WO2022073851A1 - Cuve étanche et thermiquement isolante - Google Patents

Cuve étanche et thermiquement isolante Download PDF

Info

Publication number
WO2022073851A1
WO2022073851A1 PCT/EP2021/076989 EP2021076989W WO2022073851A1 WO 2022073851 A1 WO2022073851 A1 WO 2022073851A1 EP 2021076989 W EP2021076989 W EP 2021076989W WO 2022073851 A1 WO2022073851 A1 WO 2022073851A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
block
blocks
foam
primary
Prior art date
Application number
PCT/EP2021/076989
Other languages
English (en)
Inventor
Antoine PHILIPPE
Sébastien DELANOE
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to JP2023521318A priority Critical patent/JP2023546360A/ja
Priority to KR1020227007891A priority patent/KR102541573B1/ko
Priority to EP21786212.7A priority patent/EP4226073A1/fr
Priority to CN202180068656.5A priority patent/CN116324259A/zh
Publication of WO2022073851A1 publication Critical patent/WO2022073851A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/20Building or assembling prefabricated vessel modules or parts other than hull blocks, e.g. engine rooms, rudders, propellers, superstructures, berths, holds or tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/40Synthetic materials
    • B63B2231/50Foamed synthetic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks. More specifically, the invention relates to a sealed and thermally insulating tank having a primary sealed membrane and a secondary sealed membrane, the primary sealed membrane being corrugated.
  • a sealed and thermally insulating vessel comprising a vessel wall retained on a supporting structure, the vessel wall including, in the direction of the thickness from the outside towards the inside of the vessel , a secondary insulating barrier retained on the support structure, a secondary waterproof membrane retained on the secondary insulating barrier, a primary insulating barrier retained on the secondary waterproof membrane and a corrugated primary waterproof membrane retained on the primary insulating barrier.
  • Such a sealed and thermally insulating tank can in particular be used in the transport of cold liquid products, such as liquefied natural gas (LNG), in particular on board a floating structure such as a ship.
  • LNG liquefied natural gas
  • the primary waterproof membrane is typically corrugated in two directions, that is to say it has a first series of corrugations extending parallel to a first direction, and a second series of corrugations extending parallel to a second direction.
  • the first direction and the second direction can be mutually perpendicular.
  • the primary sealed membrane In such a tank, the primary sealed membrane is directly in contact with the cold liquid product to be transported, and therefore undergoes both mechanical stresses related to deformations of the floating structure in service and thermal stresses related to temperature variations inside. of the tank, in particular when it is cold and to the temperature gradient between the inside of the tank and the outside of the tank. It is therefore important, in order to optimize the life of the primary waterproof membrane, to ensure that the stresses are distributed as evenly as possible between the undulations of the primary waterproof membrane.
  • One idea underlying the invention is to propose a sealed and thermally insulating tank in which the stresses undergone by the primary sealed membrane are more evenly distributed between the undulations thereof.
  • the invention provides a sealed and thermally insulating vessel comprising a vessel wall retained on a support structure, the vessel wall including, in the direction of the thickness from the outside towards the inside of the tank, a secondary insulating barrier retained on the load-bearing structure, a secondary waterproof membrane retained on the secondary insulating barrier, a primary insulating barrier retained on the secondary waterproof membrane and a corrugated primary waterproof membrane retained on the primary insulating barrier, in which the primary insulating barrier comprises a plurality of juxtaposed insulating blocks, each insulating block comprising a bottom plate and a block of thermally insulating foam arranged on the bottom plate, the bottom plate of each insulating block projecting from the block of thermally insulating foam insulating so as to provide each time a space between the block of thermally insulating foam and the block of thermally insulating foam of an adjacent insulating block, wherein the primary insulating barrier further comprises a plurality of bridging elements, each bridging element being disposed in
  • the primary waterproof membrane is corrugated.
  • the primary insulating barrier comprises foam blocks and bridging elements arranged in the spaces between the foam blocks straddling the insulating blocks, it is ensured that the primary insulating barrier deforms as uniformly as possible, which allows then to distribute the stresses as evenly as possible between the undulations of the primary waterproof membrane.
  • the bridging elements tend to eliminate, or at the very least limit, the relative displacements between the insulating blocks. Such relative displacements can occur, for example, under the effect of the accelerations experienced by the primary insulating barrier when the ship is sailing and/or under the effect of deformations of the hull when the ship is sailing. By eliminating or limiting these relative displacements, a balance of the static pre-loads is ensured in particular between the various corrugated zones of the primary sealed membrane.
  • such a tank may comprise one or more of the following characteristics.
  • each insulating block comprises a cover plate, the foam block being placed between the bottom plate and the cover plate, and the primary insulating membrane being retained on the cover plates of the insulating blocks.
  • the cover plate and/or the bottom plate are made of plywood.
  • the primary waterproof membrane has a first series of undulations extending parallel to a first direction, and each undulation of the first series of undulations is arranged in line with a first slot provided in a block of thermally insulating foam of an insulating block or in line with a gap formed between a bridging element and a block of thermally insulating foam of an insulating block.
  • the primary waterproof membrane has a second series of undulations extending parallel to a second direction, and each undulation of the second series of undulations is arranged in line with a second slot provided in a block of thermally insulating foam of an insulating block or in line with a gap formed between a bridging element and a block of thermally insulating foam of an insulating block.
  • the second direction is perpendicular to the first direction.
  • each bridging element is bonded to an internal face of the bottom plates of said two adjacent insulating blocks.
  • the internal face of the bottom plate of each insulating block has at least two grooves, each groove extending along an edge of said bottom plate over part or all of said edge of the baseplate.
  • said grooves of the bottom plate are configured to collect an excess of glue which is directed towards the gap between two adjacent bottom plates by the pressure of the bridging element on the internal face of the plates of bottom.
  • said grooves extend parallel to the respective edge of the bottom plate along which they extend.
  • each bridging element has two grooves, the grooves extending parallel to each other and being arranged on either side of a gap between the bottom plates of said two adjacent insulating blocks .
  • said grooves of the bridging element are configured to collect an excess of glue which is directed towards the gap between two adjacent bottom plates by the pressure of the bridging element on the internal face of the plates. bottom.
  • said grooves extend parallel to the respective edges of the bottom plates delimiting said gap.
  • each bridging element has a tongue intended to be received in a gap between the bottom plates of said two adjacent insulating blocks.
  • Such a tongue makes it possible to prevent a possible excess of glue which would be directed towards the gap between two adjacent bottom plates by the pressure of the bridging element on the bottom plates.
  • a flexible strip for example made of kraft paper, is arranged under each bridging element so as to be received in a gap between the bottom plates of said two adjacent insulating blocks.
  • Such a flexible strip can be interposed between the secondary waterproof membrane and the glue which was used to bond the bridging elements, which eliminates or at the very least limits the risk that a portion of the secondary waterproof membrane is stuck by this glue.
  • the insulating blocks of the primary insulating barrier are arranged at regular spaces in rows parallel to the first direction and to the second direction.
  • the primary insulating barrier further comprises a plurality of corner elements, each corner element being arranged between the foam blocks of four neighboring insulating blocks, being fixed to an internal face of the bottom plates of said four neighboring insulating blocks and covering part of said internal faces.
  • the corner elements can be staggered relative to the foam blocks of the insulating blocks.
  • This staggered arrangement promotes the distribution of mechanical forces over several foam blocks and makes it possible to locally limit the movements of the insulating blocks relative to each other in the event of sloshing (also known as "sloshing") of the cold liquid product. contained in the tank and/or during deformations of the ship's hull during navigation.
  • the corner elements provide a mechanical connection between the neighboring insulating blocks which prevents the mutual spacing of the insulating blocks.
  • the relative displacements of the insulating blocks with respect to each other are limited, which makes it possible to more uniformly stress the undulations of the primary sealed membrane when the vessel is cooled.
  • the corner elements are glued to said internal face of the bottom plates of said four neighboring insulating blocks.
  • each space between the foam blocks of four neighboring insulating blocks is occupied by an end portion of a bridging element.
  • each space between the foam blocks of four neighboring insulating blocks is occupied by an end portion of a bridging element limits the risk of these foam blocks moving in the event of sloshing of the cold liquid product contained in the tank or deformation of the hull during navigation.
  • each insulating block of the primary insulating barrier is retained on the secondary sealed membrane by a mechanical coupler, the mechanical coupler passing through the secondary sealed membrane at the level of the center of the bottom plate of the insulating block.
  • each mechanical coupler is received in a well presented by the corresponding insulating block.
  • each insulating block of the primary insulating barrier is retained on the secondary sealed membrane by a plurality of mechanical couplers, each mechanical coupler passing through the secondary sealed membrane at a corner of the bottom plate of the insulating block .
  • each insulating block of the primary insulating barrier can be positioned by its bottom plate during the assembly of the primary insulating barrier, which facilitates the assembly of the vessel wall.
  • each mechanical coupler is received in a well that has a corner element.
  • the secondary sealed membrane is made by welding metal strakes having raised edges, said raised edges being received in lower slots that each insulating block of the primary insulating barrier has.
  • each bridging element located in the extension of said lower slots has additional lower slots to receive said raised edges.
  • the secondary waterproof membrane is corrugated and produced by welding metal sheets, each metal sheet having at least one corrugation portion, said corrugation portions being received in housings that each insulating block of the barrier has primary insulation.
  • each bridging element located in the extension of said housings has additional housings to receive said corrugation portions.
  • each bridging element comprises a layer of thermally insulating foam which is fixed to an internal face of the bottom plates of said two adjacent insulating blocks.
  • each bridging element comprises a layer of thermally insulating foam and a bottom panel, for example made of plywood, the layer of thermally insulating foam being glued to the bottom panel and the bottom panel being fixed to a internal face of the bottom plates of said two adjacent insulating blocks, preferably by gluing.
  • each bridging element comprises a layer of thermally insulating foam and a bottom composite, the layer of thermally insulating foam being glued to the bottom composite and the bottom panel being fixed to an internal face of the bottom plates said two adjacent insulating blocks, preferably by gluing.
  • the composite can be a fiber-reinforced polymer resin plate, or a fiber-reinforced polymer resin sheet with optional metal strip.
  • each bridging element further comprises a cover panel bonded to the layer of thermally insulating foam.
  • the invention also provides a vessel for transporting a cold liquid product, the vessel comprising a double hull and a tank described above arranged in the double hull.
  • the invention also provides a transfer system for a cold liquid product, the system comprising a ship described above, insulated pipes arranged so as to connect the tank installed in the hull of the ship to an installation floating or onshore storage facility and a pump for driving a flow of cold liquid product through the insulated pipes from or to the floating or onshore storage facility to or from the ship's tank.
  • the invention also provides a use of a vessel described above for the loading or unloading of a cold liquid product, in which a cold liquid product is conveyed through insulated pipes from or to a floating or onshore storage facility to or from the vessel's tank.
  • The is a side view similar to the , showing a bridging element and partially showing the bottom plates of two insulating blocks of the tank of the , according to another variant.
  • a structure can be implemented for extended surfaces having various orientations, for example to cover bottom, ceiling and side walls of a tank. The direction of the is therefore not limiting in this respect.
  • the tank wall is attached to the wall of a supporting structure 1.
  • “above” will refer to a position located closer to the inside of the tank and “below” a position located closer to the structure.
  • carrier 1 regardless of the orientation of the vessel wall with respect to the earth's gravity field.
  • the load-bearing structure 1 can be constituted by the internal hull of a double-hulled ship or by a structure built inside this internal hull.
  • the vessel wall is composed successively in its thickness of a secondary insulating barrier 2 retained on the wall of the load-bearing structure 1, of a secondary sealed membrane 3 retained on the secondary insulating barrier 2, of a primary insulating barrier 4 retained on the secondary waterproof membrane 3 and a primary waterproof membrane 5 retained on the primary insulating barrier 4.
  • the secondary insulating barrier 2 consists of a plurality of parallelepiped-shaped secondary insulating blocks 2a which are juxtaposed, so as to substantially cover the internal surface of the supporting structure 1.
  • each secondary insulating block 2a comprises a thermally insulating foam block 2b and a cover plate 2c.
  • the cover plate 2c is arranged above the foam block 2b and extends parallel to the wall of the supporting structure 1.
  • the cover plate 2c has two grooves 2d parallel to each other and extending in a direction parallel to one of the side pairs of the secondary insulating block 2a.
  • the grooves 2d have a shape substantially of an inverted T to receive angle-shaped welding flanges.
  • the part of the welding flanges which projects upwards from the cover plate 2c allows the anchoring of the secondary waterproof membrane 3.
  • the secondary waterproof membrane 3 consists of a plurality of strakes each having raised edges. The raised edges of each strake are welded to the welding flanges according to the known technique.
  • the strakes are, for example, made of Invar®, that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1.2 ⁇ 10 ⁇ 6 and 2 ⁇ 10 ⁇ 6 K ⁇ 1 .
  • the strakes may for example have a thickness of the order of 0.7 mm.
  • the strakes can be made of an iron alloy with a high manganese content, the expansion coefficient of which is typically between 7.10 -6 and 9.10 -6 K -1 .
  • the strakes are preferably oriented parallel to the longitudinal direction of the ship.
  • the primary insulating barrier 4 essentially consists of a plurality of primary insulating blocks 10, a plurality of bridging elements 20 and a plurality of corner elements 150.
  • the relative arrangements of the primary insulating blocks 10, the bridging elements 20 and corner elements 150 will be described later.
  • the primary insulating blocks 10 each have lower slots 8 to receive the raised edges of the strakes.
  • two lower slots 8 are provided for each primary insulating block 10, but a different number of lower slots 8 could be provided depending on the ratio of the number of strakes and the size of the primary insulating blocks 10.
  • the primary waterproof membrane 5 is corrugated. More precisely, in a manner known per se and as can be seen in FIGS. 1 and 2, the primary sealed membrane 5 has a first series of undulations 61 and a second series of undulations 62.
  • the undulations 61 are parallel to each other and extend in a first direction d1.
  • the corrugations 62 are parallel to each other and extend in a second direction d2.
  • the second direction d2 is here perpendicular to the first direction d1.
  • the corrugations 61 and 62 project towards the inside of the tank.
  • the primary waterproof membrane 5 is obtained by assembling a plurality of corrugated metal sheets 60, three of which are visible on the .
  • Each corrugated metal sheet 60 has a portion of the corrugations 61 and 62.
  • the corrugated metal sheets 60 are, for example, made of stainless steel or aluminum.
  • the corrugated metal sheets 60 are rectangular, and preferably have width and length dimensions which are whole multiples of a spacing between the corrugations 61 and 62 and also whole multiples of the dimensions of the primary insulating blocks 10. note that there is a slight over-length of the sheets 60 in order to ensure a covering of a given sheet on an adjacent sheet.
  • the undulations 61 and 62 are continuous and cross each other.
  • the corrugated metal sheets 60 have portions of the corrugations 61 and 62 spaced from each other, so that the corrugations 61 and 62 are discontinuous and do not intersect each other.
  • the corrugated metal sheets 60 can be fixed, for example by spot welds, on the anchoring strips 69 which the primary insulating blocks 10 present.
  • These anchoring strips 69 are housed in countersinks (not shown) present on the cover plates 13 of the insulating blocks 10 and the cover panels 23 of the bridging elements 20.
  • the anchoring strips 69 are shown on the but not on the so as not to overload the drawing.
  • certain anchoring strips 69 can be replaced by thermal protection in order to avoid damaging the cover panels 13, 23 during the production of sealing welds on the periphery of the metal sheets.
  • the secondary waterproof membrane 3 can also be corrugated and made by assembling corrugated metal sheets, like the primary waterproof membrane 5.
  • housings are provided in order to receive the corrugations presented by the corrugated metal sheets constituting the secondary waterproof membrane 3.
  • a primary insulating block 10 comprises a bottom plate 11, a thermally insulating foam block 12, and a cover plate 13.
  • the foam block 12 consists of a thermally insulating foam, which may for example be a polymer foam, for example a polyethylene, polyurethane or other foam, optionally reinforced with fibers, for example glass fibers.
  • Polymer foam typically has a density between 110 and 170 kg/m 3 and more particularly equal to 130 kg/m 3 .
  • the block of foam 12 is fixed to the bottom plate 11, for example by gluing.
  • the cover plate 13 is placed on the foam block 12.
  • the foam block 12 is fixed to the cover plate 13, for example by gluing.
  • the cover plate 13 and/or the bottom plate 11 can be made, for example, of plywood.
  • the assembly consisting of the cover plate 13 and the block of foam 12 has a generally parallelepipedic outer shape, as can be seen in the .
  • the bottom plate 11 also has a generally parallelepipedal outer shape. Its sides are parallel to the sides of the assembly consisting of the cover plate 13 and the foam block 12. Its center is aligned with the center of the assembly consisting of the cover plate 13 and the foam block 12. However , as can be seen in the , the bottom plate 11 protrudes from the foam block 12, i.e. the geometric envelope defined by the sides of the bottom plate 11 is larger than, and entirely contains, the geometric envelope defined by the sides of the foam block 12.
  • the insulating blocks 10 are arranged at regular spaces in rows parallel to the directions d1 and d2.
  • the centers of the insulating blocks 10 are arranged at regular spaces in rows parallel to the directions d1 and d2.
  • the insulating blocks 10 are retained on the secondary waterproof membrane 3 and on the secondary insulating barrier 2 using mechanical couplers 29, only one of which is visible on the .
  • Each mechanical coupler 29 passes through the secondary sealed membrane 3 and the center of the bottom plate 11 of an insulating block 10.
  • the mechanical couplers 29 will be described in more detail below in relation to the second embodiment.
  • the number 180 has designated a well made in the insulating block 10 and allowing access to the mechanical coupler 29. This well 180 can be closed off by a thermally insulating plug (not shown) before installing the primary waterproof membrane 5.
  • each insulating block 10 Since the bottom plates 11 of each insulating block 10 project beyond the foam block 12 of this insulating block 10, there remains a space between the foam blocks 12 of two adjacent insulating blocks 10. This space is occupied by one or more bridging elements 20.
  • a bridging element 20 comprises a bottom panel 21, a thermally insulating foam block 22 and a cover panel 23.
  • the block of foam 22 consists of a thermally insulating foam, which may for example be a polymer foam, for example a polyethylene, polyurethane or other foam, optionally reinforced with fibers, for example glass fibers.
  • Polymer foam typically has a density between 110 and 170 kg/m 3 and more particularly equal to 130 kg/m 3 .
  • the foam of the foam block 22 and the foam of the foam block 12 can be identical, in order to facilitate the manufacture of the wall of the tank and also in order to avoid creating inhomogeneities in the thermal insulation properties of the barrier primary insulation 4.
  • the block of foam 22 is fixed to the bottom panel 21, for example by gluing.
  • the cover panel 23 is placed on the foam block 22.
  • the foam block 22 is fixed to the cover panel 23, for example by gluing.
  • the cover panel 23 can be made for example of plywood.
