JP2012164947A - Lamination type heat sink and method for manufacturing the same - Google Patents

Lamination type heat sink and method for manufacturing the same Download PDF

Info

Publication number
JP2012164947A
JP2012164947A JP2011037660A JP2011037660A JP2012164947A JP 2012164947 A JP2012164947 A JP 2012164947A JP 2011037660 A JP2011037660 A JP 2011037660A JP 2011037660 A JP2011037660 A JP 2011037660A JP 2012164947 A JP2012164947 A JP 2012164947A
Authority
JP
Japan
Prior art keywords
flow path
plate
heat sink
plates
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011037660A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakada
一彦 中田
Hitoshi Mikoshiba
仁史 御子柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKAI SAISOKU SHISAKU CENTER KK
SEKAI SAISOKU SHISAKU CT KK
Original Assignee
SEKAI SAISOKU SHISAKU CENTER KK
SEKAI SAISOKU SHISAKU CT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKAI SAISOKU SHISAKU CENTER KK, SEKAI SAISOKU SHISAKU CT KK filed Critical SEKAI SAISOKU SHISAKU CENTER KK
Priority to JP2011037660A priority Critical patent/JP2012164947A/en
Publication of JP2012164947A publication Critical patent/JP2012164947A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small lamination type heat sink capable of easily being produced and attached to a motor and the like, and a method for manufacturing the same.SOLUTION: In a heat sink, a plurality of flow path plates having through holes serving as coolant passages are stacked, sealing plates serving as sealing surfaces of the passages are arranged on both sides, and inlet/outlet ports for coolant are provided on the sealing plates or the flow path plates. On each of the flow path plates, the through holes are arranged in positions of rotational symmetry, and a part of the through holes is arranged so as to overlap with the through hole of the adjacent flow path plate by rotating predetermined number of flow path plates by a symmetric rotation angle.

Description

本発明は、コンピュータのCPU周辺、各種レーザー装置、LED装置、各種モーター、ソレノイド等の冷却装置に用いるヒートシンク及びその製造方法に関する。  The present invention relates to a heat sink used for a cooling device such as a computer CPU periphery, various laser devices, LED devices, various motors, solenoids, and the like, and a method of manufacturing the same.

コンピュータのCPU周辺、各種レーザー装置、各種モーター等の電気及び電子機器では発熱が機器の性能を低下させるため、冷却が不可欠である。冷却の方法としては、金属材料にフィンなどを設けて表面積を増加させることにより冷却を図るもの、ファン等により強制的に空気を吹き付けて冷却するもの、冷媒を循環させて熱交換を行って冷却するもの、ペルチェ素子を使用して冷却するものなど、種々の方法が知られている。  In electrical and electronic equipment such as a computer CPU, various laser devices, and various motors, cooling is indispensable because heat generation reduces the performance of the equipment. Cooling methods include cooling the metal material by providing fins etc. to increase the surface area, cooling by forcibly blowing air with a fan, etc., cooling the heat by circulating the refrigerant Various methods are known, such as a method of cooling using a Peltier element.

例えば特許文献1には、アルミブレージングシートを打ち抜き加工して冷媒流路の一部と冷媒出入り口の一部とを形成した流路板を製作する工程、上記流路板を複数枚積層して上記冷媒流路と上記冷媒出入口とを形成する工程、上記冷媒出入口に配管継手を挿入、嵌合し、複数枚積層された上記流路板と上記配管継手とを一括してろう付けする工程を含むことを特徴とするヒートシンクの製造方法が開示されている。  For example, Patent Document 1 discloses a process of punching an aluminum brazing sheet to produce a flow path plate in which a part of the refrigerant flow path and a part of the refrigerant inlet / outlet are formed. Forming a refrigerant flow path and the refrigerant inlet / outlet; inserting and fitting a pipe joint into the refrigerant inlet / outlet; and brazing the plurality of laminated flow path plates and the pipe joint together. A heat sink manufacturing method is disclosed.

上記文献の方法では、接合される側にろう材がクラッドされてなるアルミブレージングシートを、ターレットパンチプレスなどにより打ち抜き加工して冷媒流路及び冷媒出入口を作成し、この流路板を複数枚積層して蓋となる上板及び下板を重ねる。この状態で配管継手を挿入した上で昇温しろう付けを行う。従って、接合前に複数の流路板の位置を保ったまま配管継手を挿入する工程を行わなければならず、流路板の位置がずれやすいという問題点がある。また、流路板と上板、下板を一体に保持するための手段も必要となる。さらに、冷媒出入口が流路板の側面に位置しているため、積層してヒートシンクを組立てた後でなければ、配管継手接続処理を行うことができない。  In the method of the above document, an aluminum brazing sheet having a brazing material clad on the side to be joined is punched by a turret punch press to create a refrigerant flow path and a refrigerant inlet / outlet, and a plurality of the flow path plates are laminated. Then, the upper plate and the lower plate to be the lid are stacked. In this state, the pipe joint is inserted and the temperature is raised and brazing is performed. Therefore, it is necessary to perform a process of inserting the pipe joint while maintaining the positions of the plurality of flow path plates before joining, and there is a problem that the position of the flow path plates is likely to be shifted. In addition, means for holding the flow path plate, the upper plate, and the lower plate together is also required. Furthermore, since the refrigerant inlet / outlet port is located on the side surface of the flow path plate, the pipe joint connection processing cannot be performed unless the heat sink is laminated and assembled.

上記のような薄型流路板を鋳造金型により製作することも容易に想到できるが、鋳造後の冷却による収縮時に材料の歪みが生じやすいという問題点がある。  Although it is easily conceivable to manufacture the thin flow path plate as described above by a casting mold, there is a problem that the material is likely to be distorted during shrinkage due to cooling after casting.

また、上記のような薄型流路板を切削工法により製作することも可能であるが、流路が長くなると加工に時間がかかりコストが高くなるという問題点がある。
In addition, it is possible to manufacture the thin flow path plate as described above by a cutting method, but there is a problem that if the flow path becomes longer, processing takes time and costs increase.

