WO2022073525A1 - 一种氨肟化反应与分离集成的方法及其装置 - Google Patents

一种氨肟化反应与分离集成的方法及其装置 Download PDF

Info

Publication number
WO2022073525A1
WO2022073525A1 PCT/CN2021/127385 CN2021127385W WO2022073525A1 WO 2022073525 A1 WO2022073525 A1 WO 2022073525A1 CN 2021127385 W CN2021127385 W CN 2021127385W WO 2022073525 A1 WO2022073525 A1 WO 2022073525A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reactor
ammoximation
flow
separation
Prior art date
Application number
PCT/CN2021/127385
Other languages
English (en)
French (fr)
Inventor
吴剑
赵承军
魏天荣
周学军
李伟
车小军
李辉
Original Assignee
湖北金湘宁化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北金湘宁化工科技有限公司 filed Critical 湖北金湘宁化工科技有限公司
Priority to EP21870542.4A priority Critical patent/EP4023632A4/en
Publication of WO2022073525A1 publication Critical patent/WO2022073525A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/085Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • C07C249/14Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the invention relates to a method and device for integrating ammoximation reaction and separation, in particular to a method and device for separation of ammoximation reaction and its products, oxime, water and catalyst.
  • Titanosilicate materials can catalyze the ammoximation reaction of aliphatic or aromatic ketones with hydrogen peroxide and ammonia to generate corresponding oximes, and then through Beckmann rearrangement, a series of amides can be synthesized.
  • Caprolactam scientific name ⁇ -caprolactam
  • ⁇ -caprolactam is an important petrochemical product, widely used in the manufacture of nylon and engineering plastics. Therefore, the preparation of cyclohexanone oxime by ammoximation of cyclohexanone and the rearrangement of cyclohexanone oxime to produce caprolactam has important application value. At present, it has gradually replaced the cyclohexanone-hydroxylamine method, cyclohexane photonitrosation method and toluene method, etc., and has become an industrial Mainstream method for the production of caprolactam.
  • U.S. Patent No. 4,745,221 disclosed for the first time a method for generating cyclohexanone oxime by ammoximation of cyclohexanone, hydrogen peroxide and ammonia in the liquid phase: using TS-1 as the catalyst, hydrogen peroxide as the oxygen source, at 60 °C ⁇ 80 °C Under mild conditions, the selectivity to cyclohexanone was 98.2%.
  • the method has a short technological process, avoids the complex hydroxylamine synthesis process and the generation of SOx or NOx, does not produce ammonium sulfate by-product, and is environmentally friendly.
  • US Pat. No. 4,894,478 disclosed a multi-step liquid-phase catalysis method to divide the oximation process of cyclohexanone into two steps, thereby improving the yield of cyclohexanone oxime.
  • CN1191125 and CN1234683 disclose a method for separating titanium-silicon molecular sieves in the ketone ammoximation reaction system.
  • the materials including the reaction product oxime and titanium-silicon molecular sieve are placed in a settler at a temperature of 60-85 ° C and a linear velocity of 0.5-3 cm/min. Settling is not less than 10 minutes. The method better solves the problem of separation of catalyst and reaction product, and improves the utilization rate of molecular sieve.
  • CN100586928 discloses a preparation method of cyclohexanone oxime, which is characterized in that the method is continuously circulated in a loop reactor, and the reaction including catalyst, ammonia, cyclohexanone, hydrogen peroxide and tert-butanol solvent is mixed
  • the slurry is subjected to ammoximation reaction in the loop pipe, and then the solid-liquid separation of the reaction slurry is carried out in the filter element in the solid-liquid separation module in a cross-flow manner, and the obtained clear liquid flows out along the radial direction of the filter element and is recovered,
  • the concentrated slurry continues to circulate in the loop.
  • tert-butanol is a solvent.
  • water-miscible low-carbon alcohol such as tert-butanol
  • the purpose is to improve the solubility of the ammoximation product in the system, so as to facilitate the reaction.
  • the process thus designed will bring many deficiencies.
  • the low-carbon alcohol as the reaction solvent accounts for a large proportion in the reaction solution, which increases the separation load of reaction products and catalysts, and seriously affects the flux of cross-flow filtration.
  • CN100386307 discloses a method for preparing amides by oximation and rearrangement using aliphatic or/and cycloaliphatic ketones as raw materials: in the presence of an inert solvent, ketone, hydrogen peroxide and ammonia are catalyzed to generate an oxime solution, and the oil phase The product undergoes Beckmann rearrangement reaction under the action of oleum, and the amide is obtained after hydrolysis and neutralization.
  • CN1939897 discloses a method for separating and preparing ketoxime by three-phase ammoximation reaction.
  • ketone, hydrogen peroxide and ammonia are subjected to liquid-liquid-solid three-phase heterogeneous phase
  • the oximation reaction generates oxime; after the oximation reaction product is phase-separated, the light phase is the solvent phase containing oxime, and the heavy phase directly separates part of the water for recycling; or the heavy phase is extracted with a water-insoluble or slightly soluble solvent.
  • the oxime, the catalyst-containing heavy phase raffinate phase is separated from part of the water and recycled.
  • CN 105837468 discloses a preparation method of cyclohexanone oxime: in the presence of an oximation catalyst, cyclohexanone, ammonia and hydrogen peroxide are subjected to ammoximation reaction in a solvent, wherein the solvent contains a small amount of inert organic Aqueous solutions of solvents, ammoximation can obtain higher cyclohexanone conversion and cyclohexanone oxime selectivity.
  • CN 104926689 discloses a solvent-free method for preparing cyclohexanone oxime, and the specific preparation includes preparation of reaction system, oximation reaction and separation of products. The product can be directly separated from the reaction solution by condensation, the energy consumption is low, the preparation process is environmentally friendly, and the industrialized implementation is easy.
  • the present invention provides an ammoximation reaction and a method and a device for separating the product oxime, water and catalyst thereof.
  • the purpose of the present invention is to provide a method and device for continuously and efficiently separating products and catalysts for the ammoximation reaction process of a solvent-free system or an aqueous solution system containing a small amount of inert organic solvent.
  • a method for the integration of ammoximation reaction and separation comprising the following four steps:
  • reaction mass separates the clear liquid containing water and oxime through cross-flow filtration
  • titanium silicon molecular sieve is a catalyst
  • titanium silicon molecular sieve is Ti-MWW, TS-1, TS-2, Ti- ⁇ , Ti-SBA-15 , one or more of Ti-MCM-41 or Ti-MOR, preferably one or a mixture of Ti-MWW and TS-1, particularly preferably Ti-MWW.
  • the ketone of one of the raw materials for the ammoximation reaction is an aliphatic ketone with 3 to 10 carbon atoms, or a cycloaliphatic ketone or an aromatic ketone with 5 to 10 carbon atoms;
  • the concentration of hydrogen peroxide used is the mass fraction 10%-80%, preferably 25%-60%;
  • the ratio of the amount of ketone, hydrogen peroxide and ammonia is 1:1.0-2:1.0-4, preferably 1:1.0-1.2:1.0-2.0.
  • ammoximation reaction of ketone, hydrogen peroxide and ammonia is carried out under the condition of no solvent or a small amount of inert alkane solvent, the reaction temperature is 40 ⁇ 100 °C, the reaction pressure is 0.1 ⁇ 1MPa, and the final controlled reaction pressure is not more than 1MPa. .
  • a device for integrating ammoximation reaction and separation includes a kettle-type reactor, a cross-flow filter, and a mixed extraction, and the kettle-type reactor, the cross-flow filter, and the mixed extraction are connected in sequence;
  • the material discharge end of the cross-flow filter is communicated with the kettle-type reactor through the material return pipe;
  • the water-phase discharge end of the mixed extraction is communicated with the kettle-type reactor through the water-phase reflux pipe;
  • the method for integrating ammoximation reaction and separation provided by the present invention includes steps such as ammoximation reaction, cross-flow membrane filtration separation, extraction separation, etc., which will be described below with reference to FIG. 1 .
