JP2012160688A - Heat sink and method for manufacturing the same - Google Patents

Heat sink and method for manufacturing the same Download PDF

Info

Publication number
JP2012160688A
JP2012160688A JP2011032578A JP2011032578A JP2012160688A JP 2012160688 A JP2012160688 A JP 2012160688A JP 2011032578 A JP2011032578 A JP 2011032578A JP 2011032578 A JP2011032578 A JP 2011032578A JP 2012160688 A JP2012160688 A JP 2012160688A
Authority
JP
Japan
Prior art keywords
metal thin
heat sink
sealing
plate
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011032578A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakada
一彦 中田
Hitoshi Mikoshiba
仁史 御子柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKAI SAISOKU SHISAKU CENTER KK
SEKAI SAISOKU SHISAKU CT KK
Original Assignee
SEKAI SAISOKU SHISAKU CENTER KK
SEKAI SAISOKU SHISAKU CT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKAI SAISOKU SHISAKU CENTER KK, SEKAI SAISOKU SHISAKU CT KK filed Critical SEKAI SAISOKU SHISAKU CENTER KK
Priority to JP2011032578A priority Critical patent/JP2012160688A/en
Publication of JP2012160688A publication Critical patent/JP2012160688A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a down-sized heat sink which is easily manufactured and has high reliability, and to provide a method for manufacturing the same.SOLUTION: The heat sink comprises: a plurality of metal thin sheets which have a line of a meandering through hole that becomes a passage for a cooling medium and are stacked each other; sealing sheets which are provided at both sides of the stacked metal thin sheets and serve as a sealing face of the passage; and inlet and outlet ports for the cooling medium, which are provided at the sealing sheets or the metal thin sheets and connected to the passage for the cooling medium. Each of the metal thin sheets has a low-melting-point metal layer formed on at least whole one side surface, which has a melting point lower than that of the metal thin sheet. In addition, each of the metal thin sheets has embossed parts which have a recess part on one side and a convex part on the opposite side respectively and are formed at a plurality of positions except the positions of the through hole. The sealing sheets also have a plurality of embossed parts which have a recess part on one side and a convex part on the opposite side respectively and can be fitted with the embossed parts on the metal thin sheets. The sealing sheets and each of the metal thin sheets are fitted and connected at the embossed parts and jointed by the melting of the low-melting-point metal layer.

Description

本発明は、コンピュータのCPU周辺、各種レーザー装置、各種モーター等の冷却装置に用いるヒートシンク及びその製造方法に関する。  The present invention relates to a heat sink used for a cooling device such as a computer CPU periphery, various laser devices, various motors, and the like, and a manufacturing method thereof.

コンピュータのCPU周辺、各種レーザー装置、各種モーター等の電気及び電子機器では発熱が機器の性能を低下させるため、冷却が不可欠である。冷却の方法としては、金属材料にフィンなどを設けて表面積を増加させることにより冷却を図るもの、ファン等により強制的に空気を吹き付けて冷却するもの、冷媒を循環させて熱交換を行って冷却するもの、ペルチェ素子を使用して冷却するものなど、種々の方法が知られている。  In electrical and electronic equipment such as a computer CPU, various laser devices, and various motors, cooling is indispensable because heat generation reduces the performance of the equipment. Cooling methods include cooling the metal material by providing fins etc. to increase the surface area, cooling by forcibly blowing air with a fan, etc., cooling the heat by circulating the refrigerant Various methods are known, such as a method of cooling using a Peltier element.

例えば特許文献1には、アルミブレージングシートを打ち抜き加工して冷媒流路の一部と冷媒出入り口の一部とを形成した流路板を製作する工程、上記流路板を複数枚積層して上記冷媒流路と上記冷媒出入口とを形成する工程、上記冷媒出入口に配管継手を挿入、嵌合し、複数枚積層された上記流路板と上記配管継手とを一括してろう付けする工程を含むことを特徴とするヒートシンクの製造方法が開示されている。  For example, Patent Document 1 discloses a process of punching an aluminum brazing sheet to produce a flow path plate in which a part of the refrigerant flow path and a part of the refrigerant inlet / outlet are formed. Forming a refrigerant flow path and the refrigerant inlet / outlet; inserting and fitting a pipe joint into the refrigerant inlet / outlet; and brazing the plurality of laminated flow path plates and the pipe joint together. A heat sink manufacturing method is disclosed.