特開平11−87584号公報JP 11-87584 A

本発明は上述の問題点に鑑みてなされたものであり、製造が容易でモーターやソレノイド等に容易に取り付け可能な小型積層型ヒートシンク及びその製造方法を提供することを課題とする。  The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a small stacked heat sink that can be easily manufactured and easily attached to a motor, a solenoid, and the like, and a method for manufacturing the same.

上記課題を解決するため本発明によるヒートシンクは、冷媒流路となる貫通孔を有する複数の流路板が積層され、両側に前記流路の封止面となる封止板が配置され、前記封止板または前記流路板に冷媒流入出口が設けられたヒートシンクにおいて、前記流路板の各々は前記貫通孔が回転対称位置に形成されており、所定枚数ずつ対称回転角度分回転させて積層することにより前記貫通孔の一部が隣接する流路板の貫通孔と重複するよう配置されていることを特徴とする。  In order to solve the above-described problems, the heat sink according to the present invention includes a plurality of flow path plates having through holes that serve as refrigerant flow paths, and sealing plates that serve as sealing surfaces of the flow paths are disposed on both sides. In the heat sink in which the stop plate or the flow path plate is provided with the refrigerant inlet / outlet, each of the flow path plates has the through hole formed in a rotationally symmetric position, and is laminated by rotating a predetermined number of times by a symmetric rotational angle. Thus, a part of the through hole is arranged so as to overlap with a through hole of an adjacent flow path plate.

前記流路板に複数の貫通孔が形成されており、前記貫通孔の各々の長さが前記回転対称角度よりも長く形成され、前記貫通孔同士の距離が前記回転対称角度よりも離れていることが望ましい。  A plurality of through holes are formed in the flow path plate, the length of each of the through holes is formed longer than the rotational symmetry angle, and the distance between the through holes is separated from the rotational symmetry angle. It is desirable.

また、前記流路板及び前記封止板の各々に片面側が凹部かつ反対面側が凸部となるエンボス部が複数箇所に形成されており、前記封止板の各々と複数の前記流路板同士がこれらエンボス部において嵌合結合されていることが好適である。  Further, each of the flow path plate and the sealing plate is formed with a plurality of embossed portions having a concave portion on one side and a convex portion on the opposite side, and each of the sealing plate and the plurality of flow path plates Are preferably fitted and connected at these embossed portions.

さらに、前記各封止板と前記各流路板の接触面上に低融点金属層が設けてあり、該低融点金属層の溶融により前記各封止板と前記各流路板接合されていることが望ましい。また、前記各封止板と前記各流路板の材質が銅であり、前記低融点金属層が銀またはその合金であることが特に好適である。  Further, a low melting point metal layer is provided on a contact surface between each sealing plate and each flow path plate, and each sealing plate and each flow path plate are joined by melting of the low melting point metal layer. It is desirable. Further, it is particularly preferable that the material of each sealing plate and each flow path plate is copper, and the low melting point metal layer is silver or an alloy thereof.

また、前記各封止板と前記各流路板の中心部が中空に形成されていることも好適である。  Moreover, it is also preferable that the center part of each said sealing plate and each said flow-path board is formed hollow.

本発明によるヒートシンクの製造方法においては、外形形状と複数のエンボス部を含めて冷媒流路の封止面となる1組の封止板を形成する工程と、冷媒流路となる貫通孔及び片側表面が凹部かつ反対側表面が凸部となるエンボス部を含めた所定の形状を有する流路板を形成する工程と、前記流路板及び/または前記封止板の少なくとも片側表面に前記流路板及び前記封止板より融点の低い低融点金属層を形成する工程と、前記流路板の所定枚数を所定角度ずつ回転させて積層する工程と、前記エンボス部同士を嵌合させることにより前記1組の封止板と前記複数の流路板同士を結合する工程と、前記低融点金属層を熱的に融解させて前記封止板及び前記金属薄板を接合する工程とからなることを特徴とする。  In the method of manufacturing a heat sink according to the present invention, a step of forming a set of sealing plates serving as a sealing surface of a refrigerant flow path including an outer shape and a plurality of embossed portions, a through hole serving as a refrigerant flow path, and one side Forming a flow path plate having a predetermined shape including an embossed portion having a concave surface and a convex surface on the opposite side; and the flow path on at least one surface of the flow path plate and / or the sealing plate A step of forming a low melting point metal layer having a melting point lower than that of the plate and the sealing plate, a step of rotating a predetermined number of the flow path plates by a predetermined angle, and a step of fitting the embossed portions to each other. It comprises a step of joining a pair of sealing plates and the plurality of flow path plates, and a step of thermally melting the low melting point metal layer and joining the sealing plate and the metal thin plate. And

本発明によれば、回転対称状に流路板の貫通孔を形成することにより、所定枚数の流路板を回転対称角度ずつ回転させて積層すれば、螺旋状に連続した冷媒流路を容易に形成することができ、また同じ貫通孔配置の流路板の積層枚数を変更することにより、流路の断面積を自由に変更することもできる。また、封止板と流路板の各々にエンボス部を設け、積層時にこのエンボス部同士を嵌合結合させることにより容易かつ確実に相互の位置決めを行って、さらに一体に保持することとが可能となる。これにより、封止板と各流路板とを接合する際は、加圧の必要なく、単に温度を上げて低融点金属層を溶融するだけでよい。従って、製造が容易で信頼性の高い積層型ヒートシンク及びその製造方法を提供することができる。また、エンボス部は片側が凹部かつ反対側が凸部となるよう形成されるため、単純なプレス加工により形成可能である。さらに、ヒートシンクの中心部を中空に形成することにより発熱体の周囲を覆うように配置することが可能となるため、広い用途に適用することが可能となる。  According to the present invention, by forming the through holes of the flow path plate in a rotationally symmetrical manner, a predetermined number of flow path plates can be rotated and rotated at a rotationally symmetrical angle so that a continuous refrigerant flow path can be easily formed. Further, the cross-sectional area of the flow path can be freely changed by changing the number of laminated flow path plates having the same through-hole arrangement. In addition, embossed parts are provided on each of the sealing plate and the flow path plate, and these embossed parts can be easily and reliably positioned together by laminating and holding them together during lamination. It becomes. Thereby, when joining the sealing plate and each flow path plate, it is only necessary to raise the temperature and melt the low melting point metal layer without the need for pressurization. Therefore, it is possible to provide a laminated heat sink that is easy to manufacture and highly reliable, and a method for manufacturing the same. Moreover, since the embossed part is formed so that one side is a concave part and the opposite side is a convex part, it can be formed by simple press working. Furthermore, since the center portion of the heat sink is formed to be hollow, it can be arranged so as to cover the periphery of the heating element, and therefore, it can be applied to a wide range of uses.

