実施例1と異なり、耐酸性及び導電性に劣る。比較例2は、(D)及び(E)成分が配合されていない点で実施例1と異なり、導電性に劣る。比較例3は、(D)成分が配合されていない点で実施例1と異なり、導電性に劣る。比較例4は、(C)及び(E)成分が配合されていない点で実施例1と異なり、耐酸性に劣る。比較例5及び6は、それぞれ、(C)成分が配合されていないか過少である点で実施例1と異なり、いずれも耐酸性に劣る。比較例7は、(C)成分が過剰である点で実施例1と異なり耐酸性に劣る。比較例8は、(D)成分が過少である点で実施例1と異なり、導電性に劣る。比較例9は、(D)成分が過剰である点で実施例1と異なり、靭性に劣る。比較例10は、(D)成分のカーボンブラックとしてBET比表面積が300m/gに満たないものを用いた点で実施例11及び13とは異なり、導電性に劣る。比較例11は、ヘミホルマール末端基量が過剰のPOM樹脂を用いている点で実施例1と異なり、成形性に劣る。

Claims (7)

  1.  (A)ヘミホルマール末端基量が0.8mmol/kg以下であるポリアセタール共重合体樹脂100質量部に対し、
     (B)ヒンダードフェノール系酸化防止剤を0.2~2.0質量部、
     (C)酸化マグネシウム及び酸化亜鉛のうちの少なくとも1種を2.0質量部超20質量部以下、
     (D)炭素系導電添加剤を0.3~2.5質量部、及び
     (E)ポリアルキレングリコールを0.5~3.0質量部、を配合してなり、
     前記(D)炭素系導電添加剤が、(D1)カーボンナノストラクチャーのみ、及び(D1)カーボンナノストラクチャーと(D2)BET比表面積が300m/g以上のカーボンブラックとの組合せから選ばれる一つである、ポリアセタール樹脂組成物。
  2.  前記(D1)カーボンナノストラクチャーと前記(D2)カーボンブラックとの質量比((D2)/(D1))が10以下である、請求項1に記載のポリアセタール樹脂組成物。
  3.  前記酸化マグネシウムのBET比表面積が100m/g以上であり、平均粒径が1.5μm以下である、請求項1又は2に記載のポリアセタール樹脂組成物。
  4.  請求項1~3のいずれか1項に記載のポリアセタール樹脂組成物の成形品からなる自動車部品。
  5.  酸性洗浄剤と接触し得る環境下で用いられる、請求項4に記載の自動車部品。
  6.  請求項1~3のいずれか1項に記載のポリアセタール樹脂組成物を用いる、ポリアセタール樹脂成形品に帯電防止効果を付与し、かつ、酸成分に対する耐性を向上させる方法。
  7.  前記酸成分が、酸性洗浄剤由来である、請求項6に記載の方法。
PCT/JP2021/035360 2020-10-09 2021-09-27 ポリアセタール樹脂組成物及び自動車部品 WO2022075107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022517888A JP7217384B2 (ja) 2020-10-09 2021-09-27 ポリアセタール樹脂組成物及び自動車部品
US18/030,572 US12037487B2 (en) 2020-10-09 2021-09-27 Polyacetal resin composition and automobile part
MX2023004042A MX2023004042A (es) 2020-10-09 2021-09-27 Composición de resina de poliacetal y parte de automóvil.
KR1020237012741A KR102587117B1 (ko) 2020-10-09 2021-09-27 폴리아세탈 수지 조성물 및 자동차 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020171176 2020-10-09
JP2020-171176 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022075107A1 true WO2022075107A1 (ja) 2022-04-14

Family

ID=81126726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035360 WO2022075107A1 (ja) 2020-10-09 2021-09-27 ポリアセタール樹脂組成物及び自動車部品

Country Status (5)

Country Link
US (1) US12037487B2 (ja)
JP (1) JP7217384B2 (ja)
KR (1) KR102587117B1 (ja)
MX (1) MX2023004042A (ja)
WO (1) WO2022075107A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022137998A1 (ja) * 2020-12-23 2022-06-30

