WO2022073090A1 - Método para a produção de uma composição de proteínas de matriz extracelular e produto obtido por tal método - Google Patents

Método para a produção de uma composição de proteínas de matriz extracelular e produto obtido por tal método Download PDF

Info

Publication number
WO2022073090A1
WO2022073090A1 PCT/BR2021/050429 BR2021050429W WO2022073090A1 WO 2022073090 A1 WO2022073090 A1 WO 2022073090A1 BR 2021050429 W BR2021050429 W BR 2021050429W WO 2022073090 A1 WO2022073090 A1 WO 2022073090A1
Authority
WO
WIPO (PCT)
Prior art keywords
extracellular matrix
collagen
proteins
producing
composition
Prior art date
Application number
PCT/BR2021/050429
Other languages
English (en)
French (fr)
Inventor
Janaína De Andrea DERNOWSEK
Original Assignee
Janaina De Andrea Dernowsek Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102020020534A external-priority patent/BR102020020534A2/pt
Priority claimed from BR102021019538-0A external-priority patent/BR102021019538A2/pt
Application filed by Janaina De Andrea Dernowsek Ltda filed Critical Janaina De Andrea Dernowsek Ltda
Publication of WO2022073090A1 publication Critical patent/WO2022073090A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a scalable bioprocess of proteins from the extracellular matrix of tissues constructed three-dimensional (3D) using three-dimensional (3D) bioprinting technology and a "clean" method of extracting them.
  • This object has application in the area of biotechnology and health, more specifically in the pharmaceutical, cosmetic, aesthetic, tissue engineering and food sectors.
  • the present invention refers to a scalable and sustainable bioprocess of extracellular matrix proteins (ECM) of high purity and structural characteristics using three-dimensional (3D) bioprinted tissues produced with various cell types - multipotent and pluripotent - such as , fibroblasts, chondroblasts, osteoblasts, myoblasts, induced adult and pluripotent stem cells.
  • ECM extracellular matrix proteins
  • the extracellular matrices (ECMs) of biological tissues play vital roles in the structural support, immunity, circulation and sensory perception of cells.
  • the structural proteins of the dermal ECM support the epidermis and consist mainly of type I collagen fibrils, which are synthesized by fibroblasts.
  • type I collagen provides skin organization, nanostructure, mechanical strength and toughness.
  • the ECM of cartilaginous tissue has peculiar characteristics, different from the connective tissue itself.
  • the ECM collagen is mainly composed of type II collagen molecules. These molecules form collagen fibrils, but these are not organized into fibers.
  • the ECM has a lot of elastic material and elastic fibers, in addition to collagen, and in fibrous cartilage, collagen is mainly type I.
  • the fundamental ECM of cartilaginous tissue especially in hyaline and elastic cartilage, has many sulfated glycosaminoglycans (for eg chondroitin sulfate) and non-sulfated (eg hyaluronate). These molecules are primarily responsible for the rigidity of this tissue and its characteristic consistency. Due to its abundance in living organisms and different possibilities of use, collagen has become a major driver of the pharmaceutical, medical, food and cosmetic industries. Therefore, this protein is an important structural element of all connective tissues and is present in practically all interstitial tissues and all parenchymal organs.
  • ECM extracellular microenvironment
  • the biochemical and biophysical signals of the ECM modulate fundamental cellular activities, including adhesion, migration, proliferation, differential gene expression and programmed cell death - apoptosis, and because of these characteristics, ECM proteins are so important in tissue engineering and, consequently, in various biotechnological and medical areas.
  • Document CN110790950A discloses a method of photocrosslinking recombinant collagen by specific steps of adding methacrylic anhydride, stirring, centrifugation, dialysis and lyophilization.
  • the present invention (bioinn process) presents an innovative production and extraction method, with a high degree of purity of the bioidentical proteins of MECs, mainly collagen, elastin and hyaluronate.
  • WO2019US38742 a method of bioprinting 3D constructs (engineered tissues) with fibroblasts and keratinocytes is presented, aiming at an optimized system of deposition, layering and photocrosslinking. Unlike the inventive method proposed in this report, we present a low-cost, high-purity production bioprocess of MEC proteins using bioink extrusion bioprinting - biomaterial formulation, cells and protein expression inducing factors, polymers and adhesion molecules cell.
  • Document CN108452378A refers to a method of biological deposition (bioprinting) with chemical crosslinking agent and temperature control strategies to print and photocrosslink a target structure.
  • bioprinting biological deposition
  • temperature control strategies to print and photocrosslink a target structure.
  • a new deposition method has not been developed, but a bioprocess of dermal matrix proteins using the mechanical syringe extrusion method, known as extrusion bioprinting.
  • the process of the present invention has non-enzymatic extraction steps, only physical homogenization, filtration and centrifugation systems for the extraction of proteins with a high degree of purity and intact structures.
  • the document CN201811375168 refers to biological matrix 3D printing ink and a method of preparation thereof, whose main components are collagens, chondroitin sulfate and hyaluronic acid with applications in cartilage regenerative medicine, requiring the acquisition of a commercialization of the biomaterials in question.
  • documents W02020081982A1, EP3427949A1 and CN110772669A refer to biological inks for 3D printing.
  • the main difference with respect to the present invention is in the process of producing MEC proteins using 3D bioprinting and not developing inks from biomaterials for tissue engineering techniques.
  • the invention refers to a 3D cell printing method for the production of a 3D structure, with a basic 3D printing equipment, a bioink based on decellularized extracellular matrix in an isotonic crosslinking bath.
  • the present inventive bioprocess produces in a simplified and pure form dermal ECM proteins, such as collagen, elastin and hyaluronate, using 3D bioprinting as a 3D cell culture system using cells, biocompatible synthetic polymer (Pluronic) and adhesion and expression inducing molecules of proteins of interest such as collagen.
  • Document CN105132502A refers to a 3D tissue culture production process by (a) piezoelectric printing (bioink deposition in a droplet) of biological ink on a substrate; (b) printing an activator onto the bioink droplet to form the hydrogel; (c) repeating steps (a) and (b) in any order to form a hydrogel template adapted to receive droplets containing cells; (d) printing droplets containing cells onto the hydrogel template; and (e) repeating steps (a) and (b) in any order to form a 3D tissue culture model comprising the cells encapsulated in the hydrogel template.
  • document US2012190078A1 also presents arrangements of bioprinted tissues in 3D extrusion and droplet (aerosol) systems with layers composed of different cells and biomimetic to a skin, such as: (a) a dermal layer comprising dermal fibroblasts ; (b) an epidermal layer comprising keratinocytes, and (c) an epidermal layer in contact with the dermal layer to form the 3D designed dermal tissue.
  • the document CN103272288A also presents an inventive process similar to the previous ones, providing a method of preparation and the application of the same for a cellular biological support compound based on bioprinting technology (bioprinting).
  • the cellular biological compound is formed by fibrous protein that is extracted from the blood of a patient and processed by an inkjet bioprinting technology (piezoelectric).
  • the method is a biological blood source solution for use in a piezoelectric or drip bioprinting process.
  • the document US201916723579 presents a system for the preparation of Microfiber scaffolds or scaffolds composed of collagen and biomaterials with a wide range of mechanical properties and uses, do not present a method of producing collagens and other structural proteins from ECMs in a pure, controlled and low-cost manner.
  • the inventive bioprocess of this descriptive report can use several cell types - fibroblasts, chondroblasts, osteoblasts, myoblasts, induced adult and pluripotent stem cells - and does not use the droplet deposition method (piezoelectric) due to the high cost , limitation of viscosities of bioinks and solutions, in addition to presenting a slow process when compared to the mechanical extrusion method.
  • the focus of the invention required in the document in question is based on mechanical extrusion method by syringes, 3D constructions of homogeneous tissues (from 20 to 40 layers of bioink) with only one cell type each construct, having porosity between 20 and 60% for the scalable and pure (94 - 98%) production of ECM proteins produced by the 3D system in question.
  • biocompatible collagen synthesis method comprises is extracted from transgenic swine in which a gene related to an immune rejection (a-gal) is deleted, not inducing a hyperacute vascular rejection or a cell-mediated immune rejection if applied to the human body, ensuring the safer application to the human body than existing collagen materials to date.
  • a-gal immune rejection
  • the biocompatible collagen in the present invention has a high biocompatibility and almost does not show the possibility of spreading diseases. Unlike the proteins produced and collected, these are biocompatible, as they are produced by human cells in a completely sterile way, have a high degree of purity and are structurally intact.
  • WO2019122351A1 describes the bioprinting of human tissue, specifically liver tissue, using human ECM, specifically from the liver, in combination with cellulose-based bioink. More specifically, the present invention relates to a composition for use in 3D bioprinting and human or animal tissue culture comprising a) cellulose nanofibril-based bioink and (b) human or animal tissue-specific extracellular matrix material ( MEC). Furthermore, the invention relates to a method for 3D bioprinting human tissue and/or scaffolds comprising depositing the composition of the invention as well as the bioprinted tissues and/or scaffolds. Differently, the present invention presents a sterile and scalable bioprocess for the production of dermal matrix molecules, with high collagen concentration and high degree of purity (94 to 98%).
  • the invention refers to a process for producing collagen in the form of particles, comprising the steps of: (a) extracting an animal raw material containing collagen and fat with a solution of aqueous extraction; (b) optionally separating at least a portion of the aqueous phase from the extraction residue; (c) separating the extraction residue into a solid phase containing collagen, an aqueous phase and a fat phase; (d) mixing at least a part of the collagen-containing solid phase with at least a part of the aqueous phase; (e) drying part of the mixed phases; and (f) grinding the dry phases to obtain the collagen material in particulate form.
  • BR 11 2017 010619 1 A2 refers to a method of producing high concentration collagen for use as a medical material, including: (a) washing tissue from a mammal; (b) grinding and immersion in ethyl alcohol; (c) enzymatic treatment with agitation in purified water containing phosphoric acid and pepsin; (d) addition of sodium chloride to collagen submitted to enzymatic treatment, with agitation and collagen aggregation; (e) dissolving aggregated collagen in purified water and then solution filtered using a filter and concentrated by removing pepsin - low weight material molecular and sodium chloride from the collagen solution using a tangential flow filtration device; (f) sterile filtration, aggregating the collagen using a pH solution in a neutralization tank and concentrating the collagen by removing a non-aggregated solution; (g) concentration of collagen using a centrifuge.