上記文献の方法では、接合される側にろう材がクラッドされてなるアルミブレージングシートを、ターレットパンチプレスなどにより打ち抜き加工して冷媒流路及び冷媒出入口を作成し、この流路板を複数枚積層して蓋となる上板及び下板を重ねる。この状態で配管継手を挿入した上で昇温しろう付けを行う。従って、接合前に複数の流路板の位置を保ったまま配管継手を挿入する工程を行わなければならず、流路板の位置がずれやすいという問題点がある。また、流路板と上板、下板を一体に保持するための手段も必要となる。さらに、冷媒出入口が流路板の側面に位置しているため、積層してヒートシンクを組立てた後でなければ、配管継手接続処理を行うことができない。  In the method of the above document, an aluminum brazing sheet having a brazing material clad on the side to be joined is punched by a turret punch press to create a refrigerant flow path and a refrigerant inlet / outlet, and a plurality of the flow path plates are laminated. Then, the upper plate and the lower plate to be the lid are stacked. In this state, the pipe joint is inserted and the temperature is raised and brazing is performed. Therefore, it is necessary to perform a process of inserting the pipe joint while maintaining the positions of the plurality of flow path plates before joining, and there is a problem that the position of the flow path plates is likely to be shifted. In addition, means for holding the flow path plate, the upper plate, and the lower plate together is also required. Furthermore, since the refrigerant inlet / outlet port is located on the side surface of the flow path plate, the pipe joint connection processing cannot be performed unless the heat sink is laminated and assembled.

上記のような薄型流路板を鋳造金型により製作することも容易に想到できるが、鋳造後の冷却による収縮時に材料の歪みが生じやすいという問題点がある。  Although it is easily conceivable to manufacture the thin flow path plate as described above by a casting mold, there is a problem that the material is likely to be distorted during shrinkage due to cooling after casting.

また、上記のような薄型流路板を切削工法により製作することも可能であるが、流路が長くなると加工に時間がかかりコストが高くなるという問題点がある。
In addition, it is possible to manufacture the thin flow path plate as described above by a cutting method, but there is a problem that if the flow path becomes longer, processing takes time and costs increase.

特開平11−87584号公報JP 11-87584 A

本発明は上述の問題点に鑑みてなされたものであり、製造が容易で信頼性の高い小型ヒートシンク及びその製造方法を提供することを課題とする。  The present invention has been made in view of the above-described problems, and an object thereof is to provide a small heat sink that is easy to manufacture and highly reliable, and a method for manufacturing the same.

上記課題を解決するため本発明によるヒートシンクは、冷媒流路となる一連の蛇行貫通孔を有する複数の金属薄板が積層され、両側に前記流路の封止面となる封止板が配置され、前記封止板あるいは前記金属薄板に前記冷媒流路とつながる冷媒流入出口が設けられたヒートシンクにおいて、前記金属薄板の各々には少なくとも片側表面全体に前記金属薄板より融点の低い低融点金属層が形成されており、さらに前記金属薄板の各々には片側が凹部かつ反対側が凸部となるエンボス部が前記貫通孔以外の複数箇所に形成されており、前記封止板にも片側が凹部かつ反対側が凸部形状で前記金属薄板上のエンボス部と嵌合可能な複数のエンボス部が設けてあり、前記封止板の各々と前記金属薄板同士がこれらエンボス部において嵌合結合され、前記低融点金属層の溶融により接合されていることを特徴とする。  In order to solve the above problems, the heat sink according to the present invention is formed by laminating a plurality of thin metal plates having a series of meandering through-holes serving as refrigerant flow paths, and sealing plates serving as sealing surfaces of the flow paths are disposed on both sides. In the heat sink in which the coolant inlet / outlet connected to the coolant channel is provided in the sealing plate or the metal thin plate, a low melting point metal layer having a melting point lower than that of the metal thin plate is formed on each of the metal thin plates at least on one surface. Further, each of the thin metal plates is formed with an embossed portion having a concave portion on one side and a convex portion on the opposite side at a plurality of locations other than the through hole, and the sealing plate has a concave portion on the other side and an opposite side. A plurality of embossed portions that can be fitted with the embossed portions on the metal thin plate in a convex shape are provided, and each of the sealing plates and the metal thin plates are fitted and joined at these embossed portions, Characterized in that it is joined by the melting of the low melting point metal layers.

前記金属薄板上の前記複数のエンボス部の一部は、前記金属薄板上の前記蛇行貫通孔を形成するための残存隔壁部に形成されていることが望ましい。  It is preferable that a part of the plurality of embossed portions on the thin metal plate is formed in a remaining partition wall portion for forming the meandering through hole on the thin metal plate.

また、前記封止板の少なくとも一方に、前記冷媒流入出口が設けられていることが好適であり、前記冷媒流入出口にはネジ穴が形成されていることが好適である。  In addition, it is preferable that at least one of the sealing plates is provided with the refrigerant inlet / outlet, and it is preferable that a screw hole is formed in the refrigerant inlet / outlet.