  • the ammoximation reaction uses ketone, hydrogen peroxide and ammonia as raw materials, under the condition of no solvent or a small amount of inert alkane solvent, through the catalytic reaction of titanium silicon molecular sieve to generate oxime and water.
  • the ammoximation reaction is carried out in the kettle-type reactor R and the circulation pipeline.
  • the circulation pipeline is provided with a cross-flow filter S1.
  • the reaction product is first filtered through the cross-flow filter S1 to separate the clear liquid; the material is recycled back to the reactor R.
  • the previous part enters into the mixed extraction S2, is added with an inert alkane solvent for extraction, and the obtained organic phase is an oxime solution, and the aqueous phase is an aqueous solution enriched with catalyst, which is returned to the reactor R through a circulation pipeline.
  • the above-mentioned cross-flow filter S1 is a metal membrane tube or a ceramic membrane tube, and the filtration precision is 20 nm to 2000 nm.
  • the aqueous phase 11 obtained by the mixed extraction S2 unit is a turbid liquid containing the catalyst, which is recycled back to the ammoximation reactor, wherein the mass fraction of the catalyst is 1%-10%.
  • the traditional ammoximation process uses low-carbon alcohol as the solvent, and the built-in membrane in the reactor or the external cross-flow membrane separates the product and the catalyst. Since the reaction product oxime, water, solvent and catalyst are separated simultaneously, it is easy to cause membrane leakage. The amount is insufficient, and in the present invention, the ammoximation reaction is carried out under the condition of no solvent or a small amount of inert alkane solvent, and the combination of cross-flow filter and mixed extraction can separate water, product oxime and catalyst with high selectivity, which can greatly reduce Membrane separation load, saving equipment investment.
  • the integrated method of reaction and separation adopted in the present invention can minimize the consumption of catalyst in the ammoximation reaction without solvent or a small amount of inert alkane solvent, and save the operation cost.
  • the concentration of the oxime-inert alkane solution thus obtained can be adjusted according to the needs of the subsequent Beckmann rearrangement reaction without affecting the reaction and separation of the ammoximation, and the process operation is simple and flexible.
  • the continuous and efficient separation of product oxime, water and catalyst can be realized on the premise of obtaining high cyclohexanone conversion rate and cyclohexanone oxime selectivity. , greatly saving equipment investment and improving device production capacity.
  • the oxime-inert alkane solution thus obtained is very suitable for the Beckmann rearrangement reaction of solvent vaporization and heat transfer, abandoning the subsequent complicated separation and purification brought by the traditional ammoximation process using low-carbon alcohol as a solvent, and significantly saving ammonia oxime
  • the investment and energy consumption of transformation and rearrangement are extremely valuable for industrial applications.
  • Figure 1 is a schematic diagram of the present invention.
  • FIG. 3 is a schematic diagram of Comparative Example 2 compared with the present invention.
  • FIG. 4 is a schematic diagram of the apparatus of the present invention.
  • ketone 1 hydrogen peroxide 2, ammonia 3, reaction product 4, clear liquid 5, material 6, inert alkane solvent 9, organic phase 10, aqueous phase 11, tank reactor R, cross-flow filter S1, mixed Extract S2.
  • Embodiment 1 As shown in Figure 1, cyclohexanone (ketone 1), ammonia 3, hydrogen peroxide 2 are respectively continuously added to the ammoximation reactor (tank reactor R) containing Ti-MWW catalyst after being measured by mass flow meter. )middle.
  • the flow rate of cyclohexanone ketone 1) is 140kg/h
  • the flow rate of hydrogen peroxide 2 is 180kg/h
  • the concentration is 27.5%
  • the flow rate of ammonia gas is 32kg/h.
  • the effective volume of the oximation reactor was 1.0 m 3
  • the reaction temperature was 80° C.
  • the circulation flow rate was 11 m 3 /h.
  • the circulation pipeline is equipped with a ceramic cross-flow filter (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 1.5m 3 /h. Part enters the cyclone extraction (mixed extraction S2), and the rest are recycled back to the ammoximation reactor (tank reactor R). Cyclohexane (inert alkane solvent 9) is added to the cyclone extractor (mixed extraction S2) at a flow rate of 1000kg/h, and the light phase (organic phase 10) is isolated as a cyclohexane-oxime solution, which enters the subsequent rearrangement reaction device.
  • cross-flow filter S1 ceramic cross-flow filter
  • Comparative Example 1 The feed flow rate, ratio, reaction temperature and circulation amount of the ammoximation reaction were the same as those in Example 1. As shown in accompanying drawing 2, the difference is that the clear liquid 5 filtered out by the cross-flow membrane filter S1 enters the cyclone extractor (mixed extraction S2), and the material 6 is circulated back to the ammoximation reactor. Cyclohexane (inert alkane solvent 9) is added to the cyclone extractor (mixed extraction S2) at a flow rate of 1000kg/h, and the light phase (organic phase 10) is isolated as a cyclohexane-oxime solution, which enters the subsequent rearrangement reaction device.
  • Cyclohexane inert alkane solvent 9
  • a small part of the heavy phase (aqueous phase 11) separated by the cyclone extractor is discharged from the system to keep the liquid level of the ammoximation reactor constant, and most of the remaining water phase 11 is recycled back to the ammoximation reactor R.
  • continuous and stable operation was carried out for 720 hours, sampling and analysis were carried out to calculate the conversion rate and selectivity, and the consumption was calculated by the catalyst concentration. The results are shown in Table 1.
  • the continuous and stable operation was carried out for 720 hours, and the samples were taken for analysis to calculate the conversion rate and selectivity, and the consumption was calculated by the catalyst concentration. The results are shown in Table 1.
  • the circulation pipeline is equipped with a ceramic cross-flow filter (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 1.2-1.8 m 3 /h.
  • Flow extractor mixed extraction S2
  • the rest is recycled back to the ammoximation reactor (tank reactor R).
  • Normal hexane in the cyclone extractor (mixed extraction S2) with the flow rate of 950-2100kg/h
  • the light phase (organic phase 10) normal hexane is isolated as-oxime solution, and enters the subsequent rearrangement reaction device.
  • the heavy phase (aqueous phase 11) separated by the cyclone extractor mixed extraction S2) is recycled back to the ammoximation reactor.
  • Example 5 cyclohexanone (ketone 1), ammonia 3 and hydrogen peroxide 2 were respectively measured by mass flowmeter and continuously added to the ammoximation reactor (tank reactor R) containing Ti-MCM-41 catalyst.
  • the flow rate of cyclohexanone (ketone 1) is 20-48kg/h
  • the flow rate of hydrogen peroxide 2 is 30-95kg/h
  • the concentration is 26-31%
  • the flow rate of ammonia gas is 5-11kg/h.
  • the effective volume of the oximation reactor is 0.2-0.8 m 3
  • the reaction temperature is 76-85° C.
  • the circulation flow rate is 3-4.5 m 3 /h.
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 0.4-0.6 m 3 /h.
  • Flow extractor mixed extraction S2
  • the rest is recycled back to the ammoximation reactor (tank reactor R).
  • Cyclohexane inert alkane solvent 9
  • the light phase organic phase
  • Example 6 Cyclohexanone (ketone 1), ammonia 3, and hydrogen peroxide 2 were respectively measured by mass flow meters and continuously added to the ammoximation reactor (tank reactor R) containing Ti-SBA-15 catalyst.
  • the flow rate of cyclohexanone (ketone 1) is 300-600kg/h
  • the flow rate of hydrogen peroxide 2 is 320-1090kg/h
  • the concentration is 27.5-30%
  • the flow rate of ammonia gas is 50-130kg/h.
  • the effective volume of the oximation reactor is 1.5-5 m 3
  • the reaction temperature is 79-90° C.
  • the circulation flow rate is 16.5-28 m 3 /h.
  • Embodiment 7 cyclohexanone (ketone 1), ammonia 3, hydrogen peroxide 2 are continuously added in the ammoximation reactor (tank reactor R) containing TS-2, Ti- ⁇ catalyst after being measured by mass flow meter respectively .
  • the flow rate of cyclohexanone (ketone 1) is 610-800kg/h
  • the flow rate of hydrogen peroxide 2 is 1100-1590kg/h
  • the concentration is 27-31%
  • the flow rate of ammonia gas is 120-160kg/h.
  • the effective volume of the oximation reactor is 3.0-6.5 m 3
  • the reaction temperature is 79-90° C.
  • the circulation flow rate is 23-36 m 3 /h.
