WO2022071335A1 - 高純度リチウム塩水溶液の製造方法 - Google Patents

高純度リチウム塩水溶液の製造方法 Download PDF

Info

Publication number
WO2022071335A1
WO2022071335A1 PCT/JP2021/035688 JP2021035688W WO2022071335A1 WO 2022071335 A1 WO2022071335 A1 WO 2022071335A1 JP 2021035688 W JP2021035688 W JP 2021035688W WO 2022071335 A1 WO2022071335 A1 WO 2022071335A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
lithium
lithium salt
phosphate
salt aqueous
Prior art date
Application number
PCT/JP2021/035688
Other languages
English (en)
French (fr)
Inventor
慶太 山田
幸雄 佐久間
博人 井上
Original Assignee
株式会社アサカ理研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサカ理研 filed Critical 株式会社アサカ理研
Priority to AU2021352040A priority Critical patent/AU2021352040B2/en
Priority to EP21875636.9A priority patent/EP4144694A4/en
Priority to US17/928,436 priority patent/US20230145941A1/en
Priority to KR1020237013476A priority patent/KR20230070294A/ko
Priority to CN202180040232.8A priority patent/CN115667145B/zh
Priority to CA3180852A priority patent/CA3180852A1/en
Publication of WO2022071335A1 publication Critical patent/WO2022071335A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • C01B25/301Preparation from liquid orthophosphoric acid or from an acid solution or suspension of orthophosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/36Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for producing a high-purity lithium salt aqueous solution.
  • lithium has been attracting attention as a raw material for lithium-ion batteries such as lithium-ion secondary batteries, and as its supply source, minerals, salt water, seawater, etc. are known as well as those recycled from waste lithium batteries.
  • the salt water is obtained from a natural salt lake and usually contains lithium in the form of lithium chloride.
  • the concentration of lithium contained in the salt water is about 1 g / L.
  • the salt water obtained from a natural salt lake is supplied to an open-air evaporation pond, which is naturally evaporated over a year to concentrate, remove impurities such as Mg, Ca, and B, and then precipitate lithium carbonate. Is being collected.
  • the method of concentrating the salt water by natural evaporation requires a long time to concentrate the salt water, is easily affected by natural conditions such as weather, and lithium forms a salt with other impurities in the concentration process. There is a problem of being lost.
  • Patent Document 1 a method of adding phosphorus, phosphoric acid or phosphate to the salt water to generate lithium phosphate and concentrating it is known (for example, Patent Document 1). reference).
  • an aluminum salt is added to the lithium phosphate to prepare a slurry containing the lithium phosphate and the aluminum salt, and the pH of the slurry is set to 3.8 to 4.6.
  • the phosphate ion ( PO 43- ) and aluminum ion (Al 3+ ) contained in the slurry are precipitated as aluminum phosphate (AlPO 4 ), and then the aluminum phosphate (AlPO 4 ) is filtered. By removing it separately, a crude lithium salt aqueous solution is obtained.
  • the crude lithium salt aqueous solution can be made into a high-purity lithium salt aqueous solution by further removing impurities and purifying it by pH adjustment, treatment using an ion exchange membrane, or the like. It is said that lithium carbonate can be obtained by adding a carbonate such as sodium carbonate to a high-purity lithium salt aqueous solution.
  • Patent Document 1 describes four kinds of compounds as the aluminum salt, aluminum chloride, aluminum sulfate, potassium aluminum sulfate, and aluminum nitrate.
  • Patent Document 1 has difficulty in the filterability of aluminum phosphate (AlPO 4 ) that precipitates by adjusting the pH of a slurry containing lithium phosphate and an aluminum salt, and the aluminum phosphate (AlPO 4) is difficult to filter. There is a disadvantage that it takes a long time to filter AlPO 4 ).
  • An object of the present invention is to provide a method for producing a high-purity lithium salt aqueous solution capable of eliminating such inconvenience and filtering aluminum phosphate (AlPO 4 ) in a short time.
  • the method for producing a high-purity lithium salt aqueous solution of the present invention contains a lithium salt in the range of 0.1 to 70 g / L as lithium from a first lithium salt aqueous solution as a raw material.
  • the pH of the slurry containing the obtained mixture of lithium phosphate and aluminum hydroxide is adjusted to the range of 2 to 3, and the step of obtaining a precipitate of aluminum phosphate and the mixture of lithium phosphate and aluminum hydroxide are included.
  • It is characterized by comprising a step of filtering and removing the precipitate of aluminum phosphate from the slurry to obtain a second lithium salt aqueous solution, and a step of purifying the second lithium salt aqueous solution to obtain a high-purity lithium salt aqueous solution.
  • a slurry containing a mixture of lithium phosphate and aluminum hydroxide is obtained from the first lithium salt aqueous solution as a raw material.
  • the first lithium salt aqueous solution is a low-concentration lithium salt aqueous solution containing a lithium salt in the range of 0.1 to 70 g / L as lithium.
  • the aluminum hydroxide may be added from the outside of the reaction system to the lithium phosphate-containing slurry obtained from the first lithium salt aqueous solution, and the lithium phosphate-containing slurry may be added from the first lithium salt aqueous solution. When obtained, it may be produced inside the reaction system.
