WO2021210533A1 - 焼結鉱の製造方法 - Google Patents

焼結鉱の製造方法 Download PDF

Info

Publication number
WO2021210533A1
WO2021210533A1 PCT/JP2021/015167 JP2021015167W WO2021210533A1 WO 2021210533 A1 WO2021210533 A1 WO 2021210533A1 JP 2021015167 W JP2021015167 W JP 2021015167W WO 2021210533 A1 WO2021210533 A1 WO 2021210533A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
water
granulator
sintering
sinter
Prior art date
Application number
PCT/JP2021/015167
Other languages
English (en)
French (fr)
Inventor
頌平 藤原
健太 竹原
啓司 大塚
謙弥 堀田
隆英 樋口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022515371A priority Critical patent/JP7371766B2/ja
Priority to EP21787956.8A priority patent/EP4137594A4/en
Priority to KR1020227035299A priority patent/KR20220149784A/ko
Priority to BR112022019452A priority patent/BR112022019452A2/pt
Priority to AU2021257168A priority patent/AU2021257168B2/en
Priority to CN202180028635.0A priority patent/CN115427591A/zh
Publication of WO2021210533A1 publication Critical patent/WO2021210533A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/12Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating drums
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/08Making spongy iron or liquid steel, by direct processes in rotary furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0068Containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B2007/005Rotary-drum furnaces, i.e. horizontal or slightly inclined for the treatment of slurries or wet materials