  • Example 8 cyclohexanone (ketone 1), ammonia 3 and hydrogen peroxide 2 were respectively measured by mass flowmeter and continuously added to the ammoximation reactor (tank reactor R) containing Ti-SBA-15 catalyst.
  • the flow rate of cyclohexanone (ketone 1) is 810-900kg/h
  • the flow rate of hydrogen peroxide 2 is 1300-1800kg/h
  • the concentration is 27-31%
  • the flow rate of ammonia gas is 32kg/h.
  • the effective volume of the oximation reactor is 3.0-7.5 m 3
  • the reaction temperature is 81° C.
  • the circulation flow rate is 28-42 m 3 /h.
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 2.8-7.5m 3 /h.
  • Flow extractor mixed extraction S2
  • the rest is recycled back to the ammoximation reactor (tank reactor R).
  • Cyclohexane inert alkane solvent 9) is added to the cyclone extractor (mixed extraction S2) at a flow rate of 3020-5200kg/h
  • the separated light phase (organic phase 10) is a cyclohexane-oxime solution, which enters the subsequent heavy phase. discharge the reactor.
  • the heavy phase (aqueous phase 11) separated by the cyclone extractor mixed extraction S2 is recycled back to the ammoximation reactor.
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 1.7 m 3 /h. Part enters the cyclone extraction (mixed extraction S2), and the rest are recycled back to the ammoximation reactor (tank reactor R). Cyclohexane (inert alkane solvent 9) is added to the cyclone extractor (mixed extraction S2) at a flow rate of 900-1100kg/h, and the light phase (organic phase 10) is isolated as a cyclohexane-oxime solution, which enters the subsequent heavy phase. discharge the reactor. The heavy phase (aqueous phase 11) separated by the cyclone extractor (mixed extraction S2) is recycled back to the ammoximation reactor.
  • a metal membrane tube filtration device cross-flow filter S1
  • cyclohexanone (ketone 1), ammonia 3 and hydrogen peroxide 2 were respectively measured by mass flowmeter and continuously added to the ammoximation reactor (tank reactor R) containing Ti-MWW catalyst.
  • the flow rate of cyclohexanone (ketone 1) is 110-190kg/h
  • the flow rate of hydrogen peroxide 2 is 120-290kg/h
  • the concentration is 28.5-32%
  • the flow rate of ammonia gas is 29-51kg/h.
  • the effective volume of the oximation reactor is 0.8-1.6 m 3
  • the reaction temperature is 75-89° C.
  • the circulation flow rate is 9-13 m 3 /h.
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 1-2.1 m 3 /h.
  • Flow extractor mixed extraction S2
  • the rest is recycled back to the ammoximation reactor (tank reactor R).
  • Cyclohexane inert alkane solvent 9
  • the light phase organic phase
  • Embodiment 11 cyclohexanone (ketone 1), ammonia 3, hydrogen peroxide 2 are successively added to the ammoximation reactor (pot-type reaction) containing TS-1, TS-2, Ti- ⁇ catalyst after being measured by mass flowmeter respectively. device R).
  • the flow rate of cyclohexanone (ketone 1) is 120-180kg/h
  • the flow rate of hydrogen peroxide 2 is 205kg/h
  • the concentration is 36.5%
  • the flow rate of ammonia gas is 34kg/h.
  • the effective volume of the oximation reactor is 0.8-1.9 m 3
  • the reaction temperature is 80-92° C.
  • the circulation flow rate is 10-11.5 m 3 /h.
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 1.4-1.55m 3 /h.
  • Flow extractor mixed extraction S2
  • the rest is recycled back to the ammoximation reactor (tank reactor R).
  • Cyclohexane inert alkane solvent 9
  • the light phase organic phase
  • Example 12 cyclohexanone (ketone 1), ammonia 3, and hydrogen peroxide 2 were respectively measured by mass flowmeter and continuously added to the ammoximation reactor (tank reactor R) containing Ti-MWW catalyst.
  • the flow rate of cyclohexanone (ketone 1) is 130-180kg/h
  • the flow rate of hydrogen peroxide 2 is 140-230kg/h
  • the concentration is 31-39.5%
  • the flow rate of ammonia gas is 29-36kg/h.
  • the effective volume of the oximation reactor is 1.0-1.8 m 3
  • the reaction temperature is 75-83° C.
  • the circulation flow rate is 11.3 m 3 /h.
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 1.4-1.8m 3 /h.
  • Flow extractor mixed extraction S2
  • the rest is recycled back to the ammoximation reactor (tank reactor R).
  • Cyclohexane inert alkane solvent 9
  • the light phase organic phase
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 1.4-1.8m 3 /h.
  • Flow extractor mixed extraction S2
  • the rest is recycled back to the ammoximation reactor (tank reactor R).
  • Cyclohexane inert alkane solvent 9
  • the light phase (organic phase 10) was isolated as a cyclohexane-oxime solution, which entered the subsequent heavy phase. discharge the reactor.
  • the heavy phase water phase 11
  • separated by the cyclone extractor mixed extraction S2 is recycled back to the ammoximation reactor.
  • Example 15 cyclohexanone (ketone 1), ammonia 3, and hydrogen peroxide 2 were respectively measured by mass flowmeter and continuously added to the ammoximation reactor (tank reactor R) containing Ti-MOR catalyst.
  • the flow rate of cyclohexanone (ketone 1) is 110-150kg/h
  • the flow rate of hydrogen peroxide 2 is 120-210kg/h
  • the concentration is 30-34.5%
  • the flow rate of ammonia gas is 25-46kg/h.
  • the effective volume of the oximation reactor is 0.6-1.5 m 3
  • the reaction temperature is 75-88° C.
  • the circulation flow rate is 10.3-13.2 m 3 /h.
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 passes through the cross-flow filter S1 to filter out the clear liquid 5, the material 6 is extracted at a flow rate of 1.3-1.5m 3 /h. flow extractor (mixed extraction S2), and the rest is recycled back to the ammoximation reactor (tank reactor R).
  • Cyclohexane inert alkane solvent 9
  • the light phase (organic phase 10) was isolated as a cyclohexane-oxime solution, which entered the subsequent heavy phase. discharge the reactor.
  • the heavy phase (water phase 11) separated by the cyclone extractor (mixed extraction S2) is recycled back to the ammoximation reactor.
  • cyclohexanone (ketone 1), ammonia 3, and hydrogen peroxide 2 were respectively measured by a mass flow meter and continuously added to an ammoximation reactor (tank reactor R) containing a Ti-MOR catalyst.
  • the flow rate of cyclohexanone (ketone 1) is 1100-1500kg/h
  • the flow rate of hydrogen peroxide 2 is 1250-2200kg/h
  • the concentration is 30-34.5%
  • the flow rate of ammonia gas is 250-470kg/h.
  • the effective volume of the oximation reactor is 5-9.5 m 3
  • the reaction temperature is 85-95° C.
  • the circulation flow rate is 92-125 m 3 /h.
  • the circulation pipeline is equipped with a metal membrane tube filtration device (cross-flow filter S1), and after the reaction product 4 is filtered out of the clear liquid 5 through the cross-flow filter S1, the material 6 is drawn into the cyclone at a flow rate of 12-16 m 3 /h. Extractor (mixed extraction S2), and the rest are recycled back to the ammoximation reactor (tank reactor R). Cyclohexane (inert alkane solvent 9) is added to the cyclone extractor (mixed extraction S2) at a flow rate of 8200-10900kg/h, and the separated light phase (organic phase 10) is a cyclohexane-oxime solution, which enters the subsequent heavy phase. discharge the reactor. The heavy phase (aqueous phase 11) separated by the cyclone extractor (mixed extraction S2) is recycled back to the ammoximation reactor.
  • a device for integrating ammoximation reaction and separation includes a tank reactor R, a cross-flow filter S1, and a mixed extraction S2.
  • the tank-type reactor R, the cross-flow filter S1, the mixed extraction Extraction S2 is connected in turn, ketone 1, ammonia 3, hydrogen peroxide 2 are added in the kettle type reactor R to fully react, the reaction product 4 enters the cross-flow filter S1, and the clear liquid 5 is discharged in the cross-flow filter S1, and the remaining substances is material 6;
  • the discharge end of the material 6 of the cross-flow filter S1 is communicated with the kettle-type reactor R through the material return pipe 13; when in use, part of the material 6 of the cross-flow filter S1 enters the mixed extraction S2, and another part of the material 6 passes through the material return pipe. 13 is refluxed to tank reactor R;
  • the discharge end of the water phase 11 of the described mixed extraction S2 is communicated with the kettle type reactor R through the water phase reflux pipe 14, the organic phase 10 is discharged from the mixed extraction S2, and the water phase 11 is returned to the kettle type reactor R through the water phase reflux pipe 14. ;
  • the alkane solvent feed pipe 15 is connected to the mixed extraction S2, and the alkane solvent is added to the mixed extraction S2 through the alkane solvent feed pipe 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