  • the pH of the slurry containing the mixture of lithium phosphate and aluminum hydroxide is then adjusted to the range of 2 to 3.
  • aluminum phosphate (AlPO 4 ) is generated from the phosphate ions and aluminum ions contained in the slurry and precipitates.
  • the precipitate of the aluminum phosphate is removed by filtration from the slurry to obtain a second lithium salt aqueous solution as a filtrate.
  • the operation of filtering out the precipitate of aluminum phosphate by forming the aluminum phosphate from the slurry containing lithium phosphate and aluminum hydroxide is short. Can be done in time.
  • a high-purity lithium salt aqueous solution can be obtained by removing impurities from the second lithium salt aqueous solution and purifying the aqueous solution.
  • an aluminum salt excluding aluminum hydroxide and phosphoric acid are added to the first lithium salt aqueous solution to adjust the pH in the range of 8 to 14. , It is preferable to obtain a mixture of lithium phosphate and aluminum hydroxide.
  • the precipitate of aluminum phosphate filtered from a slurry containing a mixture of lithium phosphate and aluminum hydroxide is deposited in the first lithium salt aqueous solution. It is preferable to add it.
  • the precipitate of aluminum phosphate acts as an aluminum salt and a phosphoric acid source with respect to the first aqueous solution of lithium salt. Therefore, the product obtained in the reaction system can be conveniently used as a part of the aluminum salt and phosphoric acid to be added to the first aqueous solution of the lithium salt.
  • the pH of the slurry containing the mixture of lithium phosphate and aluminum hydroxide obtained from the first lithium salt aqueous solution is adjusted to the range of 2 to 3.
  • the mixture of lithium phosphate and aluminum hydroxide was filtered off from the slurry containing the mixture of lithium phosphate and aluminum hydroxide, and the filtered mixture of lithium phosphate and aluminum hydroxide was obtained. It is preferable to disperse it in a smaller amount of water than the first aqueous solution of lithium salt to obtain a slurry containing a concentrated mixture of lithium phosphate and aluminum hydroxide.
  • the operation of filtering out the slurry or the precipitate of aluminum phosphate by concentrating the mixture of lithium phosphate and aluminum hydroxide is performed in a shorter time. be able to.
  • the purification of the second lithium salt aqueous solution adjusts the pH of the second lithium salt aqueous solution in the range of 7 to 10, and produces lithium phosphate. And, it is preferable to carry out by filtering out the precipitate of aluminum hydroxide. By doing so, it is possible to remove phosphate ions and aluminum ions as impurities contained in the second lithium salt aqueous solution.
  • the precipitate of lithium phosphate and aluminum hydroxide filtered out from the second lithium salt aqueous solution is obtained from the first lithium salt aqueous solution. It is preferably added to the mixture of lithium and aluminum hydroxide. Since the precipitates of lithium phosphate and aluminum hydroxide filtered out from the second lithium salt aqueous solution contain lithium phosphate, the precipitates are composed of lithium phosphate and aluminum hydroxide obtained from the first lithium salt aqueous solution. The recovery rate of lithium can be improved by adding it to the mixture of.
  • the method for producing a high-purity lithium salt aqueous solution of the present embodiment first, in STEP 1 of FIG. 1, aluminum (Al) is added to a low-concentration lithium (Li) salt aqueous solution as the first lithium salt aqueous solution. ) Add salt and phosphoric acid (H 3 PO 4 ).
  • the low-concentration Li salt aqueous solution contains a lithium salt such as lithium chloride in the range of 0.1 to 70 g / L as lithium.
  • a low-concentration Li salt aqueous solution for example, salt water obtained from a natural salt lake or the like can be used.
  • the Al salt added to the low-concentration Li salt aqueous solution may be any Al salt other than aluminum hydroxide, and for example, aluminum chloride can be used.
  • the pH of the low-concentration Li salt aqueous solution to which the Al salt and H 3 PO 4 are added is adjusted to the range of 8 to 14, preferably 10 to 11.
  • the pH adjustment in STEP 2 can be performed by adding, for example, sodium hydroxide (NaOH) or an aqueous solution thereof to the low-concentration Li salt aqueous solution to which the Al salt and H 3 PO 4 are added.
  • lithium phosphate (Li 3 PO 4 ) and aluminum hydroxide (Al (OH) 3 ) are produced in the low-concentration Li salt aqueous solution to which Al salt and H 3 PO 4 are added.
  • a slurry containing a mixture of Li 3 PO 4 and Al (OH) 3 can be obtained.
  • the pH of the slurry is adjusted to the range of 2 to 3.
  • the pH adjustment in STEP 2 can be performed, for example, by adding hydrochloric acid or sulfuric acid.
  • AlPO 4 aluminum phosphate
  • Li 3 PO 4 and Al (OH) 3 precipitates.
  • the AlPO 4 can be filtered off from the slurry by solid-liquid separation to obtain a filtrate as a second aqueous lithium salt solution.