前記低融点金属層は、前記金属薄板及び前記封止板のいずれよりも融点が低いことが好ましく、前記金属薄板及び前記封止板の材質としては銅、前記低融点金属層としては銀またはその合金が特に好適である。ヒートシンクの目的は発熱体から効率よく熱を吸収しヒートシンクの冷媒流路の冷媒に熱導する事が求められ、その為金属薄板と封止板の材質は熱伝導率の良い銅材を用いる事が多い、その場合積層板同士を接合する材料としてこれも熱伝導率が良い材料が必要となり、接合材料より融点が低く熱伝導率が良い材料は半田合金又は銀材が一般的な材料である。但し、冷媒流路は冷媒液を循環させる為の内圧が発生するので強度的に半田合金より強度のある銀材を使用し又熱伝導率から言ってもこれが良い。通常、純銅の融点は1080度・銀の融点は960度であり、接合する為の溶解温度を1000度前後にすると、金属薄板の溶解温度に近く形状変形等を起こしやすく安定した形状形成接合が出来ない。そこでこれ等を解決する為に、金属薄板1が銅材料の場合、低融点金属層21は銀メッキ又は銀箔を介在する事により防止が出来る。
その理由は銅材料で出来ている金属薄膜1及び封止板2A・2Bの積層面は低融点金属層21を介在しエンボス部の勘合により相互に密着しており、この状態で接合炉に放置し徐々に温度を上げていくと接触面の金属間拡散現象が始まり銀合金の共晶体化を起こし合金化状態が比較的低い温度で実現する。銀合金の溶解温度は銅と銀の含有量で決まり、既存の合金状態図から、含有量が半々でも800度前後では溶解する。(既存銅−銀の合金状態図では銀40%・銅60%では溶解温度が780度)銅材の溶解温度に対し接合温度を下げての積層間接合が出来るので積層部材を変形等が発生せず良好な接合条件が設定できる。
The low melting point metal layer preferably has a lower melting point than both the metal thin plate and the sealing plate, the material of the metal thin plate and the sealing plate is copper, and the low melting point metal layer is silver or its Alloys are particularly preferred. The purpose of the heat sink is to efficiently absorb heat from the heating element and conduct it to the refrigerant in the refrigerant flow path of the heat sink. Therefore, the metal thin plate and the sealing plate should be made of copper with good thermal conductivity. In this case, a material having a good thermal conductivity is required as a material for joining the laminated plates in that case, and a material having a lower melting point and a better thermal conductivity than the joining material is generally a solder alloy or a silver material. . However, since an internal pressure for circulating the refrigerant liquid is generated in the refrigerant flow path, a silver material that is stronger than the solder alloy in strength is used, and this is good from the viewpoint of thermal conductivity. Usually, the melting point of pure copper is 1080 degrees, and the melting point of silver is 960 degrees. If the melting temperature for bonding is around 1000 degrees, it is close to the melting temperature of the metal thin plate, and it is easy to cause shape deformation etc. I can't. Therefore, in order to solve these problems, when the metal thin plate 1 is a copper material, the low melting point metal layer 21 can be prevented by interposing silver plating or silver foil.
The reason is that the laminated surface of the metal thin film 1 and the sealing plates 2A and 2B made of a copper material are in close contact with each other through the embossed portion with the low-melting point metal layer 21 interposed therebetween. When the temperature is gradually raised, the intermetallic diffusion phenomenon on the contact surface starts and eutectic formation of the silver alloy occurs, and the alloyed state is realized at a relatively low temperature. The melting temperature of the silver alloy is determined by the contents of copper and silver, and from the existing alloy phase diagram, even if the content is half and half, it melts at around 800 degrees. (In the existing copper-silver alloy phase diagram, the melting temperature is 780 ° C for 40% silver and 60% copper) Deformation of the laminated member occurs because the bonding temperature can be lowered by lowering the bonding temperature relative to the melting temperature of the copper material. Good bonding conditions can be set.

前記金属薄板は用途・コストなどを考慮して鉄材も使用可能であるが、その場合の前記低融点金属層としては銅が好ましい。鉄と銅の組み合わせは鉄と錫等の組み合わせに比較して積層間接合の強度が飛躍的にアップし、信頼性を上げる事ができる。As the metal thin plate, an iron material can be used in consideration of applications, costs, etc., but copper is preferable as the low melting point metal layer in that case. Compared to a combination of iron and tin, the combination of iron and copper can dramatically increase the strength of interlaminar bonding and increase the reliability.

