WO2022071099A1 - Fluid-cooling type cold plate and method for producing same - Google Patents

Fluid-cooling type cold plate and method for producing same Download PDF

Info

Publication number
WO2022071099A1
WO2022071099A1 PCT/JP2021/035007 JP2021035007W WO2022071099A1 WO 2022071099 A1 WO2022071099 A1 WO 2022071099A1 JP 2021035007 W JP2021035007 W JP 2021035007W WO 2022071099 A1 WO2022071099 A1 WO 2022071099A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
shaped member
slit
fluid
cold plate
Prior art date
Application number
PCT/JP2021/035007
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 江藤
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Publication of WO2022071099A1 publication Critical patent/WO2022071099A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a fluid-cooled cold plate and a method for manufacturing a fluid-cooled cold plate.
  • the inkjet recording device is equipped with a drive circuit that drives the nozzle of the inkjet head.
  • the drive circuit generates heat as it operates, but excessive heat generation causes deterioration of the performance of the drive circuit. Further, when the drive circuit is provided integrally with the inkjet head, the heat generated by the drive circuit may affect the ejection accuracy of the nozzle.
  • Patent Document 1 describes a method for manufacturing a fluid-cooled cold plate using a fixing bracket attached to a metal pipe in order to maintain a positional relationship between a plurality of metal pipes embedded in a mold. ..
  • Patent Document 2 at least a part of a translucent portion of a resin member and at least a part of a fine concavo-convex structure portion of a metal member irradiate an article in contact with each other via a photocurable layer. Describes how to make a cold plate that cures the photocurable layer in.
  • Patent Document 3 describes a method for manufacturing a liquid-cooled jacket in which a jacket body and a sealed body are friction-stir welded.
  • joining line welding line
  • a cold plate that allows the refrigerant liquid to flow through a hole formed in an aluminum block with a gun drill is also conceivable, but since a deep hole is drilled with a gun drill, the number of man-hours increases. Also, if the wall thickness in the radial direction of the hole is not sufficiently secured, the hole will be opened in the radial direction due to the misalignment of the center of the gun drill, and liquid leakage will occur. Performance is reduced. Moreover, it is difficult to improve the performance because only a straight flow path can be formed.
  • the thickness of the cold plate becomes large, and it is difficult to save space.
  • an object of the present invention is to provide a thin, high-cooling performance and inexpensive method for manufacturing a fluid-cooled cold plate and a fluid-cooled cold plate.
  • the slits are closed on both sides of the first plate-shaped member provided with a slit through which the cooling fluid flows and the first plate-shaped member. It is characterized by comprising a pair of second plate-shaped members laminated and joined, and an inlet and an outlet communicating with the slit.
  • the method for manufacturing a fluid-cooled cold plate includes a step of forming a slit in the first plate-shaped member, and an inlet and an outlet communicating with the slit in the second plate-shaped member or the first plate-shaped member.
  • FIG. 1 is a front view schematically showing the internal configuration of the printer 1.
  • FIG. 2 is a diagram schematically showing an ink supply path.
  • FIG. 3 is a plan view of the image forming unit 6.
  • 4A and 4B are perspective views of the inkjet head 12.
  • the front side of the paper surface in FIG. 1 will be referred to as the front side (front side) of the printer 1, and the left-right orientation will be described with reference to the direction in which the printer 1 is viewed from the front.
  • U, Lo, L, R, Fr, and Rr indicate top, bottom, left, right, front, and back, respectively.
  • the printer 1 is an inkjet type image forming apparatus that forms an image by ejecting ink.
  • the printer 1 includes a rectangular parallelepiped main body housing 3.
  • a paper feed cassette 4 for accommodating a sheet S of sheets such as plain paper and coated paper, and a paper feed roller 5 for feeding the sheet S from the paper feed cassette 4 are provided.
  • a transport unit 7 for sucking and transporting the sheet S is provided above the paper feed cassette 4.
  • An inkjet image-forming unit 6 is provided above the transport unit 7.
  • a discharge roller pair 8 for discharging the sheet S on which the image is formed and a discharge tray 9 on which the discharged sheet S is loaded are provided.
  • the transport unit 7 is provided with a large number of ventilation holes (not shown), an endless transport belt 21 wound around a plurality of rollers 22a to 22e, and a large number of ventilation holes, and the upper surface is the inner surface of the transport belt 21. It is provided with a transport plate 23 that comes into contact with the transport plate 23, and a suction portion 24 that sucks the sheet S to the transport belt 21 by sucking air through the ventilation holes of the transport plate 23.
  • a drive unit such as a motor
  • the conveyor belt 21 rotates in the Y1 direction, and the sheet S adsorbed on the conveyor belt 21 is conveyed in the Y1 direction.
  • the image forming unit 6 includes head units 11Y, 11Bk, 11C, and 11M (collectively referred to as head unit 11), and ejects yellow, black, cyan, and magenta inks, respectively.
  • Ink containers 20Y, 20Bk, 20C, and 20M (collectively referred to as ink containers 20) filled with yellow, black, cyan, and magenta inks are connected to the head units 11Y, 11Bk, 11C, and 11M, respectively.
  • the head unit 11 includes one or more inkjet heads 12, for example, a plurality of inkjet heads 12 arranged in a staggered pattern (FIGS. 3 to 4B).
  • the inkjet head 12 includes a rectangular parallelepiped housing 13 having a longitudinal direction in the front-rear direction, and a nozzle plate 14 provided at the bottom of the housing 13.
  • the nozzle plate 14 includes a large number of nozzles arranged in the front-rear direction (the width direction of the transport belt 21 intersecting the transport direction of the transport belt 21), and the discharge port of each nozzle is provided on the lower surface of the nozzle plate 14 (not shown). omit).
  • Each nozzle is provided with a piezoelectric element (not shown), and a driver IC 15 for driving the piezoelectric element is provided inside the housing 13.
  • the printer 1 includes an ink supply path shown in FIG. In the figure, a supply path corresponding to one color of ink is shown, but since four colors of ink are used in this embodiment, four similar supply paths are provided.
  • the printer 1 has a container mounting portion 51 to which the ink container 20 is mounted, a filter 52 for filtering ink, a pump 53 for sucking ink from the ink container 20 through the filter 52, and ink sent from the pump 53.
  • a sub tank 54 for storing ink and a pump 55 for supplying ink stored in the sub tank 54 to the head unit 11 are provided.
  • the pump 55 is connected to the socket 12S provided in the inkjet head 12.
  • a transport path 10 is provided from the paper feed cassette 4 to the discharge tray 9 via the transport unit 7.
  • the transport path 10 is provided with a plurality of transport roller pairs 17 for transporting the sheet S.
  • a resist roller pair 18 is provided on the upstream side of the image forming unit 6 in the transport direction.
  • the control unit 2 includes a processor and a memory.
  • the processor is, for example, a CPU (Central Processing Unit).
  • the memory includes a storage medium such as ROM (Read Only Memory), RAM (Random Access Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the processor performs various processes by reading and executing the control program stored in the memory.
  • the control unit 2 may be realized by an integrated circuit that does not use software.
  • printer 1 The basic image formation operation of printer 1 is as follows.
  • the paper feed roller 5 sends the sheet S from the paper feed cassette 4 to the transport path 10, and the resist roller pair 18 whose rotation is stopped tilts the sheet S. Correct the line.
  • the transport unit 7 attracts the sheet S to the transport belt 21 and transports the sheet S in the Y1 direction.
  • the control unit 2 supplies the gradation data corresponding to each nozzle of the inkjet head 12 to the drive circuit in synchronization with the transfer of the sheet S, the drive circuit supplies the drive signal corresponding to the gradation data to the piezoelectric element. Ink droplets are ejected from the nozzles, and an image is formed on the sheet S.
  • the discharge roller pair 8 discharges the sheet S on which the image is formed to the discharge tray 9.
  • the housing 13 and the nozzle plate 14 are made of a metal such as stainless steel.
  • a connector 12C to which a cable (not shown) from the control unit 2 is connected is provided on the upper portion of the housing 13.
  • Sockets 12S to which the piping from the pump 55 is connected are provided at both front and rear ends of the nozzle plate 14.
  • a piezoelectric element (not shown) is provided for each nozzle provided on the nozzle plate 14.
  • a driver IC 15 (Integrated Circuit, not shown) for driving a piezoelectric element is provided inside the housing 13.
  • the control unit 2 supplies gradation data for each pixel corresponding to each nozzle to the driver IC 15, and the driver IC 15 supplies a drive signal corresponding to the gradation data to the piezoelectric element.
  • driver IC 15 generates heat as it operates, and this heat may affect the viscosity of the ink, the performance of the piezoelectric element, and the like. Therefore, in order to promote heat dissipation to the outside of the housing 13, driver ICs 15 are attached to the inner surfaces of the left and right side plates of the housing 13. Further, on the outside of the housing 13, a pair of cold plates 16 (an example of a fluid-cooled cold plate) are provided so as to face the driver IC 15 with the left and right side plates interposed therebetween. A flow path through which the cooling fluid flows is provided inside the cold plate 16, and the heat generated by the driver IC 15 is transferred to the cooling fluid via the housing 13 to cool the driver IC 15.
  • a gel sheet having high thermal conductivity may be provided between the housing 13 and the cold plate 16.
  • the cooling fluid may be a liquid or a gas, but if a liquid is used as the cooling fluid, the cooling efficiency can be increased.
  • the liquid water, antifreeze or the like can be used.
  • the antifreeze liquid for example, one containing glycol or alcohol as a main component can be used.
  • the gas nitrogen, air, or the like can be used.
  • FIG. 6A and 6B are perspective views of the cold plate 16.
  • FIG. 7 is an exploded view of the cold plate 16.
  • FIG. 8A is a perspective view showing the positional relationship between the cold plate 16 and the driver IC 15.
  • FIG. 8B is a perspective view showing the positional relationship between the slit 31 and the driver IC 15.
  • the cold plate 16 provided on the right side of the housing 13 of the inkjet head 12 will be described.
  • the cold plate 16 on the left side has the same structure as the cold plate 16 on the right side except that it has a left-right inverted structure.
  • the cold plate 16 is a pair of a first plate-shaped member 30 provided with a slit 31 through which a cooling fluid flows, and a pair laminated on the first plate-shaped member 30 so as to sandwich the first plate-shaped member 30 and close the slit 31.
  • the second plate-shaped member 40, and the inflow port 43 and the outflow port 44 communicating with the slit 31 are provided.
  • the first plate-shaped member 30 and the second plate-shaped member 40 are rectangular plate-shaped members having a longitudinal direction in the front-rear direction.
  • the first plate-shaped member 30 and the second plate-shaped member 40 are formed by using any one of aluminum, an aluminum alloy, copper, and a copper alloy.
  • the materials of the first plate-shaped member 30 and the second plate-shaped member 40 may be different. For example, in order to improve the cooling performance, it is better that the thickness of the second plate-shaped member 40 is thin, but in that case, the corrosion resistance and the rigidity may be insufficient, so that the additive supplements the corrosion resistance and the rigidity. It is conceivable to use a material containing.