  • the plywood of the cover panel 23 and the plywood of the cover plate 13 can be identical, in order to facilitate the manufacture of the wall of the tank and also in order to avoid creating inhomogeneities in the thermal insulation properties. of the primary insulating barrier 4.
  • the bottom panel 21 can be made for example of plywood, and the plywood of the bottom panel 21 and the plywood of the bottom panel 11 can be identical.
  • the bottom panel 21 and/or the cover panel 23 can be made of a composite material.
  • the cover panel 23 can be a fiber polymer resin plate.
  • the bottom panel 21 can be a fiber-reinforced polymer resin plate, or a fiber-reinforced polymer resin sheet with optional metal strapping.
  • the bridging element 20 has a generally parallelepipedic outer shape, as can be seen in the .
  • the sides of the bridging element 20 are typically parallel to the sides of the two adjacent insulating blocks 10 .
  • the bridging element 20 is fixed to the bottom plates 11 of the two adjacent insulating blocks 10 so as to cover part of said bottom plates 11. This fixing is preferably carried out by gluing, more particularly by gluing using an epoxy glue or a polyurethane glue, such bonding being relatively easy to achieve.
  • the bridging element 20 can however be fixed to the bottom plates 11 by any other suitable means, for example by screwing, by clipping or by a combination of the means which have just been mentioned.
  • the bridging elements 20 which are located in the extension of the lower slots 8 also have lower slots 9 extending the lower slots 8, so as to receive the raised edges of the strakes of the secondary waterproof membrane 3.
  • the bridging elements 20 instead of the lower slots 9, the bridging elements 20 have additional housings extending the housings of the insulating blocks 10, these additional housings receiving the undulations of the corrugated metal sheets constituting the secondary waterproof membrane 3.
  • the primary insulating barrier 4 comprises the foam blocks 12 and the bridging elements 20 arranged in the spaces between the foam blocks 12 straddling the insulating blocks 10, it is ensured that the primary insulating barrier 4 deforms the most uniformly possible, which then makes it possible to distribute the stresses as evenly as possible between the undulations 61, 62 of the primary waterproof membrane 5.
  • the bridging elements 20 tend to eliminate, or at the very least limit, the relative displacements between the insulating blocks 10. Such relative displacements can occur, for example, under the effect of the accelerations to which the primary insulating barrier 4 is subjected. when the ship is sailing and/or under the effect of deformations of the hull when the ship is sailing. By eliminating or limiting these relative displacements, a balance of the static pre-loads is ensured in particular between the different corrugated zones of the primary sealed membrane 5.
  • the undulations 62 successively comprise an undulation 62-1 arranged at right angles to the center of a block of foam 12 of an insulating block 10, then two undulations 62-2 arranged in line with the interstices formed between a bridging element 20 and the foam blocks 12 of two insulating blocks 10, then again a corrugation 62-1, and so on.
  • the insulating blocks 10 have slots 172 opposite which the corrugations 62-1 are arranged. Slots 172 extend through cover plates 13 and through part of foam blocks 12.
  • slots 172 are able to open slightly when the undulation 62-1 opposite deforms under the effect of a stress.
  • the foam of the foam blocks 12 allows the opening of the corrugation 62-1. This avoids transferring the stresses undergone by an undulation 62-1 onto the neighboring undulations 62-2.
  • the interstices between the bridging elements 20 and the foam blocks 12 of two insulating blocks 10 play a similar role to that of the slots 172 vis-à-vis the corrugations 62-2. It is then understood that thanks to the slots 172 and the interstices between the bridging elements 20 and the foam blocks 12, the stresses can be distributed more evenly between the undulations 62-1 and the undulations 62-2, and therefore more evenly distributed over the within the primary waterproof membrane 5.
  • the undulations 61 by traversing the series of undulations 61 in the direction d2, the undulations 61 successively comprise an undulation arranged in line with the center of a block of foam 12 of an insulating block 10, then two corrugations arranged in line with the interstices provided between a bridging element 20 and the foam blocks 12 of two insulating blocks 10, and so on.
  • This arrangement plays a role quite similar to that of the arrangement described above of the series of corrugations 62.
  • the insulating blocks 10 have slots 171 at the right of which are installed some of the corrugations of the series of corrugations 61, the slots 171 playing with these corrugations a role quite similar to that of the slots 172 with the corrugations 62-1.
  • the corrugated metal sheets 60 constituting the primary waterproof membrane 5 are fixed to anchoring strips 69.
  • the anchoring strips 69 are housed in counterbores (not shown) that have the plates 13 of the insulating blocks 10 and the cover panels 23 of the bridging elements 20. More specifically, an anchoring strip 69 of this type is present between each corrugation of the series of corrugations 61 and each corrugation of the series d corrugations 62. Anchor strips 69 are shown in the but not on the so as not to overload the drawing.
  • the primary insulating barrier 4 comprises corner elements 150.
  • corner elements 150 are visible on the and is shown in section on the .
  • the corner elements 150 comprise, similarly to the bridging elements 20, a bottom panel (not visible on the ), a block of thermally insulating foam (not visible on the ), and a cover panel 153.
  • the foam of the corner member foam block 150 and the foam of the foam block 12 can be identical, in order to facilitate the manufacture of the wall of the vessel and also in order to avoid creating inhomogeneities in the properties of thermal insulation of the primary insulating barrier 4.
  • This block of foam is fixed to the bottom panel of the corner element 150, for example by gluing and/or by screwing.
  • Cover panel 153 is disposed over the foam block.
  • the foam block is fixed to the cover panel 153, for example by gluing.
  • the cover panel 153 can be made, for example, of plywood.
  • the plywood of the cover panel 153 and the plywood of the cover plate 13 can be identical, in order to facilitate the manufacture of the wall of the vessel and also in order to avoid creating inhomogeneities in the thermal insulation properties. of the primary insulating barrier 4.
  • the bottom panel can be made for example of plywood, and the plywood of the bottom panel and the plywood of the bottom panel 11 can be identical.
  • each corner element 150 is arranged between the foam blocks 12 of four neighboring insulating blocks 10 .
  • each corner element 150 is staggered relative to the foam blocks 12 of four neighboring insulating blocks 10 .
  • This staggered arrangement favors the distribution of the mechanical forces on several blocks of foam 12 and makes it possible to locally limit the displacements of the insulating blocks 10 relative to each other in the event of sloshing (also known under the English name of "sloshing") of the product. cold liquid contained in the tank and/or during deformations of the ship's hull during navigation.
  • each corner element 150 to the bottom panels 11 is preferably carried out by gluing, more particularly by gluing using an epoxy glue or a polyurethane glue, such gluing being relatively easy to achieve.
  • the schematically represents a possible dimensioning of the insulating blocks 10, the bridging elements 20 and the corner elements 150. is in top view, that is to say in view from the inside of the tank towards the primary insulating barrier 4.
  • a pitch is determined, that is to say a chosen length, which is denoted by k on the .
  • the cover plates 13 of the insulating blocks 10 have equal sides of length 2k.
  • the cover plates 153 of the corner elements 150 have equal sides of length k.
  • the cover plates 23 of the bridging elements 20 have two parallel sides of length 2k and two parallel sides of length k.
  • bridging elements 20 and corner elements 150 shown in the is repeated in a plane parallel to the directions d1 and d2, so as to obtain the staggered arrangement of the corner elements 150 relative to the neighboring insulating blocks 10. Note that on the , a single bridging element 20 is thus arranged between two neighboring insulating blocks 10 .
  • two bridging elements 20, with two pairs of parallel sides of length k, can be arranged between two adjacent insulating blocks 10 as shown in figure .
  • the corner elements 150 can be omitted, the space between the foam blocks 12 of four neighboring insulating blocks 10 being occupied by an end portion of a bridging element 20.
  • the fact that each space between the foam blocks 12 of four neighboring insulating blocks 10 is occupied by an end portion of a bridging element limits the risk of displacement of these foam blocks 12 in the event of sloshing of the product cold liquid contained in the tank or deformation of the hull during navigation.
  • Figures 4A to 4C are top views similar to the and schematically represent possible dimensions of the insulating blocks 10 and the bridging elements 20 making it possible to achieve a configuration of this type.
  • the spaces between the foam blocks 12 of four neighboring insulating blocks 10 are each occupied by the end portions of a bridging element 20 having a length 4k in the direction d2 and a length k in the direction d1.
  • the spaces between the foam blocks 12 of two adjacent insulating blocks 10 are each occupied by bridging elements 20 of dimensions 2k and k in the directions d1 and d2, as shown in the figure.
  • the spaces between the foam blocks 12 of four neighboring insulating blocks 10 are each occupied by the end portions of a bridging element 20 having a length 3k in the direction d2 and a length k in the direction d1.
  • the spaces between the foam blocks 12 of two adjacent insulating blocks 10 are each occupied by bridging elements 20 of dimensions 2k and k in the directions d1 and d2, as shown in the figure.
  • all the bridging elements 20 have a length 3k in the direction d2 (respectively in the direction d1) and a length k in the direction d1 (respectively in the direction d2).
  • the bridging elements 20 are preferably glued to the bottom plates 11 of the insulating blocks 10, for example by means of a polyurethane adhesive.
  • the glue is applied to the bridging elements 20 and/or to the bottom plates 11, and the bridging elements 20 are pressed against the bottom plates 11 so as to crush the glue, which completes the bonding. paste operation.
  • there remains a slight gap 111 see FIGS. 1, 5A, 6A, 7A and 8) which leaves a small portion of the secondary waterproof membrane 3 uncovered.
  • the secondary waterproof membrane 3 is glued by the glue which was used to glue the bridging elements 20; on the contrary, it is important, from the point of view of the behavior of the vessel wall vis-à-vis thermal and mechanical stresses, that the secondary sealed membrane 3 can slide relative to the primary insulating barrier 4.
  • FIGS. 5A to 8 illustrate variants of the first embodiment which make it possible to eliminate or at the very least limit the risk of the secondary waterproof membrane 3 being glued by the glue which was used to glue the bridging elements 20.
  • the width of the interval 111 between two bottom plates 11 is exaggerated in order to facilitate understanding of the drawing.
  • each of these bottom plates 11 has a groove 91 which extends along its edge which delimits the gap 111. It is then understood that as long as the glue is not applied to the bridging element 20 and/or the bottom plate 11 between the gap 111 and the grooves 91, the grooves 91 can collect any excess glue that would be directed towards the gap 111 by the pressure of the bridging element 20 on the bottom plates 11. The excess glue thus collected does not therefore reach the interval 111 and the secondary waterproof membrane 3.
  • the grooves 91 are represented here with a rectangular section, they can more generally have any suitable section. Further, each groove 91 is typically parallel to the respective edge of the bottom plates 11 along which it extends.
  • the grooves 91 may or may not open onto the edges of the bottom plates 11 as shown in the .
  • each groove 91 extends along the entire respective edge of the bottom plate 11, and crosses perpendicularly the two adjacent grooves 91.
  • FIGS. 5C to 5E represent exemplary embodiments in which the grooves 91 do not open onto the edges of the bottom plate 11.
  • each groove 91 extends perpendicularly to, and opens at right angles into, the two adjacent grooves 91.
  • the grooves 91 are also perpendicular to each other, but are connected to each other by curved groove portions, for example in an arc of a circle.
  • the grooves 91 are subdivided into two groove portions extending in the extension of one another and parallel to the respective edge of the bottom plate 11; the grooves 91 can naturally be subdivided into a greater number of groove portions.
  • each bottom plate 11 may have two, three or four grooves 91.
  • the foam block 22 of the bridging element 20 has two grooves 92.
  • the grooves 92 extend parallel to each other, parallel to the gap 111.
  • the grooves 92 are also arranged on either side of the interval 111. It is then understood that as long as the glue is not applied to the bridging element 20 and/or to the bottom plate 11 between the interval 111 and the grooves 92, the grooves 92 can collect any excess glue which would be directed towards the interval 111 by the pressure of the bridging element 20 on the bottom plates 11. The excess glue thus collected does not reach therefore not up to the gap 111 and the secondary waterproof membrane 3.
  • the grooves 92 are shown here with a rectangular section, they can more generally have any suitable section. Further, each groove 92 is typically parallel to the respective edge of the bottom plates 11 along which it extends.
  • grooves 92 may extend along all sides of foam block 22 so as to open into two side faces of the block of foam 22. However, as a variant, the grooves 92 may not open into the side faces of the block of foam 22 and/or be interrupted.
  • the block of foam 22 of the bridging element 20 has a tongue 95.
  • the tongue 95 is intended to be received in the gap 111. It is then understood that, wherever the glue is applied on the element of bridging 20 and/or the bottom plate 11 (with the exception of course of the tab 95), the excess glue cannot reach the secondary waterproof membrane 3, since the tab 95 occupies the interval 111 and thus prevents glue from entering the gap 111.
  • a flexible strip 99 can be arranged on the bottom plates 11 so as to cover the gap 111 before gluing the bridging element 20 on the bottom plates 11. It is then this flexible strip 99 which prevents the excess glue to reach the secondary waterproof membrane 3.
  • the flexible strip 99 which is optionally adhesive on its portions intended to come into contact with the bottom plates 11, can be made for example of kraft paper. It will be noted that the flexible strip 99 can be present simultaneously with the tongue 95 and/or the grooves 92 and/or the grooves 91.
  • the tongue 95 can be present even when the bridging element 20 is fixed to the bottom plates 11 other than by gluing.
  • the bottom panel 21 of the bridging elements 20 is intentionally omitted in order to show that the bottom panel 21 is an option; it is then the block of foam 22 which is glued to the bottom plates 11, and which has the grooves 92 and/or the tongue 95 where appropriate. Alternatively, it is the bottom panel 21 which is glued to the plates bottom 11, and which has, where appropriate, the grooves 92 and/or the tongue 95.
  • the bottom panel of the corner units 150 can be omitted; it is then their block of foam which is glued to the bottom plates 11.
  • FIG. 9 The is a partial, exploded and perspective view of a wall of a sealed and thermally insulating tank according to a second embodiment.
  • elements which are identical to those of the first embodiment bear the same reference numerals and are therefore not described in detail again except where necessary.
  • a single corrugated metal sheet 60 has been shown, instead of three on the , so as not to overload the drawing.
  • this second embodiment differs from the first embodiment mainly by the position of the mechanical couplers 29. More precisely, instead of being fixed to the centers of the insulating blocks 10, the mechanical couplers 29 are fixed to the corners of the bottom plates 11 of these insulating blocks 10. It is therefore the corner elements 150' which receive the mechanical couplers 29, and not the insulating blocks 10.
  • Corner member 150' includes cover panel 151', foam block 152', and cover panel 153' which are similar to cover panel 151, foam block 152, and cover panel 153, respectively. except that the block of foam 152' and the cover panel 153' are crossed by a well 180' allowing access to the mechanical coupler 29. This well 180' can be closed off by a thermally insulating plug (not shown) before to install the primary waterproof membrane 5.
  • the bottom panel 151' of the corner elements 150 can be omitted; it is then the block of foam 152' which is glued to the bottom plates 11.
  • Each mechanical coupler 29 cooperates here with four support zones belonging respectively to the corner zone of four adjacent bottom plates 11, only two of which are visible on the because of the sectional view according to the plan XX.
  • Each mechanical coupler 29 comprises a pin 30 which protrudes from the secondary insulating barrier 2 and a support plate 31 which is fixed to the end of the pin 30 and which is supported, via spacers 58 and the bottom panel 151 ', against the four support zones of the four adjacent bottom plates 11 so as to retain them against the secondary insulating barrier 2 and the secondary insulating membrane 30.
  • the support plate 31 comprises a bore (not referenced) threaded onto the stud 30.
  • a nut 32 cooperates with a threaded end of the stud 30 so as to ensure the fixing of the support plate 31.
  • Belleville washers are threaded onto the stud 30, between the nut 32 and the support plate 31, which ensures an elastic anchoring of the bottom plates 11 on the secondary insulating barrier 2.
  • the stud 30 is fixed to an anchor plate 33 which is itself fixed to the cover plates 2c of the secondary insulating barrier 2.
  • the anchor plate 33 comprises for example a thread which cooperates with a complementary threaded end of the stud 30.
  • the cover plates 2c have a recess in which the anchor plate 33 is housed.
  • the recess has an internal section presenting a first diameter and an external section presenting a second diameter greater than first diameter so as to provide a shoulder.
  • the anchor plate 33 has a shape complementary to that of the recess.
  • an internal face of the anchoring plate 33 is flush with an internal face of the cover plates 2c so as to form a flat support surface for the secondary waterproof membrane 3.
  • the anchoring plate 33 has a section external having a larger diameter than its internal section so that the external section of said anchoring plate 33 is in abutment against the shoulder of the recess, which makes it possible to ensure the fixing of the anchoring plate 33 to the secondary insulating barrier 2.
  • the mechanical coupler 29 comprises a sealing washer 34 in order to ensure the leaktightness of the secondary leaktight membrane 3 at its orifice through which the pin 30 passes.
  • the sealing washer 34 has a flange developing radially with respect to the axis of the pin 30 a central orifice in which the pin 30 is engaged with a clearance allowing relative movement between the sealing washer 34 and the stud 30.
  • the flange is fixed in a sealed manner to the secondary sealed membrane 3 around the orifice of said secondary sealed membrane 3. This sealed attachment is, for example, made by welding.
  • stud 30 may have an anchoring shoulder 35 projecting radially outwards from stud 30.
  • a deformable seal 36 is then welded in a sealed manner, on the one hand, to sealing washer 34 and, on the other hand, to the anchoring shoulder 35 of the stud 30, which makes it possible to seal the passage of the stud 30 through the secondary waterproof membrane 3.
  • the deformable seal 36 is a bellows, for example made of stainless steel.
  • the sealed connection between the secondary sealed membrane 3 and the stud 30 is flexible, which allows relative movements of the primary insulating blocks 10 and/or of the corner elements 150' with respect to the secondary sealed membrane 3 and thus makes it possible to limit the risks of degradation of the tightness of said secondary waterproof membrane 3.
  • the mechanical coupler 29 is also equipped with a bell 37 which has an orifice in which the stud 30 is threaded and which covers the said deformable joint 36.
  • the bell 37 has a generally cylindrical shape. It is specified that the anchoring shoulder 35, the deformable seal 36 and the bell 37 can be omitted.
  • mechanical couplers 29 as previously described can be fixed both to the centers of the insulating blocks 10, as in the first embodiment, and to the corners of the bottom plates. 11 of the insulating blocks 10, as in the second embodiment.
  • the techniques described above for producing a leaktight and thermally insulating tank wall can be used in different types of tanks, for example to form the wall of an LNG tank in an onshore installation or in a floating structure such as an LNG carrier. Or other.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary leaktight barrier intended to be in contact with the LNG contained in the tank, a secondary leaktight barrier arranged between the primary leaktight barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
  • loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tank 71.
  • the represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipeline 76 and an installation on land 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising a mobile arm 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73.
  • the orientable mobile arm 74 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une cuve étanche et thermiquement isolante. La barrière isolante primaire (4) de la cuve comprend une pluralité de blocs isolants (10) juxtaposés, chaque bloc isolant comportant une plaque de fond (11) et un bloc de mousse thermiquement isolante (12) disposé sur la plaque de fond (11), la plaque de fond (11) de chaque bloc isolant (10) débordant du bloc de mousse thermiquement isolante (12) de façon à ménager à chaque fois un espace entre le bloc de mousse thermiquement isolante (12) et le bloc de mousse thermiquement isolante d'un bloc isolant adjacent. La barrière isolante primaire (4) comprend en outre une pluralité d'éléments de pontage (20), chaque élément de pontage (20) étant disposé dans un desdits espaces entre les blocs de mousse thermiquement isolante (12) de deux blocs isolants (10) adjacents, étant fixé à une face interne des plaques de fond (11) desdits deux blocs isolants adjacents et recouvrant une partie desdites faces internes.

