WO2022071238A1 - 評価対象の評価方法 - Google Patents

評価対象の評価方法 Download PDF

Info

Publication number
WO2022071238A1
WO2022071238A1 PCT/JP2021/035433 JP2021035433W WO2022071238A1 WO 2022071238 A1 WO2022071238 A1 WO 2022071238A1 JP 2021035433 W JP2021035433 W JP 2021035433W WO 2022071238 A1 WO2022071238 A1 WO 2022071238A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaluation
plate
imaging
evaluation target
illumination light
Prior art date
Application number
PCT/JP2021/035433
Other languages
English (en)
French (fr)
Inventor
麻耶 尾崎
良子 松山
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020237013805A priority Critical patent/KR20230078718A/ko
Priority to EP21875540.3A priority patent/EP4224143A1/en
Priority to CN202180064765.XA priority patent/CN116324378A/zh
Priority to JP2022553963A priority patent/JPWO2022071238A1/ja
Priority to US18/028,483 priority patent/US20230358667A1/en
Publication of WO2022071238A1 publication Critical patent/WO2022071238A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/845Objects on a conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1211Correction signals for temperature
    • G01N2201/1212Correction signals for temperature and switch-off from upwarming

Definitions

  • the present invention relates to an evaluation method to be evaluated.
  • Non-Patent Document 1 In recent years, in order to reduce the amount of test specimens and specimens, for example, the Ames test using a plate having a plurality of wells as disclosed in Non-Patent Document 1, Non-Patent Document 2 and Non-Patent Document 3 has been performed. Are known.
  • the evaluation target is evaluated as follows. In each well, the plate holding the evaluation target including the test piece and the sample is irradiated with illumination light, and the plate is imaged. Based on the obtained image, the color of each well is determined, the presence or absence of colonies is detected, and the evaluation target is evaluated. In this case, if the imaging conditions change during imaging of one plate, the accuracy of the evaluation deteriorates, so that the evaluation target cannot be evaluated appropriately.
  • an object of the present invention is to provide an evaluation method for an evaluation target that can appropriately evaluate the evaluation target.
  • the evaluation method of the evaluation target according to the present invention includes an irradiation step of irradiating an evaluation plate in which the evaluation target is held in a plurality of wells provided in the plate with illumination light from a light source, and an irradiation step of irradiating the evaluation plate with the illumination light in the irradiation step.
  • An imaging step of imaging the evaluation plate while irradiating and an evaluation step of evaluating the evaluation target based on the image of the evaluation plate obtained in the imaging step are provided, and the evaluation target is a test piece.
  • the plurality of wells include, and have a sample well holding the evaluation target including the sample, and in the imaging step, in less than 120 seconds from the start of irradiation of the evaluation plate with the illumination light in the irradiation step.
  • the imaging of the entire evaluation plate is completed, the imaging of the entire evaluation plate in the imaging step is completed, and then the irradiation of the illumination light is completed.
  • the evaluation plate is imaged while irradiating the evaluation plate with illumination light. In less than 120 seconds from the start of irradiation of the illumination light, the entire imaging of the evaluation plate is completed. Therefore, it is possible to suppress the wavelength shift of the illumination light (change in the brightness of each wavelength component) due to the temperature change of the light source that outputs the illumination light. As a result, the evaluation target can be evaluated accurately.
  • the imaging of the entire evaluation plate may be completed within 12 seconds or more and 35 seconds or less from the start of irradiation of the illumination light on the evaluation plate in the irradiation step.
  • the wavelength shift due to the temperature change of the light source can be further reduced, so that the evaluation target can be evaluated more accurately.
  • the illumination light may be light having a wavelength of 520 nm or more. In this case, it is possible to reduce the luminance dispersion for each wavelength component due to the temperature change of the light source.
  • the evaluation plate may be imaged while being conveyed.
  • the illumination light may be the light output from the LED.
  • FIG. 1 is a plan view of an evaluation plate used in the evaluation method of the evaluation target according to the embodiment.
  • FIG. 2 is a schematic cross-sectional view of the well.
  • FIG. 3 is a schematic diagram of an evaluation system used in the evaluation method of the evaluation target according to the embodiment.
  • FIG. 4 is a flowchart of an evaluation method for an evaluation target according to an embodiment.
  • FIG. 5 is a drawing illustrating the device used in the verification experiment.
  • FIG. 6 shows the result of the verification experiment, and is a graph showing the relationship between the wavelength and the brightness for each elapsed time from the time when the illumination light is output.
  • FIG. 7 shows the results of the verification experiment, and is a graph showing the relationship between the wavelength and the standard deviation for each elapsed time from the time when the illumination light is output.
  • FIG. 8 shows the results of the verification experiment, and is a graph showing the temperature and luminance difference with respect to the elapsed time from the time when the illumination light is output.
  • the outline of the Ames test used in this embodiment will be described.
  • the Ames test cells that have been genetically engineered on amino acid synthesis genes and have been modified so that amino acid synthesis is not possible are used as test specimens.
  • a sample is added to the above cells. Then, it is cultured under certain conditions. When the sample causes a mutation in the amino acid synthesis gene of the cell, the cell is able to synthesize the amino acid again. Therefore, genotoxicity is evaluated by confirming the presence or absence of cell proliferation to determine whether or not a mutation has occurred.
  • the Ames test usually involves a cytotoxicity assessment to confirm whether the sample is toxic to cells.
  • test piece is a cell unless otherwise noted.
  • FIG. 1 is a plan view of the evaluation plate 10 used in the evaluation method of the evaluation target according to the embodiment.
  • the evaluation plate 10 has a plate 11.
  • the plate 11 has a plurality of wells 13.
  • the plate 11 has 384 wells 13 arranged in two dimensions (16 ⁇ 24).
  • the shape of the plate 11 is rectangular.
  • an example of the length of the long side of the plate 11 is 127.0 mm to 130.0 mm
  • an example of the length of the short side of the plate 11 is 85.0 mm to 87.0 mm.
  • the first to Nth sections are virtually set on the plate 11.
  • N is an integer of 2 or more
  • the eight compartments are hereinafter referred to as compartments Se1 to Se8.
  • Sections Se1 to Se8 are areas containing 4 ⁇ 12 (48) wells 13.
  • Section Se1 is a solvent control section and compartment Se8 is a positive control section.
  • the solvent control compartment functions as a negative control compartment.
  • the well 13 is a recess formed in the plate 11.
  • Well 13 holds the evaluation target 14.
  • evaluation targets 14a to 14h When the evaluation target 14 held in the wells 13 belonging to each of the compartments Se1 to Se8 is described separately, they are referred to as evaluation targets 14a to 14h.
  • the evaluation targets 14a to 14h have a culture medium in which cells are dispersed (or suspended). The same amount of culture medium is retained in all 384 wells 13. The amount of cells in the culture medium retained in the well 13 is also the same between the wells 13. Examples of cells are microorganisms having amino acid requirement mutations, cells of biological origin, and the like. Microorganisms with amino acid-requiring mutations include histidine-requiring Salmonella typhi (eg, TA1535, TA1537, TA97, TA97a, TA98, TA100, TA92, TA94, TA102, TA104, TA1538, TA7001, TA7002, TA7003, TA7004, TA7005.
  • Salmonella typhi eg, TA1535, TA1537, TA97, TA97a, TA98, TA100, TA92, TA94, TA102, TA104, TA1538, TA7001, TA7002, TA7003,
  • Organism-derived cells include, for example, mammalian-derived cultured cells, other vertebrate-derived cells, insect-derived cells, and the like.
  • the cells contained in the evaluation targets 14a to 14h may be cells in which a plurality of types of cells are mixed.
  • An example of a culture medium is a phosphate buffer containing a small amount of amino acids.
  • the evaluation targets 14a to 14h further include an indicator.
  • the amount of the indicator is the same for the evaluation targets 14a to 14h (that is, the same for all wells 13).
  • the indicator is a pH indicator.
  • An example of a pH indicator is bromocresol purple.
  • the color of the pH indicator is purple for negative results (no mutations in the cells) and yellow for positive results (mutations in cells). ..
  • the evaluation targets 14b to 14g further include a culture solution in which the cells are dispersed and an indicator, as well as a solution in which the sample is dissolved or uniformly dispersed in a solvent (sample solution). Therefore, the wells 13 of the compartments Se2 to Se7 that hold the evaluation targets 14b to 14g are wells that hold the sample (sample well).