氨肟化反应与分离集成的方法及装置。所述方法采用钛硅分子筛为催化剂,酮、双氧水和氨通过氨肟化反应生成肟,反应物料经错流过滤分离出清液后,抽取部分加入惰性烷烃溶剂萃取肟,含催化剂的浊液再循环回反应系统。反应与分离集成的方法能降低错流膜的过滤负荷,减小催化剂的消耗,节省投资和操作费用,具有很好的工业应用价值。

Description

一种氨肟化反应与分离集成的方法及其装置 技术领域
本发明涉及一种氨肟化反应与分离集成的方法及其装置,具体来说是氨肟化反应及其产物肟、水和催化剂的分离方法和装置。
背景技术
钛硅酸盐材料能催化脂肪族酮或芳香族酮与双氧水、氨直接发生氨肟化反应,生成相应的肟,再经过Beckmann重排可以合成一系列的酰胺。己内酰胺,学名ε-己内酰胺,是一种重要的石油化工产品,广泛应用于制造锦纶和工程塑料。因此,环己酮经氨肟化制备环己酮肟再重排生产己内酰胺具有重要的应用价值,目前已逐步取代环己酮-羟胺法、环己烷光亚硝化法和甲苯法等,成为工业生产己内酰胺的主流方法。
1988年美国专利US4745221第一次公开了液相中环己酮、双氧水和氨经氨肟化生成环己酮肟的方法:以TS-1为催化剂,双氧水为氧源,在60℃~80℃的温和条件下,环己酮选择性98.2%。该法工艺流程短,避免了复杂的羟胺合成过程和SOx或NOx的产生,且不副产硫铵,对环境友好。随后美国专利US4894478公开了采用多步液相催化的方法,将环己酮肟化过程分为两步,从而提高了环己酮肟的收率。
为解决氨肟化过程催化剂分离和效率等问题,CN1191125和CN1234683公开了一种酮氨肟化反应体系中钛硅分子筛的分离方法,在浓度为30%~50%(质量分率)的与水互溶的低碳醇和过量氨水的酮氨肟化反应体系中,将包括反应产物肟与钛硅分子筛在内的物料在60~85℃的温度,0.5~3厘米/分钟线速率下于沉降器中沉降不小于10分钟。该方法较好地解决了催化剂和反应产物的分离问题,提高了分子筛的利用率。
由于钛硅分子筛粒径较小,采用沉降分离的方法不适应大规模工业生产,分离效率有待于提高。CN100586928公开了一种环己酮肟的制备方法,其特征在于该方法是在环管反应器中连续循环,将包括催化剂、氨、环己酮、过氧化氢和叔丁醇溶剂在内的反应浆料在环管中进行氨肟化反应,然后在固液分离组件内的过滤元件中以错流的方式将反应浆料进行固液分离,所得清液沿过滤元件的径向流出并回收,提浓后的浆液在环管内继续循环。
上述氨肟化反应与分离的方法都是在叔丁醇为溶剂的体系中进行。采用与水 互溶的低碳醇(例如叔丁醇)作为溶剂,目的在于提高氨肟化产物在体系中的溶解度,以利于反应进行。然而,由此设计的工艺将带来诸多方面的不足。一是作为反应溶剂的低碳醇在反应液中占比较大,增加了反应产物和催化剂的分离负荷,严重影响错流过滤的通量。而是由于溶剂不能稳定存在于后续Beckmann重排反应的发烟硫酸体系中,再经过多次蒸馏和萃取等分离过程,工艺流程复杂,能耗大,肟稳定性相对较差,在后续重排中生成微量杂质,给精制过程带来困难。
CN100386307公开了一种以脂族或/和环脂族酮为原料,通过肟化和重排制备酰胺的方法:在惰性溶剂存在的条件下,酮、双氧水和氨通过催化生成肟溶液,油相产物在发烟硫酸的作用下发生Beckmann重排反应,经水解中和后制得酰胺。CN1939897公开了一种三相氨肟化反应分离制备酮肟的方法,在固态催化剂和与水不溶或微溶的溶剂存在的条件下,将酮、双氧水和氨进行液液固三相非均相肟化反应生成肟;肟化反应产物分相后,轻相为含肟的溶剂相,重相直接分离出部分水后循环使用;或是将重相用与水不溶或微溶的溶剂萃取其中的肟,将含催化剂的重相萃余相分离出部分水后循环使用。
CN 105837468公开了一种环己酮肟的制备方法:在肟化催化剂的存在下,将环己酮、氨和过氧化氢在溶剂中进行氨肟化反应,其中所述溶剂为含有少量惰性有机溶剂的水溶液,氨肟化能够得到较高的环己酮转化率和环己酮肟选择性。CN 104926689公开了一种无溶剂制备环己酮肟的方法,具体制备包括反应体系的制备、肟化反应和产物的分离。反应液经冷凝就能直接分离出产物,能耗低,制备过程对环境友好,易于工业化实施。
发明内容
本发明提供了一种氨肟化反应及其产物肟、水和催化剂的分离方法及其装置。本发明的目的是针对无溶剂体系氨肟化或者含有少量惰性有机溶剂的水溶液体系氨肟化反应过程,提供一种连续高效分离出产物和催化剂的方法和装置。
本发明的目的是通过如下方式实现的:
一种氨肟化反应与分离集成的方法,由如下四个步骤构成:
(1)在钛硅分子筛为催化剂的条件下,酮、双氧水和氨反应生成肟;
(2)反应物料经错流过滤分离出含有水和肟的清液;
(3)分离出清液后的物料在循环回反应器之前部分进入混合萃取,加入惰性烷烃溶剂萃取,得到的有机相为肟溶液;
(4)萃取后的含催化剂的水相浊液返回氨肟化反应系统。
进一步讲,酮、双氧水和氨的氨肟化反应是在钛硅分子筛为催化剂的条件下进行,钛硅分子筛为Ti-MWW、TS-1、TS-2、Ti-β、Τi-SBA-15、Ti-MCM-41或Ti-MOR的一种或两种以上,优选Ti-MWW、TS-1的一种或两者的混合物,特别优选Ti-MWW。
进一步讲,氨肟化反应原料之一的酮为碳原子数3~10脂族酮,或是碳原子数5~10的环脂族酮或芳香族酮;所用的双氧水的浓度为质量分率10%~80%,优选25%~60%;酮、双氧水、氨的物质的量之比为1:1.0~2:1.0~4,优选的1:1.0~1.2:1.0~2.0。
进一步讲,酮、双氧水和氨的氨肟化反应是在无溶剂或者少量惰性烷烃溶剂的条件下进行,反应温度为40~100℃,反应压力为0.1~1MPa,最终控制的反应压力不超1MPa。
进一步讲,一种氨肟化反应与分离集成的装置包括釜式反应器、错流过滤器、混合萃取,所述的釜式反应器、错流过滤器、混合萃取依次连接;
所述的错流过滤器的物料排出端通过物料回流管与釜式反应器连通;
所述的混合萃取的水相排出端通过水相回流管与釜式反应器连通;
在所述的混合萃取连接情性烷烃溶剂进料管。
在本发明提供的氨肟化反应与分离集成的方法中,包括氨肟化反应、错流膜过滤分离、萃取分离等步骤,下面参照附图1加以说明。
氨肟化反应是以酮、双氧水和氨为原料,在无溶剂或者少量惰性烷烃溶剂的条件下,通过钛硅分子筛催化反应生成肟和水。氨肟化反应在釜式反应器R和循环管路中进行,循环管路设置有错流过滤器S1,反应产物先通过错流过滤器S1过滤分离出清液;物料在循环回反应器R之前部分进入混合萃取S2,加入惰性烷烃溶剂萃取,得到的有机相为肟溶液,水相为富集催化剂的水溶液,通过循环管路返回反应器R。
上述错流过滤器S1为金属膜管或者陶瓷膜管,过滤精度为20nm~2000nm。
在非常广泛的反应条件和膜管规格下,错流过滤器S1可以拦截反应物料中催化剂颗粒,通过控制错流过滤清液的流量,可以维持氨肟化反应器的液位恒定,错流过滤清液中肟的质量分率0.01%~50%。
分离出清液的物料在循环回反应器R之前抽取部分与惰性烷烃溶剂9在混合萃取S2单元中混合,萃取反应物料中的肟。混合萃取S2单元可以是混合器、管道或旋流设备的一种或两种以上的组合。抽取进入混合萃取S2单元的物料流量与循环回反应器R的物料流量之比为0.01~0.3:1。
惰性烷烃溶剂为与水不溶或者微溶的碳原子数4~10的烷烃或环烷烃或芳烃,或它们的混合物。由于肟在惰性烷烃中的溶解度远远大于其在水中的溶解度,因此很容易获得肟-惰性烷烃溶液,而这一溶液非常适宜于溶剂汽化移热方式的Beckmann重排反应。惰性烷烃溶剂与进入S2单元进行混合萃取的物料流量之比为0.1~10:1。这一比值将决定肟-惰性烷烃溶液的浓度,可以根据后续Beckmann重排反应的要求进行选取。
混合萃取S2单元获得的水相11是含有催化剂的浊液,循环回氨肟化反应器,其中催化剂的质量分率为1%-10%。
结合附图1可以知道,在本发明提供的氨肟化反应与分离集成的方法中,氨肟化反应在反应器R和循环管路中进行、错流过滤器S1和混合萃取单元S2的组合,同步实现了水、产物肟和催化剂的分离。
本发明提供的氨肟化反应与分离集成的方法,其有益效果在于:
(1)传统的氨肟化工艺是以低碳醇为溶剂,反应器内置膜分离或者外置错流膜分离产物和催化剂,由于反应产物肟、水、溶剂和催化剂同步分离,容易造成膜通量不足,而本发明中氨肟化反应在无溶剂或者少量惰性烷烃溶剂的条件下进行,通过错流过滤器和混合萃取的组合,高选择性地分离水、产物肟和催化剂,能大大降低膜分离负荷,节省设备投资。
(2)本发明采用的反应与分离的集成方法,能最大限度的降低无溶剂或者少量惰性烷烃溶剂的氨肟化反应中催化剂的消耗,节省运行成本。
(3)由于取消了低碳醇溶剂,肟化反应器的产能可以大幅提高,在相同产能的要求下可以减少反应器数量,进一步节省设备投资。
(4)在循环系统外的混合萃取单元中,由于采用的惰性烷烃与反应物料的密度相差大,可以实现产物肟和含催化剂的浊液快速高效分离。特别是由此获得的肟-惰性烷烃溶液,可以根据后续Beckmann重排反应的需要调整浓度,而不影响氨肟化的反应与分离,工艺操作简单、灵活。
总之,采用本发明提供的氨肟化反应与分离集成的方法,可以在保证获得很高的环己酮转化率和环己酮肟选择性的前提下,实现产物肟、水和催化剂连续高效分离,大幅节省设备投资,提高装置产能。由此获得的肟-惰性烷烃溶液非常适宜于溶剂汽化移热方式的Beckmann重排反应,撇弃传统的以低碳醇为溶剂的氨肟化工艺带来的后续复杂分离精制,显著节省氨肟化和重排的投资与能耗,极具有工业应用价值。