Definitions

  • the present invention sinters using a method for producing sinter, which is a raw material for a blast furnace, particularly a sinter granulation raw material produced by paying attention to the droplet diameter of water used when granulating a sinter compounding raw material.
  • the present invention relates to a method for producing a sinter, which is characterized in that the ore is produced.
  • Sintered ore is usually produced through the following steps. First, powdered iron ore consisting of multiple brands (for example, what is called a sinter feed of about -10 mm), auxiliary raw material powder such as limestone, silica stone, and serpentine, dust, scale, return ore, etc.
  • the miscellaneous raw material powder and solid fuel such as powdered coke are blended in appropriate amounts to prepare a sintered blended raw material.
  • a required amount of water is added to the obtained sintered compounding raw material, and the sintered compounded raw material after the addition of water is mixed and granulated using a granulator such as a drum mixer for sintering. Used as a raw material for granulation. After that, the obtained granulation raw material for sinter is charged into a sinter and fired to produce a sinter.
  • each of the sintered compounding raw materials contains a predetermined amount of water, when they are granulated, they agglomerate with each other to form pseudo-particles. Then, the granulation raw material for sintering obtained by quasi-particle formation is useful for ensuring good ventilation of the sintering raw material charging layer formed when charged on the pallet of the sintering machine. It is effective in advancing the sintering reaction smoothly.
  • Patent Document 1 the sprinkling flow rate, spray angle, sprinkling distance, etc. according to the renewal of the surface of the sintered compound raw material in the granulator are defined, and the upper limit of the droplet diameter of the added water is defined.
  • the formation of coarse particles is prevented, and the formation of agglomerated particles and the like granulated only with fine powder is suppressed.
  • the inventors instead of focusing on the generation of coarse particles and fine particles, the inventors have set the optimum droplet size range of water added during granulation in order to improve the air permeability in the layer in which the sintered raw material is charged.
  • An object of the present invention is to pay attention to the water content added to the sintering compounding raw material, that is, water, and adjust the average droplet diameter of the water content within the optimum range to adjust the water content in the sintering compounding material in the granulator.
  • the air permeability of the sinter raw material charging layer on the sinter pallet is improved to improve the productivity and strength of the sinter. It is to propose a method for improvement.
  • the method of the present invention which was developed to overcome the above-mentioned problems of the prior art and to realize the above object, granulates a sintered compounded raw material containing iron ore powder consisting of a plurality of brands with a granulator.
  • a method for producing sinter obtained by calcining the obtained sinter granulation raw material with a sinter, 80 mass% or more of the water content added when granulating the sinter compounding raw material is 120 ⁇ m. It is a method for producing a sinter, which is characterized in that it is supplied with an average droplet diameter of 2000 ⁇ m or less.
  • the moisture contains fine particles having a particle size of 15 ⁇ m or less in an amount of 0.5 mass% or more and 12 mass% or less with respect to the sintered compounding raw material.
  • the water content has an average droplet diameter of 560 ⁇ m or more and 1570 ⁇ m or less.
  • the water content has an average droplet diameter of 800 ⁇ m or more and 1570 ⁇ m or less.
  • the moisture is added to the sintering compound raw material at a position of 0% to 70% when the inlet in the length direction of the granulator is 0% and the outlet is 100%. 5.
  • the moisture is added to the sintering compound raw material at a position of 15% to 70% when the inlet in the length direction of the granulator is 0% and the outlet is 100%. 6.
  • the moisture is added to the sintering compound raw material at a position within the range of 20% to 50% when the inlet in the length direction of the granulator is 0% and the outlet is 100%.
  • the moisture is added to the sintering compound raw material at a position within the range of 20% to 75% when the inlet in the length direction of the granulator is 0% and the outlet is 100%.
  • the moisture is added to the sintering compound raw material at a position within the range of 30% to 60% when the inlet in the length direction of the granulator is 0% and the outlet is 100%.
  • the center of the spray direction of the water spray nozzle is 45 degrees or more and 90 degrees in the drum rotation direction when the vertical direction is 0 degrees in the cross section perpendicular to the rotation axis of the granulator.
  • the water content before charging the sintered compound raw material into the granulator shall be 5 mass% or less.
  • the average droplet diameter is a droplet diameter that gives an arithmetic average of the droplet volume, or a Sauter average diameter, and the water content is such that a droplet diameter of 80 mass% or more is 0.1 to 3 of the average droplet diameter. That it is in the double range, In this case, it is considered that a more preferable solution can be provided.
  • the method of the present invention when granulating a sintered compound raw material by a granulator, it greatly contributes to the suppression of the formation of fine particles, and if only the air permeability of the sintering granulated raw material itself is used. It brings about the improvement of the air permeability of the raw material charging layer on the granulation machine pallet, and as a result, not only the productivity of the sinter and the strength of the sinter are improved, but also the air permeability in the blast furnace is improved. Bring.
  • the inventors have changed the water droplet size of the water used when granulating the granulating raw material for sintering, in particular, the droplet diameter of the water and the air permeability of the granulated sintered granulating raw material.
  • the droplet diameter of the water to be added is generally the droplet diameter of the water spray nozzle (the droplet diameter according to the manufacturer's indication at a predetermined pressure).
  • a method of performing image analysis of a considerable number of droplets (for example, 100 or more droplets) using a high-speed camera and calculating the arithmetic mean diameter can be adopted.
  • the measurement of the droplet diameter may be calculated automatically by, for example, the method described in Non-Patent Document 1 or a commercially available laser Doppler measuring instrument, or calculated from the liquid to be used and the spraying conditions. You may.
  • the average droplet diameter is due to factors such as deterioration of the nozzle and addition of an ultrafine powder raw material to water.
  • Droplets that are significantly coarser than those may be generated.
  • Such extremely coarse droplets not only do not have the effect of the present invention, but also have a significantly large volume per droplet even if the number is small, so the granulated and sintered raw material is adjusted to a predetermined water content. In doing so, the amount of water having a suitable droplet size is reduced, and rather the effect is reduced.
  • the droplet diameter that gives the arithmetic mean of the droplet volume or the Sauter average diameter is used as the average droplet diameter instead of the above-mentioned arithmetic mean diameter.
  • the droplet diameter that gives the arithmetic mean of the droplet volume can be calculated by the following formulas (a) and (b), and the Sauter average diameter can be calculated by the formula (c).
  • Va ⁇ v / n ... (a)
  • Da (6 x Va ⁇ ⁇ ) 1/3 ...
  • Dz ⁇ d 3 ⁇ ⁇ d 2 ... (c)
  • Va is the arithmetic average of the droplet volume (m 3 )
  • v is the volume of each droplet (m 3 )
  • n is the number of droplets
  • Da is the droplet diameter giving the arithmetic average of the droplet volume.
  • M Dz is the Sauter average diameter (m)
  • d is the droplet diameter (m) of each droplet.
  • the air permeability of the granulated product (granulation raw material for sintering) granulated by a granulation machine such as a drum mixer can be evaluated by measuring the air permeability index (JPU).
  • the air permeability index (JPU) is measured by coldly sucking the air downward from the sintered raw material charging layer formed by charging the pseudo particles into the pallet of the sintering machine. It is the air permeability index when it is fired.
  • V is the air volume (Nm 3 / min)
  • S is the cross-sectional area of the raw material charging layer (m 2 )
  • h is the height of the raw material charging layer (mm)
  • ⁇ P is the pressure loss (mmH). 2 O).
  • the air permeability index (JPU) represented by the above equation (1) becomes a large value, and when the air permeability of the sintered raw material charging layer is low, the above. It is known that the air permeability index (JPU) represented by the equation (1) becomes small.
  • the equipment shown in Fig. 1 was used.
  • the sintered raw material was kneaded in advance with a concrete mixer 1 for 3 minutes, then water was added with a drum mixer 2 which is a granulator to granulate for 5 minutes, and then the granulated raw material 3 was used.
  • (Granulation raw material for sintering) is charged into a test pot 4 having a diameter of 150 mm so that the raw material layer thickness H is 380 mm (raw material weight 20 kg), and air is blown by a suction blower 5 connected to the lower part of the test pot 4. Aspirated.
  • the air permeability index is for evaluating the air permeability of the sintering raw material charging layer when the granulated product (granulation raw material for sintering) is charged on the pallet of the sintering machine. In addition, it is a direct indicator of sinter quality. It is effective to measure the particle size distribution of the granulated product, which is one of the largest factors affecting the JPU, in order to improve the JPU.
  • the coarse grain ratio as in Patent Document 1 is not sufficient, and an index capable of evaluating a decrease in air permeability due to filling of voids with fine grains is desirable.