Description

Cuve étanche et thermiquement isolante
L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes. Plus précisément, l’invention se rapporte à une cuve étanche et thermiquement isolante présentant une membrane étanche primaire et une membrane étanche secondaire, la membrane étanche primaire étant ondulée.
Arrière-plan technologique
On connaît dans l’état de la technique une cuve étanche et thermiquement isolante comportant une paroi de cuve retenue sur une structure porteuse, la paroi de cuve incluant, dans le sens de l’épaisseur depuis l’extérieur vers l’intérieur de la cuve, une barrière isolante secondaire retenue sur la structure porteuse, une membrane étanche secondaire retenue sur la barrière isolante secondaire, une barrière isolante primaire retenue sur la membrane étanche secondaire et une membrane étanche primaire ondulée retenue sur la barrière isolante primaire.
Une telle cuve étanche et thermiquement isolante peut notamment être utilisée dans le transport de produits liquides froids, tels que du gaz naturel liquéfié (GNL), notamment à bord d’une structure flottante telle qu’un navire.
La membrane étanche primaire est typiquement ondulée selon deux directions, c’est-à-dire qu’elle présente une première série d’ondulations s’étendant parallèlement à une première direction, et une deuxième série d’ondulations s’étendant parallèlement à une deuxième direction. La première direction et la deuxième direction peuvent être perpendiculaires entre elles.
Dans une telle cuve, la membrane étanche primaire est directement au contact du produit liquide froid à transporter, et subit donc aussi bien des contraintes mécaniques liées aux déformations de la structure flottante en service que des contraintes thermiques liées aux variations de température à l’intérieur de la cuve notamment lors de sa mise à froid et au gradient de température entre l’intérieur de la cuve et l’extérieur de la cuve. Il est donc important, afin d’optimiser la durée de vie de la membrane étanche primaire, de s’assurer que les contraintes soient réparties le plus uniformément possible entre les ondulations de la membrane étanche primaire.
Résumé
Une idée à la base de l’invention est de proposer une cuve étanche et thermiquement isolante dans laquelle les contraintes subies par la membrane étanche primaire sont plus uniformément réparties entre les ondulations de celle-ci.
Selon un mode de réalisation, l’invention fournit une cuve étanche et thermiquement isolante comportant une paroi de cuve retenue sur une structure porteuse, la paroi de cuve incluant, dans le sens de l’épaisseur depuis l’extérieur vers l’intérieur de la cuve, une barrière isolante secondaire retenue sur la structure porteuse, une membrane étanche secondaire retenue sur la barrière isolante secondaire, une barrière isolante primaire retenue sur la membrane étanche secondaire et une membrane étanche primaire ondulée retenue sur la barrière isolante primaire,
dans laquelle la barrière isolante primaire comprend une pluralité de blocs isolants juxtaposés, chaque bloc isolant comportant une plaque de fond et un bloc de mousse thermiquement isolante disposé sur la plaque de fond, la plaque de fond de chaque bloc isolant débordant du bloc de mousse thermiquement isolante de façon à ménager à chaque fois un espace entre le bloc de mousse thermiquement isolante et le bloc de mousse thermiquement isolante d’un bloc isolant adjacent,
dans laquelle la barrière isolante primaire comprend en outre une pluralité d’éléments de pontage, chaque élément de pontage étant disposé dans un desdits espaces entre les blocs de mousse thermiquement isolante de deux blocs isolants adjacents, étant fixé à une face interne des plaques de fond desdits deux blocs isolants adjacents et recouvrant une partie desdites faces internes.
Dans une telle cuve, la membrane étanche primaire est ondulée. Lorsque la cuve est installée dans un navire et est remplie d’un produit liquide froid, les déformations imposées aux parois de la cuve lorsque le navire navigue tendent à solliciter les ondulations de la membrane étanche primaire, tandis que la pression exercée par le produit liquide froid sur les parois de la cuve tend à coupler le comportement mécanique de la membrane étanche primaire au comportement mécanique de la barrière isolante primaire. En prévoyant que la barrière isolante primaire comprend des blocs de mousse et des éléments de pontage disposés dans les espaces entre les blocs de mousse à cheval sur les blocs isolants, on assure que la barrière isolante primaire se déforme le plus uniformément possible, ce qui permet alors de répartir les contraintes le plus uniformément possible entre les ondulations de la membrane étanche primaire.
Par ailleurs, les éléments de pontage tendent à supprimer, ou à tout le moins limiter, les déplacements relatifs entre les blocs isolants. De tels déplacements relatifs peuvent se produire par exemple sous l’effet des accélérations que subit la barrière isolante primaire lorsque le navire navigue et/ou sous l’effet des déformations de la coque lorsque le navire navique. En supprimant ou limitant ces déplacements relatifs, on assure notamment un équilibre des pré-charges statiques entre les différentes zones ondulées de la membrane étanche primaire.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, chaque bloc isolant comprend une plaque de couvercle, le bloc de mousse étant disposé entre la plaque de fond et la plaque de couvercle, et la membrane isolante primaire étant retenue sur les plaques de couvercle des blocs isolants.
Selon un mode de réalisation, la plaque de couvercle et/ou la plaque de fond sont réalisées en bois contreplaqué.
Selon un mode de réalisation, la membrane étanche primaire présente une première série d’ondulations s’étendant parallèlement à une première direction, et chaque ondulation de la première série d’ondulations est disposée au droit d’une première fente prévue dans un bloc de mousse thermiquement isolante d’un bloc isolant ou au droit d’un interstice ménagé entre un élément de pontage et un bloc de mousse thermiquement isolante d’un bloc isolant.
Ainsi, pour les ondulations disposées au droit d’une fente prévue dans un bloc de mousse d’un bloc isolant, ladite fente autorise l’ouverture de l’ondulation liée à la déformation sous contrainte de cette ondulation. De même, pour les ondulations disposées au droit d’un interstice ménagé entre un élément de pontage et un bloc de mousse d’un bloc isolant, l’interstice autorise l’ouverture de l’ondulation liée à la déformation sous contrainte de cette ondulation. Les fentes ou interstices évitent ainsi de reporter toutes les contraintes subies par une ondulation donnée sur les ondulations voisines. Ensemble avec le fait que, comme on l’a mentionné ci-dessus, la barrière isolante primaire se déforme le plus uniformément possible du fait de la présence des éléments de pontage, ceci assure que les contraintes sont plus uniformément réparties entre les ondulations de la première série d’ondulations.
Selon un mode de réalisation, la membrane étanche primaire présente une deuxième série d’ondulations s’étendant parallèlement à une deuxième direction, et chaque ondulation de la deuxième série d’ondulations est disposée au droit d’une deuxième fente prévue dans un bloc de mousse thermiquement isolante d’un bloc isolant ou au droit d’un interstice ménagé entre un élément de pontage et un bloc de mousse thermiquement isolante d’un bloc isolant.
De façon analogue à la première série d’ondulations, ces caractéristiques permettent de répartir plus uniformément les contraintes entre les ondulations de la deuxième série d’ondulations.
Selon un mode de réalisation, la deuxième direction est perpendiculaire à la première direction.
Selon un mode de réalisation, chaque élément de pontage est collé sur une face interne des plaques de fond desdits deux blocs isolants adjacents.
Selon un mode de réalisation, la face interne de la plaque de fond de chaque bloc isolant présente aux moins deux rainures, chaque rainure s’étendant le long d’un bord de ladite plaque de fond sur une partie ou la totalité dudit bord de la plaque de fond.
Selon un mode de réalisation, lesdites rainures de la plaque de fond sont configurées pour recueillir un excès de colle qui est dirigé vers l’intervalle entre deux plaques de fond adjacentes par la pression de l’élément de pontage sur la face interne des plaques de fond.
Ainsi, on élimine ou à tout le moins on limite le risque qu’une portion de la membrane étanche secondaire soit collée par la colle qui a servi au collage des éléments de pontage. Il est en effet important, du point de vue de la tenue de la paroi de cuve vis-à-vis des sollicitations thermiques et mécaniques, que la membrane étanche secondaire puisse glisser par rapport à la barrière isolante primaire.
Selon un mode de réalisation, lesdites rainures s’étendent parallèlement au bord respectif de la plaque de fond le long duquel elles s’étendent.
Selon un mode de réalisation, chaque élément de pontage présente deux rainures, les rainures s’étendant parallèlement l’une à l’autre et étant disposées de part et d’autre d’un intervalle entre les plaques de fond desdits deux blocs isolants adjacents.
Selon un mode de réalisation, lesdites rainures de l’élément de pontage sont configurées pour recueillir un excès de colle qui est dirigé vers l’intervalle entre deux plaques de fond adjacentes par la pression de l’élément de pontage sur la face interne plaques de fond.
Ainsi, on élimine ou à tout le moins on limite le risque qu’une portion de la membrane étanche secondaire soit collée par la colle qui a servi au collage des éléments de pontage.
Selon un mode de réalisation, lesdites rainures s’étendent parallèlement aux bords respectifs des plaques de fond délimitant ledit intervalle.
Selon un mode de réalisation, chaque élément de pontage présente une languette destinée à être reçue dans un intervalle entre les plaques de fond desdits deux blocs isolants adjacents.
Une telle languette permet d’empêcher un éventuel excès de colle qui serait dirigé vers l’intervalle entre deux plaques de fond adjacentes par la pression de l’élément de pontage sur les plaques de fond.
Ainsi, on élimine ou à tout le moins on limite le risque qu’une portion de la membrane étanche secondaire soit collée par la colle qui a servi au collage des éléments de pontage.
Selon un mode de réalisation, une bande souple, par exemple en papier kraft, est disposée sous chaque élément de pontage de façon à être reçue dans un intervalle entre les plaques de fond desdits deux blocs isolants adjacents.
Une telle bande souple peut s’interposer entre la membrane étanche secondaire et la colle qui a servi au collage des éléments de pontage, ce qui élimine ou à tout le moins limite le risque qu’une portion de la membrane étanche secondaire soit collée par cette colle.
Selon un mode de réalisation, les blocs isolants de la barrière isolante primaire sont disposés à espaces réguliers selon des rangées parallèles à la première direction et à la deuxième direction.
Selon un mode de réalisation, la barrière isolante primaire comprend en outre une pluralité d’éléments de coin, chaque élément de coin étant disposé entre les blocs de mousse de quatre blocs isolants voisins, étant fixé à une face interne des plaques de fond desdits quatre blocs isolants voisins et recouvrant une partie desdites faces internes.
Ainsi, les éléments de coin peuvent être disposés en quinconce par rapport aux blocs de mousse des blocs isolants. Cette disposition en quinconce favorise la répartition des efforts mécaniques sur plusieurs blocs de mousse et permet de limiter localement les déplacements des blocs isolants relativement les uns aux autres en cas de ballottement (aussi connu sous la dénomination anglaise de « sloshing ») du produit liquide froid contenu dans la cuve et/ou lors des déformations de la coque du navire lors de la navigation. En effet, les éléments de coin assurent un raccord mécanique entre les blocs isolants voisins qui empêche l’écartement mutuel des blocs isolants. Ainsi, les déplacements relatifs des blocs isolants les uns par rapport aux autres sont limités, ce qui permet de solliciter plus uniformément les ondulations de la membrane étanche primaire lors de la mise en froid de la cuve.
Selon un mode de réalisation, les éléments de coin sont collés à ladite face interne des plaques de fond desdits quatre blocs isolants voisins.
Selon un mode de réalisation, chaque espace entre les blocs de mousse de quatre blocs isolants voisins est occupé par une portion d’extrémité d’un élément de pontage.
De façon analogue aux éléments de coin, le fait que chaque espace entre les blocs de mousse de quatre blocs isolants voisins soit occupé par une portion d’extrémité d’un élément de pontage limite le risque de déplacement de ces blocs de mousse en cas de ballottement du produit liquide froid contenu dans la cuve ou de déformation de la coque lors de la navigation.
Selon un mode de réalisation, chaque bloc isolant de la barrière isolante primaire est retenu sur la membrane étanche secondaire par un coupleur mécanique, le coupleur mécanique traversant la membrane étanche secondaire au niveau du centre de la plaque de fond du bloc isolant.
Selon un mode de réalisation, chaque coupleur mécanique est reçu dans un puits que présente le bloc isolant correspondant.
Selon un mode de réalisation, chaque bloc isolant de la barrière isolante primaire est retenu sur la membrane étanche secondaire par une pluralité de coupleurs mécaniques, chaque coupleur mécanique traversant la membrane étanche secondaire au niveau d’un coin de la plaque de fond du bloc isolant.
Ainsi, chaque bloc isolant de la barrière isolante primaire peut être positionné par sa plaque de fond pendant l’assemblage de la barrière isolante primaire, ce qui facilite l’assemblage de la paroi de cuve.
Selon un mode de réalisation, chaque coupleur mécanique est reçu dans un puits que présente un élément de coin.
Selon un mode de réalisation, la membrane étanche secondaire est réalisée par soudage de virures métalliques présentant des bords relevés, lesdits bords relevés étant reçus dans des fentes inférieures que présente chaque bloc isolant de la barrière isolante primaire.
Selon un mode de réalisation, chaque élément de pontage situé dans le prolongement desdites fentes inférieures présente des fentes inférieures supplémentaires pour recevoir lesdits bords relevés.