  • the AlPO 4 since the AlPO 4 is produced from the slurry, it contains a small amount of unreacted Al (OH) 3 , and as a result, the filterability of the AlPO 4 is improved, and the filtering operation can be performed in a short time. It is believed that it can be done.
  • the slurry containing the mixture of Li 3 PO 4 and Al (OH) 3 obtained in STEP 2 has a pH of 2 to 3 in STEP 3.
  • Li 3 PO 4 and Al (OH) 3 may be separated by solid-liquid separation and concentrated by redispersing in a smaller amount of water than the low-concentration Li salt aqueous solution. ..
  • the operation of filtering the AlPO 4 from the slurry in STEP 4 can be performed in a shorter time.
  • the filtrate obtained in STEP 4 is a lithium chloride aqueous solution when the pH is adjusted by adding hydrochloric acid in STEP 3, and a lithium sulfate aqueous solution when the pH is adjusted by adding sulfuric acid in STEP 3.
  • the AlPO 4 a mixture of AlPO 4 and Al (OH) 3 ) containing a trace amount of Al (OH) 3 separated in STEP 4 can be returned to STEP 1.
  • the pH of the filtrate obtained in STEP 4 is adjusted to the range of 7 to 10.
  • the pH adjustment in STEP 5 can be performed, for example, by adding sodium hydroxide (NaOH) or an aqueous solution thereof. In this way, phosphorus and aluminum as impurities contained in the filtrate are precipitated as Li 3 PO 4 and Al (OH) 3 .
  • the high-purity lithium salt aqueous solution obtained in the present embodiment can obtain lithium carbonate by adding a carbonate such as sodium carbonate in STEP7.
  • Example 1 In this example, first, 27.5 g of lithium chloride was added to 1.5 L of ion-exchanged water to prepare a low-concentration lithium aqueous solution containing 3 g / L of lithium (Li) as the first lithium salt aqueous solution.
  • the first slurry was solid-liquid separated by vacuum filtration using a vacuum pump.
  • a Buchner funnel manufactured by Kiriyama Glass Co., Ltd.
  • a No. 1 having a reserved particle diameter of 0.5 ⁇ m was used as the filter paper.
  • 3 Filter paper manufactured by Kiriyama Glass Co., Ltd.
  • the filtered precipitate was washed with 300 mL of ion-exchanged water to obtain 281 g of a hydrous precipitate containing a mixture of lithium phosphate and aluminum hydroxide.
  • the time required for the solid-liquid separation was 3 minutes and 50 seconds.
  • the third slurry was solid-liquid separated by vacuum filtration using a vacuum pump.
  • a Buchner funnel manufactured by Kiriyama Glass Co., Ltd.
  • a No. 1 having a reserved particle diameter of 0.5 ⁇ m was used as the filter paper.
  • 3 Filter paper manufactured by Kiriyama Glass Co., Ltd. was used.
  • the filtered precipitate was washed with 60 mL of ion-exchanged water to obtain 68 g of a hydrous precipitate containing a mixture of aluminum phosphate and aluminum hydroxide and 200 mL of a filtrate as a second aqueous lithium salt solution.
  • the time required for the solid-liquid separation for filtering out the hydrous precipitate containing the mixture of aluminum phosphate and aluminum hydroxide from the third slurry was 6 minutes and 5 seconds.
  • the filtrate contained 18 g / L of lithium, 0.3 g / L of phosphorus (P), and less than 20 mg / L of aluminum (Al).
  • the liquid temperature of the filtrate was maintained at 60 ° C., 0.1 g of a 48% sodium hydroxide aqueous solution was added, and the pH was adjusted to 7.9. Then, the mixture was further stirred for 30 minutes to obtain a precipitate containing a mixture of lithium phosphate and aluminum hydroxide.
  • the precipitate was filtered off to obtain a high-purity lithium salt aqueous solution containing 17.6 g / L of lithium and having a concentration of phosphorus and aluminum of less than 1 mg / L. ..
  • Example 2 In this example, 17.9 g of 36% hydrochloric acid was added to the concentrated second slurry containing a mixture of lithium phosphate and aluminum hydroxide in STEP 3 shown in FIG. 1 to adjust the pH to 4.3. A high-purity lithium salt aqueous solution was obtained in exactly the same manner as in Example 1.
  • the time required for the solid-liquid separation for filtering out the hydrous precipitate containing the mixture of aluminum phosphate and aluminum hydroxide from the third slurry is 5 minutes 28 minutes. It was a second.
  • the fifth slurry was made exactly the same as the case of the third slurry in Example 1, solid-liquid separated, and combined with 90.9 g of a hydrous precipitate containing aluminum phosphate. , 200 mL of the filtrate as a second aqueous lithium salt solution was obtained.
  • the time required for the solid-liquid separation for filtering out the hydrous precipitate containing aluminum phosphate from the fifth slurry was 1 hour and 24 minutes.
  • the filtrate also contained 14.5 g / L of lithium, 30 mg / L of phosphorus and less than 1 mg / L of aluminum.
  • the fifth slurry was made exactly the same as the case of the third slurry in Example 1, solid-liquid separated, and 68 g of a hydrous precipitate containing aluminum phosphate and the second slurry. 215 mL of the filtrate as an aqueous solution of the lithium salt of 2 was obtained.
  • the time required for the solid-liquid separation for filtering out the hydrous precipitate containing aluminum phosphate from the fifth slurry was 4 hours and 3 minutes.
  • the filtrate also contained 16.2 g / L of lithium, 100 mg / L of phosphorus and 200 mg / L of aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