  • the thickness of the second plate-shaped member 40 is thicker than that of the first plate-shaped member 30.
  • the thickness of the first plate-shaped member 30 is, for example, 2 mm or more and 3 mm or less.
  • the thickness of the second plate-shaped member 40 is, for example, 0.3 mm or more and 0.5 mm or less.
  • the first plate-shaped member 30 is provided with a slit 31.
  • the first end portion 311 of the slit 31 is provided on the front end portion side of the first plate-shaped member 30, and the second end portion 312 of the slit 31 is provided on the rear end portion side of the first plate-shaped member 30. .. Needless to say, the slit 31 penetrates in the left-right direction.
  • the slit 31 is formed by laser cutting, cutting, punching, etching, or the like.
  • the slit 31 has a meandering shape. Further, in order to suppress the flow path resistance, it is better that the slit 31 is less bent. Therefore, as shown in FIG. 7, it is desirable that the ends of a plurality of linear slits 31S along the longitudinal direction of the first plate-shaped member 30 are connected to each other by an arcuate slit 31B.
  • the shape of the slit 31 may be a shape other than the example of FIG. 7.
  • one linear slit 31 may be provided. Further, both the first end portion 311 and the second end portion 312 of the slit 31 may be provided on the front end portion side of the first plate-shaped member 30, or both may be provided on the rear end portion side. good.
  • Screw holes 32 penetrating in the left-right direction are provided at the front end portion and the rear end portion of the first plate-shaped member 30.
  • a thread is formed on the inner surface of the screw hole 32.
  • the second plate-shaped member 40 is provided with a screw hole 42 corresponding to the screw hole 32 of the first plate-shaped member 30.
  • the second plate-shaped member 40 on the left side is located at a position corresponding to the first end portion 311 and the second end portion 312 of the slit 31 of the first plate-shaped member 30.
  • An inlet 43 and an outlet 44 are provided, respectively.
  • the inflow port 43 and the outflow port 44 penetrate in the left-right direction (an example in the thickness direction).
  • Through holes 35 and 45 into which stays 71, which will be described later, are inserted are provided at both front and rear ends of the first plate-shaped member 30 and the second plate-shaped member 40.
  • a base 61 is provided at the inflow port 43 and the outflow port 44, but it is difficult to attach the base 61 because the second plate-shaped member 40 is a thin-walled member. Therefore, the mounting member 62 is provided on the left side of the front end portion and the rear end portion of the second plate-shaped member 40.
  • the mounting member 62 is a plate-shaped metal member having a thickness thicker than that of the second plate-shaped member 40.
  • the mounting member 62 is provided with a screw hole 63 for mounting the base 61 and a screw hole 64 corresponding to the screw hole 32 of the first plate-shaped member 30.
  • a screw thread is formed on the outer peripheral surface of the base 61.
  • a comb-made gasket 66 is provided between the mounting member 62 and the second plate-shaped member 40.
  • the gasket 66 is provided with a base screw hole 63 of the mounting member 62 and a through hole 67 corresponding to the screw hole 64.
  • the mounting member 62 and the gasket 66 are provided with notches 65 and 68 for avoiding interference with the stay 71.
  • a pair of second plate-shaped members 40 are laminated with the first plate-shaped member 30 interposed therebetween.
  • the second plate-shaped member 40 provided with the inflow port 43 and the outflow port 44 is arranged on the left side, and the other second plate-shaped member 40 is arranged on the right side. ..
  • the first plate-shaped member 30 and the second plate-shaped member 40 are joined by laser welding.
  • the gasket 66 is arranged on the left surface of the second plate-shaped member 40 on the left side, the mounting member 62 is arranged on the left surface of the gasket 66, and the mounting member 62 and the gasket 66 are the first plate-shaped member 30 and the first plate-shaped member 30 using screws 70. 2 Fastened to the plate-shaped member 40.
  • the base 61 is fastened to the base screw hole 63 of the mounting member 62.
  • the cold plate 16 assembled in this way is arranged so as to face the right side surface of the housing 13. Further, the cold plate 16 having a structure in which the cold plate 16 is inverted left and right is arranged so as to face the left side surface of the housing 13.
  • the lower end of the mounting member 62 protrudes below the lower ends of the first plate-shaped member 30 and the second plate-shaped member 40.
  • the lower end of the mounting member 62 is abutted against the upper surface of the nozzle plate 14, and a gap is formed between the nozzle plate 14 and the cold plate 16, so that heat transfer between the nozzle plate 14 and the cold plate 16 is suppressed. Will be done.
  • the stay 71 is inserted into the through holes 35 and 45 of the first plate-shaped member 30 and the second plate-shaped member 40 of the left and right cold plates 16, and the left and right cold plates 16 are connected by the stay 71.
  • the bases 61 of the left and right cold plates 16 face each other.
  • the base 61 of the cold plate 16 on the right side communicates with the inflow port 43 and is connected to a pump (not shown) that sends out the cooling fluid.
  • the base 61 of the cold plate 16 on the left side communicates with the outlet 44 and is connected to a heat exchanger (not shown) for cooling the cooling fluid.
  • the bases 61 of the left and right cold plates 16 face each other, but both are connected by a relay tube 72.
  • the cooling fluid flowing in from the right base 61 passes through the slit 31 of the cold plate 16 on the right side, then passes through the slit 31 of the cold plate 16 on the left side via the relay pipe 72, and the base 61 on the left side. Outflow from.
  • the driver IC 15 faces the cold plate 16 via the left and right side plates of the housing 13.
  • the cold plate 16 and the driver IC 15 face each other in the positional relationship shown in FIG. 8A.
  • the side plate of the housing 13 is not shown.
  • the slit 31 and the driver IC 15 face each other as shown in FIG. 8B.
  • the cold plate 16 According to the cold plate 16 according to the present embodiment described above, it is possible to provide a thin, high-cooling performance and inexpensive fluid-cooled cold plate.
  • the cooling performance of the fluid-cooled cold plate can be improved.
  • the cold plate 16 since the thickness of the second plate-shaped member 40 is thinner than that of the first plate-shaped member 30, the heat capacity of the second plate-shaped member 40 becomes smaller, so that the fluid cooling type is used. The cooling performance of the cold plate can be improved.
  • the processing is easier and the fluid-cooled cold plate is airtight as compared with the case where the inflow port 43 and the outflow port 44 are provided in the first plate-shaped member 30. It can enhance the sex.
  • the first plate-shaped member 30 and the second plate-shaped member 40 are joined by laser welding or bonded using an adhesive, so that another method can be used.
  • a fluid-cooled cold plate can be manufactured at a lower cost than when it is used.
  • the average roughness of the adhesive surfaces of the first plate-shaped member 30 and the second plate-shaped member 40 is 0.3 ⁇ m or more and 1 ⁇ m or less, so that during welding. It melts well. Further, the transfer of heat from the adhesive surface to the cooling fluid is promoted by appropriately disturbing the flow of the cooling fluid along the adhesive surface.
  • FIG. 9 is an exploded view of the cold plate 75.
  • FIG. 10A is a perspective view of the cold plate 75.
  • FIG. 10B is a perspective view showing a state in which the third plate-shaped member 80 and the fourth plate-shaped member 90 are laminated.
  • 11 and 12 are perspective views showing the flow of the cooling fluid inside the first slit 81 and the second slit 91.
  • the first plate-shaped member 30 includes a third plate-shaped member 80 and a fourth plate-shaped member 90 laminated on the third plate-shaped member 80, and the slit 31 is provided in the third plate-shaped member 80.
  • the first slit 81 includes the first slit 81 and the second slit 91 provided in the fourth plate-shaped member 90, and the first slit 81 is first in the first direction intersecting the first trunk portion 81S and the first trunk portion 81S.
  • a plurality of first branch portions 81B branched from one trunk portion 81S are provided, and the second slit 91 has a plurality of second trunk portions 91S branched from the second trunk portion 91S in a second direction opposite to the first direction.
  • the two branch portions 91B are provided, and each of the plurality of first branch portions 81B and each of the plurality of second branch portions 91B face each other in a one-to-one relationship. Specifically, it is as follows.
  • the third plate-shaped member 80 and the fourth plate-shaped member 90 are rectangular plate-shaped members whose longitudinal direction is the front-rear direction.
  • the third plate-shaped member 80 and the fourth plate-shaped member 90 are formed by using any one of aluminum, an aluminum alloy, copper, and a copper alloy.
  • the material of the third plate-shaped member 80 and the fourth plate-shaped member 90 may be different from the material of the second plate-shaped member 40.
  • the thickness of the third plate-shaped member 80 and the fourth plate-shaped member 90 is, for example, 1 mm or more and 1.5 mm or less.
  • the third plate-shaped member 80 and the fourth plate-shaped member 90 are provided with a comb-shaped first slit 81 and a second slit 91, respectively.
  • the first slit 81 and the second slit 91 are formed by laser cutting, cutting, punching, etching, or the like.
  • the first slit 81 includes a linear first trunk portion 81S having a longitudinal direction in the front-rear direction, and a plurality of linear first branch portions 81B branched downward from the first trunk portion 81S.
  • the front end portion of the first trunk portion 81S is located on the front side of the frontmost first branch portion 81B.
  • the second slit 91 has a linear second trunk portion 91S having a longitudinal direction in the front-rear direction and a linear second branch portion 91B having the same number as the first branch portion 81B branched upward from the second trunk portion 91S. Be prepared.
  • the rear end portion of the second trunk portion 91S is located on the rear side of the rearmost rear branch portion 91B.
  • the length of the second cadre 91S is equal to that of the first cadre 81S.
  • the length of the second branch portion 91B is equal to that of the first branch portion 81B.
  • the second plate-shaped member 40 on the left side is provided with an inflow port 43 at a position corresponding to the front end portion of the first trunk portion 81S.
  • the second plate-shaped member 40 on the right side is provided with an outlet 44 at a position corresponding to the rear end portion of the second trunk portion 91S.
  • each of the plurality of first branch portions 81B and each of the plurality of second branch portions 91B are one-to-one.
  • each of the first branch portions 81B is displaced backward by about one-third to two-thirds of the width of the first branch portion 81B with respect to each of the second branch portions 91B. It is in the same position.
  • the first branch portion 81B is located at a position slightly upwardly displaced with respect to the second branch portion 91B. Therefore, as shown in FIGS.
  • the cooling fluid flowing in from the inflow port 43 branches from the first trunk portion 81S to the plurality of first branch portions 81B, and faces each of the plurality of first branch portions 81B. It flows into the second branch portion 91B, joins the second branch portion 91B from the plurality of second branch portions 91B, and flows out from the outflow port 44.
  • a parallel flow path is formed between the inflow port 43 and the outflow port 44.
  • the portion between the parallel flow paths is separated from the other parts, and the joining work with the second plate-shaped member 40 is performed.
  • the parallel flow paths can be easily formed.
  • the cooling fluid and the third plate-shaped member 80 and the fourth plate-shaped member 80 are compared with the case where the first branch portion 81B is not displaced with respect to the second branch portion 91B. Since the contact area with the member 90 increases, the cooling performance can be improved.