Selon un mode de réalisation, la membrane étanche secondaire est ondulée et réalisée par soudage de tôles métalliques, chaque tôle métallique présentant au moins une portion d’ondulation, lesdites portions d’ondulation étant reçues dans des logements que présente chaque bloc isolant de la barrière isolante primaire.
Selon un mode de réalisation, chaque élément de pontage situé dans le prolongement desdits logements présente des logements supplémentaires pour recevoir lesdites portions d’ondulation.
Selon un mode de réalisation, chaque élément de pontage comporte une couche de mousse thermiquement isolante qui est fixée à une face interne des plaques de fond desdits deux blocs isolants adjacents.
Selon un mode de réalisation, chaque élément de pontage comporte une couche de mousse thermiquement isolante et un panneau de fond, par exemple en bois contreplaqué, la couche de mousse thermiquement isolante étant collée au panneau de fond et le panneau de fond étant fixé à une face interne des plaques de fond desdits deux blocs isolants adjacents, de préférence par collage.
Selon un mode de réalisation, chaque élément de pontage comporte une couche de mousse thermiquement isolante et un composite de fond, la couche de mousse thermiquement isolante étant collée au composite de fond et le panneau de fond étant fixé à une face interne des plaques de fond desdits deux blocs isolants adjacents, de préférence par collage. À titre d’exemple, le composite peut être une plaque en résine polymère fibrée, ou une feuille en résine polymère fibrée avec optionnellement un feuillard en métal.
Selon un mode de réalisation, chaque élément de pontage comporte en outre un panneau de couvercle collé sur la couche de mousse thermiquement isolante.
Selon un mode de réalisation, l’invention fournit aussi un navire pour le transport d’un produit liquide froid, le navire comportant une double coque et une cuve décrite ci-dessus disposée dans la double coque.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comprenant un navire décrit ci-dessus, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l’invention fournit aussi une utilisation d’un navire décrit ci-dessus pour le chargement ou déchargement d’un produit liquide froid, dans laquelle on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
La est une vue partielle, éclatée et en perspective, d’une paroi d’une cuve étanche et thermiquement isolante selon un premier mode de réalisation.
La est une vue en coupe de la selon II-II.
La est une vue de dessus illustrant schématiquement la disposition dans le plan des blocs isolants constituant la barrière isolante primaire de la paroi de cuve représentée sur les figures 1 et 2.
La est une vue de dessus analogue à la , illustrant schématiquement la disposition des blocs isolants selon une variante.
La est une vue de dessus analogue à la , illustrant schématiquement la disposition des blocs isolants selon une autre variante.
La est une vue de dessus analogue à la , illustrant schématiquement la disposition des blocs isolants selon encore une autre variante.
La est une vue de côté montrant un élément de pontage et montrant partiellement les plaques de fond de deux blocs isolants de la cuve de la , selon une variante.
La est une vue de dessus illustrant l’une des plaques de fond de la selon un premier exemple de réalisation.
La est une vue de dessus illustrant l’une des plaques de fond de la selon un deuxième exemple de réalisation.
La est une vue de dessus illustrant l’une des plaques de fond de la selon un troisième exemple de réalisation.
La est une vue de dessus illustrant l’une des plaques de fond de la selon un quatrième exemple de réalisation
La est une vue de côté analogue à la , montrant un élément de pontage et montrant partiellement les plaques de fond de deux blocs isolants de la cuve de la , selon une autre variante.
La est une vue de dessous de l’élément de pontage de la .
La est une vue de côté analogue à la , montrant un élément de pontage et montrant partiellement les plaques de fond de deux blocs isolants de la cuve de la , selon encore une autre variante.
La est une vue en perspective montrant le dessous de l’élément de pontage de la .
La est une vue de côté analogue à la , montrant un élément de pontage et montrant partiellement les plaques de fond de deux blocs isolants de la cuve de la , selon encore une autre variante.
La est une vue partielle, éclatée et en perspective, d’une cuve étanche et thermiquement isolante selon un deuxième mode de réalisation.
La est une vue en coupe de la selon X-X.
La est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve.
La est une vue partielle, éclatée et en perspective d’une paroi d’une cuve étanche et thermiquement isolante selon un premier mode de réalisation. Une telle structure peut être mise en œuvre pour des surfaces étendues ayant diverses orientations, par exemple pour recouvrir des parois de fond, de plafond et de côté d’un réservoir. L’orientation de la n’est donc pas limitative à cet égard.
La paroi de cuve est attachée à la paroi d’une structure porteuse 1. Par convention, on appellera « au-dessus » une position située plus près de l’intérieur du réservoir et « en dessous » une position située plus près de la structure porteuse 1, quelle que soit l’orientation de la paroi de cuve par rapport au champ de gravité terrestre. La structure porteuse 1 peut être constituée par la coque interne d’un navire à double coque ou par une structure construite à l’intérieur de cette coque interne.
La paroi de cuve est composée successivement dans son épaisseur d’une barrière isolante secondaire 2 retenue sur la paroi de la structure porteuse 1, d’une membrane étanche secondaire 3 retenue sur la barrière isolante secondaire 2, d’une barrière isolante primaire 4 retenue sur la membrane étanche secondaire 3 et d’une membrane étanche primaire 5 retenue sur la barrière isolante primaire 4.
La barrière isolante secondaire 2 est constituée d’une pluralité de blocs isolants secondaires 2a de forme parallélépipédique qui sont juxtaposés, de manière à recouvrir sensiblement la surface interne de la structure porteuse 1.
Comme cela est visible sur la , chaque bloc isolant secondaire 2a comprend un bloc de mousse thermiquement isolante 2b et une plaque de couvercle 2c. La plaque de couvercle 2c est disposée au-dessus du bloc de mousse 2b et s’étend parallèlement à la paroi de la structure porteuse 1.
La plaque de couvercle 2c présente deux rainures 2d parallèles entre elles et s’étendant dans une direction parallèle à l’une des paires de côté du bloc isolant secondaire 2a. Comme cela est visible sur la , les rainures 2d présentent une forme sensiblement de T inversé pour recevoir des ailes de soudure en forme d’équerre. La partie des ailes de soudure qui fait saillie vers le dessus de la plaque de couvercle 2c permet l’ancrage de la membrane étanche secondaire 3. La membrane étanche secondaire 3 est constituée d’une pluralité de virures présentant chacune des bords relevés. Les bords relevés de chaque virure sont soudés aux ailes de soudure selon la technique connue. Les virures sont, par exemple, réalisées en Invar®, c’est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1,2.10-6 et 2.10-6 K-1. Dans ce cas, les virures peuvent présenter par exemple une épaisseur de l’ordre de 0,7 mm. En variante, les virures peuvent être réalisées en un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement compris entre 7.10-6 et 9.10-6 K-1. Dans le cas d’une cuve de navire, les virures sont de préférence orientées parallèlement à la direction longitudinale du navire.
La barrière isolante primaire 4 est essentiellement constituée d’une pluralité de blocs isolants primaires 10, d’une pluralité d’éléments de pontage 20 et d’une pluralité d’éléments de coin 150. Les dispositions relatives des blocs isolants primaires 10, des éléments de pontage 20 et des éléments de coin 150 seront décrites plus loin.
On voit également sur les figures 1, 9 et 10 que les blocs isolants primaires 10 présentent chacun des fentes inférieures 8 pour recevoir les bords relevés des virures. En l’espèce, deux fentes inférieures 8 sont prévues pour chaque bloc isolant primaire 10, mais un nombre différent de fentes inférieures 8 pourrait être prévu en fonction du rapport du nombre de virures et de la taille des blocs isolants primaires 10.
La membrane étanche primaire 5 est ondulée. Plus précisément, de façon connue en soi et comme cela est visible sur les figures 1 et 2, la membrane étanche primaire 5 présente une première série d’ondulations 61 et une deuxième série d’ondulations 62. Les ondulations 61 sont parallèles entre elles et s’étendent dans une première direction d1. Les ondulations 62 sont parallèles entre elles et s’étendent dans une deuxième direction d2. La deuxième direction d2 est ici perpendiculaire à la première direction d1. Les ondulations 61 et 62 font saillie vers l’intérieur de la cuve.
La membrane étanche primaire 5 est obtenue par assemblage d’une pluralité de tôles métalliques ondulées 60, dont trois sont visibles sur la . Chaque tôle métallique ondulée 60 présente une portion des ondulations 61 et 62. Les tôles métalliques ondulées 60 sont, par exemple, réalisées en acier inoxydable ou en aluminium. Les tôles métalliques ondulées 60 sont rectangulaires, et présentent, de préférence, des dimensions de largeur et de longueur qui valent des multiples entiers d’un espacement entre les ondulations 61 et 62 et aussi des multiples entiers des dimensions des blocs isolants primaires 10. On notera qu’il existe une légère sur-longueur des tôles 60 afin d’assurer un recouvrement d’une tôle donnée sur une tôle adjacente.
Sur les figures, les ondulations 61 et 62 sont continues et se croisent entre elles. Dans une variante de réalisation non représentée, les tôles métalliques ondulées 60 présentent des portions des ondulations 61 et 62 espacées les unes des autres, de façon à ce que les ondulations 61 et 62 soient discontinues et ne se croisent pas entre elles.
En outre, selon la technique connue, les tôles métalliques ondulées 60 peuvent être fixées, par exemple par des soudures par points, sur des bandes d’ancrage 69 que présentent les blocs isolants primaires 10. Ces bandes d’ancrage 69 sont logées dans des lamages (non représentés) que présentent les plaques de couvercle 13 des blocs isolants 10 et les panneaux de couvercle 23 des éléments de pontage 20. Les bandes d’ancrage 69 sont représentées sur la mais pas sur la afin de ne pas surcharger le dessin. De plus, certaines bandes d’ancrage 69 peuvent être remplacées par de la protection thermique afin d’éviter d’endommager les panneaux de couvercle 13, 23 lors de la réalisation des soudures d’étanchéité en périphérie des tôles métalliques.
Selon une variante de réalisation non représentée, la membrane étanche secondaire 3 peut elle aussi être ondulée et réalisée par assemblage de tôles métalliques ondulées, comme la membrane étanche primaire 5. Dans ce cas, en lieu et place des fentes inférieures 8, des logements sont prévus afin de recevoir les ondulations que présentent les tôles métalliques ondulées constituant la membrane étanche secondaire 3.
On va maintenant décrire un bloc isolant primaire 10, toujours en se référant à la , étant entendu que les blocs isolants primaires 10 sont identiques les uns aux autres.
Comme cela est visible sur la , un bloc isolant primaire 10 comprend une plaque de fond 11, un bloc de mousse thermiquement isolante 12, et une plaque de couvercle 13.
Le bloc de mousse 12 est constitué d’une mousse thermiquement isolante, qui peut être par exemple une mousse polymère, par exemple une mousse de polyéthylène, polyuréthane ou autre, optionnellement renforcée de fibres, par exemple de fibres de verre. La mousse polymère présente typiquement une densité comprise entre 110 et 170 kg/m3 et plus particulièrement égale à 130 kg/m3. Le bloc de mousse 12 est fixé à la plaque de fond 11, par exemple par collage.
La plaque de couvercle 13 est disposée sur le bloc de mousse 12. Le bloc de mousse 12 est fixé à la plaque de couvercle 13, par exemple par collage.
La plaque de couvercle 13 et/ou la plaque de fond 11 peuvent être réalisées par exemple en bois contreplaqué.
L’ensemble constitué de la plaque de couvercle 13 et du bloc de mousse 12 présente une forme extérieure généralement parallélépipédique, comme cela est visible sur la .
La plaque de fond 11 présente elle aussi une forme extérieure généralement parallélépipédique. Ses côtés sont parallèles aux côtés de l’ensemble constitué de la plaque de couvercle 13 et du bloc de mousse 12. Son centre est aligné avec le centre de l’ensemble constitué de la plaque de couvercle 13 et du bloc de mousse 12. Toutefois, comme cela est visible sur la , la plaque de fond 11 déborde du bloc de mousse 12, c’est-à-dire que l’enveloppe géométrique définie par les côtés de la plaque de fond 11 est plus grande que, et contient entièrement, l’enveloppe géométrique définie par les côtés du bloc de mousse 12.
Comme cela est visible sur la , les blocs isolants 10 sont disposés à espaces réguliers selon des rangées parallèles aux directions d1 et d2. En particulier, les centres des blocs isolants 10 sont disposés à espaces réguliers selon des rangées parallèles aux directions d1 et d2. En outre, dans ce premier mode de réalisation, les blocs isolants 10 sont retenus sur la membrane étanche secondaire 3 et sur la barrière isolante secondaire 2 à l’aide de coupleurs mécaniques 29, dont un seul est visible sur la . Chaque coupleur mécanique 29 traverse la membrane étanche secondaire 3 et le centre de la plaque de fond 11 d’un bloc isolant 10. Les coupleurs mécaniques 29 seront décrits plus en détail ci-dessous en rapport avec le deuxième mode de réalisation. On a désigné par le nombre 180 un puits pratiqué dans le bloc isolant 10 et permettant d’accéder au coupleur mécanique 29. Ce puits 180 peut être obturé par un bouchon thermiquement isolant (non représenté) avant d’installer la membrane étanche primaire 5.
Puisque les plaques de fond 11 de chaque bloc isolant 10 débordent du bloc de mousse 12 de ce bloc isolant 10, il subsiste un espace entre les blocs de mousse 12 de deux blocs isolants 10 voisins. Cet espace est occupé par un ou plusieurs éléments de pontage 20.
On va maintenant décrire la structure générale d’un élément de pontage 20, toujours en se référant à la .
Comme cela est visible sur la , un élément de pontage 20 comprend un panneau de fond 21, un bloc de mousse thermiquement isolante 22 et un panneau de couvercle 23.