附图说明
图1为本发明示意图。
图2为与本发明对比的对比例1示意图。
图3为与本发明对比的对比例2示意图。
图4为本发明的装置示意图。
如图中,酮1、双氧水2、氨3、反应产物4、清液5、物料6、惰性烷烃溶剂9、有机相10、水相11、釜式反应器R、错流过滤器S1、混合萃取S2。
具体实施方式
以下通过具体实施例来对本发明予以进一步的说明,需要注意的是下面的实施例仅用作举例说明,本发明的内容并不局限于此。
实施例1:如图1所示,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MWW催化剂的氨肟化反应器(釜式反应器R)中。环己酮酮1)流量为140kg/h,双氧水2流量为180kg/h,浓度为27.5%,氨气流量为32kg/h。肟化反应器的有效容积为1.0m 3,反应温度为80℃,循环流量为11m 3/h。循环管路装有陶瓷错流过滤器(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.5m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以1000kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。按上述工艺条件,连续稳定运行720小时,取样分析,计算转化率、选择性,并通过催化剂浓度计算其消耗,结果见表1。
对比例1:氨肟化反应进料流量、配比、反应温度和循环量均与实施例1相同。如附图2所示,不同之处在于错流膜过滤器S1滤出的清液5进入旋流萃取 器(混合萃取S2),物料6循环回氨肟化反应器。环己烷(惰性烷烃溶剂9)以1000kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器分离出的重相(水相11)一小部分排出系统,以维持氨肟化反应器的液位恒定,其余大部分水相11循环回氨肟化反应器R。按上述工艺条件,连续稳定运行720小时,取样分析,计算转化率、选择性,并通过催化剂浓度计算其消耗,结果见表1。
对比例2:氨肟化反应进料流量、配比、反应温度和循环量均与实施例1相同。如附图3所示,不同之处在于改变错流膜过滤S1和旋流萃取S2的先后次序,反应产物4先通过旋流萃取器(混合萃取S2),环己烷(惰性烷烃溶剂9)以1000kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相10为环己烷-肟溶液,进入后续重排反应器。旋流萃取器分(混合萃取S2)离出的重相(水相11)进入错流膜过滤器S1滤出的清液5,以维持氨肟化反应器的液位恒定,物料6循环回氨肟化反应器(釜式反应器R)。按上述工艺条件,连续稳定运行720小时,取样分析,计算转化率、选择性,并通过催化剂浓度计算其消耗,结果见表1。
表1 不同分离方法的结果对比
Figure PCTCN2021127385-appb-000001
从实施例1和对比例、对比例2的结果比较可以看出,采用本发明的氨肟化反应与分离集成的方法,只需较少的膜过滤面积就能保证工艺的稳定连续运行,催化剂消耗最低,环己酮转化率和环己酮肟选择性最高。
实施例2,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MOR催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为200-240kg/h,双氧水2流量为350-410kg/h,浓度为26.5-28%,氨气流量为49-70kg/h。肟化反应器的有效容积为1.5-2.5m 3,反应温度为80-88℃,循环流量为10-11.5m 3/h。循环管路装有陶瓷错流过滤器(错流过滤器S1),反应产 物4通过错流过滤器S1滤出清液5后,物料6以1.2-1.8m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。正己烷(惰性烷烃溶剂9)以950-2100kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)正己烷为-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例3,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有TS-1和TS-2催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为130-420kg/h,双氧水2流量为160-750kg/h,浓度为25-29%,氨气流量为25-145kg/h。肟化反应器的有效容积为0.8-3.5m 3,反应温度为80-90℃,循环流量为10-19m 3/h。循环管路装有陶瓷错流过滤器(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.3-3.2m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以850-3500kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例4,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有TS-1和TS-2催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为50-200kg/h,双氧水2流量为60-340kg/h,浓度为27-33%,氨气流量为19-48kg/h。肟化反应器的有效容积为0.4-1.3m 3,反应温度为80-90℃,循环流量为8-13m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.2-1.8m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以750-1500kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例5,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MCM-41催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为20-48kg/h,双氧水2流量为30-95kg/h,浓度为26-31%,氨气流量为 5-11kg/h。肟化反应器的有效容积为0.2-0.8m 3,反应温度为76-85℃,循环流量为3-4.5m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以0.4-0.6m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以120-410kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例6,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-SBA-15催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为300-600kg/h,双氧水2流量为320-1090kg/h,浓度为27.5-30%,氨气流量为50-130kg/h。肟化反应器的有效容积为1.5-5m 3,反应温度为79-90℃,循环流量为16.5-28m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以2.1-4.8m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以1500-3900kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例7,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有TS-2、Ti-β催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为610-800kg/h,双氧水2流量为1100-1590kg/h,浓度为27-31%,氨气流量为120-160kg/h。肟化反应器的有效容积为3.0-6.5m 3,反应温度为79-90℃,循环流量为23-36m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以2.5-6.5m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以2100-4600kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例8,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加 入到含有Ti-SBA-15催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为810-900kg/h,双氧水2流量为1300-1800kg/h,浓度为27-31%,氨气流量为32kg/h。