リン酸アルミニウムの濾別を短時間で行うことができる高純度リチウム塩水溶液の製造方法を提供する。高純度リチウム塩水溶液の製造方法は、原料となる第1のリチウム塩水溶液から得られるリン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーのpHを2~3の範囲に調整し、リン酸アルミニウムの沈殿を得る工程と、リン酸アルミニウムの沈殿を濾別して除去し、第2のリチウム塩水溶液を得る工程と、第2のリチウム塩水溶液を精製し、高純度リチウム塩水溶液を得る工程とを備える。

Description

高純度リチウム塩水溶液の製造方法
 本発明は、高純度リチウム塩水溶液の製造方法に関する。
 近年、リチウムはリチウムイオン二次電池等のリチウムイオン電池の原料として注目されており、その供給源としては、廃リチウム電池からリサイクルされるものの他、鉱物、塩水、海水等が知られている。前記塩水は天然の塩湖から得られ、通常、塩化リチウムの形態でリチウムを含有している。前記塩水中に含有されるリチウムの濃度は1g/L程度である。
 そこで、天然の塩湖から得られる前記塩水を露地の蒸発池に供給し、1年以上かけて自然蒸発させて濃縮し、Mg、Ca、B等の不純物を除去した後、炭酸リチウムを析出させて回収することが行われている。しかし、前記塩水を自然蒸発により濃縮する方法は、前記塩水の濃縮に長時間を要する上、天候等の自然条件の影響を受けやすく、さらには濃縮過程でリチウムが他の不純物と塩を形成して失われるという問題がある。
 一方、前記塩水から、炭酸リチウムを回収する方法として、前記塩水にリン、リン酸又はリン酸塩を添加してリン酸リチウムを生成させて濃縮する方法が知られている(例えば、特許文献1参照)。
 特許文献1に記載の方法は、前記リン酸リチウムにアルミニウム塩を添加して、該リン酸リチウムと該アルミニウム塩とを含むスラリーを調製し、該スラリーのpHを3.8~4.6の範囲に調整することにより該スラリーに含まれるリン酸イオン(PO 3-)とアルミニウムイオン(Al3+)をリン酸アルミニウム(AlPO)として沈殿させた後、リン酸アルミニウム(AlPO)を濾別して除去することにより、粗製リチウム塩水溶液を得るというものである。特許文献1の記載によれば、前記粗製リチウム塩水溶液はさらにpH調整、イオン交換膜を用いる処理等により、不純物を除去して精製することにより、高純度リチウム塩水溶液とすることができ、該高純度リチウム塩水溶液に炭酸ナトリウム等の炭酸塩を添加することにより炭酸リチウムを得ることができるとされている。
 また、特許文献1には、前記アルミニウム塩として、塩化アルミニウム、硫酸アルミニウム、硫酸カリウムアルミニウム、硝酸アルミニウムの4種の化合物が記載されている。
中国特許公開第108675323号公報
 しかしながら、特許文献1に記載の方法では、リン酸リチウムとアルミニウム塩とを含むスラリーのpHを調整することにより沈殿するリン酸アルミニウム(AlPO)の濾過性に難があり、該リン酸アルミニウム(AlPO)を濾別する操作に長時間を要するという不都合がある。
 本発明は、かかる不都合を解消して、リン酸アルミニウム(AlPO)の濾別を短時間で行うことができる高純度リチウム塩水溶液の製造方法を提供することを目的とする。
 本発明者らは、リン酸アルミニウム(AlPO)を濾別する操作を短時間で行う手段について鋭意検討した結果、特許文献1に記載の方法において、アルミニウム塩を、特許文献1には例示されていない水酸化アルミニウムとすることで、リン酸アルミニウム(AlPO)を短時間で濾別することができることを知見した。
 そこで、かかる目的を達成するために、本発明の高純度リチウム塩水溶液の製造方法は、リチウム塩をリチウムとして0.1~70g/Lの範囲で含み、原料となる第1のリチウム塩水溶液から得られるリン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーのpHを2~3の範囲に調整し、リン酸アルミニウムの沈殿を得る工程と、該リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーから該リン酸アルミニウムの沈殿を濾別して除去し、第2のリチウム塩水溶液を得る工程と、前記第2のリチウム塩水溶液を精製し、高純度リチウム塩水溶液を得る工程とを備えることを特徴とする。
 本発明の高純度リチウム塩水溶液の製造方法では、まず、原料となる第1のリチウム塩水溶液から、リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーを得る。前記第1のリチウム塩水溶液は、リチウム塩をリチウムとして0.1~70g/Lの範囲で含む、低濃度のリチウム塩水溶液である。前記水酸化アルミニウムは、前記第1のリチウム塩水溶液から得られるリン酸リチウムを含むスラリーに、反応系の外部から添加してもよく、該第1のリチウム塩水溶液からリン酸リチウムを含むスラリーを得る際に、反応系の内部で生成するものであってもよい。
 本発明の高純度リチウム塩水溶液の製造方法では、次に、前記リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーのpHを2~3の範囲に調整する。このようにすると、前記スラリーに含まれるリン酸イオンとアルミニウムイオンとからリン酸アルミニウム(AlPO)が生成し、沈殿する。
 そこで、次に、前記スラリーから前記リン酸アルミニウムの沈殿を濾別して除去し、濾液として第2のリチウム塩水溶液を得る。本発明の高純度リチウム塩水溶液の製造方法では、前記リン酸アルミニウムを、リン酸リチウムと水酸化アルミニウムとを含む前記スラリーから生成させることにより、前記リン酸アルミニウムの沈殿を濾別する操作を短時間で行うことができる。
 本発明の高純度リチウム塩水溶液の製造方法では、次に、前記第2のリチウム塩水溶液から不純物を除去して精製することにより、高純度リチウム塩水溶液を得ることができる。
 また、本発明の高純度リチウム塩水溶液の製造方法では、前記第1のリチウム塩水溶液に水酸化アルミニウムを除くアルミニウム塩とリン酸とを添加し、pHを8~14の範囲に調整することにより、リン酸リチウムと水酸化アルミニウムとの混合物を得ることが好ましい。
