WO2022070458A1 - 自車位置推定装置及び自車位置推定方法 - Google Patents

自車位置推定装置及び自車位置推定方法 Download PDF

Info

Publication number
WO2022070458A1
WO2022070458A1 PCT/JP2021/006915 JP2021006915W WO2022070458A1 WO 2022070458 A1 WO2022070458 A1 WO 2022070458A1 JP 2021006915 W JP2021006915 W JP 2021006915W WO 2022070458 A1 WO2022070458 A1 WO 2022070458A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
map
sensor information
information
traveling
Prior art date
Application number
PCT/JP2021/006915
Other languages
English (en)
French (fr)
Inventor
岳 緒方
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US18/008,857 priority Critical patent/US20230221126A1/en
Priority to CN202180040548.7A priority patent/CN115917253A/zh
Publication of WO2022070458A1 publication Critical patent/WO2022070458A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Definitions

  • the present invention relates to a vehicle position estimation device and a vehicle position estimation method.
  • Patent Document 1 states, "Conventionally, in a vehicle navigation device, radio navigation positioning information obtained from, for example, a GPS receiver, and autonomous navigation positioning information calculated from detection results of an orientation sensor such as a gyro sensor and a vehicle speed sensor.
  • the coordinates of the vehicle position are estimated by combining the above to improve the estimation accuracy of the vehicle position.
  • the GPS receiver cannot always output the positioning information, and is obtained from the positioning information by the self-contained navigation.
  • the vehicle position contains a considerable amount of error. Therefore, in order to further improve the accuracy of the vehicle position, a map matching process is generally adopted for the vehicle navigation device. This map matching process is performed by the vehicle.
  • the obtained vehicle position and its travel trajectory are applied to the road near the vehicle, and the vehicle position is corrected so as to match the road with the highest correlation. Even if such a map matching process is adopted, there is a high possibility that the current position of the vehicle is erroneously specified when the detection error of various sensors is large. " There is.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a vehicle position estimation device and a vehicle position estimation method capable of estimating a highly reliable driving road.
  • the own vehicle position estimation device of the present invention that solves the above problems uses the information of the autonomous navigation position calculated by the output of the inertial sensor and the vehicle information, and the information of the positioning position acquired from the positioning satellite of the own vehicle.
  • Own vehicle position estimation device that estimates the position on the map and corrects the autonomous navigation position to the position of the road on the map at each predetermined mileage interval when the information on the positioning position is unusable. It is characterized by including a correction determination unit for determining whether or not to perform the correction based on the position and orientation of the own vehicle traveling on the road.
  • Configuration diagram of the vehicle position estimation device Configuration diagram of an autonomous vehicle. Flow chart of own vehicle position estimation. Flow chart of correction judgment to the position on the map. The schematic diagram when this Example was not carried out. The schematic diagram when this Example was carried out. The flowchart of own vehicle position estimation of Example 2. Image of own vehicle position correction by camera.
  • Example 1 In this embodiment, the configuration when the own vehicle position estimation device of the present invention is incorporated into an autonomous driving vehicle will be described.
  • FIG. 2 shows the configuration of the autonomous driving vehicle 200.
  • the self-driving vehicle 200 includes an inertial sensor 101, vehicle information 102, GNSS 103, a camera 104, a map 105, a surrounding sensor 106, a navigation system 107, an own vehicle position estimation device 100, and a travel route calculation device 201. And has a vehicle control device 202.
  • the inertial sensor 101 includes an acceleration sensor and a gyro sensor that detect acceleration and angular velocity acting on the vehicle, and measures changes in the behavior of the own vehicle.
  • the vehicle information 102 includes information such as the wheel rotation speed and the steering angle of the vehicle, and can calculate the autonomous navigation position together with the output of the inertial sensor 101.
  • the GNSS 103 measures, for example, an absolute position on the earth coordinates based on a radio wave from a positioning satellite such as GPS, and acquires it as a positioning position.
  • the camera 104 can take an image of the surroundings of the vehicle and measure the traveling state of the own vehicle with respect to the traveling lane by image processing. Map information including information on roads on which the vehicle can pass is stored in the map 105.
  • the surrounding sensor 106 includes, for example, a laser, lidar, millimeter-wave radar, and the like, and detects surrounding information such as obstacles around the vehicle and road conditions.
  • the navigation system 107 creates route information for guiding to the target position.
  • the output of the inertial sensor 101 and the vehicle information 102 correspond to the first sensor information in the claims.
  • the absolute position information measured by the GNSS 103 corresponds to the second sensor information in the claims.
  • the information of the image captured by the camera 104 corresponds to the third sensor information in the claims.
  • the own vehicle position estimation device 100 estimates the road on which the own vehicle is traveling and the own vehicle position based on the information of the inertial sensor 101, the vehicle information 102, the GNSS 103, the camera 104, and the map 105.
  • the information of the estimation result is sent to the traveling route calculation device 201.
  • the travel route calculation device 201 is self-reliant from the information on the vehicle position estimated by the vehicle position estimation device 100, the information from the map 105, the surrounding sensor 106, and the route information from the navigation system 107 to the destination.
  • a vehicle travel path for the vehicle to safely reach its destination is generated and sent to the vehicle control device 202.
  • the vehicle control device 202 controls the own vehicle so as to travel according to the travel route sent from the travel route calculation device 201. By controlling the vehicle as described above, the self-driving vehicle 200 can automatically move its own vehicle so as to reach the destination.
  • FIG. 1 is a block diagram of the own vehicle position estimation device 100.
  • the own vehicle position estimation device 100 has a sensor fusion unit 10, a position estimation unit 11 on a map, and a correction determination unit 12.
  • the sensor fusion unit 10 estimates the current vehicle position based on the output of the inertial sensor 101, the autonomous navigation position information calculated by the vehicle information 102, and the positioning position information acquired from the GNSS 103.
  • the position estimation unit 11 on the map estimates the position on the map of the vehicle and the road on which the vehicle is traveling based on the position of the vehicle estimated by the sensor fusion unit 10 and the information on the map 105.
  • the sensor fusion unit 10 corrects the autonomous navigation position to the position of the road on the map at each predetermined mileage interval.
  • the correction determination unit 12 determines whether or not to correct the position information output from the sensor fusion unit 10 when the positioning information of the GNSS 103 is unusable in a tunnel or the like.
  • the sensor fusion unit 10 periodically estimates the absolute position of the own vehicle based on the input information input from the inertial sensor 101, the vehicle information 102, and the GNSS 103, and the results of the sensor fusion unit 10 in the past.
  • the sensor fusion unit 10 does not receive the information indicating the determination result that the correction is performed from the correction determination unit 12, the acceleration and angular velocity information output from the inertial sensor 101 and the wheels included in the vehicle information 102.
  • the position of the own vehicle is estimated based on the information from the sensors of each part of the vehicle such as the rotation speed information, the shift position, the steering angle, and the information of the absolute position from the GNSS 103.
  • the sensor fusion unit 10 is the position estimation unit 11 on the map.
  • the position of the own vehicle is estimated based on the information of the position and the road direction output from the above, the information of the acceleration / angular velocity output from the inertial sensor 101, and the information included in the vehicle information 102.
  • the position estimation unit 11 on the map performs map matching processing from the change in the vehicle position information output from the sensor fusion unit 10 and the information on the map 105, estimates the road on which the vehicle is currently traveling, and estimates the road on the road. The position is estimated and the estimation result is output.
  • the correction determination unit 12 corrects by the sensor fusion unit 10 based on the position and orientation of the own vehicle traveling on the road, that is, a process of correcting the autonomous navigation position to the position of the road on the map at each predetermined mileage interval. To decide whether or not to carry out.
  • the correction determination unit 12 cannot continuously position the GNSS 103 based on the positioning information of the GNSS 103, or the positioning accuracy is low and unreliable. From the shape information of the road edge, it is judged that the correction is performed when the own vehicle is traveling on the road in parallel with the road.
  • the correction determination unit 12 determines whether or not the own vehicle is traveling parallel to the road when the positioning information of the GNSS 103 is unusable, and when the vehicle is traveling in parallel, the correction determination unit 12 determines. It is judged that the correction will be carried out, and it is judged that the correction will not be carried out when the vehicle is not running in parallel.
  • FIG. 5 is a schematic diagram illustrating a comparative example with respect to this embodiment, and is a diagram showing an example in which the own vehicle position is estimated without performing correction based on the estimated own vehicle position on the map during GNSS non-positioning. Is.
  • the sensor fusion unit 10 was capable of positioning the GNSS 103 and was able to estimate the position 510 equivalent to the actual travel route as the estimated vehicle position.
  • the GNSS 103 cannot be positioned, and it is estimated that it is the result of the actual traveling locus 511 and the sensor fusion unit 10 due to the influence of the error of the inertial sensor 101 and the vehicle information 102.
  • a deviation from the locus 512 of the own vehicle position begins to occur. If this difference becomes large, there is a possibility that the determination for estimating the driving road in the map matching process of the position estimation unit 11 on the map will be erroneous.
  • the actual vehicle is traveling on the road 503 on the right side at the branch of the road 501 in the tunnel, but the position estimation unit 11 on the map using the result of the sensor fusion unit 10 which has not been corrected. Then, it is determined that the vehicle is traveling on the road 502 on the left side.
  • FIG. 6 is a schematic diagram of the case where this embodiment is carried out, and is a case where the own vehicle position of the sensor fusion unit 10 is corrected to the own vehicle position on the map by receiving a position correction instruction from the correction determination unit 12. The operation of is shown.
  • the vehicle travels by tracing the line connecting the lane centers of the travel lanes, and also on the travel lane and at the center of the lane. It also includes the case of traveling in parallel with the road direction at a position separated from the line connecting the roads within a predetermined range in the road width direction.
  • the correction determination unit 12 determines whether or not the correction condition is satisfied, and when it is determined that the correction condition is satisfied, the sensor fusion unit 10 is determined. A signal for performing correction is transmitted.
  • the sensor fusion unit 10 estimates the position of the own vehicle based on the position on the map output by the position estimation unit 11 on the map, the road direction thereof, and the information of the inertial sensor 101 and the vehicle information 102 (dashed line circle portion in FIG. 6). ). The sensor fusion unit 10 continues to estimate the position of the own vehicle while repeating the correction to the road position on the map for each correction determination of the correction determination unit 12. Then, the position estimation unit 11 on the map estimates the vehicle position on the map based on the vehicle position estimated by the sensor fusion unit 10.
  • the own vehicle position estimation device 100 estimates the own vehicle position on the map in a situation where positioning of the GNSS 103 cannot be performed for a long period of time such as in a tunnel. By correcting to, the position error due to the influence of the measurement error of the inertial sensor 101 and the vehicle information 102, which has been conventionally generated, can be reduced, and the position estimation accuracy can be improved.
  • a method of performing the correction for example, a method of changing the estimated own vehicle position to the map position estimated by the map position estimation unit 11 and the road direction thereof (a method of moving the position by one correction) or , A method used for filter processing (a method of moving the position little by little) as positioning information of an absolute position having an arbitrary error amount as in the positioning information of GNSS103 can be considered, but it is estimated by the position estimation unit 11 on the map.
  • the effect of the present invention can be obtained if the correction is made so as to approach the position information on the map.
  • the image from the camera is used only for the relative position relationship between the vehicle lane marking line and the own vehicle, and there is no need to perform advanced image processing calculations, etc., and the calculation time is short. It is possible to carry out at.
  • vehicles equipped with a driving support system such as a lane keeping function already have a function to detect the relative position between the vehicle and the vehicle lane marking, so it is less by diverting the relative position information. This method can be realized in the calculation time.
  • the own vehicle position estimation device of the present embodiment by limiting the timing of correction to the position on the map to the case where the vehicle is traveling in parallel with the traveling lane of the road, for example, a road such as a lane change is used. Since there is no problem that the estimated direction of the vehicle is greatly wrong when the correction is performed when the vehicle is not traveling in parallel with the vehicle, the direction can also be corrected.
  • FIG. 3 shows a flowchart of the calculation of the own vehicle position estimation device 100.
  • FIG. 3 is a flowchart illustrating a vehicle position estimation method using the vehicle position estimation device of the present embodiment.
  • the vehicle position estimation is started (S301), it is determined whether the positioning information of GNSS103 is currently available (S302). When the positioning information of GNSS103 is available (NO in S302), sensor fusion (S303) using the positioning information of GNSS103 is performed. After that, the own vehicle position is estimated on the map (S307), and the own vehicle position estimation is completed (S308).
  • sensor fusion S309 is performed based on the output of the inertial sensor 101 and the information of the vehicle information 102, and then the own vehicle on the map.
  • Position estimation S307 is performed.
  • the sensor fusion (S303, S309) may be any method as long as it is a method of estimating the current vehicle position using absolute position / traveling direction information and relative position change information, and filter processing such as a Kalman filter. There is a method using.
  • the position estimation unit 11 on the map performs so-called map matching processing, estimates the road on which the own vehicle is currently traveling, and estimates and outputs the position on the road.
  • This road estimation may determine that there are multiple roads that may be traveling, depending on the position change of the estimated own vehicle position and the road shape. For example, it may be determined that there is a possibility that the vehicle is traveling on a plurality of roads immediately after traveling on a branch road or on a parallel road.
  • FIG. 4 shows a flowchart of the correction determination (S304) for the position on the map.
  • FIG. 4 is a flowchart for determining whether or not the correction condition is satisfied.
  • the correction determination to the map position determines whether or not the vehicle has traveled N meters (m), which is a certain distance from the previous correction execution (S402). Therefore, the correction can be performed at regular distance intervals from the previous correction, and the predetermined position accuracy can be maintained while reducing the calculation load. If the vehicle has not traveled a certain distance since the previous correction (NO in S402), it is determined that the correction is not performed (S409).
  • the determination as to whether or not the vehicle is traveling parallel to the road is performed based on the lane information captured by the camera. Judgment as to whether the vehicle is traveling parallel to the road from the lane information of the camera is determined, for example, when the relative distance between the vehicle and the vehicle lane marking on the side does not change within a certain range over a certain driving section or within a certain range.
  • the distance information from the camera image to the left and right lanes is calculated, the relative distance between the own vehicle and the lane is calculated from the distance information, and the relative distance is used. It is determined whether the traveling position of the own vehicle is near the center of the traveling lane (S404). If the position in which the vehicle is traveling is not near the center of the travel lane (NO in S404), it is determined that the correction is not performed because the error in the position and direction of the vehicle may increase due to the correction. (S409).
  • the curvature of the road is less than a certain value, then it is determined whether there is one driving road currently estimated by the own vehicle position estimation (S307) on the map (S406). If there are a plurality of driving roads estimated by the vehicle position estimation (S307) on the map, it is determined that the correction is not performed because the road on which the vehicle is traveling may be mistaken (S409).
  • the determination of S403 that the vehicle is traveling parallel to the road is determined by, for example, a method of determining from the fact that the distance to the left and right road lane markings and the road edge has not changed for a certain period, or the left and right road lane markings. And the road edge are approximated by a multidimensional function, and parallel to the road when the absolute value of the left and right sum of the first-order coefficients representing the vehicle lane markings near the vehicle and the slope of the road edge is less than or equal to a predetermined value. It can be judged that the vehicle is running. In addition to the above, for example, if the camera module independently outputs an index as to whether or not it is traveling parallel to the lane, it may be used as a basis.
  • the correction determination unit 12 determines that the vehicle is traveling in parallel to the road using a camera, but the present invention is not limited to this configuration and the vehicle is traveling in parallel to the road. If it can be determined that, another method may be used. For example, a method of combining a steering angle sensor of a handle and road map information to determine that the vehicle is traveling parallel to the road when the steering angle does not change for a certain period of time on a straight road, a radar, or the like. It may be determined that the vehicle is traveling in parallel with the road because the relative positional relationship with the vehicle in front does not change for a certain period of time or more. Further, a method of having the travel route calculation device 201 output a signal for determining that the vehicle is traveling parallel to the road, and determining that the vehicle is traveling parallel to the road based on the signal. But it may be.
  • the judgment may be made only by the map data without using the information from the camera.
  • the effect of the present invention is not limited to the configuration of the present embodiment, and a plurality of functional parts may be implemented by the same element, or a plurality of elements or a plurality of elements in order to realize a single function. It may be realized by combining arithmetic functions.
  • the own vehicle position estimation device is incorporated in the autonomous driving vehicle, but the own vehicle position estimation device may be the own vehicle position estimation of the device traveling on the road shown on the map of the automobile or the like. Can be used if. For example, it may be used in a navigation system, a driving support system, an emergency call device, or the like.
  • Example 2 In this embodiment, a correction method in which more information from the camera is adopted for the configuration of the first embodiment will be described. In this embodiment, the difference from the first embodiment will be described, and the description of the overlapping portion will be omitted.
  • FIG. 7 shows a flowchart of the calculation of the own vehicle position estimation device 100 in this embodiment.
  • the vehicle position estimation is started (S301)
  • sensor fusion (S702) using the position on the map is performed, and then the position of the own vehicle on the map is estimated. (S307) is carried out. Further, when it is determined in S305 that the correction is not performed (NO in S305), the sensor is fused based on the detection information by the inertial sensor 101 and the information of the vehicle information 102 without using the information of the positioning position of the GNSS 103 (NO). S309) is carried out, and then the own vehicle position estimation (S307) is carried out on the map.
  • FIG. 8 is an image diagram in which the previously estimated position on the map and the information on the vehicle lane marking are superimposed and displayed.
  • Reference numeral 804 shown in FIG. 8 is the center line of the lane in which the vehicle is traveling, and reference numeral 801 is a position on the currently traveling map estimated by the position estimation unit 11 on the map. Is the vehicle lane markings on the left and right of the vehicle.
  • reference numeral 802 is the position of the own vehicle after being corrected by the process shown in (S701) of FIG.
  • the vehicle position can be calculated. You will be able to make corrections. Therefore, as compared with the correction method of the first embodiment, it is possible to correct the position of the own vehicle more frequently, and it is possible to estimate the correct driving road even when the error of the inertial sensor 101 or the vehicle information 102 is large. It will be possible.
  • the detection of the vehicle lane marking this time is approximated by a quadratic function, but it is sufficient if the relative position of the vehicle traveling direction and the vehicle lane marking or the traveling lane is known. It is not limited to an example.
  • the relative position and direction with respect to the traveling lane are obtained by the recognition function of the vehicle division line of the camera, but measurement using another sensor such as Lidar or Radar may be used, and the detected object may also be the vehicle division. It suffices if it is not a line but something that is presumed to be parallel to the driving lane, such as the road edge or the outer wall surface of the road. good.
  • the present invention is not limited to the above-described embodiments, and various designs are designed without departing from the spirit of the present invention described in the claims. You can make changes.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)

Abstract

本発明は、信頼性の高い走行道路を推定できる自車位置推定装置を得ることを目的とする。本発明は、慣性センサ(101)の出力と車両情報(102)により演算される自律航法位置の情報と、測位衛星から取得される測位位置の情報を用いて自車の地図上の位置を推定し、前記測位位置の情報が使用不可能なものであるときは所定の走行距離間隔毎に前記自律航法位置を前記地図上の道路の位置に補正する自車位置推定装置(100)であって、前記道路を走行する前記自車の位置および向きに基づいて前記補正を実施するか否かを判断する補正判断部(12)を備えることを特徴とする。

Description

自車位置推定装置及び自車位置推定方法
 本発明は、自車位置推定装置及び自車位置推定方法に関する。
 特許文献1には、“従来、車両用ナビゲーション装置においては、例えばGPS受信機などによる電波航法測位情報と、ジャイロセンサなどの方位センサと車速センサとの検出結果から算出される自律航法測位情報とを組み合わせて自車位置の座標を推定して、自車位置の推定精度を向上させている。ただし、GPS受信機は常に測位情報を出力できるとは限らないし、自立航法による測位情報から求められる自車位置には少なからず誤差が含まれる。従って、自車位置の精度をさらに高めるために、一般的に、車両用ナビゲーション装置にはマップマッチング処理が採用される。このマップマッチング処理は、車両は必ず道路上を走行することを前提として、求めた自車位置及びその走行軌跡を車両付近の道路上に当て嵌めて、最も相関性の高い道路上に一致するように、自車位置を補正するものである。このようなマップマッチング処理を採用しても、なお、各種センサの検出誤差が大きい場合などに、車両の現在位置を誤って特定する可能性が高くなる。”と記載されている。
特開2008-145142号公報
 しかしながら、これらの較正を実施した場合であっても各種センサの検出結果の誤差を完全に取り除くことは出来ず、結果として誤った道路を走行している道路と判定してしまうという問題があった。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、信頼性の高い走行道路を推定できる自車位置推定装置および自車位置推定方法を提供することである。
 上記課題を解決する本発明の自車位置推定装置は、慣性センサの出力と車両情報により演算される自律航法位置の情報と、測位衛星から取得される測位位置の情報とを用いて自車の地図上の位置を推定し、前記測位位置の情報が使用不可能なものであるときは所定の走行距離間隔毎に前記自律航法位置を前記地図上の道路の位置に補正する自車位置推定装置であって、前記道路を走行する前記自車の位置および向きに基づいて前記補正を実施するか否かを判断する補正判断部を備えることを特徴とする。
 本発明によれば、信頼性の高い走行道路を推定することができる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
自車位置推定装置の構成図。 自動運転車両の構成図。 自車位置推定のフローチャート。 地図上位置への補正判定のフローチャート。 本実施例を実施しなかった場合の模式図。 本実施例を実施した場合の模式図。 実施例2の自車位置推定のフローチャート。 カメラによる自車位置補正のイメージ図。
[実施例1]
 本実施例では、本発明である自車位置推定装置を自動運転車両に組み込んだ場合の構成について説明する。
 図2に自動運転車両200の構成を示す。
 自動運転車両200は、慣性センサ101と、車両情報102と、GNSS103と、カメラ104と、地図105と、周囲センサ106と、ナビゲーションシステム107と、自車位置推定装置100と、走行経路演算装置201と、車両制御装置202を有している。慣性センサ101は、車両に作用する加速度や角速度などを検知する加速度センサやジャイロセンサを含み、自車挙動の変化を計測する。車両情報102は、車両の車輪回転数や操舵角などの情報を含み、慣性センサ101の出力と合わせて自律航法位置を演算することができる。GNSS103は、GPS等の測位衛星からの電波に基づいて例えば地球座標上の絶対位置を計測し、測位位置として取得する。カメラ104は、車両の周囲を撮像し、画像処理により走行レーンに対する自車の走行状態を計測することができる。地図105には、自車が通行可能な道路の情報を含む地図情報が記憶されている。周囲センサ106は、例えばレーザやLidar、ミリ波レーダなどを含み、自車の周囲の障害物や道路の状況等の周囲情報を検出する。ナビゲーションシステム107は、目標位置に案内するための経路情報を作成する。慣性センサ101の出力と、車両情報102は、特許請求の範囲の第一のセンサ情報に対応する。GNSS103により計測される絶対位置の情報は、特許請求の範囲の第二のセンサ情報に対応する。そして、カメラ104で撮像された画像の情報は、特許請求の範囲の第三のセンサ情報に対応する。
 自車位置推定装置100は、慣性センサ101と、車両情報102と、GNSS103と、カメラ104と、地図105の情報を基に、自車の走行している道路と自車位置の推定を行い、推定結果の情報を走行経路演算装置201に送る。走行経路演算装置201は、自車位置推定装置100によって推定された自車位置の情報と、地図105と、周囲センサ106からの情報と、ナビゲーションシステム107からの目的地までの経路情報から、自車が安全に目的地に到達するための車両の走行経路を生成し、車両制御装置202に送る。車両制御装置202は走行経路演算装置201から送られた走行経路通りに走行するように自車を制御する。以上のように車両を制御する事で、自動運転車両200は目的地に到達するように自車を自動で移動させることが可能となる。
 ここで、自車位置推定装置100の動作について図1を用いて詳細を説明する。
 図1は、自車位置推定装置100の構成図である。
 自車位置推定装置100は、センサ融合部10と、地図上位置推定部11と、補正判断部12とを有している。センサ融合部10は、慣性センサ101の出力と、車両情報102により演算される自律航法位置の情報と、GNSS103から取得される測位位置の情報とを基に、現在の自車位置を推定する。地図上位置推定部11は、センサ融合部10で推定した自車位置と、地図105の情報を基に、自車の地図上の位置であって自車が走行している道路を推定する。センサ融合部10は、測位位置の情報が使用不可能なものであるときは所定の走行距離間隔毎に自律航法位置を地図上の道路の位置に補正する。補正判断部12は、トンネル内等でGNSS103の測位情報が使用不可能なものである場合に、センサ融合部10から出力される位置情報を補正するか否かを判断する。
 次に、センサ融合部10と、地図上位置推定部11と、補正判断部12のそれぞれの詳細な動作について説明する。
 センサ融合部10は、慣性センサ101や車両情報102、GNSS103から入力される入力情報と、過去のセンサ融合部10の結果とを基に、定期的に自車の絶対位置を推定している。センサ融合部10は、補正判断部12から補正を実施するとの判断結果を示す情報を受けていない場合には、慣性センサ101から出力される加速度、角速度の情報と、車両情報102に含まれる車輪の回転速度情報や、シフトポジション、操舵角等の車両各部のセンサからの情報と、GNSS103からの絶対位置の情報と、を基に自車位置の推定を行う。
 一方、補正判断部12から補正を実施するとの判断結果を示す情報を受けた場合には、GNSS103の測位情報が使用不可能なものであるので、センサ融合部10は、地図上位置推定部11から出力される位置と道路方位の情報と、慣性センサ101から出力される加速度・角速度の情報と、車両情報102に含まれる情報とを基に自車位置の推定を行う。
 地図上位置推定部11は、センサ融合部10から出力される自車位置情報の変化と地図105の情報からマップマッチング処理を行い、現在自車が走行している道路の推定と、道路上の位置の推定をして、その推定結果を出力する。
 補正判断部12は、道路を走行する自車の位置および向きに基づいて、センサ融合部10による補正、つまり、所定の走行距離間隔毎に自律航法位置を地図上の道路の位置に補正する処理を実施するか否かを判断する。補正判断部12は、GNSS103の測位情報を基に継続的にGNSS103が測位できていない、もしくは、測位の精度が低く信頼できないものであり、カメラ104の撮像画像に撮像されている車両区画線もしくは道路端の形状情報から自車が道路上を道路に対して平行に走行している場合に補正を実施すると判断する。つまり、補正判断部12は、GNSS103の測位情報が使用不可能なものである場合に、自車が道路に対して平行に走行しているか否かを判断し、平行に走行しているときは補正を実施すると判断し、平行に走行していないときは補正を実施しないと判断する。
 本実施例の効果を図5、図6の模式図を用いて示す。
 図5は、本実施例に対する比較例を説明する模式図であり、GNSS非測位時に地図上の推定自車位置による補正を実施せずに自車位置の推定を行った場合の例を示す図である。
 センサ融合部10は、自車がトンネルに入る前は、GNSS103が測位可能であり、推定自車位置として、実際の走行経路と同等の位置510を推定可能であった。しかし、自車がトンネルの入口504からトンネル内に入ると、GNSS103が測位出来なくなり、慣性センサ101や車両情報102の誤差の影響により実際の走行軌跡511と、センサ融合部10の結果である推定自車位置の軌跡512との間に乖離が生じ始める。この差が大きくなると、地図上位置推定部11のマップマッチング処理において走行道路を推定するための判定を誤ってしまうおそれがある。
 例えば図5においては、実際の車両はトンネル内の道路501の分岐で右側の道路503を走行しているが、補正を実施していないセンサ融合部10の結果を用いた地図上位置推定部11では左側の道路502を走行していると判断している。
 図6は、本実施例を実施した場合の模式図であり、補正判断部12から位置補正の指示を受けることにより、地図上の自車位置にセンサ融合部10の自車位置を補正した場合の動作について示す。
 入口504からトンネルに入り、GNSS103が測位出来なくなると慣性センサ101や車両情報102の測定誤差の影響により実際の走行軌跡と、センサ融合部10の結果である推定自車位置の軌跡との間に乖離が生じ始める。その後、補正判断部12が、カメラ104からの車両区画線もしくは道路端の形状情報から自車が道路に対して平行に走行している場合、より具体的には、自車が道路の走行レーンを走行レーンに沿って平行に走行していると判断した場合に、センサ融合部10に対して補正実施の信号を送信する。なお、自車が道路の走行レーンを走行レーンに沿って平行に走行するとは、自車が走行レーンのレーン中心を結ぶ線の上をなぞって走行する場合のほか、走行レーン上でかつレーン中心を結ぶ線から道路幅方向に所定範囲内で離れた位置を道路方位と平行に走行する場合も含まれる。
 例えば車線変更中など自車が道路の走行レーンのレーン中心に交差する方向に走行している状況、つまり、自車が走行レーンのレーン中心と平行になる向きで走行しているという補正条件を満たさない状況で補正を行ってしまうと、推定する自車の位置と方位に誤差が生じる可能性がある。したがって、本発明では、補正判断部12によって補正条件を満たしている状況であるか否かが判断され、補正条件を満たしている状況であると判断された場合に、センサ融合部10に対して補正実施の信号が送信される。
 センサ融合部10は、地図上位置推定部11が出力する地図上位置とその道路方位と、慣性センサ101や車両情報102の情報を基に自車位置の推定を行う(図6の破線丸部)。センサ融合部10は、補正判断部12の補正判断毎に地図上の道路位置への補正を繰り返しながら自車位置の推定を継続する。そして、地図上位置推定部11は、センサ融合部10によって推定された自車位置を基に地図上の自車位置を推定する。
 この補正により、慣性センサ101や車両情報102の測定誤差や、地図105の情報と実際の道路形状の差異の影響を低減する事が可能となる。結果として、センサ融合部10の出力する推定自車位置の軌跡は、実際の走行経路の軌跡と近くなり、地図上位置推定部11の推定する自車位置の精度が向上する。
 以上のように、自車位置推定装置100は、自車位置の推定を実施する事により、トンネル内等の長期間GNSS103の測位が出来ないような状況において、自車の推定位置を地図上位置に補正する事で従来発生していた慣性センサ101や車両情報102の測定誤差の影響による位置誤差を低減する事が出来、位置推定精度を向上させることができる。
 ここで、補正を実施する方法としては、例えば、推定自車位置を地図上位置推定部11で推定した地図上位置とその道路方位に変化させる方法(一度の補正で位置を移動させる方法)や、GNSS103の測位情報と同様に任意の誤差量を持った絶対位置の測位情報としてフィルタ処理に使用する方法(少しずつ位置を移動させる方法)等が考えられるが、地図上位置推定部11で推定した地図上位置情報に近づくように補正するのであれば本発明の効果を得ることが出来る。
 また、本方式では、カメラからの映像を使用するのは、車両区画線と自車との相対的な位置の関係のみであり、高度な画像処理演算等を実施する必要が無く、少ない計算時間で実施する事が可能である。
 また、車線維持機能等の運転支援システムを搭載している車両では、既に車両と車両区画線との相対位置を検出する機能は備わっている為、相対位置の情報を流用することによって、より少ない計算時間で本方式を実現する事が出来る。
 また、本実施形態の自車位置推定装置によれば、地図上位置への補正するタイミングを道路の走行レーンに対して平行に走行している場合に限定する事により、例えばレーンチェンジ等の道路に対して平行に走行していない場合に補正を実施した場合に車両の推定方位が大きく誤ってしまうというような問題も発生しない為、方位も補正することが出来る。
 さらに、補正に対する誤差により、実際の走行方位がずれてしまった場合であっても、走行道路に対してほぼ平行に走行している場合であれば誤差の影響を低減することが出来る。
 自車位置推定装置100の演算のフローチャートを図3に示す。
 図3は、本実施形態の自車位置推定装置を用いた自車位置推定方法を説明するフローチャートである。
 自車位置推定を開始(S301)すると、現在、GNSS103の測位情報が使用可能な状態かを判断する(S302)。GNSS103の測位情報が使用可能な状態であった場合(S302でNO)は、GNSS103の測位情報を用いたセンサ融合(S303)を実施する。その後、地図上自車位置の推定を実施し(S307)、自車位置推定を終了する(S308)。
 一方、S302においてGNSS103が非測位、つまりGNSS103の測位情報が使用できないと判断した場合(S302でYES)は、地図上位置への補正判定を実施する(S304)。その後、地図上位置への補正判定の結果から位置補正を実施すると判断した場合(S305でYES)は、前回推定した地図上位置と、慣性センサ101の出力と、車両情報102の情報を基に地図上位置を用いたセンサ融合(S306)を実施し、その後地図上自車位置推定(S307)を実施する。また、S305で位置補正を実施しないと判断した場合(S305でNO)は、慣性センサ101の出力と、車両情報102の情報を基にセンサ融合(S309)を実施し、その後、地図上自車位置推定(S307)を実施する。
 ここで、センサ融合(S303、S309)は、絶対位置・進行方位情報や、相対的な位置変化情報を用いて現在の自車位置を推定する手法であれば良く、例えばカルマンフィルタのようなフィルタ処理を用いる手法があげられる。
 また、地図上位置推定部11は、いわゆるマップマッチング処理を行い、現在自車が走行している道路の推定と、道路上の位置とを推定して出力する。この道路の推定は、推定自車位置の位置変化と道路形状によっては、走行している可能性のある道路が複数あると判断する場合がある。例えば、分岐路の走行直後や、並走路等で複数の道路を走行している可能性があると判断する場合がある。
 図4に地図上位置への補正判定(S304)のフローチャートを示す。図4は、補正条件を満たしているか否かを判定するフローチャートである。地図上位置への補正判定を開始(S401)すると、地図上位置への補正判定は、前回補正実施から一定距離であるNメートル(m)走行したかを判断する(S402)。したがって、前回の補正実施から一定距離間隔で補正を実施することができ、計算負荷を下げつつ、所定の位置精度を保つことができる。前回補正実施から一定距離を走行していない場合(S402でNO)は、補正を実施しないと判定する(S409)。
 そして、前回補正から一定距離以上走行していた場合(S402でYES)、次に、道路に対して平行に走行しているか判断する(S403)。道路に対して平行に走行しているか否かの判断は、本実施形態では、カメラで撮像した車線情報に基づいて行っている。カメラの車線情報から道路に対して平行に走行しているかの判断は、例えば自車と側方にある車両区画線との相対距離が一定走行区間以上一定範囲内で変化が無かった場合や、カメラで認識した自車と車両区画線の相対関係と車両区画線の形状変化を示す関数が一定走行区間の間、一定の変化量以内であった場合など、所定の状況の場合に車線と平行に走行していると判断する。道路に対して平行に走行していない場合(S403でNO)には、補正によって自車の位置および方位についての誤差が大きくなる可能性があるので、補正を実施しないと判定する(S409)。
 道路に対して平行に走行していた場合(S403でYES)、カメラの画像から左右の車線までの距離情報を算出し、距離情報から自車と車線の相対距離を算出し、相対距離から、自車の走行している位置が走行レーンの中心付近かを判断する(S404)。自車の走行している位置が走行レーンの中心付近ではない場合(S404でNO)、補正によって自車の位置および方位についての誤差が大きくなる可能性があるので、補正を実施しないと判定する(S409)。
 自車がレーン中心付近を走行中と判断した場合(S404でYES)は、次に現在、地図上自車位置推定(S307)で推定されている走行道路の曲率が一定以下かを判断する(S405)。走行道路の曲率が一定以下ではない場合(S405でNO)、補正によって自車の位置および方位についての誤差が大きくなる可能性があるので、補正を実施しないと判定する(S409)。
 道路の曲率が一定以下の場合は、次に現在地図上自車位置推定(S307)で推定されている走行道路が1つかを判断する(S406)。地図上自車位置推定(S307)で推定されている走行道路が複数の場合は、自車が走行している道路を誤る可能性があるので、補正を実施しないと判定する(S409)。
 走行していると推定される道路が1つの場合(S406でYES)、走行道路前方の一定距離であるXメートル(m)以内に分岐が存在しないか判定する(S407)。走行道路前方の一定距離以内に分岐が存在しない場合(S407でYES)には、補正を実施すると判定する(S408)。その後、地図上位置への補正判定を終了する(S410)。走行道路前方の一定距離以内に分岐が存在する場合(S407でNO)は、自車が走行している道路を誤る可能性があるので、補正を実施しないと判定する(S409)。
 上述のように、(S402)~(S407)の判定の内1つでも判定漏れがあった場合は、補正を実施しないと判定(S409)する。その後、地図上位置への補正判定を終了する(S410)。但し、図4のフローチャートでは、道路に対して平行に走行している場合以外に関しても複数の条件判定を実施したが、すべての判定を実施する必要はなく、必要に応じて条件判定を除去してもよく、また追加の判定を入れても良い。
 また、道路に対して平行に走行しているというS403の判定は、例えば、左右の道路区画線や道路端までの距離が一定期間変化していない事から判定する方法や、左右の道路区画線や道路端を複数次元の関数で近似し、車両付近の車両区画線や道路端の傾きを表す1次の係数の左右の和の絶対値が所定の値以下である場合に道路に対して平行に走行していると判断することが出来る。上記以外であっても、例えばカメラモジュールが独自にレーンに対して平行に走行しているかどうかの指標を出していればそれを基にしても良い。
 本実施例では、補正判断部12はカメラを用いて走行道路に対して平行に走行していると判断したが、かかる構成に限定されるものではなく、道路に対して平行に走行していると判断できれば別方法でもよい。例えば、ハンドルの舵角センサと道路地図情報を組み合わせ、直線道路中であって、操舵角が一定時間以上変化しなかった場合に道路と平行に走行していると判断する方法や、レーダ等の前方車両との相対位置関係の変化が一定時間以上無い事等から道路と平行に走行していると判断する方法でも良い。また、走行経路演算装置201から、道路に対して平行に走行していると判断する信号を出力してもらい、その信号を基に道路に対して平行に走行していると判断する等の方法でもよい。
 また、地図情報から走行している道路のレーン数が1つである等、多くの場合に道路に沿った走行をする区間であると判断できる場合は道路に沿って走行していると判断する等、カメラからの情報を用いず地図データのみで判定しても良い。
 ここで、本発明の効果は本実施例の構成に限定されるものではなく、複数の機能部分を同一の素子で実施してもよいし、単一の機能を実現する為に複数の素子や演算機能を組み合わせて実現してもよい。
 また、本実施例では自車位置推定装置を自動運転車両に組み込んだ構成としたが、本自車位置推定装置は自動車等の地図に掲載された道路を走行する装置の自車位置推定であれば使用する事が出来る。例えばナビゲーションシステムや、運転支援システム、緊急通報装置等で使用してもよい。
[実施例2]
 本実施例では、実施例1の構成に対してカメラからの情報をより多く採用した補正方法について説明する。本実施例では、実施例1との差分について記載し、重複する部分については説明を省略する。
 本実施例における自車位置推定装置100の演算のフローチャートを図7に示す。
 自車位置推定を開始(S301)すると、GNSS103の測位情報が現在使用可能な状態かを判断する(S302)。GNSS103の測位情報が使用可能な状態であった場合は、GNSS測位位置を用いたセンサ融合(S303)を実施する。その後、地図上自車位置の推定を実施し(S307)、自車位置推定を終了する(S308)。
 一方、S302においてGNSS103が非測位もしくは測位情報が使用できないと判断された場合(S302でYES)は、地図上位置への補正判断を実施する(S304)。その後、地図上位置への補正判断の結果から補正を実施すると判断した場合(S305でYES)は、前回推定した地図上位置と、車両区画線の情報から補正する自車位置及び進行方位を演算する(S701)。
 その後、演算した補正位置・方位と、慣性センサ101による検知情報と、車両情報102の情報を基に、地図上位置を用いたセンサ融合(S702)を実施し、その後、地図上自車位置推定(S307)を実施する。また、S305において、補正を実施しないと判断した場合(S305でNO)は、GNSS103の測位位置の情報を用いずに、慣性センサ101による検知情報と、車両情報102の情報を基にセンサ融合(S309)を実施し、その後、地図上自車位置推定(S307)を実施する。
 ここで、前回推定した地図上位置と、車両区画線の情報から補正する自車位置及び進行方位を演算する(S701)処理の詳細について図8を用いて説明する。
 図8は、前回推定した地図上位置と、車両区画線の情報を重畳して表示したイメージ図である。図8に示す符号804は、自車が走行しているレーンの中心線、符号801は、地図上位置推定部11にて推定した現在走行している地図上の位置であり、符号803、805は、自車左右の車両区画線である。
 また、符号802、は図7の(S701)に示す処理によって補正された後の自車位置である。符号803、805の車両区画線は、カメラで認識した車両区画線であり、自車位置を原点、自車進行方向をY軸として2次関数に近似しており、xL=ay+by+c及びxR=dy+ey+fとして検出されている。
 この場合、補正された後の自車位置802は、現在走行している自車位置801の道路の中心線804から横方向(X軸方向)に、(c+f)/2だけ平行にずれており、また車両の進行方位(Y軸方向)は、レーンの進行方位に対してθ=atan((b+e)/2)だけ回転した方向に向けて走行しているとするように演算する。
 以上のようにカメラからの車両区画線情報を基により詳細な自車位置及び方位を演算する事で、自車が道路に対して平行に走行していない場合であっても、自車位置の補正を実施することが出来るようになる。したがって、実施例1の補正手法と比較して、自車位置の補正を高頻度に実施可能となり、慣性センサ101や車両情報102の誤差が大きい場合であっても正しい走行道路を推定する事が可能となる。
 また、自車の絶対位置の基準となる位置を現在走行している地図上の位置801を基準にして移動させることにより、地図内の絶対位置を、特徴となるランドマーク等から推定する必要がなくなる為、演算量を低減することが出来る。さらにランドマークを保持した地図データを自車位置推定装置内に内蔵しておく必要がなくなり、装置内で保持しておくべきデータ量を低減することが可能となり装置のコストを低減することが出来る。
 また、位置・方位を補正することにより補正を実施する位置をより正確にすることが出来るようになり、例えば、緩やかにレーンチェンジを実施する等、長期間走行レーンに対して平行ではない走行を実施している最中でも位置の補正を行うことが出来、信頼性高く走行道路を推定できる。
 また、今回の車両区画線の検出は2次関数で近似しているとしているが、車両進行方向と車両区画線もしくは走行レーンの相対位置がわかれば良く近似曲線の次数や原点位置等は本実施例に限定されるものではない。
 また、本実施例では、カメラの車両区画線の認識機能によって走行レーンとの相対位置及び方位を求めたが、例えばLidarやRadar等別のセンサを用いた測定でも良いし、検出物も車両区画線ではなく、道路端や道路外壁面等、走行レーンと平行と推測されるものであれば良く、それらセンサによって検知した車両とレーンの相対位置、方位を用いて自車位置の補正を実施できれば良い。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
10  センサ融合部、11  地図上位置推定部、12  補正判断部、100 自車位置推定装置、101 慣性センサ、102 車両情報、103 GNSS、104 カメラ、105 地図、200 自動運転車両、201 走行経路演算装置、202 車両制御装置

Claims (8)

  1.  慣性センサの出力と車両情報により演算される自律航法位置の情報と、測位衛星から取得される測位位置の情報とを用いて自車の地図上の位置を推定し、前記測位位置の情報が使用不可能なものであるときは所定の走行距離間隔毎に前記自律航法位置を前記地図上の道路の位置に補正する自車位置推定装置であって、
     前記道路を走行する前記自車の位置および向きに基づいて前記補正を実施するか否かを判断する補正判断部を備えることを特徴とする自車位置推定装置。
  2.  前記補正判断部は、前記自車が前記道路の走行レーンを該走行レーンに沿って平行に走行している場合に、前記補正を実施すると判断することを特徴とする請求項1に記載の自車位置推定装置。
  3.  1もしくは複数のセンサを組み合わせることにより自車挙動の変化を計測可能な第一のセンサ情報と、
     自車の絶対位置を計測可能な第二のセンサ情報と、
     1もしくは複数のセンサを組み合わせることにより走行レーンに対する前記自車の走行状態を計測可能な第三のセンサ情報と、
     車両が走行可能な道路の地図情報と、を用いて、
     前記自車が走行している地図上の自車位置を推定する自車位置推定装置であって、
     前記第二のセンサ情報が使用可能なものである場合に、前記第一のセンサ情報と前記第二のセンサ情報と前記地図情報とを用いて前記地図上の自車位置を推定し、
     前記第二のセンサ情報が使用不可能なものである場合に、前記第三のセンサ情報もしくは直前に推定した前記地図上の自車位置が所定の状況であったときは、直前に推定した前記自車の絶対位置と前記第一のセンサ情報を用いて前記地図上の自車位置を推定することを特徴とする自車位置推定装置。
  4.  請求項3に記載の自車位置推定装置であって、
     前記第三のセンサ情報から走行レーンに対して平行に走行していると判断された場合、 前記第三のセンサ情報から走行レーンの中央を走行していると判断された場合、
     前記推定した地図上の自車位置が前記地図情報から走行している道路の曲率が一定以下と判断された場合、
     前記推定した地図上の自車位置が前記地図情報から一定の距離以内に道路分岐が無いと判断された場合、および、
     前記推定した地図上の自車位置が走行している可能性のある道路が複数存在しないと判断された場合の少なくともいずれか一つであるときは、
     直前に推定した前記自車の絶対位置と前記第一のセンサ情報を用いて前記地図上の自車位置を推定することを特徴とする自車位置推定装置。
  5.  1もしくは複数のセンサを組み合わせることにより自車挙動の変化を計測可能な第一のセンサ情報と、
     自車の絶対位置を計測可能な第二のセンサ情報と、
     1もしくは複数のセンサを組み合わせることにより走行レーンに対する前記自車の走行状態が計測可能な第三のセンサ情報と、
     車両が走行可能な道路の地図情報と、を用いて、
     前記自車が走行している地図上の自車位置を推定する自車位置推定装置であって、
     前記第二のセンサ情報を使用可能なものである場合に、前記第一のセンサ情報と前記第二のセンサ情報と前記地図情報とを用いて前記地図上の自車位置を推定し、
     前記第二のセンサ情報が使用不可能なものである場合に、前記第三のセンサ情報もしくは直前に推定した前記地図上の自車位置が所定の状況であったときは、
     直前に推定した前記自車の絶対位置と前記第一のセンサ情報と前記第三のセンサ情報を用いて前記地図上の自車位置を推定することを特徴とする自車位置推定装置。
  6.  1もしくは複数のセンサを組み合わせることにより車両挙動の変化を計測可能な第一のセンサ情報と、
     車両の絶対位置を計測可能な第二のセンサ情報と、
     1もしくは複数のセンサを組み合わせることにより走行レーンに対する自車の走行状態が計測可能な第三のセンサ情報と、
     車両が走行可能な道路の地図情報と、を用いて、
     前記自車が走行している前記地図上の自車位置を推定する自車位置推定方法であって、 前記第二のセンサ情報が使用可能なものであるか否かを判定する工程と、
     前記第二のセンサ情報が使用可能なものである場合に、前記第一のセンサ情報と前記第二のセンサ情報と前記地図情報とを用いて前記地図上の自車位置を推定し、前記第二のセンサ情報が使用不可能なものである場合に、前記第三のセンサ情報もしくは直前に推定した前記地図上の自車位置が所定の状況であったときは、直前に推定した前記自車の絶対位置と前記第一のセンサ情報を用いて前記地図上の自車位置を推定する推定工程と、を含むことを特徴とする自車位置推定方法。
  7.  請求項6に記載の自車位置推定方法であって、
     前記推定工程では、
     前記第三のセンサ情報から走行レーンに対して平行に走行している場合と、
     前記第三のセンサ情報から走行レーンの中央を走行している場合と、
     前記推定した地図上の自車位置が前記地図情報から走行している道路の曲率が一定以下の場合と、
     前記推定した地図上の自車位置が前記地図情報から一定の距離以内に道路分岐が無い場合と、
     前記推定した地図上の自車位置が走行している可能性のある道路が複数存在しない場合の少なくともいずれか一つであるときは、
     直前に推定した前記自車の絶対位置と前記第一のセンサ情報を用いて前記地図上の自車位置を推定することを特徴とする自車位置推定方法。
  8.  1もしくは複数のセンサを組み合わせることにより車両挙動の変化を計測可能な第一のセンサ情報と、
     車両の絶対位置を計測可能な第二のセンサ情報と、
     1もしくは複数のセンサを組み合わせることにより走行レーンに対する自車の走行状態が計測可能な第三のセンサ情報と、
     車両が走行可能な道路の地図情報と、を用いて、
     前記自車が走行している前記地図上の自車位置を推定する自車位置推定方法であって、 前記第二のセンサ情報が使用可能なものであるか否かを判定する工程と、
     前記第二のセンサ情報が使用可能なものである場合に、前記第一のセンサ情報と前記第二のセンサ情報と前記地図情報とを用いて前記地図上の自車位置を推定し、前記第二のセンサ情報が使用不可能なものである場合に、前記第三のセンサ情報もしくは直前に推定した前記地図上の自車位置が所定の状況であったときは、直前に推定した前記自車の絶対位置と前記第一のセンサ情報と前記第三のセンサ情報を用いて前記地図上の自車位置を推定する推定工程と、を含むことを特徴とする自車位置推定方法。
PCT/JP2021/006915 2020-09-29 2021-02-24 自車位置推定装置及び自車位置推定方法 WO2022070458A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/008,857 US20230221126A1 (en) 2020-09-29 2021-02-24 Vehicle position estimation device and vehicle position estimation method
CN202180040548.7A CN115917253A (zh) 2020-09-29 2021-02-24 自身车辆位置推断装置及自身车辆位置推断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020163726A JP7414683B2 (ja) 2020-09-29 2020-09-29 自車位置推定装置及び自車位置推定方法
JP2020-163726 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022070458A1 true WO2022070458A1 (ja) 2022-04-07

Family

ID=80950072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006915 WO2022070458A1 (ja) 2020-09-29 2021-02-24 自車位置推定装置及び自車位置推定方法

Country Status (4)

Country Link
US (1) US20230221126A1 (ja)
JP (1) JP7414683B2 (ja)
CN (1) CN115917253A (ja)
WO (1) WO2022070458A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189325A (ja) * 2005-01-06 2006-07-20 Aisin Aw Co Ltd 車両の現在地情報管理装置
JP2019002764A (ja) * 2017-06-14 2019-01-10 本田技研工業株式会社 車両位置判定装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064870B2 (ja) 2007-04-17 2012-10-31 株式会社日立製作所 デジタル道路地図の生成方法及び地図生成システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189325A (ja) * 2005-01-06 2006-07-20 Aisin Aw Co Ltd 車両の現在地情報管理装置
JP2019002764A (ja) * 2017-06-14 2019-01-10 本田技研工業株式会社 車両位置判定装置

Also Published As

Publication number Publication date
JP7414683B2 (ja) 2024-01-16
US20230221126A1 (en) 2023-07-13
CN115917253A (zh) 2023-04-04
JP2022055979A (ja) 2022-04-08

Similar Documents

Publication Publication Date Title
JP6693496B2 (ja) 自己位置推定装置
US8200424B2 (en) Navigation device
US6002981A (en) Correction method and intelligent vehicle guidance system for a composite-navigation of a motor vehicle
JP5747787B2 (ja) 車線認識装置
US10794709B2 (en) Apparatus of compensating for a sensing value of a gyroscope sensor, a system having the same, and a method thereof
CN111309001B (zh) 具有基于主方向的坐标校正的航位推算引导系统和方法
TWI522258B (zh) Based on electronic map, global navigation satellite system and vehicle motion detection technology Lane identification method
WO2018168956A1 (ja) 自己位置推定装置
CN111845740A (zh) 动态偏航角速率偏差估计的方法和装置
JP2019066193A (ja) 自車位置検出装置
KR20190040818A (ko) 차량 내부 센서, 카메라, 및 gnss 단말기를 이용한 3차원 차량 항법 시스템
JP6943127B2 (ja) 位置補正方法、車両制御方法及び位置補正装置
JP6539129B2 (ja) 自車位置推定装置、及びそれを用いた操舵制御装置、並びに自車位置推定方法
JP3402383B2 (ja) 車両の現在位置検出装置
JP6836446B2 (ja) 車両の走行車線推定装置
CN113165661A (zh) 用于确定车辆的修正轨迹的方法和系统
JP3552267B2 (ja) 車両用位置検出装置
JP4848931B2 (ja) 角速度センサの信号補正装置
WO2022070458A1 (ja) 自車位置推定装置及び自車位置推定方法
JP3550901B2 (ja) ナビゲーション装置
JP3587904B2 (ja) 現在位置算出装置
KR20160056083A (ko) 측위 시스템 및 방법
JP2958020B2 (ja) 移動車の走行制御装置
JP7378591B2 (ja) 走行経路生成装置
JP2018189462A (ja) 走行車線特定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874766

Country of ref document: EP

Kind code of ref document: A1