Le bloc de mousse 22 est constitué d’une mousse thermiquement isolante, qui peut être par exemple une mousse polymère, par exemple une mousse de polyéthylène, polyuréthane ou autre, optionnellement renforcée de fibres, par exemple de fibres de verre. La mousse polymère présente typiquement une densité comprise entre 110 et 170 kg/m3 et plus particulièrement égale à 130 kg/m3. La mousse du bloc de mousse 22 et la mousse du bloc de mousse 12 peuvent être identiques, afin de faciliter la fabrication de la paroi de la cuve et aussi afin d’éviter de créer des inhomogénéités dans les propriétés d’isolation thermique de la barrière isolante primaire 4. Le bloc de mousse 22 est fixé au panneau de fond 21, par exemple par collage.
Le panneau de couvercle 23 est disposé sur le bloc de mousse 22. Le bloc de mousse 22 est fixé au panneau de couvercle 23, par exemple par collage.
Le panneau de couvercle 23 peut être réalisé par exemple en bois contreplaqué. Le bois contreplaqué du panneau de couvercle 23 et le bois contreplaqué de la plaque de couvercle 13 peuvent être identiques, afin de faciliter la fabrication de la paroi de la cuve et aussi afin d’éviter de créer des inhomogénéités dans les propriétés d’isolation thermique de la barrière isolante primaire 4. De même, le panneau de fond 21 peut être réalisé par exemple en bois contreplaqué, et le bois contreplaqué du panneau de fond 21 et le bois contreplaqué du panneau de fond 11 peuvent être identiques. En variante, au lieu d’être réalisés en bois contreplaqué, le panneau de fond 21 et/ou le panneau de couvercle 23 peuvent être réalisés en un matériau composite. À titre d’exemple, le panneau de couvercle 23 peut être une plaque en résine polymère fibrée. À titre d’exemple, le panneau de fond 21 peut être une plaque en résine polymère fibrée, ou une feuille en résine polymère fibrée avec optionnellement un feuillard en métal.
L’élément de pontage 20 présente une forme extérieure généralement parallélépipédique, comme cela est visible sur la . Les côtés de l’élément de pontage 20 sont typiquement parallèles aux côtés des deux blocs isolants 10 adjacents. En outre, il est préférable que l’élément de pontage 20 occupe l’espace entier entre les blocs de mousse 12 des deux blocs isolants 10 adjacents, éventuellement à l’exception de petits interstices ménagés entre les blocs de mousse 12 et l’élément de pontage 20, ces interstices permettant un certain jeu lors du montage.
L’élément de pontage 20 est fixé aux plaques de fond 11 des deux blocs isolants 10 adjacents de façon à recouvrir une partie desdites plaques de fond 11. Cette fixation est de préférence effectuée par collage, plus particulièrement par collage à l’aide d’une colle époxy ou d’une colle polyuréthane, un tel collage étant relativement aisé à réaliser. L’élément de pontage 20 peut toutefois être fixé aux plaques de fond 11 par tout autre moyen adéquat, par exemple par vissage, par clipsage ou par une combinaison des moyens qui viennent d’être cités.
La montre en outre que deux éléments de pontage 20 sont prévus dans chaque espace entre les blocs de mousse 12 des deux blocs isolants 10 adjacents. Il est toutefois possible de prévoir un nombre différent d’éléments de pontage 20 dans chacun desdits espaces, à condition d’adapter convenablement les dimensions des éléments de pontage 20.
En outre, comme cela est visible sur la , les éléments de pontage 20 qui se trouvent dans le prolongement des fentes inférieures 8 présentent eux aussi des fentes inférieures 9 prolongeant les fentes inférieures 8, de façon à recevoir les bords relevés des virures de la membrane étanche secondaire 3. Lorsque la membrane étanche secondaire 3 est ondulée comme on l’a décrit ci-dessus, en lieu et place des fentes inférieures 9, les éléments de pontage 20 présentent des logements supplémentaires prolongeant les logements des blocs isolants 10, ces logements supplémentaires recevant les ondulations des tôles métalliques ondulées constituant la membrane étanche secondaire 3.
En prévoyant que la barrière isolante primaire 4 comprend les blocs de mousse 12 et les éléments de pontage 20 disposés dans les espaces entre les blocs de mousse 12 à cheval sur les blocs isolants 10, on assure que la barrière isolante primaire 4 se déforme le plus uniformément possible, ce qui permet alors de répartir les contraintes le plus uniformément possible entre les ondulations 61, 62 de la membrane étanche primaire 5.
Par ailleurs, les éléments de pontage 20 tendent à supprimer, ou à tout le moins limiter, les déplacements relatifs entre les blocs isolants 10. De tels déplacements relatifs peuvent se produire par exemple sous l’effet des accélérations que subit la barrière isolante primaire 4 lorsque le navire navigue et/ou sous l’effet des déformations de la coque lorsque le navire navique. En supprimant ou limitant ces déplacements relatifs, on assure notamment un équilibre des pré-charges statiques entre les différentes zones ondulées de la membrane étanche primaire 5.
La est une vue en coupe de la selon II-II et permet de visualiser le positionnement des ondulations 62 relativement aux blocs isolants 10 et aux éléments de pontage 20.
Comme cela est visible sur la , en parcourant la série d’ondulations 62 en suivant la direction d1, les ondulations 62 comprennent successivement une ondulation 62-1 disposée au droit du centre d’un bloc de mousse 12 d’un bloc isolant 10, puis deux ondulations 62-2 disposées au droit des interstices ménagés entre un élément de pontage 20 et les blocs de mousse 12 de deux blocs isolants 10, puis de nouveau une ondulation 62-1, et ainsi de suite.
Les blocs isolants 10 présentent des fentes 172 au droit desquelles sont disposées les ondulations 62-1. Les fentes 172 s’étendent à travers les plaques de couvercle 13 et à travers une partie des blocs de mousse 12.
Ces fentes 172 sont aptes à légèrement s’ouvrir lorsque l’ondulation 62-1 en vis-à-vis se déforme sous l’effet d’une contrainte. Autrement dit, du fait de la présence des fentes 172, la mousse des blocs de mousse 12 autorise l’ouverture de l’ondulation 62-1. Ceci évite de reporter les contraintes subies par une ondulation 62-1 sur les ondulations 62-2 voisines. Les interstices entre les éléments de pontage 20 et les blocs de mousse 12 de deux blocs isolants 10 jouent un rôle analogue à celui des fentes 172 vis-à-vis des ondulations 62-2. On comprend alors que grâce aux fentes 172 et aux interstices entre les éléments de pontage 20 et les blocs de mousse 12, les contraintes peuvent être réparties plus uniformément entre les ondulations 62-1 et les ondulations 62-2, et donc plus uniformément réparties au sein de la membrane étanche primaire 5.
De façon tout à fait semblable, et bien que cela ne soit pas représenté sur les figures, en parcourant la série d’ondulations 61 selon la direction d2, les ondulations 61 comprennent successivement une ondulation disposée au droit du centre d’un bloc de mousse 12 d’un bloc isolant 10, puis deux ondulations disposées au droit des interstices ménagés entre un élément de pontage 20 et les blocs de mousse 12 de deux blocs isolants 10, et ainsi de suite. Cette disposition joue un rôle tout à fait semblable à celui de la disposition décrite ci-dessus de la série d’ondulations 62. En outre, les blocs isolants 10 présentent des fentes 171 au droit desquelles sont installées certaines des ondulations de la série d’ondulations 61, les fentes 171 jouant avec ces ondulations un rôle tout à fait semblable à celui des fentes 172 avec les ondulations 62-1.
Comme on l’a mentionné ci-dessus, les tôles métalliques ondulées 60 constituant la membrane étanche primaire 5 sont fixées à des bandes d’ancrage 69. Les bandes d’ancrage 69 sont logées dans des lamages (non représentés) que présentent les plaques de couvercle 13 des blocs isolants 10 et les panneaux de couvercle 23 des éléments de pontage 20. Plus précisément, une bande d’ancrage 69 de ce type est présente entre chaque ondulation de la série d’ondulations 61 et chaque ondulation de la série d’ondulations 62. Les bandes d’ancrage 69 sont représentées sur la mais pas sur la afin de ne pas surcharger le dessin.
Comme on l’a mentionné ci-dessus, la barrière isolante primaire 4 comprend des éléments de coin 150. L’un de ces éléments de coin 150 est visible sur la et est représenté en coupe sur la . Les éléments de coin 150 comprennent, de façon analogue aux éléments de pontage 20, un panneau de fond (non visible sur la ), un bloc de mousse thermiquement isolante (non visible sur la ), et un panneau de couvercle 153.
La mousse du bloc de mousse de l’élément de coin 150 et la mousse du bloc de mousse 12 peuvent être identiques, afin de faciliter la fabrication de la paroi de la cuve et aussi afin d’éviter de créer des inhomogénéités dans les propriétés d’isolation thermique de la barrière isolante primaire 4. Ce bloc de mousse est fixé au panneau de fond de l’élément de coin 150, par exemple par collage et/ou par vissage.
Le panneau de couvercle 153 est disposé sur le bloc de mousse. Le bloc de mousse est fixé au panneau de couvercle 153, par exemple par collage.
Le panneau de couvercle 153 peut être réalisé par exemple en bois contreplaqué. Le bois contreplaqué du panneau de couvercle 153 et le bois contreplaqué de la plaque de couvercle 13 peuvent être identiques, afin de faciliter la fabrication de la paroi de la cuve et aussi afin d’éviter de créer des inhomogénéités dans les propriétés d’isolation thermique de la barrière isolante primaire 4. De même, le panneau de fond peut être réalisé par exemple en bois contreplaqué, et le bois contreplaqué du panneau de fond et le bois contreplaqué du panneau de fond 11 peuvent être identiques.
Comme cela est visible sur la , chaque élément de coin 150 est disposé entre les blocs de mousse 12 de quatre blocs isolants 10 voisins. Autrement dit, chaque élément de coin 150 est disposé en quinconce relativement aux blocs de mousse 12 de quatre blocs isolants 10 voisins. Cette disposition en quinconce favorise la répartition des efforts mécaniques sur plusieurs blocs de mousse 12 et permet de limiter localement les déplacements des blocs isolants 10 relativement les uns aux autres en cas de ballottement (aussi connu sous la dénomination anglaise de « sloshing ») du produit liquide froid contenu dans la cuve et/ou lors des déformations de la coque du navire lors de la navigation.
La fixation de chaque élément de coin 150 aux panneaux de fond 11 est de préférence effectuée par collage, plus particulièrement par collage à l’aide d’une colle époxy ou d’une colle polyuréthane, un tel collage étant relativement aisé à réaliser.
La représente schématiquement un dimensionnement possible des blocs isolants 10, des éléments de pontage 20 et des éléments de coin 150. La est en vue de dessus, c’est-à-dire en vue depuis l’intérieur de la cuve vers la barrière isolante primaire 4. On détermine tout d’abord un pas, c’est-à-dire une longueur choisie, qui est désignée par k sur la . Ce pas k étant choisi, les plaques de couvercle 13 des blocs isolants 10 ont des côtés égaux de longueur 2k. Les plaques de couvercle 153 des éléments de coin 150 ont des côtés égaux de longueur k. Les plaques de couvercle 23 des éléments de pontage 20 ont deux côtés parallèles de longueur 2k et deux côtés parallèles de longueur k. La disposition des blocs isolants 10, des éléments de pontage 20 et des éléments de coin 150 représentée sur la est répétée dans un plan parallèle aux directions d1 et d2, de façon à obtenir la disposition en quinconce des éléments de coin 150 relativement aux blocs isolants 10 voisins. On notera que sur la , un seul élément de pontage 20 est ainsi disposé entre deux blocs isolants 10 voisins. En alternative, deux éléments de pontage 20, avec deux paires de côtés parallèles de longueur k, peuvent être disposés entre deux blocs isolants 10 voisins comme cela est représenté sur la .
En variante, les éléments de coin 150 peuvent être omis, l’espace entre les blocs de mousse 12 de quatre blocs isolants 10 voisins étant occupé par une portion d’extrémité d’un élément de pontage 20. De façon analogue aux éléments de coin 150, le fait que chaque espace entre les blocs de mousse 12 de quatre blocs isolants 10 voisins soit occupé par une portion d’extrémité d’un élément de pontage limite le risque de déplacement de ces blocs de mousse 12 en cas de ballottement du produit liquide froid contenu dans la cuve ou de déformation de la coque lors de la navigation. Les figures 4A à 4C sont des vues de dessus analogues à la et représentent schématiquement des dimensionnements possibles des blocs isolants 10 et des éléments de pontage 20 permettant d’aboutir à une configuration de ce type.
Dans la configuration représentée sur la , les espaces entre les blocs de mousse 12 de quatre blocs isolants 10 voisins sont chacun occupés par les portions d’extrémité d’un élément de pontage 20 présentant une longueur 4k dans la direction d2 et une longueur k dans la direction d1. Les espaces entre les blocs de mousse 12 de deux blocs isolants 10 adjacents sont chacun occupés par des éléments de pontage 20 de dimensions 2k et k dans les directions d1 et d2, comme représenté sur la figure.
Dans la configuration représentée sur la , les espaces entre les blocs de mousse 12 de quatre blocs isolants 10 voisins sont chacun occupés par les portions d’extrémité d’un élément de pontage 20 présentant une longueur 3k dans la direction d2 et une longueur k dans la direction d1. Les espaces entre les blocs de mousse 12 de deux blocs isolants 10 adjacents sont chacun occupés par des éléments de pontage 20 de dimensions 2k et k dans les directions d1 et d2, comme représenté sur la figure.
Enfin, la montre une configuration identique à celle de la , à ceci près que les rôles respectifs des directions d1 et d2 sont échangés.
Dans encore une autre variante, non représentée sur les dessins, tous les éléments de pontage 20 présentent une longueur 3k dans la direction d2 (respectivement dans la direction d1) et une longueur k dans la direction d1 (respectivement dans la direction d2).
Comme on l’a mentionné ci-dessus, les éléments de pontage 20 sont de préférence collés aux plaques de fond 11 des blocs isolants 10, par exemple au moyen d’une colle polyuréthane. Pour effectuer ce collage, la colle est appliquée sur les éléments de pontage 20 et/ou sur les plaques de fond 11, et les éléments de pontage 20 sont appuyés contre les plaques de fond 11 de façon à écraser la colle, ce qui termine l’opération de collage. Toutefois, entre deux plaques de fond 11 adjacentes, il subsiste un léger intervalle 111 (voir figures 1, 5A, 6A, 7A et 8) qui laisse découverte une petite portion de la membrane étanche secondaire 3. Il n’est pas souhaitable que cette portion de la membrane étanche secondaire 3 soit collée par la colle qui a servi au collage des éléments de pontage 20 ; au contraire, il est important, du point de vue de la tenue de la paroi de cuve vis-à-vis des sollicitations thermiques et mécaniques, que la membrane étanche secondaire 3 puisse glisser par rapport à la barrière isolante primaire 4.
