WO2022071369A1 - 焼結鉱の製造方法および焼結鉱 - Google Patents
焼結鉱の製造方法および焼結鉱 Download PDFInfo
- Publication number
- WO2022071369A1 WO2022071369A1 PCT/JP2021/035789 JP2021035789W WO2022071369A1 WO 2022071369 A1 WO2022071369 A1 WO 2022071369A1 JP 2021035789 W JP2021035789 W JP 2021035789W WO 2022071369 A1 WO2022071369 A1 WO 2022071369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sinter
- raw material
- granulation
- ore
- sintering
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 71
- 238000005469 granulation Methods 0.000 claims abstract description 44
- 230000003179 granulation Effects 0.000 claims abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000005245 sintering Methods 0.000 claims abstract description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims description 24
- 238000013329 compounding Methods 0.000 claims description 14
- 230000035699 permeability Effects 0.000 claims description 14
- 238000010304 firing Methods 0.000 claims 1
- 230000006911 nucleation Effects 0.000 abstract description 4
- 238000010899 nucleation Methods 0.000 abstract description 4
- 230000004931 aggregating effect Effects 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 238000012545 processing Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 229940126062 Compound A Drugs 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000014483 powder concentrate Nutrition 0.000 description 2
- 239000012256 powdered iron Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/18—Sintering; Agglomerating in sinter pots
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/216—Sintering; Agglomerating in rotary furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/243—Binding; Briquetting ; Granulating with binders inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for producing a sinter which is a raw material for a blast furnace, particularly a method characterized by focusing on a granulation method for a sinter compounding raw material and a sinter.
- Sintered ore is usually produced by the following process. First, powdered iron ore consisting of multiple brands (generally called a -10 mm sinter feed), auxiliary raw material powder such as limestone, silica stone, and serpentine, and dust, scale, and return ore, etc.
- a sintered compounded raw material is obtained by blending miscellaneous raw material powder and solid fuel such as powdered coke in appropriate amounts.
- water is added to the obtained sintered compound raw material.
- the sintering compounded raw material to which water is added is mixed and granulated to obtain a granulating raw material for sintering.
- the obtained granulation raw material for sinter is charged into a sinter and fired to obtain a sinter.
- the sintered compound raw material contains water and aggregates with each other at the time of granulation to form pseudo-particles.
- the pseudo-granulated raw material for sintering is loaded onto the pallet of the sintering machine, it helps to ensure good ventilation of the layer for charging the sintering raw material and facilitates the sintering reaction. Proceed to.
- Patent Document 1 the sprinkling flow rate, the spray angle, the sprinkling distance, etc. according to the renewal of the sintered compound raw material surface in the granulator are specified, and the upper limit of the added water droplet diameter is specified. In addition to suppressing the formation of particles, the formation of aggregated particles and the like granulated only with fine powder is suppressed.
- Patent Document 1 aims to use a large amount of fine powder ore that easily aggregates, and is not suitable for processing raw materials that tend to have insufficient fine granulation due to the small amount of fine powder ore.
- An object of the present invention is to provide a method for producing sinter and a method for producing sinter, which can effectively obtain granulation raw materials for sinter by promoting nucleation in a sinter compounded raw material containing a small amount of fine powder ore that easily aggregates. To do.
- the inventors conducted a diligent study focusing on the flow rate of the added water in the granulation process of the sinter compounding raw material in the method for producing the sinter, and found that the flow rate was contrary to the conventional wisdom. It was found that a granulation raw material for sintering with improved granulation property can be obtained by extremely increasing the amount of granulation.
- a sintering compounded raw material containing iron ore consisting of a plurality of brands is granulated by a granulator, and the obtained granulated raw material for sintering is calcined by the sintering machine.
- the sinter is characterized in that the flow rate per unit area when adding water added during granulation to the sinter compounding raw material is 120 L / min / m 2 or more. It is a manufacturing method of.
- a sinter compounding raw material containing 90% or more of particles having a particle size of 1 mm or less in an amount of 10% by mass or less in the total iron ore is used.
- the space factor should be 10 to 15%.
- the added water contains fine iron ore. Is considered to be a more preferable solution.
- the present invention is a sinter produced according to the above-mentioned method for producing a sinter, which is characterized by excellent air permeability in a blast furnace.
- the flow rate per sprinkling area when the added water at the time of granulation is added to the sinter compounding raw material is extremely increased to 120 L / min / m 2 or more. Granulation of sintered compound raw materials can be significantly improved.