  • the sample is a substance (eg, a chemical substance) for which safety (genotoxicity in this embodiment) should be evaluated.
  • the solvent include water, dimethyl sulfoxide (DMSO) and the like.
  • the evaluation targets 14b to 14g are the same except that the concentration of the sample is different.
  • the amount of the sample solution in the evaluation target 14b of all the wells 13 belonging to the compartment Se2 is the same. The same applies to the compartments Se3 to Se7.
  • the evaluation target 14a contains a solvent control solution in addition to the culture solution containing the above cells and the indicator. Therefore, the well 13 of the compartment Se1 holding the evaluation target 14a is a solvent control well.
  • the solvent control solution is the solvent used for the sample solution. However, the solvent control solution may be any liquid that does not affect the cells. Examples of the solvent control solution are water and DMSO.
  • the amount of the solvent control solution in the evaluation target 14a is the same in all the wells 13 belonging to the compartment Se1.
  • the evaluation target 14h contains a positive control solution in addition to the culture solution containing the above cells and the indicator. Therefore, the well 13 of the compartment Se8 holding the evaluation target 14h is a positive control well.
  • a positive control solution is a solution containing a positive control compound and a solvent.
  • the positive control compound may be any compound known to be positive for cells. Examples of positive control compounds include 9AA (9-Aminoacridine), 4-NQO (4-Nitroquinoline-N-oxide), 2-AA (2-Aminoanthracene) and 2-NF (2-Nitrofluorene).
  • the solvent does not have to be the same as the solvent used for the sample solution. Examples of the solvent include water, DMSO and the like. The amount of positive control solution retained in all wells 13 belonging to the positive compartment Se8 is the same.
  • the evaluation targets 14a to 14h further include S9mix.
  • S9mix is a liquid obtained by adding a coenzyme to an extract of animal liver.
  • FIG. 2 is a schematic cross-sectional view of the well.
  • FIG. 2 schematically shows the evaluation target 14.
  • the plan view shape of the well 13 (the shape seen from the depth direction of the well 13) is a square.
  • An example of the length of one side of the opening of the well 13 is 3.0 mm to 4.0 mm.
  • An example of the depth of the well 13 is 9.0 mm to 15.0 mm. Plates 11 with wells of this size are known as microplates.
  • the well 13 tapers towards the bottom 13a.
  • the evaluation plate 10 is a plate in which the evaluation target 14 corresponding to each well 13 of the plate 11 is injected, and after a certain culture treatment is performed, the safety of the evaluation target 14 can be evaluated.
  • observation device 30 used for the evaluation method of the evaluation target of the present embodiment will be described with reference to FIG.
  • the observation device 30 includes a stage (plate holding unit) 31, a lighting device (light source) 32, and an image pickup unit 33.
  • the stage 31 supports the evaluation plate 10.
  • the evaluation plate 10 is arranged on the stage 31 so that the bottom portion of the evaluation plate 10 (the bottom portion 13a side of the well 13) is located on the stage 31 side.
  • the stage 31 is configured to pass the illumination light L output from the illumination device 32 toward the image pickup unit 33.
  • the material of the stage 31 may have light transmission, and an opening or a window portion that transmits the illumination light L is formed in the region corresponding to the region where the 384 wells 13 are formed in the evaluation plate 10. It may have been done.
  • the stage 31 is configured to be able to be conveyed in the direction of the white arrow in FIG.
  • the lighting device 32 is arranged on the evaluation plate 10 (opposite to the stage 31 when viewed from the evaluation plate 10).
  • the lighting device 32 irradiates the evaluation plate 10 with the illumination light L.
  • An example of the lighting device 32 is LED lighting, and an example of the illumination light L is light having a wavelength of 400 nm to 780 nm. In one embodiment, the illumination light L is light having a wavelength of 520 nm or more.
  • the imaging unit 33 receives the illumination light L transmitted through the evaluation plate 10 and images the evaluation plate 10.
  • the image pickup unit 33 has an image pickup device 33a and a light collection unit 33b.
  • Examples of the imager 33a include a two-dimensional sensor (or camera) and a line sensor.
  • Examples of two-dimensional sensors are a CCD camera and a CMOS camera.
  • the condensing unit 33b condenses the illumination light L and incidents it on the imager 33a.
  • the light collector 33b includes at least one lens.
  • the shooting time is less than 120 seconds and the resolution of the imager 33a is 60 um / frame or more
  • the transport speed is 1.17 mm / s or more
  • the imager 33a having a frame rate of 19.4 fps or more is used for evaluation.
  • the evaluation plate 10 can be imaged as suitable.
  • the shooting time is 12 seconds or more and less than 120 seconds and the resolution of the imager 33a is 8 um / frame to 60 um / frame
  • the transport speed is 19.4 fps or more if it is 1.17 mm / s to 11.7 mm / s.
  • the imager 33a having a frame rate can take an image of the evaluation plate 10 so as to be suitable for evaluation.
  • the transport speed has a frame rate of 160 fps or more if the image transfer speed is 4 mm / s to 11.7 mm / s.
  • the imager 33a can take an image of the evaluation plate 10 so as to be suitable for evaluation.
  • a run-up period (for example, 30 mm) may be provided.
  • FIG. 4 is a flowchart of the evaluation method of the evaluation target according to the present embodiment. As shown in FIG. 4, the lighting device 32 is turned on and the evaluation plate 10 is irradiated with the illumination light L (irradiation step S01).
  • the evaluation plate 10 irradiated with the illumination light L is imaged by the image pickup unit 33 (imaging step S02).
  • the imaging step S02 the entire imaging of the evaluation plate 10 is completed in less than 120 seconds from the start of irradiation of the illumination light L in the irradiation step S01. It is preferable to finish the whole imaging of the evaluation plate 10 in 12 seconds or more and 60 seconds or less from the start of irradiation of the illumination light L, and it is more preferable to finish the whole imaging of the evaluation plate 10 in 12 seconds or more and 35 seconds or less. ..
  • the irradiation of the illumination light L is stopped.
  • the time from the start of irradiation of the illumination light L to the end of imaging of the entire evaluation plate 10 is also referred to as “imaging time”.
  • the imaging region of the imaging unit 33 is smaller than the size of the evaluation plate 10, the entire evaluation plate 10 cannot be imaged in one imaging.
  • the evaluation plate 10 is imaged a plurality of times so that the partial images of the evaluation plate 10 are combined to form the entire image of the evaluation plate 10.
  • the imaging time is the time for completing the plurality of imaging of the evaluation plate 10 so that the entire image of the evaluation plate 10 is formed.
  • the evaluation target 14 is evaluated based on the image captured by the image pickup unit 33 (evaluation step S03).
  • evaluation step S03 at least one of the genotoxicity of the sample and the cytotoxicity of the sample is evaluated.
  • the genotoxicity and cytotoxicity evaluation itself may be carried out according to the evaluation method of the evaluation target in the Ames test.
  • the genotoxicity evaluation In the present embodiment, when the sample has genotoxicity to the cells contained in the evaluation target 14, the color of the indicator changes from purple to yellow as a positive result. Therefore, the genotoxicity of the sample can be evaluated by determining the color of each well 13 (specifically, the color of the evaluation target 14 held in each well 13) in the image obtained in the imaging step S02. . At this time, the colors of the wells 13 in the compartment Se1 (solvent control compartment or the negative control compartment) and the wells 13 in the compartment Se8 (positive control compartment) may be used as the evaluation criteria.
  • the sample has genotoxicity to the cells contained in the evaluation target 14, colonies may occur. That is, the case where a colony is detected corresponds to a positive result. Therefore, the genotoxicity of the sample can be evaluated by counting the number of wells 13 having the colonies. At this time, the state of the wells 13 in the compartment Se1 and the wells 13 in the compartment Se8 (presence or absence of colonies) may be used as the evaluation criteria.
  • the state (sample concentration, etc.) of the evaluation target 14 held in the plurality of wells 13 in each section Se1 to Se8 is the same. Therefore, when evaluating the evaluation target 14, the colors (or states) of the plurality of wells 13 included in each of the sections Se1 to Se8 may be comprehensively determined.
  • the transparency of the well 13 (specifically, the transparency of the evaluation target 14) changes due to the death of the cells or the like. Therefore, the cytotoxicity of the sample can be evaluated based on the transparency of the well.
  • the transparency of the well 13 in the compartment Se1 solvent control compartment or negative control compartment