Les figures 5A à 8 illustrent des variantes du premier mode de réalisation qui permettent d’éliminer ou à tout le moins limiter le risque que la membrane étanche secondaire 3 soit collée par la colle qui a servi au collage des éléments de pontage 20. Sur chacune de ces figures, la largeur de l’intervalle 111 entre deux plaques de fond 11 est exagérée afin de faciliter la compréhension du dessin.
Dans une première variante représentée très schématiquement en vue éclatée et en coupe sur la , à proximité de chaque intervalle 111 entre deux plaques de fond 11 adjacentes, chacune de ces plaques de fond 11 présente une rainure 91 qui s’étend le long de son bord qui délimite l’intervalle 111. On comprend alors que tant que la colle n’est pas appliquée à l’élément de pontage 20 et/ou à la plaque de fond 11 entre l’intervalle 111 et les rainures 91, les rainures 91 peuvent recueillir un éventuel excès de colle qui serait dirigé vers l’intervalle 111 par la pression de l’élément de pontage 20 sur les plaques de fond 11. L’excès de colle ainsi recueilli ne parvient donc pas jusqu’à l’intervalle 111 et la membrane étanche secondaire 3. Bien que les rainures 91 soient ici représentées avec une section rectangulaire, elles peuvent plus généralement présenter toute section appropriée. En outre, chaque rainure 91 est typiquement parallèle au bord respectif des plaques de fond 11 le long duquel elle s’étend.
Les rainures 91 peuvent ou non déboucher sur les bords des plaques de fond 11 comme représenté sur la . La représente un exemple de réalisation dans lequel les rainures 91 débouchent sur les bords de la plaque de fond 11. Dans cet exemple, chaque rainure 91 s’étend le long de la totalité du bord respectif de la plaque de fond 11, et croise perpendiculairement les deux rainures 91 adjacentes.
Les figures 5C à 5E représentent des exemples de réalisation dans lesquels les rainures 91 ne débouchent pas sur les bords de la plaque de fond 11. Dans l’exemple de la , chaque rainure 91 s’étend perpendiculairement à, et débouche à angle droit dans, les deux rainures 91 adjacentes. Dans l’exemple de la , les rainures 91 sont également perpendiculaires les unes aux autres, mais sont reliées les unes aux autres par des portions de rainure courbes, par exemple en arc de cercle. Dans l’exemple de la , les rainures 91 sont subdivisées en deux portions de rainure s’étendant dans le prolongement l’une de l’autre et parallèlement au bord respectif de la plaque de fond 11 ; les rainures 91 pouvant naturellement être subdivisées en un nombre supérieur de portions de rainure.
Il est à noter que le nombre de rainures 91 par plaque de fond 11 peut varier en fonction de la présence éventuelle d’éléments de coin 150 et/ou de la variation des dimensions des éléments de pontage 20, comme décrit ci-dessus en rapport avec les figures 3 et 4C. Ainsi, chaque plaque de fond 11 peut présenter deux, trois ou quatre rainures 91.
Dans une deuxième variante représentée très schématiquement en vue éclatée et en coupe sur la , à proximité de l’intervalle 111, le bloc de mousse 22 de l’élément de pontage 20 présente deux rainures 92. Les rainures 92 s’étendent parallèlement l’une à l’autre, parallèlement à l’intervalle 111. Les rainures 92 sont en outre disposées de part et d’autre de l’intervalle 111. On comprend alors que tant que la colle n’est pas appliquée à l’élément de pontage 20 et/ou à la plaque de fond 11 entre l’intervalle 111 et les rainures 92, les rainures 92 peuvent recueillir un éventuel excès de colle qui serait dirigé vers l’intervalle 111 par la pression de l’élément de pontage 20 sur les plaques de fond 11. L’excès de colle ainsi recueilli ne parvient donc pas jusqu’à l’intervalle 111 et la membrane étanche secondaire 3. Bien que les rainures 92 soient ici représentées avec une section rectangulaire, elles peuvent plus généralement présenter toute section appropriée. En outre, chaque rainure 92 est typiquement parallèle au bord respectif des plaques de fond 11 le long duquel elle s’étend.
La est une vue du bloc de mousse 22, de dessous de façon à montrer les rainures 92. Comme représenté sur cette figure, les rainures 92 peuvent s’étendre le long de la totalité des côtés du bloc de mousse 22, de façon à déboucher dans deux faces de côté du bloc de mousse 22. Toutefois, en variante, les rainures 92 peuvent ne pas déboucher dans les faces de côté du bloc de mousse 22 et/ou être interrompues.
Dans une troisième variante représentée très schématiquement en coupe sur la et en perspective sur la , le bloc de mousse 22 de l’élément de pontage 20 présente une languette 95. La languette 95 est destinée à être reçue dans l’intervalle 111. On comprend alors que, où que l’on applique la colle sur l’élément de pontage 20 et/ou la plaque de fond 11 (à l’exception bien sûr de la languette 95), l’excès de colle ne peut pas parvenir jusqu’à la membrane étanche secondaire 3, puisque la languette 95 occupe l’intervalle 111 et empêche ainsi la colle de pénétrer dans l’intervalle 111.
Dans une autre variante (non représentée sur les dessins), on peut prévoir que les plaques de fond 11 présentent les rainures 91 et que, simultanément, l’élément de pontage 20 présente les rainures 92. Dans encore une autre variante (non représentée sur les dessins), on peut prévoir que l’élément de pontage 20 présente la languette 95 et que, simultanément, les plaques de fond 11 présentent les rainures 91 et/ou l’élément de pontage 20 présente les rainures 92.
Dans encore une autre variante représentée sur la , une bande souple 99 peut être disposée sur les plaques de fond 11 de façon à recouvrir l’intervalle 111 avant de coller l’élément de pontage 20 sur les plaques de fond 11. C’est alors cette bande souple 99 qui empêche l’excès de colle de parvenir jusqu’à la membrane étanche secondaire 3. La bande souple 99, qui est éventuellement adhésive sur ses portions destinées à venir en contact avec les plaques de fond 11, peut être réalisée par exemple en papier kraft. On notera que la bande souple 99 peut être présente simultanément avec la languette 95 et/ou les rainures 92 et/ou les rainures 91.
On notera en outre que la languette 95 peut être présente même lorsque l’élément de pontage 20 est fixé aux plaques de fond 11 autrement que par collage.
On voit en outre que sur les variantes des figures 5A à 8, le panneau de fond 21 des éléments de pontage 20 est omis, volontairement, afin de montrer que le panneau de fond 21 est une option ; c’est alors le bloc de mousse 22 qui est collé aux plaques de fond 11, et qui présente le cas échéant les rainures 92 et/ou la languette 95. En variante, c’est le panneau de fond 21 qui est collé aux plaques de fond 11, et qui présente le cas échéant les rainures 92 et/ou la languette 95.
En complément ou en alternative, le panneau de fond des éléments de coin 150 peut être omis ; c’est alors leur bloc de mousse qui est collé aux plaques de fond 11.
La est une vue partielle, éclatée et en perspective d’une paroi d’une cuve étanche et thermiquement isolante selon un deuxième mode de réalisation. Sur les figures 9 et 10, les éléments qui sont identiques à ceux du premier mode de réalisation portent les mêmes numéros de référence et ne sont donc pas décrits en détail à nouveau sauf lorsque cela est nécessaire. On a représenté une seule tôle métallique ondulée 60, au lieu de trois sur la , afin de ne pas surcharger le dessin.
Comme cela est représenté sur la , ce deuxième mode de réalisation diffère du premier mode de réalisation principalement par la position des coupleurs mécaniques 29. Plus précisément, au lieu d’être fixés aux centres des blocs isolants 10, les coupleurs mécaniques 29 sont fixés aux coins des plaques de fond 11 de ces blocs isolants 10. Ce sont donc les éléments de coin 150’ qui reçoivent les coupleurs mécaniques 29, et non les blocs isolants 10.
La est une vue partielle de la en coupe selon X-X et permet ainsi de voir en coupe l’un des éléments de coin 150’.
L’élément de coin 150’ comprend un panneau de couvercle 151’, un bloc de mousse 152’ et un panneau de couvercle 153’ qui sont respectivement semblables au panneau de couvercle 151, au bloc de mousse 152 et au panneau de couvercle 153, à ceci près que le bloc de mousse 152’ et le panneau de couvercle 153’ sont traversés par un puits 180’ permettant d’accéder au coupleur mécanique 29. Ce puits 180’ peut être obturé par un bouchon thermiquement isolant (non représenté) avant d’installer la membrane étanche primaire 5.
Dans une variante (non représentée sur les dessins) du deuxième mode de réalisation, le panneau de fond 151’ des éléments de coin 150 peut être omis ; c’est alors le bloc de mousse 152’ qui est collé aux plaques de fond 11.
La permet également de voir en coupe l’un des coupleurs mécaniques 29. On va maintenant décrire ce coupleur mécanique 29, étant entendu que sa description qui va suivre est également applicable au premier mode de réalisation. Il est en outre entendu que d’autres types de coupleurs mécaniques que celui qui va être décrit peuvent être utilisés, du moment qu’ils sont aptes à retenir les éléments de coin 150’ et/ou les blocs isolants primaires 10 en place sur la membrane étanche secondaire 3 et la barrière isolante secondaire 2.
Chaque coupleur mécanique 29 coopère ici avec quatre zones d’appui appartenant respectivement à la zone de coin de quatre plaques de fond 11 voisines, dont deux seulement sont visibles sur la du fait de la vue en coupe selon le plan X-X. Chaque coupleur mécanique 29 comporte un goujon 30 qui fait saillie depuis la barrière isolante secondaire 2 et une plaque d’appui 31 qui est fixée à l’extrémité du goujon 30 et qui est en appui, via des entretoises 58 et le panneau de fond 151’, contre les quatre zones d’appui des quatre plaques de fond 11 voisines de manière à les retenir contre la barrière isolante secondaire 2 et la membrane isolante secondaire 30. La plaque d’appui 31 comporte un alésage (non référencé) enfilé sur le goujon 30. Un écrou 32 coopère avec une extrémité filetée du goujon 30 de manière à assurer la fixation de la plaque d’appui 31. En outre, selon un mode de réalisation avantageux, des rondelles Belleville sont enfilées sur le goujon 30, entre l’écrou 32 et la plaque d’appui 31, ce qui permet d’assurer un ancrage élastique des plaques de fond 11 sur la barrière isolante secondaire 2.
Comme illustré sur la , le goujon 30 est fixé à une plaque d’ancrage 33 qui est elle-même fixée aux plaques de couvercle 2c de la barrière isolante secondaire 2. Pour ce faire, la plaque d’ancrage 33 comporte par exemple un filetage qui coopère avec une extrémité filetée complémentaire du goujon 30. Par ailleurs, les plaques de couvercle 2c présentent un évidement dans lequel est logée la plaque d’ancrage 33. L’évidement présente une section interne présentant un premier diamètre et une section externe présentant un deuxième diamètre supérieur au premier diamètre de sorte à ménager un épaulement. La plaque d’ancrage 33 présente une forme complémentaire à celle de l’évidement. Ainsi, une face interne de la plaque d’ancrage 33 affleure avec une face interne des plaques de couvercle 2c de manière à former une surface plane de support de la membrane étanche secondaire 3. En outre, la plaque d’ancrage 33 présente une section externe ayant un diamètre plus important que sa section interne de telle sorte que la section externe de ladite plaque 33 d’ancrage soit en butée contre l’épaulement de l’évidement, ce qui permet d’assurer la fixation de la plaque d’ancrage 33 à la barrière isolante secondaire 2.
Par ailleurs, le goujon 30 traverse de manière étanche un orifice ménagé dans la membrane étanche secondaire 3. Dans le mode de réalisation représenté, le coupleur mécanique 29 comporte une rondelle d’étanchéité 34 afin d’assurer l’étanchéité de la membrane étanche secondaire 3 au niveau de son orifice traversé par le goujon 30. La rondelle d’étanchéité 34 présente une collerette se développant radialement par rapport à l’axe du goujon 30 un orifice central dans lequel est engagé le goujon 30 avec un jeu autorisant un déplacement relatif entre la rondelle d’étanchéité 34 et le goujon 30. La collerette est fixée de manière étanche sur la membrane étanche secondaire 3 autour de l’orifice de ladite membrane étanche secondaire 3. Cette fixation étanche est, par exemple, réalisée par soudure.
Par ailleurs, le goujon 30 peut présenter un épaulement d’ancrage 35 faisant saillie radialement vers l’extérieur du goujon 30. Un joint déformable 36 est alors soudé de manière étanche, d’une part, à la rondelle d’étanchéité 34 et, d’autre part, à l’épaulement d’ancrage 35 du goujon 30, ce qui permet d’assurer l’étanchéité de la traversée du goujon 30 à travers la membrane étanche secondaire 3. Dans le mode de réalisation représenté, le joint déformable 36 est un soufflet, par exemple en acier inoxydable. Ainsi, la liaison étanche entre la membrane étanche secondaire 3 et le goujon 30 est souple, ce qui autorise des mouvements relatifs des blocs isolants primaires 10 et/ou des éléments de coin 150’ par rapport à la membrane étanche secondaire 3 et permet ainsi de limiter les risques de dégradation de l’étanchéité de ladite membrane étanche secondaire 3.
Afin de protéger le joint déformable 36, le coupleur mécanique 29 est également équipé d’une cloche 37 qui présente un orifice dans lequel est enfilé le goujon 30 et qui recouvre ledit joint déformable 36. Dans le mode de réalisation représenté, la cloche 37 présente une forme générale cylindrique. Il est précisé que l’épaulement d’ancrage 35, le joint déformable 36 et la cloche 37 peuvent être omis.
Dans un troisième mode de réalisation (non représenté sur les dessins), des coupleurs mécaniques 29 tels que décrits précédemment peuvent être fixés à la fois aux centres des blocs isolants 10, comme dans le premier mode de réalisation, et aux coins des plaques de fond 11 des blocs isolants 10, comme dans le deuxième mode de réalisation.
Les techniques décrites ci-dessus pour réaliser une paroi de cuve étanche et thermiquement isolante peuvent être utilisées dans différents types de réservoirs, par exemple pour constituer la paroi d’un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la , une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims (22)