  • the bioprocess and extraction method of the present invention does not use collagen from animal sources and complex processes of extraction thereof, with enzymatic treatments.
  • the invention brings a clean, scalable, sustainable and simplified production and extraction method of obtaining proteins from ECMs from 3D constructed fabrics produced by bioprinting in a sterile, pure and intact way, without damaging their fibrillar structures.
  • the present patent application presents advantages in relation to the state of the art, as it solves the problem of purity, production cost, scalability, reproducibility and simplified extraction steps of proteins from the matrix of 3D fabrics constructed from biocompatible and sterile form.
  • the main objective of this bioprocess is to provide a biotechnological method of producing ECM proteins - collagen, glycosaminoglycans, elastin, among others, with a high degree of purity from 3D tissues.
  • the bioprocess developed from 3D bioprinted tissue provides pure results, with high production yields when compared to conventional methods.
  • This high protein production is exploited through frontier 3D tools such as tissue 3D bioprinting, methods of inducing collagen gene expression.
  • the use of bioinks with growth factors and collagen-inducing molecules during the process highlights a unique opportunity to obtain ultra-pure proteins from extracellular matrices of 3D, biocompatible and highly complex tissues, such as collagen, elastin, fibronectin and hyaluronate.
  • Figure 1 Virtual 3D construct in Simplify 3D slicing software. Main slicing parameters of the structure: 35% porosity, filaments of 400 pm in diameter and width, layer height of 200 pm and extrusion speed of 6 mm/s.
  • Figure 2 Bioprinted construct using bioink composed of 25% Pluronic diluted in free animal culture medium, growth factors, induction molecules and adhesion molecules containing fibronectin and arginine - glycine - aspartic acid (RGD).
  • RGD arginine - glycine - aspartic acid
  • Figure 3 Scheme of extracting collagen fibrils from tissue sources, including the inventive method from bioprinted tissues.
  • Figure 4 Flow of steps of the present invention: (1) 2D cell culture, (2) bioink formulation, (3) bioprinting, (4) homogenization, (5) centrifugation filtration, (6) centrifugation to concentration of proteins in concentrator tubes (molecular weight).
  • Figure 5 Cell viability tests of bioink formulations with 5,454 cells / well - encapsulated cells (cells suspended inside the hydrogel). Plate is positive control (2D cell culture), H - 25% pluronic hydrogel diluted in base culture medium plus inducing medium, HF1 - Hydrogel diluted in culture medium, collagen inducing factors with fibronectin (0.7 ug /ml).
  • HF2 - Hydrogel diluted in culture medium collagen inducing factors with fibronectin (3.5 ug/ml), HA - Hydrogel diluted in culture medium, collagen inducing factors with recombinant human albumin (0.05%), HF1A - Hydrogel diluted in culture medium, collagen inducing factors with Fibronectin (0.7 ug/ml) and recombinant human albumin (0.05%), HF2A - Hydrogel diluted in culture medium, collagen inducing factors with Fibronectin (3, 5 ug/ml) and recombinant human albumin (0.05%), and HGelatin (control with animal source protein) - Hydrogel diluted in culture medium, collagen-inducing factors with porcine dermal gelatin (3mg/ml).
  • FIG. 6 Cell viability tests of bioink formulations with tissue spheroids (cell agglomerates with 200 cells per spheroid) produced with non-adherent 2% agarose micromolds. Each 96-well plate well has 190 spheroids with 200 cells each. Plate is positive control (2D cell culture), H - 25% pluronic hydrogel diluted in base culture medium plus inducing medium, HF1 - Hydrogel diluted in culture medium, collagen inducing factors with fibronectin (0.7 ug /ml).
  • HF2 - Hydrogel diluted in culture medium collagen inducing factors with fibronectin (3.5 ug/ml), HA - Hydrogel diluted in culture medium, collagen inducing factors with recombinant human albumin (0.05%), HF1A - Hydrogel diluted in culture medium, collagen inducing factors with Fibronectin (0.7 ug/ml) and recombinant human albumin (0.05%), HF2A - Hydrogel diluted in culture medium, collagen inducing factors with Fibronectin (3, 5 ug/ml) and recombinant human albumin (0.05%), and HGelatin (control with animal source gelatin) - Hydrogel diluted in culture medium, collagen-inducing factors with porcine dermal gelatin (3mg/ml).
  • Figure 7 Quantification of collagen using the commercial kit - Hydroxyproline Assay Kit (Sigma) by volume of bioink. In 50 ml of bioink, we obtained 3.11 grams of type 1 collagen. In two experiments that we carried out with 100 ml of bioink, we obtained 5.44 and 4.61 grams, respectively.
  • the bioprocess according to the invention deals with a method for producing a composition of extracellular matrix proteins comprising the steps:
  • Step 1 2D cell culture of cells, human or animals, in a culture medium comprising a humidified environment at 37°C containing 5% CO2 and 95% atmospheric air;
  • Step 2 bioink formulation comprising 18 to 25% by mass of ethylene oxide (EO) and propylene oxide (PO) block copolymer; 1 to 10% peptides; in addition to collagen expression inducing molecules (I, II, III and IV);
  • EO ethylene oxide
  • PO propylene oxide
  • Step 3 bioprinting of the tissue or 3D construct constructed with several layers, in a cylindrical shape and porosity of 20 to 60%;
  • Step 4 homogenization of tissues or 3D constructs in neutral phosphate-saline buffer solution (ph 7.0) for 10 to 30 minutes, at a temperature between 4 and 14 °C;
  • Step 5 cell separation step: (a) on laboratory scale, through centrifugation (1000 - 1500 rpm) at a temperature of 2 to 10°C for 2 to 10 min, and the pellet composed of cells is returned to step 2 and the supernatant containing proteins is taken to an ultracentrifugation (10,000 - 25,000 G) for 15 to 35 minutes; or
  • step 5 involves a process of cell separation through filtration, whereby the filtrates containing cells are washed 2 to 5 times, returning to step 2; and the protein solutions are taken to tangential centrifugation, this process being repeated from 2 to 12 times, keeping the shear force of the feed stream below 2,000 s-1;
  • Step 6 washing and concentration step:
  • the pellet obtained in the previous step is washed (2 to 4 times) and concentrated in a refrigerated centrifuge at 4 to 10 °C with tubes containing a specific membrane to retain high molecular weight proteins from the extracellular matrix, until the final structural protein concentrate having from 5 to 150 mg/ml is obtained; or
  • step 6 involves a protein solution obtained in the previous step, being washed for its concentration, repeated 2 to 4 times in refrigerated centrifugation at 4 to 10 °C, until the final structural protein concentrate is obtained showing 5 to 150 mg/ml.
  • the present inventive process aims to produce extracellular matrix proteins (collagen, elastin, fibronectin and glycosaminoglycans, among others) with a high degree of purity and fibrillar characteristics from bioprinted tissues with potential for scale production.
  • the bioprocess has unique factors for being developed from the technology of bioprinting of human cells in an innovative way, accompanied by an extractive process that maintains the nobility of the structures, maintaining the integrity of the matrix proteins.
  • the result of the inventive bioprocess when using dermal fibroblasts is a high-purity protein solution of fibrillar type 1 collagen, elastin, fibronectin and glycosaminoglycans.
  • the inventive bioprocess when used chondroblasts is a high purity protein solution of type 2 collagen, glycosaminoglycans, among others with unique characteristics for applications in the cosmetic, pharmaceutical, dental and medical industries.
  • the inventive bioprocess has the following steps: i) 2D cell culture of the selected cell type, ii) bioink formulation, iii) 3D bioprinting and iv) collagen extraction. This process opens opportunities for the development of a new generation of biological inputs using the most innovative in the field of tissue biomanufacturing and would advance the field of non-invasive medicine and innovation in the food industry.
  • Figure 3 Scheme for extracting collagen fibrils from tissue sources, including the inventive method from bioprinted tissues; Source: Adapted from Liu Y, 2016
  • Source Adapted from Liu Y, 2016
  • isolated collagen fibrils mainly from dermal tissue
  • Source Adapted from Liu Y, 2016
  • the methodology proposed by the present invention has an optimization of the extraction of structural proteins without enzymes and more severe products, since the 3D bioprinted tissue is capable of extracting fibrils using homogenization, followed by centrifugation and filtering and /or concentration.
  • Step 1 consists of cell culture of human cells obtained from certified cell banks, grown and expanded in appropriate culture medium (DM EM, RPMI or MEM) plus Hepes (25mM), L-Glutamine (7.5 mM), Pyruvate (0.5 mM), non-animal protein growth factors such as recombinant human insulin (15 to 100 ug/ml), Selenium (5 - 15 ng/ml), Transferrin (5 to 15 ug/ml), Hydrocortisone (20 - 50 ng/ml), fibroblast growth factor (FGF, 5 to 100 ng/ml), Transforming Growth Factor beta (TGF-I3, 2 to 50 ng/ml), ascorbic acid (5 to 70 pM/ml), human albumin (0.05 - 0.5%) and epidermal growth factor (EGF, 5 to 20ng/ml).
  • DM EM fetal growth factor
  • RPMI or MEM Hepes
  • L-Glutamine 7.5 mM
  • the cells are seeded in culture bottles and kept in a humidified environment at 37°C containing 5% CO2 and 95% atmospheric air.
  • the culture medium is changed every 48 hours until the cells are 70 to 80% confluent.
  • cell growth bioreactors can be used to fulfill the function of conventional 2D monolayer cultivation or use triple bottles optimized for cell culture with a cultivation area above 300 cm 2 (NuncTM TripieFiaskTM Treated Cell Culture Flasks .
  • An amount of lxlO 5 to 5xl0 6 is required, preferably 2xl0 5 of human cells or spheroids (clusters of cells) per ml of bioink for the formulation.
  • Step 2 consists of the production of bioink (formulation of biocompatible biomaterial, cells and molecules that induce cell differentiation).
  • the biomaterial used in the present inventive bioprocess is based on Pluronic® F127 (block copolymer of ethylene oxide (EO) and propylene oxide (PO) in the amount by mass of 18 to 25% (preferably 23 to 25%) a thermoresponsible, biocompatible and highly stable copolymer for bioprinting.
  • Cell adhesion peptides by mass from 1 to 10% such as arginine-glycine-aspartate (RGD) and fibronectin (0.05 to 5 ⁇ g/ml) can be added to the hydrogel to promote adhesion and optimize cell seeding.
  • molecules that induce collagen expression I, II, III and IV are added in the bioink formulation for appropriate stimulation of the cells used, such as interleukin 13 (10 to 40 ng/ml) and ascorbic acid (5 to 30 pM/ml).
  • Step 3 consists of the bioprinting of the 3D construct with several layers (20 to 40 layers of bioink at a cell concentration between lxlO 5 to 5xl0 6 / ml).
  • Bioink is processed with the aid of specific automated biofabrication tools and software (Dernowsek et at, 2017).
  • the cylinder-shaped 3D geometry was designed in CAD software (Rhinoceros) and the fill/porosity was designed in the Simplify3D software from 20 to 60%.
  • 3D construct or tissue is a tissue structural design with layers of formulated bioink and varying porosity (20 to 60%) to induce significant collagen expression and allow oxygenation and nutrition of the 3D tissue system.