  • the I S indicates the dispersion of the small range of particle size in relation to variations in the specific area of the particles
  • the I P denotes variance range of greater particle size in relation to variations in particle size
  • I SP is , the geometric mean of the I S and I P, so that reflects both the distribution of a large range of dispersion and particle size of the smaller range of particle sizes, it can be said desirable as a measure of ventilation.
  • the value of I SP indicates that the higher the particle size distribution close to 0 is concentrated in a narrow range, small gap filling by particles of different particle size, an indicator of good breathable.
  • fine powder ore 6 having a particle size of 200 ⁇ m or less such as pellet feed, aggregates its small diameter particles (fine powder) at the time of granulation to become coarse particles (aggregated particles) having a weak binding force. It has been known. It is known that this is because, as schematically shown in FIG. 2, the smaller the particle size, the stronger the adhesive force ⁇ represented by the following equation (2) due to the surface tension ⁇ of water. ..
  • the inventors when the particles having a smaller particle size are subjected to granulation in an appropriate amount, develop a strong adhesive force ⁇ and cannot be expected to act as a binder 7 (binder). I thought.
  • the fine powder has a particle size of 15 ⁇ m or less, but those having such a particle size fall extremely slowly under their own weight in the air.
  • An ultrafine powder close to suspended particulate matter which is defined to have a particle size of 10 ⁇ m or less.
  • the particle size is 15 ⁇ m or less.
  • the ultrafine powder of No. 1 is not dispersed on the surface of other granulation raw materials, and the action as a binder 7 is reduced.
  • the inventors decided to use a water granulated by preliminarily adding ultrafine powder having a particle size of 15 ⁇ m or less to the above-mentioned water added at the time of granulation to set the droplet diameter within a preferable range. bottom.
  • ultrafine powder having a particle size of 15 ⁇ m or less can be dispersed on the surface of other granulating raw materials, and at the same time, the particle size distribution after granulation can be improved to improve air permeability. He newly discovered what he could do.
  • raw materials containing a large amount of ultrafine powder having a particle size of 15 ⁇ m or less include iron-making dust having a harmonic mean of primary particle diameters of about 1 to 5 ⁇ m, and concentrate powder or pellet feed obtained by beneficiation of iron ore. Can be used as a further crushed product.
  • Method of adding ultrafine powder to water with adjusted droplet diameter As a method used for granulating a sintered compound raw material containing a large amount of ultrafine powder having a particle size of 15 ⁇ m or less, a method of directly charging the granulated raw material together with other granulated raw materials into a granulator and a method of premixing with water. There is a method of adding it. For example, in the method of granulating this ultrafine powder by putting it in a granulator together with other sintering compounding raw materials, as described above, the ultrafine powder having a particle size of 15 ⁇ m or less is likely to float and scatter, but has a large particle size. Floating scattering can be suppressed by charging the granulation machine at the same time as other granulation raw materials. It should be noted that floating scattering can be suppressed even if the particles are weakly agglomerated by slight humidification in advance.
  • the method of adding as the state of the granulated water obtained by mixing with water in advance not only the scattering and floating are significantly suppressed, but also the usage yield of the ultrafine powder having a particle size of 15 ⁇ m or less is good. Furthermore, since it can be dispersed and added to the granulation raw material in the granulator, the generation of coarse particles and the generation of insufficiently granulated fine particles by the fine particles can be suppressed, and the particle size distribution of the particles after granulation can be narrowed. It has the effect of being able to do it.
  • a semi-ultrafine powder having a particle size of more than 15 ⁇ m may be mixed with the ultrafine powder having a particle size of 15 ⁇ m or less. If the number of particles having a large diameter increases, it becomes difficult to finely adjust the particle size of the granulated water, and if the amount of particles in the granulated water is too large, it becomes difficult to transport the granulated water. It is desirable that the amount of the ultrafine powder having a particle size of 15 ⁇ m or less with respect to the total weight of the particles mixed in the granulated water is more than 50 mass%.
  • the amount of water used for granulation has an appropriate range (generally 5 to 10 mass% with respect to the granulation raw material)
  • the total weight of the granulated water and the particles mixed in the granulated water is increased.
  • the ratio of the ultrafine powder (particle size: 15 ⁇ m or less) to be mixed and used in the granulating water sprayed into the granulator to the total amount of the sintered raw material charged into the granulator is 0. It is desirable that it is 5 mass% or more and 12 mass% or less. When this ratio is 0.5 mass% or more, the effect of narrowing the particle size distribution of the particles after granulation can be stably obtained. On the other hand, when this ratio exceeds 12 mass%, the mixed liquid of water and ultrafine powder (granulated water) shows a remarkable non-Newtonian flow, so that the variation in droplet diameter becomes large, and the action of the present invention becomes large. , The effect is hindered.
  • the position where water is added in a granulator such as a drum mixer is a stage before the state in which the granulated particles are sufficiently grown immediately before discharge. From this, when the portion (inlet) for charging the raw material before granulation in the length direction of the granulator is 0% and the portion (outlet) for discharging the granulated product after granulation is 100%, it is 0. It is desirable to supply water to the sintered compound raw material at a position within the range of% to 70%. Further, it is desirable that the position where the water is added is after the non-uniform sintered compounding raw material immediately after charging is uniformly mixed. From these facts, it is desirable to supply water to the sintering compound raw material at a position within the range of 15% to 70% in the length direction of the granulator, and supply at a position within the range of 20% to 50%. Is even more desirable.
  • the water to be added into the granulator is granulated water containing ultrafine powder
  • the water droplets are added so as to directly reach the deposition slope of the sintering compound raw material in the granulator, not on the inner wall surface of the granulator.
  • the direction in which the center C of the spraying direction of the spray nozzle for spraying water (granulation water) faces that is, the suitable range R in which the center of the granulation water spray faces the granulation raw material is set.
  • the water content of the sintered compound raw material during granulation in the granulator affects the particle size and strength after granulation, and is therefore controlled within a predetermined range.
  • some of the sintered compound raw materials before being charged into the granulator contain moisture due to the effects of rainfall, etc. due to storage in the outdoor yard, and due to the effects of weather, storage period, etc.
  • Some brands have variable water content. Therefore, it is necessary to adjust the amount of water added in the granulator according to the water content of the sintering compound raw material before being charged into the granulator.
  • the water content of some brands of the sintered compounded raw material before being charged into the granulator is set to 7.5 mass% or less in advance. It is desirable, and more preferably, if it is 5 mass% or less, the effect of the present invention of adding water in the granulator becomes large.
  • ⁇ Spraying water that does not contain ultrafine powder> a granulation test by spraying water and measurement of the droplet diameter at that time were performed in the laboratory.
  • a drum mixer having a diameter of 300 mm was charged with a sintered compound raw material, and granulation was performed while spraying water.
  • the droplet diameter was controlled by changing the type of nozzle.
  • the pseudo-particles after granulation were subjected to an aeration test, and the aeration degree was measured.
  • the droplet diameter was measured by a method of performing image analysis of 100 droplets using a high-speed camera and calculating the arithmetic mean diameter thereof.
  • Example 2 ⁇ Spraying water (granulated water) containing ultrafine powder> Under the same conditions as in Example 1, 300 g of iron-making dust having a particle size of 15 ⁇ m or less was added to the water to prepare granulated water, which was sprayed with a droplet diameter of 1320 ⁇ m, and after granulation. The particle size of was measured. The particles having a particle size of 15 ⁇ m or less mixed with the granulating water and sprayed into the granulator were set to 2 mass% with respect to the total amount of the sintering raw materials charged into the granulator.
  • Example 1 in FIG. 4 is a value obtained by spraying only water not mixed with iron-making dust with a droplet diameter of 1320 ⁇ m.
  • the comparative example in FIG. 4 is a value obtained by adding only water that is not mixed with iron-making dust in a state where most of the liquid column is added.
  • the spread of the particle size distribution is Comparative Example> Example 1> Example 2, and the ISP, which is an index of the spread of the particle size distribution, is 73 in Comparative Example.
  • Example 1 was improved to 69, and Example 2 was significantly improved to 46.
  • the above-mentioned method of the present invention is applied not only to the granulation technique for sinter production but also to the production of raw materials for blast furnaces other than sinter production. For example, it can be applied to manufacturing technology of agglomerates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

