EP4013955A1 - Elektrisch beheizbarer katalysator - Google Patents

Elektrisch beheizbarer katalysator

Info

Publication number
EP4013955A1
EP4013955A1 EP20754216.8A EP20754216A EP4013955A1 EP 4013955 A1 EP4013955 A1 EP 4013955A1 EP 20754216 A EP20754216 A EP 20754216A EP 4013955 A1 EP4013955 A1 EP 4013955A1
Authority
EP
European Patent Office
Prior art keywords
jacket tube
electrode
electrically heatable
layer
electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20754216.8A
Other languages
English (en)
French (fr)
Inventor
Sven Schepers
Peter Hirth
Thomas HÄRIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP4013955A1 publication Critical patent/EP4013955A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • H05B3/08Heater elements structurally combined with coupling elements or holders having electric connections specially adapted for high temperatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an electrically heatable catalyst with a metallic honeycomb body, the honeycomb body is formed by a plurality of wound metallic foils and the honeycomb body is taken up in a casing tube, a device for electrical contacting at least individual foils in through an opening in the casing tube the jacket pipe is guided.
  • honeycomb bodies To increase the exhaust gas temperature in devices for exhaust gas aftertreatment, electrically heatable honeycomb bodies are also used. These have a honeycomb body which is formed, for example, from a multiplicity of metallic foils which are stacked on top of one another and wound up together. For heating, the use of current-carrying conductors is known, which generate heat using the ohmic resistance. Alternatively, individual metallic foils or stacks of layers produced from them can be directly contacted electrically so that they act as current-carrying conductors and lead to heating.
  • foils are regularly combined at one of their free ends to form a compact stack in order to be able to direct the current into the foils in a targeted manner.
  • One embodiment of the invention relates to an electrically heatable catalyst with a metallic honeycomb body, the honeycomb body being formed by a plurality of rolled-up metallic foils and the honeycomb body being accommodated in a casing tube, a device for electrical contacting at least individual foils in through an opening in the casing tube the jacket tube is guided, the device being formed by an electrode which is electrically insulated from the inside of the jacket tube by a connecting layer and is mechanically connected to the jacket tube.
  • the honeycomb body is formed from a plurality of metal foils which, for example, can be smooth or structured, in particular corrugated.
  • the stacked metal foils are then preferably wound around one or more mandrels, so that a honeycomb body with a plurality of flow channels through which can flow is produced.
  • the individual flow channels are essentially formed between the corrugated and smooth metal foils.
  • the honeycomb body By spacing individual layer stacks apart, conductors that are electrically insulated from one another can be formed.
  • the honeycomb body can be heated using the ohmic resistance.
  • the stack of layers through which current flows is heated due to the electrical resistance of the metal foils forming it.
  • Exhaust gas flowing past is heated by the heated metal foils, which increases the temperature in the catalytic converter or the structures following the catalytic converter.
  • an electrical conductor must be passed through the casing tube that receives the honeycomb body.
  • the electrode which enables particularly simple contacting of the metal foils, is used for this purpose.
  • a material connection of the metal foils to the electrode for example by soldering or welding, is advantageous here in order to produce a permanently durable connection.
  • One electrical pole is usually formed by the electrode, while the other pole is formed by the housing of the catalytic converter.
  • the electrode guided through the housing or the jacket must therefore be electrically insulated from the housing or the jacket tube, while in particular it must be electrically conductively connected to the metal foils of the layer stack assigned to the electrode.
  • the electrode is firmly connected to the jacket tube in order to avoid relative movements of the electrode with respect to the jacket tube and thus also to prevent movement of the metal foils or the stack of layers.
  • the connecting layer is formed by an insulating layer and an adhesive layer, the insulating layer facing the jacket tube and the adhesive layer facing the electrode.
  • the connecting layer is ideally a multi-phase layer that on the one hand creates electrical insulation between the jacket tube and the electrode, and at the same time has an adhesive layer that enables a permanent and particularly robust connection of the electrode to the jacket pipe.
  • multi-layer connecting layers or connecting layers with specific properties in the edge area are known here. Such specific properties can be achieved, for example, by adding certain elements or mixtures of substances.
  • a preferred embodiment is characterized in that the insulating layer has an electrically insulating effect and consists of one of the substances Al2O3, Zr02, MgO, T1O2, Ce02, a ceramic doped with yttrium, a ceramic doped with silicon, cordierite, mullite or a mixture of the substances listed is formed.
  • the adhesive layer is a metallic layer and is formed from one of the materials Cu, Ni, Co, Ag, Pd or their alloys such as AgPd or CuNi.