  • the 3D constructs are kept in a closed and controlled system - conventional CO2 incubators to induce the overexpression of the collagens of interest in a yield that varies from 10 to 20 times the normal physiological expression, reaching even higher numbers.
  • Step 4 consists of the low-speed homogenization process of the 3D constructs in neutral phosphate-saline buffer (pH 7.0 - 7.4) to be prepared in a liquid phase and, without fail, at low temperature (4 to 14°C), preferably from 10 to 14°C to liquefy the bioink consisting of Pluronic, a thermoresponsible copolymer (temperatures below 15°C the polymer is in a liquid phase).
  • the main objective is to deconstruct or de-agglomerate, diluting tissue systems (3D constructs) in a simplified, practical, low-cost way, without the use of aggressive and enzymatic solutions, reducing the fragmentation of proteins of interest and avoiding cellular damage, because our tissue source is sterile, without contaminating tissues and will return to the initial bioink formulation process, characterizing a sustainable method.
  • the average time of manual homogenization of the constructs in neutral phosphate-saline buffer solution is around 30 to 40 minutes.
  • step 5 for a bench scale, we will proceed with cell separation processes, using a low rotation centrifugation phase (1000 - 2000 rpm), at a temperature of 2 to 10 °C for 2 to 10 minutes to separate cells from the supernatant that contain extracellular matrix proteins.
  • a low rotation centrifugation phase 1000 - 2000 rpm
  • the second phase of centrifugation is more intense and requires an ultracentrifugation (10,000 - 25,000G), preferably 18,000G, for 15 to 35 minutes of the supernatant of the first centrifugation.
  • the main objectives are: (a) separation and preservation of the integrity of the cells that will be reused and (b) separation and preservation of the fibrillar characteristics of the proteins.
  • This is considered a simple process and easy to adapt to the different cell types used in bioprinting, allowing the production of cell-free filtrate (98 to 100% retention), which facilitates the processes of purification of proteins of interest with degrees of high biological purity.
  • centrifugation and/or ultrafiltration steps and/or tangential filtration system can be used, guaranteeing the flexibility of the system, allowing the exchange of module in the event of clogging. Due to its nature, the use of FFT can be easily scaled from a pilot scale to an industrial scale, respecting the ratios of filtrate volume and filter area.
  • the solution homogenized with neutral phosphate-saline buffer solution is then filtered using filter cassettes or membranes with porosity in a range of (0.5pm to 1Opm) to retain cells, cellular debris and larger biomolecules, respectively.
  • the filters/membranes are washed in 2 to 5 times the volume of sterile PBS (pH 7.4) and the protein solutions are then taken for centrifugation.
  • the cells retained in the filters are returned to step 2, for reuse in the bioprinting process, and this process is performed 2 to 20 times, enhancing the biological sustainability strategy.
  • the inlet flow rate is in the range of 50 to 100 mL/min in order to keep the feed stream shear force below 2000 s -1 .
  • step 6 for the bench process, the cell pellet obtained in the previous step is taken to washes (2 to 4 times) and then to the concentration phase in a refrigerated centrifuge at 4 to 10 °C with tubes containing specific membrane to retain proteins of high molecular weight from the extracellular matrix, until the final structural protein concentrate is obtained, presenting from 5 to 50 mg/ml.
  • the protein solution after filtration is typically washed in a repeatable process.
  • the steps generally include placing the protein suspension into a centrifuge tube, thereby pelleting the proteins to the bottom of the tube using a centrifuge. The tube is removed from the centrifuge, and the supernatant is decanted from the pelleted proteins. A wash liquid is added to the tube and the protein pellet is resuspended. These steps are typically repeated 2 to 4 times in refrigerated centrifugation (4 to 10°C).
  • the end result is a protein-rich solution of the extracellular matrix of bioprinted tissues, mainly collagens with a high degree of purity, fibrillar characteristics and the final production with a high concentration of structural proteins (5 to 50 mg/ml).
  • the final product comprises collagen and other matrix proteins such as elastin, fibronectin and glycosaminoglycans.
  • the present invention In search of non-enzymatic methods with significant cost-benefit that allow obtaining the quantification of collagen proteins and other structural proteins of the ECM with fibrillar characteristics, the present invention on production bioprocess from tissue bioprinting has simpler methods than than those required by animal raw materials (cattle, swine, poultry and fish), which are free from dirt, fatty tissue and biological (viruses, bacteria and fungi) and chemical contaminants. Furthermore, the present invention allows for improvements in the quality and reliability of bioproducts to thus satisfy the diverse needs of consumers in the medical and pharmaceutical fields, who are their users, and is therefore very useful.
  • Step 1 consisted of cell cultivation of human cells obtained from certified cell banks, cultured and expanded in appropriate commercial animal-free medium Essential 8 (ThermoFisher) and/or DMEM/F12 medium plus growth factors growth factors without animal protein such as recombinant insulin (15 to 100 ug/ml), preferably 19.4 ug/ml, Selenium (5 - 15ng/ml), preferably 13 ug/ml, Transferrin (5 to 15 ug/ml) ml), preferably 10.7 ⁇ g/ml, Hydrocortisone (20 - 50 ng/ml), fibroblast growth factor (FGF, 5 to 100 ng/ml), preferably 100ng/ml, Transforming Growth Factor beta (TGF- ⁇ 3, 2 to 50 ng/ml), preferably 2 ng/ml, ascorbic acid (5 to 70 pM/ml), preferably 64 ⁇ g/ml human albumin (0.05 - 0.5%), preferably 0.05% and epidermal growth factor
  • the cells were seeded in culture bottles and kept in a humidified incubator with an atmosphere of 5% CO2 at 37 °C.
  • the culture medium is changed every 48 hours until the cells are 70 - 80% confluent to fulfill the function of conventional 2D monolayer culture.
  • Step 2 consisted of producing the bioink (formulation of biocompatible biomaterial, cells and molecules that induce cell differentiation).
  • the biomaterial used in the present inventive bioprocess was the base of Pluronic® F127 in a mass amount of 18 to 25%, preferably 25%, and peptides 1 to 10% of arginine-glycine-aspartate (RGD), preferably 3%, were added to the hydrogel to promote cell adhesion and seeding.
  • RGD arginine-glycine-aspartate
  • collagen expression inducing molecules (I, II, III and IV) were added in the bioink formulation for the appropriate stimulation of the cells used, such as: DMEM/F12 culture medium, interleukin 13 (10 to 40 ng/ml ), preferably 40 ng/ml, recombinant insulin (15 to 100 ug/ml), preferably 15 to 22 ug/ml, fibroblast growth factor (5 to 100 ng/ml), preferably 10 - 30ng /ml, transforming growth factor beta (TGF- ⁇ 3, 2 to 50 ng/ml), preferably 5 ng/ml, human albumin (0.05 to 0.5%), preferably 0.05%, epidermal growth factor (EGF , 5 to 20 ng/ml), preferably 5 ng/ml, ascorbic acid (5 to 70 mg/ml) preferably 60 to 64 mg/ml.
  • interleukin 13 10 to 40 ng/ml
  • recombinant insulin 15 to 100 ug/ml
  • Step 3 consisted of bioprinting the 3D construct with several layers (20 to 40 layers of bioink at a cell concentration between 1x10 5 to 5x10 6 / ml, preferably 4x10 5 to 5x10 6 ).
  • the bioink was processed with the aid of specific automated biofabrication tools and software (Dernowsek et al., 2017).
  • the cylinder-shaped 3D geometry was designed in CAD software (Rhinoceros) and the applied slicing parameters were: bioprint needle diameter of 0.4 mm, layer height of 0.2 mm, retraction of 2 mm, fill/porosity from 20 to 60%, preferably 30%, without walls/shells, print speed of 6mm/s.
  • step 2 the production of the 3D constructs composed of human dermal fibroblasts plus the two inducers reported in step 2 (interleukin 13 and ascorbic acid), produced approximately 0.2 to 2g with a cell average of 5x10 8 .
  • Step 4 consisted of the process of homogenization of the 3D constructs in neutral phosphate-saline buffer solution manually with pipetting to be prepared in a liquid phase and, without fail, at low temperature (4 to 14°C), preferably from 10 to 14°C, to liquefy the bioink made up of Pluronic (easy disintegration process).
  • the average time of homogenization by manual pipetting of the constructs in solution was around 10 to 30 minutes.
  • step 5 we will proceed with cell separation processes, which we use a simple centrifugation (1000 - 2000 rpm for 5 minutes, preferably 1800 rpm) at a temperature of 5°C and the pellet composed of cells returns to the step 2. for reuse in the bioprinting process again and this process was carried out 10 to 20 times, preferably 10 times, enhancing the biological sustainability strategy.
  • a simple centrifugation 1000 - 2000 rpm for 5 minutes, preferably 1800 rpm
  • step 5 in an industrial way, the tangential filtration system (FFT) can be used, ensuring the flexibility of the system, allowing the exchange of module in the event of clogging. Due to its nature, the use of FFT can be easily scaled up from a pilot scale to an industrial scale, respecting the volume ratios of filtrate and filter area.
  • FFT tangential filtration system
  • the solution homogenized with neutral phosphate-saline buffer is then filtered using filter cassettes or membranes with porosity in a range of (0.5pm to 1Opm) to retain cells, cellular debris and larger biomolecules, respectively.
  • the filters/membranes are washed at three to five times the volume of sterile PBS (pH 7.4) and the protein solutions are then centrifuged.
  • the cells retained in the filters return to step 2, for reuse in the bioprinting process, and this process is performed 10 to 20 times, enhancing the biological sustainability strategy.
  • the inlet flow rate is in the range of 50 to 100 mL/min in order to keep the feed stream shear force below 2000 s -1 .
  • step 6 bench phase, washing processes and concentration of the final protein composition were performed with high molecular weight proteins (molecular weights above 30KDa, preferably between 30 KDa and 100 KDa) in order to collect a solution rich in collagen fibers (90 to 95%) and lesser amounts of other ECM proteins (1 to 10%).
  • the protein solution after centrifugation was typically washed in a repeatable process using specific concentrator tubes with 30 and 100K filters (PierceTM Protein Concentrator PES, 30K and 1OOK MWCO). The tube was removed from the centrifuge, and the filtrate containing proteins smaller than 30KDa was discarded. A washing liquid was added to the washer tube from the solution retained in the concentrated solutions compartment.
  • [0077] For an industrial process, we can perform phases of washing and concentration of the final protein composition in order to collect a solution rich in collagen fibers (97 to 99%) and other proteins from the ECM in smaller amounts (1 to 3% ).
  • the protein solution after filtration is typically washed in a repeatable process.
  • the steps generally include placing the protein suspension into a centrifuge tube, thereby pelleting the proteins to the bottom of the tube using a centrifuge. The tube is removed from the centrifuge, and the supernatant is decanted from the pelleted proteins. A wash liquid is added to the tube and the protein pellet is resuspended. These steps are typically repeated 2 to 4 times in refrigerated centrifugation (4 to 10°C).
  • the end result is a protein-rich solution from the extracellular matrix of bioprinted tissues, mainly collagens with a high degree of purity, fibrillar characteristics and the final production with a high concentration of structural proteins (5 to 150 mg/ml).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