 また、本発明の高純度リチウム塩水溶液の製造方法では、前記第1のリチウム塩水溶液に、前記リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーから濾別された前記リン酸アルミニウムの沈殿を添加することが好ましい。前記リン酸アルミニウムの沈殿は、前記第1のリチウム塩水溶液に対し、アルミニウム塩及びリン酸源として作用する。従って、反応系内で得られた生成物を前記第1のリチウム塩水溶液に添加するアルミニウム塩とリン酸との一部として用いることができ、好都合である。
 また、本発明の高純度リチウム塩水溶液の製造方法では、前記第1のリチウム塩水溶液から得られる前記リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーのpHを2~3の範囲に調整する前に、該リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーから該リン酸リチウムと水酸化アルミニウムとの混合物を濾別し、濾別された該リン酸リチウムと水酸化アルミニウムとの混合物を該第1のリチウム塩水溶液よりも少量の水に分散させて、濃縮されたリン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーを得ることが好ましい。本発明の高純度リチウム塩水溶液の製造方法では、前記リン酸リチウムと水酸化アルミニウムとの混合物を濃縮することにより、前記スラリーか前記リン酸アルミニウムの沈殿を濾別する操作をさらに短時間で行うことができる。
 また、本発明の高純度リチウム塩水溶液の製造方法において、前記第2のリチウム塩水溶液の精製は、該第2のリチウム塩水溶液のpHを7~10の範囲に調整し、生成するリン酸リチウム及び水酸化アルミニウムの沈殿を濾別することにより行うことが好ましい。このようにすることにより、前記第2のリチウム塩水溶液に含まれる不純物としてのリン酸イオン及びアルミニウムイオンを除去することができる。
 また、本発明の高純度リチウム塩水溶液の製造方法では、前記第2のリチウム塩水溶液から濾別されたリン酸リチウム及び水酸化アルミニウムの沈殿を、前記第1のリチウム塩水溶液から得られるリン酸リチウムと水酸化アルミニウムとの混合物に添加することが好ましい。前記第2のリチウム塩水溶液から濾別されたリン酸リチウム及び水酸化アルミニウムの沈殿はリン酸リチウムを含むので、該沈殿を前記第1のリチウム塩水溶液から得られるリン酸リチウムと水酸化アルミニウムとの混合物に添加することによりリチウムの回収率を向上させることができる。
本発明の高純度リチウム塩水溶液の製造方法を示すフローチャート。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 図1に示すように、本実施形態の高純度リチウム塩水溶液の製造方法では、まず、図1のSTEP1で、第1のリチウム塩水溶液としての低濃度リチウム(Li)塩水溶液に、アルミニウム(Al)塩とリン酸(HPO)とを添加する。前記低濃度Li塩水溶液は、塩化リチウム等のリチウム塩を、リチウムとして0.1~70g/Lの範囲で含んでいる。このような低濃度Li塩水溶液として、例えば、天然の塩湖から得られる塩水等を用いることができる。前記低濃度Li塩水溶液に添加するAl塩は、水酸化アルミニウムを除くAl塩であればどのようなものであってもよく、例えば、塩化アルミニウムを用いることができる。
 次に、STEP2で、Al塩とHPOとが添加された前記低濃度Li塩水溶液のpHを8~14、好ましくは10~11の範囲に調整する。STEP2における前記pH調整は、Al塩とHPOとが添加された前記低濃度Li塩水溶液に、例えば、水酸化ナトリウム(NaOH)又はその水溶液を添加することにより行うことができる。
 このようにすると、Al塩とHPOとが添加された前記低濃度Li塩水溶液中で、リン酸リチウム(LiPO)と水酸化アルミニウム(Al(OH))が生成し、LiPOとAl(OH)との混合物を含むスラリーを得ることができる。
 次に、STEP3で、前記スラリーのpHを2~3の範囲に調整する。STEP2における前記pH調整は、例えば、塩酸または硫酸を添加することにより行うことができる。このようにすると、LiPOとAl(OH)とからリン酸アルミニウム(AlPO)が生成し、沈殿する。
 そこで、次に、STEP4で、前記スラリーから前記AlPOを固液分離により濾別して除去することにより、第2のリチウム塩水溶液としての濾液を得ることができる。このとき、前記AlPOは前記スラリーから生成するので未反応のAl(OH)を微量ながら含んでおり、この結果として前記AlPOの濾過性が良くなり、前記濾別する操作を短時間で行うことができるものと考えられる。
 尚、本実施形態の高純度リチウム塩水溶液の製造方法では、STEP2で得られたLiPOとAl(OH)との混合物を含む前記スラリーは、STEP3で前記スラリーのpHを2~3の範囲に調整する前に、固液分離によりLiPOとAl(OH)とを濾別し、前記低濃度Li塩水溶液よりも少量の水に再分散させることにより濃縮してもよい。前記スラリーを濃縮することにより、STEP4で、該スラリーから前記AlPOを前記濾別する操作をさらに短時間で行うことができる。
 STEP4で得られた前記濾液は、STEP3において塩酸を添加することにより前記pH調整を行う場合には塩化リチウム水溶液であり、STEP3において硫酸を添加することにより前記pH調整を行う場合には硫酸リチウム水溶液である。また、STEP4で分離された微量のAl(OH)を含む前記AlPO(AlPOとAl(OH)との混合物)は、STEP1に戻すことができる。
 次に、STEP5で、STEP4で得られた前記濾液のpHを7~10の範囲に調整する。STEP5における前記pH調整は、例えば、水酸化ナトリウム(NaOH)又はその水溶液を添加することにより行うことができる。このようにすると、前記濾液に含まれる不純物としてのリン及びアルミニウムが、LiPOとAl(OH)として沈殿する。
 そこで、次に、STEP6で、前記濾液からLiPOとAl(OH)とを固液分離により濾別して除去することにより、前記不純物としてのリン及びアルミニウムの濃度が低減された高純度リチウム塩水溶液を得ることができる。STEP6で、濾別されたLiPOとAl(OH)とはリチウムを含んでいるので、STEP2で得られたLiPOとAl(OH)との混合物を含むスラリーに添加することによりリチウムの回収率を向上させることができる。
 本実施形態で得られた前記高純度リチウム塩水溶液は、STEP7で、炭酸ナトリウム等の炭酸塩を添加することにより、炭酸リチウムを得ることができる。
 次に、本発明の実施例及び比較例を示す。
 〔実施例1〕