- FIG. 1 is a flowchart for explaining an example of each step in the method for producing a sinter of the present invention.
- step S1 powdered iron ore composed of a plurality of brands is prepared.
- step S2 powdered iron ore composed of a plurality of brands is prepared.
- step S3 the fine iron ore prepared in step S1 is mixed with the auxiliary raw material powder prepared in step S2, the miscellaneous raw material powder, and the solid fuel in appropriate amounts to obtain a sintered compounded raw material.
- step S4 added water is added to the obtained sintered compounded raw material, the sintered compounded raw material is mixed, and granulated (step S4) to obtain a granulated raw material for sintering (step S5).
- step S6 the obtained granulation raw material for sinter is charged into a sinter and fired (step S6) to obtain a sinter (step S7).
- a sintering compounded raw material containing iron ore consisting of a plurality of brands is granulated by a granulator, and the obtained granulated raw material for sintering is calcined by a granulator.
- step S4 in the method for producing sinter for obtaining sinter, in the granulation process (step S4), as shown in FIG. 2, (1) formation of nuclei and (2) granulation / decay of pseudo-particles based on the nuclei. Granulation is produced through the steps of repeating.
- the greatest feature of the present invention is that the flow rate per sprinkling area when the added water at the time of granulation is added to the sintered compounding raw material is extremely increased to 120 L / min / m 2 or more.
- the sinter compounding raw material it is preferable to use a sinter compounding raw material containing 90% or more of particles having a particle size of 1 mm or less in 10% by mass or less of the total iron ore.
- the drum mixer at the time of granulation it is preferable to set the space factor to 10 to 15%.
- the average droplet diameter of the added water is 1.1 mm or less. Further, it is preferable that the added water contains fine iron ore.
- ⁇ particle size>, ⁇ space factor>, and ⁇ droplet diameter of added water> refer to the following.
- the particle size is sieved using a sieve with a nominal opening compliant with JIS (Japanese Industrial Standards) Z 8801-1.
- a particle size of 1 mm or less means a nominal opening compliant with JIS Z 8801-1.
- the droplet diameter of the added water generally has the droplet diameter of the water spray nozzle (the droplet diameter according to the manufacturer's indication at a predetermined pressure), but it can also be actually sprayed and measured.
- a method of performing image analysis of a considerable number (for example, 100 or more) droplets using a high-speed camera and calculating the arithmetic mean diameter thereof can be adopted.
- the Sauter mean diameter may be used, which gives the diameter of one droplet having the total volume and the total surface area of the droplet group as the volume and the surface area, respectively.
- the measurement of the droplet diameter may be calculated automatically by, for example, the method described in Patent Document 1 or a commercially available laser Doppler measuring instrument, or calculated from the liquid and spray conditions used. May be good.
- ⁇ Test 1> (About the flow rate per sprinkling area when adding water added during granulation to the sintered compound raw material) The effect of the flow rate per unit area in the drum mixer was examined.
- raw materials 49 mass% of South American ore, 49 mass% of Australian ore, and 2 mass% of quicklime were used.
- a movable nozzle was inserted into the drum mixer, and the test was conducted while changing the sprinkling area.
- a drum mixer having a diameter of 1 m and a depth of 0.3 m was used, and granulation was performed for 5 minutes.
- watering this time only a slurry in which water and fine ore were mixed in a weight ratio of 4: 1 to 2: 3 or water was used.
- the raw material was put into a cylinder having a diameter of 100 mm and a height of 300 mm, and the cold air volume when ventilated under the condition that the pressure was constant was defined as the air permeability, and the improvement rate was evaluated. This time, as a reference, the result when the normal watering area is 0.015 m 2 was used. The results are shown in Table 1 below.
- ⁇ Test 2> (Preferable range of space factor when using a drum mixer during granulation) Under the condition that the flow rate per unit area of the added water in Test 1 was satisfied, the optimum space factor in the drum mixer was examined.
- the appropriate space factor when containing 10% of fine powder concentrate was examined. Both the Australian ore and the South American ore have a mode diameter of 1 mm or more, whereas the fine powder concentrate has a particle size of 1 mm or less and a ratio of 94 mass%.
- Table 2 below shows the blending ratios of Formulation A and Formulation B used.
- the drum mixer used had a diameter of 1 m and a depth of 0.3 m. After that, the raw material was put into a cylinder having a diameter of 100 mm and a height of 300 mm, and the cold air volume when ventilated under the condition that the pressure was constant was defined as the air permeability, and the improvement rate was evaluated.