O presente objeto possui aplicação na área de biotecnologia e saúde, mais especificamente nos segmentos farmacêuticos, cosméticos, estéticos e engenharia tecidual. O método para a produção de uma composição de proteínas de matriz extracelular compreende as etapas: Etapa 1: cultivo celular 2D de células, humanas ou animais; Etapa 2: formulação da biotinta compreendendo 18 a 25 % em massa de copolímero em bloco de óxido de etileno (EO) e óxido de propileno (PO); 1 a 10% de peptídeos; além de moléculas indutoras de expressão de colágenos (I, II, III e IV); Etapa 3: bioimpressão do tecido ou construto 3D construído com várias camadas, em formato cilíndrico e porosidade de 20 a 60%; Etapa 4: homogeneização dos tecidos ou construtos 3D em solução tampão neutro fosfato-salino por 10 a 30 minutos, a temperatura entre 4 e 14 ºC; Etapa 5, etapa de separação celular; Etapa 6, etapa de lavagem e concentração. Ao final obtêm-se colágeno e outras proteínas da matriz como elastina, fibronectina e glicosaminoglicanos.

Description

MÉTODO PARA A PRODUÇÃO DE UMA COMPOSIÇÃO DE PROTEÍNAS DE MATRIZ EXTRACELULAR E PRODUTO OBTIDO POR TAL MÉTODO
[001] CAMPO DE APLICAÇÃO
[002] A presente invenção se refere a um bioprocesso escalonável de proteínas da matriz extracelular de tecidos construídos tridimensionais (3D) a partir da tecnologia de bioimpressão tridimensional (3D) e um método "limpo" de extração das mesmas.
[003] O presente objeto possui aplicação na área de biotecnologia e saúde, mais especifica mente nos segmentos farmacêuticos, cosméticos, estéticos, engenharia tecidual e setor alimentício.
[004] ESTADO DA TÉCNICA
[005] A presente invenção se refere a um bioprocesso escalável e sustentável de proteínas da matriz extracelular (MEC) de alto grau de pureza e características estruturais íntegras utilizando tecidos bioimpressos tridimensionais (3D) produzidos com vários tipos celulares - multipotentes e pluripotentes - tais como, fibroblastos, condroblastos, osteoblastos, mioblastos, células tronco adultas e pluripotentes induzidas.
[006] As matrizes extracelulares (MECs) dos tecidos biológicos desempenham papéis vitais no suporte estrutural, imunidade, circulação e percepção sensorial das células. As proteínas estruturais da MEC dérmica suportam a epiderme e consiste principalmente em fibrilas de colágeno do tipo I, que são sintetizadas por fibroblastos. Como a proteína estrutural mais abundante na derme, o colágeno tipo I fornece organização, nanoestrutura, força mecânica e resistência à pele. A MEC do tecido cartilaginoso tem características peculiares, diferentes do tecido conjuntivo propriamente dito. Nas cartilagens do tipo hialino e elástico o colágeno da MEC é constituído principalmente por moléculas de colágeno do tipo II. Estas moléculas formam fibrilas colágenas, mas estas não se organizam em fibras. Na cartilagem do tipo elástico a MEC apresenta muito material elástico e fibras elásticas, além de colágeno e na cartilagem fibrosa o colágeno é principalmente do tipo I. A MEC fundamental do tecido cartilaginoso, principal mente nas cartilagens hialina e elástica possui muitos glicosaminoglicanos sulfatados (por exemplo sulfato de condroitina) e não sulfatados (por exemplo hialuronato). Estas moléculas são as principais responsáveis pela rigidez deste tecido e pela sua consistência característica. Devido à sua abundância nos organismos vivos e diferentes possibilidades de uso, o colágeno se tornou um grande motor das indústrias farmacêutica, médica, alimentícia e cosmética. Assim sendo, essa proteína é um importante elemento estrutural de todos os tecidos conectivos e está presente em praticamente todos os tecidos intersticiais e todos os órgãos parenquimatosos.
[007] A comunicação celular e seu microambiente extracelular orquestra processos biológicos importantes, como a manutenção de fenótipos diferenciados durante a embriogênese, o desenvolvimento da forma (morfogênese), angiogênese, cicatrização de feridas, reconstrução tecidual e até mesmo metástase tumoral. Os sinais bioquímicos e biofísicos da MEC modulam atividades celulares fundamentais, incluindo adesão, migração, proliferação, expressão diferencial de genes e morte celular programada - apoptose, e por essas características, as proteínas da MEC são tão importantes na engenharia tecidual e, consequentemente, em várias áreas biotecnológicas e médicas.
[008] Existem vários métodos conhecidos para isolar proteínas da matriz extracelular e/ou colágeno, de uma variedade de tecidos biológicos, como por exemplo, placenta, bexiga, cauda de animais, pele, tendão, cartilagem, entre outros. No entanto, uma das principais fontes de extração de colágenos, é a bovina devido à sua disponibilidade e biocompatibilidade. O processo de extração e purificação é determinante para a obtenção das características finais das proteínas, como peso molecular, composição de aminoácidos, estrutura molecular e, principalmente, grau de pureza. Essas características definem e indicam as melhores aplicações nas indústrias médica, cosmética, farmacêutica, de bioengenharia e nutracêuticos.
[009] É sabido que os processos de obtenção, extração e purificação do colágeno de fonte animal tem alto custo, possui inseguranças quanto às zoonoses existentes e, principalmente, utiliza-se produtos químicos agressivos ou mesmo tóxicos, necessitando de fontes mais seguras desse biomaterial. Considerando as novas tendências de bioengenharia, insumos farmacêuticos, avanços em produtos de estética e métodos alternativos, a presente invenção apresenta um bioprocesso que produz proteínas da MEC a partir de tecidos 3D bioimpressos cuja uma das principais proteínas é o colágeno, utilizando o que há de mais emergente em cultivo celular 3D. [0010]0s métodos de cultura de células já são usados há décadas no desenvolvimento de novos processos e produtos. Inicial mente, sistemas de cultivo em monocamada ou bidimensional (2D) os quais cultivam as células em placas ou garrafas de cultura de plástico ou vidro tratadas para estimular a adesão celular ou apenas para cultivo em suspensão. Porém, com o advento de sistemas de cultura 3D surgiram novas abordagens, biomodelos biológicos e técnicas mais eficientes como a bioimpressão 3D.
[0011]A tecnologia de bioimpressão 3D emergiu no início do século 21, mais precisamente em 2003. É considerada uma técnica versátil, com grande potencial nos campos de alimentos, agroindústria, farmacêutico, cosmético e médico. Além disso, espera-se que esta técnica tenha um grande efeito cascata no mercado, pois é aplicável a várias áreas industriais, como desenvolvimento de novos medicamentos, medicina regenerativa, novos alimentos e até mesmo para indústrias de defesa nacionais. Proteínas da MEC, assim como o colágeno e ácido hialurônico são fundamentais na bioimpressão como biotintas e em vários segmentos mercadológicos, caracterizando sua alta procura e produção por empresas nacionais e internacionais. É importante pontuar as principais fontes, características e desvantagens dos métodos de obtenção dessas proteínas estruturais e salientar que todos apresentam limitações quando comparamos com a presente invenção. Na tabela 1 abaixo, detalhamos as características, fontes, métodos de extração e desvantagens entre os diferentes métodos de extração de colágeno conhecidos do homem da técnica.
Figure imgf000005_0001
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000008_0001
TABELA 1
[0012] Por mais que existem diversas técnicas de obtenção de proteínas da matriz extracelular, como o colágeno, as áreas médicas e farmacológicas necessitam de processos reprodutíveis, escalonáveis, sustentáveis, de baixo custo que produzam biomateriais ou soluções proteicas biocompatíveis, com estruturas íntegras para determinadas aplicações e, principalmente, de alto grau de pureza.
[0013] Desenvolver soluções inovadoras para evitar a dependência de fontes de animais e/ou técnicas de alto custo, baixa escalabilidade e com a alta incidência de contaminantes se torna imprescindível. Especial mente, quando a aplicação envolve reconstrução tecidual, cuja estrutura proteica é crucial para a sinalização celular e reestruturação da nova MEC.
[0014] As tentativas para o desenvolvimento de processos com custo-benefício significativo, grau de pureza alto e estruturas proteicas íntegras são inúmeras. No documento RU20190106356, apresentou-se um método de esterilização de colágeno tipo 1 por várias etapas de tratamento e controle, e não de produção da proteína. Diferente do método em questão, o bioprocesso inventivo do presente requerimento, apresenta um método escalonável, prático e estéril do início ao fim, resolvendo os problemas de pureza, custo-benefício e de escalabilidade de proteínas da MEC de tecidos bioimpressos produzidos com vários tipos celulares tais como, fibroblastos, condroblastos, osteoblastos, mioblastos, células tronco adultas e pluripotentes induzidas. [0015] O documento CN110790950A, revela um método de fotoreticulação do colágeno recombinante por etapas específicas de adição de anidrido metacrílico, agitação, centrifugação, diálise e liofilização. Diferentemente, a presente invenção (processo bioinn) apresenta um método de produção e extração inovador, com alto grau de pureza das proteínas bioidênticas de MECs, principalmente o colágeno, elastina e hialuronato.
[0016] No documento WO2019US38742, é apresentado um método de bioimpressão de construtos 3D (tecidos engenheirados) com fibroblastos e queratinócitos visando um sistema otimizado de deposição, formação de camadas e fotoreticulação. Diferentemente do método inventivo proposto neste relatório, apresentamos um bioprocesso de produção de baixo custo e com alto grau de pureza de proteínas da MEC utilizando bioimpressão por extrusão de biotinta - formulação de biomaterial, células e fatores indutores de expressão proteica, polímeros e moléculas de adesão celular.
[0017] O documento CN108452378A, se refere a um método de deposição biológica (bioimpressão) com agente reticulante químico e estratégias de controle de temperatura para imprimir e fotoreticular uma estrutura alvo. A principal diferença com relação ao processo inventivo deste pedido é que não foi desenvolvido um método de deposição novo, mas sim um bioprocesso de proteínas da matriz dérmica utilizando o método de extrusão mecânica por seringas, conhecido como bioimpressão por extrusão. Além disso, o processo da presente invenção possui etapas de extração não enzimáticas, apenas sistemas físicos de homogeneização, filtragem e centrifugação para a extração das proteínas com alto grau de pureza e estruturas íntegras.
[0018] O documento CN201811375168, se refere a tinta de impressão 3D de matriz biológica e um método de preparação da mesma, cujos componentes principais são colágenos, sulfato de condroitina e ácido hialurônico com aplicações na medicina regenerativa de cartilagem, necessitando da aquisição de forma comercial dos biomateriais em questão. De forma semelhante, os documentos W02020081982A1, EP3427949A1 e CN110772669A se referem às tintas biológicas para impressão 3D. A principal diferença com relação à presente invenção está no processo de produção de proteínas da MEC utilizando bioimpressão 3D e não desenvolvimento de tintas de biomateriais para técnicas de engenharia tecidual. [0019] No documento KR20180049745A, a invenção se refere a um método de impressão de células 3D para a produção de uma estrutura 3D, com um equipamento básico de impressão 3D, uma biotinta baseada em matriz extracelular descelularizada em um banho isotônico de reticulação. Distintamente, o presente bioprocesso inventivo produz de forma simplificada e pura proteínas da MEC dérmica, como colágeno, elastina e hialuronato, utilizando a bioimpressão 3D como sistema de cultivo celular 3D utilizando células, polímero sintético biocompatível (Pluronic) e moléculas indutoras de adesão e expressão de proteínas de interesse como o colágeno.