  • the insulating layer and the adhesive layer have similar, preferably identical, coefficients of thermal expansion. This is advantageous in order to avoid stresses occurring within the connecting layer. Tensions can arise in particular as a result of the strong heating and cooling of the catalytic converter during operation.
  • the insulating layer and the adhesive layer also have similar or the same thermal expansion coefficients as the adjacent jacket or the electrode.
  • the electrode is T-shaped and the section arranged in the interior of the jacket tube has a larger cross-sectional area than the opening through which it is guided.
  • the T-shaped basic shape is advantageous in order to create a connection surface for the metal foils or the stack of layers which is larger than the opening through which the electrode is guided through the jacket tube. This makes the connection of the stack of layers easier and also prevents the creation of so-called hotspots, which can arise from a concentration of the flowing current at a certain point on the electrode or the metal foils.
  • the electrode can advantageously be guided from the inside through the jacket tube and then mechanically connected to the jacket tube before the metal foils are finally connected to the electrode.
  • connection of the electrode with the jacket tube and the metal foils with the electrode can also be achieved simultaneously in one work step, for example by soldering in a soldering furnace.
  • the jacket tube has a bulge directed radially outward in the area of the opening, the inside of the jacket tube tube-guided section of the electrode is received in one of this bulge etcbil Deten pocket.
  • the outward bulge creates a kind of cavern inside in the wall of the jacket tube, into which the T-shaped area of the electrode can be received.
  • the otherwise circular cross-section of the jacket pipe can be retained.
  • the honeycomb body formed from the metal foils does not have to be specially adapted in order to be adapted to the electrode. Of course, this also applies in the same way to honeycomb bodies and casing pipes with different cross-sections, such as an oval cross-section, for example.
  • the opening in the jacket tube is closed in a gas-tight manner by the material connection between the electrode, the insulating layer and the adhesive layer. This is particularly advantageous in order to avoid leaks. Exiting hot exhaust gases withdraw energy from the catalytic converter and can also damage the structures surrounding the catalytic converter.
  • Fig. 1 is a schematic sectional view through the electrode and the one telrohr in the area of implementation through the jacket tube, and
  • Fig. 2 is a sectional view through the contact point between jacket tube and
  • FIG. 1 shows a sectional view through a jacket tube 1 of a catalytic converter, in particular an electrically heatable catalytic converter.
  • the jacket tube 1 forms a housing for the honeycomb body 2 formed in the interior, which is formed from a plurality of metal foils which are stacked on top of one another to form stacks 3.
  • the jacket tube 1 has an opening 4 through which an electrode 5 is guided.
  • the electrode 5 has a stem-like extension which protrudes outward through the opening 4 from the interior of the jacket tube 1, and a plate-shaped section which is arranged inside the jacket tube 1.
  • the electrode 5 is T-shaped.
  • the jacket tube 1 has a bulge 6 in which the plate-shaped section of the electrode 5 is received.
  • the inwardly directed surface of the plate-shaped section of the electrode 5 is in alignment with the inner wall of the casing tube 1.
  • the plate-shaped section can also be preformed and adapted to the geometry of the inside of the casing tube 1.
  • the electrode 5 can also be adapted to an oval or some other cross section of the jacket tube 1.
  • the bulge 6 means that an envelope curve placed around the honeycomb body 2 formed in the interior can have a continuous profile and need not have a notch or other recess in the area of the electrode 5. This is particularly advantageous because the honeycomb bodies are regularly generated by winding the stack of layers around a mandrel or several mandrels.
  • the electrode 5 is mechanically and temperature-resistantly connected to the jacket tube 1 via a connecting layer 7.
  • the connecting layer 7 has an electrically insulating area 8 and an adhesive area 9.
  • the electrically insulating region 8 is arranged on the side facing the casing tube 1 and the adhesive region is arranged on the side of the connecting layer 7 facing the electrode 5.
  • a solder 10 which is used to later connect the electrode 5 to the jacket 1, can be applied to the adhesive area 9.
  • the connecting layer 7 can be formed from two individual and joined layers. Alternatively a layer can also be formed which is formed differently in the two edge regions. For example, the concentration of given elements can vary in strength in order to achieve an electrically insulating effect at an edge area.
  • a sufficiently high metallic component can be formed on the opposite edge area, which allows the connection to the electrode 5 by means of soldering. Preferred materials are described in the subclaims.
  • FIGS. 1 and 2 in particular does not have a restrictive character and serves to illustrate the inventive concept.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Resistance Heating (AREA)