  • FIG. 13 is a perspective view of the cold plate 75 according to the first modification of the second embodiment.
  • the first branch portion 81B is displaced in the front-rear direction and the vertical direction with respect to the second branch portion 91B, but as shown in the figure, the first branch portion 81B is It does not have to be displaced with respect to the second branch portion 91B. According to this configuration, parallel flow paths can be easily formed.
  • FIG. 14A is a perspective view of the cold plate 75 according to the second modification of the second embodiment.
  • the first branch portion 81B may be displaced only in the front-rear direction with respect to the second branch portion 91B.
  • FIG. 14B is a perspective view of the cold plate 75 according to the third modification of the second embodiment.
  • the first branch portion 81B may be displaced only in the vertical direction with respect to the second branch portion 91B.
  • the cooling fluid and the third plate-shaped member 80 and the fourth plate-shaped member are compared with the case where the first branch portion 81B is not displaced with respect to the second branch portion 91B. Since the contact area with the 90 is increased, the cooling performance can be improved.
  • first plate-shaped member 30 and the second plate-shaped member 40 are joined by laser welding
  • first plate-shaped member 30 and the second plate-shaped member 40 have an adhesive. It may be glued using. Also in this case, when the average roughness of the adhesive surfaces of the first plate-shaped member 30 and the second plate-shaped member 40 is 0.3 ⁇ m or more and 1 ⁇ m or less, the adhesive becomes familiar well.
  • the inflow port 43 and the outflow port 44 are provided in the second plate-shaped member 40
  • the inflow port 43 and the outflow port 44 are provided in the first plate-shaped member 30.
  • a drill having a diameter smaller than the thickness of the first plate-shaped member 30 is used to form a hole communicating with the first end portion 311 and the second end portion 312 of the slit 31 from the end surface of the first plate-shaped member 30.
  • An inlet 43 and an outlet 44 may be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Ink Jet (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A cold plate (16) comprises: a first plate-shaped member (30) that is provided with a slit (31) in which cooling fluid flows; a pair of second plate-shaped members (40) that are layered on and joined to respective sides of the first plate-shaped member (30) so that the slit (31) is covered; and an inlet (43) and an outlet (44) that communicate with the slit (31).

Description

流体冷却式コールドプレート及び流体冷却式コールドプレートの製造方法Manufacturing method of fluid-cooled cold plate and fluid-cooled cold plate
 本発明は、流体冷却式コールドプレート及び流体冷却式コールドプレートの製造方法に関する。 The present invention relates to a fluid-cooled cold plate and a method for manufacturing a fluid-cooled cold plate.
 インクジェット記録装置は、インクジェットヘッドのノズルを駆動する駆動回路を備えている。駆動回路は、動作に伴って熱を発生するが、過度の発熱は、駆動回路の性能低下を招く。また、駆動回路がインクジェットヘッドと一体に設けられる場合には、駆動回路の発熱がノズルの吐出精度に影響を及ぼすおそれがある。 The inkjet recording device is equipped with a drive circuit that drives the nozzle of the inkjet head. The drive circuit generates heat as it operates, but excessive heat generation causes deterioration of the performance of the drive circuit. Further, when the drive circuit is provided integrally with the inkjet head, the heat generated by the drive circuit may affect the ejection accuracy of the nozzle.
 電子機器の冷却については、従来、様々な提案が行われている。例えば、特許文献1には、鋳型内に埋設される複数の金属製配管同士の位置関係を維持すべく金属製配管に取り付ける固定金具を用いた流体冷却式コールドプレートの製造方法が記載されている。特許文献2には、樹脂部材における透光性を有する部分の少なくとも一部分と、金属部材の微細凹凸構造部分の少なくとも一部分とが、光硬化性層を介して接している物品に光を照射することで光硬化性層を硬化させるコールドプレートの製造方法が記載されている。特許文献3には、ジャケット本体と封止体とを摩擦攪拌接合する液冷ジャケットの製造方法が記載されている。 Various proposals have been made so far regarding the cooling of electronic devices. For example, Patent Document 1 describes a method for manufacturing a fluid-cooled cold plate using a fixing bracket attached to a metal pipe in order to maintain a positional relationship between a plurality of metal pipes embedded in a mold. .. In Patent Document 2, at least a part of a translucent portion of a resin member and at least a part of a fine concavo-convex structure portion of a metal member irradiate an article in contact with each other via a photocurable layer. Describes how to make a cold plate that cures the photocurable layer in. Patent Document 3 describes a method for manufacturing a liquid-cooled jacket in which a jacket body and a sealed body are friction-stir welded.
国際公開第2016/167022号International Publication No. 2016/167022 特開2019-136872号公報Japanese Unexamined Patent Publication No. 2019-13872 特開2017-42819号公報Japanese Unexamined Patent Publication No. 2017-42819
 しかし、特許文献1に記載された製造方法では、鋳型に金属パイプを金具で位置決めしてアルミの溶湯を流し込むため、設備が大掛かりとなるうえに工数が多くなる。また、性能面では、冷媒と被冷却熱源との間に金属パイプとアルミ部が存在するので厚みが増して熱抵抗が大きくなり、熱交換効率が低下する。特許文献2に記載された製造方法では、光硬化性の接着剤は高価である。また、接着面に紫外線などの光を当てるため、光路の制約により流路構成の自由度が低く、性能向上が困難である。特許文献3に記載された製造方法では、攪拌摩擦接合の設備費がかさむ。また、接合速度が遅いため、工数が多くなる。また、接合線(溶接線)が直線、緩曲線又は円に限られるため、複雑な流路形成ができず、性能向上が困難である。 However, in the manufacturing method described in Patent Document 1, since the metal pipe is positioned in the mold with metal fittings and the molten aluminum is poured into the mold, the equipment becomes large and the man-hours increase. In terms of performance, since the metal pipe and the aluminum portion exist between the refrigerant and the heat source to be cooled, the thickness increases, the thermal resistance increases, and the heat exchange efficiency decreases. In the manufacturing method described in Patent Document 2, the photocurable adhesive is expensive. Further, since the adhesive surface is exposed to light such as ultraviolet rays, the degree of freedom in the flow path configuration is low due to the restriction of the optical path, and it is difficult to improve the performance. In the manufacturing method described in Patent Document 3, the equipment cost of agitated friction stir welding is high. In addition, since the joining speed is slow, the number of man-hours increases. Further, since the joining line (welding line) is limited to a straight line, a gentle curve, or a circle, it is not possible to form a complicated flow path, and it is difficult to improve the performance.
 また、アルミブロックにガンドリルで形成した穴に冷媒液を流すコールドプレートも考えられるが、ガンドリルで深い穴を空けるため、工数が多くなる。また、穴の半径方向の肉厚を十分に確保しておかなければ、ガンドリルの芯ズレにより半径方向に穴が開き、液漏れが発生するが、肉厚を厚くすると、熱抵抗が増えるため、性能が低下する。また、直線の流路しか形成できないため、性能向上が困難である。 A cold plate that allows the refrigerant liquid to flow through a hole formed in an aluminum block with a gun drill is also conceivable, but since a deep hole is drilled with a gun drill, the number of man-hours increases. Also, if the wall thickness in the radial direction of the hole is not sufficiently secured, the hole will be opened in the radial direction due to the misalignment of the center of the gun drill, and liquid leakage will occur. Performance is reduced. Moreover, it is difficult to improve the performance because only a straight flow path can be formed.
 また、上記の4つの例では、いずれもコールドプレートの厚みが大きくなり、省スペース化が困難である。 Further, in all of the above four examples, the thickness of the cold plate becomes large, and it is difficult to save space.
 本発明は、上記事情を考慮し、薄型で冷却性能が高く安価な流体冷却式コールドプレート及び流体冷却式コールドプレートの製造方法を提供することを目的とする。 In consideration of the above circumstances, an object of the present invention is to provide a thin, high-cooling performance and inexpensive method for manufacturing a fluid-cooled cold plate and a fluid-cooled cold plate.
 上記課題を解決するため、本発明に係る流体冷却式コールドプレートは、冷却流体が流れるスリットが設けられた第1板状部材と、前記第1板状部材の両面に、前記スリットを塞ぐように積層されて接合された1対の第2板状部材と、前記スリットに連通する流入口及び流出口と、を備えることを特徴とする。 In order to solve the above problems, in the fluid cooling type cold plate according to the present invention, the slits are closed on both sides of the first plate-shaped member provided with a slit through which the cooling fluid flows and the first plate-shaped member. It is characterized by comprising a pair of second plate-shaped members laminated and joined, and an inlet and an outlet communicating with the slit.
 また、本発明に係る流体冷却式コールドプレートの製造方法は、第1板状部材にスリットを形成する工程と、第2板状部材又は第1板状部材にスリットに連通する流入口及び流出口を形成する工程と、第1板状部材を挟んでスリットを塞ぐように1対の第2板状部材を第1板状部材に接合する工程と、と備える。 Further, the method for manufacturing a fluid-cooled cold plate according to the present invention includes a step of forming a slit in the first plate-shaped member, and an inlet and an outlet communicating with the slit in the second plate-shaped member or the first plate-shaped member. A step of forming the first plate-shaped member and a step of joining a pair of the second plate-shaped members to the first plate-shaped member so as to sandwich the first plate-shaped member and close the slit.
 本発明によれば、薄型で冷却性能が高く安価な流体冷却式コールドプレート及び流体冷却式コールドプレートの製造方法を提供することができる。 According to the present invention, it is possible to provide a thin, high-cooling performance and inexpensive method for manufacturing a fluid-cooled cold plate and a fluid-cooled cold plate.
本発明の第1実施形態に係るプリンターの内部構成を模式的に示す正面図である。It is a front view which shows typically the internal structure of the printer which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るインクの供給路を模式的に示す図である。It is a figure which shows typically the ink supply path which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る作像ユニットの平面図である。It is a top view of the image formation unit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るインクジェットヘッドの斜視図である。It is a perspective view of the inkjet head which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るインクジェットヘッドの斜視図である。It is a perspective view of the inkjet head which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るインクジェットヘッドの斜視図である。It is a perspective view of the inkjet head which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るインクジェットヘッドの斜視図である。It is a perspective view of the inkjet head which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るコールドプレートの斜視図である。It is a perspective view of the cold plate which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るコールドプレートの斜視図である。It is a perspective view of the cold plate which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るコールドプレートの分解図である。It is an exploded view of the cold plate which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るコールドプレートとドライバーICとの位置関係を示す斜視図である。It is a perspective view which shows the positional relationship between a cold plate and a driver IC which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るスリットとドライバーICとの位置関係を示す斜視図である。It is a perspective view which shows the positional relationship between a slit and a driver IC which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るコールドプレートの分解図である。It is an exploded view of the cold plate which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るコールドプレートの斜視図である。It is a perspective view of the cold plate which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る1対の第1板状部材を積層した様子を示す斜視図である。It is a perspective view which shows the appearance of laminating the pair of 1st plate-shaped members which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るスリットの内部の冷却流体の流れを示す斜視図である。It is a perspective view which shows the flow of the cooling fluid inside the slit which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るスリットの内部の冷却流体の流れを示す斜視図である。It is a perspective view which shows the flow of the cooling fluid inside the slit which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態の第1変形例に係るコールドプレートの斜視図である。It is a perspective view of the cold plate which concerns on 1st modification of 2nd Embodiment of this invention. 本発明の第2実施形態の第2変形例に係るコールドプレートの斜視図である。It is a perspective view of the cold plate which concerns on the 2nd modification of 2nd Embodiment of this invention. 本発明の第2実施形態の第3変形例に係るコールドプレートの斜視図である。It is a perspective view of the cold plate which concerns on the 3rd modification of the 2nd Embodiment of this invention.