  • the transparency of the well 13 (specifically, the transparency of the evaluation target 14) changes. Therefore, it is possible to evaluate the presence or absence of precipitation of the sample based on the above transparency.
  • the cytotoxicity of the sample can be evaluated based on the presence or absence of foreign matter in the well.
  • the well 13 (presence or absence of foreign matter) in the section Se1 may be used as the evaluation standard.
  • the state (sample concentration, etc.) of the evaluation target 14 held in the plurality of wells 13 in each section Se1 to Se8 is the same. Therefore, when evaluating the evaluation target 14, the transparency (or state) of the plurality of wells 13 included in each of the sections Se1 to Se8 may be comprehensively determined.
  • the color determination, colony detection, transparency determination, foreign substance detection, and the like may be performed by the evaluator visually observing the image of the evaluation plate 10 acquired by the image pickup unit 33, or by performing image analysis. You may go.
  • the evaluation method to be evaluated may be applied to at least one evaluation plate 10 (for example, the second and subsequent evaluation plates 10). ..
  • the evaluation plate 10 is imaged while irradiating the evaluation plate 10 with the illumination light L. At that time, the entire image pickup of the evaluation plate 10 is completed in less than 120 seconds from the start of lighting of the lighting device 32 (that is, the time when the irradiation of the illumination light L is started). Within 120 seconds from the start of lighting of the lighting device 32, the wavelength shift of the illumination light L (change in brightness of each wavelength component) due to the temperature change of the lighting device 32 can be suppressed.
  • the image pickup of the evaluation plate 10 is started.
  • the color, state, and the like of the evaluation target 14 may appear to change due to changes in the imaging conditions between the region imaged in the stage and the region imaged at the end of imaging. As a result, the evaluation target 14 cannot be evaluated accurately.
  • the wavelength shift of the lighting light L due to the temperature change of the lighting device 32 is suppressed. can.
  • the time (imaging time) from the start of lighting of the lighting device 32 to the end of imaging of the entire evaluation plate 10 may be 60 seconds or less, or 35 seconds or less.
  • the imaging time may be longer than 0 seconds, may be 5 seconds or longer, or may be 12 seconds or longer.
  • the transport speed can be set sufficiently slow with respect to the frame rate of the imager 33a, so that the image resolution is increased and it is easy to detect colonies and foreign substances having a certain size (for example, 60 ⁇ m). Therefore, the imaging time may be 12 seconds or more and less than 120 seconds, 12 seconds or more and 60 seconds or less, or 12 seconds or more and 35 seconds or less.
  • the resolution and transport speed of the imager 33a used in the imaging step S03 take into consideration the size of the evaluation plate 10 and the imaging time in order to appropriately detect colonies and foreign substances having a certain size (for example, 60 ⁇ m). It may be decided.
  • the evaluation target 14 can be evaluated more accurately.
  • the image pickup unit 42 was arranged to face the lighting device 41.
  • the lighting device 41 was a surface light source device using LEDs, and was a surface light source device (KDB-100 manufactured by KOS21) that outputs illumination light L having a wavelength of 400 to 700 nm.
  • a temperature sensor 43 was attached to the output surface of the lighting device 41.
  • the temperature sensor 43 was AD-5625 manufactured by AND.
  • the image pickup unit 42 had an image pickup unit 42a and a light collection unit 42b attached to the image pickup unit 42a.
  • the imager 42a was a hyperspectral camera (Pika-L manufactured by Resonon).
  • the frame rate of the imager 42a was 249.2 Hz, and the exposure time was 3.93 ms.
  • Xenoplan 1.4 / 23-0902 (aperture: F5.6) manufactured by Shneider was used.
  • the luminance spectrum of the illumination light L having a wavelength of 400 nm to 700 nm and the data of the surface temperature of the illumination device 41 were acquired for 30 minutes from the start of lighting of the illumination device 41 (the output start of the illumination light L).
  • the average value of the brightness for each wavelength (hereinafter referred to as "average brightness") at 384 points of the surface illumination is acquired and the temperature data is obtained in 1-minute increments for 10 minutes from the start of lighting of the lighting device 41.
  • the average value (average brightness) of the brightness for each wavelength at 384 points of the surface illumination was acquired and the temperature data was acquired every 5 minutes.
  • the brightness at the start of lighting of the lighting device 41 was used as the reference brightness, and the brightness difference between the reference brightness and the average brightness and the standard deviation ⁇ were calculated for each wavelength.
  • the above 384 locations were the same locations at the acquisition timing of each luminance data.
  • FIG. 6 is a graph showing the change in luminance with respect to the wavelength, and the data after 1 minute, 2 minutes, ..., 30 minutes from the start of lighting are shown by light and shade lines.
  • the horizontal axis of FIG. 6 indicates the wavelength (nm), and the vertical axis indicates the luminance difference between the reference luminance and the average luminance.
  • FIG. 7 is a graph showing the standard deviation with respect to the wavelength, and the data after 1 minute, 2 minutes, ..., 30 minutes from the start of lighting are shown by shade lines.
  • the horizontal axis of FIG. 7 indicates the wavelength (nm), and the vertical axis indicates the standard deviation of the luminance difference.
  • FIG. 8 is a graph showing changes in the temperature of the illuminating device and the brightness of the illuminating light L with respect to the elapsed time from the start of lighting of the illuminating device.
  • the horizontal axis of FIG. 8 shows the elapsed time (minutes) from the start of lighting of the lighting device.
  • the vertical axis on the right side of FIG. 8 shows the temperature, and the vertical axis on the left side shows the difference (luminance difference) between the brightness at the start of irradiation (elapsed time is 0 minutes) and the average brightness of each elapsed time. ing.
  • FIG. 8 is the difference between the average luminance corresponding to the wavelength having the largest luminance difference among the wavelengths of 400 nm to 700 nm shown in FIG. 7 and the reference luminance at each acquisition timing of the luminance data.
  • the alternate long and short dash line in FIG. 8 shows the result of adding 3 ⁇ (standard deviation) to the average brightness difference, and the two-dot chain line shows the result of subtracting 3 ⁇ (standard deviation) from the average brightness difference.
  • the temperature change of the lighting device 41 can be made less than 0.5 ° C. and the change in brightness can be suppressed. ..
  • the evaluation target 14 can be accurately evaluated if it is less than 120 seconds.
  • the temperature change of the lighting device 41 can be made less than 0.1 ° C.
  • the brightness change at 60 seconds from the start of lighting of the lighting device 41 is 0.93 ⁇ 1.10 ⁇ 3 ⁇ ( ⁇ is a standard deviation), and the brightness change can be further suppressed.
  • the evaluation target 14 can be evaluated accurately.
  • the test piece is not limited to cells. Specimens are not limited to chemical substances.
  • the test piece and the sample may be a combination thereof that causes changes that are factors for determining safety evaluation (for example, color change, transparency change, colony generation, foreign substance generation, etc. as illustrated). Just do it.
  • Another example of the specimen is an antibody and another example of a sample is an antigen.
  • the colony is detected as the shape change of the test piece to be evaluated, but the colony is not limited to the case where the shape of the evaluation target changes depending on the test result.
  • the foreign substance is a substance (or structure) different from the above-mentioned shape change of the test piece, for example, a substance (or structure) that was not initially contained, for example, a substance having a clear boundary between the outline and the inside. possible.
  • a foreign substance is a substance (or structure) separated by an interface having a refractive index different from that around the foreign substance. Examples of foreign substances are oil lumps, air bubbles and the like.
  • a reflective optical system may be adopted as the observation device for obtaining the image of the evaluation plate. That is, even if the lighting device and the imaging unit are arranged on the same side with respect to the evaluation plate and the imaging unit receives the irradiation light output from the lighting device and reflected by the evaluation plate, the image of the evaluation plate is acquired. good.
  • the lighting device is not limited to the LED lighting device, and may be a device using a halogen light source or a metal halide light source.
  • the evaluation plate When acquiring an image of the evaluation plate, the evaluation plate may be imaged with the evaluation plate stationary.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Optical Measuring Cells (AREA)