以下、図面に基づいて本発明によるヒートシンクの好適な実施例について説明する。図1は、本発明によるヒートシンクの第1の実施例に用いる流路板を示す平面図である。流路板2Aは四角に形成されており、中心部に中空部3が設けてある。中空部3の上部には流路となる貫通孔5が円弧状に形成されている。この貫通孔5は90度回転対称となるよう形成されているが、隣接する流路板との間で連続的な流路を確保するため長さは角度で90度を超える程度になるようにされている。  Hereinafter, preferred embodiments of a heat sink according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing a flow path plate used in the first embodiment of the heat sink according to the present invention. 2 A of flow-path plates are formed in the square, and the hollow part 3 is provided in the center part. A through hole 5 serving as a flow path is formed in an arc shape in the upper portion of the hollow portion 3. This through hole 5 is formed so as to be 90-degree rotationally symmetric, but in order to ensure a continuous flow path between adjacent flow path plates, the length is set to exceed 90 degrees in angle. Has been.

また、流路板2A上には周縁部近傍及び中空部3周囲に合計12箇所のエンボス部が設けてある。このエンボス部は、片面側が凹部、反対面側が凸部となるよう構成されている。また、この流路板2Aの四隅にはヒートシンクを機器に固定するための取り付け穴7が設けてある。  Further, a total of 12 embossed portions are provided in the vicinity of the peripheral edge portion and around the hollow portion 3 on the flow path plate 2A. The embossed part is configured such that one side is a concave part and the opposite side is a convex part. Further, attachment holes 7 for fixing the heat sink to the device are provided at the four corners of the flow path plate 2A.

図2は流路板2Bの平面図を示し、基本的には上記の流路板2Aと同じ構成である。ただし、配置が90度時計回りに回転されていて、流路板2Aでは流路部5が上部に配置されていたが、この流路板2Bでは右側となっている。  FIG. 2 is a plan view of the flow path plate 2B, which basically has the same configuration as the flow path plate 2A. However, the arrangement is rotated 90 degrees clockwise, and the flow path portion 5 is disposed at the upper portion of the flow path plate 2A, but is on the right side in the flow path plate 2B.

図3は封止板1Aの平面図を示す。この封止板1Aの構成は上記の流路板2Aとほぼ同じであるが、冷媒の流路を密閉しその出入口を確保するため、一部に円形の流入口4Aが形成されている。この流入口4Aの位置は、上記流路板2Aの流路部5の端部と合致する。  FIG. 3 shows a plan view of the sealing plate 1A. The configuration of the sealing plate 1A is substantially the same as that of the flow channel plate 2A, but a circular inflow port 4A is formed in part in order to seal the refrigerant flow channel and secure the entrance / exit. The position of the inlet 4A coincides with the end of the flow path portion 5 of the flow path plate 2A.

図4は本ヒートシンクの要素である流路板と封止板を組立てた場合の構成を説明する断面図である。図2におけるA−A’面での断面図である。上から順に、封止板1A、流路板2A、2B、2C、2D、そして最下部が封止板1Bとなっている。封止板1Aには流入口4Aが形成されており、流路板2Aの流路部5に接続している。流路板2Aの流路部5は、この図では断面の奥側に配置されている。流路板2Bは、流路板2Aと同じものを90度時計回りに回転させて積層しているため、流路部5はこの図の右側に一部露出しており、奥側において流路板2Aの流路部5と接続している。以下同様に、流路板2C及び2Dをやはり時計方向に90度ずつ回転させて積層し、最下部に封止板1Aと同じ構成で流出口4Bが形成された封止板1Bを配置することにより、冷媒の流路は封止板1Aの流入口4Aからちょうど360度螺旋状に連続して、封止板1Bの流出口4Bに連絡する。このように、回転対称形の流路板を積層することにより、連続的な冷媒流路を確保することができる。  FIG. 4 is a cross-sectional view illustrating a configuration when a flow path plate and a sealing plate, which are elements of the heat sink, are assembled. FIG. 3 is a cross-sectional view taken along plane A-A ′ in FIG. 2. In order from the top, the sealing plate 1A, the flow path plates 2A, 2B, 2C, 2D, and the lowermost portion are the sealing plate 1B. An inlet 4A is formed in the sealing plate 1A and is connected to the flow path portion 5 of the flow path plate 2A. The flow path portion 5 of the flow path plate 2A is arranged on the back side of the cross section in this figure. Since the flow path plate 2B is laminated by rotating the same thing as the flow path plate 2A by 90 degrees clockwise, the flow path portion 5 is partially exposed on the right side of this figure, It is connected to the flow path portion 5 of the plate 2A. Similarly, the flow path plates 2C and 2D are also rotated and rotated 90 degrees clockwise and stacked, and the sealing plate 1B having the same configuration as the sealing plate 1A and having the outlet 4B is disposed at the bottom. As a result, the flow path of the refrigerant continues from the inlet 4A of the sealing plate 1A in a spiral manner just 360 degrees and communicates with the outlet 4B of the sealing plate 1B. Thus, a continuous refrigerant flow path can be secured by stacking the rotationally symmetric flow path plates.