- FIG. 3 is a diagram showing the relationship between the space factor and the air permeability when the raw material processing amounts of the compound A are 1600 t / h and 1000 t / h. From the results of FIG. 3, it can be seen that in the case of Formulation A, the space factor is appropriately 5 to 15%, and particularly preferably 10 to 15%.
- FIG. 4 is a diagram showing the relationship between the space factor and the air permeability when the raw material processing amounts of the compound B are 1600 t / h and 1000 t / h. From the results of FIG. 4, it can be seen that in the case of Formulation B, the space factor is appropriately 10 to 20%, and particularly preferably 10 to 15%.
- the space factor is preferably 10 to 15%.
- the space factor is 10 to 15%, the time for the powder to come into contact with the surface of the nucleus, which has become excessive in water due to contact with watering, is secured, so that the powder adheres to the surface of the nucleus. It is thought that this is because the adhesion of the powder becomes more appropriate.
- ⁇ Test 3> (Preferable range of average droplet diameter of added water during granulation)
- Example 1-3 and new Examples 5 and 6 of Test 1 the preferable range of the average droplet diameter of the added water at the time of granulation was examined.
- raw materials 49% South American ore, 49% Australian ore, and 2% quicklime were used.
- a movable nozzle was inserted into the drum mixer, and the test was conducted while changing the sprinkling area.
- a drum mixer having a diameter of 1 m and a depth of 0.3 m was used, and granulation was performed for 5 minutes.
- the nozzle a fan-shaped nozzle and a two-fluid nozzle were used for evaluation.
- the added area when the nozzle was used the area to be sprinkled by spraying on the raw material laid on the vat in advance was measured.
- the flow rate per sprinkling area when the added water at the time of granulation is added to the sinter compounding raw material is extremely increased to 120 L / min / m 2 or more.
- the granulation of the sintered compounded raw material can be remarkably improved, and this production method can be applied not only to the examples but also to various sintered compounded raw materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
(1)前記焼結配合原料として、粒径1mm以下の粒子を90%以上含む鉱石を全鉄鉱石中の10質量%以下含む焼結配合原料を用いること、
(2)前記造粒時にドラムミキサーを使用する際、占積率を10~15%にすること、
(3)前記添加水の平均液滴径を1.1mm以下にすること、
(4)前記添加水は微粉鉄鉱石を含むこと、
がより好ましい解決手段となるものと考えられる。
JIS(日本工業規格) Z 8801-1に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径1mm以下とは、JIS Z 8801-1に準拠した公称目開き1mmの篩を全量が通過する粒径をいい、-1mmとも記す。
占積率φは、円筒状横型容器の体積V(m3)、原料のかさ密度ρ(kg/m3)、円筒状横型容器内に滞留する原料の質量M(kg)を用いて、式(1)のように書ける。
φ=M/(V×ρ) (1)
Fr={L×(N/60)2}/g (2)
ここで、Fr:フルード数(-)
L:ドラム長さ(m)
g:重力加速度(m/s2)
N:ドラム回転数(rpm)、である。
φ=(Q×K)/Fr1/2 (3)
ここで、φ:占積率(-)
Q:原料処理量
Fr:フルード数(-)
Fr1/2:回転数、である。