肟化反应器的有效容积为3.0-7.5m 3,反应温度为81℃,循环流量为28-42m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以2.8-7.5m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以3020-5200kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例9,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-SBA-15催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为110-190kg/h,双氧水2流量为230-270kg/h,浓度为31.5-36%,氨气流量为28-41kg/h。肟化反应器的有效容积为0.7-1.3m 3,反应温度为70-95℃,循环流量为10-12m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.7m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以900-1100kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例10,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MWW催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为110-190kg/h,双氧水2流量为120-290kg/h,浓度为28.5-32%,氨气流量为29-51kg/h。肟化反应器的有效容积为0.8-1.6m 3,反应温度为75-89℃,循环流量为9-13m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1-2.1m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以800-1200kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋 流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例11,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有TS-1、TS-2、Ti-β催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为120-180kg/h,双氧水2流量为205kg/h,浓度为36.5%,氨气流量为34kg/h。肟化反应器的有效容积为0.8-1.9m 3,反应温度为80-92℃,循环流量为10-11.5m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.4-1.55m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以920-1130kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例12,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MWW催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为130-180kg/h,双氧水2流量为140-230kg/h,浓度为31-39.5%,氨气流量为29-36kg/h。肟化反应器的有效容积为1.0-1.8m 3,反应温度为75-83℃,循环流量为11.3m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.7m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以900-1050kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例13,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MOR催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为140-150kg/h,双氧水2流量为180-210kg/h,浓度为41.5%,氨气流量为32-36kg/h。肟化反应器的有效容积为1.0-1.3m 3,反应温度为80-83℃,循环流量为11.3-11.6m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.4-1.8m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷 (惰性烷烃溶剂9)以930-1080kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例14,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MOR催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为140-150kg/h,双氧水2流量为180-210kg/h,浓度为28-41.5%,氨气流量为32-36kg/h。肟化反应器的有效容积为1.0-1.3m 3,反应温度为80-83℃,循环流量为11.3-11.6m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.4-1.8m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以930-1080kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例15,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MOR催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为110-150kg/h,双氧水2流量为120-210kg/h,浓度为30-34.5%,氨气流量为25-46kg/h。肟化反应器的有效容积为0.6-1.5m 3,反应温度为75-88℃,循环流量为10.3-13.2m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反应产物4通过错流过滤器S1滤出清液5后,物料6以1.3-1.5m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以920-1150kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
实施例16,环己酮(酮1)、氨3、双氧水2分别经质量流量计计量后连续加入到含有Ti-MOR催化剂的氨肟化反应器(釜式反应器R)中。环己酮(酮1)流量为1100-1500kg/h,双氧水2流量为1250-2200kg/h,浓度为30-34.5%,氨气流量为250-470kg/h。肟化反应器的有效容积为5-9.5m 3,反应温度为85-95℃,循环流量为92-125m 3/h。循环管路装有金属膜管过滤装置(错流过滤器S1),反 应产物4通过错流过滤器S1滤出清液5后,物料6以12-16m 3/h的流量抽取部分进入旋流萃取器(混合萃取S2),其余循环回氨肟化反应器(釜式反应器R)。环己烷(惰性烷烃溶剂9)以8200-10900kg/h的流量加入到旋流萃取器(混合萃取S2)中,分离出轻相(有机相10)为环己烷-肟溶液,进入后续重排反应器。旋流萃取器(混合萃取S2)分离出的重相(水相11)循环回氨肟化反应器。
如图4所示,一种氨肟化反应与分离集成的装置包括釜式反应器R、错流过滤器S1、混合萃取S2,所述的釜式反应器R、错流过滤器S1、混合萃取S2依次连接,酮1、氨3、双氧水2加入釜式反应器R中充分反应,反应产物4进入错流过滤器S1中,在错流过滤器S1中将清液5排出,余下的物质为物料6;
所述的错流过滤器S1的物料6排出端通过物料回流管13与釜式反应器R连通;使用时错流过滤器S1的部分物料6进入混合萃取S2、另一部分物料6通过物料回流管13回流至釜式反应器R;
所述的混合萃取S2的水相11排出端通过水相回流管14与釜式反应器R连通,有机相10排出混合萃取S2,水相11通过水相回流管14回流至釜式反应器R;
在所述的混合萃取S2连接情性烷烃溶剂进料管15,情性烷烃溶剂通过情性烷烃溶剂进料管15加入混合萃取S2中。
以上详细描述了本发明的优选实施方式,但是本发明并不限于上述实施方式中的具体细节。在本发明的技术构思范围内,可以对技术方案进行多种简单变型,这均属于本发明的保护范围。