図5には上記各封止板及び各流路板同士のエンボス結合の状態を示した。都合により、上記ヒートシンク構成の一部断面を示す。各封止板及び各流路板に形成された各エンボス部(図1から3におけるエンボス部6)は片面側が凹部6A、反対面側が凸部6Bとなる

Figure 2012164947
り、各材料の位置決めと結合が同時になされている。尚、各材料の間には、低融点金属層11が形成されている。FIG. 5 shows a state of emboss coupling between the sealing plates and the flow path plates. For convenience, a partial cross section of the heat sink configuration is shown. Each embossed portion (embossed portion 6 in FIGS. 1 to 3) formed on each sealing plate and each flow path plate has a concave portion 6A on one side and a convex portion 6B on the opposite side.
Figure 2012164947
Thus, each material is positioned and bonded simultaneously. A low melting point metal layer 11 is formed between the materials.

低融点金属層11は前記流路板及び前記封止板のいずれよりも融点が低いことが好ましく、前記流路板及び前記封止板の材質としては銅、前記低融点金属層としては銀またはその合金が特に好適である。ヒートシンクの目的は発熱体から効率よく熱を吸収しヒートシンクの冷媒流路の冷媒に熱導する事が求められ、その為流路板と封止板の材質は熱伝導率の良い銅材を用いる事が多い、その場合積層板同士を接合する材料としてこれも熱伝導率が良い材料が必要となり、接合材料より融点が低く熱伝導率が良い材料は半田合金又は銀材が一般的な材料である。但し、冷媒流路は冷媒液を循環させる為の内圧が発生するので強度的に半田合金より強度のある銀材を使用し又熱伝導率から言ってもこれが良い。通常、純銅の融点は1080度・銀の融点は960度であり、接合する為の溶解温度を1000度前後にすると、流路板の溶解温度に近く形状変形等を起こしやすく安定した形状形成接合が出来ない。そこでこれ等を解決する為に、流路板2が銅材料の場合、低融点金属層11は銀メッキ又は銀箔を介在する事により防止が出来る。その理由は銅材料で出来ている流路板2及び封止板1A・1Bの積層面は低融点金属層11を介在しエンボス部の勘合により相互に密着しており、この状態で接合炉に放置し徐々に温度を上げていくと接触面の金属間拡散現象が始まり銀合金の共晶体化を起こし合金化状態が比較的低い温度で実現する。銀合金の溶解温度は銅と銀の含有量で決まり、既存の合金状態図から、含有量が半々でも800度前後では溶解する。(既存銅−銀の合金状態図では銀40%・銅60%では溶解温度が780度)銅材の溶解温度に対し接合温度を下げての積層間接合が出来るので積層部材を変形等が発生せず良好な接合条件が設定できる。  The low melting point metal layer 11 preferably has a lower melting point than both the flow path plate and the sealing plate. The material of the flow path plate and the sealing plate is copper, and the low melting point metal layer is silver or The alloy is particularly suitable. The purpose of the heat sink is to efficiently absorb heat from the heating element and to conduct heat to the refrigerant in the refrigerant flow path of the heat sink. Therefore, the material of the flow path plate and the sealing plate is made of copper material with good thermal conductivity. In many cases, a material having good thermal conductivity is required as a material for joining the laminated plates. In this case, a solder alloy or a silver material is generally used as the material having a lower melting point and better thermal conductivity than the joining material. is there. However, since an internal pressure for circulating the refrigerant liquid is generated in the refrigerant flow path, a silver material that is stronger than the solder alloy in strength is used, and this is good from the viewpoint of thermal conductivity. Usually, pure copper has a melting point of 1080 degrees and silver has a melting point of 960 degrees. When the melting temperature for bonding is around 1000 degrees, it is close to the melting temperature of the flow path plate and is likely to cause shape deformation and the like. I can't. In order to solve these problems, when the flow path plate 2 is made of a copper material, the low melting point metal layer 11 can be prevented by interposing silver plating or silver foil. The reason is that the laminated surfaces of the flow path plate 2 and the sealing plates 1A and 1B made of a copper material are in close contact with each other by fitting the embossed portion with the low melting point metal layer 11 interposed therebetween. When the temperature is gradually increased, the intermetallic diffusion phenomenon on the contact surface starts, causing eutectic formation of the silver alloy, and the alloyed state is realized at a relatively low temperature. The melting temperature of the silver alloy is determined by the contents of copper and silver, and from the existing alloy phase diagram, even if the content is half and half, it melts at around 800 degrees. (In the existing copper-silver alloy phase diagram, the melting temperature is 780 ° C for 40% silver and 60% copper) Deformation of the laminated member occurs because the bonding temperature can be lowered by lowering the bonding temperature relative to the melting temperature of the copper material Good bonding conditions can be set.

次に、上記ヒートシンクの実施例の製造方法について説明する。まず、封止板1A及び1Bをプレス打ち抜き等により形成する。この際、上記実施例においては各封止板・流路板に取付穴7を貫通孔として形成する。この際、これらの貫通孔にネジを形成しておけば、後ほど継手を接続するのが容易となる。  Next, the manufacturing method of the Example of the said heat sink is demonstrated. First, the sealing plates 1A and 1B are formed by press punching or the like. At this time, in the above embodiment, the mounting hole 7 is formed as a through hole in each sealing plate / channel plate. At this time, if screws are formed in these through holes, it becomes easy to connect the joint later.

次に、流路板については4枚とも同じ構成であるためプレス打ち抜き灯により量産が可能である。各封止板及び各流路板のエンボス部については、ダボの突き出し等により凹部と凸部を同時に形成することができる。各封止板及び各流路板の少なくとも片面には、前もって低融点金属層を設けておくことができる。  Next, since all the four flow path plates have the same configuration, they can be mass-produced by a press punching lamp. About the embossing part of each sealing board and each flow path board, a recessed part and a convex part can be simultaneously formed by protrusion etc. of a dowel. A low melting point metal layer can be provided in advance on at least one surface of each sealing plate and each flow path plate.