本発明によるヒートシンクの製造方法においては、外形形状と複数のエンボス部を含めて冷媒流路の封止面となる1組の銅製封止板を形成する工程と、冷媒流路となる一連の蛇行貫通孔及び片側表面が凹部かつ反対側表面が凸部となるエンボス部を含めた所定の形状を銅製金属薄板から形成する工程と、前記封止板及び前記金属薄板の少なくとも片側表面に銀または銀合金による低融点金属層を形成する工程と、前記エンボス部を嵌合させることにより前記1組の封止板と前記金属薄板同士を結合する工程と、前記低融点金属層を熱的に融解させて前記封止板及び前記金属薄板を接合する工程と、前記封止板或いは前記金属薄板に冷媒流入出口を形成する工程とからなることを特徴とする。  In the method of manufacturing a heat sink according to the present invention, a step of forming a set of copper sealing plates serving as a sealing surface of a refrigerant flow path including an outer shape and a plurality of embossed portions, and a series of meanders serving as a refrigerant flow path A step of forming a predetermined shape including a through hole and an embossed portion having a concave surface on one side and a convex surface on the opposite side from a copper thin metal plate; and silver or silver on at least one surface of the sealing plate and the thin metal plate A step of forming a low-melting-point metal layer made of an alloy, a step of bonding the pair of sealing plates and the thin metal plates by fitting the embossed portions, and thermally melting the low-melting-point metal layer. And the step of joining the sealing plate and the metal thin plate, and the step of forming a refrigerant inlet / outlet on the sealing plate or the metal thin plate.

本発明によれば、封止板と金属薄板の各々にエンボス部を設け、積層時にこのエンボス部同士を嵌合結合させることにより容易かつ確実に相互の位置決めを行って、さらに一体に保持することとが可能となる。これにより、封止板と各金属薄板とを接合する際は、加圧の必要なく、単に温度を上げて低融点金属層を溶融するだけでよい。従って、製造が容易で信頼性の高い小型ヒートシンク及びその製造方法を提供することができる。また、封止板上に貫通孔を設けネジを切ることにより、組立前に継手接続処理が可能となる。さらに、エンボス部は片側が凹部かつ反対側が凸部となるよう形成されるため、単純なプレス加工により形成可能である。  According to the present invention, an embossed portion is provided on each of the sealing plate and the thin metal plate, and the embossed portions are fitted and connected to each other at the time of stacking, thereby easily and reliably positioning each other and further holding them integrally. Is possible. Thereby, when joining a sealing plate and each metal thin plate, it is only necessary to raise the temperature and melt the low melting point metal layer without applying pressure. Therefore, it is possible to provide a small heat sink that is easy to manufacture and highly reliable, and a manufacturing method thereof. Further, by providing a through hole on the sealing plate and cutting the screw, it is possible to perform joint connection processing before assembly. Furthermore, since the embossed part is formed so that one side is a concave part and the opposite side is a convex part, it can be formed by simple press working.

以下、図面に基づいて本発明によるヒートシンクの好適な実施例について説明する。図1は、本発明によるヒートシンクの一実施例の主要部組み立て図を示す。このヒートシンクは、ワークステーション用のCPUの放熱を目的としたものである。中央部に3枚の金属薄板1(外形80mm角、厚さ1mmの銅材)が配置され、各金属薄板1にはそれぞれ同じ位置に蛇行した貫通孔4(幅6mm)が形成されている。また、各金属薄板1には上下2箇所ずつ、及び貫通孔4を分離する隔壁部3を含めた内部に6箇所、計10箇所にエンボス部5が形成されている。  Hereinafter, preferred embodiments of a heat sink according to the present invention will be described with reference to the drawings. FIG. 1 shows a main part assembly diagram of an embodiment of a heat sink according to the present invention. This heat sink is intended to dissipate heat from the CPU for the workstation. Three thin metal plates 1 (copper material having an outer diameter of 80 mm square and a thickness of 1 mm) are arranged in the center, and each thin metal plate 1 is formed with a meandering through hole 4 (width 6 mm). Each metal thin plate 1 is formed with two embossed portions 5 at a total of 10 locations, two at the top and bottom, and six inside including the partition wall 3 separating the through holes 4.

3枚の金属薄板1の両側には、冷媒の流路となる貫通孔4を密閉するための天井部と底部として機能する封止板2A及び2B(外形80mm角、厚さ1mmの銅材)が配置されている。封止板2Aには、金属薄板1に形成された貫通孔4の両端部に相当する位置に貫通孔が設けられ、それぞれ冷媒流入口7及び冷媒流出口8として機能する。これらの貫通孔7及び8にはネジを形成し、接続継手11及び12を接続できるようにすることが望ましい。  On both sides of the three thin metal plates 1, sealing plates 2A and 2B functioning as a ceiling portion and a bottom portion for sealing the through hole 4 serving as a refrigerant flow path (copper material having an outer diameter of 80 mm square and a thickness of 1 mm). Is arranged. The sealing plate 2A is provided with through holes at positions corresponding to both end portions of the through hole 4 formed in the thin metal plate 1, and functions as a refrigerant inlet 7 and a refrigerant outlet 8, respectively. It is desirable to form screws in these through holes 7 and 8 so that the connection joints 11 and 12 can be connected.

