WO2022069119A1 - Elektrisch beheizbarer katalysator - Google Patents

Elektrisch beheizbarer katalysator Download PDF

Info

Publication number
WO2022069119A1
WO2022069119A1 PCT/EP2021/073705 EP2021073705W WO2022069119A1 WO 2022069119 A1 WO2022069119 A1 WO 2022069119A1 EP 2021073705 W EP2021073705 W EP 2021073705W WO 2022069119 A1 WO2022069119 A1 WO 2022069119A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb body
electrically heatable
winding
housing
catalytic converter
Prior art date
Application number
PCT/EP2021/073705
Other languages
English (en)
French (fr)
Inventor
Holger Stock
Christian Schorn
Peter Hirth
Frank Bohne
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of WO2022069119A1 publication Critical patent/WO2022069119A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • F01N2330/04Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/44Honeycomb supports characterised by their structural details made of stacks of sheets, plates or foils that are folded in S-form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an electrically heatable catalytic converter with at least one heating conductor, which is accommodated in a housing, with at least two electrical feedthroughs, by means of which the heating conductor can be electrically contacted through the housing, the heating conductor being formed by a honeycomb body through which flow can take place in a main flow direction , which is formed from a layer stack wound around a winding center, which is formed from a plurality of films stacked on top of one another.
  • Electric heaters are used to heat the exhaust gas or the structures provided for treating the exhaust gases in the exhaust tract, such as honeycomb bodies of catalytic converters.
  • faster heating can be achieved, as a result of which the so-called light-off temperature, from which the chemical conversion on a catalytic converter works to a sufficient extent, is reached earlier and thus the exhaust gas treatment is improved.
  • This is particularly advantageous in situations after a cold start, which occurs in particular after the internal combustion engine has been idle for a long time.
  • the heating element which is usually arranged inside the exhaust pipe or inside the housing of a catalytic converter, must be electrically contacted. Depending on the voltage applied, a single electrical contact may be sufficient or, at higher voltage levels, two individual electrical contacts must be provided in order to connect the heating element to the poles of a voltage source and thereby prevent short circuits. Solutions are known in the prior art that provide two electrical feedthroughs for contacting the electrical conductor, which acts as a heating element. These are often offset by 180 degrees from one another along the circumference of the catalyst housing.
  • a particular disadvantage of the devices in the prior art is that such an offset arrangement leads to a maximum distance between the connection points for the positive pole and the negative pole of the voltage source. This makes it difficult to lay and connect the electrical lines to the connection points. This is particularly disadvantageous with regard to the temperatures prevailing in the area of the exhaust line and the limited installation space available.
  • the probability of electromagnetic fields occurring is increased by conducting the two electrical poles separately from one another, particularly at higher voltage levels. This can lead to unwanted and adverse effects.
  • One exemplary embodiment of the invention relates to an electrically heatable catalytic converter with at least one heating conductor, which is accommodated in a housing, with at least two electrical feedthroughs, by means of which the heating conductor can be electrically contacted through the housing, the heating conductor being formed by a honeycomb body through which flow can take place in a main flow direction is formed, which is formed from a layer stack wound around a winding center, which is formed from a plurality of films stacked on top of one another, the winding center being formed by at least two winding mandrels, the winding center being offset from the center of the layer stack.
  • the heating function is generated by applying an electrical voltage to the heating conductor. Using the ohmic resistance, heat is generated at the heating conductor.
  • the heat conductor is preferably formed by a metallic honeycomb body which is arranged upstream or downstream of other honeycomb bodies in the direction of flow of the exhaust gas.
  • the electrical bushings are used for electrical contacting of the heating conductor. In the case of higher voltages in particular, it is advisable to provide a separate bushing for each of the electrical poles of the voltage source and not to use the housing or the casing of the catalytic converter as ground.
  • the electrical feedthroughs are therefore designed to be particularly temperature-resistant and ensure electrical insulation of the housing from the heating conductor.
  • the honeycomb body acting as a heat conductor has a plurality of channels through which flow can take place, through which flow can take place from an inflow side of the honeycomb body to an outflow side of the honeycomb body along a main flow direction.
  • the channels are formed between the mutually adjacent foils of the layer stack.
  • the foils that form the stack of layers can have corrugations or other structures which, in conjunction with smooth layers or partially corrugated layers, form the channels through which flow can take place.
  • Honeycomb bodies formed from a stack of layers are well known.
  • the stack of layers is preferably placed between at least two winding mandrels and the stack of layers is wound up to form the disc-shaped honeycomb body by rotating the winding mandrels about an axis of rotation.
  • the stack of layers has a longitudinal extent and a transverse extent, the transverse extent coinciding with the main flow direction of the catalytic converter and being significantly shorter than the longitudinal extent.
  • the foils are preferably formed by strips which have a longitudinal extent which is significantly greater than their transverse extent. Since these are foils, the extension in the third dimension, the thickness, is very thin and thus significantly smaller than the extension in the transverse and longitudinal directions.
  • the foils are stacked on top of each other, for example alternating a smooth layer and an at least partially structured layer.
  • the resulting stack of layers thus also has a significantly greater longitudinal extent than the transverse extent.
  • the height of the layer stack is determined by the number and thickness of the individual foils.
  • the transverse extent of the stack of layers is in the same direction as the main flow direction of the channels of the honeycomb body.
  • the winding center forms the fulcrum around which the stack of layers is wound up by the winding mandrels.
  • the winding center is determined by the winding mandrels used and is preferably in the center of the winding mandrels.
  • the pivot point around which the stack of layers is rotated is preferably exactly in the winding center.
  • the pivot point is arranged eccentrically to the winding center.
  • the axis of rotation running through the pivot point is particularly preferably parallel to the main flow direction of the channels.
  • a preferred embodiment is characterized in that the winding center along the longitudinal extent of the stack of layers is offset by a defined distance from the center of the stack of layers in the longitudinal direction.
  • the resulting asymmetry of the honeycomb body can be influenced by changing the position of the layer stack relative to the winding center.
  • the position of the free ends can be influenced in this way.
  • the position of the engagement points of the winding mandrels in the honeycomb body can also be influenced.
  • the honeycomb body has an asymmetrical cross-sectional area.
  • the cross-sectional area is preferably formed by the area of the inflow side or the outflow side, or a parallel shift to these.
  • An asymmetrical cross-sectional area is characterized in particular by the non-symmetrical arrangement of the free ends of the layer stack, which act as contact points for the electrical feedthroughs.
  • the position of the center of the honeycomb body and the center of the housing is not necessarily congruent.
  • the center of the honeycomb body is offset in one or two directions relative to the center of the housing, viewed in each case in a cross section.
  • it is advantageous if the honeycomb body has an envelope running in the circumferential direction, which follows the inner contour of the housing.
  • the enveloping curve of the honeycomb body corresponds to a boundary line running in the circumferential direction around the honeycomb body, depressions in particular, such as those that occur, for example, in the region of the ends of the layer stack, being spanned by the enveloping curve.
  • the smallest possible distance between the inner contour of the housing accommodating the honeycomb body and the envelope is preferred, which ensures the electrical insulation of the honeycomb body from the housing but at the same time keeps the free cross section between the housing and honeycomb body as minimal as possible. This is intended to prevent the unwanted flow around the honeycomb body. In particular, no bypass channel should be formed, as a result of which the heating of the exhaust gas would be significantly worsened.
  • the distance between the envelope of the honeycomb body and the inner contour of the housing is essentially equidistant along the circumferential direction of the catalytic converter.
  • a distance between the envelope curve and the inner contour that is as constant as possible is particularly preferred in order to enable the most uniform possible flow through the honeycomb body and thus a uniform heating of the exhaust gas.
  • the honeycomb body has two free ends of the stack of layers, these being offset from one another by less than 180 degrees along the circumferential direction of the catalytic converter.
  • By winding up the stack of layers at least two free ends are created within the honeycomb body. These preferably serve to make electrical contact with the honeycomb body.
  • the fact that the winding does not take place in the middle of the stack of layers creates an asymmetry, which results in the free ends being arranged closer to one another along the circumferential direction.
  • the free ends are, for example, 180 degrees apart along the circumferential direction. More preferably, the free ends are less than 90 degrees along the circumferential direction apart, more preferably less than 45 degrees. The distance can preferably be reduced up to 5 degrees along the circumferential direction.
  • FIG. 1 shows a cross section through the housing and the honeycomb body, the free ends being close together and a wide gap being formed between the honeycomb body and the housing,
  • Fig. 2 is a cross-section through the casing and honeycomb with the free ends close together and the winding center offset from the center of the casing, and
  • FIG. 3 shows a cross section with an arrangement corresponding to FIG. 2, the electrical feedthroughs for contacting the free ends also being shown here.
  • FIG. 1 shows the housing 1 of a catalytic converter.
  • the honeycomb body 2 which is formed by a wound stack of layers 3 , is arranged in the housing 1 .
  • the layer stack 3 has been wound up by means of two winding mandrels, not shown, which were positioned at positions 4 , 5 . These winding mandrels were rotated about the winding center 6 located between the positions 4, 5, as a result of which the layer stack 3 was wound up.
  • the stack of layers 3 was positioned in the center of the winding center, as a result of which the two free ends 7, 8 would actually be arranged offset from one another by about 180 degrees in the circumferential direction after winding.
  • One of the free ends 7 has been shortened mechanically, which has resulted in the free ends 7, 8 finally being close to one another.
  • a relatively large free area 9 is formed between the honeycomb body 2 or an envelope curve surrounding it in the circumferential direction and the inner contour of the housing 1, which acts as a bypass for the exhaust gas flow, as a result of which the flow through the channels of the honeycomb body 2 is significantly worsened will.
  • This free area 9 has essentially been created by shortening the free end 7 .
  • FIG. 1 shows a honeycomb body 2 produced in a conventional manner, in which the layer stack 3 was positioned centrally in the winding device.
  • FIG 2 shows a honeycomb body 10 in a housing 11.
  • Winding center 15, which is positioned between the two winding mandrel positions 17, 18, offset from the center 16 of the housing 11 is aligned.
  • the free end 13 can also be shortened in order to position the two free ends even closer to one another.
  • the asymmetrical design of the honeycomb body 10 minimizes or entirely avoids the formation of a free area between the housing 11 and the honeycomb body 10 . The flow through the honeycomb body 10 is thus significantly improved.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.
  • FIG. 3 shows a structure similar to FIG. 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Die Erfindung betrifft einen elektrisch beheizbarer Katalysator mit zumindest einem Heizleiter, welcher in einem Gehäuse (11) aufgenommen ist, mit zumindest zwei elektrischen Durchführungen (19), mittels welcher der Heizleiter durch das Gehäuse (11) hinweg elektrisch kontaktierbar ist, wobei der Heizleiter durch einen entlang einer Hauptdurchströmungsrichtung durchströmbaren Wabenkörper (10) gebildet ist, welcher aus einem um ein Wickelzentrum (15) aufgewickelten Lagenstapel (12) gebildet ist, der aus einer Mehrzahl von aufeinandergestapelten Folien gebildet ist, wobei das Wickelzentrum (15) durch zumindest zwei Wickeldorne gebildet ist, wobei das Wickelzentrum (6, 15) versetzt zur Mitte des Lagenstapels (12) angeordnet ist.

Description

Beschreibung
Elektrisch beheizbarer Katalysator
Technisches Gebiet
Die Erfindung betrifft einen elektrisch beheizbarer Katalysator mit zumindest einem Heizleiter, welcher in einem Gehäuse aufgenommen ist, mit zumindest zwei elektrischen Durchführungen, mittels welcher der Heizleiter durch das Gehäuse hinweg elektrisch kontaktierbar ist, wobei der Heizleiter durch einen entlang einer Hauptdurchströmungsrichtung durchström baren Wabenkörper gebildet ist, welcher aus einem um ein Wickelzentrum aufgewickelten Lagenstapel gebildet ist, der aus einer Mehrzahl von aufeinandergestapelten Folien gebildet ist.
Stand der Technik
Zur Erwärmung des Abgases beziehungsweise der zur Behandlung der Abgase im Abgastrakt vorgesehenen Strukturen, wie beispielsweise Wabenkörpern von Katalysatoren, werden elektrische Heizer eingesetzt. Dadurch kann eine schnellere Aufheizung erreicht werden, wodurch insgesamt die sogenannten Light-Off Temperatur, ab welcher die chemische Umsetzung an einem Katalysator in ausreichendem Maße funktioniert, früher erreicht wird und somit die Abgasbehandlung verbessert wird. Dies ist insbesondere in Situationen nach einem Kaltstart vorteilhaft, welcher insbesondere nach einem längeren Stillstand des Verbrennungsmotors auftritt.
Das Heizelement, welches regelmäßig im Inneren der Abgasleitung beziehungsweise innerhalb des Gehäuses eines Katalysators angeordnet ist, muss elektrisch kontaktiert werden. Abhängig von der angelegten Spannung kann eine einzelne elektrische Kontaktierung ausreichend sein oder es müssen bei höheren Spannungsniveaus zwei einzelne elektrische Kontaktierungen vorgesehen werden, um das Heizelement mit den Polen einer Spannungsquelle zu verbinden und dabei Kurzschlüsse zu verhindern. Im Stand der Technik sind Lösungen bekannt, die zwei elektrische Durchführungen zur Kontaktierung des elektrischen Leiters, welcher als Heizelement wirkt, vorsehen. Diese sind oftmals um 180 Grad zueinander entlang dem Umfang des Katalysatorgehäuses versetzt angeordnet.
Nachteilig an den Vorrichtungen im Stand der Technik ist insbesondere, dass eine solche versetzte Anordnung zu einem maximalen Abstand der Anbindungspunkte für den Pluspol und den Minuspol der Spannungsquelle führt. Die Verlegung und Anbindung der elektrischen Leitungen zu den Anbindungspunkten ist dadurch erschwert. Dies ist insbesondere im Hinblick auf die im Bereich des Abgasstrangs herrschenden Temperaturen und den begrenzten zur Verfügung stehenden Bauraum nachteilig.
Zusätzlich wird die Wahrscheinlichkeit des Auftretens von elektromagnetischen Feldern durch die voneinander getrennte Führung der beiden elektrischen Pole, insbesondere bei höheren Spannungsniveaus, erhöht. Dies kann zu unerwünschten und nachteiligen Auswirkungen führen.
Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Daher ist es die Aufgabe der vorliegenden Erfindung einen elektrisch beheizbaren Katalysator zu schaffen, welcher hinsichtlich der elektrischen Kontaktierung des Heizleiters optimiert gestaltet ist.
Die Aufgabe hinsichtlich des elektrisch beheizbaren Katalysators wird durch einen elektrisch beheizbaren Katalysator mit den Merkmalen von Anspruch 1 gelöst.
Ein Ausführungsbeispiel der Erfindung betrifft einen elektrisch beheizbarer Katalysator mit zumindest einem Heizleiter, welcher in einem Gehäuse aufgenommen ist, mit zumindest zwei elektrischen Durchführungen, mittels welcher der Heizleiter durch das Gehäuse hinweg elektrisch kontaktierbar ist, wobei der Heizleiter durch einen entlang einer Hauptdurchströmungsrichtung durchströmbaren Wabenkörper gebildet ist, welcher aus einem um ein Wickelzentrum aufgewickelten Lagenstapel gebildet ist, der aus einer Mehrzahl von aufeinandergestapelten Folien gebildet ist, wobei das Wickelzentrum durch zumindest zwei Wickeldorne gebildet ist, wobei das Wickelzentrum versetzt zur Mitte des Lagenstapels angeordnet ist.
Die Heizfunktion wird durch das Anlegen einer elektrischen Spannung an den Heizleiter erzeugt. Unter Ausnutzung des Ohmschen Widerstandes wird am Heizleiter Wärme erzeugt. Bevorzugt ist der Heizleiter durch einen metallischen Wabenkörper gebildet, welcher weiteren Wabenkörpern in Strömungsrichtung des Abgases vor- oder nachgelagert ist.
Die elektrischen Durchführungen dienen der elektrischen Kontaktierung des Heizleiters. Insbesondere bei größeren Spannungen ist es zu empfehlen für jeden der elektrischen Pole der Spannungsquelle eine eigene Durchführung vorzusehen und nicht das Gehäuse beziehungsweise den Mantel des Katalysators als Masse zu verwenden. Die elektrischen Durchführungen sind daher insbesondere temperaturresistent ausgelegt und stellen eine elektrische Isolation des Gehäuses gegenüber dem Heizleiter sicher.
Der als Heizleiter wirkende Wabenkörper weist eine Mehrzahl durchström barer Kanäle auf, welcher von einer Einströmseite des Wabenkörpers hin zu einer Ausströmseite des Wabenkörpers entlang einer Hauptdurchströmungsrichtung durch- strömbar sind. Die Kanäle werden zwischen den zueinander benachbarten Folien des Lagenstapels ausgebildet. Durch das Aufwickeln des Lagenstapels entsteht so ein scheibenförmiger Wabenkörper, welcher an verschiedene Gehäusequerschnitte, wie beispielsweise runde, ovale oder eckige Querschnitte, angepasst werden kann.
Die Folien, welche den Lagenstapel bilden, können Wellungen oder anderweitige Strukturen aufweisen, welche in Verbindung mit Glattlagen oder teilweise gewellten Lagen die durchströmbaren Kanäle ausbilden. Wabenkörper, welche aus einem Lagenstapel gebildet sind, sind weithin bekannt. Bevorzugt wird der Lagenstapel zwischen zumindest zwei Wickeldornen platziert und durch das Drehen der Wickeldorne um eine Drehachse wird der Lagenstapel zu dem scheibenförmigen Wabenkörper aufgewickelt.
Besonders vorteilhaft ist es, wenn der Lagenstapel eine Längserstreckung aufweist und eine Quererstreckung, wobei die Quererstreckung mit der Hauptdurchströmungsrichtung des Katalysators übereinstimmt und wesentlich kürzer ist als die Längserstreckung.
Die Folien sind bevorzugt durch Streifen gebildet, welche eine Längserstreckung aufweisen, welche wesentlich höher ist als ihre Quererstreckung. Da es sich um Folien handelt, ist die Erstreckung in die dritte Dimension, die Dicke, sehr dünn und somit wesentlich kleiner als die Erstreckung in Quer- und Längsrichtung. Die Folien werden aufeinandergestapelt, beispielsweise eine Glattlage und eine zumindest teilweise strukturierte Lage im Wechsel.
Der so entstehende Lagenstapel hat somit ebenfalls eine wesentlich größerer Längserstreckung als Quererstreckung. Die Höhe des Lagenstapels ist durch die Anzahl und die jeweilige Dicke der einzelnen Folien bestimmt. Die Quererstreckung des Lagenstapels ist richtungsgleich mit der Hauptdurchströmungsrichtung der Kanäle des Wabenkörpers.
Auch ist es vorteilhaft, wenn das Wickelzentrum den Drehpunkt bildet, um welchen der Lagenstapel durch die Wickeldome aufgewickelt ist. Das Wickelzentrum ist durch die verwendeten Wickeldome bestimmt und liegt bevorzugt im Zentrum der Wickeldome. Bevorzugt ist der Drehpunkt, um welchen der Lagenstapel aufgedreht wird exakt im Wickelzentrum. In speziellen Ausführungen kann es jedoch auf vorgesehen sein, dass der Drehpunkt exzentrisch zum Wickelzentrum angeordnet ist. Die durch den Drehpunkt verlaufende Drehachse ist besonders bevorzugt parallel zur Hauptdurchströmungsrichtung der Kanäle. Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass das Wickelzentrum entlang der Längserstreckung des Lagenstapels um eine definierte Strecke von der Mitte des Lagenstapels in Längsrichtung versetzt ist.
Dies ist besonders vorteilhaft, um eine asymmetrische Querschnittsfläche zu erzeugen. Die rechts und links über das Wickelzentrum überstehenden Bereiche des Lagenstapels sind somit nicht gleich lang. Durch das Aufwickeln des nicht mittig im Wickelzentrum angeordneten Lagenstapels wird ein asymmetrischer Querschnitt des Wabenkörpers erzeugt wobei insbesondere die freien Enden des Lagenstapels, welche bei mittiger Anordnung des Lagenstapels im Wickelzentrum an 180 Grad entlang der Umfangsrichtung versetzen Bereichen liegen würden, in Umfangsrichtung betrachtet näher beieinander liegen. Die beiden elektrischen Durchführungen können so näher beieinander angeordnet werden, wodurch die unerwünschten Störeffekte, wie beispielsweise das Auftreten von elektromagnetischen Feldern minimiert werden können.
Durch die Veränderung der Position des Lagenstapels relativ zum Wickelzentrum kann so die entstehende Asymmetrie des Wabenkörpers beeinflusst werden. Insbesondere kann so die Lage der freien Enden beeinflusst werden. Auch kann die Position der Eingriffsstellen der Wickeldorne in den Wabenkörper beeinflusst werden.
Auch ist es zu bevorzugen, wenn der Wabenkörper eine asymmetrische Querschnittsfläche aufweist. Die Querschnittsfläche ist bevorzugt durch die Fläche der Einströmseite oder der Ausströmseite gebildet, oder eine parallele Verschiebung zu diesen. Eine asymmetrische Querschnittsfläche ist insbesondere durch die nicht symmetrische Anordnung der freien Enden des Lagenstapels, welche als Kontaktstellen zu den elektrischen Durchführungen fungieren, gekennzeichnet. Außerdem ist die Lage der Mitte des Wabenkörpers und die Mitte des Gehäuses nicht zwingend deckungsgleich. Die Mitte des Wabenkörpers ist gegenüber der Mitte des Gehäuses, jeweils in einem Querschnitt betrachtet, in einer oder in zwei Richtungen versetzt angeordnet. Darüber hinaus ist es vorteilhaft, wenn der Wabenkörper eine in Umfangsrichtung verlaufende Hüllkurve aufweist, welche der Innenkontur des Gehäuses folgt.
Die Hüllkurve des Wabenkörpers entspricht einer in Umfangsrichtung um den Wabenkörper verlaufenden Begrenzungslinie, wobei insbesondere Vertiefungen, wie sie beispielsweise im Bereich der Enden des Lagenstapels entstehen, von der Hüllkurve überspannt werden. Bevorzugt ist zwischen der Innenkontur des den Wabenkörper aufnehmenden Gehäuses und der Hüllkurve ein möglichst geringer Abstand, der zwar die elektrische Isolation des Wabenkörpers gegenüber dem Gehäuse sicherstellt, gleichzeitig aber den freien Querschnitt zwischen Gehäuse und Wabenkörper möglichst minimal hält. Dadurch soll das ungewollte Umströmen des Wabenkörpers vermieden werden. Insbesondere soll kein Bypasskanal ausgebildet werden, wodurch die Aufheizung des Abgases deutlich verschlechtert werden würde.
Weiterhin ist es vorteilhaft, wenn der Abstand zwischen der Hüllkurve des Wabenkörpers und der Innenkontur des Gehäuses entlang der Umfangsrichtung des Katalysators im Wesentlichen äquidistant ist. Besonders bevorzugt ist ein möglichst gleichbleibender Abstand zwischen der Hüllkurve und der Innenkontur, um eine möglichst gelichmäßige Durchströmung des Wabenkörpers und somit eine gleichmäßige Aufheizung des Abgases zu ermöglichen.
Auch ist es zweckmäßig, wenn der Wabenkörper zwei freie Enden des Lagenstapels aufweist, wobei diese um weniger als 180 Grad entlang der Umfangsrichtung des Katalysators zueinander versetzt sind. Durch das Aufwickeln des Lagenstapels entstehen zumindest zwei freie Enden innerhalb des Wabenkörpers. Diese dienen bevorzugt der elektrischen Kontaktierung des Wabenkörpers. Durch das nicht in der Mitte des Lagenstapels stattfindende Aufwickeln wird eine Asymmetrie erzeugt, die dazu führt, dass die freien Enden entlang der Umfangsrichtung näher beieinander angeordnet sind. Bei einem mittigen Aufwickeln sind die freien Enden beispielsweise 180 Grad entlang der Umfangsrichtung voneinander entfernt. Besonders bevorzugt sind die freien Enden weniger als 90 Grad entlang der Umfangsrichtung voneinander entfernt, besonders bevorzugt weniger als 45 Grad. Der Abstand kann vorzugweise auf bis zu 5 Grad entlang der Umfangsrichtung reduziert werden.
Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben.
Kurze Beschreibung der Zeichnungen
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
Fig. 1 einen Querschnitt durch das Gehäuse und den Wabenkörper, wobei die freien Enden nah beieinander liegen und sich zwischen dem Wabenkörper und dem Gehäuse ein breiter Spalt ausbildet,
Fig. 2 einen Querschnitt durch das Gehäuse und den Wabenkörper, wobei die freien Enden nahe beieinander liegen und das Wickelzentrum versetzt zur Mitte des Gehäuses angeordnet ist, und
Fig. 3 einen Querschnitt mit einer Anordnung entsprechend Figur 2, wobei hier auch die elektrischen Durchführungen zur Kontaktierung der freien Enden gezeigt sind.
Bevorzugte Ausführung der Erfindung
Die Figur 1 zeigt das Gehäuse 1 eines Katalysators. Im Gehäuse 1 ist der Wabenkörper 2 angeordnet, welcher durch einen aufgewickelten Lagenstapel 3 gebildet ist. Der Lagenstapel 3 ist mittels zweier nicht gezeigter Wickeldome, welche an den Positionen 4, 5 positioniert waren aufgewickelt worden. Diese Wickeldome wurden um das zwischen den Positionen 4, 5 befindliche Wickelzentrum 6 gedreht, wodurch der Lagenstapel 3 aufgewickelt wurde. Der Lagenstapel 3 war mittig im Wickelzentrum positioniert, wodurch die beiden freien Enden 7, 8 nach dem Aufwickeln eigentlich um etwa 180 Grad in Umfangsrichtung zueinander versetzt angeordnet wären. Eines der freien Enden 7 wurde mechanisch gekürzt, wodurch erreicht wurde, dass die freien Enden 7, 8 schließlich nahe beieinander liegen.
Es ist zu erkennen, dass zwischen dem Wabenkörper 2 beziehungsweise einer diesen in Umfangsrichtung umgebenden Hüllkurve und der Innenkontur des Gehäuses 1 ein relativ großer freier Bereich 9 ausgebildet ist, welcher als Bypass für die Abgasströmung wirkt, wodurch die Durchströmung der Kanäle des Wabenkörpers 2 deutlich verschlechtert wird. Dieser freie Bereich 9 ist im Wesentlichen durch die Kürzung des freien Ende 7 erzeugt worden.
Die Figur 1 zeigt einen auf herkömmliche Weise hergestellten Wabenkörper 2, bei welchem der Lagenstapel 3 mittig in der Wickelvorrichtung positioniert war. Durch das Kürzen eines freien Endes 7 ist eine verbesserte Anordnung der freien Enden 7, 8 zueinander erreicht worden, jedoch ist gleichzeitig der freie Bereich 9 als Strömungsbypass erzeugt worden.
Figur 2 zeigt einen Wabenkörper 10 in einem Gehäuse 11. 1m Unterschied zur Figur 1 wurde der Wabenkörper 10 durch das zur Mitte des Lagenstapels 12 versetzte Aufwickeln des Lagenstapels 12 erreicht, wodurch einerseits die freien Enden 13, 14 näher beieinander liegen, und andererseits auch das Wickelzentrum 15, welches zwischen den beiden Wickeldornpositionen 17, 18 positioniert ist, versetzt zur Mitte 16 des Gehäuses 11 ausgerichtet ist.
Das freie Ende 13 kann zusätzlich gekürzt werden, um die beiden freien Enden noch näher aneinander zu positionieren. Es ist im Unterschied zur Figur 1 insbesondere zu erkennen, dass durch die asymmetrische Gestaltung des Wabenkörpers 10 das Entstehen von einem freien Bereich zwischen dem Gehäuse 11 und dem Wabenkörper 10 minimiert beziehungsweise gänzlich vermieden wurde. Die Durchströmung des Wabenkörpers 10 ist somit deutlich verbessert.
Die Figur 3 zeigt einen ähnlichen Aufbau wie Figur 2. Zusätzlich sind in Figur 3 noch die beiden elektrischen Durchführungen 19, 20 gezeigt, welche zur elektrischen Kontaktierung der beiden freien Enden 13, 14 des Wabenkörpers 10 dienen. Die unterschiedlichen Merkmale der einzelnen Ausführungsbeispiele können auch untereinander kombiniert werden. Die Ausführungsbeispiele der Figuren 1 bis 3 weisen insbesondere keinen beschränkenden Charakter auf und dienen der Verdeutlichung des Erfindungsgedankens.

Claims

Patentansprüche
1. Elektrisch beheizbarer Katalysator mit zumindest einem Heizleiter, welcher in einem Gehäuse (11) aufgenommen ist, mit zumindest zwei elektrischen Durchführungen (19), mittels welcher der Heizleiter durch das Gehäuse (11) hinweg elektrisch kontaktierbar ist, wobei der Heizleiter durch einen entlang einer Hauptdurchströmungsrichtung durchström baren Wabenkörper (10) gebildet ist, welcher aus einem um ein Wickelzentrum (15) aufgewickelten Lagenstapel (12) gebildet ist, der aus einer Mehrzahl von aufeinandergestapelten Folien gebildet ist, d a d u r c h g e k e n n z e i c h n e t , dass das Wickelzentrum (15) durch zumindest zwei Wickeldome gebildet ist, wobei das Wickelzentrum (6, 15) versetzt zur Mitte des Lagenstapels (12) angeordnet ist.
2. Elektrisch beheizbarer Katalysator nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Lagenstapel (12) eine Längser- streckung aufweist und eine Quererstreckung, wobei die Quererstreckung mit der Hauptdurchströmungsrichtung des Katalysators übereinstimmt und wesentlich kürzer ist als die Längserstreckung.
3. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Wickelzentrum (15) den Drehpunkt bildet, um welchen der Lagenstapel (12) durch die Wickeldorne aufgewickelt ist.
4. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Wickelzentrum (15) entlang der Längserstreckung des Lagenstapels (12) um eine definierte Strecke von der Mitte des Lagenstapels (12) in Längsrichtung versetzt ist.
5. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Wabenkörper (10) eine asymmetrische Querschnittsfläche aufweist.
6. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Wabenkörper (10) eine in Umfangsrichtung verlaufende Hüllkurve aufweist, welche der Innenkontur des Gehäuses (11 ) folgt.
5
7. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Abstand zwischen der Hüllkurve des Wabenkörpers (10) und der Innenkontur des Gehäuses (11) entlang der Umfangsrichtung des Katalysators im Weid sentlichen äquidistant ist.
8. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Wabenkörper (10) zwei freie Enden (13, 14) des Lagenstapels (12) aufweist,
15 wobei diese um weniger als 180 Grad entlang der Umfangsrichtung des
Katalysators zueinander versetzt sind.
PCT/EP2021/073705 2020-10-01 2021-08-27 Elektrisch beheizbarer katalysator WO2022069119A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020212472.8A DE102020212472A1 (de) 2020-10-01 2020-10-01 Elektrisch beheizbarer Katalysator
DE102020212472.8 2020-10-01

Publications (1)

Publication Number Publication Date
WO2022069119A1 true WO2022069119A1 (de) 2022-04-07

Family

ID=77821704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/073705 WO2022069119A1 (de) 2020-10-01 2021-08-27 Elektrisch beheizbarer katalysator

Country Status (2)

Country Link
DE (1) DE102020212472A1 (de)
WO (1) WO2022069119A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253494A (ja) * 1992-03-16 1993-10-05 Calsonic Corp 電熱触媒担体及びその製造方法
JPH08224443A (ja) * 1995-02-17 1996-09-03 Mitsubishi Motors Corp 電気加熱触媒装置
DE102009018182A1 (de) * 2009-04-22 2010-10-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Mehrstufig beheizbarer Wabenkörper
DE102010052650A1 (de) * 2010-11-26 2012-05-31 Emitec Gesellschaft Für Emissionstechnologie Mbh Verbindung zweier Abgasbehandlungsvorrichtungen zueinander

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350283B2 (ja) 1995-04-05 2002-11-25 新日本製鐵株式会社 ハニカム体の製造方法
DE19724263A1 (de) 1997-06-09 1998-12-10 Emitec Emissionstechnologie Radialkatalysator, insbesondere für Kleinmotoren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253494A (ja) * 1992-03-16 1993-10-05 Calsonic Corp 電熱触媒担体及びその製造方法
JPH08224443A (ja) * 1995-02-17 1996-09-03 Mitsubishi Motors Corp 電気加熱触媒装置
DE102009018182A1 (de) * 2009-04-22 2010-10-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Mehrstufig beheizbarer Wabenkörper
DE102010052650A1 (de) * 2010-11-26 2012-05-31 Emitec Gesellschaft Für Emissionstechnologie Mbh Verbindung zweier Abgasbehandlungsvorrichtungen zueinander

Also Published As

Publication number Publication date
DE102020212472A1 (de) 2022-04-07

Similar Documents

Publication Publication Date Title
EP2802752B1 (de) Elektrisch beheizbarer wabenkörper mit mehreren mit einem anschlussstift elektrisch verbundenen blechlagen
EP2836687B1 (de) Elektrischer anschluss von mehreren blechlagen eines elektrisch beheizbaren wabenkörpers und zugehöriger wabenkörper
EP0541585B1 (de) Elektrisch beheizbarer wabenkörper, insbesondere katalysator-trägerkörper, mit inneren tragstrukturen
EP0581784B1 (de) Elektrisch beheizbarer wabenkörper
DE102020132800A1 (de) Abgasheizeinheit
DE102021205198A1 (de) Vorrichtung zur Erwärmung eines Abgasstroms
EP3320196B1 (de) Elektrisch beheizbarer wabenkörper mit lagenpaketkontaktierung
WO1990012951A1 (de) Elektrisch leitfähiger wabenkörper mit mechanisch belastbaren elektrisch isolierenden zwischenschichten
EP3864262B1 (de) Vorrichtung zur abgasbehandlung
EP2150690B1 (de) Elektrisch beheizbarer wabenkörper mit zonen erhöhter widerstände
WO2013026640A1 (de) Vorrichtung zur behandlung von abgasen
EP4073359B1 (de) Vorrichtung zur abgasnachbehandlung mit einer ringförmigen heizscheibe
EP3943720A1 (de) Elektrische heizvorrichtung
WO2022069119A1 (de) Elektrisch beheizbarer katalysator
WO2020260337A1 (de) Vorrichtung zur abgasnachbehandlung
EP4023864B1 (de) Elektrische abgasheizeinheit
EP3864263B1 (de) Vorrichtung zur abgasbehandlung
DE102022206145A1 (de) Vorrichtung zur Erwärmung von in einer Abgasleitung strömbaren Abgas
DE102021132931A1 (de) Abgasheizanordnung für eine Abgasanlage einer Brennkraftmaschine
DE102021006655A1 (de) Heizvorrichtung sowie Verfahren zur Herstellung einer Heizvorrichtung
DE102021113760A1 (de) Heizvorrichtung sowie Verfahren zur Herstellung einer Heizvorrichtung
EP4223991A1 (de) Elektrischer abgasheizer
WO2020074511A1 (de) Elektrisch beheizbare heizscheibe
DE102020118988A1 (de) Heizvorrichtung für ein Abgassystem eines Kraftfahrzeugs und Abgassystem
EP4013955A1 (de) Elektrisch beheizbarer katalysator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772986

Country of ref document: EP

Kind code of ref document: A1