続いて組立であるが、まず封止板1Bを所定の位置に固定し、その上に流路板2Dを流路部の端部が流出口4Bと重なるよう配置する。以下、流路板2C、2B、2Aの順に、それぞれ90度ずつ回転させながら流路部の端部が互いに連絡するよう配置する。最後に封止板1Aを重ねて加圧し、エンボス部同士を嵌合結合させて一体化する。ここまでの工程は、例えば順送金型等を用いることにより、連続的に行うことも可能である。  Subsequently, assembling, first, the sealing plate 1B is fixed at a predetermined position, and the flow path plate 2D is disposed thereon so that the end of the flow path portion overlaps the outlet 4B. In the following, the flow path plates 2C, 2B, and 2A are arranged in order of 90 degrees each so that the ends of the flow path portions communicate with each other. Finally, the sealing plate 1A is stacked and pressurized, and the embossed portions are fitted and joined to be integrated. The steps up to here can be performed continuously by using a progressive die, for example.

一体化したヒートシンク組立体は、例えば830℃程度の高温槽に入れ、低融点金属層を融解した後冷却すれば、相互に接合されて堅固なヒートシンクとして完成される。この例では低融点金属層として銀を使用したが、封止板や流路板の種類に従って他の銀合金或いははんだ等の他の材料を選択することも可能である。  The integrated heat sink assembly is put in a high temperature bath of, for example, about 830 ° C., and the low melting point metal layer is melted and then cooled. In this example, silver is used as the low-melting point metal layer, but other materials such as other silver alloys or solders can be selected according to the type of the sealing plate or flow path plate.

図6は、本発明によるヒートシンクの第2の実施例に用いる流路板を示す平面図である。流路板2は円形に形成されており、中心部に中空部3が設けてある。中空部3の右上部には流路となる貫通孔5が円弧状に形成されている。この貫通孔5は45度回転対称となるよう形成されているが、隣接する流路板との間で連続的な流路を確保するため長さは角度で45度を超える程度になるようにされている。また、中空部3の周囲の流路板2上には、8箇所にエンボス部6が設けられおり、片面側が凹部、反対面側が凸部に形成さていて、隣接ずる流路板2または封止板と嵌合結合できるようになされている。  FIG. 6 is a plan view showing a flow path plate used in the second embodiment of the heat sink according to the present invention. The flow path plate 2 is formed in a circular shape, and a hollow portion 3 is provided at the center. A through hole 5 serving as a flow path is formed in an arc shape in the upper right portion of the hollow portion 3. The through-hole 5 is formed to be rotationally symmetric by 45 degrees, but the length is more than 45 degrees in order to ensure a continuous flow path between adjacent flow path plates. Has been. Further, embossed portions 6 are provided at eight locations on the flow path plate 2 around the hollow portion 3, and one side is formed as a recess and the opposite side is formed as a protrusion. It is designed so that it can be fitted and connected to the stop plate.

上記の流路板を積層して作製されたヒートシンクの側面図を図8に示す。この実施例においては、4枚の流路板2を貫通孔5が同じ位置で重なるよう積層し、次の4枚の流路板2も同様に積層するが先ほどの流路板2に対して45度時計回りに回転させて重ねる。さらに別の4枚の流路板2をさらに45度時計回りに回転させて重ねる。合計12枚の流路板2が積層されており、これらの積層板2の両側には流路を密閉するための封止板1A・1Bを積層する。この実施例では、図8における左側4枚の流路板2に対して流入口4Aを設け、また右側4枚の流路板2に対して流出口4Bを設けてある。この実施例の正面図を図7に示す。4枚ずつ積層された流路板2の貫通孔5は45度よりも若干広く形成されているため、流路板2を45度回転させて重ねた際に貫通孔5の一部が重複して流路重複部40を形成する。これにより、最初の4枚の流路板2に設けられた貫通孔5と次の4枚の流路板2に設けられた貫通孔5とが、この流路重複部40において接続されることになる。  FIG. 8 shows a side view of a heat sink produced by laminating the above flow path plates. In this embodiment, the four flow path plates 2 are laminated so that the through holes 5 overlap at the same position, and the next four flow path plates 2 are laminated in the same manner. Rotate 45 degrees clockwise and overlap. Further, another four flow path plates 2 are further rotated 45 degrees clockwise and overlapped. A total of twelve flow path plates 2 are laminated, and sealing plates 1A and 1B for sealing the flow paths are laminated on both sides of these laminated plates 2. In this embodiment, the inflow ports 4A are provided for the left four flow path plates 2 in FIG. 8, and the outflow ports 4B are provided for the right four flow path plates 2. A front view of this embodiment is shown in FIG. Since the through holes 5 of the flow path plates 2 stacked four by four are formed slightly wider than 45 degrees, some of the through holes 5 overlap when the flow path plates 2 are rotated 45 degrees and stacked. Thus, the channel overlapping portion 40 is formed. Thereby, the through holes 5 provided in the first four flow path plates 2 and the through holes 5 provided in the next four flow path plates 2 are connected at the flow path overlapping portion 40. become.

上記の流路接続状態を示すのが図9である。図9は、図7におけるA−A’円弧線に沿ってこの実施例のヒートシンクを切断した場合の断面図を示す。図9(A)では、4枚ずつ積層した流路板2を45度ずつ回転させて重ねてあるため、それぞれの貫通孔5が流路重複部40において接続されている。また、図9(B)では、最初と最後の流路板2の積層枚数を2枚とし、中央の流路板2の積層枚数を8枚とした例である。このように、流路板2の積層枚数を変更することにより、流路断面積を自由に変更することができるため、発熱状況に応じて流路断面積の異なるヒートシンクを提供することが可能となる。  FIG. 9 shows the flow path connection state. FIG. 9 is a cross-sectional view of the heat sink of this embodiment cut along the A-A ′ arc line in FIG. 7. In FIG. 9 (A), the flow path plates 2 that are stacked four by four are rotated 45 degrees and overlapped, so that each through hole 5 is connected at the flow path overlapping portion 40. FIG. 9B shows an example in which the number of stacked first and last flow path plates 2 is two, and the number of stacked central flow path plates 2 is eight. In this way, by changing the number of stacked flow path plates 2, the flow path cross-sectional area can be freely changed, so that it is possible to provide heat sinks having different flow path cross-sectional areas depending on the heat generation situation. Become.