[第1実施形態]
 以下、図面を参照しつつ本発明の第1実施形態に係るプリンター1(インクジェット記録装置)について説明する。
[First Embodiment]
Hereinafter, the printer 1 (inkjet recording device) according to the first embodiment of the present invention will be described with reference to the drawings.
 最初に、プリンター1の全体の構成について説明する。図1は、プリンター1の内部構成を模式的に示す正面図である。図2は、インクの供給路を模式的に示す図である。図3は、作像ユニット6の平面図である。図4A、4Bは、インクジェットヘッド12の斜視図である。以下、図1における紙面手前側をプリンター1の正面側(前側)とし、左右の向きはプリンター1を正面から見た方向を基準として説明する。各図において、U、Lo、L、R、Fr、Rrは、それぞれ上、下、左、右、前、後を示す。 First, the overall configuration of printer 1 will be described. FIG. 1 is a front view schematically showing the internal configuration of the printer 1. FIG. 2 is a diagram schematically showing an ink supply path. FIG. 3 is a plan view of the image forming unit 6. 4A and 4B are perspective views of the inkjet head 12. Hereinafter, the front side of the paper surface in FIG. 1 will be referred to as the front side (front side) of the printer 1, and the left-right orientation will be described with reference to the direction in which the printer 1 is viewed from the front. In each figure, U, Lo, L, R, Fr, and Rr indicate top, bottom, left, right, front, and back, respectively.
 プリンター1は、インクを吐出することで画像を形成するインクジェット方式の画像形成装置である。プリンター1は、直方体状の本体ハウジング3を備える。本体ハウジング3内の下部には、普通紙、コート紙等の枚葉のシートSが収容される給紙カセット4と、給紙カセット4からシートSを送り出す給紙ローラー5が設けられている。給紙カセット4の上方には、シートSを吸着して搬送する搬送ユニット7が設けられている。搬送ユニット7の上方には、インクジェット方式の作像ユニット6が設けられている。本体ハウジング3の右上部には、画像が形成されたシートSを排出する排出ローラー対8と、排出されたシートSが積載される排出トレイ9が設けられている。 The printer 1 is an inkjet type image forming apparatus that forms an image by ejecting ink. The printer 1 includes a rectangular parallelepiped main body housing 3. At the lower part of the main body housing 3, a paper feed cassette 4 for accommodating a sheet S of sheets such as plain paper and coated paper, and a paper feed roller 5 for feeding the sheet S from the paper feed cassette 4 are provided. A transport unit 7 for sucking and transporting the sheet S is provided above the paper feed cassette 4. An inkjet image-forming unit 6 is provided above the transport unit 7. At the upper right portion of the main body housing 3, a discharge roller pair 8 for discharging the sheet S on which the image is formed and a discharge tray 9 on which the discharged sheet S is loaded are provided.
 搬送ユニット7は、多数の通気孔(図示省略)が設けられ、複数のローラー22a乃至22eに巻き掛けられた無端の搬送ベルト21と、多数の通気孔が設けられ、上面が搬送ベルト21の内面に接触する搬送板23と、搬送板23の通気孔を介して空気を吸引することでシートSを搬送ベルト21に吸着させる吸引部24と、を備える。モーター等の駆動部(図示省略)によりローラー22aが駆動されることで、搬送ベルト21がY1方向に回転し、搬送ベルト21に吸着されたシートSがY1方向に搬送される。 The transport unit 7 is provided with a large number of ventilation holes (not shown), an endless transport belt 21 wound around a plurality of rollers 22a to 22e, and a large number of ventilation holes, and the upper surface is the inner surface of the transport belt 21. It is provided with a transport plate 23 that comes into contact with the transport plate 23, and a suction portion 24 that sucks the sheet S to the transport belt 21 by sucking air through the ventilation holes of the transport plate 23. When the roller 22a is driven by a drive unit (not shown) such as a motor, the conveyor belt 21 rotates in the Y1 direction, and the sheet S adsorbed on the conveyor belt 21 is conveyed in the Y1 direction.
 作像ユニット6は、ヘッドユニット11Y、11Bk、11C、11M(ヘッドユニット11と総称する)を備え、それぞれイエロー、ブラック、シアン、マゼンタのインクを吐出する。ヘッドユニット11Y、11Bk、11C、11Mには、それぞれイエロー、ブラック、シアン、マゼンタのインクが充填されたインクコンテナ20Y、20Bk、20C、20M(インクコンテナ20と総称する)が接続されている。 The image forming unit 6 includes head units 11Y, 11Bk, 11C, and 11M (collectively referred to as head unit 11), and ejects yellow, black, cyan, and magenta inks, respectively. Ink containers 20Y, 20Bk, 20C, and 20M (collectively referred to as ink containers 20) filled with yellow, black, cyan, and magenta inks are connected to the head units 11Y, 11Bk, 11C, and 11M, respectively.
 ヘッドユニット11は、1つ以上のインクジェットヘッド12、例えば、千鳥に配置された複数のインクジェットヘッド12を備える(図3乃至4B)。インクジェットヘッド12は、前後方向を長手方向とする直方体状の筐体13と、筐体13の底部に設けられたノズルプレート14と、を備える。ノズルプレート14は、前後方向(搬送ベルト21の搬送方向と交差する搬送ベルト21の幅方向)に並ぶ多数のノズルを備え、各ノズルの吐出口がノズルプレート14の下面に設けられている(図示省略)。各ノズルには圧電素子が設けられ(図示省略)、筐体13の内部には圧電素子を駆動するドライバーIC15が設けられている。 The head unit 11 includes one or more inkjet heads 12, for example, a plurality of inkjet heads 12 arranged in a staggered pattern (FIGS. 3 to 4B). The inkjet head 12 includes a rectangular parallelepiped housing 13 having a longitudinal direction in the front-rear direction, and a nozzle plate 14 provided at the bottom of the housing 13. The nozzle plate 14 includes a large number of nozzles arranged in the front-rear direction (the width direction of the transport belt 21 intersecting the transport direction of the transport belt 21), and the discharge port of each nozzle is provided on the lower surface of the nozzle plate 14 (not shown). omit). Each nozzle is provided with a piezoelectric element (not shown), and a driver IC 15 for driving the piezoelectric element is provided inside the housing 13.
 プリンター1は、図2に示されるインク供給路を備える。同図では、1色のインクに対応する供給路が示されているが、本実施形態では4色のインクを用いるため、4系統の同様の供給路が設けられている。プリンター1は、インクコンテナ20が装着されるコンテナ装着部51と、インクを濾過するフィルター52と、インクコンテナ20からフィルター52を介してインクを吸引するポンプ53と、ポンプ53から送り出されたインクを貯留するサブタンク54と、サブタンク54に貯留されたインクをヘッドユニット11に供給するポンプ55と、を備える。ポンプ55は、インクジェットヘッド12に設けられたソケット12Sに接続される。 The printer 1 includes an ink supply path shown in FIG. In the figure, a supply path corresponding to one color of ink is shown, but since four colors of ink are used in this embodiment, four similar supply paths are provided. The printer 1 has a container mounting portion 51 to which the ink container 20 is mounted, a filter 52 for filtering ink, a pump 53 for sucking ink from the ink container 20 through the filter 52, and ink sent from the pump 53. A sub tank 54 for storing ink and a pump 55 for supplying ink stored in the sub tank 54 to the head unit 11 are provided. The pump 55 is connected to the socket 12S provided in the inkjet head 12.
 本体ハウジング3の内部には、給紙カセット4から搬送ユニット7を経て排出トレイ9に至る搬送路10が設けられている。搬送路10には、シートSを搬送する複数の搬送ローラー対17が設けられている。作像ユニット6よりも搬送方向上流側には、レジストローラー対18が設けられている。 Inside the main body housing 3, a transport path 10 is provided from the paper feed cassette 4 to the discharge tray 9 via the transport unit 7. The transport path 10 is provided with a plurality of transport roller pairs 17 for transporting the sheet S. A resist roller pair 18 is provided on the upstream side of the image forming unit 6 in the transport direction.
 プリンター1の各部は、制御部2によって制御される。制御部2は、プロセッサーとメモリーとを備える。プロセッサーは、例えば、CPU(Central Processing Unit)である。メモリーは、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の記憶媒体を含む。プロセッサーは、メモリーに記憶されている制御プログラムを読み出して実行することで各種処理を実施する。なお、制御部2は、ソフトウェアを用いない集積回路によって実現されてもよい。 Each part of the printer 1 is controlled by the control unit 2. The control unit 2 includes a processor and a memory. The processor is, for example, a CPU (Central Processing Unit). The memory includes a storage medium such as ROM (Read Only Memory), RAM (Random Access Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory). The processor performs various processes by reading and executing the control program stored in the memory. The control unit 2 may be realized by an integrated circuit that does not use software.
 プリンター1の基本的な画像形成動作は、次のとおりである。外部のコンピューター等からプリンター1に画像形成ジョブが入力されると、給紙ローラー5が給紙カセット4から搬送路10にシートSを送り出し、回転が停止されたレジストローラー対18がシートSの斜行を補正する。レジストローラー対18が所定のタイミングで搬送ユニット7にシートSを送り出すと、搬送ユニット7が搬送ベルト21にシートSを吸着してY1方向に搬送する。制御部2がシートSの搬送と同期させてインクジェットヘッド12の各ノズルに対応する階調データを駆動回路に供給すると、駆動回路が階調データに応じた駆動信号を圧電素子に供給することでノズルからインク滴が吐出され、シートSに画像が形成される。排出ローラー対8は、画像が形成されたシートSを排出トレイ9に排出する。 The basic image formation operation of printer 1 is as follows. When an image forming job is input to the printer 1 from an external computer or the like, the paper feed roller 5 sends the sheet S from the paper feed cassette 4 to the transport path 10, and the resist roller pair 18 whose rotation is stopped tilts the sheet S. Correct the line. When the resist roller pair 18 feeds the sheet S to the transport unit 7 at a predetermined timing, the transport unit 7 attracts the sheet S to the transport belt 21 and transports the sheet S in the Y1 direction. When the control unit 2 supplies the gradation data corresponding to each nozzle of the inkjet head 12 to the drive circuit in synchronization with the transfer of the sheet S, the drive circuit supplies the drive signal corresponding to the gradation data to the piezoelectric element. Ink droplets are ejected from the nozzles, and an image is formed on the sheet S. The discharge roller pair 8 discharges the sheet S on which the image is formed to the discharge tray 9.