造粒機において水分を焼結配合原料中に効率よく分散させ、ひいては焼結用造粒原料によって形成される焼結機パレット上の焼結原料装入層の通気性を向上させることにより焼結鉱の生産性を向上させるため、複数種類の銘柄からなる鉄鉱石粉を含む焼結配合原料を造粒機にて造粒し、得られた焼結用造粒原料を焼結機にて焼成することにより焼結鉱を得る焼結鉱の製造方法において、造粒の際に添加する水分としてその80mass%以上が120μm以上2000μm以下の平均液滴径で供給する。

Description

焼結鉱の製造方法
 本発明は、高炉用原料である焼結鉱の製造方法、特に焼結配合原料の造粒時に用いられる水分の液滴径に着目して製造された焼結用造粒原料を用いて焼結鉱の製造を行うこととした点に特徴を有する焼結鉱の製造方法に関する。
 焼結鉱は、通常、下記の工程を経て製造される。まず、複数種類の銘柄からなる粉鉄鉱石(たとえば、-10mm程度のシンターフィードと呼ばれているもの)に、石灰石や珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料粉と、粉コークス等の固体燃料とを適量ずつ配合して焼結配合原料を調整する。次に、得られた焼結配合原料に必要な量の水分を添加し、水分添加後の該焼結配合原料をドラムミキサー等の造粒機を使って混合-造粒することにより焼結用造粒原料とする。その後、得られた焼結用造粒原料を焼結機に装入して焼成することによって焼結鉱を製造している。
 一般に、前記焼結配合原料は、それぞれ所定量の水分を含んでいることからこれらを造粒すると互いに凝集し合って擬似粒子化する。そして、擬似粒子化して得られた焼結用造粒原料は、焼結機のパレット上に装入されたときに形成される焼結原料装入層の良好な通気を確保するのに役立ち、焼結反応を円滑に進める上で有効である。
 上述した焼結鉱の製造方法において、前記焼結配合原料の造粒時に水分を添加する際、その添加量が十分でなくまた不均一に行われると、粒径の小さな微粉のみが凝集して強度の低い粗大粒子を形成したり、粒径の小さな粒子のままで残ったりして、前記焼結原料装入層内での通気性を低下させる原因となる。こうした背景の下で、従来、焼結配合原料への造粒時における水添加の方法に着目した研究が行われてきた。
 例えば、特許文献1では、造粒機内での焼結配合原料面の更新に応じた散水流量や噴霧角、散水距離等を規定するとともに、添加水の液滴径の上限を規定することによって、粗大粒子の生成を防止するとともに、微粉のみで造粒された凝集粒子などの生成を抑制することとしている。
特開2016-172903号公報
河原ら、「位相ドップラ法を用いた噴霧粒子径および速度の同時計測」日本流体力学会、「ながれ」 vol27(2008), pp.303
 しかしながら、特許文献1で提案している技術の場合、粒子径の大きい粗大粒子の生成は抑制できるが、粒子径が小さい微小粒子の生成までは抑制できないため、焼結原料装入層の通気性が低下するという課題があった。その結果、粒子径の過小な微小粒子が多く生成し、焼結原料装入層ひいては焼結層内での通気性の低下を招いて焼結鉱の生産率が低下したり、焼結鉱強度の低下を招くと共に成品歩留まりの低下を招いたりし、ひいては焼結鉱を使う高炉内での通気性の低下につながるという問題点があった。
 そこで、発明者らは、粗大粒子や微小粒子の生成に着目するのではなく、焼結原料装入層中の通気性を改善するための、造粒時に添加する水分の最適液滴径範囲を設定することで望ましい焼結用造粒原料を得ることで、ひいては焼結鉱の生産性の向上などを図ることができる方法について鋭意研究した。
 本発明の目的は、焼結配合原料中に添加する水分、すなわち水に着目し、その水分の平均液滴径を最適範囲内に調整することで、造粒機において水分を焼結配合原料中に効率よく分散させ、ひいては望ましい焼結用造粒原料を得ることによって、焼結機パレット上での焼結原料装入層の通気性を向上させて焼結鉱の生産性の向上や強度の改善を図る方法を提案することにある。
 従来技術が抱えている前述した課題を克服し、上記目的を実現するために開発した本発明方法は、複数種類の銘柄からなる鉄鉱石粉を含む焼結配合原料を造粒機にて造粒し、得られた焼結用造粒原料を焼結機にて焼成することにより焼結鉱を得る焼結鉱の製造方法において、焼結配合原料の造粒に際して添加する水分の80mass%以上が120μm以上2000μm以下の平均液滴径で供給されることを特徴とする焼結鉱の製造方法である。
 上述した構成に係る本発明については、さらに次のような方法、すなわち、
1.前記水分は、粒径15μm以下の微粒子を前記焼結配合原料に対して0.5mass%以上12mass%以下含むこと、
2.前記水分は、560μm以上1570μm以下の平均液滴径であること、
3.前記水分は、800μm以上1570μm以下の平均液滴径であること、
4.前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、0%~70%の位置で焼結配合原料に添加されること、
5.前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、15%~70%の位置で焼結配合原料に添加されること、
6.前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、20%~50%の範囲内の位置で焼結配合原料に添加されること、
7.前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、20%~75%の範囲内の位置で焼結配合原料に添加されること、
8.前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、30%~60%の範囲内の位置で焼結配合原料に添加されること、
9.前記水分の供給に当っては、水噴霧ノズルの噴霧方向の中心は、造粒機の回転軸に垂直な断面において、鉛直下方向を0度とした場合、ドラム回転方向に45度以上90度以下の範囲の焼結配合原料を指向していること、
10.前記焼結配合原料を造粒機内に装入する前の水分含有量は、5mass%以下であること、
11.前記平均液滴径は、液滴体積の算術平均を与える液滴径、またはザウター平均径であり、前記水分は、80mass%以上の液滴の径が該平均液滴径の0.1~3倍の範囲であること、
とした場合に、より好ましい解決手段を提供できるものと考えられる。
 上述した構成に係る本発明方法によれば、焼結配合原料の造粒機による造粒に当って、微小粒子の生成抑制に大きく寄与すると共に、焼結用造粒原料自体の通気性のみならず焼結機パレット上での原料装入層の通気性の改善をもたらし、その結果として焼結鉱の生産性の向上や焼結鉱強度の改善のみならず、高炉内の通気性の向上をもたらす。
通気性測定試験設備の概要を示す略線図である。 鉄鉱石粒子間の付着力(σ)の説明図である。 実施例における通気性指数(JPU)と液滴径との関係を示す図である。 実施例における粒度分布の広がり(Isp)のもようを示す図である。 ドラムミキサー内の焼結配合原料堆積斜面の噴霧水の噴射方向の説明図である。
 発明者らは、焼結用造粒原料を造粒する時に用いる水分について、特にその水の液滴径を変化させ、そうした水の液滴径と造粒した焼結造粒原料の通気性との関係について検討した。なお、造粒機内への水分の添加に当って、添加する水の液滴径については、一般的にその水噴霧ノズルがもつ液滴径(所定圧力でのメーカー表示に係る液滴径)があるが、造粒機に応じて予め実測しておくことが望ましい。
 前記液滴径の測定に当っては、高速度カメラを用い、相当数(たとえば100個以上)の液滴の画像解析を行い、その算術平均径を算出する方法を採用することができる。なお、この液滴径の測定については、たとえば非特許文献1に記載の方法や市販のレーザードップラー測定器で自動的に集計算出してもよく、また使用する液および噴霧条件から計算して求めてもよい。