Abstract

一実施形態に係る評価対象の評価方法は、プレートが備える複数のウェルに評価対象が保持された評価プレートに光源から照明光を照射する照射工程(S01)と、照射工程において照明光を評価プレートに照射しながら、評価プレートを撮像する撮像工程(S02)と、撮像工程で得られた評価プレートの画像に基づいて評価対象を評価する評価工程(S03)と、を備え、評価対象は、試験体を含み、複数のウェルは、検体を更に含む評価対象を保持した検体用ウェルを有し、撮像工程では、照射工程で照明光の評価プレートへの照射開始から120秒未満で評価プレート全体の撮像を終了し、撮像工程における評価プレート全体の撮像を終了した後に照明光の照射を終了する。

Description

評価対象の評価方法
 本発明は、評価対象の評価方法に関する。
 生物学的な安全性評価では、試験体に検体を加えて、その変化(例えば、色の変化)を観察することが知られている。例えば、Ames試験では、試験体として、アミノ酸合成遺伝子に対して遺伝子操作が実施され、アミノ酸の合成ができないように改良された細胞が用いられる。そして、Ames試験では、上記細胞に検体を加えた後、一定の条件で培養する。検体によって細胞のアミノ酸合成遺伝子に突然変異が生じると、細胞がアミノ酸を再び合成できるようになる。そのため、突然変異が生じたか否かを、細胞の増殖の有無を確認することによって、評価する。この際、例えば、細胞の増殖によって色が変化する指示薬を用いれば、細胞の増殖を色の変化で評価できる。
 近年、試験体及び検体の量などの低減などのために、例えば、非特許文献1、非特許文献2及び非特許文献3に開示されているような複数のウェルを有するプレートを用いるAmes試験が知られている。
 複数のウェルを有するプレートを用いる場合、たとえば、次のように評価対象の評価が行われる。各ウェルで試験体および検体を含む評価対象を保持した状態のプレートに照明光を照射し、プレートを撮像する。得られた画像に基づいて、各ウェルの色を判定したり、コロニーの有無を検出し、評価対象を評価する。この場合、一つのプレートの撮像中に撮像条件が変化すると、評価の精度が低下するため、評価対象を適切に評価できない。
 そこで、本発明は、評価対象を適切に評価可能な評価対象の評価方法を提供することを目的とする。
 本発明に係る評価対象の評価方法は、プレートが備える複数のウェルに評価対象が保持された評価プレートに光源から照明光を照射する照射工程と、上記照射工程において上記照明光を上記評価プレートに照射しながら、上記評価プレートを撮像する撮像工程と、上記撮像工程で得られた上記評価プレートの画像に基づいて上記評価対象を評価する評価工程と、を備え、上記評価対象は、試験体を含み、上記複数のウェルは、検体を更に含む上記評価対象を保持した検体用ウェルを有し、上記撮像工程では、上記照射工程で上記照明光の上記評価プレートへの照射開始から120秒未満で上記評価プレート全体の撮像を終了し、上記撮像工程における上記評価プレート全体の撮像を終了した後に上記照明光の照射を終了する。
 上記評価対象の評価方法では、評価プレートに照明光を照射しながら評価プレートを撮像する。照明光の照射開始から、120秒未満で、評価プレートの全体の撮像を終了する。そのため、照明光を出力する光源の温度変化に伴う照明光の波長シフト(各波長成分の輝度変化)を抑制できる。その結果、評価対象を正確に評価可能である。
 上記撮像工程では、上記照射工程で上記照明光の上記評価プレートへの照射開始から12秒以上35秒以下で上記評価プレート全体の撮像を終了してもよい。この場合、光源の温度変化に伴う波長シフトをより一層低減できるので、評価対象を一層正確に評価可能である。
 上記照明光は、波長520nm以上の光であってもよい。この場合、光源の温度変化に伴う波長成分毎の輝度分散を低減できる。
 上記撮像工程では、上記評価プレートを搬送しながら上記評価プレートを撮像してもよい。
 上記照明光は、LEDから出力された光であってもよい。
 本発明によれば、評価対象を適切に評価可能な評価対象の評価方法を提供できる。
図1は、一実施形態に係る評価対象の評価方法で使用する評価プレートの平面図である。 図2は、ウェルの断面の模式図である。 図3は、一実施形態に係る評価対象の評価方法で使用する評価システムの模式図である。 図4は、一実施形態に係る評価対象の評価方法のフローチャートである。 図5は、検証実験に使用した装置を説明する図面である。 図6は、検証実験の結果を示しており、照明光を出力した時点からの経過時間毎の波長と輝度との関係を示したグラフである。 図7は、検証実験の結果を示しており、照明光を出力した時点からの経過時間毎の波長と標準偏差との関係を示したグラフである。 図8は、検証実験の結果を示しており、照明光を出力した時点からの経過時間に対する温度および輝度差を示したグラフである。
 以下、図面を参照しながら本発明の実施形態を説明する。同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明のものと必ずしも一致していない。
 本実施形態では、検体の安全性を評価する実施形態を説明する。具体的には、Ames試験を用いて検体の安全性を評価する場合を説明する。
 まず、本実施形態で用いるAmes試験の概要を説明する。Ames試験では、アミノ酸合成遺伝子に対して遺伝子操作が実施され、アミノ酸の合成ができないように改良された細胞を試験体として用いる。Ames試験では上記細胞に、検体を加える。その後、一定の条件で培養する。検体によって細胞のアミノ酸合成遺伝子に突然変異が生じると、細胞がアミノ酸を再び合成できるようになる。そのため、突然変異が生じたか否かを、細胞の増殖の有無を確認することによって、遺伝毒性を評価する。さらに、通常、Ames試験では、検体が細胞に対して毒性を有するか否かを確認する細胞毒性評価が行われる。
 本実施形態では、Ames試験に適用可能な評価対象の評価方法を説明する。以下のAmes試験に基づいた実施形態の説明では、断らない限り、試験体は細胞である。
 図1は、一実施形態に係る評価対象の評価方法で使用する評価プレート10の平面図である。評価プレート10は、プレート(plate)11を有する。プレート11は、複数のウェル13を有する。本実施形態では、プレート11は、2次元(16×24)に配列された384個のウェル13を有する。プレート11を厚さ方向からみた場合、プレート11の形状は、長方形である。この場合、プレート11の長辺の長さの例は、127.0mm~130.0mmであり、プレート11の短辺の長さの例は、85.0mm~87.0mmである。
 プレート11には、第1~第Nの区画(Nは2以上の整数)が仮想的に設定されている。本実施形態では、図1に示したように、Nが8の場合、すなわち、8個の区画が仮想的に設定されている場合を説明する。8個の区画を、以下、区画Se1~Se8と称す。区画Se1~Se8は、4×12個(48個)のウェル13を含む領域である。区画Se1は、溶媒対照区画であり、区画Se8は、陽性対照区画である。溶媒対照区画は、陰性対照区画として機能する。