  1. Cuve étanche et thermiquement isolante comportant une paroi de cuve retenue sur une structure porteuse (1), la paroi de cuve incluant, dans le sens de l’épaisseur depuis l’extérieur vers l’intérieur de la cuve, une barrière isolante secondaire (2) retenue sur la structure porteuse (1), une membrane étanche secondaire (3) retenue sur la barrière isolante secondaire (2), une barrière isolante primaire (4) retenue sur la membrane étanche secondaire et une membrane étanche primaire (5) ondulée retenue sur la barrière isolante primaire (4),
    dans laquelle la barrière isolante primaire (4) comprend une pluralité de blocs isolants (10) juxtaposés, chaque bloc isolant comportant une plaque de fond (11) et un bloc de mousse thermiquement isolante (12) disposé sur la plaque de fond (11), la plaque de fond (11) de chaque bloc isolant (10) débordant du bloc de mousse thermiquement isolante (12) de façon à ménager à chaque fois un espace entre le bloc de mousse thermiquement isolante (12) et le bloc de mousse thermiquement isolante d’un bloc isolant adjacent,
    dans laquelle la barrière isolante primaire (4) comprend en outre une pluralité d’éléments de pontage (20), chaque élément de pontage (20) étant disposé dans un desdits espaces entre les blocs de mousse thermiquement isolante (12) de deux blocs isolants (10) adjacents, étant fixé à une face interne des plaques de fond (11) desdits deux blocs isolants adjacents et recouvrant une partie desdites faces internes.
  2. Cuve selon la revendication 1, dans laquelle la membrane étanche primaire (5) présente une première série d’ondulations (61) s’étendant parallèlement à une première direction (d1), et dans laquelle chaque ondulation de la première série d’ondulations est disposée au droit d’une première fente (171) prévue dans un bloc de mousse thermiquement isolante (12) d’un bloc isolant (10) ou au droit d’un interstice ménagé entre un élément de pontage (20) et un bloc de mousse thermiquement isolante (12) d’un bloc isolant (10).
  3. Cuve selon la revendication 1 ou 2, dans laquelle la membrane étanche primaire (5) présente une deuxième série d’ondulations (62, 62-1, 62-2) s’étendant parallèlement à une deuxième direction (d2), et dans laquelle chaque ondulation de la deuxième série d’ondulations est disposée au droit d’une deuxième fente (172) prévue dans un bloc de mousse thermiquement isolante (12) d’un bloc isolant (10) ou au droit d’un interstice ménagé entre un élément de pontage (20) et un bloc de mousse thermiquement isolante (12) d’un bloc isolant (10).
  4. Cuve selon l’une quelconque des revendications 1 à 3, dans laquelle chaque élément de pontage (20) est collé sur une face interne des plaques de fond (11) desdits deux blocs isolants (10) adjacents.
  5. Cuve selon la revendication 4, dans laquelle la face interne de la plaque de fond (11) de chaque bloc isolant (10) présente aux moins deux rainures (91), chaque rainure (91) s’étendant le long d’un bord de ladite plaque de fond (11) sur une partie ou la totalité dudit bord de la plaque de fond.
  6. Cuve selon la revendication 4 ou 5, dans laquelle chaque élément de pontage (20) présente deux rainures (92), les rainures (92) s’étendant parallèlement l’une à l’autre et étant disposées de part et d’autre d’un intervalle (111) entre les plaques de fond (11) desdits deux blocs isolants (10) adjacents.
  7. Cuve selon l’une quelconque des revendications 1 à 6, dans laquelle chaque élément de pontage (20) présente une languette (95) destinée à être reçue dans un intervalle (111) entre les plaques de fond (11) desdits deux blocs isolants (10) adjacents.
  8. Cuve selon l’une quelconque des revendications 1 à 7, dans laquelle une bande souple (99), par exemple en papier kraft, est disposée sous chaque élément de pontage (20) de façon à être reçue dans un intervalle (111) entre les plaques de fond (11) desdits deux blocs isolants (10) adjacents.
  9. Cuve selon l’une quelconque des revendications 1 à 8, dans laquelle les blocs isolants (10) de la barrière isolante primaire (4) sont disposés à espaces réguliers selon des rangées parallèles à la première direction (d1) et à la deuxième direction (d2).
  10. Cuve selon la revendication 9, dans laquelle la barrière isolante primaire (4) comprend en outre une pluralité d’éléments de coin (150), chaque élément de coin (150) étant disposé entre les blocs de mousse (12) de quatre blocs isolants (10) voisins, étant fixé à une face interne des plaques de fond (11) desdits quatre blocs isolants voisins (10) et recouvrant une partie desdites faces internes.
  11. Cuve selon la revendication 9, dans laquelle chaque espace entre les blocs de mousse (12) de quatre blocs isolants (10) voisins est occupé par une portion d’extrémité d’un élément de pontage (20).
  12. Cuve selon l’une quelconque des revendications 1 à 11, dans laquelle chaque bloc isolant (10) de la barrière isolante primaire (4) est retenu sur la membrane étanche secondaire (3) par un coupleur mécanique (29), le coupleur mécanique traversant la membrane étanche secondaire (3) au niveau du centre de la plaque de fond (11) du bloc isolant (10).
  13. Cuve selon l’une quelconque des revendications 1 à 11, dans laquelle chaque bloc isolant (10) de la barrière isolante primaire est retenu sur la membrane étanche secondaire (3) par une pluralité de coupleurs mécaniques (29), chaque coupleur mécanique traversant la membrane étanche secondaire (3) au niveau d’un coin de la plaque de fond (11) du bloc isolant (10).
  14. Cuve selon l’une quelconque des revendications 1 à 13, dans laquelle la membrane étanche secondaire (3) est réalisée par soudage de virures métalliques présentant des bords relevés, lesdits bords relevés étant reçus dans des fentes inférieures (8) que présente chaque bloc isolant (10) de la barrière isolante primaire (4).
  15. Cuve selon la revendication 14, dans laquelle chaque élément de pontage (20) situé dans le prolongement desdites fentes inférieures (8) présente des fentes inférieures supplémentaires (9) pour recevoir lesdits bords relevés.
  16. Cuve selon l’une quelconque des revendications 1 à 13, dans laquelle la membrane étanche secondaire (3) est ondulée et réalisée par soudage de tôles métalliques, chaque tôle métallique présentant au moins une portion d’ondulation, lesdites portions d’ondulation étant reçues dans des logements que présente chaque bloc isolant (10) de la barrière isolante primaire (4).
  17. Cuve selon la revendication 16, dans laquelle chaque élément de pontage (20) situé dans le prolongement desdits logements présente des logements supplémentaires pour recevoir lesdites portions d’ondulation.
  18. Cuve selon l’une quelconque des revendications 1 à 17, dans laquelle chaque élément de pontage (20) comporte une couche de mousse thermiquement isolante (22) qui est fixée à une face interne des plaques de fond (11) desdits deux blocs isolants adjacents.
  19. Cuve selon l’une quelconque des revendications 1 à 17, dans laquelle chaque élément de pontage (20) comporte une couche de mousse thermiquement isolante (22) et un panneau de fond (21), la couche de mousse thermiquement isolante (22) étant collée au panneau de fond (21) et le panneau de fond (21) étant fixé à une face interne des plaques de fond (11) desdits deux blocs isolants (10) adjacents, de préférence par collage.
  20. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve (71) selon l’une quelconque des revendications 1 à 19 disposée dans la double coque.
  21. Système de transfert pour un produit liquide froid, le système comprenant un navire (70) selon la revendication 20, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  22. Utilisation d’un navire (70) selon la revendication 20 pour le chargement ou déchargement d’un produit liquide froid, dans laquelle on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve (71) du navire.
PCT/EP2021/076989 2020-10-09 2021-09-30 Cuve étanche et thermiquement isolante WO2022073851A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023521318A JP2023546360A (ja) 2020-10-09 2021-09-30 密閉断熱タンク
KR1020227007891A KR102541573B1 (ko) 2020-10-09 2021-09-30 밀폐 단열 탱크
EP21786212.7A EP4226073A1 (fr) 2020-10-09 2021-09-30 Cuve étanche et thermiquement isolante
CN202180068656.5A CN116324259A (zh) 2020-10-09 2021-09-30 密封绝热贮罐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010370 2020-10-09
FR2010370A FR3115091B1 (fr) 2020-10-09 2020-10-09 Cuve étanche et thermiquement isolante