 本実施例では、まず、イオン交換水1.5Lに塩化リチウム27.5gを添加し、第1のリチウム塩水溶液として、3g/Lのリチウム(Li)を含む低濃度リチウム水溶液を調製した。
 次に、図1に示すSTEP1で、前記低濃度リチウム水溶液に、塩化アルミニウム6水和物54.8gと、85%リン酸26.2gを添加し、液温を60℃に保持して攪拌した。
 次に、図1に示すSTEP2で、塩化アルミニウム6水和物及びリン酸を添加した前記低濃度リチウム水溶液に、48%水酸化ナトリウム水溶液111.2gを添加し、120分間反応させて、pHを10に調整した。この結果、リン酸リチウム(LiPO)と水酸化アルミニウム(Al(OH))との混合物を含む第1のスラリーを得た。
 次に、前記第1のスラリーを、真空ポンプを用いる減圧濾過により固液分離した。具体的には、濾紙直径95mmのブフナー漏斗(有限会社桐山製作所製)と吸引瓶とを用い、濾紙として保留粒子径0.5μmのNo.3濾紙(有限会社桐山製作所製)を用いた。濾別された沈殿物を300mLのイオン交換水で洗浄し、リン酸リチウムと水酸化アルミニウムとの混合物を含む含水沈殿物281gを得た。前記固液分離に要した時間は3分50秒であった。
 次に、前記含水沈殿物131gに、20g/Lのリチウムを含むリチウム水溶液100mLを添加して、攪拌することにより再分散させ、リン酸リチウムと水酸化アルミニウムとの混合物を含む濃縮された第2のスラリーを得た。前記含水沈殿物131gは、リン酸リチウム11g、水酸化アルミニウム8gを含む。なお、本実施例において、各元素の濃度はICP発光分光分析装置(株式会社パーキンエルマージャパン製)を用いて分析した。
 次に、図1に示すSTEP3で、前記第2のスラリーの液温を60℃に保持して、36%塩酸29.1gを添加し、1時間保持することにより、pHを2.5に調整した。この結果、リン酸アルミニウム(AlPO)と水酸化アルミニウム(Al(OH))との混合物を含む第3のスラリーを得た。
 次に、図1に示すSTEP4で、前記第3のスラリーを、真空ポンプを用いる減圧濾過により固液分離した。具体的には、濾紙直径60mmのブフナー漏斗(有限会社桐山製作所製)と吸引瓶とを用い、濾紙として保留粒子径0.5μmのNo.3濾紙(有限会社桐山製作所製)を用いた。濾別された沈殿物を60mLのイオン交換水で洗浄し、リン酸アルミニウムと水酸化アルミニウムとの混合物を含む含水沈殿物68gと、第2のリチウム塩水溶液としての濾液200mLを得た。前記第3のスラリーから前記リン酸アルミニウムと水酸化アルミニウムとの混合物を含む含水沈殿物を濾別する前記固液分離に要した時間は6分5秒であった。
 前記濾液は、18g/Lのリチウムと、0.3g/Lのリン(P)と、20mg/L未満のアルミニウム(Al)とを含んでいた。
 次に、図1に示すSTEP5で、前記濾液の液温を60℃に保持して、48%水酸化ナトリウム水溶液0.1gを添加し、pHを7.9に調整した。そして、さらに30分間攪拌することにより、リン酸リチウムと水酸化アルミニウムとの混合物を含む沈殿を得た。
 次に、図1に示すSTEP6で、前記沈殿を濾別することにより、17.6g/Lのリチウムを含み、リンとアルミニウムとの濃度が1mg/L未満である高純度リチウム塩水溶液を得た。
 〔実施例2〕
 本実施例では、リン酸リチウムと水酸化アルミニウムとの混合物を含む濃縮された第2のスラリーに、図1に示すSTEP3で、36%塩酸17.9gを添加し、pHを4.3に調整した以外は、実施例1と全く同一にして高純度リチウム塩水溶液を得た。
 本実施例では、図1に示すSTEP4で、前記第3のスラリーから前記リン酸アルミニウムと水酸化アルミニウムとの混合物を含む含水沈殿物を濾別する前記固液分離に要した時間は5分28秒であった。
 〔比較例1〕
 本比較例では、イオン交換水112gに、リン酸三リチウム(LiPO)11gと、塩化アルミニウム6水和物24.6gとを添加し、さらに61%硝酸9gを添加して、リン酸リチウムと塩化アルミニウム(AlCl)との混合物を含む第4のスラリーを得た。本比較例で得られた前記第4のスラリーは、実施例1の第2のスラリーに対応するスラリーである。
 次に、図1に示すSTEP3で、本比較例で得られた前記第4のスラリーの液温を60℃に保持して、48%水酸化ナトリウム水溶液11.6gを添加し、1時間攪拌することにより、pHを4.3に調整した。この結果、リン酸アルミニウム(AlPO)を含む第5のスラリーを得た。
 次に、図1に示すSTEP4で、前記第5のスラリーを、実施例1における第3のスラリーの場合と全く同一にして、固液分離し、リン酸アルミニウムを含む含水沈殿物90.9gと、第2のリチウム塩水溶液としての濾液200mLを得た。
 本比較例では、図1に示すSTEP4で、前記第5のスラリーから前記リン酸アルミニウムを含む含水沈殿物を濾別する前記固液分離に要した時間は1時間24分であった。また、前記濾液は、14.5g/Lのリチウムと、30mg/Lのリンと、1mg/L未満のアルミニウムとを含んでいた。
 〔比較例2〕
 本比較例では、イオン交換水95gに、リン酸三リチウム(LiPO)11gと、硝酸アルミニウム9水和物38.2gとを添加し、さらに61%硝酸9gを添加して、リン酸リチウムと塩化アルミニウム(AlCl)との混合物を含む第4のスラリーを得た。
 次に、図1に示すSTEP3で、本比較例で得られた前記第4のスラリーの液温を60℃に保持して、48%水酸化ナトリウム水溶液8.8gを添加し、1時間攪拌することにより、pHを2.5に調整した。この結果、リン酸アルミニウム(AlPO)を含む第5のスラリーを得た。
 次に、図1に示すSTEP4で、前記第5のスラリーを、実施例1における第3のスラリーの場合と全く同一にして、固液分離し、リン酸アルミニウムを含む含水沈殿物68gと、第2のリチウム塩水溶液としての濾液215mLを得た。
 本比較例では、図1に示すSTEP4で、前記第5のスラリーから前記リン酸アルミニウムを含む含水沈殿物を濾別する前記固液分離に要した時間は4時間3分であった。また、前記濾液は、16.2g/Lのリチウムと、100mg/Lのリンと、200mg/Lのアルミニウムとを含んでいた。
 以上から、リン酸アルミニウムの沈殿を得る際に水酸化アルミニウムを用いる実施例1及び実施例2の高純度リチウム塩水溶液の製造方法によれば、前記水酸化アルミニウムに代えて塩化アルミニウムを用いる比較例1、硝酸アルミニウムを用いる比較例2に対して、リン酸アルミニウムの沈殿を濾別する操作を短時間で行うことができることが明らかである。
 符号なし。