[0020] O documento CN105132502A se refere a um processo de produção de cultura de tecidos 3D por (a) impressão pelo sistema piezoelétrico (deposição de biotinta em uma gotas) de tinta biológica em um substrato; (b) imprimir um ativador na gota de biotinta para formar o hidrogel; (c) repetir as etapas (a) e (b) em qualquer ordem para formar um molde de hidrogel adaptado para receber gotas contendo células; (d) imprimir gotas contendo células no molde de hidrogel; e (e) repetir as etapas (a) e (b) em qualquer ordem para formar um modelo de cultura de tecidos 3D compreendendo as células encapsuladas no molde de hidrogel. Assim como na abordagem anterior, o documento US2012190078A1 também é apresentado arranjos de tecidos bioimpressos em sistemas 3D por extrusão e por gotículas (aerossóis) com camadas compostas por células diferentes e biomiméticas à uma pele, como: (a) uma camada dérmica compreendendo fibroblastos dérmicos; (b) uma camada epidérmica compreendendo queratinócitos, e (c) uma camada epidérmica em contato com a camada dérmica para formar o tecido dérmico projetado em 3D. O documento CN103272288A também apresenta processo inventivo semelhante aos anteriores, fornecendo um método de preparação e a aplicação do mesmo para um composto de suporte biológico celular com base na tecnologia de impressão biológica (bioimpressão). O composto biológico celular é formado por proteína fibrosa que é extraída do sangue de um paciente e processada por uma tecnologia de bioimpressão por jato de tinta (piezoelétrica). O método se trata de uma solução biológica de fonte sanguínea para uso em processo de bioimpressão por sistema piezoelétrico ou gotejamento. Assim como os tópicos acima, relacionados à biotintas e processo de deposição, o documento US201916723579 apresenta um sistema para a preparação de scaffolds ou andaimes de microfibra composta de colágeno e biomateriais com uma ampla gama de propriedades mecânicas e usos, não apresenta um método de produção de colágenos e outras proteínas estruturais de MECs de forma pura, controlada e de baixo custo. E, de forma distinta, o bioprocesso inventivo deste relatório descritivo, pode utilizar vários tipos celulares - fibroblastos, condroblastos, osteoblastos, mioblastos, células tronco adultas e pluripotentes induzidas - e não utiliza o método de deposição por gotas (piezoelétrico) devido ao custo elevado, limitação de viscosidades de biotintas e soluções, além de apresentar um processo lento quando comparado ao método de extrusão mecânica. O foco da invenção requerida no documento em questão é baseado em método de extrusão mecânico por seringas, construções 3D de tecidos homogêneos (de 20 à 40 camadas de biotinta) com apenas um tipo celular cada construto, tendo porosidade entre 20 e 60% para a produção escalonável e pura (94 - 98%) de proteínas de MECs produzidas pelo sistema 3D em questão.
[0021] No documento KR101697324B1 um método de síntese de colágeno biocompatível é apresentado. O colágeno biocompatível de uso médico compreende é extraído de suíno transgênico no qual um gene relacionado a uma rejeição imune (a-gal) é deletado, não induzindo uma rejeição vascular hiperaguda ou uma rejeição imunológica mediada por células se aplicado ao corpo humano, garantindo a aplicação segura ao corpo humano do que os materiais de colágeno existentes até hoje. De acordo com o documento, o colágeno biocompatível na presente invenção possui uma alta biocompatibilidade e quase não mostra a possibilidade de propagação de doenças. Diferentemente, das proteínas produzidas e coletadas, estas são biocompatíveis, pois são produzidas por células humanas de modo totalmente estéril, apresentam alto grau de pureza e íntegras estrutural mente.
[0022] No documento US2019201586A1 São fornecidos scaffolds ou andaimes 3D de matriz de tecido poroso, hidrogel e multicamadas que são derivados de tecidos nativos. Os scaffolds podem ser usados para cultura de células, preparação de tumores para implante in vivo e teste ou triagem da eficácia ou toxicidades de drogas em relação a cânceres ou outras doenças. Distintamente, o processo inventivo apresentado no relatório em questão objetiva a produção de proteínas de MECs diferentes, produzida por fibroblastos, condroblastos, entre outras células, em sistemas 3D de forma pura e escalonável, utilizando etapas de homogeneização dos construtos em tampão neutro fosfato-salino (temperatura 10°C e pH 7,0 - 7,4), filtragem e centrifugação.
[0023] O documento WO2019122351A1 descreve a bioimpressão de tecido humano, especifica mente tecido hepático, usando MEC humana, especifica mente do fígado, em combinação com biotinta à base de celulose. Mais especifica mente, a presente invenção refere-se a uma composição para uso em bioimpressão 3D e cultura de tecido humano ou animal compreendendo a) biotinta à base de nanofibrilas de celulose e (b) material de matriz extracelular específico de tecido humano ou animal (MEC). Além disso, a invenção se refere a um método para bioimpressão 3D de tecido humano e / ou scaffolds compreendendo a deposição da composição da invenção, bem como os tecidos bioimpressos e/ou scaffolds. Diferentemente, a presente invenção apresenta um bioprocesso estéril e escalonável para a produção de moléculas da matriz dérmica, com alta concentração colagênica e alto grau de pureza (94 a 98%).
[0024] No documento BR 11 2018 071794 0 A2 a invenção se refere a um processo de produção de colágeno na forma de partículas, compreendendo as etapas de: (a) extração de uma matéria-prima animal contendo colágeno e gordura com uma solução de extração aquosa; (b) opcionalmente separar pelo menos uma parte da fase aquosa do resíduo de extração; (c) separar o resíduo de extração em uma fase sólida contendo colágeno, uma fase aquosa e uma fase gordurosa; (d) misturar pelo menos uma parte da fase sólida contendo colágeno com pelo menos uma parte da fase aquosa; (e) secar parte das fases misturadas; e (f) trituração das fases secas, para obter o material de colágeno na forma de partículas. De forma semelhante à abordagem anterior, o documento BR 11 2017 010619 1 A2 se refere a um método de produção de colágeno de alta concentração para utilização como material médico, incluindo: (a) lavagem de tecido de um mamífero; (b) trituração e imersão em álcool etílico; (c) tratamento enzimático com agitação em água purificada contendo ácido fosfórico e pepsina; (d) adição de cloreto de sódio ao colágeno submetido a tratamento enzimático, com agitação e agregação do colágeno; (e) dissolução do colágeno agregado em água purificada e, então, solução filtrada utilizando um filtro e concentrada por remoção da pepsina - material de baixo peso molecular e cloreto de sódio da solução de colágeno utilizando um dispositivo de filtração de fluxo tangencial; (f) filtração estéril, agregar o colágeno utilizando uma solução de pH num tanque de neutralização e concentração do colágeno por remoção de uma solução não agregada; (g) concentração do colágeno utilizando uma centrífuga. Distintivamente, o bioprocesso e método de extração da presente invenção não utiliza colágeno de fonte animal e processos complexos de extração do mesmo, com tratamentos enzimáticos. A invenção traz um método de produção e extração limpo, escalonável, sustentável e simplificado de obtenção de proteínas de MECs de tecidos 3D construídos produzidos por bioimpressão de forma estéril, pura e íntegras, sem danificar suas estruturas fibrilares.
[0025] OBJETIVOS DA INVENÇÃO
[0026] Desta forma, o presente pedido de patente de invenção apresenta vantagens em relação ao estado da técnica, pois soluciona o problema de pureza, custo de produção, escalabilidade, reprodutibilidade e etapas de extração simplificadas de proteínas da matriz de tecidos 3D construídos de forma biocompatíveis e estéril.
[0027] O desenvolvimento de soluções biológicas e/ou biomateriais ultrapuros para os segmentos médico, farmacêutico, cosmético e nutracêuticos possui gargalos significativos relacionados à pureza, biocompatibilidade, características fibrilares e aos custos envolvidos no processo de produção e extração. Compreender as necessidades desse segmento mercadológico da sociedade é crucial para contribuir no desenvolvimento de bioprocessos tecnológicos e inovadores.
[0028] O principal objetivo deste bioprocesso é o fornecimento de um método biotecnológico de produção de proteínas de MECs - colágeno, glicosaminoglicanos, elastina, entre outras, com alto grau de pureza a partir de tecidos 3D. O bioprocesso desenvolvido a partir de tecido 3D bioimpresso proporciona resultados puros, de alto rendimento de produção quando comparado aos métodos convencionais. Essa alta produção proteica é explorada por meio de ferramentas 3D de fronteira como a bioimpressão 3D de tecidos, métodos de indução da expressão gênica de colágenos. A utilização de biotintas com fatores de crescimento e moléculas indutoras de colágeno durante o processo, destaca uma oportunidade única para a obtenção de proteínas ultra puras de matrizes extracelu lares de tecidos 3D, biocompatíveis e de grande complexidade, como o colágeno, elastina, fibronectina e hialuronato.
[0029] BREVE DESCRIÇÃO DAS FIGURAS
[0030] Figura 1: Construto 3D virtual em software de fatiamento Simplify 3D. Parâmetros principais do fatiamento da estrutura: 35% de porosidade, filamentos de 400 pm de diâmetro e largura, altura da camada de 200 pm e velocidade de extrusão de 6 mm/s.
[0031] Figura 2: Construto bioimpresso utilizando biotinta composta por Pluronic 25% diluído em meio de cultura animal free, fatores de crescimento, moléculas de indução e moléculas de adesão contendo fibronectina e arginina - glicina - ácido aspártico (RGD).
[0032] Figura 3: Esquema de extração de fibrilas de colágeno de fontes teciduais, incluindo o método inventivo a partir de tecidos bioimpressos.
[0033] Figura 4: Fluxo de etapas da presente invenção: (1) cultivo celular 2D, (2) formulação da biotinta, (3) bioimpressão, (4) homogeneização, (5) filtração por centrifugação, (6) centrifugação para concentração das proteínas em tubos concentradores (peso molecular).
[0034] Figura 5: Testes de viabilidade celular de formulações de biotintas com 5.454 células / poço - células encapsuladas (células em suspensão dentro do hidrogel). Placa é o controle positivo (cultivo das células em 2D), H - Hidrogel de pluronic 25% diluído em meio de cultura base mais meios indutores, HF1 - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com fibronectina (0,7 ug/ml). HF2 - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com fibronectina (3,5 ug/ml), HA - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com albumina humana recombinante (0,05%), HF1A - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com Fibronectina (0,7 ug/ml) e albumina humana recombinante (0,05%), HF2A - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com Fibronectina (3,5 ug/ml) e albumina humana recombinante (0,05%), e HGelatina (controle com proteína de fonte animal) - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com gelatina dérmica suína (3mg/ml).
[0035] Figura 6: Testes de viabilidade celular de formulações de biotinta com esferoides teciduais (aglomerados celulares com 200 células por esferoide) produzidos com micromoldes não aderentes de agarose 2%. Cada poço de placa de 96 poços possui 190 esferoides com 200 células cada. Placa é o controle positivo (cultivo das células em 2D), H - Hidrogel de pluronic 25% diluído em meio de cultura base mais meios indutores, HF1 - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com fibronectina (0,7 ug/ml). HF2 - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com fibronectina (3,5 ug/ml), HA - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com albumina humana recombinante (0,05%), HF1A - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com Fibronectina (0,7 ug/ml) e albumina humana recombinante (0,05%), HF2A - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com Fibronectina (3,5 ug/ml) e albumina humana recombinante (0,05%), e HGelatina (controle com gelatina de fonte animal) - Hidrogel diluído em meio de cultura, fatores indutores de colágeno com gelatina dérmica suína (3mg/ml).
[0036] Figura 7: Quantificação de colágeno utilizando o kit comercial - Hydroxyproline Assay Kit (Sigma) por volume de biotinta. Em 50 ml de biotinta, obtivemos 3,11 gramas de colágeno tipo 1. Em dois experimentos que realizamos com 100 ml de biotinta obtivemos 5,44 e 4,61 gramas respectivamente.
[0037] DESCRIÇÃO RESUMIDA
[0038] O bioprocesso segundo a invenção trata de um método para a produção de uma composição de proteínas de matriz extracelular que compreende as etapas:
Etapa 1: cultivo celular 2D de células, humanas ou animais, em meio de cultura que compreende ambiente umidificado a 37°C contendo 5% de CO2 e 95% de ar atmosférico;
Etapa 2: formulação da biotinta compreendendo 18 a 25 % em massa de copolímero em bloco de óxido de etileno (EO) e óxido de propileno (PO); 1 a 10% de peptídeos; além de moléculas indutoras de expressão de colágenos (I, II, III e IV);
Etapa 3: bioimpressão do tecido ou construto 3D construído com várias camadas, em formato cilíndrico e porosidade de 20 a 60%;
Etapa 4: homogeneização dos tecidos ou construtos 3D em solução tampão neutro fosfato-salino (ph 7,0) por 10 a 30 minutos, a temperatura entre 4 e 14 °C;
Etapa 5, etapa de separação celular: (a) em escala laboratorial, através de centrifugação (1000 - 1500 rpm) a temperatura de 2 a 10°C por 2 a 10 min, sendo que o pellet composto por células retorna para a etapa 2 e o sobrenadante contendo proteínas é levado para uma ultracentrifugação (10.000 - 25.000 G) por 15 a 35 minutos; ou
(b) em escala industrial, a etapa 5 envolve um processo de separação celular através de filtração sendo que os filtrados contendo células são lavados 2 a 5 vezes retornando para a etapa 2; e as soluções proteicas são levadas para centrifugação tangencial, sendo este processo repetido de 2 a 12 vezes, mantendo a força de cisalhamento da corrente de alimentação abaixo de 2.000 s-1;
Etapa 6, etapa de lavagem e concentração:
(a) em escala laboratorial, o pellet obtido na etapa anterior é levado para lavagens (2 a 4 vezes) e concentração em centrifugação refrigerada de 4 a 10 °C com tubos contendo membrana específica para reter proteínas de alto peso molecular da matriz extracelular, até obter-se o concentrado de proteínas estruturais final apresentando de 5 a 150 mg/ml; ou
(b) em escala industrial, a etapa 6 envolve uma solução proteica obtida na etapa anterior sofrendo lavagens para sua concentração, repetidas de 2 a 4 vezes em centrifugação refrigerada de 4 a 10 °C, até obter-se o concentrado de proteínas estruturais final apresentando 5 a 150 mg/ml.
Descrição Detalhada da Invenção
[0039] O presente processo inventivo visa produzir proteínas de matrizes extracelu lares (colágeno, elastina, fibronectina e glicosaminoglicanos, entre outras) com alto grau de pureza e características fibrilares a partir de tecidos bioimpressos com potencial para produção em escala. O bioprocesso tem fatores únicos por ser desenvolvido a partir da tecnologia de bioimpressão de células humanas de maneira inovadora, acompanhado de um processo extrativo que mantém a nobreza das estruturas, mantendo a característica íntegras das proteínas da matriz. O resultado do bioprocesso inventivo quando utilizados fibroblastos dérmicos é uma solução proteica de alta pureza de colágeno tipo 1 fibrilar, elastina, fibronectina e glicosaminoglicanas. Além disso, como resultado do mesmo bioprocesso inventivo quando utilizado condroblastos é uma solução proteica de alta pureza de colágeno tipo 2, glicosaminoglicanas, entre outras com características singulares para aplicações nas indústrias cosmética, farmacêutica, odontológica e médica. Como metodologias principais, o bioprocesso inventivo possui as seguintes etapas: i) cultivo celular 2D do tipo celular selecionado, ii) formulação da biotinta, iii) bioimpressão 3D e iv) extração do colágeno. Este processo abre oportunidades de desenvolvimento de uma nova geração de insumos biológicos utilizando o que há de mais inovador no campo da biofabricação de tecidos e avançaria no campo da medicina não invasiva e inovação na indústria de alimentos.
[0040] O bioprocesso segundo a invenção de produção de proteínas de MECs gerada com células humanas utilizando tecidos bioimpressos 3D, indução da expressão colagênica seguido de um processo de coleta proteica por homogeneização, centrifugação e filtragem, mantendo a nobreza das estruturas proteicas.
[0041] Na figura 3 (Esquema de extração de fibrilas de colágeno de fontes teciduais, incluindo o método inventivo a partir de tecidos bioimpressos; Fonte: Adaptada de Liu Y, 2016) evidenciamos que as fibrilas de colágeno isoladas, principalmente do tecido da derme, têm sido estudadas extensiva mente usando vários métodos de extração, mas faltam métodos de isolamento precisos que conseguem uma separação pura sem tratamentos enzimáticos (Liu et al, 2016). Em busca de processos mais puros e produtivos, a metodologia proposta pela presente invenção possui uma otimização da extração de proteínas estruturais sem enzimas e produtos mais severos, pois o tecido 3D bioimpresso é passível de extração de fibrilas usando homogeneização, seguido de centrifugação e filtragem e/ou concentração. No entanto, existe um interesse na separação das fibras do colágeno das fontes teciduais, porque as fibras do colágeno em diferentes tecidos podem ser estrutural mente diferentes, o que leva a diferentes funcionalidades estruturais e reológicas, caracterizando relações diferentes de estruturas- funções e viscosidades-funções (Shen et al, 2008; Kongsgaard eta/., 2010).
[0042]As etapas principais da presente invenção, encontra-se subdividida em fases e estão esquematizadas na figura 4 (Fluxo de etapas da presente invenção: (1) cultivo celular 2D, (2) formulação da biotinta, (3) bioimpressão, (4) homogeneização, (5) centrifugação e ultracentrifugação, (6) centrifugação para concentração das proteínas. É pertinente ressaltar que com relação aos aspectos éticos, informamos que as condições experimentais adotadas, com a utilização de células humanas em condições ótimas de cultivo, condizem com as metodologias regulatórias aplicadas, aceitas e validadas pela comunidade científica internacional e nacional. As culturas celulares humanas (fibroblastos, condroblasto, osteoblastos, mioblastos, células tronco adultas e pluripotentes induzidas) podem ser adquiridas comercialmente de companhias qualificadas e certificadas.
[0043] É importante ressaltar que o bioprocesso em questão pode ser realizado com células de várias fontes teciduais diferentes, como: pele, cartilagem, osso, medula óssea, gordura, entre outros como informado no relatório descritivo.
[0044] A etapa 1 consiste no cultivo celular de células humanas obtidos em bancos de células certificados, cultivados e expandidos em meio de cultura apropriado (DM EM, RPMI ou MEM) acrescido de Hepes (25mM), L-Glutamina (7,5 mM), Piruvato (0,5 mM), fatores de crescimento sem proteína animal como insulina recombinante humana (15 a 100 ug/ml), Selênio (5 - 15 ng/ml), Transferrina (5 a 15 ug/ml), Hidrocortisona (20 - 50 ng/ml), fator de crescimento de fibroblastos (FGF, 5 a 100 ng/ml), Fator de Transformação do Crescimento beta (TGF-Í3, 2 a 50 ng/ml), ácido ascórbico (5 a 70 pM/ml), albumina humana (0.05 - 0.5%) e fator de crescimento epidérmico (EGF, 5 a 20ng/ml).
[0045] Existe a possibilidade de cultivar e expandir as células em meio comercial animal free como o Essential 8 Medium da marca Gibco.
[0046], As células são semeadas em garrafas de cultura e mantidas em ambiente umidificado a 37°C contendo 5% de CO2 e 95% de ar atmosférico. O meio de cultivo é trocado a cada 48 horas até que as células apresentem 70 a 80% de confluência. Nessa etapa inicial, pode-se fazer uso de biorreatores de crescimento celular para cumprir a função do cultivo em monocamada 2D convencional ou usar garrafas triplas otimizadas para cultura celular com área de cultivo acima de 300 cm2 (Nunc™ TripieFiask™ Treated Cell Culture Flasks .
[0047] É necessário uma quantidade de lxlO5 a 5xl06, preferencialmente de 2xl05 de células humanas ou esferoides (aglomerados de células) por ml de biotinta para a formulação.
[0048] A etapa 2 consiste na produção da biotinta (formulação de biomaterial biocompatível, células e moléculas indutoras de diferenciação celular). O biomaterial utilizado no presente bioprocesso inventivo é a base de Pluronic® F127 (copolímero de bloco de óxido de etileno (EO) e óxido de propileno (PO) na quantidade em massa de 18 a 25% (preferencial mente de 23 a 25%) um copolímero termorresponsível, biocompatível e altamente estável para a bioimpressão. Peptídeos de adesão celular em massa de 1 a 10% como por exemplo de arginina-glicina-aspartato (RGD) e fibronectina (0.05 a 5 ug/ml) podem ser adicionados no hidrogel para promover a adesão e otimizar a semeadura das células. Além disso, moléculas indutoras da expressão de colágenos (I, II, III e IV) são adicionadas na formulação da biotinta para a estimulação apropriada das células utilizadas, como a interleucina 13 (10 a 40 ng/ml) e ácido ascórbico (5 a 30 pM/ml).
[0049] A etapa 3 consiste na bioimpressão do construto 3D com várias camadas (20 a 40 camadas de biotinta em uma concentração celular entre lxlO5 a 5xl06 / ml). A biotinta é processada com o auxílio de ferramentas e softwares específicos da biofabricação automatizada (Dernowsek et at, 2017). A geometria 3D em formato de cilindro foi projetada em software CAD (Rhinoceros) e o preenchi mento/ porosidade projeto no software Simplify3D de 20 a 60%.
[0050] Placas convencionais de cultivo celular serão utilizadas para a bioimpressão de um volume de 10 a 100 cm3 de tecido 3D em cada placa. Essa etapa depende da quantidade de células obtidas na etapa 1 de cultivo celular 2D (expansão celular). O construto 3D ou tecido é um projeto estrutural de tecido com camadas de biotinta formulada e com porosidade variável (20 a 60%), para induzir uma expressão significativa de colágeno e permitir a oxigenação e nutrição do sistema tecidual 3D. Os construtos 3D são mantidos em um sistema fechado e controlado - incubadoras de CO2 convencionais para induzir a superexpressão dos colágenos de interesse em um rendimento que varia de 10 a 20 vezes a expressão fisiológica normal, podendo chegar a números ainda maiores.
[0051] Com a utilização de novas tecnologias 3D, como a bioimpressão, compreendemos que os limites estruturais do tecido 3D são dimensionados para escalas laboratoriais e industriais, visando a produção escalável. Assim sendo, a produção dos construtos 3D compostos por fibroblastos dérmicos humanos, fatores de crescimento mais os indutores relatados na etapa 2 (interleucina 13 e ácido ascórbico). O rendimento de produção proteica pode variar de 10 à 20 vezes a produção de colágeno tipo 1, superexpressos em sistemas de cultura 3D de fibroblastos comparado com o mesmo número de células de cultivo 2D sem indução.
[0052] A etapa 4 consiste no processo de homogeneização em baixa velocidade dos construtos 3D em tampão neutro fosfato-salino (pH 7,0 - 7,4) para ser preparado em uma fase líquida e, impreterivelmente, em baixa temperatura (4 a 14°C), preferencialmente de 10 a 14°C para liquefazer a biotinta constituída por Pluronic, um copolímero termo responsível (temperaturas abaixo de 15°C o polímero se encontra em fase líquida). Nessa fase, o principal objetivo é desconstruir ou desaglomerar, diluindo os sistemas teciduais (construtos 3D) de forma simplificada, prática, de baixo custo, sem o uso de soluções agressivas e enzimáticas, reduzindo a fragmentação das proteínas de interesse e evitando danos celulares, pois nossa fonte tecidual é estéril, sem tecidos contaminantes e retornará ao processo inicial de formulação de biotinta, caracterizando um método sustentável. O tempo médio de homogeneização manual dos construtos em solução tampão neutro fosfato-salino fica em torno de 30 a 40 minutos.
[0053] Na etapa 5, para uma escala de bancada, seguiremos com processos de separação celular, utilizando uma fase de centrifugação de baixa rotação (1000 - 2000 rpm), a temperatura de 2 a 10 °C por 2 a 10 minutos para separar as células do sobrenadante que contem proteínas da matriz extracelular.
[0054] A segunda fase de centrifugação é mais intensa e exige uma ultracentrifugação (10.000 - 25.000G), preferencialmente 18000 G, por 15 a 35 minutos do sobrenadante da primeira centrifugação.
[0055] Nessa etapa, os principais objetivos são: (a) separação e preservação da integridade das células que serão reutilizadas e (b) separação e preservação das características fibrilares das proteínas. Este é considerado um processo simples e de fácil adaptação aos diferentes tipos celulares utilizados na bioimpressão, permitindo a obtenção de filtrado isento de células (98 a 100% de retenção), o que facilita os processos de purificação das proteínas de interesses com graus de elevada pureza biológica.