[インクジェットヘッド]
 次に、インクジェットヘッド12の構成について詳細に説明する。図4A乃至5Bは、インクジェットヘッド12の斜視図である。
[Inkjet head]
Next, the configuration of the inkjet head 12 will be described in detail. 4A to 5B are perspective views of the inkjet head 12.
[インクジェットヘッド]
 筐体13とノズルプレート14は、ステンレス鋼等の金属で形成されている。筐体13の上部には、制御部2からのケーブル(図示省略)が接続されるコネクター12Cが設けられている。ノズルプレート14の前後両端部には、ポンプ55からの配管が接続されるソケット12Sが設けられている。
[Inkjet head]
The housing 13 and the nozzle plate 14 are made of a metal such as stainless steel. A connector 12C to which a cable (not shown) from the control unit 2 is connected is provided on the upper portion of the housing 13. Sockets 12S to which the piping from the pump 55 is connected are provided at both front and rear ends of the nozzle plate 14.
 ノズルプレート14に設けられた各ノズルには、圧電素子(図示省略)が設けられている。筐体13の内部には、圧電素子を駆動するドライバーIC15(Integrated Circuit、図示省略)が設けられている。制御部2は、各ノズルに対応する画素毎の階調データをドライバーIC15に供給し、ドライバーIC15は、階調データに応じた駆動信号を圧電素子に供給する。 A piezoelectric element (not shown) is provided for each nozzle provided on the nozzle plate 14. A driver IC 15 (Integrated Circuit, not shown) for driving a piezoelectric element is provided inside the housing 13. The control unit 2 supplies gradation data for each pixel corresponding to each nozzle to the driver IC 15, and the driver IC 15 supplies a drive signal corresponding to the gradation data to the piezoelectric element.
 ドライバーIC15は、動作に伴って発熱するが、この熱がインクの粘度、圧電素子の性能等に影響を与えるおそれがある。そこで、筐体13の外部への放熱を促進するために、ドライバーIC15が筐体13の左右の側板の内面に取り付けられている。また、筐体13の外側には、左右の側板を挟んでドライバーIC15と対向するように、一対のコールドプレート16(流体冷却式コールドプレートの一例)が設けられている。コールドプレート16の内部には、冷却流体が流れる流路が設けられており、ドライバーIC15が発生する熱が筐体13を介して冷却流体に移動することで、ドライバーIC15が冷却される。筐体13とコールドプレート16との間に、高熱伝導性を有するゲルシートが設けられていてもよい。冷却流体は、液体でも気体でもよいが、冷却流体として液体を用いれば、冷却効率を高くすることができる。液体としては、水や不凍液などを用いることができる。不凍液は、例えば、グリコールや、アルコールを主成分とするものを用いることができる。気体としては、窒素や空気などを用いることができる。 The driver IC 15 generates heat as it operates, and this heat may affect the viscosity of the ink, the performance of the piezoelectric element, and the like. Therefore, in order to promote heat dissipation to the outside of the housing 13, driver ICs 15 are attached to the inner surfaces of the left and right side plates of the housing 13. Further, on the outside of the housing 13, a pair of cold plates 16 (an example of a fluid-cooled cold plate) are provided so as to face the driver IC 15 with the left and right side plates interposed therebetween. A flow path through which the cooling fluid flows is provided inside the cold plate 16, and the heat generated by the driver IC 15 is transferred to the cooling fluid via the housing 13 to cool the driver IC 15. A gel sheet having high thermal conductivity may be provided between the housing 13 and the cold plate 16. The cooling fluid may be a liquid or a gas, but if a liquid is used as the cooling fluid, the cooling efficiency can be increased. As the liquid, water, antifreeze or the like can be used. As the antifreeze liquid, for example, one containing glycol or alcohol as a main component can be used. As the gas, nitrogen, air, or the like can be used.
[コールドプレート]
 次に、コールドプレート16の構成について詳細に説明する。図6A、6Bは、コールドプレート16の斜視図である。図7は、コールドプレート16の分解図である。図8Aは、コールドプレート16とドライバーIC15との位置関係を示す斜視図である。図8Bは、スリット31とドライバーIC15との位置関係を示す斜視図である。ここでは、インクジェットヘッド12の筐体13の右側に設けられたコールドプレート16について説明する。左側のコールドプレート16は、左右反転した構造を有する以外は右側のコールドプレート16と同様に構成されている。
[Cold plate]
Next, the configuration of the cold plate 16 will be described in detail. 6A and 6B are perspective views of the cold plate 16. FIG. 7 is an exploded view of the cold plate 16. FIG. 8A is a perspective view showing the positional relationship between the cold plate 16 and the driver IC 15. FIG. 8B is a perspective view showing the positional relationship between the slit 31 and the driver IC 15. Here, the cold plate 16 provided on the right side of the housing 13 of the inkjet head 12 will be described. The cold plate 16 on the left side has the same structure as the cold plate 16 on the right side except that it has a left-right inverted structure.
コールドプレート16は、冷却流体が流れるスリット31が設けられた第1板状部材30と、第1板状部材30を挟んでスリット31を塞ぐように第1板状部材30に積層された1対の第2板状部材40と、スリット31に連通する流入口43及び流出口44と、を備える。 The cold plate 16 is a pair of a first plate-shaped member 30 provided with a slit 31 through which a cooling fluid flows, and a pair laminated on the first plate-shaped member 30 so as to sandwich the first plate-shaped member 30 and close the slit 31. The second plate-shaped member 40, and the inflow port 43 and the outflow port 44 communicating with the slit 31 are provided.
 第1板状部材30及び第2板状部材40は、前後方向を長手方向とする長方形状の板状部材である。第1板状部材30及び第2板状部材40は、アルミニウム、アルミニウム合金、銅、銅合金のうちのいずれかを用いて形成されている。第1板状部材30と第2板状部材40の材料が異なっていてもよい。例えば、冷却性能を高めるためには、第2板状部材40の厚みが薄い方がよいが、その場合、耐腐食性や剛性が不足するおそれがあるため、耐腐食性や剛性を補う添加物を含む材料を使用することが考えられる。 The first plate-shaped member 30 and the second plate-shaped member 40 are rectangular plate-shaped members having a longitudinal direction in the front-rear direction. The first plate-shaped member 30 and the second plate-shaped member 40 are formed by using any one of aluminum, an aluminum alloy, copper, and a copper alloy. The materials of the first plate-shaped member 30 and the second plate-shaped member 40 may be different. For example, in order to improve the cooling performance, it is better that the thickness of the second plate-shaped member 40 is thin, but in that case, the corrosion resistance and the rigidity may be insufficient, so that the additive supplements the corrosion resistance and the rigidity. It is conceivable to use a material containing.
 第2板状部材40の厚みは、第1板状部材30よりも厚い。第1板状部材30の厚みは、例えば、2mm以上3mm以下である。第2板状部材40の厚みは、例えば、0.3mm以上0.5mm以下である。 The thickness of the second plate-shaped member 40 is thicker than that of the first plate-shaped member 30. The thickness of the first plate-shaped member 30 is, for example, 2 mm or more and 3 mm or less. The thickness of the second plate-shaped member 40 is, for example, 0.3 mm or more and 0.5 mm or less.
 第1板状部材30には、スリット31が設けられている。スリット31の第1端部311は、第1板状部材30の前端部側に設けられ、スリット31の第2端部312は、第1板状部材30の後端部側に設けられている。スリット31が左右方向に貫通していることは言うまでもない。スリット31は、レーザーカット、切削、打ち抜き、エッチング等により形成される。 The first plate-shaped member 30 is provided with a slit 31. The first end portion 311 of the slit 31 is provided on the front end portion side of the first plate-shaped member 30, and the second end portion 312 of the slit 31 is provided on the rear end portion side of the first plate-shaped member 30. .. Needless to say, the slit 31 penetrates in the left-right direction. The slit 31 is formed by laser cutting, cutting, punching, etching, or the like.
 冷却性能を高めるには、スリット31の長さが長いほどよい。そのため、図7に示されるように、スリット31は蛇行した形状を有することが望ましい。また、流路抵抗を抑制するには、スリット31の曲がりが少ないほどよい。そのため、図7に示されるように、第1板状部材30の長手方向に沿った複数の直線状のスリット31Sの端部同士を円弧状のスリット31Bで結合した形状が望ましい。なお、スリット31の形状は、図7の例以外の形状でもよい。例えば、1本の直線状のスリット31が設けられていてもよい。また、スリット31の第1端部311と第2端部312の両方が、第1板状部材30の前端部側に設けられていてもよく、両方が後端部側に設けられていてもよい。 The longer the slit 31, the better, in order to improve the cooling performance. Therefore, as shown in FIG. 7, it is desirable that the slit 31 has a meandering shape. Further, in order to suppress the flow path resistance, it is better that the slit 31 is less bent. Therefore, as shown in FIG. 7, it is desirable that the ends of a plurality of linear slits 31S along the longitudinal direction of the first plate-shaped member 30 are connected to each other by an arcuate slit 31B. The shape of the slit 31 may be a shape other than the example of FIG. 7. For example, one linear slit 31 may be provided. Further, both the first end portion 311 and the second end portion 312 of the slit 31 may be provided on the front end portion side of the first plate-shaped member 30, or both may be provided on the rear end portion side. good.
 第1板状部材30の前端部及び後端部には、左右方向に貫通したねじ穴32が設けられている。ねじ穴32の内面には、ねじ山が形成されている。第2板状部材40には、第1板状部材30のねじ穴32に対応するねじ穴42が設けられている。1対の第2板状部材40のうち、左側の第2板状部材40には、第1板状部材30のスリット31の第1端部311、第2端部312に対応する位置に、それぞれ流入口43、流出口44が設けられている。流入口43及び流出口44は、左右方向(厚み方向の一例)に貫通している。第1板状部材30及び第2板状部材40の前後両端部には、後述するステー71が挿入される貫通穴35、45が設けられている。 Screw holes 32 penetrating in the left-right direction are provided at the front end portion and the rear end portion of the first plate-shaped member 30. A thread is formed on the inner surface of the screw hole 32. The second plate-shaped member 40 is provided with a screw hole 42 corresponding to the screw hole 32 of the first plate-shaped member 30. Of the pair of second plate-shaped members 40, the second plate-shaped member 40 on the left side is located at a position corresponding to the first end portion 311 and the second end portion 312 of the slit 31 of the first plate-shaped member 30. An inlet 43 and an outlet 44 are provided, respectively. The inflow port 43 and the outflow port 44 penetrate in the left-right direction (an example in the thickness direction). Through holes 35 and 45 into which stays 71, which will be described later, are inserted are provided at both front and rear ends of the first plate-shaped member 30 and the second plate-shaped member 40.