Abstract

Die Erfindung betrifft einen elektrisch beheizbaren Katalysator mit einem metallischen Wabenkörper (2), wobei der Wabenkörper (2) durch eine Mehrzahl aufgewickelter metallischer Folien gebildet ist und der Wabenkörper (2) in einem Mantelrohr (1) aufgenommen ist, wobei durch eine Öffnung (4) im Mantelrohr (1) eine Vorrichtung zur elektrischen Kontaktierung zumindest einzelner Folien in das Mantelrohr (1) geführt ist, wobei die Vorrichtung durch eine Elektrode (5) gebildet ist, welche zur Innenseite des Mantelrohrs (1) durch eine Verbindungsschicht (7) elektrisch isoliert ist und mechanisch mit dem Mantelrohr (1) verbunden ist.

Description

Beschreibung
Elektrisch beheizbarer Katalysator
Technisches Gebiet
Die Erfindung betrifft einen elektrisch beheizbaren Katalysator mit einem metalli schen Wabenkörper, wobei der Wabenkörper durch eine Mehrzahl aufgewickelter metallischer Folien gebildet ist und der Wabenkörper in einem Mantelrohr aufge nommen ist, wobei durch eine Öffnung im Mantelrohr eine Vorrichtung zur elektri schen Kontaktierung zumindest einzelner Folien in das Mantelrohr geführt ist.
Stand der Technik
Zur Erhöhung der Abgastemperatur in Vorrichtungen zur Abgasnachbehandlung werden unter anderem auch elektrisch beheizbare Wabenkörper eingesetzt. Diese weisen einen Wabenkörper auf, der beispielsweise aus einer Vielzahl von metalli schen Folien gebildet ist, die aufeinandergestapelt sind und miteinander aufgewi ckelt wurden. Zur Beheizung ist der Einsatz von stromdurchflossenen Leitern be kannt, die unter Ausnutzung des ohmschen Widerstands Wärme erzeugen. Alter nativ können einzelne metallische Folien oder daraus erzeugte Lagenstapel direkt elektrisch kontaktiert werden, so dass diese als stromdurchflossener Leiter wirken und zu einer Erwärmung führen.
Zum Zwecke der elektrischen Kontaktierung werden regelmäßig mehrere Folien an einem ihrer freien Enden zu einem kompakten Stapel zusammengefasst, um den Strom zielgerichtet in die Folien einleiten zu können.
Insbesondere bei elektrisch beheizbaren Wabenkörpern mit einer hohen Anzahl an einzelnen zu bestromenden Folien können so besonders massive und dicke Stapel aus Folien entstehen. Diese haben den Nachteil, dass sie einerseits bauraumseitig nicht gut in den Wabenkörper integriert werden können und weiterhin sehr anfällig für die Bildung von Heißstellen sind, da diese so gebildeten Stapel dem angelegten Strom die Möglichkeit bieten einen möglicherweise ungünstigen Stromfluss nach dem Prinzip des geringsten Widerstands auszubilden. Es kann so zu lokalen Heißstellen kommen, die dauerhaft zu einer Beschädigung führen können und weiterhin eine Verschlechterung der Energieeffizienz der Heizvorrichtung führen. Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Daher ist es die Aufgabe der vorliegenden Erfindung einen elektrisch beheizbaren Wabenkörper zu schaffen, welcher eine verbesserte Anbindung einzelner Folien an eine stromeinleitende Elektrode innerhalb des Wabenkörpers ermöglicht und das Entstehen von lokalen Heißstellen aufgrund eines ungünstigen Stromflusses ver meidet.
Die Aufgabe hinsichtlich des elektrisch beheizbaren Katalysators wird durch einen elektrisch beheizbaren Katalysator mit den Merkmalen von Anspruch 1 gelöst.