[0056] Para o processo industrial, pode-se empregar etapas de centrifugação e/ou ultrafiltração e/ou sistema de filtração tangencial (FFT), garantindo a flexibilidade do sistema, permitindo a troca de módulo no caso de entupimento. Devido à sua natureza, a utilização da FFT pode ser facilmente escalonada de uma escala piloto para uma escala industrial, respeitando-se as razões de volume de filtrado e área filtrante.
[0057] Na solução homogeneizada com solução tampão neutro fosfato-salino é então filtrada usando cassetes ou membranas de filtros com porosidade numa faixa de (0,5pm a lOpm) para reter células, resíduos celulares e biomoléculas maiores, respectivamente. Os filtros/ membra nas são lavados de 2 a 5 vezes o volume de PBS estéril (pH 7,4) e as soluções proteicas são então levadas para a centrifugação. As células retidas nos filtros retornam para a etapa 2, para reutilização no processo de bioimpressão e é realizado esse processo de 2 a 20 vezes, potencializando a estratégia de sustentabilidade biológica. A taxa de fluxo de entrada é na faixa de 50 a 100 mL/min, a fim de manter a força de cisalhamento da corrente de alimentação abaixo de 2.000 s-1.
[0058] Na etapa 6, para o processo de bancada, o pellet celular obtido na etapa anterior é levado para lavagens (2 a 4 vezes) e em seguida, para a fase de concentração em centrifugação refrigerada de 4 a 10 °C com tubos contendo membrana específica para reter proteínas de alto peso molecular da matriz extracelular, até obter-se o concentrado de proteínas estruturais final apresentando de 5 a 50 mg/ml.
[0059]Para um processo industrial, podemos executar fases de lavagens e concentração da composição proteica final com o intuito de coletar uma solução rica em fibras de colágeno (97 a 99%) e demais proteínas da MEC em menor quantidade (1 a 3%). A solução proteica após a filtragem é tipicamente lavada em um processo repetitivo. As etapas em geral incluem a colocação da suspensão de proteínas dentro de um tubo de centrífuga, peletizando assim as proteínas para o fundo do tubo com a utilização de uma centrífuga. O tubo é removido da centrífuga, e o sobrenadante é decantado a partir das proteínas peletizadas. Um líquido de lavagem é adicionado ao tubo e o pellet de proteínas é de novo suspenso. Essas etapas são tipicamente repetidas de 2 a 4 vezes em centrifugação refrigerada (4 a 10°C). O resultado final é uma solução rica em proteínas da matriz extracelular de tecidos bioimpressos, principalmente colágenos com alto grau de pureza, características fibrilares e a produção final com alta concentração de proteínas estruturas (5 a 50 mg/ml).
[0060] Segundo uma forma de realização da presente invenção, o produto final compreende colágeno e outras proteínas da matriz como elastina, fibronectina e glicosaminoglicanos.
[0061] Em busca de métodos não enzimáticos com custo-benefício significativo que permitem a obtenção da quantificação de proteínas colagênicas e outras proteínas estruturais da MEC com características fibrilares a presente invenção sobre bioprocesso de produção a partir de bioimpressão de tecidos possui métodos mais simples do que os exigidos por matérias-primas de animais (bovinos, suínos, aves e peixes), que são livres de sujidades, tecidos gordurosos e contaminantes biológicos (vírus, bactérias e fungos) e químicos. Além disso, a presente invenção permite melhorias na qualidade e confiabilidade dos bioprodutos para, assim, satisfazer as diversas necessidades dos consumidores da área médica e farmacêutica, que são os seus usuários, e é, portanto, muito útil.
[0062] A seguir exemplo da invenção que não deve ser empregado para efeitos de restrição do escopo da invenção.
[0063] EXEMPLO
[0064] Foi realizado ensaio sobre a invenção, sobre um método de obtenção de proteínas a partir de tecidos 3D bioimpressos, segundo as 6 etapas do método da presente invenção:
[0065] A etapa 1 consistiu no cultivo celular de células humanas obtidas em bancos de células certificados, cultivadas e expandidas em meio de cultura animal-free apropriado comercial Medium Essential 8 (ThermoFisher) e/ou meio DMEM/F12 acrescido de fatores de crescimento fatores de crescimento sem proteína animal como insulina recombinante (15 a 100 ug/ml), preferencial mente 19,4 ug/ml, Selênio (5 - 15ng/ml), preferencial mente 13 ug/ml, Transferrina (5 a 15 ug/ml), preferencial mente 10,7 ug/ml ,Hidrocortisona (20 - 50 ng/ml), fator de crescimento de fibroblastos (FGF, 5 a 100 ng/ml), preferencial mente lOOng/ml, Fator de Transformação do Crescimento beta (TGF-Í3, 2 a 50 ng/ml), preferencial mente 2 ng/ml, ácido ascórbico (5 a 70 pM/ml), preferencial mente 64 ug/ml albumina humana (0.05 - 0.5%), preferencialmente 0,05% e fator de crescimento epidérmico (EGF, 5 a 20ng/ml), preferencialmente 5 ng/ml.
[0066] As células foram semeadas em garrafas de cultura e mantidos em incubadora umidificada com atmosfera de 5% de CO2 a 37 °C. O meio de cultivo é trocado a cada 48 horas até que as células apresentem 70 - 80% de confluência para cumprir a função do cultivo em monocamada 2D convencional.
[0067] Foi necessária uma quantidade de lxlO5 a 5xl06 células humanas para 1 ml de biotinta.
A etapa 2 consistiu na produção da biotinta (formulação de biomaterial biocompatível, células e moléculas indutoras de diferenciação celular). O biomaterial utilizado no presente bioprocesso inventivo foi a base de Pluronic® F127 em quantidade em massa de 18 a 25%, preferencialmente 25%, e peptídeos 1 a 10% de arginina-glicina-aspartato (RGD), preferencial mente 3%, foram adicionados no hidrogel para promover a adesão e semeadura das células. Além disso, moléculas indutoras da expressão de colágenos (I, II, III e IV) foram adicionadas na formulação da biotinta para a estimulação apropriada das células utilizadas, como: meio de cultura DMEM/F12, interleucina 13 (10 a 40 ng/ml), preferencial mente 40 ng/ml, insulina recombinante (15 a 100 ug/ml), preferencial mente de 15 a 22 ug/ml, fator de crescimento de fibroblastos (5 a 100 ng/ml), preferencial mente de 10 - 30ng/ml, fator de transformação do crescimento beta (TGF-Í3, 2 a 50 ng/ml), preferencialmente 5 ng/ml, albumina humana (0.05 a 0.5%), preferencial mente 0,05%, fator de crescimento epidérmico (EGF, 5 a 20 ng/ml), preferencial mente 5 ng/ml, ácido ascórbico (5 a 70 mg/ml) preferencial mente de 60 a 64 mg/ml.
[0068] A etapa 3 consistiu na bioimpressão do construto 3D com várias camadas (20 a 40 camadas de biotinta em uma concentração celular entre lxlO5 a 5xl06 / ml, preferencial mente de 4xl05 a 5xl06). A biotinta foi processada com 0 auxílio de ferramentas e softwares específicos da biofabricação automatizada (Dernowsek et a!., 2017). A geometria 3D em formato de cilindro foi projetada em software CAD (Rhinoceros) e os parâmetros de fatiamento aplicados foram: diâmetro da agulha de bioimpressão de 0,4 mm, altura da camada de 0,2 mm, retração de 2 mm, preenchi mento/ porosidade de 20 a 60%, preferencial mente de 30%, sem paredes/cascas, velocidade de impressão de 6mm/s.
[0069] Placas convencionais de cultivo celular foram utilizadas para a bioimpressão de um volume de 100 cm3 de tecido 3D em cada placa. Os construtos 3D foram mantidos em um sistema fechado e controlado - incubadoras de CO2 convencionais - em um período de 5 dias de maturação para obter a maturação microfisiológica das células e induzir a superexpressão dos colágenos de interesse em um rendimento que varia de 20 a 40 vezes a expressão fisiológica normal.
[0070] Assim sendo, a produção dos construtos 3D compostos por fibroblastos dérmicos humanos mais os dois indutores relatados na etapa 2 (interleucina 13 e ácido ascórbico), produziu aproximadamente de 0.2 a 2g com uma média celular de 5xl08.
[0071] A etapa 4 consistiu no processo de homogeneização dos construtos 3D em solução tampão neutro fosfato-salino de forma manual com pipetagens para ser preparado em uma fase líquida e, impreterivelmente, em baixa temperatura (4 a 14°C), preferencial mente de 10 a 14°C, para liquefazer a biotinta constituída por Pluronic (processo de fácil desagregação). O tempo médio de homogeneização por pipetagens manuais dos construtos em solução ficou em torno de 10 a 30 minutos.
[0072] Na etapa 5, seguiremos com processos de separação celular, 0 qual utilizamos uma centrifugação simples (1000 - 2000 rpm por 5 minutos, preferencial mente 1800 rpm) a temperatura de 5°C sendo que 0 pellet composto por células retorna para a etapa 2. para reutilização no processo de bioimpressão novamente e foi realizado esse processo de 10 a 20 vezes, preferencial mente 10 vezes, potencializando a estratégia de sustentabilidade biológica.
[0073] O sobrenadante da solução com solução tampão neutro fosfato-salino (de 10 a 100 ml) centrifugada anterior foi então levado para uma ultracentrifugação (10.000 - 20.000 G) por 20 minutos a temperatura de 5°C.
[0074]Para a etapa 5, de forma industrial, pode-se usar 0 sistema de filtração tangencial (FFT), garantindo a flexibilidade do sistema, permitindo a troca de módulo no caso de entupimento. Devido à sua natureza, a utilização da FFT pode ser facilmente escalonada de uma escala piloto para uma escala industrial, respeitando-se as razões de volume de filtrado e área filtrante.
[0075] Na solução homogeneizada com solução tampão neutro fosfato-salino é então filtrada usando cassetes ou membranas de filtros com porosidade numa faixa de (0,5pm a lOpm) para reter células, resíduos celulares e biomoléculas maiores, respectivamente. Os filtros/ membra nas são lavados de três a cinco vezes o volume de PBS estéril (pH 7,4) e as soluções proteicas são então levadas para a centrifugação. As células retidas nos filtros retornam para a etapa 2, para reutilização no processo de bioimpressão e é realizado esse processo de 10 a 20 vezes, potencializando a estratégia de sustentabilidade biológica. A taxa de fluxo de entrada é na faixa de 50 a 100 mL/min, a fim de manter a força de cisalhamento da corrente de alimentação abaixo de 2.000 s-1.
[0076] Na etapa 6, fase de bancada, executou-se processos de lavagens e concentração da composição proteica final com proteínas de alto peso molecular (pesos moleculares acima de 30KDa, preferencialmente entre 30 KDa e 100 KDa) com o intuito de coletar uma solução rica em fibras de colágeno (90 a 95%) e demais proteínas da MEC em menor quantidade (1 a 10%). A solução proteica após a centrifugação foi tipicamente lavada em um processo repetitivo utilizando tubos específicos concentradores om filtros de 30 e 100K Pierce™ Protein Concentrator PES, 30K e 1OOK MWCO). O tubo foi removido da centrífuga, e o filtrado contendo proteínas menores que 30KDa foi descartado. Um líquido de lavagem foi adicionado ao tubo para lavavens da solução retida no compartimento de soluções concentradas. Essas etapas foram tipicamente repetidas de 2 a 4 vezes em centrifugação refrigerada (5°C). O resultado final em 10 ml de solução estéril da etapa 6 foi uma solução rica em proteínas de alto peso molecular da matriz extracelular de tecidos bioimpressos, principal mente colágenos com alto grau de pureza, características fibrilares e a produção final com alta concentração de proteínas estruturas (5 a 150 mg/ml).
[0077]Para um processo industrial, podemos executar fases de lavagens e concentração da composição proteica final com o intuito de coletar uma solução rica em fibras de colágeno (97 a 99%) e demais proteínas da MEC em menor quantidade (1 a 3%). A solução proteica após a filtragem é tipicamente lavada em um processo repetitivo. As etapas em geral incluem a colocação da suspensão de proteínas dentro de um tubo de centrífuga, peletizando assim as proteínas para o fundo do tubo com a utilização de uma centrífuga. O tubo é removido da centrífuga, e o sobrenadante é decantado a partir das proteínas peletizadas. Um líquido de lavagem é adicionado ao tubo e o pellet de proteínas é de novo suspenso. Essas etapas são tipicamente repetidas de 2 a 4 vezes em centrifugação refrigerada (4 a 10°C). O resultado final é uma solução rica em proteínas da matriz extracelular de tecidos bioimpressos, principalmente colágenos com alto grau de pureza, características fibrilares e a produção final com alta concentração de proteínas estruturas (5 a 150 mg/ml).