 実際の水噴霧にあたっては、平均液滴径×50%~平均液滴径×200%の範囲内に80mass%程度が収まるが、噴霧ノズル出口周辺に溜まった後に落下する粗大な液滴などは平均液滴径×50%~平均液滴径×200%の範囲内に収まらないことが分かった。ただし、このような平均液滴径×50%~平均液滴径×200%の範囲内に収まらない液滴が発生しても、発明者らの研究によれば、その比率が20mass%未満であれば、造粒作用への影響は少ないことも分かった。従って、本発明において、造粒の際に添加する水の大きさとしては80mass%以上が所定の液滴径のものにすることが必要である。
 また、実際の水噴霧にあたっては、前記の噴霧ノズル出口周辺に溜まった後に落下する粗大な液滴の他に、ノズルの劣化や水に超微粉原料を添加するなどの要因により、平均液滴径よりも著しく粗大な液滴が発生することがある。こうした著しく粗大な液滴というのは、本発明の効果が得られないだけでなく、個数が少なくても1個当たりの体積が著しく大きいので、造粒焼結原料を所定の水分含有量に調整するに当たっては、好適な液滴径の水を減らすこととなり、むしろ作用効果を減少させてしまう。このような著しく粗大な液滴の影響を正しく評価するためには、前記の算術平均径に代えて、液滴体積の算術平均を与える液滴径、またはザウター平均径を平均液滴径として用いることが望ましい。なお、液滴体積の算術平均を与える液滴径は、下記の式(a)、(b)、ザウター平均径は式(c)により、それぞれ求めることができる。上述した液滴体積の算術平均を与える液滴径ならびにザウター平均径は、液滴径分布の中で著しく粗大な液滴径の液滴が増えたときに、算術平均径よりも大きな値となり、著しく粗大な液滴の影響を正しく評価するのに適している。
 Va=Σv/n ・・・(a)
 Da=(6×Va÷π)1/3 ・・・(b)
 Dz=Σd÷Σd ・・・(c)
 上記式において、Vaは液滴体積の算術平均(m)、vは個々の液滴の体積(m)、nは液滴の個数、Daは液滴体積の算術平均を与える液滴径(m)、Dzはザウター平均径(m)、dは個々の液滴の液滴径(m)である。
 なお、液滴体積の算術平均を与える液滴径、または、ザウター平均径を、平均液滴径として用いる場合には、平均液滴径×10%~平均液滴径×300%の範囲内に80mass%以上が収まることが望ましい。そのためには、劣化したノズルを用いないこと、水への超微粉原料添加量を適正に管理すること、といった方法をとることが有効である。
 次に、ドラムミキサーなどの造粒機にて造粒した造粒物(焼結用造粒原料)の通気性は、通気性指数(JPU)を測定して評価することができる。本発明において、通気性指数(JPU)と言うときは、擬似粒子を焼結機のパレットに装入することで形成された焼結原料装入層を冷間で大気を下向きに吸引して測定したときの通気性指数のことである。この通気性指数(JPU)は、下記(1)式を用いて算出した。
 JPU=V/S×(h/ΔP)0.6・・・(1)
 但し、Vは風量(Nm/min)であり、Sは原料装入層の断面積(m)であり、hは原料装入層高さ(mm)であり、ΔPは圧力損失(mmHO)である。
 一般に、前記焼結原料装入層の通気性が高いと、上記(1)式で示される通気性指数(JPU)は大きい値となり、該焼結原料装入層の通気性が低いと、上記(1)式で示される通気性指数(JPU)は小さくなることが知られている。
 かかる通気性試験に当たっては、図1に示す設備を用いた。この試験に当たっては、焼結原料を事前にコンクリミキサー1にて3分間混練し、次いで造粒機であるドラムミキサー2にて水分を添加して5分間造粒し、その後、造粒した原料3(焼結用造粒原料)を直径150mmの試験鍋4に原料層厚Hが380mm(原料重量20kg)となるように装入し、試験鍋4下部に接続された吸引ブロワー5にて空気を吸引した。
 前記通気性指数(JPU)は、造粒物(焼結用造粒原料)が焼結機のパレット上に装入された際の焼結原料装入層の通気性を評価するものであるために、焼結鉱品質の直接の指標になるものである。なお、このJPUに影響を及ぼす最大の因子の一つである前記造粒物の粒度分布を測定することは、JPUを改善するために有効である。
 次に、粒度分布の指標としては、特許文献1のような粗大粒比率だけでは不十分であり、空隙を微細粒が充填することによる通気性の低下も評価できるような指標が望ましい。発明者らは、そうした粒度分布の指標としてISPを用いることにした。そのISPとは、「福武ら;鉄と鋼、57(1971)、p.1627-1634」で開示されたものであり、D=1/Σ(w/d)、ここでw:粒子割合、d:粒径、I=D Σw(1/d-1/D、I=(1/DΣw(d-D、ISP=100×√(I×I)、から求めることができる。このIは、粒子の比面積のバラツキに関係して粒径の小さい範囲の分散を示し、前記Iは粒子径のバラツキに関係して粒径の大きい範囲の分散を示し、ISPは、IとIの相乗平均であり、粒径の小さい範囲の分散と粒径の大きい範囲の分散の双方を反映するので、通気性の指標として望ましいものと言える。なお、ISPの値は0に近いほど粒度分布が狭い範囲に集中することを示しており、異なる粒子径の粒子による間隙の充填が少なく、通気性がよいことの指標となる。
 本発明方法における重要な視点としては、添加する水分(添加水)についての前述した水の液滴径の検討に加えて、どのような水を用いるかについての検討も重要である。すなわち造粒時に使用する水として、単なる水か、あるいは本発明において特有の、所謂あらかじめ水に微粉を分散(含有)させた造粒水を用いることに着目して検討した。
 一般に、ペレットフィードのような粒径200μm以下の粒子がほとんどである微粉鉱石6は、造粒時にその小径粒子(微粉)同士が凝集して結合力の弱い粗大な粒子(凝集粒子)となることが知られている。これは、図2に模式的に示すように、粒子径が小さいほど水の表面張力γによる下記式(2)で表わされる付着力σが強くなることに起因していることが知られている。
Figure JPOXMLDOC01-appb-M000001
 次に、発明者らはさらに粒径が小さい粒子について、これを適量、造粒に供した場合、強大な付着力σが発現し、バインダー7(結合剤)としての作用が期待できるのではないかと考えた。ここで、バインダー7としての付着力が発現するためには、粒径が15μm以下の超微粉であることが考えられるが、このような粒径のものは空中においては自重での落下が極めて遅く、粒径10μm以下と規定される浮遊粒子状物質に近い超微粉である。そのため、乾燥した状態で造粒機に装入すると浮遊して飛散する量が増える他、一方で、その浮遊飛散を防止するために加湿した状態で造粒機に装入すると粒径が15μm以下の超微粉が他の造粒原料の表面に分散せず、バインダー7としての作用が低下する。
 そこで、発明者らは、造粒時に添加する前述した水に、予め粒径が15μm以下の超微粉を加えて造粒水としたものを用いることとしてその液滴径を好ましい範囲にすることにした。このような造粒水を用いることで、粒径が15μm以下である超微粉を他の造粒原料の表面に分散させると同時に造粒後の粒度分布を改善して通気性を向上させることができることを新らたに知見したのである。
 なお、粒径が15μm以下である超微粉を多く含む原料としては、たとえば、一次粒子径の調和平均が1~5μm程度である製鉄ダストや、鉄鉱石の選鉱によって得られる精鉱粉やペレットフィードをさらに破砕したものなどが使用できる。
(液滴径が調整された水への超微粉の添加方法)
 粒径が15μm以下である超微粉を多く含む焼結配合原料を造粒するに当って用いる方法としては、他の造粒原料と共に直接、造粒機に装入する方法と、水に予め混合して添加する方法とがある。例えば、この超微粉を他の焼結配合原料と共に造粒機に入れて造粒する方法では、前述したように、粒径が15μm以下である超微粉は浮遊飛散しやすいものの、粒径の大きい他の造粒原料と同時に造粒機に装入することで浮遊飛散が抑制できる。なお、予め軽微な加湿によって弱く凝集させておいても浮遊飛散を抑制することができる。