Ein Ausführungsbeispiel der Erfindung betrifft einen elektrisch beheizbaren Kata lysator mit einem metallischen Wabenkörper, wobei der Wabenkörper durch eine Mehrzahl aufgewickelter metallischer Folien gebildet ist und der Wabenkörper in einem Mantelrohr aufgenommen ist, wobei durch eine Öffnung im Mantelrohr eine Vorrichtung zur elektrischen Kontaktierung zumindest einzelner Folien in das Mantelrohr geführt ist, wobei die Vorrichtung durch eine Elektrode gebildet ist, welche zur Innenseite des Mantelrohrs durch eine Verbindungsschicht elektrisch isoliert ist und mechanisch mit dem Mantelrohr verbunden ist.
Der Wabenkörper ist aus einer Mehrzahl aus Metallfolien gebildet, die beispiels weise glatt oder strukturiert, insbesondere gewellt, sein können. Die aufeinander- gestapelten Metallfolien sind dann vorzugsweise um einen oder mehrere Dorne aufgewickelt, so dass ein Wabenkörper mit einer Mehrzahl von durchström baren Strömungskanälen entsteht. Die einzelnen Strömungskanäle sind dabei im We sentlichen zwischen den gewellten und glatten Metallfolien ausgebildet.
Durch die Beabstandung einzelner Lagenstapel zueinander können elektrisch voneinander isolierte Leiter ausgebildet werden. Durch das Anlegen einer elektri schen Spannung an einen oder mehrere dieser Lagenstapel kann eine Erwärmung des Wabenkörpers unter Ausnutzung des ohmschen Widerstandes erreicht wer den. Der mit Strom durchflossene Lagenstapel wird dabei aufgrund des elektrischen Widerstandes, der ihn bildenden Metallfolien erhitzt. Vorbeiströmendes Abgas wird durch die erhitzten Metallfolien mit erhitzt, wodurch die Temperatur im Katalysator oder den dem Katalysator nachfolgenden Strukturen erhöht wird. Zum Zwecke der elektrischen Kontaktierung muss ein elektrischer Leiter durch das den Wabenkörper aufnehmende Mantelrohr geführt werden. Hierzu dient die Elektrode, die eine besonders einfache Kontaktierung der Metallfolien ermöglicht. Insbesondere eine stoffschlüssige Anbindung der Metallfolien an die Elektrode, beispielsweise durch Löten oder Schweißen, ist hier vorteilhaft, um eine dauerhaft haltbare Anbindung zu erzeugen.
Regelmäßig wird ein elektrischer Pol durch die Elektrode gebildet, während der jeweils andere Pol durch das Gehäuse des Katalysators gebildet wird. Um sicher zugehen, dass es keinen Kurzschluss gibt, muss deswegen die durch das Gehäuse beziehungsweise den Mantel geführte Elektrode elektrisch isoliert gegenüber dem Gehäuse beziehungsweise dem Mantelrohr sein, während sie insbesondere elektrisch leitend mit den Metallfolien der der Elektrode zugeordneten Lagenstapel verbunden sein muss.
Zur Sicherstellung der Dauerhaltbarkeit und zur Erhöhung der Festigkeit ist die Elektrode fest mit dem Mantelrohr verbunden, um Relativbewegungen der Elekt rode gegenüber dem Mantelrohr zu vermeiden und so auch eine Bewegung der Metallfolien beziehungsweise der Lagenstapel zu verhindern.
Besonders vorteilhaft ist es, wenn eine Mehrzahl der den Wabenkörper bildenden metallischen Folien mit der Elektrode elektrisch leitend verbunden ist. Dies ist notwendig, um einen Stromfluss von der Elektrode in die Metallfolien zu ermögli chen.
Auch ist es vorteilhaft, wenn die Verbindungsschicht durch eine Isolierschicht und eine Haftschicht gebildet ist, wobei die Isolierschicht dem Mantelrohr zugewandt ist und die Haftschicht der Elektrode zugewandt ist. Die Verbindungsschicht ist ideal erweise eine mehrphasige Schicht, die einerseits eine elektrische Isolation zwi schen dem Mantelrohr und der Elektrode erzeugt, und gleichzeitig eine Haftschicht aufweist, die eine dauerhafte und insbesondere robuste Verbindung der Elektrode mit dem Mantelrohr ermöglicht. Bekannt sind hier beispielsweise mehrlagige Ver bindungsschichten oder Verbindungsschichten mit spezifischen Eigenschaften im Randbereich. Solche spezifischen Eigenschaften können beispielsweise durch die Zugabe bestimmter Elemente oder Stoffgemische erreicht werden. Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass die Iso lierschicht eine elektrisch isolierende Wirkung hat und aus einem der Stoffe AI2O3, Zr02, MgO, T1O2, Ce02, einer mit Yttrium dotierten Keramik, einer mit Silizium do tierten Keramik, Cordierit, Mullit oder einem Gemisch der aufgezählten Stoffe ge bildet ist.