 ウェル(well)13は、プレート11に形成された凹部(窪み)である。ウェル13は、評価対象14を保持する。区画Se1~Se8のそれぞれに属するウェル13に保持される評価対象14を区別して説明する場合、評価対象14a~14hと称す。
 評価対象14a~14hは、細胞が分散された(或いは懸濁された)培養液を有する。384個の全てのウェル13には、同じ量の培養液が保持されている。ウェル13で保持される培養液内の細胞の量もウェル13間で同じである。細胞の例は、アミノ酸要求性変異を有する微生物、生物由来の細胞等である。アミノ酸要求性変異を有する微生物は、ヒスチジン要求性のネズミチフス菌(たとえば、TA1535、TA1537、TA97、TA97a、TA98、TA100、TA92、TA94、TA102、TA104、TA1538、TA7001、TA7002、TA7003、TA7004、TA7005,TA7006、各種YG株など)、トリプトファン要求性の大腸菌(たとえば、WP2、 WP2uvrA、WP2/pKM101、WP2uvrA/pKM101など)、その他の微生物などである。生物由来の細胞は、たとえば、哺乳動物由来の培養細胞、その他脊椎動物由来の細胞、昆虫由来の細胞などである。評価対象14a~14hに含まれる細胞は、複数の種類の細胞が混合された細胞でもよい。培養液の例は、アミノ酸をわずかに含むリン酸緩衝液である。
 評価対象14a~14hは、指示薬を更に含む。指示薬の量は、評価対象14a~14hで同じ(すなわち全てのウェル13で同じ)である。本実施形態において、指示薬は、pH指示薬である。pH指示薬の例は、ブロモクレゾールパープルである。本実施形態では、pH指示薬の色は、陰性結果の場合(細胞に突然変異が生じなかった場合)、紫色であり、陽性結果の場合(細胞に突然変異が生じた場合)は、黄色である。
 評価対象14b~14gは、上記細胞が分散された培養液と指示薬の他、検体が溶媒に溶解または均一に分散された液(検体溶液)を更に含む。よって、評価対象14b~14gを保持する区画Se2~Se7のウェル13は検体を保持するウェル(検体用ウェル)である。検体は、安全性(本実施形態では遺伝毒性)が評価されるべき物質(例えば化学物質)である。溶媒としては、水、ジメチルスルフォキシド(DMSO)等が挙げられる。評価対象14b~14gは、検体の濃度が異なる点以外は、同じである。区画Se2に属する全てのウェル13の評価対象14b内の検体溶液の量は同じである。区画Se3~区画Se7においても同様である。
 評価対象14aは、上記細胞を含む培養液及び指示薬の他、溶媒対照液を含む。よって、評価対象14aを保持する区画Se1のウェル13は溶媒対照ウェルである。溶媒対照液は、検体溶液に使用した溶媒である。ただし、溶媒対照液は、細胞に影響を与えない液体であればよい。溶媒対照液としては、例えば、水、DMSOである。区画Se1に属する全てのウェル13において評価対象14a内の溶媒対照液の量は同じである。
 評価対象14hは、上記細胞を含む培養液及び指示薬の他、陽性対照液を含む。よって、評価対象14hを保持する区画Se8のウェル13は陽性対照ウェルである。陽性対照液は、陽性対照化合物と溶媒とを含む溶液である。陽性対照化合物は、細胞に対して陽性として知られる化合物であればよい。陽性対照化合物の例は、9AA(9-Aminoacridine)、4-NQO(4-Nitroquinoline-N-oxide)、2-AA(2-Aminoanthracene)及び2-NF(2-Nitrofluorene)を含む。溶媒は、検体溶液に使用した溶媒と同じでなくてもよい。溶媒としては、水、DMSO等が挙げられる。陽性区画である区画Se8に属する全てのウェル13で保持される陽性対照液の量は同じである。
 検体の代謝活性化の有無による影響を調べる場合、評価対象14a~14hは、更に、S9mixを含む。S9mixは、動物の肝臓の抽出物に補酵素を加えた液体である。
 図1及び図2を参照して、ウェル13の構成を更に説明する。図2は、ウェルの断面の模式図である。図2では、評価対象14を模式的に図示している。本実施形態において、ウェル13の平面視形状(ウェル13の深さ方向からみた形状)は、正方形である。ウェル13の開口部の一辺の長さの例は、3.0mm~4.0mmである。ウェル13の深さの例は、9.0mm~15.0mmである。このようなサイズのウェルを有するプレート11は、マイクロプレートとして知られている。一実施形態において、図2に示したように、ウェル13は、底部13aに向けて先細りしている。
 評価プレート10は、プレート11の各ウェル13に対応する評価対象14が注入され、一定の培養処理が施された後において、評価対象14の安全性評価が可能な状態となったプレートである。
 次に、図3を利用して本実施形態の評価対象の評価方法に使用する観察装置30を説明する。
 観察装置30は、ステージ(プレート保持部)31と、照明装置(光源)32と、撮像部33とを有する。ステージ31は、評価プレート10を支持する。評価プレート10は、評価プレート10の底部(ウェル13の底部13a側)がステージ31側に位置するようにステージ31に配置される。ステージ31は、照明装置32から出力される照明光Lを撮像部33に向けて通すように構成されている。例えば、ステージ31の材料が光透過性を有してもよいし、評価プレート10における384個のウェル13が形成されている領域と対応する領域に開口又は照明光Lを透過する窓部が形成されていてもよい。本実施形態では、ステージ31は、図3の白抜き矢印の方向に搬送可能に構成されている。
 照明装置32は、評価プレート10上(評価プレート10からみてステージ31と反対側)に配置されている。照明装置32は、照明光Lを評価プレート10に照射する。照明装置32の例はLED照明であり、照明光Lの例は、波長400nm~780nmの光である。一実施形態において、照明光Lは、波長520nm以上の光である。
 撮像部33は、評価プレート10を透過した照明光Lを受けて、評価プレート10を撮像する。撮像部33は、撮像器33aと、集光部33bとを有する。
 撮像器33aの例は、2次元センサ(又はカメラ)及びラインセンサを含む。2次元センサの例は、CCDカメラ、CMOSカメラである。
 集光部33bは、照明光Lを、集光して撮像器33aに入射する。集光部33bは、少なくとも1つのレンズを含む。撮像器33a自体が、集光光学機能を有する場合は、撮像部33は、集光部33bを有しなくてもよい。
 次に、本実施形態に係る評価対象の評価方法の一例を説明する。ここでは、評価プレート10を搬送しながら評価プレート10の画像を取得する場合を説明する。搬送速度は、次の式を用いて、撮像器33aのフレームレートと分解能が実際取り得る範囲などによって決定されればよい。
 搬送速度[mm/s]
  =プレート11の搬送方向の長さ[mm]÷撮影時間[s]
  =撮像器33aのフレームレート[fps]×撮像器33aの分解能[mm/pixel]