 一方、予め水に混合して得られる前記造粒水の状態として添加する方法の場合、飛散浮遊が大幅に抑制されるだけでなく、粒径が15μm以下である超微粉の使用歩留まりがよく、さらに、造粒機内の造粒原料に分散して添加できるため、微粒同士による粗大粒子の生成と造粒不足の微小粒子の生成が抑制され、造粒後の粒子の粒度分布を狭くすることができるという効果がある。
 また、超微粉を含有する造粒水として用いる本発明の他の方法としては、粒径が15μm以下である超微粉に粒径が15μmを超える準超微粉を混合して用いてもよいが、径の大きい粒子が多くなると造粒水の液滴径を微細に調整することが難しくなることと、造粒水中の粒子の量があまりに多いと該造粒水の輸送が困難になることから、該造粒水に混合する粒子の合計重量に対する粒径が15μm以下である前記超微粉の量は50mass%超であることが望ましい。また、造粒に供される水の量としては適正な範囲(一般に造粒原料に対して5~10mass%)があるので、造粒水とこの造粒水に混合する粒子の合計重量に対する、粒径が15μm以下である超微粉の重量の比率は高いほどよく、少なくとも10mass%であることが望ましい。
 前記方法において、造粒機内に噴霧する前記造粒水中に混合して用いる前記超微粉(粒径:15μm以下)の、該造粒機内に装入した焼結原料の総量に対する比率は、0.5mass%以上12mass%以下であることが望ましい。この比率が0.5mass%以上であれば造粒後の粒子の粒度分布を狭くする効果が安定して得られる。一方、この比率が12mass%超の場合は水と超微粉との混合液(造粒水)が非ニュートン流動を顕著に示すようになるので、液滴径のばらつきが大きくなり、本発明の作用、効果が阻害される。
(水(造粒水)の添加位置)
 次に、発明者らは、造粒機の長さ方向における水または造粒水の添加位置について検討した。造粒後の造粒粒子径が過大なものは強度が低いために望ましくないことは知られている。また、造粒後の造粒粒子径のばらつきが大きいと大径粒子の間隙を小径粒子が充填するために通気性が低下して燒結機の生産性を阻害することも知られている。したがって、造粒後の造粒粒子径が過大にならないようにすることに加えて、ばらつきを小さくすること、言い換えれば過小な造粒後粒子の生成を抑制することも重要である。
 そのためには、ドラムミキサーの如き造粒機内において水分を添加する位置は、排出直前の造粒粒子が十分に成長した状態よりも前の段階であることが望ましい。このことから、造粒機長さ方向における造粒前の原料を装入する部分(入口)を0%、造粒後の造粒物を排出する部分(出口)を100%とした場合に、0%~70%の範囲内の位置で焼結配合原料に対し水分を供給することが望ましい。また、前記水分を添加する位置は、装入直後の不均一な焼結配合原料が均一に混合された後であることが望ましい。これらのことから、前記造粒機長さ方向の15%~70%の範囲内の位置で焼結配合原料に対し水分を供給することが望ましく、20%~50%の範囲内の位置での供給がさらに望ましい。
 また、造粒機内に添加する水が超微粉を含む造粒水の場合は、水単独のものよりもやや下流寄りの20~75%の位置で添加することが望ましく、30~60%の位置で添加することがさらに望ましい。これは、造粒水に含まれる超微粉によるバインダー効果は、造粒機に装入された焼結配合原料の内の微粉や超微粉がある程度は凝集した後ほど顕著に発揮されるからである。
(造粒機の径方向への添加)
 本発明においては、水を造粒中の焼結配合原料に均一に分散させることが重要である。従って、水の液滴は造粒機の内壁面ではなく造粒機内の焼結配合原料の堆積斜面に直接到達するように添加することが望ましい。特に、図5に示すように、水(造粒水)を噴霧する噴霧ノズルの噴霧方向の中心Cが向かう方向、即ち、造粒水噴霧の中心が造粒原料に向う好適な範囲Rは、ドラムミキサーの回転軸に垂直な断面において、鉛直下方向を0°とした場合、ドラム回転方向に45°以上90°以下の範囲R内の焼結配合原料の堆積斜面に向かっていることがさらに望ましい。これは、45°以上90°以下の範囲を中心に水(造粒水)を添加する方が、0°以上45°以下の範囲を中心に添加するのにくらべて、焼結配合原料の粒子の表面に液滴が到達した後に、該焼結配合原料の粒子が該焼結配合原料の堆積斜面上を回転しながら滑落する距離が長く、焼結配合原料に到達した後も水の分散が促進されるからである。
(焼結配合原料自体の水分)
 一般に、造粒機内で造粒中の焼結配合原料の水分含有量は、造粒後の粒径や強度に影響するので所定の範囲内に管理される。ただし、造粒機に装入される前の焼結配合原料の中には、屋外のヤードでの保管を経るために降雨などの影響で水分を含み、かつ、天候や貯蔵期間などの影響で水分含有量が変動する銘柄がある。そのため、造粒機に装入される前の焼結配合原料の水分含有量に応じて造粒機内で添加する水の量を調整することが必要となる。しかも、本発明においては、造粒中の焼結配合原料中において水を分散させることが重要であることから、造粒機に装入される前の焼結配合原料の一部の銘柄の水分含有量が多いとしても造粒機内への水の添加量を少なくすることは望ましくない。そこで、造粒機内への一定の水の添加量を確保するためには、造粒機に装入される前の焼結配合原料の平均の水分含有量を予め7.5mass%以下にしておくことが望ましく、さらに望ましくは5mass%以下であれば、造粒機において水を添加するという本発明の効果が大きくなる。そのための造粒機に装入される前の焼結配合原料の平均の水分含有量を調整する方法としては、屋外ヤード貯蔵期間や銘柄によって水分含有量が異なることを前提としてこれらを適宜に配合調整して、前記の水分量(7.5mass%以下)にすればよい。
<超微粉を含まない水の噴霧>
 本発明の効果を確認するために、実験室において水を噴霧しての造粒試験およびその際の液滴径の測定を行った。実験装置として、直径300mmのドラムミキサーに焼結配合原料を装入し、水を噴霧しながら造粒を行った。その際、液滴径の制御はノズルの種類を変更することにより行った。造粒後の擬似粒子は通気試験に供し、通気度を測定した。液滴径の測定は高速度カメラを用い、液滴100粒の画像解析を行いその算術平均径を算出する方法により行った。
 前記試験の結果を図3に示す。ノズルを使用せず、大部分が液柱である比較例と比較すると、液滴径が120μm以上2000μm以下の範囲で通気性の改善効果が見られ、液滴径が560μm以上1570μm以下の範囲ではさらに大きな改善がみられ、液滴径が800μm以上1570μm以下の範囲ではさらに大きな改善がみられた。
<超微粉を含む水(造粒水)の噴霧>
 実施例1と同様の条件で、水に、粒径が15μm以下が過半量である製鉄ダストを添加1kgあたり300g混合した造粒水とし、これを、液滴径1320μmで噴霧し、造粒後の粒子径を測定した。造粒水に混合して造粒機内に噴霧した粒径が15μm以下の粒子は、造粒機に装入した焼結原料の総量に対して2mass%とした。
 その結果を図4に示す。図4中の実施例1は、製鉄ダストを混合しない水のみを液滴径1320μmで噴霧した値である。図4中の比較例は、製鉄ダストを混合しない水のみを大部分が液柱の状態で添加した値である。図4より明らかなように、粒度分布の広がりは比較例>実施例1>実施例2であり、粒度分布の広がりの指標であるIspは、比較例が73で有ったのに対して、実施例1は69と改善し、実施例2は46と大幅に改善した。
 造粒水に混合して造粒機内に噴霧した粒径が15μm以下の粒子の、造粒機に装入した焼結原料の総量に対する比率が0.5mass%以上12mass%以下であれば、実施例1よりも小さいIspが得られた。
 本発明の前述した方法は、単に焼結鉱製造のための造粒技術に適用されるだけでなく、焼結鉱製造以外の高炉用原料の製造にも適用して用いられる。たとえば塊成鉱の製造技術などへの応用も考えられる。
1  コンクリミキサー
2  ドラムミキサー
3  造粒原料
4  試験鍋
5  吸引ブロワー
6  微粉鉱石
7  バインダー
H  原料層厚