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032081A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation マスターバッチおよびそれを配合した組成物
JP2007084604A (ja) * 2005-09-20 2007-04-05 Asahi Kasei Chemicals Corp ポリオキシメチレン樹脂製ハードディスクランプ
JP2008527128A (ja) * 2005-01-14 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア 導電性ポリオキシメチレン組成物
JP2008189891A (ja) * 2007-02-08 2008-08-21 Misuzu Kogyo:Kk ポリアセタール樹脂コンポジット材、ポリアセタール樹脂コンポジット材からなる平面カム、及びその平面カムの製造方法
JP2010144112A (ja) * 2008-12-22 2010-07-01 Polyplastics Co 燃料用部品
JP2011132370A (ja) * 2009-12-24 2011-07-07 Polyplastics Co ポリアセタール樹脂組成物の製造方法
JP2012140482A (ja) * 2010-12-28 2012-07-26 Hodogaya Chem Co Ltd ポリアセタール樹脂/カーボンナノチューブ導電性樹脂複合材料
CN102634162A (zh) * 2012-05-09 2012-08-15 四川大学 一种导热聚甲醛复合材料及其制备方法
CN102675818A (zh) * 2012-05-24 2012-09-19 兖矿鲁南化肥厂 一种增强增韧聚甲醛及其制备方法
JP2013028737A (ja) * 2011-07-29 2013-02-07 Showa Denko Kk ポリオキシメチレン樹脂組成物及びそれからなる成形品
CN103897331A (zh) * 2014-04-21 2014-07-02 四川大学 一种导热聚甲醛复合材料及其制备方法
JP2014122264A (ja) * 2012-12-20 2014-07-03 Asahi Kasei Chemicals Corp 導電性ポリアセタール樹脂組成物のペレット及びその製造方法
JP2018172456A (ja) * 2017-03-31 2018-11-08 ポリプラスチックス株式会社 ポリアセタール樹脂組成物
JP2019218442A (ja) * 2018-06-19 2019-12-26 ポリプラスチックス株式会社 ポリアセタール樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072891B2 (ja) 1986-05-16 1995-01-18 ポリプラスチックス株式会社 ポリアセタ−ル樹脂組成物及びその製造方法
JPS6386124U (ja) 1986-11-20 1988-06-06
TW289021B (ja) 1993-05-08 1996-10-21 Hoechst Ag
US6730401B2 (en) 2001-03-16 2004-05-04 Eastman Chemical Company Multilayered packaging materials for electrostatic applications
CA3055734A1 (en) * 2017-03-07 2018-09-13 Esprix Technologies, LP. Aliphatic polyketone modified with carbon nanostructures
CN115885017B (zh) 2020-06-30 2024-08-23 宝理塑料株式会社 热塑性树脂组合物、部件及其制造方法以及热塑性树脂组合物的导电性表达方法
CN115916905B (zh) 2020-06-30 2024-08-23 宝理塑料株式会社 热塑性树脂组合物、部件及其制造方法以及热塑性树脂组合物的导电性表达方法
JP2022015904A (ja) 2020-07-10 2022-01-21 ポリプラスチックス株式会社 熱可塑性樹脂組成物及び部材、並びに熱可塑性樹脂組成物からなる部材の製造方法及び機械強度の向上方法
CN116783245A (zh) 2020-12-23 2023-09-19 宝理塑料株式会社 聚缩醛树脂组合物以及燃料接触体
WO2022210013A1 (ja) * 2021-04-02 2022-10-06 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および成形体
US20240026126A1 (en) * 2022-04-07 2024-01-25 Molecular Rebar Design, Llc Compositions with carbon nanotubes for low hysteresis elastomers

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527128A (ja) * 2005-01-14 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア 導電性ポリオキシメチレン組成物
WO2007032081A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation マスターバッチおよびそれを配合した組成物
JP2007084604A (ja) * 2005-09-20 2007-04-05 Asahi Kasei Chemicals Corp ポリオキシメチレン樹脂製ハードディスクランプ
JP2008189891A (ja) * 2007-02-08 2008-08-21 Misuzu Kogyo:Kk ポリアセタール樹脂コンポジット材、ポリアセタール樹脂コンポジット材からなる平面カム、及びその平面カムの製造方法
JP2010144112A (ja) * 2008-12-22 2010-07-01 Polyplastics Co 燃料用部品
JP2011132370A (ja) * 2009-12-24 2011-07-07 Polyplastics Co ポリアセタール樹脂組成物の製造方法
JP2012140482A (ja) * 2010-12-28 2012-07-26 Hodogaya Chem Co Ltd ポリアセタール樹脂/カーボンナノチューブ導電性樹脂複合材料
JP2013028737A (ja) * 2011-07-29 2013-02-07 Showa Denko Kk ポリオキシメチレン樹脂組成物及びそれからなる成形品
CN102634162A (zh) * 2012-05-09 2012-08-15 四川大学 一种导热聚甲醛复合材料及其制备方法
CN102675818A (zh) * 2012-05-24 2012-09-19 兖矿鲁南化肥厂 一种增强增韧聚甲醛及其制备方法
JP2014122264A (ja) * 2012-12-20 2014-07-03 Asahi Kasei Chemicals Corp 導電性ポリアセタール樹脂組成物のペレット及びその製造方法
CN103897331A (zh) * 2014-04-21 2014-07-02 四川大学 一种导热聚甲醛复合材料及其制备方法
JP2018172456A (ja) * 2017-03-31 2018-11-08 ポリプラスチックス株式会社 ポリアセタール樹脂組成物
JP2019218442A (ja) * 2018-06-19 2019-12-26 ポリプラスチックス株式会社 ポリアセタール樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022137998A1 (ja) * 2020-12-23 2022-06-30
JP7217385B2 (ja) 2020-12-23 2023-02-02 ポリプラスチックス株式会社 ポリアセタール樹脂組成物及び燃料接触体

Also Published As

Publication number Publication date
KR102587117B1 (ko) 2023-10-10
US12037487B2 (en) 2024-07-16
US20230331977A1 (en) 2023-10-19
JP7217384B2 (ja) 2023-02-02
JPWO2022075107A1 (ja) 2022-04-14
KR20230069981A (ko) 2023-05-19
MX2023004042A (es) 2023-08-31

Similar Documents

Publication Publication Date Title
US11634576B2 (en) Polyacetal resin composition
US10844191B2 (en) Polyacetal resin composition
WO2022075107A1 (ja) ポリアセタール樹脂組成物及び自動車部品
JP6318237B2 (ja) ポリアセタール樹脂組成物及びその成形体
WO2022075004A1 (ja) ポリアセタール樹脂組成物及び自動車部品
JP7217385B2 (ja) ポリアセタール樹脂組成物及び燃料接触体
TW202323341A (zh) 甲醛(Oxymethylene)共聚物之製造方法及成形品之製造方法
EP4032944B1 (en) Method for producing oxymethylene copolymer resin composition, and oxymethylene copolymer resin composition
TWI765800B (zh) 氧化亞甲基共聚物樹脂組成物之製造方法及氧化亞甲基共聚物樹脂組成物
JP5783685B2 (ja) ポリオキシメチレン製スライド部品
JP2000230026A (ja) ポリアセタール樹脂の連続製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022517888

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237012741

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877408

Country of ref document: EP

Kind code of ref document: A1