 たとえば撮影時間が120秒未満で撮像器33aの分解能が60um/frame以上である場合、搬送速度は1.17mm/s以上であれば19.4fps以上のフレームレートを有する撮像器33aで、評価に適したように評価プレート10を撮像可能である。撮影時間が12秒以上120秒未満で撮像器33aの分解能が8um/frame~60um/frameである場合、搬送速度は、1.17mm/s~11.7mm/sであれば19.4fps以上のフレームレートを有する撮像器33aで、評価に適したように評価プレート10を撮影可能である。撮影時間が12秒以上35秒以下で撮像器33aの分解能が15um/frame~25um/frameである場合、搬送速度は、4mm/s~11.7mm/sであれば160fps以上のフレームレートを有する撮像器33aで、評価に適したように評価プレート10を撮影可能である。評価プレート10を搬送する場合は、助走期間(たとえば30mm)を設けてもよい。
 図4は、本実施形態に係る評価対象の評価方法のフローチャートである。図4に示したように、照明装置32を点灯し、評価プレート10に照明光Lを照射する(照射工程S01)。
 照明光Lが照射された評価プレート10を撮像部33で撮像する(撮像工程S02)。撮像工程S02では、照射工程S01において照明光Lの照射開始時から120秒未満で評価プレート10の全体の撮像を終了する。照明光Lの照射開始時から12秒以上60秒以下で評価プレート10の全体の撮像を終了することが好ましく、12秒以上35秒以下で評価プレート10の全体の撮像を終了することが更に好ましい。評価プレート10の全体の撮像を終了した後、照明光Lの照射を停止する。以下、照明光Lの照射開始時から評価プレート10全体の撮像終了までの時間を、「撮像時間」とも称す。
 撮像部33の撮像領域が評価プレート10の大きさより小さい形態では、1度の撮像で評価プレート10全体が撮像できない。このような形態では、評価プレート10の部分画像を合成して評価プレート10の全体の画像が形成されるように、評価プレート10を複数回撮像する。この場合、上記撮像時間は、評価プレート10の全体の画像が形成されるように、評価プレート10の複数の撮像が終了するための時間である。
 次に、撮像部33で撮像された画像に基づいて評価対象14を評価する(評価工程S03)。評価工程S03では、検体の遺伝毒性および検体の細胞毒性の少なくとも一つを評価する。遺伝毒性および細胞毒性の評価自体は、Ames試験における評価対象の評価方法に沿って実施されればよい。
 (遺伝毒性評価)
 本実施形態では、評価対象14に含まれる細胞に対して検体が遺伝毒性を有する場合、陽性結果として、指示薬の色が紫色から黄色に変化する。そのため、撮像工程S02で得られた画像における各ウェル13の色(具体的には、各ウェル13に保持された評価対象14の色)を判定することで、検体の遺伝毒性を評価可能である。この際、区画Se1(溶媒対照区画または陰性対照区画)内のウェル13および区画Se8(陽性対照区画)内のウェル13の色を、評価の基準にすればよい。
 本実施形態では、評価対象14に含まれる細胞に対して検体が遺伝毒性を有する場合、コロニーが発生する可能性がある。すなわち、コロニーが検出された場合が陽性結果に相当する。そのため、上記コロニーを有するウェル13の数を計数することで、検体の遺伝毒性を評価可能である。この際、区画Se1内のウェル13および区画Se8内のウェル13の状態(コロニーの有無)を、評価の基準にすればよい。
 各区画Se1~Se8内の複数のウェル13で保持されている評価対象14の状態(検体の濃度など)は同じである。そのため、評価対象14を評価する場合、区画Se1~Se8それぞれに含まれる複数のウェル13の色(または状態)を総合的に判定すればよい。
 (細胞毒性評価)
 本実施形態では、評価対象14に含まれる細胞に対して検体が細胞毒性を有する場合、細胞が死滅したこと等によりウェル13の透明度(具体的には、評価対象14の透明度)が変化する。そのため、ウェルの透明度に基づいて検体の細胞毒性を評価可能である。この際、区画Se1(溶媒対照区画または陰性対照区画)内のウェル13の透明度を、評価の基準にすればよい。培養中に検体が析出した場合も、ウェル13の透明度(具体的には、評価対象14の透明度)が変化する。そのため、上記透明度に基づいて、検体の析出の有無も評価可能である。
 本実施形態では、評価対象14に含まれる細胞に対して検体が細胞毒性を有する場合、細胞が死滅したことにより異物が発生する。そのため、ウェル内の異物の有無に基づいて検体の細胞毒性を評価可能である。この際、区画Se1内のウェル13(異物の有無)を、評価の基準にすればよい。
 細胞毒性評価においても、各区画Se1~Se8内の複数のウェル13で保持されている評価対象14の状態(検体の濃度など)は同じである。そのため、評価対象14を評価する場合、区画Se1~Se8それぞれに含まれる複数のウェル13の透明度(または状態)を総合的に判定すればよい。
 上記色の判定、コロニーの検出、透明度の判定および異物の検出等は、撮像部33で取得された評価プレート10の画像を評価者が目視することで行ってもよいし、画像解析することで行ってもよい。
 複数の評価プレート10を順次搬送ラインに載せて撮像する場合、少なくとも1枚の評価プレート10(たとえば、2枚目以降の評価プレート10)に対して上記評価対象の評価方法が適用されてもよい。
 本実施形態の評価対象の評価方法では、評価プレート10に照明光Lを照射しながら評価プレート10を撮像する。その際、照明装置32の点灯開始時(すなわち、照明光Lの照射を開始した時点)から、120秒未満で、評価プレート10の全体の撮像を終了する。照明装置32の点灯開始時から、120秒未満であれば、照明装置32の温度変化に伴う照明光Lの波長シフト(各波長成分の輝度変化)を抑制できる。
 仮に、照明装置32の温度変化に伴い照明光Lに含まれる各波長成分の輝度が、評価プレート10の撮像開始段階と、撮像終了段階とで大きく異なっていると、評価プレート10のうち撮像開始段階に撮像された領域と、撮像終了段階で撮像された領域とでは、撮像条件の変化に起因して評価対象14の色、状態などが変化しているように見える場合が生じる。その結果、評価対象14を正確に評価できない。
 これに対して、照明装置32の点灯開始時(すなわち、照明光Lの照射を開始した時点)から、120秒未満であれば、照明装置32の温度変化に伴う照明光Lの波長シフトを抑制できる。その結果、評価対象14を正確に評価可能である。照明装置32の点灯開始時から評価プレート10全体の撮像を終了するための時間(撮像時間)は、60秒以下でもよいし、35秒以下でもよい。撮像時間は、0秒を超えていればよく、5秒以上でもよいし、12秒以上でもよい。12秒以上であれば、撮像器33aのフレームレートに対して搬送速度を十分遅く設定できるため、撮像分解能を高くして一定の大きさ(たとえば60μm)を有するコロニーおよび異物を検出し易い。したがって、撮像時間は、12秒以上120秒未満でもよいし、12秒以上60秒以下でもよいし、12秒以上35秒以下でもよい。
 撮像工程S03で使用する撮像器33aの分解能および搬送速度は、一定の大きさ(たとえば60μm)を有するコロニーおよび異物を適切に検出するために、評価プレート10の大きさおよび上記撮像時間を考慮して決定されればよい。