図10は、本発明によるヒートシンクの第3の実施例に用いる流路板を示す平面図である。流路板2は円形に形成されており、中心部に中空部3が設けてある。中空部3の右上部には流路となる貫通孔5Aが、また左側には貫通孔5Bがそれぞれ円弧状に形成されている。これらの貫通孔5A・5Bは45度回転対称となるよう形成されているが、隣接する流路板との間で連続的な流路を確保するため長さは角度で45度を超える程度になるようにされている。ただし、貫通孔5A・5Bの長さをあまり長くすると対称回転角分だけ流路板2を回転させた際に、隣の貫通孔と接続してしまう可能性が出てくるため、長くしすぎることは避ける必要がある。また、中空部3の周囲の流路板2上には、8箇所にエンボス部6が設けられおり、片面側が凹部、反対面側が凸部に形成さていて、隣接ずる流路板2または封止板と嵌合結合できるようになされている。  FIG. 10 is a plan view showing a flow path plate used in the third embodiment of the heat sink according to the present invention. The flow path plate 2 is formed in a circular shape, and a hollow portion 3 is provided at the center. A through hole 5A serving as a flow path is formed in the upper right portion of the hollow portion 3, and a through hole 5B is formed in an arc shape on the left side. These through-holes 5A and 5B are formed so as to be rotationally symmetric by 45 degrees, but in order to ensure a continuous flow path between adjacent flow path plates, the length exceeds 45 degrees in angle. It is supposed to be. However, if the lengths of the through holes 5A and 5B are too long, there is a possibility that when the flow path plate 2 is rotated by the symmetric rotation angle, it may be connected to the adjacent through hole. That should be avoided. Further, embossed portions 6 are provided at eight locations on the flow path plate 2 around the hollow portion 3, and one side is formed as a recess and the opposite side is formed as a protrusion. It is designed so that it can be fitted and connected to the stop plate.

上記の流路板2を用いて作製したヒートシンクの正面図を図11に示す。図7に示した実施例2と同様に、流入孔4Aにつながる流路(貫通孔)5は、流路板2の回転積層により流出口4Bに接続される。一方、別の流入口4Cにつながる流路(貫通孔)5は、流路板2の回転積層により流出口4Dに接続される。このように、本発明によれば、独立の流路を複数条同時に形成することが可能となる。図12に、図9に示したのと同様なB−B‘円弧線に沿ってこの実施例のヒートシンクを切断した場合の断面図を示す。流路5Aおよび流路5Bが独立して形成されていることがわかる。この例では2条の流路を用いたが、対称回転角の回転により互いの流路が接触しないように設計すれば、さらに多数の流路を形成することも可能である。  FIG. 11 shows a front view of a heat sink manufactured using the flow path plate 2 described above. As in the second embodiment shown in FIG. 7, the flow path (through hole) 5 connected to the inflow hole 4 </ b> A is connected to the outflow port 4 </ b> B by the rotational lamination of the flow path plate 2. On the other hand, a flow path (through hole) 5 connected to another inflow port 4 </ b> C is connected to the outflow port 4 </ b> D by rotation lamination of the flow path plate 2. Thus, according to the present invention, a plurality of independent flow paths can be formed simultaneously. FIG. 12 shows a cross-sectional view when the heat sink of this embodiment is cut along a B-B ′ arc line similar to that shown in FIG. 9. It can be seen that the channel 5A and the channel 5B are formed independently. In this example, two channels are used, but it is also possible to form a larger number of channels if they are designed so that they do not contact each other due to the rotation of the symmetric rotation angle.

本発明によるヒートシンクの第4の実施例に用いる流路接続板50の平面図を図13に示す。流路接続板50は流路板2と同様に円形に形成されており、中心部に中空部3が設けてある。中空部3の右側には接続流路となる貫通孔51が円弧状に形成されている。この貫通孔51は実施例3の流路板2に形成された貫通孔5A・5Bより長く形成されている。この流路接続板50は、上記実施例3において図12に示した最下段の流路板2と封止板1Bとの間に配置される。この実施例によるヒートシンクの正面図を図14に示す。流路解説のため、図14におけるC−C’円弧線に沿ってこの実施例のヒートシンクを切断した場合の断面図を図15に示す。長い貫通孔51を有する流路接続板50を最下段に配置することにより、2条の独立の流路が接続されることになる。従って、一方の流路に設けた流入口4Aから冷媒を送出するとこちら側の流路5Aを通った冷媒は接続流路51を介して流路5Bに移動し、流路5B側に設けられた流出口4Bに達することができる。  FIG. 13 shows a plan view of the flow path connection plate 50 used in the fourth embodiment of the heat sink according to the present invention. The channel connection plate 50 is formed in a circular shape like the channel plate 2, and the hollow portion 3 is provided at the center. A through hole 51 serving as a connection flow path is formed in an arc shape on the right side of the hollow portion 3. The through hole 51 is formed longer than the through holes 5A and 5B formed in the flow path plate 2 of the third embodiment. The flow path connection plate 50 is disposed between the lowermost flow path plate 2 and the sealing plate 1B shown in FIG. A front view of the heat sink according to this embodiment is shown in FIG. For explanation of the flow path, FIG. 15 shows a cross-sectional view when the heat sink of this embodiment is cut along the C-C ′ arc line in FIG. 14. Two independent flow paths are connected by arranging the flow path connection plate 50 having the long through-holes 51 in the lowermost stage. Therefore, when the refrigerant is sent out from the inlet 4A provided in one flow path, the refrigerant that has passed through the flow path 5A on this side moves to the flow path 5B via the connection flow path 51, and is provided on the flow path 5B side. The outlet 4B can be reached.