Claims (12)

  1.  複数種類の銘柄からなる鉄鉱石粉を含む焼結配合原料を造粒機にて造粒し、得られた焼結用造粒原料を焼結機にて焼成することにより焼結鉱を得る焼結鉱の製造方法において、造粒の際に添加する水分としてその80mass%以上が120μm以上2000μm以下の平均液滴径で供給されることを特徴とする焼結鉱の製造方法。
  2.  前記水分は、粒径15μm以下の微粒子を前記焼結配合原料に対して0.5mass%以上12mass%以下含むことを特徴とする請求項1に記載の焼結鉱の製造方法。
  3.  前記水分は、560μm以上1570μm以下の平均液滴径であることを特徴とする請求項1または2に記載の焼結鉱の製造方法。
  4.  前記水分は、800μm以上1570μm以下の平均液滴径であることを特徴とする請求項1~3のいずれか1に記載の焼結鉱の製造方法。
  5.  前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、0%~70%の位置で焼結配合原料に添加されることを特徴とする請求項1~4のいずれか1に記載の焼結鉱の製造方法。
  6.  前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、15%~70%の位置で焼結配合原料に添加されることを特徴とする請求項1~5のいずれか1に記載の焼結鉱の製造方法。
  7.  前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、20%~50%の範囲内の位置で焼結配合原料に添加されることを特徴とする請求項1~6のいずれか1に記載の焼結鉱の製造方法。
  8.  前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、20%~75%の範囲内の位置で焼結配合原料に添加されることを特徴とする請求項2~4のいずれか1に記載の焼結鉱の製造方法。
  9.  前記水分は、造粒機長さ方向の入口を0%出口を100%とした場合に、30%~60%の範囲内の位置で焼結配合原料に添加されることを特徴とする請求項2~4のいずれか1に記載の焼結鉱の製造方法。
  10.  前記水の供給に当っては、水噴霧ノズルの噴霧方向の中心は、造粒機の回転軸に垂直な断面において、鉛直下方向を0度とした場合、ドラム回転方向に45度以上90度以下の範囲の焼結配合原料を指向していることを特徴とする請求項1~9のいずれか1に記載の焼結鉱の製造方法。
  11.  前記焼結配合原料を造粒機内に装入する前の水分含有量は、5mass%以下であることを特徴とする請求項1~10のいずれか1に記載の焼結鉱の製造方法。
  12.  前記平均液滴径は、液滴体積の算術平均を与える液滴径、またはザウター平均径であり、前記水分は、80mass%以上の液滴の径が該平均液滴径の0.1~3倍の範囲であることを特徴とする請求項1~11のいずれか1に記載の焼結鉱の製造方法。
PCT/JP2021/015167 2020-04-15 2021-04-12 焼結鉱の製造方法 WO2021210533A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022515371A JP7371766B2 (ja) 2020-04-15 2021-04-12 焼結鉱の製造方法
EP21787956.8A EP4137594A4 (en) 2020-04-15 2021-04-12 PROCESS FOR MAKING SINTERED ORE
KR1020227035299A KR20220149784A (ko) 2020-04-15 2021-04-12 소결광의 제조 방법
BR112022019452A BR112022019452A2 (pt) 2020-04-15 2021-04-12 Método para produzir minério sinterizado
AU2021257168A AU2021257168B2 (en) 2020-04-15 2021-04-12 Method for producing sintered ore
CN202180028635.0A CN115427591A (zh) 2020-04-15 2021-04-12 烧结矿的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-072764 2020-04-15
JP2020072764 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021210533A1 true WO2021210533A1 (ja) 2021-10-21