Claims (11)

  1. 一种氨肟化反应与分离集成的方法,其特征在于,包括以下步骤:
    (1)在钛硅分子筛为催化剂的条件下,酮、双氧水和氨反应生成肟;
    (2)反应物料经错流过滤分离出含有水和肟的清液;
    (3)分离出清液后的物料在循环回反应器之前部分进入混合萃取,加入惰性烷烃溶剂萃取,得到的有机相为肟溶液;
    (4)萃取后的含催化剂的水相浊液返回氨肟化反应系统。
  2. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(1)中,钛硅分子筛为Ti-MWW、TS-1、TS-2、Ti-β、Τi-SBA-15、Ti-MCM-41或Ti-MOR的一种或两种以上
  3. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(1)中,所用的酮为碳原子数3~10脂族酮,或是碳原子数5~10的环脂族酮或芳香族酮;所用的双氧水的浓度为质量分率10%-80%;酮、双氧水、氨的物质的量之比为1:1.0~2:1.0~4。
  4. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(1)中,氨肟化反应在无溶剂或者少量惰性烷烃溶剂的条件下进行,反应温度为40~100℃,反应压力为0.1~1MPa。
  5. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(2)中,通过控制错流过滤清液的流量来控制氨肟化反应器的液位恒定,错流过滤清液中肟的质量分率0.01%~50%。
  6. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(2)中,错流过滤装置为金属膜管或者陶瓷膜管,过滤精度为20nm~2000nm。
  7. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(3)中,进入混合萃取的物料流量与循环回反应器的物料流量之比为0.01~0.3:1。
  8. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(3)中,惰性烷烃溶剂为与水不溶或者微溶的碳原子数4~10的烷烃或环烷烃或芳烃,或它们的混合物。
  9. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(3)中,惰性烷烃溶剂与进入混合萃取的物料流量之比为(0.1~10):1。
  10. 根据权利要求1所述的一种氨肟化反应与分离集成的方法,其特征在于,步骤(4)中,返回氨肟化反应系统的水相浊液中催化剂的质量分率为1%-10%。
  11. 一种氨肟化反应与分离集成的装置,其持征是:所述的装置包括釜式反应器(R)、错流过滤器(S1)、混合萃取(S2),所述的釜式反应器(R)、错流过滤器(S1)、混合萃取(S2)依次连接;
    所述的错流过滤器(S1)的物料(6)排出端通过物料回流管(13)与釜式反应器(R)连通;
    所述的混合萃取(S2)的水相(11)排出端通过水相回流管(14)与釜式反应器(R)连通;
    在所述的混合萃取(S2)连接情性烷烃溶剂进料管(15)。
PCT/CN2021/127385 2020-11-02 2021-10-29 一种氨肟化反应与分离集成的方法及其装置 WO2022073525A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21870542.4A EP4023632A4 (en) 2020-11-02 2021-10-29 METHOD FOR INTEGRATING AMMOXIMATION REACTION AND SEPARATION AND DEVICE THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011205261.9 2020-11-02
CN202011205261.9A CN114436889B (zh) 2020-11-02 2020-11-02 一种氨肟化反应与分离集成的方法及其装置