Auch ist es zu bevorzugen, wenn die Haftschicht eine metallische Schicht ist und aus einem der Stoffe Cu, Ni, Co, Ag, Pd oder deren Legierungen wie beispielsweise AgPd oder CuNi gebildet ist.
Darüber hinaus ist es vorteilhaft, wenn die Isolierschicht und die Haftschicht ähn liche, bevorzugt gleiche Wärmeausdehnungskoeffizienten haben. Dies ist vorteil haft, um das Auftreten von Spannungen innerhalb der Verbindungsschicht zu vermeiden. Spannungen können insbesondere infolge der starken Erwärmung und Abkühlung des Katalysators im Betrieb entstehen. Bevorzugt weisen die Isolier schicht und die Haftschicht auch ähnliche beziehungsweise gleiche Wärmeaus dehnungskoeffizienten auf, wie der benachbarte Mantel oder die Elektrode.
Weiterhin ist es vorteilhaft, wenn die Elektrode T-förmig ausgebildet ist und der im Inneren des Mantelrohrs angeordnete Abschnitt eine größere Querschnittsfläche als die Öffnung aufweist, durch die sie geführt ist. Die T-förmige Grundform ist vorteilhaft, um eine Anbindungsfläche für die Metallfolien beziehungsweise die Lagenstapel zu schaffen, welche größer ist als die Öffnung, durch welche die Elektrode durch das Mantelrohr geführt ist. Dies macht die Anbindung der Lagen stapel leichter und verhindert zudem die Entstehung von sogenannten Hotspots, die durch eine Konzentration des fließenden Stroms an einer bestimmten Stelle der Elektrode oder den Metallfolien entstehen können.
Die Elektrode kann vorteilhaft von Innen durch das Mantelrohr geführt werden und anschließend mit dem Mantelrohr mechanisch verbunden werden, bevor schließlich die Metallfolien an die Elektrode angebunden werden. Je nach Gestaltung des Produktionsprozesses kann die Verbindung der Elektrode mit dem Mantelrohr und der Metallfolien mit der Elektrode auch zeitgleich in einem Arbeitsschritt, bei spielsweise durch das Löten in einem Lötofen erreicht werden.
Auch ist es zweckmäßig, wenn das Mantelrohr eine radial nach außen gerichtete Ausbuchtung im Bereich der Öffnung aufweist, wobei der ins Innere des Mantel- rohrs geführte Abschnitt der Elektrode in einer von dieser Ausbuchtung ausgebil deten Tasche aufgenommen ist. Die Ausbuchtung nach außen schafft im Inneren eine Art Kaverne in der Wand des Mantelrohres, in welche der T-förmige Bereich der Elektrode hinein aufgenommen werden kann. Dadurch kann der ansonsten kreisrunde Querschnitt des Mantelrohrs beibehalten werden. Weiterhin muss der aus den Metallfolien gebildete Wabenkörper nicht speziell angepasst werden, um an die Elektrode angepasst zu werden. Dies gilt natürlich in gleicher Weise auch für Wabenkörper und Mantelrohre mit abweichenden Querschnitten, wie beispiels weise einem ovalen Querschnitt.
Darüber hinaus ist es vorteilhaft, wenn die Öffnung im Mantelrohr durch die stoff schlüssige Verbindung zwischen der Elektrode, der Isolierschicht und der Haft schicht gasdicht verschlossen ist. Dies ist insbesondere vorteilhaft, um Leckagen zu vermeiden. Austretende heiße Abgase entziehen dem Katalysator einerseits Energie und können darüber hinaus zu Beschädigungen an den den Katalysator umgebenden Strukturen führen.
Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprü chen und in der nachfolgenden Figurenbeschreibung beschrieben.
Kurze Beschreibung der Zeichnungen
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Be zugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
Fig. 1 eine schematische Schnittansicht durch die Elektrode und das Man telrohr im Bereich der Durchführung durch das Mantelrohr, und
Fig. 2 eine Schnittansicht durch die Kontaktstelle zwischen Mantelrohr und
Elektrode, wobei die Verbindungsschicht ebenfalls dargestellt ist.
Bevorzugte Ausführung der Erfindung Die Figur 1 zeigt eine Schnittansicht durch ein Mantelrohr 1 eines Katalysators, insbesondere eines elektrisch beheizbaren Katalysators. Das Mantelrohr 1 bildet ein Gehäuse für den im Inneren ausgebildeten Wabenkörper 2, der aus einer Mehrzahl von Metallfolien gebildet ist, die zu Lagenstapeln 3 aufeinandergestapelt sind.
Das Mantelrohr 1 weist eine Öffnung 4 auf, durch welche eine Elektrode 5 geführt ist. Im Ausführungsbeispiel der Figur 1 weist die Elektrode 5 einen stielartigen Fortsatz auf, der durch die Öffnung 4 aus dem Inneren des Mantelrohres 1 nach außen ragt, und einen plattenförmigen Abschnitt, der im Inneren des Mantelrohres 1 angeordnet ist. Die Elektrode 5 ist T-förmig ausgebildet.
Das Mantelrohr 1 weist in der direkten Umgebung der Öffnung 4 eine Ausbuchtung 6 auf, in welcher der plattenförmige Abschnitt der Elektrode 5 aufgenommen ist. Die nach innen gerichtete Fläche des plattenförmigen Abschnitts der Elektrode 5 liegt in einer Flucht mit der Innenwandung des Mantelrohres 1. Je nach Radius des Man telrohres 1 kann der plattenförmige Abschnitt auch vorgeformt sein und an die Geometrie der Innenseite des Mantelrohre 1 angepasst sein. So kann die Elektrode 5 beispielsweise auch an einen ovalen oder einen anderweitigen Querschnitt des Mantelrohres 1 angepasst sein.
Die Ausbuchtung 6 führt dazu, dass eine um den im Inneren ausgebildete Wa benkörper 2 gelegte Hüllkurve einen stetigen Verlauf aufweisen kann und keine Einkerbung oder sonstige Aussparung im Bereich der Elektrode 5 aufweisen muss. Dies ist insbesondere vorteilhaft, da die Wabenkörper regelmäßig durch das Auf wickeln der Lagenstapeln um einen Dorn oder mehrere Dorne erzeugt werden.
Die Elektrode 5 ist mit dem Mantelrohr 1 mechanisch und temperaturresistent über eine Verbindungsschicht 7 verbunden. Die Verbindungsschicht 7 weist einen elektrisch isolierenden Bereich 8 und einen Haftbereich 9 auf. Der elektrisch iso lierende Bereich 8 ist auf der dem Mantelrohr 1 zugewandten Seite angeordnet und der Haftbereich auf der der Elektrode 5 zugewandten Seite der Verbindungsschicht 7.
Auf den Haftbereich 9 kann ein Lot 10 aufgetragen werden, welches zur späteren Anbindung der Elektrode 5 an den Mantel 1 dient. Die Verbindungsschicht 7 kann aus zwei einzelnen und zusammengefügten Schichten gebildet sein. Alternativ kann auch eine Schicht ausgebildet sein, die in den beiden Randbereichen jeweils unterschiedlich ausgebildet ist. So kann beispielsweise die Konzentration von zu gegebenen Elementen unterschiedlich stark sein, um an einem Randbereich eine elektrisch isolierende Wirkung zu erzielen. Am gegenüberliegenden Randbereich kann ein ausreichend hoher metallischer Anteil ausgebildet sein, der die Anbindung an die Elektrode 5 mittels Löten erlaubt. Bevorzugte Materialien sind in den Un teransprüchen beschrieben.
Das Ausführungsbeispiel der Figuren 1 und 2 weist insbesondere keinen be- schränkenden Charakter auf und dient der Verdeutlichung des Erfindungsgedan kens.