Family

ID=78084794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015167 WO2021210533A1 (ja) 2020-04-15 2021-04-12 焼結鉱の製造方法

Country Status (7)

Country Link
EP (1) EP4137594A4 (ja)
JP (1) JP7371766B2 (ja)
KR (1) KR20220149784A (ja)
CN (1) CN115427591A (ja)
AU (1) AU2021257168B2 (ja)
BR (1) BR112022019452A2 (ja)
WO (1) WO2021210533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038643A1 (ja) * 2022-08-15 2024-02-22 Jfeスチール株式会社 焼結鉱の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293044A (ja) * 2002-04-04 2003-10-15 Nippon Steel Corp 製鉄用原料の造粒処理方法
JP2016172903A (ja) 2015-03-17 2016-09-29 株式会社神戸製鋼所 焼結鉱製造用原料の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1012754B8 (pt) * 2009-03-31 2019-12-17 Nippon Steel & Sumitomo Metal Corp método de adição de aglutinante, sistema de adição de aglutinante, amassador, e método de amassamento
JP6406169B2 (ja) * 2015-08-21 2018-10-17 Jfeスチール株式会社 焼結鉱の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293044A (ja) * 2002-04-04 2003-10-15 Nippon Steel Corp 製鉄用原料の造粒処理方法
JP2016172903A (ja) 2015-03-17 2016-09-29 株式会社神戸製鋼所 焼結鉱製造用原料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWAHARA ET AL.: "Simultaneous Measurements of Droplet Diameter and Velocity Using Phase Doppler Anemometer (PDA/PDPA", THE JAPAN SOCIETY OF FLUID MECHANICS, vol. 27, 2008, pages 303

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038643A1 (ja) * 2022-08-15 2024-02-22 Jfeスチール株式会社 焼結鉱の製造方法

Also Published As

Publication number Publication date
JP7371766B2 (ja) 2023-10-31
EP4137594A4 (en) 2023-05-24
EP4137594A1 (en) 2023-02-22
BR112022019452A2 (pt) 2022-12-06
AU2021257168A1 (en) 2022-12-01
CN115427591A (zh) 2022-12-02
JPWO2021210533A1 (ja) 2021-10-21
KR20220149784A (ko) 2022-11-08
AU2021257168B2 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2021210533A1 (ja) 焼結鉱の製造方法
KR20140079818A (ko) 소결 원료의 조립 방법
KR20180110034A (ko) 소결광의 제조 방법
JP6132114B2 (ja) 焼結用造粒原料の製造方法
JP7130904B2 (ja) 希薄均一散水による造粒方法
WO2012015065A1 (ja) 焼結用原料の製造方法
TWI596213B (zh) Sinter manufacturing method
JP4659144B2 (ja) バインダー添加方法、バインダー添加装置、混練機及び混練方法
KR102394730B1 (ko) 소결광의 제조 방법
JP2012126985A (ja) 造粒焼結原料の製造方法
RU2812816C1 (ru) Способ получения агломерата
JP7148030B2 (ja) 焼結鉱の製造方法および焼結鉱
JP3376621B2 (ja) 低CaO焼結鉱の製造方法
CN113272463B (zh) 烧结矿的制造方法
JP7024647B2 (ja) 焼結用原料の造粒方法
Turgunova et al. The research of autohesion properties of sintering burden
JP2019167594A (ja) 焼結用造粒原料の製造方法
JPWO2020175484A1 (ja) 粉体貯留器、溶融混練機、及び、粉体貯留方法、及び、熱可塑性樹脂組成物の製造方法
JP2003113424A (ja) 焼結原料の造粒方法及び装置
JP2007302956A (ja) 製鉄用非焼成塊成鉱
JPS62142097A (ja) 球状で嵩比重の小さい溶接フラツクスの製造方法
JPS5932534B2 (ja) 焼結原料の事前処理方法
JPH0643617B2 (ja) 難造粒性鉱石粉の焼結法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515371

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019452

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227035299

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021787956

Country of ref document: EP

Effective date: 20221115

ENP Entry into the national phase

Ref document number: 2021257168

Country of ref document: AU

Date of ref document: 20210412

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022019452

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220927