 評価プレート10の大きさが127.7mm×85.6mm、評価プレート10(プレート11)内のウェル13が存在する領域の大きさが109.5mm×73.5mmである場合を説明する。この場合、撮像時間に応じた撮像器33aの分解能および搬送速度の例は、次のとおりである。
(1)撮像時間が120秒未満の場合
 分解能:60um/frame以上
 搬送速度:1.17mm/s以上
 フレームレート:19.4fps以上
(2)撮像時間が60秒以下の場合
 分解能:60um/frame以上
 搬送速度:2.33mm/s以上
 フレームレート:38.9fps以上
(3)撮像時間が12秒以上120秒未満の場合
 分解能:8um/frame~60um/frame
 搬送速度:1.17mm/s~11.7mm/s
 フレームレート:19.4fps以上
(4)撮像時間が12秒以上35秒以下の場合
 分解能:15um/frame~25um/frame
 搬送速度:4mm/s~11.7mm/s
 フレームレート:160fps以上
 上記(1)~(4)それぞれの条件であれば、127.7mm×85.6mmの評価プレート10を用いた場合において、上記一定の大きさを有するコロニーまたは異物などを確実に検出可能である。
 照明光Lの波長が520nm以上であれば、輝度分散が生じくいので、照明光Lが波長520nm以上の光である場合、より正確に評価対象14を評価可能である。
 次に、検証実験を説明する。検証実験では、図5に示したように、照明装置41に対向して撮像部42を配置した。照明装置41はLEDを用いた面光源装置であって、波長400~700nmの照明光Lを出力する面光源装置(KOS21製のKDB-100)であった。照明装置41には、出力面に温度センサ43が取り付けてあった。温度センサ43は、AND製のAD-5625であった。撮像部42は、撮像器42aと、撮像器42aに取り付けられた集光部42bを有していた。撮像器42aは、ハイパースペクトルカメラ(Resonon製のPika―L)であった。撮像器42aのフレームレートは249.2Hzであり、露光時間は3.93msであった。集光部42bは、Shneider社製のXenoplan 1.4/23-0902(絞り:F5.6)を使用した。
 検証実験では、照明装置41の点灯開始(照明光Lの出力開始)から30分間、波長400nm~700nmの照明光Lの輝度スペクトルおよび照明装置41の表面温度のデータを取得した。
 具体的には、照明装置41の点灯開始から10分間は1分刻みで、面照明の384箇所における波長毎の輝度の平均値(以下、「平均輝度」と称す)を取得するとともに、温度データを取得した。照明装置41の点灯開始から10分以降は5分刻みで、面照明の384箇所における波長毎の輝度の平均値(平均輝度)を取得するとともに、温度データを取得した。更に、照明装置41の点灯開始の輝度を基準輝度とし、上記基準輝度と平均輝度との輝度差および標準偏差σを波長毎に算出した。上記384箇所は、各輝度データの取得タイミングにおいて同じ箇所であった。
 図6は、波長に対する輝度変化を示すグラフであり、点灯開始から1分後、2分後、・・・、30分後のデータを濃淡のラインで示している。図6の横軸は、波長(nm)を示し、縦軸は、基準輝度と平均輝度との輝度差を示している。図7は、波長に対する標準偏差を示すグラフであり、点灯開始から1分後、2分後、・・・、30分後のデータを濃淡のラインで示している。図7の横軸は、波長(nm)を示し、縦軸は、輝度差の標準偏差を示している。
 図8は、照明装置の点灯開始からの経過時間に対する照明装置の温度および照明光Lの輝度変化を示したグラフである。図8の横軸は、照明装置の点灯開始からの経過時間(分)を示している。図8の右側の縦軸は、温度を示し、左側の縦軸は、照射開始時(経過時間が0分)の場合の輝度と、各経過時間の平均輝度との差(輝度差)を示している。図8に示した輝度差は、輝度データの取得タイミングそれぞれにおいて、図7に示した波長400nm~700nmのうち輝度差のもっとも大きな波長に対応する平均輝度と、基準輝度との差である。図8における一点鎖線は、平均輝度差に3σ(標準偏差)を加算した結果を示し、二点鎖線は、平均輝度差から3σ(標準偏差)を減算した結果を示す。
 図8に示したように、照明装置41の点灯開始から、120秒(2分)未満であれば、照明装置41の温度変化を0.5℃未満にできるとともに、輝度変化を抑制可能である。その結果、120秒未満であれば、評価対象14を正確に評価可能であることがわかる。照明装置41の点灯開始から、60秒以下であれば、照明装置41の温度変化を0.1℃未満にできる。照明装置41の点灯開始から、60秒の時点での輝度変化は、0.93±1.10×3σ(σは標準偏差)であり、輝度変化を更に抑制可能である。
 図7に示したように、波長520nm以上であれば、照明光Lにおける波長成分毎の輝度分散が小さい。そのため、輝度変化の影響をより受けにくい。その結果、評価対象14を正確に評価可能であることがわかる。
 以上、本発明の種々の実施形態及び変形例とともに実験例を説明した。しかしながら、本発明は、例示した種々の実施形態、変形例及び実験例に限定されるものではなく、特許請求の範囲によって示される範囲が含まれるとともに、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 試験体は、細胞に限定されない。検体は化学物質に限定されない。試験体及び検体は、それらの組み合わせで、安全性評価の判定要素となる変化(たとえば、例示したような色の変化、透明度変化、コロニーの発生、異物の発生など)が生じるような組み合わせであればよい。試験体の他の例は、抗体であり、検体の他の例は、抗原である。
 上記実施形態では、評価対象の試験体の形状変化としてコロニーを検出したが、評価対象が試験結果によって形状変化する場合には、コロニーに限定されない。異物は、試験体の上記形状変化とは異なる物質(または構造物)であり、例えば、当初含まれていなかった物質(または構造物)であって、例えば輪郭と内部の境が明確なものであり得る。例えば、異物は、異物の周囲と屈折率が異なる界面で区切られた物質(または構造物)である。異物の例は、油塊、気泡などである。
 評価プレートの画像を得るための観察装置は、反射光学系を採用してもよい。すなわち、照明装置および撮像部が評価プレートに対して同じ側に配置されており、照明装置から出力され評価プレートで反射した照射光を撮像部が受けることによって、評価プレートの画像を取得してもよい。
 照明装置は、LED照明装置に限定されず、ハロゲン光源、メタルハライド光源を用いた装置でもよい。
 評価プレートの画像を取得する場合には、評価プレートを静止した状態で、評価プレートを撮像してもよい。
 これまでの説明では、Ames試験を利用して説明したが、本発明は、評価対象を撮像し、その画像に基づいて安全性を評価する他の生物学的な安全性評価にも適用可能である。
 例示した実施形態及び変形例などは、本発明の趣旨を逸脱しない範囲で適宜組み合わされてもよい。
 10…評価プレート、11…プレート、13…ウェル、14,14a~14h…評価対象、32…照明装置(光源)。