Publications (1)

Publication Number Publication Date
WO2022073525A1 true WO2022073525A1 (zh) 2022-04-14

Family

ID=81125634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127385 WO2022073525A1 (zh) 2020-11-02 2021-10-29 一种氨肟化反应与分离集成的方法及其装置

Country Status (3)

Country Link
EP (1) EP4023632A4 (zh)
CN (1) CN114436889B (zh)
WO (1) WO2022073525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974720A (zh) * 2023-01-09 2023-04-18 衢州巨化锦纶有限责任公司 一种两段氨肟化反应制备酮肟的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745221A (en) 1985-07-10 1988-05-17 Montedipe S.P.A. Catalytic process for preparing cyclohexanone-oxime
US4894478A (en) 1987-07-29 1990-01-16 Montedipe S.P.A. Process of producing ketoximes
CN1191125A (zh) 1997-02-17 1998-08-26 张金磊 一种治疗慢阻肺病的药物组合物及其制备方法
CN1234683A (zh) 1998-04-28 1999-11-10 松下电器产业株式会社 伴音中频自动判别电路
CN1939897A (zh) 2006-09-27 2007-04-04 湘潭大学 一种三相氨肟化反应分离制备酮肟的方法
CN101117323A (zh) * 2006-07-31 2008-02-06 中国石油化工股份有限公司 一种环己酮肟的制备方法
CN100386307C (zh) 2005-09-23 2008-05-07 湘潭大学 一种非均相肟化重排制备酰胺的方法
CN104926689A (zh) 2015-06-12 2015-09-23 华东师范大学 一种无溶剂制备环己酮肟的方法
CN105837468A (zh) 2015-01-15 2016-08-10 湖北金湘宁化工科技有限公司 一种环己酮肟的制备方法
CN105837467A (zh) * 2015-01-15 2016-08-10 湖北金湘宁化工科技有限公司 一种酮肟和/或醛肟的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142621A1 (de) * 2001-08-31 2003-03-20 Degussa Aufarbeitung der Ammoximationsprodukte von Ketonen durch Flüssig-Flüssig-Extraktion in einem ternären Lösemittelsystem
JP2010201374A (ja) * 2009-03-04 2010-09-16 Sumitomo Chemical Co Ltd チタニウムシリカ系再生触媒のろ過方法及びシクロヘキサノンオキシムの製造方法
CN109942457A (zh) * 2019-04-22 2019-06-28 河北美邦工程科技股份有限公司 一种非均相环己酮肟制备方法
CN211497430U (zh) * 2019-12-04 2020-09-15 长沙兴和新材料有限公司 一种提高环己酮肟质量和收率的设备系统
CN113880728A (zh) * 2021-11-08 2022-01-04 武亚梅 一种环己酮肟的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745221A (en) 1985-07-10 1988-05-17 Montedipe S.P.A. Catalytic process for preparing cyclohexanone-oxime
US4894478A (en) 1987-07-29 1990-01-16 Montedipe S.P.A. Process of producing ketoximes
CN1191125A (zh) 1997-02-17 1998-08-26 张金磊 一种治疗慢阻肺病的药物组合物及其制备方法
CN1234683A (zh) 1998-04-28 1999-11-10 松下电器产业株式会社 伴音中频自动判别电路
CN100386307C (zh) 2005-09-23 2008-05-07 湘潭大学 一种非均相肟化重排制备酰胺的方法
CN101117323A (zh) * 2006-07-31 2008-02-06 中国石油化工股份有限公司 一种环己酮肟的制备方法
CN100586928C (zh) 2006-07-31 2010-02-03 中国石油化工股份有限公司 一种环己酮肟的制备方法
CN1939897A (zh) 2006-09-27 2007-04-04 湘潭大学 一种三相氨肟化反应分离制备酮肟的方法
CN105837468A (zh) 2015-01-15 2016-08-10 湖北金湘宁化工科技有限公司 一种环己酮肟的制备方法
CN105837467A (zh) * 2015-01-15 2016-08-10 湖北金湘宁化工科技有限公司 一种酮肟和/或醛肟的制备方法
CN104926689A (zh) 2015-06-12 2015-09-23 华东师范大学 一种无溶剂制备环己酮肟的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023632A4

Also Published As

Publication number Publication date
EP4023632A1 (en) 2022-07-06
CN114436889A (zh) 2022-05-06
CN114436889B (zh) 2024-06-14
EP4023632A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP4270823B2 (ja) 過酸化水素およびアンモニアによるケトンのアンモオキシム化からの反応混合物の後処理方法
CN101747228B (zh) 一种酮或醛的氨肟化反应
CN101704824B (zh) 磷钨杂多酸季铵盐催化制备二氧化双环戊二烯的方法
CN100586928C (zh) 一种环己酮肟的制备方法
CN101434569B (zh) 一种由环己酮肟制备己内酰胺的方法及设备
WO2022073525A1 (zh) 一种氨肟化反应与分离集成的方法及其装置
CN109942457A (zh) 一种非均相环己酮肟制备方法
CN113979910A (zh) 一种n-甲基吡咯烷酮的连续制备方法
WO2022057931A1 (zh) 环氧氯丙烷的连续化合成工艺及连续化反应装置
WO2020015321A1 (zh) 一种分离异丙醇的方法及装置
CN101205163A (zh) 一种制备环己烷的方法
CN102070488A (zh) 一种制备酮肟的方法
CN111072598A (zh) 一种利用钛硅分子筛催化剂直接氧化生产环氧氯丙烷的工艺
CN107556213A (zh) 一种环己酮氨肟化的工艺以及制造己内酰胺的工艺
CN114315749B (zh) 一种连续流微反应器合成阿利克仑中间体的方法
CN103130748A (zh) 一种环己烯氧化的方法
CN113072461B (zh) 丁酮肟的制备方法
CN211339352U (zh) 一种己内酰胺制备装置
WO2022110930A1 (zh) 一种大环烷酮氨肟化的方法
CN114671808A (zh) 一种己内酰胺的制备方法
CN212335079U (zh) 一种醋酸甲酯和甲醛合成甲基丙烯酸甲酯的生产工艺装置
CN110483330B (zh) 一种环己酮肟结晶精制方法及其在己内酰胺制备中的应用
CN109438175B (zh) 一种环己基过氧化氢分解制备环己醇和环己酮的方法
CN102924255A (zh) 一种液相氧化制备9-芴酮的方法
CN114436751A (zh) 一种甲基环戊烯的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021870542

Country of ref document: EP

Effective date: 20220331

NENP Non-entry into the national phase

Ref country code: DE