添加水の液滴径は、一般的にその水噴霧ノズルがもつ液滴径(所定圧力でのメーカー表示に係る液滴径)があるが、実際に散布して測定することもできる。液滴径の測定に当っては、高速度カメラを用い、相当数(たとえば100個以上)の液滴の画像解析を行い、その算術平均径を算出する方法をとることができる。また、液滴径のばらつきが大きい場合には、液滴群の体積総和と表面積総和をそれぞれ体積と表面積として備える1個の液滴の径を与えるザウター平均粒径を用いてもよい。なお、この液滴径の測定については、たとえば特許文献1に記載の方法や市販のレーザードップラー測定器で自動的に集計算出してもよく、また使用する液および噴霧条件から計算して求めてもよい。
(造粒時の添加水を焼結配合原料に加える際の散水面積あたりの流量について)
ドラムミキサーでの単位面積当たりの流量の影響を検討した。原料としては南米鉱49mass%、豪州鉱49mass%、生石灰2mass%を使用した。試験では、ドラムミキサーに移動可能なノズルを差し込み、散水面積を変えながら試験を行った。ドラムミキサーとしては、直径1m、 奥行き0.3mのものを使用し、5分間の造粒を行った。また、今回散水としては、水と微粉鉱石を4対1から2対3の重量割合で混合したスラリー、または水のみを使用した。その後、直径100mm、高さ300mmの円筒に原料を入れ、圧力が一定である条件で通風した際の冷間風量を通気性とし、その向上率を評価した。今回は基準として、通常の散水面積が0.015m2の場合の結果を用いた。結果を以下の表1に示す。
(造粒時にドラムミキサーを使用する際の占積率の好適範囲について)
試験1での添加水の単位面積当たりの流量を満たす条件のもとで、ドラムミキサーにおける最適な占積率について検討した。通常使用している豪州鉱と南米鉱を用いた際、微粉精鉱を10%含んだ際の適正な占積率を検討した。豪州鉱と南米鉱はいずれもモード径が1mm以上のものであるのに対して、微粉精鉱は粒径1mm以下の割合が94mass%のものを用いた。以下の表2に、使用した配合Aおよび配合Bの配合割合を示す。ドラムミキサーは、直径1m、奥行き0.3mのものを使用した。その後、直径100mm、高さ300mmの円筒に原料を入れ、圧力が一定である条件で通風した際の冷間風量を通気性とし、その向上率を評価した。
(造粒時における添加水の平均液滴径の好適範囲について)
試験1の比較例1、実施例1-3および新たな実施例5、6について、造粒時における添加水の平均液滴径の好適範囲を検討した。原料としては、南米鉱49%、豪州鉱49%、生石灰2%を使用した。試験では、ドラムミキサーに移動可能なノズルを差し込み、散水面積を変えながら試験を行った。ドラムミキサーは直径1m、 奥行き0.3mのものを使用し、5分間の造粒を行った。また、ノズルとしては扇形ノズルおよび2流体ノズルを用いて評価した。ノズルを使用した際の添加面積については、事前にバットに敷いた原料に散布することで散水される領域を測定した。
Claims (6)
- 複数種類の銘柄からなる鉄鉱石を含む焼結配合原料を造粒機にて造粒し、得られた焼結用造粒原料を焼結機にて焼成することにより焼結鉱を得る焼結鉱の製造方法において、
造粒時の添加水を焼結配合原料に加える際の単位面積あたりの流量を120L/min/m2以上にすることを特徴とする焼結鉱の製造方法。 - 前記焼結配合原料として、粒径1mm以下の粒子を90%以上含む鉱石を全鉄鉱石中の10質量%以下含む焼結配合原料を用いることを特徴とする請求項1に記載の焼結鉱の製造方法。
- 前記造粒時にドラムミキサーを使用する際、占積率を10~15%にすることを特徴とする請求項1または2に記載の焼結鉱の製造方法。
- 前記添加水の平均液滴径を1.1mm以下にすることを特徴とする請求項1~3のいずれか1項に記載の焼結鉱の製造方法。
- 前記添加水は微粉鉄鉱石を含むことを特徴とする請求項1~4のいずれか1項に記載の焼結鉱の製造方法。
- 請求項1~5のいずれか1項に記載の方法で製造された、高炉内での通気性に優れることを特徴とする焼結鉱。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112023005590A BR112023005590A2 (pt) | 2020-09-30 | 2021-09-29 | Método para fabricar minério sinterizado e minério sinterizado |
JP2022544085A JP7148030B2 (ja) | 2020-09-30 | 2021-09-29 | 焼結鉱の製造方法および焼結鉱 |
EP21875669.0A EP4223895A4 (en) | 2020-09-30 | 2021-09-29 | PROCESS FOR PRODUCING SINTERED ORE AND SINTERED ORE |
KR1020237008526A KR20230049718A (ko) | 2020-09-30 | 2021-09-29 | 소결광의 제조 방법 및 소결광 |
CN202180065477.6A CN116323996A (zh) | 2020-09-30 | 2021-09-29 | 烧结矿的制造方法和烧结矿 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-164574 | 2020-09-30 | ||
JP2020164574 | 2020-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022071369A1 true WO2022071369A1 (ja) | 2022-04-07 |
Family
ID=80950600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035789 WO2022071369A1 (ja) | 2020-09-30 | 2021-09-29 | 焼結鉱の製造方法および焼結鉱 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4223895A4 (ja) |
JP (1) | JP7148030B2 (ja) |
KR (1) | KR20230049718A (ja) |
CN (1) | CN116323996A (ja) |
BR (1) | BR112023005590A2 (ja) |
WO (1) | WO2022071369A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013204058A (ja) * | 2012-03-27 | 2013-10-07 | Jfe Steel Corp | 焼結鉱製造用擬似粒子の製造方法および焼結鉱の製造方法 |
JP2016172903A (ja) | 2015-03-17 | 2016-09-29 | 株式会社神戸製鋼所 | 焼結鉱製造用原料の製造方法 |