Claims (5)

  1.  プレートが備える複数のウェルに評価対象が保持された評価プレートに光源から照明光を照射する照射工程と、
     前記照射工程において前記照明光を前記評価プレートに照射しながら、前記評価プレートを撮像する撮像工程と、
     前記撮像工程で得られた前記評価プレートの画像に基づいて前記評価対象を評価する評価工程と、
    を備え、
     前記評価対象は、試験体を含み、
     前記複数のウェルは、検体を更に含む前記評価対象を保持した検体用ウェルを有し、
     前記撮像工程では、前記照射工程で前記照明光の前記評価プレートへの照射開始から120秒未満で前記評価プレート全体の撮像を終了し、
     前記撮像工程における前記評価プレート全体の撮像を終了した後に前記照明光の照射を終了する、
    評価対象の評価方法。
  2.  前記撮像工程では、前記照射工程で前記照明光の前記評価プレートへの照射開始から12秒以上35秒以下で前記評価プレート全体の撮像を終了する、
    請求項1に記載の評価対象の評価方法。
  3.  前記照明光は、波長520nm以上の光である、
    請求項1または2に記載の評価対象の評価方法。
  4.  前記撮像工程では、前記評価プレートを搬送しながら前記評価プレートを撮像する、
    請求項1~3の何れか一項に記載の評価対象の評価方法。
  5.  前記照明光は、LEDから出力された光である、
    請求項1~4の何れか一項に記載の評価対象の評価方法。
PCT/JP2021/035433 2020-09-29 2021-09-27 評価対象の評価方法 WO2022071238A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237013805A KR20230078718A (ko) 2020-09-29 2021-09-27 평가 대상의 평가 방법
EP21875540.3A EP4224143A1 (en) 2020-09-29 2021-09-27 Method for evaluating evaluation target
CN202180064765.XA CN116324378A (zh) 2020-09-29 2021-09-27 评价对象的评价方法
JP2022553963A JPWO2022071238A1 (ja) 2020-09-29 2021-09-27
US18/028,483 US20230358667A1 (en) 2020-09-29 2021-09-27 Method for evaluating evaluation target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-164033 2020-09-29
JP2020164033 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022071238A1 true WO2022071238A1 (ja) 2022-04-07

Family

ID=80951662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035433 WO2022071238A1 (ja) 2020-09-29 2021-09-27 評価対象の評価方法

Country Status (7)

Country Link
US (1) US20230358667A1 (ja)
EP (1) EP4224143A1 (ja)
JP (1) JPWO2022071238A1 (ja)
KR (1) KR20230078718A (ja)
CN (1) CN116324378A (ja)
TW (1) TW202227804A (ja)
WO (1) WO2022071238A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116735A (ja) * 1988-10-27 1990-05-01 Suzuki Motor Co Ltd 免疫学的凝集反応検出装置
JP2009014352A (ja) * 2007-06-29 2009-01-22 Olympus Corp Mtシステムによる凝集像自動判定方法、装置、プログラムおよび記録媒体
JP2011092116A (ja) * 2009-10-30 2011-05-12 Microbio Corp コロニー検出方法、コロニー検出システムおよびコロニー検出プログラム、ならびに、エームス試験方法およびエームス試験システム
WO2018186120A1 (ja) * 2017-04-03 2018-10-11 浜松ホトニクス株式会社 細胞塊の評価方法及び細胞塊の状態解析装置
JP2019525243A (ja) * 2016-07-25 2019-09-05 ウニヴェルジテート ドゥイスブルク・エッセン 複数の画像の同時的なビデオグラフィック的な捕捉又はフォトグラフィック的捕捉のためのシステム
US20200131465A1 (en) * 2017-06-02 2020-04-30 Molecular Devices, Llc Cell Colony Picking System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116735A (ja) * 1988-10-27 1990-05-01 Suzuki Motor Co Ltd 免疫学的凝集反応検出装置
JP2009014352A (ja) * 2007-06-29 2009-01-22 Olympus Corp Mtシステムによる凝集像自動判定方法、装置、プログラムおよび記録媒体
JP2011092116A (ja) * 2009-10-30 2011-05-12 Microbio Corp コロニー検出方法、コロニー検出システムおよびコロニー検出プログラム、ならびに、エームス試験方法およびエームス試験システム
JP2019525243A (ja) * 2016-07-25 2019-09-05 ウニヴェルジテート ドゥイスブルク・エッセン 複数の画像の同時的なビデオグラフィック的な捕捉又はフォトグラフィック的捕捉のためのシステム
WO2018186120A1 (ja) * 2017-04-03 2018-10-11 浜松ホトニクス株式会社 細胞塊の評価方法及び細胞塊の状態解析装置
US20200131465A1 (en) * 2017-06-02 2020-04-30 Molecular Devices, Llc Cell Colony Picking System

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FLUCKIGER-ISLER SKAMBER M: "Direct comparison of the Ames microplate format(MPF) test in liquid medium with the standard Ames pre-incubation assay on agar plates by use of equivocal to weakly positive test compounds", MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, vol. 747, 2012, pages 36 - 45, XP055823648, DOI: 10.1016/j.mrgentox.2012.03.014
H. SUI ET AL.: "IMPROVEMENT AND EVALUATION OF HIGH THROUGHPUT FLUCTUATION AMES TEST USING 384-WELL PLATE WITH SALMONELLA TYPHIMURIUM TA100 AND TA 98", GENES AND ENVIRONMENT, vol. 31, no. 2, 2009, pages 47 - 51, XP055823650, DOI: 10.3123/jemsge.31.47 *
KAMBER MFLUCKIGER-ISLER SENGELHARDT GJAECKH RZEIGER E: "Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity", MUTAGENESIS, vol. 24, no. 4, 2009, pages 359 - 366, XP055823646, DOI: 10.1093/mutage/gep017
SUI HKAWAKAMI KSAKURAI NHARA TNOHMI T: "Improvement and evaluation of high throughput fluctuation Ames test using 384-well plate with Salmonella typhimurium TA100 and TA98", GENES AND ENVIRONMENT, vol. 31, no. 2, 2009, pages 47 - 55, XP055823650, DOI: 10.3123/jemsge.31.47

Also Published As

Publication number Publication date
TW202227804A (zh) 2022-07-16
KR20230078718A (ko) 2023-06-02
CN116324378A (zh) 2023-06-23
US20230358667A1 (en) 2023-11-09
EP4224143A1 (en) 2023-08-09
JPWO2022071238A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
JP6186414B2 (ja) 固体又は半固体培地上の微生物のキャラクタリゼーション方法
RU2517618C2 (ru) Способ и система для определения количества культивируемых клеток
JP6830593B2 (ja) 微生物の判別方法
Yoon et al. Differentiation of big-six non-O157 Shiga-toxin producing Escherichia coli (STEC) on spread plates of mixed cultures using hyperspectral imaging
CA2728965A1 (en) Optical imaging for identifying cells labeled with fluorescent nanoparticles
Cadd et al. The non-contact detection and identification of blood stained fingerprints using visible wavelength hyperspectral imaging: Part II effectiveness on a range of substrates
WO2021095381A1 (ja) 評価対象の評価方法、画像処理装置及び評価対象の評価システム
WO2022071238A1 (ja) 評価対象の評価方法
Duller et al. Spatially-resolved thermoluminescence from snail opercula using an EMCCD
US11417127B2 (en) Method for early observation of colonies of microorganisms
CN106574224A (zh) 用于检测生物粒子的存在或缺失的方法
Malyshev et al. Reference Raman spectrum and mapping of Cryptosporidium parvum oocysts
Buchanan et al. Smartphone-based autofluorescence imaging to detect bacterial species on laboratory surfaces
WO2023195215A1 (ja) 透明度評価方法
Park et al. Hyperspectral microscope imaging methods for multiplex detection of Campylobacter
ES2893198T3 (es) Un método de cuantificación de la capacidad de cultivo celular bacteriano individuales usando parámetros independientes del cultivo
Park et al. New application of hyperspectral imaging for bacterial cell classification
Malyshev et al. Reference Raman spectrum and mapping of
Clément et al. Simple imaging system for label-free identification of bacterial pathogens in resource-limited settings
UA152372U (uk) Спосіб мультиспектрального біотестування речовин різної природи
Peng et al. Micro Crack Detection in Egg Shell using Machine Vision
JP2021093951A (ja) 微生物の判別システム
Doh Development of bacterial colony phenotyping instrument using reflected scatter light
Gouws et al. Terri-Lee Kammies, Marena Manley

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553963

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237013805

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021875540

Country of ref document: EP

Effective date: 20230502