 流入口43と流出口44には、口金61が設けられるが、第2板状部材40が薄肉の部材であるため、口金61の取り付けが困難である。そのため、第2板状部材40の前端部と後端部の左方には、取付部材62が設けられる。取付部材62は、第2板状部材40よりも厚肉の板状の金属部材である。取付部材62には、口金61が取り付けられる口金ねじ穴63と、第1板状部材30のねじ穴32に対応するねじ穴64が設けられている。口金61の外周面には、ねじ山が形成されている。取付部材62と第2板状部材40との間には、コム製のガスケット66が設けられる。ガスケット66には、取付部材62の口金ねじ穴63とねじ穴64に対応する貫通穴67が設けられている。取付部材62及びガスケット66には、ステー71の干渉を回避するための切欠65、68が設けられている。 A base 61 is provided at the inflow port 43 and the outflow port 44, but it is difficult to attach the base 61 because the second plate-shaped member 40 is a thin-walled member. Therefore, the mounting member 62 is provided on the left side of the front end portion and the rear end portion of the second plate-shaped member 40. The mounting member 62 is a plate-shaped metal member having a thickness thicker than that of the second plate-shaped member 40. The mounting member 62 is provided with a screw hole 63 for mounting the base 61 and a screw hole 64 corresponding to the screw hole 32 of the first plate-shaped member 30. A screw thread is formed on the outer peripheral surface of the base 61. A comb-made gasket 66 is provided between the mounting member 62 and the second plate-shaped member 40. The gasket 66 is provided with a base screw hole 63 of the mounting member 62 and a through hole 67 corresponding to the screw hole 64. The mounting member 62 and the gasket 66 are provided with notches 65 and 68 for avoiding interference with the stay 71.
 図7に示されるように、第1板状部材30を挟んで1対の第2板状部材40が積層される。1対の第2板状部材40のうち、流入口43及び流出口44が設けられた第2板状部材40が左側に配置され、もう一方の第2板状部材40が右側に配置される。第1板状部材30及び第2板状部材40は、レーザー溶接で接合される。 As shown in FIG. 7, a pair of second plate-shaped members 40 are laminated with the first plate-shaped member 30 interposed therebetween. Of the pair of second plate-shaped members 40, the second plate-shaped member 40 provided with the inflow port 43 and the outflow port 44 is arranged on the left side, and the other second plate-shaped member 40 is arranged on the right side. .. The first plate-shaped member 30 and the second plate-shaped member 40 are joined by laser welding.
 左側の第2板状部材40の左面にガスケット66が配置され、ガスケット66の左面に取付部材62が配置され、取付部材62とガスケット66が、ねじ70を用いて第1板状部材30と第2板状部材40に締結される。口金61は、取付部材62の口金ねじ穴63に締結される。このようにして組み立てられたコールドプレート16が、筐体13の右側面に対向させて配置される。また、上記のコールドプレート16を左右反転した構造を有するコールドプレート16が、筐体13の左側面に対向させて配置される。 The gasket 66 is arranged on the left surface of the second plate-shaped member 40 on the left side, the mounting member 62 is arranged on the left surface of the gasket 66, and the mounting member 62 and the gasket 66 are the first plate-shaped member 30 and the first plate-shaped member 30 using screws 70. 2 Fastened to the plate-shaped member 40. The base 61 is fastened to the base screw hole 63 of the mounting member 62. The cold plate 16 assembled in this way is arranged so as to face the right side surface of the housing 13. Further, the cold plate 16 having a structure in which the cold plate 16 is inverted left and right is arranged so as to face the left side surface of the housing 13.
 図6A、6Bに示されるように、組み立て後のコールドプレート16においては、取付部材62の下端部が第1板状部材30及び第2板状部材40の下端よりも下方に突出している。取付部材62の下端部がノズルプレート14の上面に突き当てられ、ノズルプレート14とコールドプレート16との間に間隙が形成されることで、ノズルプレート14とコールドプレート16との熱の移動が抑制される。左右のコールドプレート16の第1板状部材30及び第2板状部材40の貫通穴35、45にステー71が挿入され、ステー71によって左右のコールドプレート16が連結される。 As shown in FIGS. 6A and 6B, in the assembled cold plate 16, the lower end of the mounting member 62 protrudes below the lower ends of the first plate-shaped member 30 and the second plate-shaped member 40. The lower end of the mounting member 62 is abutted against the upper surface of the nozzle plate 14, and a gap is formed between the nozzle plate 14 and the cold plate 16, so that heat transfer between the nozzle plate 14 and the cold plate 16 is suppressed. Will be done. The stay 71 is inserted into the through holes 35 and 45 of the first plate-shaped member 30 and the second plate-shaped member 40 of the left and right cold plates 16, and the left and right cold plates 16 are connected by the stay 71.
 図4Aに示されるように、インクジェットヘッド12の前側では、左右のコールドプレート16の口金61が対向している。このうち、右側のコールドプレート16の口金61は流入口43に連通しており、冷却流体を送り出すポンプ(図示省略)に接続される。左側のコールドプレート16の口金61は流出口44に連通しており、冷却流体を冷却する熱交換器(図示省略)に接続される。また、図5Aに示されるように、インクジェットヘッド12の後側でも、左右のコールドプレート16の口金61が対向しているが、両者は中継管72で接続されている。この構成により、右側の口金61から流入した冷却流体が右側のコールドプレート16のスリット31を通過した後、中継管72を経由して左側のコールドプレート16のスリット31を通過して左側の口金61から流出する。 As shown in FIG. 4A, on the front side of the inkjet head 12, the bases 61 of the left and right cold plates 16 face each other. Of these, the base 61 of the cold plate 16 on the right side communicates with the inflow port 43 and is connected to a pump (not shown) that sends out the cooling fluid. The base 61 of the cold plate 16 on the left side communicates with the outlet 44 and is connected to a heat exchanger (not shown) for cooling the cooling fluid. Further, as shown in FIG. 5A, even on the rear side of the inkjet head 12, the bases 61 of the left and right cold plates 16 face each other, but both are connected by a relay tube 72. With this configuration, the cooling fluid flowing in from the right base 61 passes through the slit 31 of the cold plate 16 on the right side, then passes through the slit 31 of the cold plate 16 on the left side via the relay pipe 72, and the base 61 on the left side. Outflow from.
 前述のとおり、ドライバーIC15は、筐体13の左右の側板を介してコールドプレート16と対向している。例えば、筐体13の右側では、コールドプレート16とドライバーIC15とが図8Aに示される位置関係で対向している。同図では、筐体13の側板の図示は省略されている。左側の第2板状部材40を省いて図示すると、スリット31とドライバーIC15とが図8Bに示されるように対向している。 As described above, the driver IC 15 faces the cold plate 16 via the left and right side plates of the housing 13. For example, on the right side of the housing 13, the cold plate 16 and the driver IC 15 face each other in the positional relationship shown in FIG. 8A. In the figure, the side plate of the housing 13 is not shown. When the second plate-shaped member 40 on the left side is omitted, the slit 31 and the driver IC 15 face each other as shown in FIG. 8B.
 以上説明した本実施形態に係るコールドプレート16によれば、薄型で冷却性能が高く安価な流体冷却式コールドプレートを提供することができる。 According to the cold plate 16 according to the present embodiment described above, it is possible to provide a thin, high-cooling performance and inexpensive fluid-cooled cold plate.
 また、本実施形態に係るコールドプレート16によれば、アルミニウム、アルミニウム合金、銅、銅合金は熱伝導性が高いため、流体冷却式コールドプレートの冷却性能を高めることができる。 Further, according to the cold plate 16 according to the present embodiment, since aluminum, aluminum alloy, copper, and copper alloy have high thermal conductivity, the cooling performance of the fluid-cooled cold plate can be improved.
 また、本実施形態に係るコールドプレート16によれば、第2板状部材40の厚みが第1板状部材30よりも薄いことで第2板状部材40の熱容量が小さくなるため、流体冷却式コールドプレートの冷却性能を高めることができる。 Further, according to the cold plate 16 according to the present embodiment, since the thickness of the second plate-shaped member 40 is thinner than that of the first plate-shaped member 30, the heat capacity of the second plate-shaped member 40 becomes smaller, so that the fluid cooling type is used. The cooling performance of the cold plate can be improved.
 また、本実施形態に係るコールドプレート16によれば、流入口43及び流出口44を第1板状部材30に設ける場合と比べて、加工が容易であり、且つ、流体冷却式コールドプレートの気密性を高めることができる。 Further, according to the cold plate 16 according to the present embodiment, the processing is easier and the fluid-cooled cold plate is airtight as compared with the case where the inflow port 43 and the outflow port 44 are provided in the first plate-shaped member 30. It can enhance the sex.
 また、本実施形態に係るコールドプレート16によれば、第1板状部材30及び第2板状部材40がレーザー溶接で接合、又は、接着剤を用いて接着されているから、他の方法を用いる場合と比べて安価に流体冷却式コールドプレートを製造することができる。 Further, according to the cold plate 16 according to the present embodiment, the first plate-shaped member 30 and the second plate-shaped member 40 are joined by laser welding or bonded using an adhesive, so that another method can be used. A fluid-cooled cold plate can be manufactured at a lower cost than when it is used.
 また、本実施形態に係るコールドプレート16によれば、第1板状部材30及び第2板状部材40の接着面の平均粗さが、0.3μm以上1μm以下であるから、溶接の際の溶けがよい。また、接着面に沿った冷却流体の流れが適度に乱されることで接着面から冷却流体への熱の移動が促進される。 Further, according to the cold plate 16 according to the present embodiment, the average roughness of the adhesive surfaces of the first plate-shaped member 30 and the second plate-shaped member 40 is 0.3 μm or more and 1 μm or less, so that during welding. It melts well. Further, the transfer of heat from the adhesive surface to the cooling fluid is promoted by appropriately disturbing the flow of the cooling fluid along the adhesive surface.
[第2実施形態]
 次に、本発明の第2実施形態に係るコールドプレート75(流体冷却式コールドプレートの一例)について説明する。なお、第2実施形態は、第1実施形態と同様の第2板状部材40、口金61、取付部材62、ガスケット66を備えるが、これらの部材についての説明と図示は省略する。図9は、コールドプレート75の分解図である。図10Aは、コールドプレート75の斜視図である。図10Bは、第3板状部材80と第4板状部材90を積層した様子を示す斜視図である。図11、12は、第1スリット81、第2スリット91の内部の冷却流体の流れを示す斜視図である。
[Second Embodiment]
Next, the cold plate 75 (an example of a fluid-cooled cold plate) according to the second embodiment of the present invention will be described. The second embodiment includes the same second plate-shaped member 40, base 61, mounting member 62, and gasket 66 as in the first embodiment, but description and illustration of these members will be omitted. FIG. 9 is an exploded view of the cold plate 75. FIG. 10A is a perspective view of the cold plate 75. FIG. 10B is a perspective view showing a state in which the third plate-shaped member 80 and the fourth plate-shaped member 90 are laminated. 11 and 12 are perspective views showing the flow of the cooling fluid inside the first slit 81 and the second slit 91.