Claims (6)

  1.  リチウム塩をリチウムとして0.1~70g/Lの範囲で含み、原料となる第1のリチウム塩水溶液から得られるリン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーのpHを2~3の範囲に調整し、リン酸アルミニウムの沈殿を得る工程と、
     該リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーから該リン酸アルミニウムの沈殿を濾別して除去し、第2のリチウム塩水溶液を得る工程と、
     前記第2のリチウム塩水溶液を精製し、高純度リチウム塩水溶液を得る工程とを備えることを特徴とする高純度リチウム塩水溶液の製造方法。
  2.  請求項1記載の高純度リチウム塩水溶液の製造方法において、前記第1のリチウム塩水溶液に水酸化アルミニウムを除くアルミニウム塩とリン酸とを添加し、pHを8~14の範囲に調整することにより前記リン酸リチウムと水酸化アルミニウムとの混合物を得ることを特徴とする高純度リチウム塩水溶液の製造方法。
  3.  請求項2記載の高純度リチウム塩水溶液の製造方法において、前記第1のリチウム塩水溶液に、前記リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーから濾別された前記リン酸アルミニウムの沈殿を添加することを特徴とする高純度リチウム塩水溶液の製造方法。
  4.  請求項1~請求項3のいずれか1項記載の高純度リチウム塩水溶液の製造方法において、前記第1のリチウム塩水溶液から得られる前記リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーのpHを2~3の範囲に調整する前に、該リン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーから該リン酸リチウムと水酸化アルミニウムとの混合物を濾別し、濾別された該リン酸リチウムと水酸化アルミニウムとの混合物を該第1のリチウム塩水溶液よりも少量の水に分散させて、濃縮されたリン酸リチウムと水酸化アルミニウムとの混合物を含むスラリーを得ることを特徴とする高純度リチウム塩水溶液の製造方法。
  5.  請求項1~請求項4のいずれか1項記載の高純度リチウム塩水溶液の製造方法において、前記第2のリチウム塩水溶液の精製は、該第2のリチウム塩水溶液のpHを7~10の範囲に調整し、生成するリン酸リチウム及び水酸化アルミニウムの沈殿を濾別することにより行うことを特徴とする高純度リチウム塩水溶液の製造方法。
  6.  請求項5記載の高純度リチウム塩水溶液の製造方法において、前記第2のリチウム塩水溶液から濾別されたリン酸リチウム及び水酸化アルミニウムの沈殿を、前記第1のリチウム塩水溶液から得られるリン酸リチウムと水酸化アルミニウムとの混合物に添加することを特徴とする高純度リチウム塩水溶液の製造方法。
PCT/JP2021/035688 2020-10-02 2021-09-28 高純度リチウム塩水溶液の製造方法 WO2022071335A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2021352040A AU2021352040B2 (en) 2020-10-02 2021-09-28 Method for producing high-purity aqueous lithium salt solution
EP21875636.9A EP4144694A4 (en) 2020-10-02 2021-09-28 METHOD FOR PRODUCING A HIGH PURITY AQUEOUS LITHIUM SALT SOLUTION
US17/928,436 US20230145941A1 (en) 2020-10-02 2021-09-28 Method for producing high-purity aqueous lithium salt solution
KR1020237013476A KR20230070294A (ko) 2020-10-02 2021-09-28 고순도 리튬염 수용액의 제조 방법
CN202180040232.8A CN115667145B (zh) 2020-10-02 2021-09-28 高纯度锂盐水溶液的制造方法
CA3180852A CA3180852A1 (en) 2020-10-02 2021-09-28 Method for producing high-purity aqueous lithium salt solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020167402A JP7166653B2 (ja) 2020-10-02 2020-10-02 高純度リチウム塩水溶液の製造方法
JP2020-167402 2020-10-02

Publications (1)

Publication Number Publication Date
WO2022071335A1 true WO2022071335A1 (ja) 2022-04-07

Family

ID=80950438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035688 WO2022071335A1 (ja) 2020-10-02 2021-09-28 高純度リチウム塩水溶液の製造方法

Country Status (9)