Claims

Patentansprüche
1. Elektrisch beheizbarer Katalysator mit einem metallischen Wabenkörper (2), wobei der Wabenkörper (2) durch eine Mehrzahl aufgewickelter metallischer Folien gebildet ist und der Wabenkörper (2) in einem Mantelrohr (1) aufge nommen ist, wobei durch eine Öffnung (4) im Mantelrohr (1 ) eine Vorrichtung zur elektrischen Kontaktierung zumindest einzelner Folien in das Mantelrohr
(1) geführt ist, d a d u r c h g e k e n n z e i c h n e t , dass die Vorrichtung durch eine Elektrode (5) gebildet ist, welche zur Innenseite des Mantelrohrs (1) durch eine Verbindungsschicht (7) elektrisch isoliert ist und mechanisch mit dem Mantelrohr (1) verbunden ist.
2. Elektrisch beheizbarer Katalysator nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass eine Mehrzahl der den Wabenkörper
(2) bildenden metallischen Folien mit der Elektrode (5) elektrisch leitend verbunden ist.
3. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden An sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Ver bindungsschicht (7) durch eine Isolierschicht (8) und eine Flaftschicht (9) gebildet ist, wobei die Isolierschicht (8) dem Mantelrohr (1 ) zugewandt ist und die Flaftschicht (9) der Elektrode (5) zugewandt ist.
4. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden An sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Iso lierschicht (8) eine elektrisch isolierende Wirkung hat und aus einem der Stoffe AI2O3, Zr02, MgO, PO2, Ce02, einer mit Yttrium dotierten Keramik, einer mit Silizium dotierten Keramik, Cordierit, Mullit oder einem Gemisch der aufgezählten Stoffe gebildet ist.
5. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden An sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Flaft schicht (9) eine metallische Schicht ist und aus einem der Stoffe Cu, Ni, Co, Ag, Pd oder deren Legierungen wie beispielsweise AgPd oder CuNi gebildet ist.
6. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden An sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Iso lierschicht (8) und die Haftschicht (9) ähnliche, bevorzugt gleiche Wär meausdehnungskoeffizienten haben.
7. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden An sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Elektrode (5) T-förmig ausgebildet ist und der im Inneren des Mantelrohrs (1 ) angeordnete Abschnitt eine größere Querschnittsfläche als die Öffnung (4) aufweist, durch die sie geführt ist.
8. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden An sprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Mantelrohr (1 ) eine radial nach außen gerichtete Ausbuchtung (6) im Bereich der Öffnung (4) aufweist, wobei der ins Innere des Mantelrohrs (1) geführte Abschnitt der Elektrode (5) in einer von dieser Ausbuchtung (6) ausgebil deten Tasche aufgenommen ist.
9. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden An- Sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Öff nung (4) im Mantelrohr (1) durch die stoffschlüssige Verbindung zwischen der Elektrode (5), der Isolierschicht (8) und der Haftschicht (9) gasdicht verschlossen ist.
10. Elektrisch beheizbarer Katalysator nach einem der vorhergehenden An sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Elektrode (5) einteilig ausgeführt ist.
EP20754216.8A 2019-08-13 2020-08-06 Elektrisch beheizbarer katalysator Withdrawn EP4013955A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019212133.0A DE102019212133B4 (de) 2019-08-13 2019-08-13 Elektrisch beheizbarer Katalysator
PCT/EP2020/072150 WO2021028314A1 (de) 2019-08-13 2020-08-06 Elektrisch beheizbarer katalysator

Publications (1)

Publication Number Publication Date
EP4013955A1 true EP4013955A1 (de) 2022-06-22

Family

ID=72046880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20754216.8A Withdrawn EP4013955A1 (de) 2019-08-13 2020-08-06 Elektrisch beheizbarer katalysator

Country Status (7)