JP2020033595A (ja) * | 2018-08-29 | 2020-03-05 | 日本製鉄株式会社 | 配合原料の造粒方法 |
JP2020152964A (ja) * | 2019-03-20 | 2020-09-24 | 株式会社神戸製鋼所 | 希薄均一散水による造粒方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6988712B2 (ja) * | 2018-06-21 | 2022-01-05 | Jfeスチール株式会社 | 焼結鉱の製造方法 |
-
2021
- 2021-09-29 BR BR112023005590A patent/BR112023005590A2/pt unknown
- 2021-09-29 JP JP2022544085A patent/JP7148030B2/ja active Active
- 2021-09-29 CN CN202180065477.6A patent/CN116323996A/zh active Pending
- 2021-09-29 KR KR1020237008526A patent/KR20230049718A/ko unknown
- 2021-09-29 EP EP21875669.0A patent/EP4223895A4/en active Pending
- 2021-09-29 WO PCT/JP2021/035789 patent/WO2022071369A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013204058A (ja) * | 2012-03-27 | 2013-10-07 | Jfe Steel Corp | 焼結鉱製造用擬似粒子の製造方法および焼結鉱の製造方法 |
JP2016172903A (ja) | 2015-03-17 | 2016-09-29 | 株式会社神戸製鋼所 | 焼結鉱製造用原料の製造方法 |
JP2020033595A (ja) * | 2018-08-29 | 2020-03-05 | 日本製鉄株式会社 | 配合原料の造粒方法 |
JP2020152964A (ja) * | 2019-03-20 | 2020-09-24 | 株式会社神戸製鋼所 | 希薄均一散水による造粒方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4223895A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4223895A4 (en) | 2024-05-01 |
EP4223895A1 (en) | 2023-08-09 |
BR112023005590A2 (pt) | 2023-05-09 |
JP7148030B2 (ja) | 2022-10-05 |
CN116323996A (zh) | 2023-06-23 |
KR20230049718A (ko) | 2023-04-13 |
JPWO2022071369A1 (ja) | 2022-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016132408A1 (en) | Artificial sand and binder-containing foundry sand | |
CN101381809A (zh) | 钒钛磁铁矿烧结矿的制备方法 | |
JPWO2017150428A1 (ja) | 焼結鉱の製造方法 | |
CA2308837C (en) | Process for producing sintered ore and the sintered ore | |
JP7130904B2 (ja) | 希薄均一散水による造粒方法 | |
WO2022071369A1 (ja) | 焼結鉱の製造方法および焼結鉱 | |
JP3820132B2 (ja) | 焼結原料の事前処理方法 | |
CN107849633B (zh) | 烧结矿的制造方法 | |
WO2021210533A1 (ja) | 焼結鉱の製造方法 | |
CN110546284B (zh) | 烧结矿的制造方法 | |
CN110462070B (zh) | 造粒烧结原料的制造方法及烧结矿的制造方法 | |
JP2020105625A (ja) | 焼結鉱の製造方法 | |
JP3944340B2 (ja) | 焼結鉱の製造方法およびその焼結鉱 | |
JP6978734B2 (ja) | 造粒焼結原料の製造方法および焼結鉱の製造方法 | |
JP3322148B2 (ja) | 焼結鉱の製造方法 | |
WO2020137484A1 (ja) | 焼結鉱の製造方法 | |
JP4356929B2 (ja) | 焼結鉱の製造方法 | |
JPS6148536A (ja) | 焼結鉱の製造法 | |
JP2004183031A (ja) | 焼結鉱の製造方法 | |
KR100587709B1 (ko) | 소결광의 제조방법 | |
JP2021038437A (ja) | 焼結原料の配合方法及び焼結鉱の製造方法 | |
JP2019167594A (ja) | 焼結用造粒原料の製造方法 | |
JP5011637B2 (ja) | 焼結に供するための鉱石の処理方法 | |
JP5831397B2 (ja) | 焼結鉱の製造方法 | |
JPH06228663A (ja) | 多量の微粉鉱石を使用可能にした焼結原料の予備造粒方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21875669 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022544085 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237008526 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023005590 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317029803 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021875669 Country of ref document: EP Effective date: 20230502 |
|
ENP | Entry into the national phase |
Ref document number: 112023005590 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230327 |