Country Link
US (1) US20230145941A1 (ja)
EP (1) EP4144694A4 (ja)
JP (2) JP7166653B2 (ja)
KR (1) KR20230070294A (ja)
CN (1) CN115667145B (ja)
AU (1) AU2021352040B2 (ja)
CA (1) CA3180852A1 (ja)
CL (1) CL2022003422A1 (ja)
WO (1) WO2022071335A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054452A1 (ja) * 2021-09-30 2023-04-06 株式会社アサカ理研 リンの回収方法
WO2023140084A1 (ja) * 2022-01-21 2023-07-27 株式会社アサカ理研 リチウム塩を含む水性液からリチウムを回収する方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020892A (ja) * 2009-07-15 2011-02-03 Ryoko Lime Industry Co Ltd ろ過・沈降性に優れたアモルファスリン酸アルミニウムの製造方法
WO2018184876A1 (en) * 2017-04-07 2018-10-11 Umicore Process for the recovery of lithium
CN108675323A (zh) 2018-05-23 2018-10-19 赣州有色冶金研究所 一种低品位磷酸锂酸性转化法制备电池用碳酸锂的方法
CN109052436A (zh) * 2018-09-21 2018-12-21 深圳市德方纳米科技股份有限公司 一种由锂磷铝石制备含锂化合物的方法
CN110482511A (zh) * 2019-07-12 2019-11-22 湖南大学 一种废旧磷酸铁锂电池正极材料的回收方法
CN111137869A (zh) * 2019-12-25 2020-05-12 佛山市德方纳米科技有限公司 磷酸铁锂的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008302364A1 (en) * 2007-09-17 2009-03-26 Areva Federal Services Llc A process for removal of aluminum oxides from aqueous media
CN105600765A (zh) * 2016-04-04 2016-05-25 王嘉兴 一种磷酸铝的制备方法
CN108862227B (zh) * 2018-09-21 2022-11-11 深圳市德方纳米科技股份有限公司 一种从锂磷铝石中提取锂并制备含铁的磷酸盐的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020892A (ja) * 2009-07-15 2011-02-03 Ryoko Lime Industry Co Ltd ろ過・沈降性に優れたアモルファスリン酸アルミニウムの製造方法
WO2018184876A1 (en) * 2017-04-07 2018-10-11 Umicore Process for the recovery of lithium
CN108675323A (zh) 2018-05-23 2018-10-19 赣州有色冶金研究所 一种低品位磷酸锂酸性转化法制备电池用碳酸锂的方法
CN109052436A (zh) * 2018-09-21 2018-12-21 深圳市德方纳米科技股份有限公司 一种由锂磷铝石制备含锂化合物的方法
CN110482511A (zh) * 2019-07-12 2019-11-22 湖南大学 一种废旧磷酸铁锂电池正极材料的回收方法
CN111137869A (zh) * 2019-12-25 2020-05-12 佛山市德方纳米科技有限公司 磷酸铁锂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4144694A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054452A1 (ja) * 2021-09-30 2023-04-06 株式会社アサカ理研 リンの回収方法
WO2023140084A1 (ja) * 2022-01-21 2023-07-27 株式会社アサカ理研 リチウム塩を含む水性液からリチウムを回収する方法

Also Published As

Publication number Publication date
CN115667145A (zh) 2023-01-31
EP4144694A1 (en) 2023-03-08
CL2022003422A1 (es) 2023-06-02
JP7166653B2 (ja) 2022-11-08
JP2022059672A (ja) 2022-04-14
US20230145941A1 (en) 2023-05-11
CA3180852A1 (en) 2022-04-07
EP4144694A4 (en) 2024-06-12
CN115667145B (zh) 2023-12-12
JP2022186836A (ja) 2022-12-15
AU2021352040A1 (en) 2023-05-11
KR20230070294A (ko) 2023-05-22
AU2021352040B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2022071335A1 (ja) 高純度リチウム塩水溶液の製造方法
US9988280B2 (en) Production of high purity lithium compounds directly from lithium containing brines
EP3393968B1 (en) Process for producing a phosphorus product from wastewater
KR20120063424A (ko) 염수로부터 고순도의 인산리튬 추출 방법
CN108862335B (zh) 一种用磷酸锂制备碳酸锂的方法
AU2016297289B2 (en) Effluent treatment process - pH refinement for sulphate removal
CN112299451A (zh) 一种通过磷酸锂的形式从含锂低镁卤水中制备氢氧化锂的方法
CN104973628A (zh) 净化钨酸钠溶液的方法
JP2019526523A (ja) 塩化リチウムの製造方法および炭酸リチウムの製造方法
CN111235591B (zh) 一种由锂辉石硫酸浸出液制备单水氢氧化锂的方法
CN115321736A (zh) 一种草甘膦生产废水的处理方法及含磷废弃物的高值回用
KR101889457B1 (ko) 수산화 리튬 수용액의 제조 방법 및 이를 이용한 탄산 리튬의 제조 방법
CN103038170B (zh) 在氯化物形成的盐溶液中贫化镁和富集锂的方法
KR101946483B1 (ko) 수산화리튬 수용액의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
CN214829679U (zh) 一种氟化铵废盐水资源化利用装置
JP7385976B1 (ja) リチウム塩を含む水性液からリチウムを回収する方法
CN112661335A (zh) 一种氟化铵废盐水资源化利用方法及装置
JP7377569B2 (ja) リンの回収方法
WO2023054452A1 (ja) リンの回収方法
US4946565A (en) Process for the production of alkali metal chlorate
CN118434891A (zh) 从包含锂盐的水性液中回收锂的方法
WO2021140856A1 (ja) 水酸化マグネシウムの製造システム
JPS5841717A (ja) 電解用塩水の精製方法
JPS60166207A (ja) 抽出法リン酸中の硫酸イオン除去法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3180852

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021875636

Country of ref document: EP

Effective date: 20221128

ENP Entry into the national phase

Ref document number: 20237013476

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317031113

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021352040

Country of ref document: AU

Date of ref document: 20210928

Kind code of ref document: A