Publications (1)

Publication Number Publication Date
WO2022073851A1 true WO2022073851A1 (fr) 2022-04-14

Family

ID=73793443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/076989 WO2022073851A1 (fr) 2020-10-09 2021-09-30 Cuve étanche et thermiquement isolante

Country Status (6)

Country Link
EP (1) EP4226073A1 (fr)
JP (1) JP2023546360A (fr)
KR (1) KR102541573B1 (fr)
CN (1) CN116324259A (fr)
FR (1) FR3115091B1 (fr)
WO (1) WO2022073851A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117842286A (zh) * 2024-03-06 2024-04-09 沪东中华造船(集团)有限公司 一种薄膜型低温液货围护系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139043A (ko) * 2011-06-16 2012-12-27 삼성중공업 주식회사 액화천연가스 화물창의 단열구조 및 그 시공방법
KR102011866B1 (ko) * 2018-05-25 2019-08-19 대우조선해양 주식회사 멤브레인형 저장탱크의 단열시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325689B1 (ko) * 2011-12-02 2013-11-05 삼성중공업 주식회사 액화 천연 가스 저장 탱크
KR102075975B1 (ko) * 2018-05-25 2020-03-02 대우조선해양 주식회사 액화가스 저장탱크의 단열시스템
FR3082274B1 (fr) * 2018-06-06 2021-11-19 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139043A (ko) * 2011-06-16 2012-12-27 삼성중공업 주식회사 액화천연가스 화물창의 단열구조 및 그 시공방법
KR102011866B1 (ko) * 2018-05-25 2019-08-19 대우조선해양 주식회사 멤브레인형 저장탱크의 단열시스템

Also Published As

Publication number Publication date
KR102541573B1 (ko) 2023-06-14
KR20220049011A (ko) 2022-04-20
FR3115091B1 (fr) 2022-08-26
EP4226073A1 (fr) 2023-08-16
JP2023546360A (ja) 2023-11-02
CN116324259A (zh) 2023-06-23
FR3115091A1 (fr) 2022-04-15

Similar Documents

Publication Publication Date Title
EP3320256B1 (fr) Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
EP3198186B1 (fr) Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
EP3710742B1 (fr) Procédé de fabrication d'une barrière d'isolation thermique d'une paroi d'une cuve et barrière d'isolation thermique ainsi obtenue
WO2016166481A2 (fr) Cuve équipée d'une paroi présentant une zone singulière au travers de laquelle passe un élément traversant
FR3074560A1 (fr) Cuve etanche et thermiquement isolante
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
FR3105342A1 (fr) Barrière thermiquement isolante pour une paroi d’une cuve
WO2022074148A1 (fr) Cuve étanche et thermiquement isolante
EP3942219B1 (fr) Cuve étanche et thermiquement isolante
FR3112588A1 (fr) Paroi d'une cuve de stockage d'un gaz liquéfiée
WO2022073851A1 (fr) Cuve étanche et thermiquement isolante
WO2022100975A1 (fr) Procédé de fabrication d'une barrière thermiquement isolante pour une cuve
WO2019239049A1 (fr) Cuve etanche et thermiquement isolante
FR3073270B1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
FR3116101A1 (fr) Procédé de fabrication d’une barrière thermiquement isolante pour une cuve
FR3110954A1 (fr) Bloc isolant convenant pour réaliser une paroi isolante dans une cuve de stockage d’un liquide froid
WO2021245091A1 (fr) Cuve étanche et thermiquement isolante intégrée dans une structure porteuse
FR3077116A1 (fr) Cuve etanche et thermiquement isolante
WO2020115406A1 (fr) Cuve etanche et thermiquement isolante
WO2022074226A1 (fr) Cuve étanche et thermiquement isolante
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2023067026A1 (fr) Cuve étanche et thermiquement isolante
FR3094452A1 (fr) Installation de stockage pour gaz liquéfié
FR3077115A1 (fr) Cuve etanche et thermiquement isolante.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20227007891

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21786212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023521318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021786212

Country of ref document: EP

Effective date: 20230509