前述の封止板2A及び2Bと3枚の金属薄板1はそれぞれに設けられた10箇所のエンボス部において、図4に示したように凸部5Bと凹部5Aとが相互に嵌合することにより、各材料の位置決めと結合が同時になされている。尚、各材料の間には、厚さ5ミクロンの銀層が低融点金属層21としてめっきされている。  As shown in FIG. 4, the sealing plates 2A and 2B and the three metal thin plates 1 are respectively provided at 10 embossed portions so that the convex portions 5B and the concave portions 5A are fitted to each other as shown in FIG. Each material is positioned and bonded simultaneously. A silver layer having a thickness of 5 microns is plated as the low melting point metal layer 21 between the materials.

結合された封止板2A及び2Bと3枚の金属薄板1は各材料間に配置された低融点金属層21の融解により、相互に完全接合されている。  The bonded sealing plates 2A and 2B and the three metal thin plates 1 are completely joined to each other by melting the low melting point metal layer 21 disposed between the materials.

図2は完成した本発明によるヒートシンクの正面図を示すが、冷媒流入口7及び冷媒流出口8にそれぞれ継手11及び12が接続されている。また、このヒートシンクを機器に取り付けまたは固定することができるよう、ヒートシンクの四隅には取り付け穴6が形成されている。図3にこのヒートシンクのA−A’面における側面断面図を示すが、各金属薄板1の貫通孔4は同じ位置に形成されているため、隔壁部3と上下両側の封止板2A及び2Bにより密閉空間に形成され、冷媒の流路となる。  FIG. 2 shows a front view of the completed heat sink according to the present invention, with joints 11 and 12 connected to the refrigerant inlet 7 and the refrigerant outlet 8, respectively. Further, attachment holes 6 are formed at the four corners of the heat sink so that the heat sink can be attached or fixed to the device. FIG. 3 is a side sectional view of the heat sink taken along the AA ′ plane. Since the through holes 4 of the respective thin metal plates 1 are formed at the same position, the partition wall 3 and the upper and lower sealing plates 2A and 2B are shown. Is formed in a sealed space and serves as a refrigerant flow path.

尚、10箇所のエンボス部5のうち5箇所は隔壁部3の先端部分に形成されているため、金属板1が相互に嵌合することにより、隔壁部3自体の強度も補強される。  In addition, since five places are formed in the front-end | tip part of the partition part 3 among the ten embossing parts 5, the intensity | strength of the partition part 3 itself is reinforced by the metal plate 1 fitting mutually.

次に、上記ヒートシンクの実施例の製造方法について説明する。まず、封止板2A及び2Bをプレス打ち抜き等により形成する。この際、上記実施例においては封止板2Aのみに冷媒流入口7及び冷媒流出口8となる貫通孔を形成する。この際、これらの貫通孔にネジを形成しておけば、後ほど継手を接続するのが容易となる。設計によっては、各封止板にそれぞれ1つずつの貫通孔を形成して冷媒流入口7及び冷媒流出口8とすることも可能である。  Next, the manufacturing method of the Example of the said heat sink is demonstrated. First, the sealing plates 2A and 2B are formed by press punching or the like. At this time, in the above-described embodiment, through holes serving as the refrigerant inlet 7 and the refrigerant outlet 8 are formed only in the sealing plate 2A. At this time, if screws are formed in these through holes, it becomes easy to connect the joint later. Depending on the design, it is possible to form one through hole in each sealing plate to form the refrigerant inlet 7 and the refrigerant outlet 8.

次に、3枚の金属薄板1について、貫通孔4と外形を打ち抜き、エンボス部はダボの突き出し等により凹部と凸部を同時に形成する。3枚とも同じ形状であるため、同じ金型を使用することができる。金属薄板1には少なくとも片面に、前もって低融点金属層を設けておくことができる。  Next, the through holes 4 and the outer shape of the three metal thin plates 1 are punched out, and the embossed portion simultaneously forms a concave portion and a convex portion by projecting a dowel or the like. Since all three sheets have the same shape, the same mold can be used. The metal thin plate 1 can be provided with a low melting point metal layer in advance on at least one side.

続いて、3枚の金属薄板1と2枚の封止板2A及び2Bを重ねて加圧し、エンボス部同士を嵌合結合させて一体化する。ここまでの工程は、例えば順送金型等を用いることにより、連続的に行うことも可能である。  Subsequently, the three metal thin plates 1 and the two sealing plates 2A and 2B are overlapped and pressed, and the embossed portions are fitted and joined to be integrated. The steps up to here can be performed continuously by using a progressive die, for example.

一体化したヒートシンク組立体は、例えば830℃程度の高温槽に入れ、低融点金属層を融解した後冷却すれば、相互に接合されて堅固なヒートシンクとして完成される。この例では低融点金属層として銀を使用したが、封止板や金属薄板の種類に従って他の銀合金或いははんだ等の他の材料を選択することも可能である。  The integrated heat sink assembly is put in a high temperature bath of, for example, about 830 ° C., and the low melting point metal layer is melted and then cooled. In this example, silver is used as the low melting point metal layer, but other materials such as other silver alloys or solders can be selected according to the type of the sealing plate or metal thin plate.