図16には本発明によるヒートシンクの第5の実施例における断面図を示す。この実施例では、第1の実施例と同じく外形は四角に形成されており、中心部の中空部3も四角にされている。これらの設計に伴って、貫通孔5はL字型に形成される。この実施例のヒートシンクは、モーターやソレノイド等を直接被覆して冷却できるように考案されたものであり、その特徴とするところは、一部の流路板2に切り欠き部8を形成したことである。切り欠き部8を形成することにより、この部分はモーター等が直接露出することになるため、例えば配線などを取り出す際に効果的である。本発明によるヒートシンクでは、薄型流路板を積層するため、一部の流路板のみに切り欠き部8を設けることにより、切り欠き部8の厚さは自在に変更することが可能である。図17は、この実施例のヒートシンクをモーターに設置した際の側面断面図を示す。  FIG. 16 is a sectional view of a heat sink according to a fifth embodiment of the present invention. In this embodiment, the outer shape is formed in a square shape as in the first embodiment, and the hollow portion 3 at the center is also formed in a square shape. With these designs, the through hole 5 is formed in an L shape. The heat sink of this embodiment was devised so that it can be cooled by directly covering a motor, solenoid, etc., and the feature is that a notch 8 is formed in a part of the flow path plate 2. It is. By forming the notch 8, the motor or the like is directly exposed to this portion, which is effective when taking out the wiring or the like, for example. In the heat sink according to the present invention, since the thin channel plates are laminated, the thickness of the notch portion 8 can be freely changed by providing the notch portions 8 only in some of the channel plates. FIG. 17 shows a side cross-sectional view when the heat sink of this embodiment is installed in a motor.

以上述べたように、本発明によれば、製造が容易でモーター等に容易に取り付け可能な小型積層型ヒートシンク及びその製造方法を提供することができるため、電気及び電子機器の冷却分野において大いに貢献できるものである。  As described above, according to the present invention, a small stacked heat sink that can be easily manufactured and can be easily attached to a motor or the like and a method for manufacturing the same can be provided. Therefore, the present invention greatly contributes to the field of cooling electrical and electronic equipment. It can be done.

本発明によるヒートシンク実施例1の流路板の構成を示す平面図である。It is a top view which shows the structure of the flow-path board of Example 1 of heat sink by this invention. 本発明によるヒートシンク実施例1の別の流路板の構成を示す平面図である。It is a top view which shows the structure of another flow-path board of the heat sink Example 1 by this invention. 本発明によるヒートシンク実施例1の封止板の構成を示す平面図である。It is a top view which shows the structure of the sealing plate of Example 1 of heat sink by this invention. 図1から3に示した流路板及び封止板を用いて本発明によるヒートシンク実施例1を組立てた際の状態を示す説明図である。It is explanatory drawing which shows the state at the time of assembling the heat sink Example 1 by this invention using the flow-path board and sealing plate shown to FIGS. 図4に示した本発明によるヒートシンク実施例1の主要部の結合状態を示す図である。It is a figure which shows the coupling | bonding state of the principal part of the heat sink Example 1 by this invention shown in FIG. 本発明によるヒートシンク実施例2の流路板構成を示す平面図である。It is a top view which shows the flow-path board structure of the heat sink Example 2 by this invention. 図6に示した流路板を使用したヒートシンクの正面図である。It is a front view of the heat sink using the flow-path board shown in FIG. 図7に示したヒートシンクの側面図である。FIG. 8 is a side view of the heat sink shown in FIG. 7. 図6及び7に示したヒートシンク実施例2の流路接続を説明するための断面図である。It is sectional drawing for demonstrating the flow-path connection of the heat sink Example 2 shown to FIG. 本発明によるヒートシンク実施例3に用いる流路板を示す平面図である。It is a top view which shows the flow-path board used for the heat sink Example 3 by this invention. 図10に示したヒートシンクの正面図である。It is a front view of the heat sink shown in FIG. 図10に示したヒートシンク実施例2の流路接続を説明するための断面図である。It is sectional drawing for demonstrating the flow-path connection of the heat sink Example 2 shown in FIG. 本発明によるヒートシンク実施例4に用いる流路接続板を示す平面図である。It is a top view which shows the flow-path connection board used for the heat sink Example 4 by this invention. 図13に示した流路接続板を使用した実施例4の正面図である。It is a front view of Example 4 using the flow-path connection board shown in FIG. 図14に示したヒートシンク実施例2の流路接続を説明するための断面図である。It is sectional drawing for demonstrating the flow-path connection of the heat sink Example 2 shown in FIG. 本発明によるヒートシンク実施例5の断面図である。It is sectional drawing of the heat sink Example 5 by this invention. 図16に示した実施例5の側面断面図である。It is side surface sectional drawing of Example 5 shown in FIG.

1A、1B 封止板
2、2A、2B、2C、2D 流路板
3 中空部
4A、4C 流入口
4B、4D 流出口
5、5A、5B流路部
6 エンボス部
6A 凹部
6B 凸部
7 取り付け穴
8 切り欠き部
11 低融点金属層
21 継手部
31 モーター
32 モーター配線
33 モーターステー
34 固定ネジ
40 流路重複部
50 流路接続板
51 接続流路
1A, 1B Sealing plate 2, 2A, 2B, 2C, 2D Channel plate 3 Hollow part 4A, 4C Inlet 4B, 4D Outlet 5, 5A, 5B Channel part 6 Embossed part 6A Concave part 6B Convex part 7 Mounting hole 8 Notch part 11 Low melting point metal layer 21 Joint part 31 Motor 32 Motor wiring 33 Motor stay 34 Fixing screw 40 Channel overlap part 50 Channel connection plate 51 Connection channel

Claims (7)