Claims

25 Reivindicações
1. Método para a produção de uma composição de proteínas de matriz extracelular caracterizado por compreender as etapas:
Etapa 1 : cultivo celular 2D de células, humanas ou animais, em meio de cultura que compreende ambiente umidificado a 37QC contendo 5% de CO2 e 95% de ar atmosférico;
Etapa 2: formulação da biotinta compreendendo 18 a 25 % em massa de copolímero em bloco de óxido de etileno (EO) e óxido de propileno (PO) ; 1 a 10% de peptídeos; além de moléculas indutoras de expressão de colágenos (I , I I , I I I e IV) ;
Etapa 3: bioimpressão do tecido ou construto 3D construído com várias camadas, em formato cilíndrico e porosidade de 20 a 60% ;
Etapa 4: homogeneização dos tecidos ou construtos 3D em solução tampão neutro fosfato-salino por 10 a 30 minutos, a temperatura entre 4 e 14 QC;
Etapa 5, etapa de separação celular:
(a) em escala laboratorial, através de centrifugação (1000 - 1500 rpm) a temperatura de 2 a 10QC por 2 a 10 min, sendo que o pellet composto por células retorna para a etapa 2 e o sobrenadante contendo proteínas é levado para uma ultracentrifugação (10.000 - 25.000 G) por 15 a 35 minutos; ou
(b) em escala industrial, a etapa 5 envolve um processo de separação celular através de filtração sendo que os filtrados contendo células são lavados 2 a 5 vezes retornando para a etapa 2; e as soluções proteicas são levadas para centrifugação tangencial, sendo este processo repetido de 2 a 20 vezes, mantendo a força de cisalhamento da corrente de alimentação abaixo de 2.000 s-1 ;
Etapa 6, etapa de lavagem e concentração:
(a) em escala laboratorial, o pellet obtido na etapa anterior é levado para lavagens (2 a 4 vezes) e concentração em centrifugação refrigerada de 4 a 10 -C com tubos contendo membrana específica para reter proteínas de alto peso molecular da matriz extracelular, até obter-se o concentrado de proteínas estruturais final apresentando de 5 a 150 mg/ml; ou
(b) em escala industrial, a etapa 6 envolve uma solução proteica obtida na etapa anterior sofrendo lavagens para sua concentração, repetidas de 2 a 4 vezes em centrifugação refrigerada de 4 a 10 Q C, até obter-se o concentrado de proteínas estruturais final apresentando 5 a 150 mg/ml.
2. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por as células da etapa 1 serem escolhidas de várias fontes compreendendo: pele, cartilagem, osso, medula óssea, gordura entre outros.
3. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por as proteínas de matriz extracelular compreenderem colágeno, elastina, fibronectina e glicosaminoglicanos, entre outras.
4. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 3, caracterizado por ser colágeno 1 fibrilar.
5. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por se empregar na etapa 1 fibroblastos, condroblastos, osteoblastos, mioblastos, cardiomiócitos, células tronco adultas e pluripotentes induzidas.
6. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicações 1 ou 5, caracterizado por quando se utiliza condroblastos obtêm-se solução proteica de alta pureza de colágeno tipo 2, glicosaminoglicanas e condroitina.
7. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por empregar-se na etapa 1 meio de cultura que pode ser Meio essencial 8, DMEM, RPMI ou MEM, podendo fazer uso de biorreatores de crescimento celular.
8. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 7, caracterizado por o meio de cultura ser acrescido de Hepes (25mM), L-Glutamina (7,5 mM), Piruvato (0,5 mM), fatores de crescimento sem proteína animal como insulina recombinante humana (15 a 100 ug/ml), Selênio (5 a 15 ng/ml), Transferrina (5 a 15 ug/ml), Hidrocortisona (20 a 50 ng/ml), fator de crescimento de fibroblastos (FGF, 5 a 100 ng/ml), Fator de Transformação do Crescimento beta (TGF- B, 2 a 50 ng/ml), ácido ascórbico (5 a 70 pM/ml), albumina humana (0.05 a 0.5%), interleucina 13 (10 a 40 ng/ml) e fator de crescimento epidérmico (EGF, 5 a 20ng/ml).
9. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por empregar na etapa 2 arginina- glicina-aspartato (RGD) e fibronectina (0,05 a 5 pg/ml).
10. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 9, caracterizado por peptídeos de adesão celular em massa de 1 a 10% como por exemplo de arginina-glicina-aspartato (RGD) e fibronectina (0.05 a 5 ug/ml) poderem ser adicionados no hidrogel.
1 1 . Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por as moléculas indutoras da expressão de colágenos (I , I I , I I I e IV) serem interleucina 13 (10 a 40 ng/ml), insulina (15 a 100 ug/ml), fator de crescimento de fibroblastos (5 a 100 ng/ml) e ácido ascórbico (5 a 70 pg/ml).
12. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por os construtos 3D da etapa 3 serem formados com 20 a 40 camadas de biotinta em uma concentração celular entre 1 x106 a 5x106 / ml.
13. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por a temperatura na etapa 4 variar entre 10 e 14 °C.
14. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por se empregar na etapa 5, fases de centrifugação e ultracentrifugação.
15. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicações 1 ou 12, caracterizado por se empregar concentradores de proteína numa faixa de (30KDa e 10OKDa).
16. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por se empregar na etapa 5, processo industrial, dispositivos de filtragem de fluxo tangencial (FFT). 28
17. Método para a produção de uma composição de proteínas de matriz extracelular, segundo reivindicação 1 , caracterizado por obter-se ao final colágeno e outras proteínas da matriz como elastina, fibronectina e glicosaminoglicanos.
18. Produto obtido pelo método de acordo com qualquer das reivindicações precedentes, caracterizado por compreender uma composição de proteínas de matriz extracelular obtida como produto final do método.
PCT/BR2021/050429 2020-10-06 2021-10-04 Método para a produção de uma composição de proteínas de matriz extracelular e produto obtido por tal método WO2022073090A1 (pt)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BR102020020534A BR102020020534A2 (pt) 2020-10-06 2020-10-06 Método para a produção de uma composição de proteínas de matriz extracelular
BRBR1020200205340 2020-10-06
BRBR1020210195380 2021-09-29
BR102021019538-0A BR102021019538A2 (pt) 2021-09-29 2021-09-29 Método para a produção de uma composição de proteínas de matriz extracelular e produto obtido por tal método

Publications (1)

Publication Number Publication Date
WO2022073090A1 true WO2022073090A1 (pt) 2022-04-14

Family

ID=81127062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050429 WO2022073090A1 (pt) 2020-10-06 2021-10-04 Método para a produção de uma composição de proteínas de matriz extracelular e produto obtido por tal método

Country Status (1)

Country Link
WO (1) WO2022073090A1 (pt)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US38742A (en) 1863-06-02 Lamp-burner
US20120190078A1 (en) 2009-09-28 2012-07-26 Paul Gatenholm Three-dimensional bioprinting of biosynthetic cellulose (bc) implants and scaffolds for tissue engineering
CN103272288A (zh) 2013-06-24 2013-09-04 谢杨 基于生物打印技术的细胞-生物支架复合物的制备方法及其应用
US20150247118A1 (en) * 2012-09-14 2015-09-03 Osaka University Method for producing 3d cell culture
CN105132502A (zh) 2015-09-08 2015-12-09 四川大学 一种从鸡软骨中提取纯净ⅱ型胶原的方法
KR101697324B1 (ko) 2014-02-28 2017-01-19 전남대학교산학협력단 생체적합성 콜라겐 및 이의 제조방법
BR112017010619A2 (pt) 2014-11-21 2018-02-14 Sewoncellontech Co., Ltd. método para produzir colágeno de alta concentração para utilização como material médico
KR20180049745A (ko) 2016-11-03 2018-05-11 포항공과대학교 산학협력단 등장액 조성물의 새로운 용도
US10035980B2 (en) * 2013-01-14 2018-07-31 Florida State University Research Foundation, Inc. Extracellular matrix derived from stem cells and methods for production
CN108452378A (zh) 2018-02-08 2018-08-28 中山大学附属第医院 一种3d生物打印成型方法
EP3427949A1 (en) 2017-07-12 2019-01-16 Albert-Ludwigs-Universität Freiburg Mechanically tunable bioinks for bioprinting
BR112018071794A2 (pt) 2016-05-18 2019-02-19 Gelita Ag processo para produção de um material de colágeno na forma de partículas e material de colágeno produzido
WO2019122351A1 (en) 2017-12-22 2019-06-27 Cellink Ab Tissue-specific human bioinks for the physiological 3d-bioprinting of human tissues for in vitro culture and transplantation
US20190201586A1 (en) 2016-06-24 2019-07-04 Washington State University Three-Dimensional Tissue Matrix Scaffold System
CN110772669A (zh) 2019-11-04 2020-02-11 中南大学湘雅三医院 一种用于3d打印人工皮肤的生物墨水
CN110790950A (zh) 2019-10-21 2020-02-14 南京理工大学 光交联重组胶原蛋白水凝胶、制备方法及其在3d生物打印中的应用
WO2020081982A1 (en) 2018-10-18 2020-04-23 Regents Of The University Of Minnesota Bioink for 3d deposition

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US38742A (en) 1863-06-02 Lamp-burner
US20120190078A1 (en) 2009-09-28 2012-07-26 Paul Gatenholm Three-dimensional bioprinting of biosynthetic cellulose (bc) implants and scaffolds for tissue engineering
US20150247118A1 (en) * 2012-09-14 2015-09-03 Osaka University Method for producing 3d cell culture
US10035980B2 (en) * 2013-01-14 2018-07-31 Florida State University Research Foundation, Inc. Extracellular matrix derived from stem cells and methods for production
CN103272288A (zh) 2013-06-24 2013-09-04 谢杨 基于生物打印技术的细胞-生物支架复合物的制备方法及其应用
KR101697324B1 (ko) 2014-02-28 2017-01-19 전남대학교산학협력단 생체적합성 콜라겐 및 이의 제조방법
BR112017010619A2 (pt) 2014-11-21 2018-02-14 Sewoncellontech Co., Ltd. método para produzir colágeno de alta concentração para utilização como material médico
CN105132502A (zh) 2015-09-08 2015-12-09 四川大学 一种从鸡软骨中提取纯净ⅱ型胶原的方法
BR112018071794A2 (pt) 2016-05-18 2019-02-19 Gelita Ag processo para produção de um material de colágeno na forma de partículas e material de colágeno produzido
US20190201586A1 (en) 2016-06-24 2019-07-04 Washington State University Three-Dimensional Tissue Matrix Scaffold System
KR20180049745A (ko) 2016-11-03 2018-05-11 포항공과대학교 산학협력단 등장액 조성물의 새로운 용도
EP3427949A1 (en) 2017-07-12 2019-01-16 Albert-Ludwigs-Universität Freiburg Mechanically tunable bioinks for bioprinting
WO2019122351A1 (en) 2017-12-22 2019-06-27 Cellink Ab Tissue-specific human bioinks for the physiological 3d-bioprinting of human tissues for in vitro culture and transplantation
CN108452378A (zh) 2018-02-08 2018-08-28 中山大学附属第医院 一种3d生物打印成型方法
WO2020081982A1 (en) 2018-10-18 2020-04-23 Regents Of The University Of Minnesota Bioink for 3d deposition
CN110790950A (zh) 2019-10-21 2020-02-14 南京理工大学 光交联重组胶原蛋白水凝胶、制备方法及其在3d生物打印中的应用
CN110772669A (zh) 2019-11-04 2020-02-11 中南大学湘雅三医院 一种用于3d打印人工皮肤的生物墨水

Similar Documents

Publication Publication Date Title
CN102908207B (zh) 生物打印技术制备的组织工程神经移植物及其制备方法
CN110790950A (zh) 光交联重组胶原蛋白水凝胶、制备方法及其在3d生物打印中的应用
CN111097068B (zh) 一种仿生的羟基磷灰石粉体/明胶/海藻酸钠复合3d打印支架及其制备方法
Bakhshandeh et al. A review on advances in the applications of spider silk in biomedical issues
US20160206780A1 (en) Matrix Scaffold for Three-Dimensional Cell Cultivation, Methods of Construction Thereof and Uses Thereof
WO2017214592A1 (en) Preparation of modified cellulose nanofibrils with extracellular matrix components as 3d bioprinting bioinks
CN101664346A (zh) 静电纺丝制备的人工神经移植物及其制备方法和专用装置
JP2007325543A (ja) 細胞足場材料およびその製造方法
US20110281351A1 (en) Process for producing laminated high-density cultured artificial tissue, and laminated high-density cultured artificial tissue
CN103328625A (zh) 生物反应器
JP2010538681A (ja) 人または動物胚から間葉系幹細胞を抽出及びその分泌物を抽出する方法
CN105079783B (zh) 药物组合物及其制备方法和用途
CN112972760B (zh) 一种负载内皮细胞外基质的3d打印骨缺损修复支架及其制备方法
CN114854677B (zh) 一种用于细胞培养肉生产的微流控仿生纤维及其制备方法和应用
US11299630B2 (en) Templated assembly of collagen fibers and uses thereof
CN107537063B (zh) 一种含碳纳米管的复合多孔支架及其制备方法
RU2483756C1 (ru) СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМОГО КОМПОЗИТНОГО МАТРИКСА НА ОСНОВЕ РЕГЕНЕРИРОВАННОГО ФИБРОИНА ШЕЛКА Bombyx mori И ЕГО ПРИМЕНЕНИЕ
CN111330082B (zh) 构建含皮肤附属器的生物3d打印皮肤微单元模型的制备方法
CN108310463B (zh) 一种3d打印生物墨水及其制备方法
WO2005014774A1 (ja) 動物細胞の培養担体と、該培養担体を用いた動物細胞の培養方法および移植方法
CN102133432B (zh) 一种丝素蛋白微孔支架的制备方法
CN108452378B (zh) 一种3d生物打印成型方法
CN112342190A (zh) 一种提高间充质干细胞外泌体产量的方法及其应用
CA3206134A1 (en) A bioreactor and a method for extracting cell-derived products from cultured cells and a nanostructured cellulose product
WO2022073090A1 (pt) Método para a produção de uma composição de proteínas de matriz extracelular e produto obtido por tal método

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876780

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021876780

Country of ref document: EP

Effective date: 20230508

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21876780

Country of ref document: EP

Kind code of ref document: A1