今回のヒートシンクの試作実施に関しては金属薄板の材料を銅、低融点金属層を銀のメッキで実施したが、他の放熱用途を配慮して金属薄板の材料を鉄とし、鉄と相性の良い低融点金属層材料種類とこれ等を接合させる溶解炉種類についても並行して検討した。鉄材より融点が低くしかも容易に実施可能な低融点金属層材料として錫と銅2種を検討し、接合させる溶解炉として電気炉・無酸化炉の2種類で接合試験を実施した。
以下は実施した接合引っ張り強度試験データである。
*低融点材料が錫材・厚み3μ・電気炉では0.8Kg〜1Kg/mm^2
*低融点材料が錫材・厚み5μ・電気炉では1Kg/mm^2
*低融点材料が錫材・厚み3μ・無酸化炉では6Kg〜7Kg/mm^2
*低融点材料が錫材・厚み5μ・無酸化炉では4kg〜5Kg/mm^2
*低融点材料が銅材・厚み3μ・電気炉では25kg〜30Kg/mm^2
*低融点材料が銅材・厚み5μ・電気炉では20Kg〜25Kg/mm^2
以上の結果より錫・銅とも同じ電気炉を使用した場合では銅を使用した方が強度は強い結果となっている。銅、錫が持っている材料本来の引っ張り強さ、銅=25kg/mm^2、錫=8kg/mm^2を鑑みても錫は溶解時表面酸化現象により流れ性が悪く接合不足が生じていることが判る。無酸化炉を使用した場合でも錫の場合は溶解時表面酸化現象による流れ性が悪く安定した接合状態が得られない。
又厚みに関しては5μより3μの方が少し強度が安定している。
以上の結果、金属薄板材料が鉄の場合には、低融点金属層として銅材が安定して強度が確保出来る結果となった。
In this heat sink prototype, the metal thin plate was made of copper and the low melting point metal layer was plated with silver. However, considering other heat dissipation applications, the metal thin plate was made of iron, which is compatible with iron. The types of melting point metal layer materials and melting furnaces for joining them were also examined in parallel. Two types of tin and copper were studied as low melting point metal layer materials having a melting point lower than that of iron and can be easily implemented, and a joining test was carried out with two types of melting furnaces, an electric furnace and a non-oxidizing furnace.
The following is the joint tensile strength test data performed.
* Low melting point material is tin, thickness 3μ, electric furnace 0.8kg-1kg / mm ^ 2
* Low melting point material is tin, thickness 5μ, 1kg / mm ^ 2 for electric furnace
* Low melting point material is tin, thickness 3μ, non-oxidizing furnace 6kg-7kg / mm ^ 2
* Low melting point material is tin, thickness 5μ, non-oxidizing furnace 4kg ~ 5Kg / mm ^ 2
* Low melting point material is copper, thickness 3μ, 25kg-30Kg / mm ^ 2 for electric furnace
* Low melting point material is copper, thickness 5μ, 20kg to 25kg / mm ^ 2 for electric furnace
From the above results, when the same electric furnace is used for both tin and copper, the strength is higher when copper is used. Considering the original tensile strength of copper and tin, copper = 25kg / mm ^ 2, tin = 8kg / mm ^ 2, tin has poor flowability due to surface oxidation during melting, resulting in insufficient bonding. I know that. Even in the case of using a non-oxidizing furnace, in the case of tin, the flowability due to the surface oxidation phenomenon is poor at the time of melting, and a stable joining state cannot be obtained.
Regarding the thickness, the strength is slightly more stable at 3 μ than at 5 μ.
As a result, when the metal thin plate material was iron, the copper material could be stably secured as the low melting point metal layer.

以上述べたように、本発明によれば、製造が容易で信頼性の高い小型ヒートシンク及びその製造方法を提供することができるため、電気及び電子機器の冷却分野において大いに貢献できるものである。  As described above, according to the present invention, it is possible to provide a small heat sink that is easy to manufacture and highly reliable and a method for manufacturing the same, and thus can greatly contribute to the field of cooling electrical and electronic equipment.

本は発明によるヒートシンク主要部の構成を示す組み立て図である。The present invention is an assembly view showing the configuration of the main part of the heat sink according to the present invention. 本発明によるヒートシンクの正面図である。It is a front view of the heat sink by this invention. 図2に示したヒートシンクの側面断面図である。It is side surface sectional drawing of the heat sink shown in FIG. 図1に示した本発明によるヒートシンク主要部の結合状態を示す図である。It is a figure which shows the coupling | bonding state of the heat sink main part by this invention shown in FIG.

1 金属薄板
2A、2B 封止板
3 隔壁部
4 貫通孔
5 エンボス部
5A 凹部
5B 凸部
6 取り付け穴
7 冷媒流入口
8 冷媒流出口
11 継手
12 継手
21 低融点金属層
DESCRIPTION OF SYMBOLS 1 Metal thin plate 2A, 2B Sealing plate 3 Partition part 4 Through-hole 5 Embossed part 5A Concave part 5B Convex part 6 Mounting hole 7 Refrigerant inlet 8 Refrigerant outlet 11 Joint 12 Joint 21 Low melting-point metal layer

Claims (10)

冷媒流路となる一連の蛇行貫通孔を有する複数の金属薄板が積層され、両側に前記流路の封止面となる封止板が配置され、前記封止板あるいは前記金属薄板に前記冷媒流路とつながる冷媒流入出口が設けられたヒートシンクにおいて、前記金属薄板の各々には少なくとも片側表面全体に前記金属薄板より融点の低い低融点金属層が形成されており、さらに前記金属薄板の各々には片側が凹部かつ反対側が凸部となるエンボス部が前記貫通孔以外の複数箇所に形成されており、前記封止板にも片側が凹部かつ反対側が凸部形状で前記金属薄板上のエンボス部と嵌合可能な複数のエンボス部が設けてあり、前記封止板の各々と前記金属薄板同士がこれらエンボス部において嵌合結合され、前記低融点金属層の溶融により接合されていることを特徴とするヒートシンク。A plurality of thin metal plates having a series of meandering through-holes serving as refrigerant flow paths are stacked, and sealing plates serving as sealing surfaces of the flow paths are disposed on both sides, and the refrigerant flow is applied to the sealing plate or the thin metal sheets. In the heat sink provided with the refrigerant inlet / outlet connected to the passage, each of the metal thin plates has a low melting point metal layer having a melting point lower than that of the metal thin plate at least on one surface, and each of the metal thin plates has Embossed portions having a concave portion on one side and a convex portion on the opposite side are formed at a plurality of locations other than the through hole, and the sealing plate has a concave portion on one side and a convex portion on the opposite side, and an embossed portion on the metal thin plate. A plurality of embossed portions that can be fitted are provided, and each of the sealing plates and the metal thin plates are fitted and joined at these embossed portions, and are joined by melting the low melting point metal layer. Heat sink to. 前記金属薄板上の複数の前記エンボス部の一部は、前記金属薄板上の前記蛇行貫通孔を形成するための残存隔壁部に形成されていることを特徴とする請求項1記載のヒートシンク。The heat sink according to claim 1, wherein a part of the plurality of embossed portions on the thin metal plate is formed in a remaining partition wall portion for forming the meandering through hole on the thin metal plate. 前記封止板の少なくとも一方に、前記冷媒流入出口が設けられていることを特徴とする請求項1または2記載のヒートシンク。The heat sink according to claim 1 or 2, wherein the refrigerant inlet / outlet is provided on at least one of the sealing plates. 前記冷媒流入出口にネジ穴が形成されていることを特徴とする請求項1乃至3のいずれかに記載のヒートシンク。The heat sink according to any one of claims 1 to 3, wherein a screw hole is formed in the refrigerant inlet / outlet. 前記低融点金属層は、前記金属薄板及び前記封止板のいずれよりも融点が低いことを特徴とする請求項1乃至4のいずれかに記載のヒートシンク。5. The heat sink according to claim 1, wherein the low-melting-point metal layer has a lower melting point than any of the metal thin plate and the sealing plate. 前記金属薄板及び前記封止板の材質が銅であることを特徴とする請求項1乃至5のいずれかに記載のヒートシンク。The heat sink according to any one of claims 1 to 5, wherein the metal thin plate and the sealing plate are made of copper. 前記低融点金属層が銀またはその合金であることを特徴とする請求項1乃至6のいずれかに記載のヒートシンク。The heat sink according to any one of claims 1 to 6, wherein the low melting point metal layer is silver or an alloy thereof. 前記金属薄板及び前記封止板の材質が銅であり、前記低融点金属層が銀またはその合金であることを特徴とする請求項1乃至5のいずれかに記載のヒートシンク。The heat sink according to any one of claims 1 to 5, wherein a material of the metal thin plate and the sealing plate is copper, and the low melting point metal layer is silver or an alloy thereof. 前記金属薄板及び前記封止板の材質が鉄であり、前記低融点金属層が銅またはその合金であることを特徴とする請求項1乃至5のいずれかに記載のヒートシンク。The heat sink according to any one of claims 1 to 5, wherein a material of the metal thin plate and the sealing plate is iron, and the low melting point metal layer is copper or an alloy thereof. 外形形状と複数のエンボス部を含めて冷媒流路の封止面となる1組の銅製封止板を形成する工程と、冷媒流路となる一連の蛇行貫通孔及び片側表面が凹部かつ反対側表面が凸部となるエンボス部を含めた所定の形状を銅製金属薄板から形成する工程と、前記封止板及び前記金属薄板の少なくとも片側表面に銀または銀合金による低融点金属層を形成する工程と、前記エンボス部を嵌合させることにより前記1組の封止板と前記金属薄板同士を結合する工程と、前記低融点金属層を熱的に融解させて前記封止板及び前記金属薄板を接合する工程と、前記封止板或いは前記金属薄板に冷媒流入出口を形成する工程とからなることを特徴とするヒートシンクの製造方法。A step of forming a set of copper sealing plates to be a sealing surface of the refrigerant flow path including the outer shape and the plurality of embossed portions; a series of meandering through holes to be the refrigerant flow paths; A step of forming a predetermined shape including an embossed portion whose surface is a convex portion from a copper metal thin plate, and a step of forming a low melting point metal layer made of silver or a silver alloy on at least one surface of the sealing plate and the metal thin plate And joining the set of sealing plates and the metal thin plates by fitting the embossed portions, and thermally melting the low melting point metal layer to form the sealing plates and the metal thin plates. A method of manufacturing a heat sink, comprising: a step of joining; and a step of forming a refrigerant inflow / outlet in the sealing plate or the metal thin plate.
JP2011032578A 2011-01-31 2011-01-31 Heat sink and method for manufacturing the same Pending JP2012160688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032578A JP2012160688A (en) 2011-01-31 2011-01-31 Heat sink and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032578A JP2012160688A (en) 2011-01-31 2011-01-31 Heat sink and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012160688A true JP2012160688A (en) 2012-08-23

Family

ID=46840953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032578A Pending JP2012160688A (en) 2011-01-31 2011-01-31 Heat sink and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012160688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053442A (en) * 2012-09-07 2014-03-20 Mitsubishi Electric Corp Plate laminated type cooling device
KR101446956B1 (en) * 2012-12-13 2014-11-04 대한칼소닉주식회사 Battery heat sink having structure stacked fluid path
WO2022071099A1 (en) * 2020-10-01 2022-04-07 京セラドキュメントソリューションズ株式会社 Fluid-cooling type cold plate and method for producing same
KR20230001004A (en) * 2021-06-25 2023-01-03 포샨 후아즈 어드밴스드 머티리얼즈 컴퍼니 리미티드 Microchannel heat sink and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053442A (en) * 2012-09-07 2014-03-20 Mitsubishi Electric Corp Plate laminated type cooling device
KR101446956B1 (en) * 2012-12-13 2014-11-04 대한칼소닉주식회사 Battery heat sink having structure stacked fluid path
WO2022071099A1 (en) * 2020-10-01 2022-04-07 京セラドキュメントソリューションズ株式会社 Fluid-cooling type cold plate and method for producing same
KR20230001004A (en) * 2021-06-25 2023-01-03 포샨 후아즈 어드밴스드 머티리얼즈 컴퍼니 리미티드 Microchannel heat sink and manufacturing method thereof
KR102624495B1 (en) * 2021-06-25 2024-01-11 포샨 후아즈 어드밴스드 머티리얼즈 컴퍼니 리미티드 Microchannel heat sink and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5788069B1 (en) Flat type heat pipe
US7731079B2 (en) Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled
US7316263B2 (en) Cold plate
US7044199B2 (en) Porous media cold plate
JP6189015B2 (en) Radiator and method of manufacturing radiator
US20130058042A1 (en) Laminated heat sinks
WO2003028423A1 (en) Method for manufacturing a heat sink
JP2012160688A (en) Heat sink and method for manufacturing the same
WO2016009727A1 (en) Liquid-cooled jacket and method for manufacturing liquid-cooled jacket
JP6248841B2 (en) Liquid cooling jacket and liquid cooling jacket manufacturing method
JP5194557B2 (en) Liquid-cooled cooler for power element mounting and manufacturing method thereof
CN108198792B (en) A kind of heat radiation module and preparation method thereof
JP2019160852A (en) Manufacturing method of heat sink
JP2014053442A (en) Plate laminated type cooling device
JP2016198937A (en) Composite material containing carbon material layer and heat exchanger
US11614289B2 (en) Aluminum heat exchanger with solderable outer surface layer
JP6248842B2 (en) Liquid cooling jacket manufacturing method and liquid cooling jacket
JP2010062491A (en) Semiconductor device and composite semiconductor device
JP5466676B2 (en) Heat dissipation unit structure
JP2016092222A (en) Semiconductor device
JP2012164947A (en) Lamination type heat sink and method for manufacturing the same
CN220235245U (en) Heat dissipation device
JP7345774B2 (en) How to manufacture a heat sink
JP2013032898A (en) Laminated heat sink
JP2021188887A (en) Vapor chamber and manufacturing method of vapor chamber