 第1板状部材30は、第3板状部材80と、第3板状部材80に積層された第4板状部材90と、を含み、スリット31は、第3板状部材80に設けられた第1スリット81と、第4板状部材90に設けられた第2スリット91と、を含み、第1スリット81は、第1幹部81Sと、第1幹部81Sと交差する第1方向に第1幹部81Sから分岐した複数の第1枝部81Bと、を備え、第2スリット91は、第2幹部91Sと、第1方向と反対の第2方向に第2幹部91Sから分岐した複数の第2枝部91Bと、を備え、複数の第1枝部81Bの各々と複数の第2枝部91Bの各々とが1対1の関係で対向している。具体的には以下のとおりである。 The first plate-shaped member 30 includes a third plate-shaped member 80 and a fourth plate-shaped member 90 laminated on the third plate-shaped member 80, and the slit 31 is provided in the third plate-shaped member 80. The first slit 81 includes the first slit 81 and the second slit 91 provided in the fourth plate-shaped member 90, and the first slit 81 is first in the first direction intersecting the first trunk portion 81S and the first trunk portion 81S. A plurality of first branch portions 81B branched from one trunk portion 81S are provided, and the second slit 91 has a plurality of second trunk portions 91S branched from the second trunk portion 91S in a second direction opposite to the first direction. The two branch portions 91B are provided, and each of the plurality of first branch portions 81B and each of the plurality of second branch portions 91B face each other in a one-to-one relationship. Specifically, it is as follows.
 第3板状部材80及び第4板状部材90は、前後方向を長手方向とする長方形状の板状部材である。第3板状部材80及び第4板状部材90は、アルミニウム、アルミニウム合金、銅、銅合金のうちのいずれかを用いて形成されている。第3板状部材80及び第4板状部材90の材料は、第2板状部材40の材料と異なっていてもよい。第3板状部材80及び第4板状部材90の厚みは、例えば、1mm以上1.5mm以下である。 The third plate-shaped member 80 and the fourth plate-shaped member 90 are rectangular plate-shaped members whose longitudinal direction is the front-rear direction. The third plate-shaped member 80 and the fourth plate-shaped member 90 are formed by using any one of aluminum, an aluminum alloy, copper, and a copper alloy. The material of the third plate-shaped member 80 and the fourth plate-shaped member 90 may be different from the material of the second plate-shaped member 40. The thickness of the third plate-shaped member 80 and the fourth plate-shaped member 90 is, for example, 1 mm or more and 1.5 mm or less.
 第3板状部材80、第4板状部材90には、それぞれ櫛形の第1スリット81、第2スリット91が設けられている。第1スリット81及び第2スリット91は、レーザーカット、切削、打ち抜き、エッチング等により形成される。 The third plate-shaped member 80 and the fourth plate-shaped member 90 are provided with a comb-shaped first slit 81 and a second slit 91, respectively. The first slit 81 and the second slit 91 are formed by laser cutting, cutting, punching, etching, or the like.
 第1スリット81は、前後方向を長手方向とする直線状の第1幹部81Sと、第1幹部81Sから下方に分岐した複数の直線状の第1枝部81Bと、を備える。第1幹部81Sの前端部は、最も前側の第1枝部81Bよりも前側に位置する。第2スリット91は、前後方向を長手方向とする直線状の第2幹部91Sと、第2幹部91Sから上方に分岐した第1枝部81Bと同数の直線状の第2枝部91Bと、を備える。第2幹部91Sの後端部は、最も後側の第2枝部91Bよりも後側に位置する。第2幹部91Sの長さは、第1幹部81Sと等しい。第2枝部91Bの長さは、第1枝部81Bと等しい。左側の第2板状部材40には、第1幹部81Sの前端部に対応する位置に、流入口43が設けられている。右側の第2板状部材40には、第2幹部91Sの後端部に対応する位置に、流出口44が設けられている。 The first slit 81 includes a linear first trunk portion 81S having a longitudinal direction in the front-rear direction, and a plurality of linear first branch portions 81B branched downward from the first trunk portion 81S. The front end portion of the first trunk portion 81S is located on the front side of the frontmost first branch portion 81B. The second slit 91 has a linear second trunk portion 91S having a longitudinal direction in the front-rear direction and a linear second branch portion 91B having the same number as the first branch portion 81B branched upward from the second trunk portion 91S. Be prepared. The rear end portion of the second trunk portion 91S is located on the rear side of the rearmost rear branch portion 91B. The length of the second cadre 91S is equal to that of the first cadre 81S. The length of the second branch portion 91B is equal to that of the first branch portion 81B. The second plate-shaped member 40 on the left side is provided with an inflow port 43 at a position corresponding to the front end portion of the first trunk portion 81S. The second plate-shaped member 40 on the right side is provided with an outlet 44 at a position corresponding to the rear end portion of the second trunk portion 91S.
 図10Bに示されるように、第3板状部材80と第4板状部材90を積層した場合、複数の第1枝部81Bの各々と複数の第2枝部91Bの各々とが1対1の関係で対向するが、第1枝部81Bの各々が第2枝部91Bの各々に対して、それぞれ、第1枝部81Bの幅の3分の1乃至3分の2程度、後方にずれた位置にある。また、第1枝部81Bが第2枝部91Bに対して、若干上方にずれた位置にある。そのため、図11、12に示されるように、流入口43から流入した冷却流体が、第1幹部81Sから複数の第1枝部81Bへと分岐し、複数の第1枝部81Bの各々から対向する第2枝部91Bへと流入し、複数の第2枝部91Bから第2幹部91Sへと合流し、流出口44から流出する。 As shown in FIG. 10B, when the third plate-shaped member 80 and the fourth plate-shaped member 90 are laminated, each of the plurality of first branch portions 81B and each of the plurality of second branch portions 91B are one-to-one. However, each of the first branch portions 81B is displaced backward by about one-third to two-thirds of the width of the first branch portion 81B with respect to each of the second branch portions 91B. It is in the same position. Further, the first branch portion 81B is located at a position slightly upwardly displaced with respect to the second branch portion 91B. Therefore, as shown in FIGS. 11 and 12, the cooling fluid flowing in from the inflow port 43 branches from the first trunk portion 81S to the plurality of first branch portions 81B, and faces each of the plurality of first branch portions 81B. It flows into the second branch portion 91B, joins the second branch portion 91B from the plurality of second branch portions 91B, and flows out from the outflow port 44.
 以上説明した本実施形態に係るコールドプレート75によれば、流入口43と流出口44との間に並列の流路が形成される。並列の流路を形成する場合、1枚の第1板状部材30で形成しようとすると並列の流路間の部分が他の部分から切り離されてしまい、第2板状部材40との接合作業が複雑化してしまうが、本実施形態に係るコールドプレート75によれば、並列の流路間の部分が切り離されることがないから、容易に並列の流路を形成することができる。 According to the cold plate 75 according to the present embodiment described above, a parallel flow path is formed between the inflow port 43 and the outflow port 44. When forming a parallel flow path, if one attempt is made to form the first plate-shaped member 30, the portion between the parallel flow paths is separated from the other parts, and the joining work with the second plate-shaped member 40 is performed. However, according to the cold plate 75 according to the present embodiment, since the portions between the parallel flow paths are not separated, the parallel flow paths can be easily formed.
 また、本実施形態に係るコールドプレート75によれば、第1枝部81Bが第2枝部91Bに対してずれていない場合と比べて、冷却流体と第3板状部材80及び第4板状部材90との接触面積が増えるから、冷却性能を高めることができる。 Further, according to the cold plate 75 according to the present embodiment, the cooling fluid and the third plate-shaped member 80 and the fourth plate-shaped member 80 are compared with the case where the first branch portion 81B is not displaced with respect to the second branch portion 91B. Since the contact area with the member 90 increases, the cooling performance can be improved.
 上記実施形態が以下のように変形されてもよい。 The above embodiment may be modified as follows.
 図13は、第2実施形態の第1変形例に係るコールドプレート75の斜視図である。第2実施形態では、第1枝部81Bが第2枝部91Bに対して前後方向及び上下方向にずれている例が示されたが、同図に示されるように、第1枝部81Bが第2枝部91Bに対してずれていなくてもよい。この構成によれば、容易に並列の流路を形成することができる。 FIG. 13 is a perspective view of the cold plate 75 according to the first modification of the second embodiment. In the second embodiment, an example is shown in which the first branch portion 81B is displaced in the front-rear direction and the vertical direction with respect to the second branch portion 91B, but as shown in the figure, the first branch portion 81B is It does not have to be displaced with respect to the second branch portion 91B. According to this configuration, parallel flow paths can be easily formed.
 図14Aは、第2実施形態の第2変形例に係るコールドプレート75の斜視図である。同図に示されるように、第1枝部81Bが第2枝部91Bに対して前後方向だけにずれていてもよい。また、図14Bは、第2実施形態の第3変形例に係るコールドプレート75の斜視図である。同図に示されるように、第1枝部81Bが第2枝部91Bに対して上下方向だけにずれていてもよい。第2変形例及び第3変形例によれば、第1枝部81Bが第2枝部91Bに対してずれていない場合と比べて、冷却流体と第3板状部材80及び第4板状部材90との接触面積が増えるから、冷却性能を高めることができる。 FIG. 14A is a perspective view of the cold plate 75 according to the second modification of the second embodiment. As shown in the figure, the first branch portion 81B may be displaced only in the front-rear direction with respect to the second branch portion 91B. Further, FIG. 14B is a perspective view of the cold plate 75 according to the third modification of the second embodiment. As shown in the figure, the first branch portion 81B may be displaced only in the vertical direction with respect to the second branch portion 91B. According to the second modification and the third modification, the cooling fluid and the third plate-shaped member 80 and the fourth plate-shaped member are compared with the case where the first branch portion 81B is not displaced with respect to the second branch portion 91B. Since the contact area with the 90 is increased, the cooling performance can be improved.
 上記実施形態では、第1板状部材30と第2板状部材40がレーザー溶接で接合される例が示されたが、第1板状部材30と第2板状部材40は、接着剤を用いて接着されてもよい。この場合も、第1板状部材30及び第2板状部材40の接着面の平均粗さが0.3μm以上1μm以下であることで、接着剤のなじみがよくなる。 In the above embodiment, an example in which the first plate-shaped member 30 and the second plate-shaped member 40 are joined by laser welding has been shown, but the first plate-shaped member 30 and the second plate-shaped member 40 have an adhesive. It may be glued using. Also in this case, when the average roughness of the adhesive surfaces of the first plate-shaped member 30 and the second plate-shaped member 40 is 0.3 μm or more and 1 μm or less, the adhesive becomes familiar well.
 上記実施形態では、第2板状部材40に流入口43と流出口44が設けられている例が示されたが、第1板状部材30に流入口43と流出口44が設けられていてもよい。例えば、第1板状部材30の厚みよりも小さい径のドリルで第1板状部材30の端面からスリット31の第1端部311及び第2端部312に連通する穴を形成することで流入口43と流出口44が形成されてもよい。 In the above embodiment, an example in which the inflow port 43 and the outflow port 44 are provided in the second plate-shaped member 40 is shown, but the inflow port 43 and the outflow port 44 are provided in the first plate-shaped member 30. May be good. For example, a drill having a diameter smaller than the thickness of the first plate-shaped member 30 is used to form a hole communicating with the first end portion 311 and the second end portion 312 of the slit 31 from the end surface of the first plate-shaped member 30. An inlet 43 and an outlet 44 may be formed.