冷媒流路となる貫通孔を有する複数の流路板が積層され、両側に前記流路の封止面となる封止板が配置され、前記封止板または前記流路板に冷媒流入出口が設けられたヒートシンクにおいて、前記流路板の各々は前記貫通孔が回転対称位置に形成されており、所定枚数ずつ対称回転角度分回転させて積層することにより前記貫通孔の一部が隣接する流路板の貫通孔と重複するよう配置されていることを特徴とする積層型ヒートシンク。A plurality of flow path plates having through holes that serve as refrigerant flow paths are laminated, sealing plates that serve as sealing surfaces of the flow paths are disposed on both sides, and a refrigerant inflow / outlet is provided on the sealing plate or the flow path plate. In the heat sink provided, each of the flow path plates has the through hole formed in a rotationally symmetric position, and a predetermined number of the through holes are stacked by rotating by a symmetric rotation angle by a predetermined number, whereby a part of the through hole is adjacent to the flow plate. A laminated heat sink, wherein the laminated heat sink is arranged so as to overlap with a through hole of a road plate. 前記流路板に複数の貫通孔が形成されており、前記貫通孔の各々の長さが前記回転対称角度よりも長く形成され、前記貫通孔同士の距離が前記回転対称角度よりも離れていることを特徴とする請求項1記載の積層型ヒートシンク。A plurality of through holes are formed in the flow path plate, the length of each of the through holes is formed longer than the rotational symmetry angle, and the distance between the through holes is separated from the rotational symmetry angle. The laminated heat sink according to claim 1. 前記流路板及び前記封止板の各々に片面側が凹部かつ反対面側が凸部となるエンボス部が複数箇所に形成されており、前記封止板の各々と複数の前記流路板同士がこれらエンボス部において嵌合結合されていることを特徴とする請求項1または2記載の積層型ヒートシンク。Each of the flow path plate and the sealing plate is formed with a plurality of embossed portions having a concave portion on one side and a convex portion on the opposite surface side. The laminated heat sink according to claim 1 or 2, wherein the embossed portion is fitted and connected. 前記各封止板と前記各流路板の接触面上に低融点金属層が設けてあり、該低融点金属層の溶融により前記各封止板と前記各流路板が接合されていることを特徴とする請求項1乃至3のいずれかに記載の積層型ヒートシンク。A low melting point metal layer is provided on a contact surface between each sealing plate and each flow path plate, and each sealing plate and each flow path plate are joined by melting of the low melting point metal layer. The multilayer heat sink according to any one of claims 1 to 3. 前記各封止板と前記各流路板の材質が銅であり、前記低融点金属層が銀またはその合金であることを特徴とする請求項4記載の積層型ヒートシンク。The laminated heat sink according to claim 4, wherein the material of each sealing plate and each flow path plate is copper, and the low melting point metal layer is silver or an alloy thereof. 前記各封止板と前記各流路板の中心部が中空に形成されていることを特徴とする請求項1乃至5のいずれかに記載の積層型ヒートシンク。The laminated heat sink according to any one of claims 1 to 5, wherein a central portion of each sealing plate and each flow path plate is formed to be hollow. 外形形状と複数のエンボス部を含めて冷媒流路の封止面となる1組の封止板を形成する工程と、冷媒流路となる貫通孔及び片側表面が凹部かつ反対側表面が凸部となるエンボス部を含めた所定の形状を有する流路板を形成する工程と、前記流路板及び/または前記封止板の少なくとも片側表面に前記流路板及び前記封止板より融点の低い低融点金属層を形成する工程と、前記流路板の所定枚数を所定角度ずつ回転させて積層する工程と、前記エンボス部同士を嵌合させることにより前記1組の封止板と前記複数の流路板同士を結合する工程と、前記低融点金属層を熱的に融解させて前記封止板及び前記金属薄板を接合する工程とからなることを特徴とする積層型ヒートシンクの製造方法。A step of forming a pair of sealing plates that form the sealing surface of the refrigerant flow path including the outer shape and a plurality of embossed portions, and the through holes and one side surface of the refrigerant flow path are concave and the opposite surface is convex. Forming a flow path plate having a predetermined shape including an embossed portion and a lower melting point than the flow path plate and the sealing plate on at least one surface of the flow path plate and / or the sealing plate A step of forming a low melting point metal layer, a step of laminating a predetermined number of the flow path plates by a predetermined angle, and a step of fitting the embossed portions together to form the set of sealing plates and the plurality of A method of manufacturing a laminated heat sink, comprising: a step of joining flow path plates to each other; and a step of thermally melting the low melting point metal layer to join the sealing plate and the metal thin plate.
JP2011037660A 2011-02-04 2011-02-04 Lamination type heat sink and method for manufacturing the same Withdrawn JP2012164947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037660A JP2012164947A (en) 2011-02-04 2011-02-04 Lamination type heat sink and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037660A JP2012164947A (en) 2011-02-04 2011-02-04 Lamination type heat sink and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012164947A true JP2012164947A (en) 2012-08-30

Family

ID=46844009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037660A Withdrawn JP2012164947A (en) 2011-02-04 2011-02-04 Lamination type heat sink and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012164947A (en)

Similar Documents

Publication Publication Date Title
JP4967988B2 (en) Semiconductor cooling device
JP5178274B2 (en) HEAT PIPE, HEAT PIPE MANUFACTURING METHOD, AND CIRCUIT BOARD WITH HEAT PIPE FUNCTION
US20130058042A1 (en) Laminated heat sinks
JP6189015B2 (en) Radiator and method of manufacturing radiator
JP6176433B2 (en) Vapor chamber
JP2012037136A (en) High-density laminated heat exchanger
JP2008282969A (en) Cooler and electronic instrument
WO2016009727A1 (en) Liquid-cooled jacket and method for manufacturing liquid-cooled jacket
JP2012160688A (en) Heat sink and method for manufacturing the same
JP5194557B2 (en) Liquid-cooled cooler for power element mounting and manufacturing method thereof
JP2007232337A (en) Plate-type heat exchanger
JP6248841B2 (en) Liquid cooling jacket and liquid cooling jacket manufacturing method
JP4350606B2 (en) Method for manufacturing printed wiring board
JP2012164947A (en) Lamination type heat sink and method for manufacturing the same
WO2023079608A1 (en) Heat sink and method for manufacturing heat sink
JP6548193B2 (en) Fin member, temperature control device and method of manufacturing the same
JP2014053442A (en) Plate laminated type cooling device
JP2016198937A (en) Composite material containing carbon material layer and heat exchanger
JP6610505B2 (en) Laminated heat exchanger and method for producing laminated heat exchanger
JP2012525559A (en) HEAT EXCHANGE DEVICE HAVING LAMINATED PLATE AND MANUFACTURING METHOD THEREOF
JP2014072314A (en) Semiconductor device and semiconductor device manufacturing method
JP5856750B2 (en) Heat dissipation device
TW202021072A (en) Heat radiator, cooling device
JP2012199421A (en) Plate type cooler and manufacturing method of the same
JP2013032898A (en) Laminated heat sink

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513