Country Link
US (1) US20220161190A1 (de)
EP (1) EP4013955A1 (de)
JP (1) JP2022542929A (de)
KR (1) KR20220019054A (de)
CN (1) CN114174648A (de)
DE (1) DE102019212133B4 (de)
WO (1) WO2021028314A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456919A3 (en) * 1990-04-16 1992-01-22 W.R. Grace & Co.-Conn. Catalytic converter system
US5526462A (en) * 1993-03-22 1996-06-11 Ngk Insulators, Ltd. Honeycomb heater with mounting means preventing axial-displacement and absorbing radial displacement
US5571485A (en) * 1994-07-29 1996-11-05 W. R. Grace & Co.-Conn. Combined electrically heatable converter body
JPH08326526A (ja) * 1995-05-30 1996-12-10 Nippon Steel Corp 電気加熱式金属触媒担体
DE19533088A1 (de) * 1995-09-07 1997-03-13 Emitec Emissionstechnologie Elektrische isolierende Durchführung mit einer Elektrokorrosionsschutzeinrichtung
DE19921609A1 (de) * 1999-05-10 2000-11-16 Emitec Emissionstechnologie Wabenkörperanordnung mit verschiedenen Abschnitten in einem Mantelrohr
DE102012007020A1 (de) * 2012-04-05 2013-10-10 Emitec Gesellschaft Für Emissionstechnologie Mbh Elektrischer Anschluss von mehreren Blechlagen eines elektrisch beheizbaren Wabenkörpers und zugehöriger Wabenkörper
DE102017216470A1 (de) * 2017-09-18 2019-03-21 Continental Automotive Gmbh Elektrisch beheizbare Heizscheibe für die Abgasnachbehandlung

Also Published As

Publication number Publication date
DE102019212133A1 (de) 2021-02-18
US20220161190A1 (en) 2022-05-26
JP2022542929A (ja) 2022-10-07
KR20220019054A (ko) 2022-02-15
WO2021028314A1 (de) 2021-02-18
DE102019212133B4 (de) 2021-05-27
CN114174648A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
EP2802752B1 (de) Elektrisch beheizbarer wabenkörper mit mehreren mit einem anschlussstift elektrisch verbundenen blechlagen
EP3212907B1 (de) Wabenkörper mit elektrischer heizvorrichtung
EP0605479B1 (de) Abgaskatalysator
EP2836687B1 (de) Elektrischer anschluss von mehreren blechlagen eines elektrisch beheizbaren wabenkörpers und zugehöriger wabenkörper
EP3685025B1 (de) Elektrisch beheizbare heizscheibe für die abgasnachbehandlung
EP0929738B1 (de) Wabenkörper mit wärmeisolierung, vorzugsweise für einen abgaskatalysator
EP4023864A2 (de) Elektrische abgasheizeinheit
DE4131970A1 (de) Katalytischer konverter mit einem elektrischen widerstand als katalysatortraeger
EP3207229B1 (de) Tragstruktur, vorrichtung zur behandlung von abgasen und verfahren zu deren herstellung
EP3864262B1 (de) Vorrichtung zur abgasbehandlung
DE102011110664A1 (de) Vorrichtung zur Behandlung von Abgasen
EP4069952B1 (de) Stützstift für katalysator mit elektrischer heizscheibe
WO2022243381A1 (de) Vorrichtung zur erwärmung eines abgasstroms
EP3943720B1 (de) Elektrische heizvorrichtung
WO2021028314A1 (de) Elektrisch beheizbarer katalysator
DE102017203546B4 (de) Katalysator mit elektrisch beheizbarer Heizscheibe
WO1994017289A1 (de) Metallischer wabenkörper mit einer elektrisch leitfähigen struktur
DE102022206145A1 (de) Vorrichtung zur Erwärmung von in einer Abgasleitung strömbaren Abgas
WO2022069119A1 (de) Elektrisch beheizbarer katalysator
EP3349226B1 (de) Transformatorspule
EP3933946A1 (de) Verfahren zur herstellung eines thermoelektrischen moduls und thermoelektrisches modul als pressverband
WO2022069490A1 (de) Flüssigkeitsgekühlter bremswiderstand mit turbulator
DE102016214489A1 (de) Metallische Folie mit aufgebrachtem flächigem elektrischem Leiter und unter Verwendung der Folie hergestellter Wabenkörper

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221005