Claims (13)

  1.  冷却流体が流れるスリットが設けられた第1板状部材と、
     前記第1板状部材の両面に、前記スリットを塞ぐように積層されて接合された1対の第2板状部材と、
     前記スリットに連通する流入口及び流出口と、を備えることを特徴とする流体冷却式コールドプレート。
    A first plate-shaped member provided with a slit through which the cooling fluid flows, and
    A pair of second plate-shaped members laminated and joined to both sides of the first plate-shaped member so as to close the slit,
    A fluid-cooled cold plate comprising an inlet and an outlet communicating with the slit.
  2.  前記第1板状部材及び前記第2板状部材は、アルミニウム、アルミニウム合金、銅、銅合金のうちの少なくとも1種類を用いて形成されていることを特徴とする請求項1に記載の流体冷却式コールドプレート。 The fluid cooling according to claim 1, wherein the first plate-shaped member and the second plate-shaped member are formed by using at least one of aluminum, an aluminum alloy, copper, and a copper alloy. Formula cold plate.
  3.  前記第2板状部材の厚みは、前記第1板状部材よりも薄いことを特徴とする請求項1に記載の流体冷却式コールドプレート。 The fluid-cooled cold plate according to claim 1, wherein the thickness of the second plate-shaped member is thinner than that of the first plate-shaped member.
  4.  前記流入口及び前記流出口は、前記1対の第2板状部材のいずれかを厚み方向に貫通していることを特徴とする請求項1に記載の流体冷却式コールドプレート。 The fluid-cooled cold plate according to claim 1, wherein the inlet and the outlet penetrate one of the pair of second plate-shaped members in the thickness direction.
  5.  前記流入口及び前記流出口は、前記一対の第2板状部材の長手方向の両端部に設けられていることを特徴とする請求項4に記載の流体冷却式コールドプレート。 The fluid-cooled cold plate according to claim 4, wherein the inflow port and the outflow port are provided at both ends in the longitudinal direction of the pair of second plate-shaped members.
  6.  前記第1板状部材及び前記第2板状部材は、レーザー溶接で接合されていることを特徴とする請求項1に記載の流体冷却式コールドプレート。 The fluid-cooled cold plate according to claim 1, wherein the first plate-shaped member and the second plate-shaped member are joined by laser welding.
  7.  前記第1板状部材及び前記第2板状部材は、接着剤を用いて接着されていることを特徴とする請求項1に記載の流体冷却式コールドプレート。 The fluid-cooled cold plate according to claim 1, wherein the first plate-shaped member and the second plate-shaped member are adhered to each other by using an adhesive.
  8.  前記第1板状部材及び前記第2板状部材の接着面の平均粗さが、0.3μm以上1μm以下であることを特徴とする請求項1に記載の流体冷却式コールドプレート。 The fluid-cooled cold plate according to claim 1, wherein the average roughness of the adhesive surfaces of the first plate-shaped member and the second plate-shaped member is 0.3 μm or more and 1 μm or less.
  9.  前記スリットは、蛇行した形状であることを特徴とする請求項1に記載の流体冷却式コールドプレート。 The fluid-cooled cold plate according to claim 1, wherein the slit has a meandering shape.
  10.  前記スリットは、前記第1板状部材の長手方向に長い複数の直線部と、隣接する前記直線部の端部を接続する円弧状の湾曲部と、を有することを特徴とする請求項9に記載の流体冷却式コールドプレート。 The ninth aspect of the present invention is characterized in that the slit has a plurality of straight portions long in the longitudinal direction of the first plate-shaped member and an arcuate curved portion connecting the ends of the adjacent straight portions. The fluid-cooled cold plate described.
  11.  前記第1板状部材は、第3板状部材と、前記第3板状部材に積層された第4板状部材と、を含み、
     前記スリットは、前記第3板状部材に設けられた第1スリットと、前記第4板状部材に設けられた第2スリットと、を含み、
     前記第1スリットは、直線状の第1幹部と、前記第1幹部と交差する第1方向に前記第1幹部から分岐した複数の第1枝部と、を備え、
     前記第2スリットは、直線状の第2幹部と、前記第1方向と反対の第2方向に前記第2幹部から分岐した複数の第2枝部と、を備え、
     前記複数の第1枝部の各々と前記複数の第2枝部の各々とが1対1の関係で対向していることを特徴とする請求項1に記載の流体冷却式コールドプレート。
    The first plate-shaped member includes a third plate-shaped member and a fourth plate-shaped member laminated on the third plate-shaped member.
    The slit includes a first slit provided in the third plate-shaped member and a second slit provided in the fourth plate-shaped member.
    The first slit includes a linear first trunk portion and a plurality of first branch portions branched from the first trunk portion in a first direction intersecting the first trunk portion.
    The second slit includes a linear second trunk portion and a plurality of second branch portions branched from the second trunk portion in a second direction opposite to the first direction.
    The fluid-cooled cold plate according to claim 1, wherein each of the plurality of first branch portions and each of the plurality of second branch portions face each other in a one-to-one relationship.
  12.  前記複数の第1枝部の各々と前記複数の第2枝部の各々とが1対1の関係で対向し、且つ、前記複数の第1枝部の各々が前記複数の第2枝部の各々に対して、前記第1方向と前記第1方向と交差する方向との少なくとも一つの方向にずれていることを特徴とする請求項9に記載の流体冷却式コールドプレート。 Each of the plurality of first branch portions and each of the plurality of second branch portions face each other in a one-to-one relationship, and each of the plurality of first branch portions is of the plurality of second branch portions. The fluid-cooled cold plate according to claim 9, wherein the first direction and the direction intersecting the first direction are deviated from each other in at least one direction.
  13.  第1板状部材にスリットを形成する工程と、
     第2板状部材又は第1板状部材にスリットに連通する流入口及び流出口を形成する工程と、
     第1板状部材を挟んでスリットを塞ぐように1対の第2板状部材を第1板状部材に接合する工程と、と備えることを特徴とする流体冷却式コールドプレートの製造方法。
     
    The process of forming a slit in the first plate-shaped member and
    A step of forming an inflow port and an outflow port communicating with a slit in the second plate-shaped member or the first plate-shaped member, and
    A method for manufacturing a fluid-cooled cold plate, which comprises a step of joining a pair of second plate-shaped members to the first plate-shaped member so as to sandwich the first plate-shaped member and close a slit.
PCT/JP2021/035007 2020-10-01 2021-09-24 Fluid-cooling type cold plate and method for producing same WO2022071099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-167059 2020-10-01
JP2020167059A JP2023166635A (en) 2020-10-01 2020-10-01 Fluid cooling cold plate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022071099A1 true WO2022071099A1 (en) 2022-04-07

Family

ID=80950266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035007 WO2022071099A1 (en) 2020-10-01 2021-09-24 Fluid-cooling type cold plate and method for producing same

Country Status (2)

Country Link
JP (1) JP2023166635A (en)
WO (1) WO2022071099A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284395U (en) * 1988-12-19 1990-06-29
JPH02306097A (en) * 1989-05-19 1990-12-19 Nhk Spring Co Ltd Heat sink
JPH05102362A (en) * 1991-04-08 1993-04-23 General Electric Co <Ge> Integrated radiator for semiconductor module
JP2012013249A (en) * 2010-06-29 2012-01-19 T Rad Co Ltd Plate lamination type heat sink
JP2012064732A (en) * 2010-09-16 2012-03-29 Meidensha Corp Water cooling heat sink
JP2012084731A (en) * 2010-10-13 2012-04-26 Mitsubishi Electric Corp Plate laminate type cooling apparatus
JP2012160688A (en) * 2011-01-31 2012-08-23 Sekai Saisoku Shisaku Center:Kk Heat sink and method for manufacturing the same
JP2013175526A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Cooler and cooling device
JP2013175532A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Cooler and heat dissipation plate
JP2019125700A (en) * 2018-01-17 2019-07-25 日立オートモティブシステムズ株式会社 Power semiconductor device
JP2020115495A (en) * 2019-01-17 2020-07-30 三菱電機株式会社 Semiconductor device and manufacturing method for semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284395U (en) * 1988-12-19 1990-06-29
JPH02306097A (en) * 1989-05-19 1990-12-19 Nhk Spring Co Ltd Heat sink
JPH05102362A (en) * 1991-04-08 1993-04-23 General Electric Co <Ge> Integrated radiator for semiconductor module
JP2012013249A (en) * 2010-06-29 2012-01-19 T Rad Co Ltd Plate lamination type heat sink
JP2012064732A (en) * 2010-09-16 2012-03-29 Meidensha Corp Water cooling heat sink
JP2012084731A (en) * 2010-10-13 2012-04-26 Mitsubishi Electric Corp Plate laminate type cooling apparatus
JP2012160688A (en) * 2011-01-31 2012-08-23 Sekai Saisoku Shisaku Center:Kk Heat sink and method for manufacturing the same
JP2013175526A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Cooler and cooling device
JP2013175532A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Cooler and heat dissipation plate
JP2019125700A (en) * 2018-01-17 2019-07-25 日立オートモティブシステムズ株式会社 Power semiconductor device
JP2020115495A (en) * 2019-01-17 2020-07-30 三菱電機株式会社 Semiconductor device and manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JP2023166635A (en) 2023-11-22

Similar Documents

Publication Publication Date Title
EP2853398B1 (en) Liquid ejection head
JP7077678B2 (en) Liquid discharge head, head module, head unit, liquid discharge unit, liquid discharge device
JP6304479B2 (en) Liquid ejecting head and liquid ejecting apparatus
US7887153B2 (en) Liquid discharging apparatus
JP6323648B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP5373588B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP5040263B2 (en) Droplet ejector
US9969165B2 (en) Liquid discharge head and liquid discharge apparatus
US11618265B2 (en) Liquid ejecting head and liquid ejecting apparatus
EP3771566A1 (en) Liquid ejecting head and liquid ejecting apparatus
JP7259417B2 (en) Liquid ejection head and liquid ejection device
JP2006198960A (en) Inkjet recording head, inkjet recording apparatus, and manufacturing method for inkjet recording head
US20200198349A1 (en) Liquid ejecting head and liquid ejecting apparatus
JP2012040725A (en) Ink head and ink jet printer equipped with the ink head
WO2022071099A1 (en) Fluid-cooling type cold plate and method for producing same
JP7255238B2 (en) Liquid ejection head and liquid ejection device
JP2012011671A (en) Ink head, and inkjet printer having the same mounted thereon
JP7055656B2 (en) Liquid discharge head and liquid discharge device
JP2019064149A (en) Liquid discharge device
US11254125B2 (en) Liquid discharging head unit and liquid discharging apparatus
EP4186702A1 (en) Liquid discharge head
EP3705296B1 (en) Liquid ejecting head and liquid ejecting apparatus
US20220234350A1 (en) Liquid Ejecting Head And Liquid Ejecting Apparatus
JP2017209812A (en) Liquid discharge head
JP2009096041A (en) Ink jet head and ink jet head device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP