WO2022068690A1 - 电池包及电动工具系统和充电系统 - Google Patents

电池包及电动工具系统和充电系统 Download PDF

Info

Publication number
WO2022068690A1
WO2022068690A1 PCT/CN2021/120244 CN2021120244W WO2022068690A1 WO 2022068690 A1 WO2022068690 A1 WO 2022068690A1 CN 2021120244 W CN2021120244 W CN 2021120244W WO 2022068690 A1 WO2022068690 A1 WO 2022068690A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
cell
tool
rechargeable
interface
Prior art date
Application number
PCT/CN2021/120244
Other languages
English (en)
French (fr)
Inventor
杨东
董志军
胡桂伍
杨德中
徐天啸
王槐树
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Priority to CA3156090A priority Critical patent/CA3156090A1/en
Priority to EP21863088.7A priority patent/EP4012828A4/en
Priority to AU2021338586A priority patent/AU2021338586B2/en
Priority to US17/689,695 priority patent/US11450896B2/en
Publication of WO2022068690A1 publication Critical patent/WO2022068690A1/zh
Priority to US17/886,056 priority patent/US20220384860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/267Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders having means for adapting to batteries or cells of different types or different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, for example, to a power tool system and a charging system.
  • the battery packs used to supply power to electric tools mostly use cylindrical lithium cells, which are connected in series and parallel to ensure sufficient power output to improve the battery life of the power tool.
  • the general cylindrical lithium-ion battery generally includes a battery cell, that is, a battery cell formed by winding a positive electrode sheet, a negative electrode sheet and a separator, an electrolyte, a battery case, an upper and lower insulating gasket, and a cap, which are sealed and prepared.
  • a battery cell that is, a battery cell formed by winding a positive electrode sheet, a negative electrode sheet and a separator, an electrolyte, a battery case, an upper and lower insulating gasket, and a cap, which are sealed and prepared.
  • This type of battery is also accompanied by the use of power tools in the process of charging and discharging, resulting in a series of unfavorable factors that affect the service life of the battery.
  • the unavoidable vibration and shaking of the power tool will cause the internal lithium-ion battery to continuously impact the external force such as vibration and shaking at the same time.
  • the exposed tabs of the negative electrode and the solder joints at the bottom of the steel shell are more likely to
  • the present application provides a battery pack with better anti-drop and shock absorption effect.
  • a battery pack comprising: a casing with a first material; a battery core assembly, arranged in the casing; the battery core assembly comprising: a plurality of non-cylindrical battery core units; the battery core unit comprising a battery core
  • the positive electrode of the cell and the negative electrode of the cell unit; the cell supporter with the second material is at least used to support the cell assembly; wherein, the cell supporter is at least arranged at both ends of the cell assembly, at least partially
  • the cell support encapsulates the cell unit positive electrode and the cell unit negative electrode; the first material is different from the second material.
  • the cell support member includes a first support member and a second support member; the first support member is located on the front end surface of the battery core assembly; the second support member is located on the front end surface opposite rear faces.
  • the cell support member is arranged around the front end surface, rear end surface, left side, right side and lower bottom surface of the cell assembly; the cell support member forms an upper opening accommodating space to accommodate the Cell components.
  • the cell assembly includes: a positive terminal of the cell assembly, which is connected to the positive electrode of at least one of the cell units; a negative terminal of the cell assembly, which is connected to the negative electrode of at least one of the cell units;
  • the positive terminal of the battery core assembly is connected to the positive electrode of the battery core unit;
  • the negative electrode lead-out sheet connects the negative electrode terminal of the battery core component to the negative electrode of the battery core unit;
  • the battery core support member encapsulates the positive electrode of the battery core unit , the negative electrode of the battery cell unit, the positive electrode lead-out sheet and the negative electrode lead-out sheet.
  • the battery pack further includes: a buffer layer, the buffer layer is disposed between the adjacent battery cells; the buffer layer is composed of the second material.
  • the first material is a thermoplastic material
  • the second material is a thermosetting material
  • the cell supports are formed on both ends of the cell assembly by injection molding.
  • the positive electrode of the cell unit and the negative electrode of the cell unit are located on the same side.
  • the discharge current of the battery pack is greater than or equal to 80A.
  • the value range of the energy density (energy/mass of the battery pack) of the cell assembly is greater than 200Wh/kg.
  • a battery pack comprising: a casing with a first material; a battery core assembly, arranged in the casing; the battery core assembly comprising: a plurality of non-cylindrical battery core units; the battery core unit comprising a battery core
  • the positive electrode of the cell and the negative electrode of the cell unit; the cell supporter with the second material is at least used to support the cell assembly; wherein, the cell supporter is at least arranged at both ends of the cell assembly, at least partially
  • the cell supporter encapsulates the positive electrode of the cell unit and the negative electrode of the cell unit; the hardness of the first material is different from the hardness of the second material.
  • the cell support member includes a first support member and a second support member
  • the first support member is located on the front end surface of the battery core assembly; the second support member is located on the rear end surface of the battery core assembly; the front end surface and the rear end surface are opposite to each other.
  • the cell support member is arranged around the front end surface, rear end surface, left side, right side and lower bottom surface of the cell assembly; the cell support member forms an upper opening accommodating space to accommodate the Cell components.
  • the cell assembly includes: a positive terminal of the cell assembly, which is connected to the positive electrode of at least one of the cell units; a negative terminal of the cell assembly, which is connected to the negative electrode of at least one of the cell units;
  • the positive terminal of the battery core assembly is connected to the positive electrode of the battery core unit;
  • the negative electrode lead-out sheet connects the negative electrode terminal of the battery core component to the negative electrode of the battery core unit;
  • the battery core support member encapsulates the positive electrode of the battery core unit , the negative electrode of the battery cell unit, the positive electrode lead-out sheet and the negative electrode lead-out sheet.
  • the battery pack further includes: a buffer layer, the buffer layer is disposed between the adjacent battery cells; the buffer layer is composed of the second material.
  • the second material is an insulating material.
  • the cell supports are formed on both ends of the cell assembly by injection molding.
  • the positive electrode of the cell unit and the negative electrode of the cell unit are located on the same side.
  • the discharge current of the battery pack is greater than or equal to 80A.
  • the value range of the energy density (energy/mass of the battery pack) of the cell assembly is greater than 200Wh/kg.
  • the anti-vibration and anti-impact performance of the battery pack can be improved, and the reliability and service life of the battery can be significantly improved.
  • a power tool system includes: a power tool with a tool interface and a motor; a rechargeable battery pack with a battery pack interface and a battery cell assembly; a first rechargeable battery pack including a plurality of first rechargeable cells, the first rechargeable battery pack A rechargeable battery cell is cylindrical; a second rechargeable battery pack includes a plurality of second rechargeable battery cells that are different in shape from the first rechargeable battery cell; the power tool can use the first rechargeable battery
  • the first rechargeable battery pack has a first interface and a first electrical characteristic that can be adapted to the tool interface, and the second rechargeable battery pack has a a second interface adapted to the tool interface, the first interface and the second interface have substantially the same interface shape, and the internal resistance of the second rechargeable battery is smaller than that of the first rechargeable battery the internal resistance.
  • the second rechargeable battery pack has a second electrical characteristic that is different from the first electrical characteristic of the first rechargeable battery pack.
  • the second electrical characteristic includes at least one of the following electrical parameters: a discharge current of the second rechargeable battery pack or a full-charge endurance capability.
  • the power tool includes: a tool identification module for identifying one of a first rechargeable battery pack or a second rechargeable pack connected to the tool interface; a tool control module, further configured to: Receive the identification signal of the tool identification module; when the tool interface is connected to the first rechargeable battery pack, control the first rechargeable battery pack to discharge with a first discharge current; connect the tool interface to the first rechargeable battery pack When the second rechargeable battery pack is controlled, the second rechargeable battery pack is controlled to discharge at a second discharge current not greater than the first discharge current.
  • the power tool includes: a tool identification module for identifying one of a first rechargeable battery pack or a second rechargeable pack connected to the tool interface; a tool control module configured to: receive The identification signal of the tool identification module; when the tool interface is connected to the first rechargeable battery pack, the power of the first rechargeable battery pack is controlled to be output at a first voltage; when the tool interface is connected When the second rechargeable battery pack is used, the electric energy of the second rechargeable battery pack is controlled to be output at a second voltage; the second voltage is greater than or equal to the first voltage.
  • it further includes: a first discharge module, when the first battery pack is used as the power source of the power tool, the first discharge module works so that the power tool has a first output performance; a second A discharge module, when the second battery pack is used as the power source of the electric power tool, the second discharge module works so that the electric power tool has a second output performance different from the first output performance.
  • the power tool further includes: a power limiting module connected between the tool interface and the motor; the power limiting module works when the tool interface is connected to the second rechargeable battery pack to limit the output current of the second rechargeable battery pack.
  • the tool identification module includes a sensor.
  • the second rechargeable battery pack includes: a power limiting module connected in series with at least one of the first rechargeable battery cells, the power limiting module is configured to limit the power consumption of the second rechargeable battery pack. One of output power or current.
  • the power limiting module includes a semiconductor device.
  • the second rechargeable battery pack includes a plurality of sheet-shaped cells, and the plurality of sheet-shaped cells are arranged in layers.
  • the value range of the energy density of the second rechargeable battery pack is greater than 200Wh/kg.
  • the second rechargeable battery has a discharge capacity of at least 100A.
  • the second battery pack is discharged at a rate of 10C, and the temperature rise is less than 45°C.
  • a rechargeable battery pack comprising: a battery pack interface for connecting an electric tool; a battery cell assembly, comprising a plurality of series-connected rechargeable battery cells, the rechargeable battery cells are non-cylindrical; a power limiting module, It is connected in series with the at least one rechargeable battery cell to limit one of the output current or output power of the battery pack according to different electric tools connected to the battery pack interface.
  • the different power tools include a first power tool and a second power tool, the first power tool has a first output performance, and the second power tool has a second power tool different from the first output performance. output performance.
  • the power limiting module is adapted to increase the internal resistance of the rechargeable battery pack to limit the battery pack when the rechargeable battery pack is connected to and powered by the first power tool one of the output current or output power.
  • a power source identification module for identifying one of the first power tool or the second power tool connected to the battery pack interface; a power source control module configured to: receive an identification signal from the power source identification module ; when the battery pack interface is connected to the first electric tool, control the power limiting module to limit the rechargeable battery pack to discharge with a first discharge current; connect the second electric power tool to the battery pack interface When the tool is used, the rechargeable battery pack is controlled to discharge at a second discharge current greater than the first discharge current.
  • the rechargeable battery pack includes a plurality of sheet-shaped cells, and the plurality of sheet-shaped cells are arranged in layers.
  • the value range of the energy density of the rechargeable battery pack is greater than 200Wh/kg.
  • a power tool comprising: a motor; a tool interface for connecting to different rechargeable battery packs; a tool control module, connected at least with the tool interface, for connecting the rechargeable battery according to the tool interface package to control the output performance of the power tool.
  • the different rechargeable battery packs include a first rechargeable battery pack and a second rechargeable battery pack;
  • the first rechargeable battery pack includes a plurality of first rechargeable cells, the first rechargeable battery packs The rechargeable cells are cylindrical;
  • the second rechargeable battery pack includes a plurality of second rechargeable cells different from the first rechargeable cells; the internal resistance of the second rechargeable cells is smaller than the The internal resistance of the first rechargeable cell.
  • a tool identification module for identifying one of a first rechargeable battery pack or a second rechargeable pack connected to the tool interface
  • a tool control module configured to: receive the tool identification The identification signal of the module; when the tool interface is connected to the first rechargeable battery pack, so that the power tool has the first output performance; when the tool interface is connected to the second rechargeable battery pack , so that the power tool has a second output performance different from the first output performance.
  • a tool identification module for identifying one of a first rechargeable battery pack or a second rechargeable pack connected to the tool interface; a tool control module configured to: receive the tool identification The identification signal of the module; when the tool interface is connected to the first rechargeable battery pack, the first rechargeable battery pack is controlled to discharge with a first discharge current; when the tool interface is connected to the second rechargeable battery pack When charging the battery pack, the second rechargeable battery pack is controlled to discharge at a second discharge current not greater than the first discharge current.
  • a tool identification module for identifying one of a first rechargeable battery pack or a second rechargeable pack connected to the tool interface; a tool control module configured to: receive the tool identification The identification signal of the module; when the tool interface is connected to the first rechargeable battery pack, the power of the first rechargeable battery pack is controlled to be output at a first voltage; when the tool interface is connected to the second rechargeable battery pack When a rechargeable battery pack is used, the electric energy of the second rechargeable battery pack is controlled to be output at a second voltage; the second voltage is greater than or equal to the first voltage.
  • it further includes: a power limiting module connected between the tool interface and the motor; when the tool interface is connected to the second rechargeable battery pack, the power limiting module works to limit the The output current of the second rechargeable battery pack.
  • the compatibility of the battery pack can be improved, thereby expanding the usage scenarios of the battery pack.
  • a charging system includes: a first rechargeable battery pack, including a plurality of first battery cells, the first battery cells are cylindrical; a second rechargeable battery pack, including a plurality of first rechargeable battery cells in the shape a different second rechargeable battery cell; a charger for charging the first rechargeable battery pack or the second rechargeable battery pack; the second rechargeable battery pack having the same function as the first rechargeable battery pack Different charging performance of battery packs.
  • the charger includes: a charging interface; the first rechargeable battery pack has a first interface that can be adapted to the charging interface, and the second battery pack has a charging interface that can be adapted the second interface, the first interface and the second interface have substantially the same interface shape.
  • the charging performance includes at least one of the following electrical parameters: at least one of charging current and charging voltage.
  • the first rechargeable battery pack has a first internal resistance
  • the second rechargeable battery pack has a second internal resistance
  • the second internal resistance is smaller than the first internal resistance
  • the charger includes: a charging identification module for identifying one of a first rechargeable battery pack or a second rechargeable battery pack connected to the charging interface; a charging control module, configured as: Receive the identification signal of the charging identification module; when the charger is connected to the first rechargeable battery pack, control the charger to charge with a first charging current; when the charger is connected to the second rechargeable battery pack When the battery pack is rechargeable, the charger is controlled to charge with a second charging current; wherein the second charging current is greater than the first charging current.
  • the charger further includes: a current control module connected between the charging interface and the power supply module; when the charging interface is connected to the first rechargeable battery pack, the current control module works to limit the output current of the charger.
  • the charging current of the second rechargeable battery pack is greater than or equal to 80A.
  • a charging system includes: a first rechargeable battery pack, including a plurality of first battery cells, the first battery cells are cylindrical; a second rechargeable battery pack, including a plurality of first rechargeable battery cells in the shape a different second rechargeable battery; a charger for charging the first rechargeable battery pack and/or the second rechargeable battery pack; the first rechargeable battery pack is connected to the charger Charge with a first current; the second rechargeable battery pack is connected to the charger to charge with a second current.
  • a rechargeable battery pack comprising: a battery pack interface for connecting to a charger; a battery cell group, comprising a plurality of series-connected rechargeable battery cells, the rechargeable battery cells are non-cylindrical; a current control module, It is connected in series with the at least one rechargeable battery cell to limit the charging current of the battery cell group according to different chargers connected to the battery pack interface.
  • the different chargers include a first charger and a second charger, the first charger has a first charging performance, and the second charger has a second charging performance different from the first charging performance charging performance.
  • the present application adopts the above technical solutions, which can improve the charging compatibility of the charging system and the battery pack.
  • Figure 1 is a structural diagram of a battery pack
  • FIG. 2 is a structural diagram of a battery pack as one of the embodiments
  • FIG. 3 is a schematic view of the internal structure of the battery pack shown in FIG. 1 with the casing removed;
  • FIG. 4 is a schematic view of the second bracket of the battery pack being coupled to the first bracket
  • FIG. 5 is a schematic structural diagram of another angle of the second bracket and the circuit board shown in FIG. 4;
  • FIG. 6 is a schematic diagram of a second bracket and a circuit board as one of the embodiments.
  • FIG. 7 is a schematic structural diagram of the battery pack shown in FIG. 1 with another angle removed from the casing;
  • FIG. 8 is a schematic diagram of the installation of a second bracket with the first bracket removed from the battery pack shown in FIG. 3;
  • FIG. 9 is a schematic structural diagram of the battery pack shown in FIG. 3 with the first support removed;
  • FIG. 10 is a top view of the positional relationship between a current sensor and a positive electrode connection piece or a negative electrode connection piece as one of the embodiments;
  • FIG. 11 is a side view of the positional relationship between a current sensor and a positive electrode connection piece or a negative electrode connection piece as one of the embodiments;
  • FIG. 12 is a schematic projection view of the positive electrode connection piece, the negative electrode connection piece and the circuit board in the up-down direction as one of the embodiments;
  • FIG. 13 is a structural diagram of a battery pack as one of the embodiments.
  • FIG. 14 is a schematic structural diagram of a battery pack and a power tool using the battery pack
  • Figure 15 is a schematic structural diagram of the power tool in Figure 14;
  • Figure 16 is a schematic diagram of the structure of the power tool system
  • FIG. 17 is a schematic structural diagram of a first rechargeable battery pack in the power tool system of FIG. 16;
  • FIG. 18 is a schematic structural diagram of a second rechargeable battery pack in the power tool system of FIG. 16;
  • 19 is a block diagram of a first power tool and a second power tool system
  • 20 is a circuit block diagram of a first power tool and a rechargeable battery pack as one of the embodiments;
  • 21 is a circuit block diagram of a second power tool and a rechargeable battery pack as one of the embodiments;
  • 22 is a circuit block diagram of a power tool and a rechargeable battery pack as one of the embodiments;
  • FIG. 23 is a circuit block diagram of a power tool and another rechargeable battery pack as one of the embodiments;
  • 24 is a circuit block diagram of a power tool and a rechargeable battery pack as another embodiment
  • 25 is a schematic structural diagram of a charging system
  • 26 is a circuit block diagram of a rechargeable battery pack and charger as an embodiment
  • FIG. 27 is a circuit block diagram of a rechargeable battery pack and a charger as another embodiment
  • FIG. 28 is a circuit block diagram of a rechargeable battery pack and a charger as yet another embodiment.
  • the battery pack 100 includes a casing 10 , a cell assembly 11 , and a battery pack interface 12 .
  • the voltage of the battery pack 100 is typically 10.8V, 24V, 36V, 48V, 56V or 80V.
  • the front side, the rear side, the left side, the right side, the upper side and the lower side as shown in FIG. 1 are also defined.
  • the housing 10 includes an upper housing 101 and a lower housing 102 assembled at an interface to form an inner cavity.
  • the housing 10 is composed of a first material, specifically, the first material is a thermoplastic material, such as polyethylene plastic, polyvinyl chloride plastic, and the like.
  • the casing 10 is assembled by the upper casing 101 and the lower casing 102 to form an inner cavity to accommodate the cell assembly 11 .
  • the housing 10 is at least partially formed with a battery pack coupling portion 13 for connecting the battery pack 100 to the power tool, and the battery pack 100 can be connected to the power tool in the first direction.
  • a battery pack coupling portion 13 is formed on the upper surface of the housing 10, and the battery pack coupling portion 13 can be matched with the tool fitting portion of the power tool, so that the battery pack 100 can be detachably attached to the power tool along the installation direction.
  • the battery pack joint 13 is provided with a pair of guide rails.
  • the cell assembly 11 is arranged in the inner cavity formed by the casing 10 .
  • the cell assembly 11 includes a plurality of non-cylindrical cell units 111 , and the plurality of cell units 111 are connected in series, in parallel, or combined in series and in parallel to form the cell assembly 11 .
  • the voltage of a single cell unit 111 is 4.2V.
  • the cell assembly 11 further includes a positive terminal 112 of the cell assembly and a negative terminal 113 of the cell assembly. Wherein, the positive terminal 112 of the cell assembly is at least connected to the positive electrode of the cell unit; the negative terminal 113 of the cell assembly is at least connected to the negative electrode of the cell unit.
  • the positive terminal 112 of the cell assembly and the negative terminal 113 of the cell assembly are located on the same side of the battery pack 100 .
  • the positive electrode of the cell unit and the negative electrode of the cell unit are located on the same side of the battery pack 100 .
  • the positive electrode of the cell unit and the negative electrode of the cell unit are located on the front end surface of the battery pack 100
  • the positive electrode of the battery cell unit and the negative electrode of the battery cell unit are located on the rear side end surface of the battery pack 100 .
  • the cell unit 111 is in a flat bag-like structure, and a plurality of cell units 111 are sequentially stacked in an up-down direction.
  • the cell unit 111 can also be bent into an arc shape, such as a soft-pack battery pack.
  • the cell unit 111 further includes a cell shell, which is generally made of an aluminum-plastic film. It can be understood that the present application is not limited to the disclosed embodiments, and the structure of the cell is not limited herein.
  • the value range of the energy density (energy/mass of the battery pack) of the cell assembly 11 is greater than 150Wh/kg.
  • the value range of the energy density (energy/mass of the battery pack) of the cell assembly 11 is greater than 200Wh/kg.
  • the energy density (energy/mass of the battery pack) of the cell assembly 11 ranges from 150Wh/kg to 200Wh/kg.
  • the energy density (energy/mass of the battery pack) of the cell assembly 11 ranges from 200Wh/kg to 250Wh/kg.
  • the energy density (energy/mass of the battery pack) of the cell assembly 11 ranges from 250wh/kg to 300Wh/kg.
  • the energy density (energy/mass of the battery pack) of the cell assembly 11 ranges from 300wh/kg to 450Wh/kg.
  • the internal resistance of the cells of the battery pack 100 is less than or equal to 10 m ⁇ .
  • the internal resistance of the cells of the battery pack 100 is less than or equal to 6 m ⁇ .
  • the internal resistance of the cells of the battery pack 100 is less than or equal to 3 m ⁇ .
  • the discharge current of the battery pack 100 is greater than or equal to 80A.
  • the discharge current of the battery pack 100 is greater than or equal to 100A.
  • the discharge current of the battery pack 100 is greater than or equal to 80A.
  • the battery pack interface 12 is formed on an upper surface of the housing 10 and is at least electrically connected to the battery cell assembly 11 for establishing physical and electrical connection with the power tool.
  • the battery pack interface 12 includes a power positive interface, a power negative interface and a power communication interface.
  • the battery pack outputs power through the power positive interface and the power negative interface; the battery pack communicates with the attached power tool or charger through the power communication interface.
  • the housing is provided with six battery pack interfaces 12. It is understood that the housing 10 of the battery pack 100 may be provided with more or less battery pack interfaces 12 according to the electrical characteristics of the battery pack.
  • the battery pack interface 12 is also provided with a battery pack positive terminal 121 , a battery pack negative terminal 122 and a battery pack communication terminal 123 .
  • the positive terminal 121 of the battery pack is electrically connected to the positive terminal 112 of the cell assembly, which is located in the positive interface of the power supply; the negative terminal 122 of the battery pack is electrically connected to the negative terminal 113 of the cell assembly, which is located in the negative interface of the power supply.
  • the positive terminal 121 of the battery pack and the negative terminal 122 of the battery pack are configured to cooperate with the tool terminals of the power tool to output the electrical energy of the cell assembly 11 to the power tool. Specifically, the electrical energy of the cell assembly 11 passes through the positive terminal of the cell assembly 112.
  • the positive terminal 121 of the battery pack goes to the power tool, and then returns to the battery pack 11 through the negative terminal 122 of the battery pack and the negative terminal 113 of the battery pack. Therefore, the battery pack 11, the positive terminal 112 of the battery pack, and the positive terminal of the battery pack 121.
  • the negative terminal 122 of the battery pack, the negative terminal 113 of the cell assembly and the power tool form a current loop.
  • the battery pack communication terminal 123 which is located in the power communication interface, is used to communicate with the connected power tool or charger.
  • the positive terminal 121 , the negative terminal 122 and the communication terminal 123 of the battery pack respectively clamp the tool terminals with elastic force from both sides in the left and right directions, Therefore, the tool terminal of the power tool is guided by the battery pack interface 12 of the battery pack to be inserted into the battery pack positive terminal 121 and the battery pack negative terminal 122 during the installation of the battery pack to the power tool, so that the tool terminal is connected by the positive terminal and the negative terminal clamped, so that the electric power tool is electrically connected to the battery pack 100 .
  • the positive terminal 112 of the cell assembly is connected in series between the positive terminal of at least one cell unit and the positive terminal 121 of the battery pack; the negative terminal 113 of the cell assembly is connected in series between the negative terminal of at least one cell unit and the negative terminal 122 of the battery pack between.
  • the battery core assembly 11 further includes: a positive electrode lead-out piece 114 and a negative electrode lead-out piece 115, wherein the positive electrode lead-out piece 114 connects the positive terminal 112 of the battery core assembly with the positive electrode of the battery cell unit, and the negative electrode lead-out piece 115 connects the negative electrode terminal 113 of the battery core assembly and the battery cell unit.
  • the negative pole of the core unit is connected.
  • the positive electrode lead sheet 114 is a metal sheet with a certain width, which improves the heat dissipation effect of the positive electrode lead sheet 114 and reduces the use process.
  • the heat generated by the battery pack 100 improves the safety and reliability of the battery pack 100 and prolongs the service life of the battery pack 100 .
  • the width of the positive electrode lead-out sheet 114 is in the range of 5 mm to 40 mm, and the thickness of the positive electrode extraction sheet 114 is in the range of 0.3 mm to 1.5 mm.
  • the width of the positive electrode lead-out sheet 114 is in the range of 6mm to 35mm.
  • the negative electrode connection piece 115 of the battery pack 100 is a metal sheet with a certain width, so as to improve the heat dissipation effect of the negative electrode lead-out piece 115 , thereby reducing the heat accumulation of the battery pack 100 during use, and improving the battery pack 100 ’s heat dissipation effect. Safety and reliability also extend the service life of the battery pack 100 .
  • the width of the negative electrode lead-out sheet 115 is within the range of 5 mm to 40 mm, and the thickness of the negative electrode lead-out sheet 115 is within the range of 0.3 mm to 1.5 mm.
  • the width of the negative electrode lead-out sheet 115 is in the range of 6 mm to 35 mm.
  • the positive electrode lead-out sheet 114 and the negative electrode lead-out sheet 115 of the battery pack 100 may simultaneously use metal sheets having a certain width.
  • the positive terminal 112 of the cell assembly and the negative terminal 113 of the cell assembly are located on the same side of the battery pack 100 , and the plurality of cell units 111 included in the cell assembly 11 are connected in series, the positive electrode lead-out sheet 114 and the negative electrode are connected in series. The lengths of the lead-out pieces 115 are different.
  • the cell assembly 11 further includes a cell connecting piece 116 , and the cell connecting piece 116 is connected to the adjacent cell units 111 .
  • the cell connecting piece 116 is connected to the positive pole of one cell unit and the negative pole of another cell unit, and the cell assembly 11 includes a plurality of cell connecting pieces 116 to realize the series connection of each cell unit 111 .
  • the width of the battery cell connecting piece 116 is the same as the width of the positive electrode lead-out piece 114 and/or the width of the negative electrode lead-out piece 115, so as to improve the heat dissipation effect of the battery cell connecting piece 116, thereby reducing the heat dissipation of the battery pack 100 during use.
  • the cell assembly 11 includes at least a first cell and a second cell, and the first cell and the second cell are connected in series, wherein the negative electrode of the first cell is electrically connected to the negative electrode lead-out sheet 115 , the positive electrode of the second cell is electrically connected to the positive electrode lead-out sheet 114 .
  • the cell assembly 11 further includes at least one cell connecting piece 116 , which is connected to the positive electrode of the first cell and the negative electrode of the second cell, so as to realize the series connection of the first cell and the second cell.
  • the battery pack further includes a cover plate 14 , a circuit board 15 , a first bracket 16 and a second bracket 17 .
  • the cover plate 14 is connected to the lower case 102 of the battery pack, and forms an accommodation space with the lower case 102 to accommodate the cell assembly 11 .
  • the cover plate 14 and the lower case 102 of the battery pack are detachably connected by bolts to form an accommodating space for accommodating the cell assembly 11 .
  • the cover plate 14 and the upper casing 101 of the battery pack also form an accommodation space that can accommodate components such as the positive terminal 121 of the battery pack, the negative terminal 122 of the battery pack, and the communication terminal 123 of the battery pack.
  • the cover plate 14 has a flat plate-like structure.
  • the circuit board 15 is electrically connected with the cell assembly 11 and the battery pack interface 12 . Specifically, the circuit board 15 is connected in series between the cell assembly 11 and the battery pack interface 12 for collecting electrical signals related to the battery pack. In this embodiment, in some embodiments, the circuit board 15 is connected in series between the cell assembly 11 and the battery pack communication terminal 123 for transmitting the battery pack information to the electric motor attached to the battery pack through the battery pack communication terminal 123 on the tool.
  • the battery pack information includes: the discharge current of the battery pack, the temperature of the battery cell assembly 11 and/or the battery cell unit 111 , the voltage of the battery cell unit 111 , the internal resistance value of the battery cell unit 111 , and the like.
  • the first bracket 16 is located on the upper side of the lower casing 102, and is used for fixing the positive terminal 121 of the battery pack and the negative terminal 122 of the battery pack. Specifically, the first bracket 16 is located in the accommodating space formed by the cover plate 14 and the upper casing 101 of the battery pack, that is, the first bracket 16 is located on the upper side of the cover plate 14 . Therefore, the first bracket 16 is used to fix the positive terminal 121 and the negative terminal 122 of the battery pack at a preset position on the upper side of the cover plate 14 .
  • the first holder 16 includes a flat plate portion fixed to the upper surface of the cover plate 14 , and the battery pack positive terminal 121 and the battery pack negative terminal 122 are fixed to the flat plate portion in an exposed state.
  • the first bracket 16 further includes a positive terminal portion 161 and a negative terminal portion 162 .
  • the positive terminal portion 161 is used to accommodate the positive terminal 121 of the battery pack
  • the negative terminal portion 162 is used to accommodate the negative terminal 122 of the battery pack.
  • the positive terminal portion 161 and the negative terminal portion 162 are structures with at least one end opening along the battery pack installation direction, so that when the battery pack 100 is coupled to the power tool, the battery pack positive terminal 121 and the battery pack negative terminal 122 The tool terminal can be received so as to realize the electrical connection between the battery pack and the power tool, so as to output the electric energy of the battery pack 100 to the power tool.
  • the second bracket 17 is located on the upper side of the circuit board 15 to fix the circuit board 15 .
  • the second bracket 17 and the circuit board 15 are located on the upper side of the cover plate 14 , that is, the second bracket 17 and the circuit board 15 are located in the accommodating space formed by the cover plate 14 and the upper shell of the battery pack.
  • the second bracket 17 is also used for fixing the communication terminal 123 of the battery pack. Therefore, the second bracket 17 includes the communication terminal portion 171 for supporting the battery pack communication terminal 123 .
  • the second bracket 17 further includes a connecting portion 172 , and the connecting portion 172 is a square frame body that is detachably connected to the circuit board 15 , thereby enabling the second bracket 17 to be detachably connected to the circuit board 15 .
  • connection part 172 is formed with an open area to encapsulate the circuit board 15 , so, as shown in FIG. 5 , the circuit board 15 can be divided into two areas by the square frame of the connection part 172 , defining the area of the circuit board 15 inside the connection part 172 is the first area 151 , and the area of the circuit board 15 outside the connection portion 172 is the second area 152 . Therefore, in order to improve the waterproof performance of the battery pack, as many electronic components as possible are packaged in the first area 151 , the number of electronic components accommodated in the first area 151 is larger than that in the second area 152 . number of devices.
  • the setting of the connecting portion 172 is convenient to encapsulate the electronic components inside the connecting portion 172, that is, the electronic components in the first area 151 of the circuit board 15, in order to improve the waterproof performance of the circuit board 15, thereby improving the durability of the battery pack. reliability.
  • the circuit board 15 fails, in order to facilitate maintenance to prolong the life of the battery pack, thereby reducing the use cost of the battery pack, the circuit board 15 can be disassembled from the battery pack for repair. Therefore, the second bracket 17 is configured with the first bracket 17. A bracket 16 is detachably connected, so that the circuit board 15 and the first bracket 16 are detachably connected. When the circuit board 15 fails, the second bracket 17 is detached from the first bracket 16 with the circuit board 15 to separate the circuit board 15 from the battery pack and facilitate maintenance of the circuit board 15 .
  • the first bracket 16 further includes a guide portion 163 for guiding the second bracket 17 to be coupled to the first bracket 16 in the second direction.
  • the positive terminal portion 161 and the negative terminal portion 162 of the first bracket 16 are located on both sides of the guide portion 163 .
  • a strip shape extending in the second direction is formed on the left and right sides of the guide portion 163 , and is erected at a right angle with respect to the cover plate 14 .
  • the strip-shaped space on the left and right sides of the guide portion 163 is formed to fit with the communication terminal portion 171 of the second bracket 17 .
  • the communication terminal portion 171 is slidably coupled to the first The bracket 16 and the guide portion 163 can accommodate the communication terminal portion 171 .
  • the positive terminal portion 161 and the negative terminal portion 162 of the first bracket 16 are arranged adjacent to each other, and the guide portion 163 is arranged adjacent to the positive terminal portion 161 or the negative terminal portion 162.
  • the second bracket 17 The position where the communication terminal portion 171 is provided is adapted to the guide portion 163 so that when the second bracket 17 is coupled to the first bracket 16 , the guide portion 163 can be fitted into the communication terminal portion 171 .
  • the first bracket 16 further includes a base 164 , which is a component for securing the first bracket 16 to a predetermined position of the cover plate 14 .
  • the base 164 forms an accommodating space between the first bracket 16 and the cover plate 14 to accommodate part of the circuit board 15 , which makes the overall structure of the first bracket 16 , the second bracket 17 and the circuit board 15 more compact and reduces the size of the battery pack .
  • the cover plate 14 is also provided with a plurality of limiting parts to facilitate the guide of the second bracket 17 to be combined with the first bracket 16 in the second direction, and to make the arrangement of the circuit board 15 more stable and improve the shock resistance of the battery pack. Specifically, referring to FIG.
  • the cover plate 14 is further provided with a first limiting portion 141 , a second limiting portion 142 and a third limiting portion 143 .
  • the first limiting portion 141 and the second limiting portion 142 are located on the left and right sides of the circuit board 15 to assist the guide portion 163 of the first bracket 16 to guide the second bracket 17 to be coupled to the first bracket 16 in the second direction.
  • the first limiting portion 141 and the second limiting portion 142 assist the guide portion 163 to combine the circuit board 15 with the accommodating space formed by the first bracket 16 and the cover plate 14 along the second direction, so that the second bracket 17 is coupled to the first bracket 16 and after the circuit board 15 is combined into the accommodating space between the first bracket 16 and the cover plate 14, the circuit board 15 can be set more stably and will not move left and right with the vibration of the battery pack.
  • the cover plate 14 is further provided with a third limiting portion 143 , and the third limiting portion 143 is located on the lower side of the circuit board 15 , so that the second bracket 17 is coupled to the first bracket 16 and the circuit board 15 is coupled to the first bracket 16 . With the accommodating space between the bracket 16 and the cover plate 14 , the circuit board 15 is set more stably, and will not move up and down with the vibration of the battery pack.
  • the second bracket 17 further includes a plurality of buckles 173 .
  • the second bracket 17 extends downward with a plurality of protrusions to form the buckles 173 , then A plurality of card slots 153 are provided on the circuit board 15 corresponding to the buckles 173 . Therefore, the second bracket 17 and the circuit board 15 are detachably connected through the cooperation of the clip 173 and the clip slot 153 .
  • the height of the buckle 173 is the same as the thickness of the circuit board 15; in other embodiments, the height of the buckle 173 is greater than the thickness of the circuit board 15, after the second bracket 17 and the circuit board 15 are connected, the The buckle 173 protrudes from the lower surface of the circuit board 15 and is in contact with the cover plate 14 . In this way, the buckle 173 is equivalent to the third limiting portion 143 , so that the second bracket 17 is combined with the first bracket 16 and the circuit board 15 is combined After reaching the accommodating space between the first bracket 16 and the cover plate 14 , the arrangement of the circuit board 15 is more stable, and will not move up and down with the vibration of the battery pack.
  • the battery pack further includes a detection sensor for detecting the working parameters of the cell assembly 11 or the cell unit 111 , and transmitting the working parameters to the circuit board 15 .
  • the number of detection sensors can be one or more.
  • the detection sensor may be a temperature sensor, the temperature sensor is disposed on the surface of the cell assembly 11 or the surface of the cell unit 111 , and the temperature sensor is connected to the circuit board 15 to transmit the temperature information of the cell assembly 11 to the circuit board 15.
  • the detection sensor may be a voltage sensor for detecting the voltage of the cell unit 111 , and the voltage sensor is connected to the circuit board 15 to transmit the temperature information of the cell assembly 11 to the circuit board 15 .
  • the battery pack includes a temperature sensor, a voltage sensor and a detection circuit board 18 , and the temperature sensor and the voltage sensor are integrated on the detection circuit board 18 .
  • the detection circuit board 18 is arranged on the positive electrode of the battery cell assembly 11 terminal and the side of the negative terminal of the cell assembly 11 .
  • the detection circuit board 18 can also be a flexible circuit board (FPC), and the flexible circuit board can be bent.
  • FPC flexible circuit board
  • the battery pack may also include other types of sensors, so that the circuit board 15 can collect information of the battery pack through various sensors and transmit it to the attached power tool or charger through the battery pack communication terminal 123 .
  • the battery pack 100 further includes a detection line output socket 181 .
  • the detection line output socket 181 is connected with a sensor connection line 182 , and the sensor connection line 182 is electrically connected to the circuit board 15 through the detection line output socket 181 .
  • the sensor connection line 182 is connected to the detection sensor on the detection circuit board 18 to output the sensor signal to the circuit board 15 .
  • the detection line output socket 181 and the circuit board 15 are detachably connected, so that the sensor connection line 182 and the circuit board 15 are detachably connected. Therefore, in some embodiments, the detection line output socket 181 and the second bracket 17 are detachably connected.
  • the sensor connection line 182 is connected to the detection line output socket 181 by a wire harness, and the second bracket 17 is provided with a socket adaptation structure, so that the detection line output socket 181 and the second bracket 17 are detachably connected.
  • the number of detection line output sockets 181 may be multiple, and a socket adaptation structure matching the number of detection line output sockets 181 is provided on the second bracket 17 .
  • the battery pack includes a first detection line output socket and a second detection line output socket.
  • the first detection line output socket and the second detection line output socket are located on both sides of the power display switch, and are respectively connected with
  • the number of sensor connection lines 182 can be determined according to the The number is set, and there is no limit here.
  • each sensor connection wire is arranged close to each other, when plugging and unplugging, the adjacent two sensor connection wires are easily contacted, causing the A short circuit will cause damage to the detection circuit board and even the battery cell. Therefore, a resistor is connected in series with each sensor connection line, which can limit the current when two adjacent sensor connection lines are short-circuited, thereby protecting the detection circuit board and the battery cell.
  • the battery pack further includes a connecting piece 19 .
  • the battery pack 100 includes a positive electrode connection piece 19A and a negative electrode connection piece 19B.
  • the positive connecting piece 19A is connected in series between the positive terminal 121 of the battery pack and the positive terminal 112 of the cell assembly
  • the negative connecting piece 19B is connected in series between the negative terminal 122 of the battery pack and the negative terminal 113 of the cell assembly.
  • the negative electrode connecting piece 19B is disposed on the lower side of the negative electrode terminal 122 of the battery pack, and part of the negative electrode connecting piece 19B is located between the circuit board 15 and the negative electrode terminal 122 of the battery pack.
  • the negative electrode connecting piece 19B is located in the accommodating space formed between the negative terminal 122 of the battery pack and the cover plate 14
  • the positive connecting piece 19A is located in the accommodating space formed between the positive terminal 121 of the battery pack and the cover plate 14 .
  • the battery pack 100 further includes a current sensor 193 disposed on the circuit board 15 at a position capable of sensing the current flowing through the positive connection piece 19A or the negative connection piece 19B to detect the input current or output current of the battery pack.
  • the current sensor 193 is disposed at a position close to one side of the positive electrode connection piece 19A or the negative electrode connection piece 19B and can sense the magnetic field of the positive electrode connection piece 19A or the negative electrode connection piece 19B.
  • the current sensor 193 is provided on the lower side of the positive electrode connection piece 19A or the negative electrode connection piece 19B, and the current sensor 193 and the positive electrode connection piece 19A or the negative electrode connection piece 19B are spaced apart in space.
  • the battery pack can also include a plurality of circuit boards accordingly, so that the current sensor 193 is close to the positive connection piece 19A or the negative electrode is connected. Edge setting of sheet 19B.
  • the current sensor 193 is disposed close to the outer surface of the positive connection piece 19A or the negative electrode connection piece 19B,
  • the current sensor 193 is close to the lower surface of the positive connecting piece 19A or the negative connecting piece 19B, so that it can sense the current flowing through the positive connecting piece 19A or the negative connecting piece 19B.
  • the circuit board 15 is formed with a third area 154 , and the projection surface of the third area 154 in the up-down direction and the positive connection piece 19A and/or the negative connection piece 19B are in the up-down direction.
  • the projection planes are coincident.
  • the current sensor 193 is arranged in the second area 152 on the circuit board 15 , optionally, the current sensor 193 is arranged in the third area 154 on the circuit board 15 , optionally, the current sensor 193 is arranged on the circuit board 15 .
  • the position of the third area 154 close to the center of the third area 154 is to receive more magnetic fields around the positive connection piece 19A or the negative connection piece 19B to more accurately induce the current flowing through the positive connection piece 19A or the negative connection piece 19B.
  • the positive electrode connection piece 19A includes a positive electrode current detection portion 191
  • the negative electrode connection piece 19B includes a negative electrode current detection portion 192
  • the positive electrode current detection portion 191 and the negative electrode current detection portion 192 are arranged in parallel with the circuit board 15
  • the current sensor 193 is arranged On the lower side of the positive electrode current detection unit 191 or the negative electrode current detection unit 192 .
  • the current sensor 193 adopts a chip type current sensor, which can perform current sampling in a non-contact manner, so as to realize that the discharge current or charging current of the battery pack 100 is directly output to the battery pack through the positive terminal 121 of the battery pack and the negative terminal 122 of the battery pack without passing through the circuit board 15 . electrical tools. In this way, a large amount of heat generated by the positive terminal 121 of the battery pack and the negative terminal 122 of the battery pack can be prevented from being conducted to the circuit board 15 , and the heat generation of the circuit board 15 is also reduced, thereby reducing the heat generation of the battery pack 100 and improving the safety of the circuit board 15 . , thereby improving the reliability of the battery pack 100 .
  • the positive connecting piece 19A and the negative connecting piece 19B are made of metal, and the current sensor 193 can be a Hall sensor.
  • the battery pack 100 also includes a cell support 117 for supporting the cell assembly 11, and the cell support 117 has a second material different from the first material, in some implementations
  • the second material is a thermosetting material
  • the first material of the housing 11 is a thermoplastic material.
  • the hardness of the second material is different from the hardness of the first material.
  • the hardness of the second material is smaller than the hardness of the first material, so that the casing with higher hardness can better protect the electrical equipment.
  • Core assembly 11 The cell support members 117 are disposed at least at both ends of the cell assembly 11 , and at least part of the cell support members 117 encapsulate the positive electrode and the negative electrode of the cell unit.
  • the second material may be an insulating material, which can insulate the positive electrode of the battery cell unit and the negative electrode of the battery cell unit when the battery cell supporter 117 encapsulates the positive electrode and the negative electrode of the battery cell unit, so as to prevent electric leakage.
  • the cell supporter 117 includes a first supporter and a second supporter, the first supporter is located on the front end surface of the cell assembly 11 , and the front end surface is a cell unit provided on the cell assembly 11 .
  • the second support member is located on the rear end surface of the cell assembly 11 , and the rear end surface and the front end surface are opposite to each other.
  • the cell support 117 wraps and fixes the positive electrode of the cell unit, the negative electrode of the cell unit, the positive electrode lead-out sheet 114 and the negative electrode lead-out sheet 115 . In this embodiment, as shown in FIG.
  • the cell support members 117 extend from the front and rear surfaces of the cell assembly 11 to the left, right and lower surfaces of the cell assembly 11 , surrounding the cell assembly
  • the front end surface, the rear end surface, the left side surface, the right side surface and the lower bottom surface of the 11 are arranged to form an upper opening accommodating space for accommodating the cell assembly 11 .
  • the cell assembly 11 is placed in a mold, and supports are formed on the front, rear, left, right and lower surfaces of the cell assembly 11 by means of glue injection, and then the cell assembly 11 is And the formed cell support 117 is taken out as a whole.
  • the cell support member 117 is used to support the cell assembly 11 to prevent relative displacement between the cell units 111 due to bumps or vibrations, so as to avoid extrusion or kink of the cells. Therefore, the cell support 117 can improve the anti-drop and shock absorption performance of the battery pack, thereby improving the reliability of the battery pack.
  • a buffer layer is disposed between the cell units 111 , and the buffer layer is made of the second material.
  • a buffer layer is provided between adjacent cell units 111 . Disposing the buffer layer between the battery cells 111 helps to improve the anti-drop and shock absorption performance of the battery pack, thereby improving the reliability of the battery pack.
  • the battery pack 100 of the present application is suitable for the power tool 200 , and the battery pack 100 is detachably mounted to the power tool 200 .
  • the power tool 200 is an impact wrench.
  • this embodiment refers to an impact wrench, it should be understood that this application is not limited to the disclosed embodiments, but may be applied to other types of power tools, such as lawn trimmers, pruning machines, hair dryers, chainsaws, etc. Tools; it can also be torque output tools such as electric drills and electric hammers, and can also be sawing tools such as electric circular saws, jig saws, and reciprocating saws, and can also be grinding tools such as angle grinders and sanders.
  • the power tool 200 includes a tool body 21 , a tool interface 22 and a tool fitting portion 23 provided on the tool body 21 .
  • the tool body 21 includes a motor 211 , an output shaft 212 and an impact mechanism 213 .
  • the output shaft 212 is driven by the motor 211
  • the impact mechanism 213 connects the motor 211 and the output shaft 212
  • the impact mechanism 213 is driven by the motor 211 and applies impact force to the output shaft 212 .
  • the power tool 200 also includes a handle 214 that can be grasped by a user to operate the power tool.
  • a trigger switch 215 is also provided on the handle 214 , and the trigger switch 215 is used to be driven by the user to start or stop the operation of the motor 211 .
  • the tool interface 22 is configured to adapt to the battery pack interface 12 to connect to the battery pack 100 to supply power to the power tool 200 .
  • the tool fitting portion 23 is detachably connected to the battery pack combining portion 13 .
  • the tool fitting portion 23 is provided at the lower end of the power tool handle 214 for detachable connection with the battery pack 100 .
  • the battery pack coupling portion 13 is provided with a pair of sliding portions having an inverted L-shaped cross-section.
  • the sliding portion can slide along the tool fitting portion 23 at the bottom of the handle to be mounted to the tool body 21 through the tool fitting portion 23 , and the tool fitting portion 23 may be provided as a pair of guide rails. Specifically, when the user slides the battery pack toward the front of the tool body 21, the battery pack 100 may be connected thereto.
  • the battery packs used for powering electric tools use cylindrical lithium cells, and multiple cylindrical lithium cells are connected in series and parallel to ensure sufficient power output and improve the battery life of the power tool.
  • the output voltage of a cylindrical lithium cell is about 3.6V
  • the maximum number of lithium cells connected in series in a battery pack with an output voltage of 18V is 5.
  • the present application provides a power tool system and a battery pack thereof, which can improve the compatibility of the battery pack and expand the usage scenarios of the battery pack. It will be described in detail next.
  • FIG. 16 shows a power tool system 300 including a power tool 310 and a first rechargeable battery pack 320 and a second rechargeable battery pack 330 that can be adapted to power the power tool.
  • the power tool 310 is an impact wrench.
  • this embodiment refers to impact wrenches, it should be understood that this application is not limited to the disclosed embodiments, but is applicable to other types of power tools, including but not limited to power drills, sanders, angle grinders, power wrenches, and Chainsaw etc.
  • the battery pack includes a casing, a cell assembly and a battery pack interface.
  • the battery cell assembly 332 is disposed in the accommodating cavity formed by the casing 331 , and the upper surface of the casing 331 is formed with a second battery pack interface 333 and a battery pack joint portion 334 .
  • the battery pack interface 333 includes a power positive interface, a power negative interface and a power communication interface. The battery pack provides power for the power tool through the power positive interface and the power negative interface; communicates with the power tool through the power communication interface.
  • the energy density (energy/mass of the battery pack) of the cell components 332 ranges from a value greater than 150Wh/kg.
  • the value range of the energy density (energy/mass of the battery pack) of the cell assembly 332 is greater than 200Wh/kg.
  • the energy density (energy/mass of the battery pack) of the cell assembly 332 ranges from 150Wh/kg to 200Wh/kg.
  • the energy density (energy/mass of the battery pack) of the cell assembly 332 ranges from 200Wh/kg to 250Wh/kg.
  • the energy density (energy/mass of the battery pack) of the cell assembly 332 ranges from 250wh/kg to 300wh/kg.
  • the energy density (energy/mass of the battery pack) of the cell assembly 332 ranges from 300wh/kg to 450wh/kg.
  • the battery pack composed of the above-mentioned flat-shaped cell assemblies 332 may be referred to as “second rechargeable battery pack 330" hereinafter, and the battery pack composed of cylindrical cell assemblies 332' used for electric tools is referred to below. It is "the first rechargeable battery pack 320" to distinguish the two.
  • the first rechargeable battery pack 320 is shown in FIG. 17 .
  • the first rechargeable battery pack 320 has a first battery pack interface 323 that can be adapted to the tool interface 311 of the power tool 310
  • the second rechargeable battery pack 330 has a first battery pack interface 323 that can be adapted to the tool interface 311 of the power tool 310
  • Two battery pack interfaces 333 .
  • the first battery pack interface 323 and the second battery pack interface 333 have substantially the same interface shape.
  • the first battery pack interface 323 and the second battery pack 333 are respectively disposed on the upper surfaces of the first battery pack 320 and the second battery pack 330, which at least include a power positive interface, a power negative interface and a power communication interface.
  • the second rechargeable battery pack 330 has different electrical characteristics.
  • the first rechargeable battery pack 320 has a first electrical characteristic suitable for the power tool 310
  • the second rechargeable battery pack 330 has a second electrical characteristic.
  • the second electrical characteristic includes at least one of the following electrical parameters: the internal resistance of the second rechargeable battery pack 330 , the discharge current of the second rechargeable battery pack 330 or the full battery life.
  • the second rechargeable battery pack 330 can output a similar or higher output voltage, but has a lower internal resistance. In this way, the second rechargeable battery pack 330 has lower voltage drop and heat accumulation and can withstand higher charging and discharging currents during charging and discharging. Therefore, the second rechargeable battery pack 330 can provide higher current and power to the power tool 310 .
  • the second rechargeable battery pack 330 shown in FIG. 18 has at least a discharge capacity of 100A, and when the second rechargeable battery pack 330 is discharged at a rate of 10C, the temperature rise is less than 45°C.
  • the internal resistance of the cell assembly 332 of the second rechargeable battery pack 330 is less than or equal to 10 m ⁇ .
  • the internal resistance of the cell assembly 332 of the second rechargeable battery pack 330 is less than or equal to 6 m ⁇ .
  • the internal resistance of the cell assembly 332 of the second rechargeable battery pack 330 is less than or equal to 3 m ⁇ .
  • the discharge current of the second rechargeable battery pack 330 shown in FIG. 18 is greater than or equal to 80A.
  • the discharge current of the second rechargeable battery pack 330 is greater than or equal to 100A.
  • the power tool 310 compatible with the first rechargeable battery pack 320 is the first power tool 3101
  • the power tool 310 that can be powered by the second rechargeable battery pack 330 is called the second power tool 3102 . Therefore, the first power tool 3101 is designed to operate using the first rechargeable battery pack 320 outputting low current and low power, and the first power tool 3101 has the first output performance.
  • the second power tool 3102 when the second power tool 3102 operates with the second rechargeable battery pack 330 attached, it can operate at greater current and power than the first power tool 3101 powered by the first rechargeable battery pack 320 , the second power tool 3102 has a second output performance different from the first output performance.
  • the first power tool 3101 when the first power tool 3101 is powered by the second rechargeable battery pack 330 , the first power tool 3101 may be damaged due to the excessive output capacity of the second rechargeable battery pack 330 .
  • the second rechargeable battery pack 330 will have a lower voltage drop across the battery pack than the first rechargeable battery pack 320 .
  • the first rechargeable battery pack 320 with a rated voltage of 18V can output an output voltage of 15V when the output current is 10C and the charge capacity is 50%
  • the second rechargeable battery pack 330 can output an output voltage of 15V at the same 10C discharge current when the charge capacity is 50%.
  • Output at least 17.5V output voltage.
  • the input power of the first power tool 3101 powered by the first rechargeable battery pack 320 is about 600W
  • the input power of the second power tool 3102 powered by the second rechargeable battery pack 330 is about 700W.
  • the high output power limits the application scenario of the second rechargeable battery pack 330.
  • the embodiments disclosed below can expand the application scenario of the second rechargeable battery pack 330, so that it can be adapted to the first electric battery pack 330.
  • the tool 3101 can also be adapted to a second power tool 3102 .
  • FIG. 19 shows a block diagram of the first power tool system 3001 and a block diagram of the second power tool system 3002 .
  • FIG. 19 shows the following principle: while the first power tool 3101 can be powered by the first rechargeable battery pack 320, it should also be powered by the second rechargeable battery pack 330. Similarly, while the second power tool 3102 uses the second rechargeable battery pack 330 , the first rechargeable battery pack 320 can also be used. In other words, the second rechargeable battery pack 330 can be adapted to both the second power tool 3102 and the first power tool 3101, so as to improve the compatibility of the battery pack, thereby expanding the usage scenarios of the battery pack.
  • FIG. 20 shows a circuit block diagram of a power tool system as an embodiment.
  • the power tool system includes a power tool 3101 and a rechargeable battery pack 60 (either the first rechargeable battery pack 320 or the second rechargeable battery pack 330).
  • the rechargeable battery pack 60 includes at least a plurality of battery cells connected in series.
  • FIG. 20 shows a battery cell assembly 61 composed of 4 battery cells connected in series.
  • the rechargeable battery pack 60 may have more than 4 battery cells.
  • the rechargeable battery pack 60 further includes: a power positive terminal 62 , a power negative terminal 63 , a power communication terminal 64 , a power identification module 65 and a temperature sensor 66 .
  • the power supply positive terminal 62 and the power supply negative terminal 63 are used for outputting discharge current or inputting charging current.
  • the power communication terminal 64 is used for communication with the power tool 310 .
  • the power supply positive terminal 62 is located in the power supply positive interface
  • the power supply negative terminal 63 is located in the power supply negative interface
  • the power supply communication terminal 64 is located in the power supply communication interface.
  • the temperature sensor 66 is used to detect the temperature of the cell assembly 61 .
  • temperature sensor 66 is connected to power communication terminal 64 .
  • the temperature sensor 66 is arranged on the surface of the cell to detect the temperature of the surface of the cell.
  • the temperature sensor 66 outputs an over-temperature signal to the power tool 3101 to stop the power tool 3101
  • the electric energy output by the rechargeable battery pack 60 is received to prevent the rechargeable battery pack 60 from exploding due to overheating.
  • the temperature sensor 66 may be a thermistor such as NTC or PTC.
  • the power identification module 65 stores a rechargeable battery pack ID for identifying the first rechargeable battery pack 320 or the second rechargeable battery pack 330 when inserted into a charger or power tool.
  • the rechargeable battery pack ID includes, for example, model, version, cell configuration, and battery type, such as cylindrical cells or flat cells.
  • the rechargeable battery pack ID can be one or more communication codes, and can also be an ID resistor, an LED display to display identification data for the rechargeable battery pack, a message sent when connected and sensed by a power tool or charger Serial data, fields in the frame of data sent to the power tool/charger through the power communication interface, etc.
  • the power tool 3101 includes at least a motor 3111 , a switch circuit 3121 , a tool control module 3131 and a tool identification module 3141 , a tool interface positive terminal 3151 , a tool interface negative terminal 3161 , and a tool interface communication terminal 3171 .
  • the positive terminal 3151 of the tool interface and the negative terminal 3161 of the tool interface are used to access the discharge current output by the rechargeable battery pack 60 .
  • the tool interface communication terminal 3171 enables the power tool 3101 to communicate with the rechargeable battery pack 60 .
  • the tool interface positive terminal 3151 is located in the tool positive interface, which can be detachably connected with the power supply positive terminal 62 of the rechargeable battery pack 60;
  • the tool interface negative terminal 3161 is located in the tool negative interface, which can be connected with the rechargeable battery pack 60.
  • the negative power supply terminal 63 of 1 is detachably connected;
  • the tool interface communication terminal 3171 is located in the tool communication interface, which can be detachably connected with the power supply communication terminal 64 of the rechargeable battery pack 60 .
  • the switch circuit 3121 is used to drive the motor 3111 and is electrically connected to the tool control module 3131 .
  • the switch circuit 3121 receives the power from the rechargeable battery pack 60, and under the driving of the switch signal output by the tool control module 3131, distributes the voltage of the rechargeable battery pack 60 to each phase winding on the stator of the motor 33111 in a certain logical relationship, so that the motor 3111 starts and continues to rotate.
  • the switch circuit 3121 includes a plurality of electronic switches.
  • the electronic switch includes a field effect transistor (FET), in other embodiments, the electronic switch includes an insulated gate bipolar transistor (IG-BT), or the like.
  • FET field effect transistor
  • IG-BT insulated gate bipolar transistor
  • the tool identification module 3141 is used to identify one of the first rechargeable battery pack 320 or the second rechargeable pack 330 connected to the tool interface 311 .
  • the tool identification module 3141 is connected to the tool interface communication terminal 3171 .
  • the tool identification module 3141 is capable of communicating and sensing battery pack information with the attached battery pack through the tool interface communication terminal 3171 .
  • the information of the battery pack includes model, version, cell configuration and battery type, such as cylindrical cell battery or flat cell battery. Therefore, the tool identification module 3141 can determine whether the tool interface 311 is connected to the first rechargeable battery pack 320 or the second rechargeable battery pack 330 according to the battery pack information and send an identification signal to the tool control module 3131 .
  • the tool identification module 3141 can also send a shutdown signal to the tool control module 3131 after receiving the over-temperature signal of the rechargeable battery pack 60 to control the first power tool 3101 to shut down, so as to protect the battery pack and the power tool. Safety.
  • tool identification module 3141 may include sensors.
  • the sensor may be a magnetic sensor or an inductive pickup sensor to sense attached battery pack information. Whether the first rechargeable battery pack 320 or the second rechargeable battery pack 330 is attached to the power tool is identified through radio frequency communication and optical sensing.
  • the tool control module 3131 is connected to at least the tool interface 311 and is used to control the output performance of the first electric tool 3101 according to the rechargeable battery pack 60 connected to the tool interface 311 . Specifically, the tool control module 3131 is used to control the voltage or current applied to both ends of the motor according to the identification signal, so that the motor can work normally.
  • the tool identification module 3141 identifies that the tool interface 311 is connected to the first rechargeable battery pack 320 and sends the first identification signal to the tool control module 3131, then The tool control module 3131 can fully load the output voltage and current of the first rechargeable battery pack 320 to the motor 3111 and recognizes that the tool interface 311 is connected to the second rechargeable battery pack 330 and sends an identification signal to the tool control module 3131, then the tool The control module 3131 will limit the electricity 3131 loaded to the two ends of the motor 3111 through the switch circuit 3121 and send a pulse width modulation (PWM) signal to the switch circuit 3121.
  • PWM pulse width modulation
  • the average voltage of the motor, the average voltage is lower than the input voltage of the rechargeable battery pack 60 . It can be understood that, the tool identification module 3141 and the tool control module 3131 may be integrated and provided, or may be provided separately.
  • FIG. 21 shows a circuit block diagram of a power tool system as another embodiment. Different from the power tool system shown in FIG. 20 , the second power tool 3102 shown in FIG. 21 further includes a power limiting module 3152 .
  • the power limit module 3152 is used to limit the input current from the rechargeable battery pack 60 to limit power input. It may increase the resistance value according to the identification signal received from the tool identification module 3142.
  • the tool identification module 3142 can sense the type of rechargeable battery pack 60 attached to the second power tool 3102 (either the first rechargeable battery pack 20 or the second rechargeable battery pack 30 ) and send an identification signal to the tool control module 3132 For indicating whether the first rechargeable battery pack 320 or the second rechargeable battery pack 330 is attached, the tool control module 3132 sends a control signal to the power limiting module 3152 according to the identification signal.
  • the power limit module 3152 is configured to receive control signals from the tool control module 3132 to increase the impedance to limit the maximum input current from the rechargeable battery pack 60 , or to maintain the maximum input current of the rechargeable battery pack 60 .
  • the power limiting module 3152 is connected in series between the tool interface positive terminal 3162 of the second power tool 3102 and the motor; in other embodiments, the power limiting module 3152 is connected in series with the tool interface negative terminal of the second power tool 3102 between terminal 3182 and the motor.
  • the power limiter 3152 can be a passive resistor, and the power limiter 3152 can also be an active resistor, and the resistance of the active resistor can be changed with the change of the load, for example, a field effect transistor has a current limit Functional semiconductor devices or circuits, etc.
  • the tool identification module 3142 When the first rechargeable battery pack 320 powers the second power tool 3102, its tool identification module 3142 sends an identification signal to the tool control module 3132 to indicate that the second power tool 3102 is attached with the first rechargeable battery pack 320, then the tool The control module 3132 sends a control signal to the power limiting module 3152 according to the identification signal to make the output current of the power limiting module 3152 maintain the discharge current from the first rechargeable battery pack 320; and when the second rechargeable battery pack 330 is the second power tool When the 3102 is powered, the tool identification module 3142 identifies that the second rechargeable battery pack 330 is connected through the tool interface communication terminal 3172, and sends an identification signal to the tool control module 3132 to indicate that the second power tool 3102 is attached with a second rechargeable battery pack 330 battery pack 330, the tool control module 3132 sends a control signal to the power limiting module 3152 according to the identification signal to keep the output current of the power limiting module 3152 at the maximum input current from the second rechargeable
  • FIG. 22 shows a circuit block diagram of a power tool system as another embodiment. Different from the power tool system shown in FIG. 20 , the rechargeable battery pack 70 further includes a power limiting module 77 .
  • the power limiting module 77 is disposed in the rechargeable battery pack 70 and is connected to the power communication terminal 74 .
  • the power limiting module 77 is used to limit the output current of the rechargeable battery pack 70 to limit the power output.
  • the power limit module 77 may increase the resistance value according to the control signal received from the tool control module 3131 .
  • the tool identification module 3141 can sense the type of the rechargeable battery pack 70 (either the first rechargeable battery pack 320 or the second rechargeable battery pack 330 ) attached to the first power tool 3101 and send an identification signal to the tool control module 3131 To indicate whether the first rechargeable battery pack 320 or the second rechargeable battery pack 330 is attached, the tool control module 3131 sends a control signal to the power limiting module 77 according to the identification signal. Accordingly, the power limit module 77 is configured to receive the identification signal of the tool control module 3131 to increase the impedance to limit the maximum output current from the rechargeable battery pack 70 or to maintain the maximum input current of the rechargeable battery pack 70 . Specifically, the tool control module 3131 sends a control signal to the power limiting module 77 through the tool interface communication terminal 3171 and the power communication terminal 74 .
  • the power limiting module 77 is provided on the discharge path of the rechargeable battery pack 70 .
  • the power limiting module 77 is disposed between the negative electrode of the cell assembly and the power supply negative terminal 73 , and the power limiting module 77 may also be disposed between the positive electrode of the cell assembly and the power supply positive terminal 72 .
  • the power limiting module 77 can be a passive resistor, which can effectively improve the internal resistance of the battery pack.
  • the power limiting module 77 can also be an active resistor, and the internal resistance of the rechargeable battery pack 70 can be changed as the load changes, such as a field effect transistor or other semiconductor device or circuit with a current limiting function.
  • the tool identification module of the power tool 310 when the power tool 310 is powered by the first rechargeable battery pack 320 , that is, when the tool interface 311 is connected to the first rechargeable battery pack 320 , the tool identification module of the power tool 310 sends an identification signal to the tool control module to indicate the power
  • the tool control module sends a control signal to the power limiting module within the first rechargeable battery pack 320 to cause the power limiting module to maintain the first rechargeable battery pack 320 at maximum discharge current , that is, the first discharge current is discharged; and when the power tool uses the second rechargeable battery pack 330 as a power source, if the power tool is the first power tool 3101 at this time, the tool identification module 3141 identifies the access through the tool communication terminal 3171.
  • the tool control module 3131 sends an identification signal to the tool control module 3131 to indicate that the first power tool 3101 is attached with the second rechargeable battery pack 330, then the tool control module 3131 sends a second control signal to the power limiting module In order to make the power limiting module increase impedance to limit the maximum output current of the rechargeable battery pack, that is, the second discharge current, wherein the second discharge current is less than or equal to the first discharge current to prevent the power tool from burning or entering overcurrent protection and unable to start.
  • the tool identification module when the tool identification module identifies through the tool communication terminal that the tool interface is connected to the second rechargeable battery pack 330, the tool identification module sends a second control signal to the control module to control the second rechargeable battery pack 330 discharges at a second discharge current not greater than the first discharge current.
  • the power tool uses the second rechargeable battery pack 330 as a power source, if the power tool is the second power tool 3102 at this time, the tool identification module identifies through the tool communication terminal that the second rechargeable battery pack 330 is connected to the tool interface.
  • the control module sends a first control signal to the power limiting module to enable the power limiting module to maintain the maximum output of the rechargeable battery pack current to make the power tool run at higher current and power.
  • FIG. 23 shows a circuit block diagram of a power tool system as another embodiment.
  • the rechargeable battery pack 90 further includes a power control module 98 and a power limit module 97 .
  • the power control module 98 and the power limiting module 97 are provided in the rechargeable battery pack.
  • the temperature sensor 96 is used to detect the temperature of the cell assembly, and is communicatively connected to the power control module 98 . Specifically, the temperature sensor 96 is used to detect the temperature of the battery cells.
  • the temperature sensor 96 When the temperature of the battery cells is greater than or equal to the threshold value, the temperature sensor 96 outputs an over-temperature signal to the power control module 98 to stop the battery pack 90 from outputting electric energy to prevent the battery pack from overheating. And an explosion occurred.
  • the temperature sensor can be a thermistor such as NTC or PTC. Because such temperature sensors 96 are well known in the art, a detailed description of the functional operation is omitted for brevity.
  • the power identification module 96 is used to identify the power tool connected to the power interface.
  • the power identification module 96 is configured to identify that the power tool connected to the battery pack interface is one of the first power tool 3101 and the second power tool 3102 .
  • the power identification module 96 is connected to the power communication terminal 94 .
  • the power identification module 96 communicates and senses power tool information with the attached power tool through the power communication terminal 94 .
  • the information of the power tool includes one or more of a power limit, a current limit, and a voltage limit of the power tool. Therefore, the power identification module 96 can determine whether the power interface is connected to the first power tool 3101 or the second power tool 3102 according to the power tool information and send an identification signal to the power control module 98 .
  • the power identification module 96 receives a signal including the information of the first power tool 3101 via the power communication terminal 94 . If the rechargeable battery pack is connected to the second power tool 3102 during operation, the power identification module 96 receives a signal containing the second power tool 3102 information via the power communication terminal 94 .
  • the power control module 98 controls the maximum power and maximum current output by the rechargeable battery pack.
  • the power control module 98 and the power limiting module 97 are communicatively connected.
  • the power control module 98 is configured to receive the identification signal of the power identification module 96 and adjust the impedance of the power limiting module 97 to limit the maximum power and maximum current of the rechargeable battery pack according to the identification signal of the identification module, or to maintain a lower limit thereof. resistance to maintain its maximum power and current.
  • the power control module 98 may be a digital controller, microprocessor, analog circuit, digital signal processor or smart device of one or more digital ICs of the type of application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the power identification module receives a signal containing the information of the first power tool 3101 and transmits it to the discharge control module, and the discharge control module adjusts the power limit The impedance of the module controls the second rechargeable battery pack 330 to discharge at a second discharge current no greater than the first discharge current.
  • the power identification module receives the signal containing the information of the second power tool 3102 and transmits it to the second discharge control module, then the second discharge control module adjusts the power limit module The impedance is reduced to a minimum value to discharge the second rechargeable battery pack 330 at a third discharge current, wherein the third discharge current is greater than the first discharge current.
  • the discharge control module controls the second rechargeable battery pack 330 to provide power to the second power tool at a second voltage, wherein the second voltage is greater than the above-mentioned first voltage.
  • the power identification module receives a signal containing the information of the second power tool 3102 and transmits it to the second discharge control module, then the first The second discharge control module adjusts the impedance of the power limiting module to a minimum value, so that the second rechargeable battery pack 330 outputs electrical energy at the second voltage.
  • the power tool 40 further includes a connection unit 47 , a first discharge module 48 and a second discharge module 49 .
  • the first discharge module 48 and the second discharge module 49 include other electronics in the power tool, and the first discharge module 48 and the second discharge module 49 have at least one or more of different power limits, current limits or voltage limits.
  • the first discharge module 48 is adapted to the first rechargeable battery pack 320, and when the first battery pack is used as a source of electrical energy for the power tool, the first discharge module operates to enable the The first power tool has the first output performance; and the second discharge module 49 is adapted to the second rechargeable battery pack 330 , when the second battery pack is used as the power source of the power tool, the second discharge module The power tool is operative to have a second output capability different from the first output capability.
  • the connection unit 47 can be selectively connected to the first discharge module 48 and the second discharge module 49 .
  • the connection unit 47 has an input end, an output end and a control end, wherein the input end of the connection unit 47 is connected to the positive terminal 421 of the tool, and the output end of the connection unit 47 can be selectively connected to the first discharge module 48 or the second discharge module 49 , the control end of the connection unit 47 is connected with the control module 45 .
  • the connection unit 47 when the tool interface is connected to the first rechargeable battery pack 320 , the connection unit 47 is connected to the first discharge module 48 , and when the tool interface is connected to the second rechargeable battery pack 330 , the connection unit 47 is connected to The second discharge module 49 is connected. It can be understood that the connection unit 47 , the first discharge module 48 and the second discharge module 49 can also be connected in series between the tool negative terminal 422 and the motor.
  • the tool identification module 46 can sense the type of rechargeable battery pack attached to the power tool (either the first rechargeable battery pack 320 or the second rechargeable battery pack 330 ) and send the sensed signal directly to the control module 45 using to indicate whether the first rechargeable battery pack 320 or the second rechargeable battery pack 330 is attached. Therefore, the control module 45 is configured to control the connection unit 47 to selectively connect with the first discharge module 48 and the second discharge module 49 according to the identification signal.
  • control module 45 is configured to: when the tool interface is connected to the first rechargeable battery pack 320, the control module 45 controls the connection unit 47 to connect the positive terminal of the tool to the first discharge module 48, and when the tool interface is connected to the first rechargeable battery pack 320 When the second rechargeable battery pack 330 is used, the control module 45 controls the connection unit 47 to connect the positive terminal of the tool with the second discharge module 49 .
  • the battery packs used to supply power to electric tools mostly use cylindrical lithium cells, which are connected in series and parallel to ensure sufficient power output to improve the battery life of the power tool.
  • the output voltage of a cylindrical lithium cell is about 3.6V
  • the maximum number of lithium cells connected in series in a battery pack with an output voltage of 18V is 5.
  • the purpose of the present application is to provide a charging system and a battery pack, which can improve the charging compatibility of the charging system and the battery pack. It will be described in detail next.
  • 25 to 26 show a charging system 400, including a first rechargeable battery pack 320, a second rechargeable battery pack 330, and the first and second rechargeable battery packs 320 and 330 that can be adapted to be Charger 340 for battery pack charging.
  • FIG. 26 shows a circuit block diagram of a charging system 400 of one embodiment.
  • the charging system 400 includes a rechargeable battery pack (first rechargeable battery pack 320 or second rechargeable battery pack 330) and a charger (first charger 3401 or second charger 3402). Because the circuit block diagrams of the first rechargeable battery pack 320 and the second rechargeable battery pack 330 are the same, and the circuit block diagrams of the first charger 3401 and the second charger 3402 are the same, the first rechargeable battery pack 320 and the second charger 3402 are the same.
  • the circuit block diagram of the first charger 3402 is described as an example.
  • the first rechargeable battery pack 320 at least includes a plurality of battery cells connected in series.
  • FIG. 26 shows 4 battery cells connected in series.
  • the rechargeable battery pack may have more than 4 battery cells, and there is no limit to the number of battery cells.
  • the rechargeable battery pack also includes: a power positive terminal 3201 , a power negative terminal 3202 , a power communication terminal 3203 , a power identification module 3205 and a temperature sensor 3204 .
  • the power supply positive terminal 3201 and the power supply negative terminal 3202 are used for outputting discharge current or inputting charging current.
  • the power communication terminal 3203 is used for communication with the charger.
  • the power supply positive terminal 3201 is located in the power supply positive interface
  • the power supply negative terminal 3202 is located in the power supply negative interface
  • the power supply communication terminal 3203 is located in the power supply communication interface.
  • the temperature sensor 3204 is used to detect the temperature of the cell group.
  • the temperature sensor 3204 is connected to the power communication terminal 3203 .
  • the temperature sensor 3204 is arranged on the surface of the cell, and is used to detect the temperature of the surface of the cell.
  • the temperature sensor 3204 may be a thermistor such as NTC or PTC.
  • the power identification module 3205 stores the rechargeable battery pack ID, which is used to identify the first rechargeable battery 320 or the second rechargeable battery pack 330 when inserted into the charger.
  • the rechargeable battery pack ID includes, for example, model, version, cell configuration, and battery type, such as cylindrical cells or flat cells.
  • the rechargeable battery pack ID can be one or more communication codes, and can also be an ID resistor, an LED display to display identification data for the rechargeable battery pack, a message sent when connected and sensed by a power tool or charger Serial data, fields in the frame of data sent to the charger through the power communication interface, etc.
  • the first charger 3401 includes a current detection module 3402, a power detection module 3403, a temperature detection module 3404, a charging identification module 3405, a charging control module 3406, and a current control module 3407.
  • the charger 3401 also includes a module for allowing and preventing charging current.
  • a switch module 3408 and a power module 3409 that adjusts the external power source to power that can be used by the battery pack and other electronic components or circuits in the charger.
  • the above-mentioned power detection module 3403 and temperature detection module 3404 may also be provided in the battery pack, which is not limited herein.
  • the current detection module 3402 is used to detect the charging current of the charger 3401 .
  • the current detection module 3404 is a resistor and detects the voltage applied across the resistor to obtain the charging current flowing into the battery pack.
  • the power supply module 3409 includes a rectification circuit and a filter circuit for rectifying and filtering the alternating current from the alternating current power source to output a direct current.
  • the charger 3401 also includes an output positive terminal 3411 , an output negative terminal 3421 , and a charging communication terminal 3431 .
  • the output positive terminal 3411 and the output negative terminal 3421 are used to output the charging current.
  • the charging communication terminal 3431 is used to communicate with the first rechargeable battery pack 320 .
  • the temperature sensor 3204 is coupled to the temperature detection module 3404 of the charger, and the power detection module 3403 is electrically connected to the positive and negative terminals 3201 and 3202 at both ends of the battery pack for detecting The power of the battery 320.
  • the charging identification module 3431 is used to identify one of the first rechargeable battery pack 320 or the second rechargeable battery pack 330 connected to the charger.
  • the charging identification module 3431 is connected to the charging communication terminal 3203 .
  • the charging identification module 3431 can communicate and sense the battery pack information through the charging communication terminal 3203 and the attached battery pack to identify one of the first rechargeable battery pack 320 or the second rechargeable battery pack 330 connected by the charger and Send the identification signal to the charging control module 3406 .
  • the information of the battery pack includes model, version, cell configuration and battery type, such as cylindrical cell battery or flat cell battery.
  • the charging identification module 3431 is a determination resistor, which divides the reference voltage together with the power identification module. This divided voltage is output as battery pack information.
  • the charging control module 34063 can determine whether the charging interface is connected to the first rechargeable battery pack 320 or the second rechargeable battery pack 330 according to the battery pack information to control the charging current of the charger.
  • the charging control module 3406 sends a current control signal to the current control module 3407 according to the identification signal.
  • the charging control module 3406 controls the charger to charge the first rechargeable battery pack 320 with the first charging current;
  • the charging control module 3406 controls the charger to charge at the second charging current.
  • the current control module 3407 is used to adjust the charging current flowing to the battery pack.
  • the current control module 3407 and the charging control module 3406 can be communicatively connected. Therefore, the current control module 3407 is configured to receive the current control signal from the charging control module 3406 to limit the current from the charging control module 3406.
  • the maximum output current of the power supply module or maintain the maximum output current of the power supply module.
  • the current control module 3407 includes a power limiting device, the power limiting device can be a passive resistor, the power limiting device can also be an active resistor, and the resistance value of the active resistor can be changed with the change of the current control signal , such as field effect transistors and other semiconductor devices or circuits with current limiting functions.
  • the switch module 3408 is connected to the charging circuit and coupled to the charging control module 3406, receives a control signal from the charging control module 3406, and switches the state of the switch to control the on or off of the charging circuit.
  • the charging identification module 3405 communicates with the attached battery pack through the charging communication terminal 3203 and senses the information of the battery pack to identify the first rechargeable battery pack 320 or the second rechargeable battery pack 330 connected by the charger and send the identification signal to the charging control module 3406, while the power detection module 3403 and the temperature detection module 3404 also send the received power information and the temperature information of the temperature sensor 3204 to the charging control module 3406, and the charging control module 3406 sends the battery
  • the current control signal is sent to the current control module 3407 to adjust the charging current, or to the switch module 3408 to control the on-off of the charging circuit to allow or prohibit the charging current to flow to the battery pack .
  • the charging current mode is changed by changing the resistance of the current control module 3407 . If the resistance of the current control module 3407 changes, there are at least two selectable charging current modes: a first charging current mode in which the current of the first rechargeable battery pack 320 is relatively lower, and a first charging current mode in which the charging current is lower than the first charging current mode The second charging current mode with high current, wherein the charging current in the first charging mode is the first charging current; the charging current in the second charging mode is the second charging current.
  • FIG. 27 shows a circuit block diagram of a charging combination 500 as another embodiment.
  • the current control module is arranged in the rechargeable battery pack, that is, the first rechargeable battery pack 320 also A current control module 3206 is included, and the current control module 3206 is connected to the power communication terminal 3203 .
  • the charging identification module 3405 is used to identify one of the first rechargeable battery pack 320 or the second rechargeable battery pack 330 connected to the charger.
  • the charging identification module 3405 is connected to the charging communication terminal 3203 .
  • the charging identification module 3405 can communicate and sense the battery pack information through the charging communication terminal 3203 and the attached battery pack to identify one of the first rechargeable battery pack 320 or the second rechargeable battery pack 330 to which the charger is connected and Send the identification signal to the charging control module 3406 .
  • the information of the battery pack includes model, version, cell configuration and battery type, such as cylindrical cell battery or flat cell battery.
  • the charging identification module is a determination resistor, which divides the reference voltage together with the power identification module. This divided voltage is output as information information of the battery pack.
  • the charging control module 3406 can determine whether the tool interface is connected to the first rechargeable battery pack 320 or the second rechargeable battery pack 330 according to the battery pack information to control the charging current of the charger.
  • the charging control module 1015 sends a current control signal to the current control module 3206 according to the identification signal.
  • the charging control module 3406 controls the charger to charge the first rechargeable battery pack 320 with the first charging current;
  • the charging control module controls the charger to charge the second rechargeable battery pack 330 with the second charging current or the first charging current.
  • the current control module 3206 is used to adjust the charging current flowing to the battery pack.
  • the current control module 3206 receives the current control signal from the charging control module 3406 through the power communication terminal 3203 to adjust the charging current flowing to the battery pack.
  • the current control module includes a power limiting device, the power limiting device can be a passive resistor, and the power limiting device can also be an active resistor, then the resistance value of the active resistor can be changed with the change of the current control signal,
  • semiconductor devices or circuits with current limiting functions such as field effect transistors.
  • the current control module 3206 controls the battery pack to be charged with the first charging current; and when the charger is connected to the second rechargeable battery pack At 330 , the charging control module 3206 controls to charge the battery pack with the second charging current. Accordingly, the current control module is configured to receive a current control signal from the charging control module 3406 in order to limit the maximum charging current from the charger, or maintain the maximum charging current from the charger.
  • the charging identification module 3405 communicates with the attached battery pack through the charging communication terminal 3203 and senses the information of the battery pack to identify the first rechargeable battery pack 320 or the second rechargeable battery pack 330 connected by the charger and send the identification signal to the charging control module, at the same time, the power detection module 3403 and the temperature detection module 3404 also send the received power information and the temperature information of the temperature sensor to the charging control module 3406, and the charging control module 3406 sends the battery pack information , after the power information and temperature information are processed internally, the current control signal is sent to the current control module 3206 to adjust the charging current, or to the switch module 3408 to control the on-off of the charging circuit to allow or prohibit the charging current to flow to the battery pack.
  • the mode of the charging current is changed by changing the resistance of the current control module. If the resistance of the current control module changes, there are at least two selectable charging current modes: a first charging current mode in which the current of the first rechargeable battery pack 320 is relatively lower, and a first charging current mode in which the charging current is lower than the first charging current mode The second charging current mode with high current, wherein the charging current in the first charging mode is the first charging current; the charging current in the second charging mode is the second charging current.
  • FIG. 28 shows a circuit block diagram of a charging combination 600 as another embodiment.
  • the charging control module 3207 is arranged in the rechargeable battery pack, that is, the rechargeable battery pack includes charging control module 3207, and the charging control module 3207 can control the switch module 3408 to be turned on and off through the communication terminal 3203.
  • the power identification module 3205 is used to identify one of the first charger 3401 or the second charger 3402 to which the rechargeable battery pack is connected.
  • the power identification module 3205 is connected to the power communication terminal 3203 .
  • the power identification module 3205 can communicate and sense the charger information through the power communication terminal 3203 and the attached charger to identify one of the first charger 3401 or the second charger 3402 to which the rechargeable battery pack is connected and transmit the identification Signal to charging control module 3207.
  • the charger information includes charging voltage and charging current.
  • the charging control module 3207 can determine whether the power interface is connected to the first charger 3401 or the second charger 3402 according to the battery pack information to control the charging current of the battery pack.
  • the charging control module 3207 sends a current control signal to the current control module according to the identification signal.
  • the current control module 3206 is used to adjust the charging current flowing to the battery pack.
  • the current control module 3206 receives the current control signal from the charging control module 3207 through the power communication terminal 3203 to adjust the charging current flowing to the battery pack.
  • the current control module 3206 includes a power limiting device, the power limiting device can be a passive resistor, the power limiting device can also be an active resistor, and the resistance value of the active resistor can be changed with the change of the current control signal , such as field effect transistors and other semiconductor devices or circuits with current limiting functions.
  • the first charger 3401 is charged with the first charging current.
  • the charging control module 3207 sends a first current control signal to the current control module 3206 so that the current output by the current control module 3206 to the battery pack maintains the first charging current from the first charger 4301;
  • the power identification module 3205 identifies that the second charger 3402 is connected, and sends an identification signal to the charging control module 3207 to indicate that the first rechargeable battery pack 320 is attached with the second charger 3402.
  • the charging control module 3207 sends a second current control signal to the current control module 3206 to make the current control module 3206 limit the charging current from the second charger 3402, so that the current output by the current control module 3206 to the battery pack does not It is greater than the first charging current to prevent the first rechargeable battery pack 320 from being damaged due to overcharging.
  • the second rechargeable battery pack 330 when the second rechargeable battery pack 330 is connected to the first charger 3401, its power identification module 3205 sends an identification signal to the charging control module 3207 to indicate that the second rechargeable battery pack 330 is attached with the first charger 3401, Then the charging control module 3207 sends the first current control signal to the current control module 3206 so that the current output by the current control module 3206 to the battery pack maintains the first charging current from the first charger 3401, preventing the first charger 3401 from exceeding the The current of the rated current supplies power to the second rechargeable battery pack 330 to cause heat damage to the first charger 3401; and when the second rechargeable battery pack 330 is connected to the second charger 3402, its power identification module 3205 sends an identification signal to the charge control module 3207 to indicate that the second rechargeable battery pack 330 is attached with the second charger 3402, then the charge control module 3207 sends a third control signal to the current control module 3206 to cause the current control module 3206 to control the output to the cell pack The current maintains the second

Abstract

本申请公开了一种电池包及适用于电池包的电动工具和充电器,包括:具有第一材料的壳体;电芯组件,设置在所述壳体内;所述电芯组件包括多个电芯单元;所述电芯单元包括电芯单元正极和电芯单元负极;具有第二材料的电芯支撑件,至少用于支撑所述电芯组件;其中,所述电芯支撑件至少设置在所述电芯组件的两端,至少部分所述电芯支撑件封装所述电芯单元正极和电芯单元负极;所述第一材料不同于所述第二材料。

Description

电池包及电动工具系统和充电系统
本申请要求在2020年09月30日提交中国专利局、申请号为202011061730.4的中国专利申请的优先权,要求在2020年09月30日提交中国专利局、申请号为202011061751.6的中国专利申请的优先权,要求在2020年09月30日提交中国专利局、申请号为202011057097.1的中国专利申请的优先权,要求在2020年09月30日提交中国专利局、申请号为202011057089.7的中国专利申请的优先权,要求在2020年09月30日提交中国专利局、申请号为202011057113.7的中国专利申请的优先权,以及要求在2020年09月30日提交中国专利局、申请号为202011061729.1的中国专利申请的优先权,上述申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,例如,涉及一种电动工具系统和充电系统。
背景技术
基于便携性的使用需求,当前越来越多的电动工具采用电池包作为动力来源。
用于为电动工具供电的电池包多采用圆柱型锂电芯,采用多个圆柱型锂电芯串并联的连接以保证足够的电能输出以提高电动工具的续航能力。
目前,一般的圆柱型锂离子电池一般包括具有电芯,即由正极片、负极片和隔离膜卷绕而成电芯,电解液、电池壳体、上下绝缘垫片、盖帽,经过密封完成制备。这类电池在充放电过程中也伴随着电动工具的使用,产生一系列的影响电池使用寿命的不利因素。如电动工具不可避免的震动、抖动会对内部锂离子电池同时产生震动、抖动等外力的不断冲击。其中负极外露极耳和钢壳底的焊点较易因外界不断冲击而发生断裂,影响圆柱型锂离子电池的使用寿命。
发明内容
本申请提供一种电池包,具有更好的防摔减震效果。
本申请采用如下的技术方案:
一种电池包,包括:具有第一材料的壳体;电芯组件,设置在所述壳体内;所述电芯组件包括:多个非圆柱型电芯单元;所述电芯单元包括电芯单元正极和电芯单元负极;具有第二材料的电芯支撑件,至少用于支撑所述电芯组件;其中,所述电芯支撑件至少设置在所述电芯组件的两端,至少部分所述电芯支撑件封装所述电芯单元正极和电芯单元负极;所述第 一材料不同于所述第二材料。
可选地,所述电芯支撑件包括第一支撑件和第二支撑件;所述第一支撑件位于所述电芯组件的前端面上;所述第二支撑件位于与所述前端面互为对立的后端面上。
可选地,所述电芯支撑件围绕所述电芯组件的前端面、后端面、左侧面、右侧面和下底面设置;所述电芯支撑件形成上开口的容纳空间容纳所述电芯组件。
可选地,所述电芯组件包括:电芯组件正极端子,与至少一个所述电芯单元正极连接;电芯组件负极端子,与至少一个所述电芯单元负极连接;正极引出片,使所述电芯组件正极端子和所述电芯单元正极连接;负极引出片,使所述电芯组件负极端子和所述电芯单元负极连接;所述电芯支撑件封装所述电芯单元正极、所述电芯单元负极、所述正极引出片和所述负极引出片。
可选地,所述电池包还包括:缓冲层,所述缓冲层设置在相邻的所述电芯之间;所述缓冲层由所述第二材料组成。
可选地,所述第一材料为热塑性材料;所述第二材料为热固性材料。
可选地,所述电芯支撑件以注胶的方式形成于电芯组件的两端。
可选地,所述电芯单元正极和所述电芯单元负极位于同一侧。
可选地,所述电池包的放电电流大于等于80A。
可选地,所述电芯组件的能量密度(电池包能量/质量)的取值范围为大于200Wh/kg。
一种电池包,包括:具有第一材料的壳体;电芯组件,设置在所述壳体内;所述电芯组件包括:多个非圆柱型电芯单元;所述电芯单元包括电芯单元正极和电芯单元负极;具有第二材料的电芯支撑件,至少用于支撑所述电芯组件;其中,所述电芯支撑件至少设置在所述电芯组件的两端,至少部分所述电芯支撑件封装所述电芯单元正极和电芯单元负极;所述第一材料的硬度不同于所述第二材料的硬度。
可选地,所述电芯支撑件包括第一支撑件和第二支撑件;
所述第一支撑件位于所述电芯组件的前端面上;所述第二支撑件位于所述电芯组件的后端面上;所述前端面和所述后端面互为对立面。
可选地,所述电芯支撑件围绕所述电芯组件的前端面、后端面、左侧面、右侧面和下底面设置;所述电芯支撑件形成上开口的容纳空间容纳所述电芯组件。
可选地,所述电芯组件包括:电芯组件正极端子,与至少一个所述电芯单元正极连接;电芯组件负极端子,与至少一个所述电芯单元负极连接;正极引出片,使所述电芯组件正极端子和所述电芯单元正极连接;负极引出片,使所述电芯组件负极端子和所述电芯单元负极 连接;所述电芯支撑件封装所述电芯单元正极、所述电芯单元负极、所述正极引出片和所述负极引出片。
可选地,所述电池包还包括:缓冲层,所述缓冲层设置在相邻的所述电芯之间;所述缓冲层由所述第二材料组成。
可选地,所述第二材料为绝缘材料。
可选地,所述电芯支撑件以注胶的方式形成于电芯组件的两端。
可选地,所述电芯单元正极和所述电芯单元负极位于同一侧。
可选地,所述电池包的放电电流大于等于80A。
可选地,所述电芯组件的能量密度(电池包能量/质量)的取值范围为大于200Wh/kg。
本申请采用以上技术方案,可改善电池包的抗震动、抗冲击性能,显著提高电池的可靠性和使用寿命。
一种电动工具系统,包括:电动工具,具有工具接口和电机;可充电电池包,具有电池包接口和电芯组件;第一可充电电池包,包括若干第一可充电电芯,所述第一可充电电芯为圆柱形;第二可充电电池包,包括若干与所述第一可充电电芯形状不同的第二可充电电芯;所述电动工具可使用所述第一可充电电池包或第二可充电电池包进行供电;其中,所述第一可充电电池包具有能与所述工具接口适配的第一接口和第一电特性,所述第二可充电电池包具有能与所述工具接口适配的第二接口,所述第一接口与所述第二接口具有基本相同的接口形状,所述第二可充电电芯的内阻小于所述第一可充电电芯的内阻。
可选地,所述第二可充电电池包具有与所述第一可充电电池包第一电特性不同的第二电特性。
可选地,所述第二电特性包括以下电性参数中的至少一种:所述第二可充电电池包的放电电流或满电续航能力。
可选地,所述电动工具包括:工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;工具控制模块,还被配置为:接收所述工具识别模块的识别信号;在所述工具接口接入所述第一可充电电池包时,控制所述第一可充电电池包以第一放电电流放电;在所述工具接口接入所述第二可充电电池包时,控制所述第二可充电电池包以不大于所述第一放电电流的第二放电电流放电。
可选地,所述电动工具包括:工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;工具控制模块,被配置为:接收所述工具识别模块的识别信号;在所述工具接口接入所述第一可充电电池包时,控制所述第一可充电电池包的电能以 第一电压输出;在所述工具接口接入所述第二可充电电池包时,控制所述第二可充电电池包的电能以第二电压输出;所述第二电压大于等于所述第一电压。
可选地,还包括:第一放电模块,在所述第一电池包作为所述电动工具的电能来源时,所述第一放电模块工作以使所述电动工具具有第一输出性能;第二放电模块,在所述第二电池包作为所述电动工具的电能来源时,所述第二放电模块工作以使所述电动工具具有与所述第一输出性能不同的第二输出性能。
可选地,所述电动工具还包括:功率限制模块,连接在所述工具接口和所述电机之间;在所述工具接口接入所述第二可充电电池包时所述功率限制模块工作以限制所述第二可充电电池包的输出电流。可选地,所述工具识别模块包括传感器。可选地,所述第二可充电电池包包括:功率限制模块,至少与所述第一可充电电芯中的一个串联,所述功率限制模块用于限制所述第二可充电电池包的输出功率或电流之一。
可选地,所述功率限制模块包括半导体器件。
可选地,所述第二可充电电池包包括多个片状电芯,所述多个片状电芯层叠排布。
可选地,所述第二可充电电池包的能量密度的取值范围为大于200Wh/kg。
可选地,所述第二可充电电池至少具有100A的放电能力。
可选地,所述第二电池包以10C倍率放电,温升小于45℃。
一种可充电电池包,包括:电池包接口,用于接入电动工具;电芯组件,包括多个串联连接的可充电电芯,所述可充电电芯为非圆柱型;功率限制模块,与所述至少一个可充电电芯串联,用于根据所述电池包接口接入的不同电动工具来限制所述电池包的输出电流或输出功率之一。
可选地,所述不同电动工具包括第一电动工具和第二电动工具,所述第一电动工具具有第一输出性能,所述第二电动工具具有与所述第一输出性能不同的第二输出性能。
可选地,所述功率限制模块被适配为当所述可充电电池包连接至第一电动工具和向第一电动工具供电时提高所述可充电电池包的内阻以限制所述电池包的输出电流或输出功率之一。
可选地,电源识别模块,用于识别所述电池包接口接入的第一电动工具或第二电动工具中的一种;电源控制模块,被配置为:接收所述电源识别模块的识别信号;在所述电池包接口接入所述第一电动工具时,控制所述功率限制模块限制所述可充电电池包以第一放电电流放电;在所述电池包接口接入所述第二电动工具时,控制所述可充电电池包以大于所述第一放电电流的第二放电电流放电。
可选地,所述可充电电池包包括多个片状电芯,所述多个片状电芯层叠排布。
可选地,所述可充电电池包的能量密度的取值范围为大于200Wh/kg。
一种电动工具,包括:电机;工具接口,用于接入不同的可充电电池包;工具控制模块,至少与所述工具接口连接,用于根据所述工具接口接入的所述可充电电池包来控制所述电动工具的输出性能。
可选地,所述不同的可充电电池包包括第一可充电电池包和第二可充电电池包;所述第一可充电电池包,包括若干第一可充电电芯,所述第一可充电电芯为圆柱型;所述第二可充电电池包,包括若干与所述第一可充电电芯不同的第二可充电电芯;所述第二可充电电芯的内阻小于所述第一可充电电芯的内阻。
可选地,包括:工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;工具控制模块,被配置为:接收所述工具识别模块的识别信号;在所述工具接口接入所述第一可充电电池包时,以使所述电动工具具有第一输出性能;在所述工具接口接入所述第二可充电电池包时,以使所述电动工具具有与所述第一输出性能不同的第二输出性能。
可选地,包括:工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;工具控制模块,被配置为:接收所述工具识别模块的识别信号;在所述工具接口接入所述第一可充电电池包时,控制所述第一可充电电池包以第一放电电流放电;在所述工具接口接入所述第二可充电电池包时,控制所述第二可充电电池包以不大于所述第一放电电流的第二放电电流放电。
可选地,包括:工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;工具控制模块,被配置为:接收所述工具识别模块的识别信号;在所述工具接口接入所述第一可充电电池包时,控制所述第一可充电电池包的电能以第一电压输出;在所述工具接口接入所述第二可充电电池包时,控制所述第二可充电电池包的电能以第二电压输出;所述第二电压大于等于所述第一电压。
可选地,还包括:功率限制模块,连接在所述工具接口和所述电机之间;在所述工具接口接入所述第二可充电电池包时所述功率限制模块工作以限制所述第二可充电电池包的输出电流。
本申请采用以上技术方案,可提高电池包的兼容性,从而拓展电池包的使用场景。
一种充电系统,包括:第一可充电电池包,包括若干第一电芯,所述第一电芯为圆柱型;第二可充电电池包,包括若干与所述第一可充电电芯形状不同的第二可充电电芯;充电器, 用于为所述第一可充电电池包或所述第二可充电电池包充电;所述第二可充电电池包具有与所述第一可充电电池包不同的充电性能。
可选地,所述充电器包括:充电接口;所述第一可充电电池包具有能与所述充电接口适配的第一接口,所述第二电池包具有能与所述充电接口适配的第二接口,所述第一接口与所述第二接口具有基本相同的接口形状。
可选地,所述充电性能至少包括以下电性参数中的至少一种:充电电流和充电电压中的至少一个。
可选地,所述第一可充电电池包具有第一内阻,所述第二可充电电池包具有第二内阻,所述第二内阻小于所述第一内阻。
可选地,所述充电器包括:充电识别模块,用于识别所述充电接口接入的第一可充电电池包或第二可充电电池包中的一种;充电控制模块,被配置为:接收所述充电识别模块的识别信号;在所述充电器接入所述第一可充电电池包时,控制所述充电器以第一充电电流充电;在所述充电器接入所述第二可充电电池包时,控制所述充电器以第二充电电流充电;其中,第二充电电流大于第一充电电流。
可选地,所述充电器还包括:电流控制模块,连接在所述充电接口和电源模块之间;在所述充电接口接入所述第一可充电电池包时所述电流控制模块工作以限制所述充电器的输出电流。
可选地,所述第二可充电电池包的充电电流大于等于80A。
一种充电系统,包括:第一可充电电池包,包括若干第一电芯,所述第一电芯为圆柱型;第二可充电电池包,包括若干与所述第一可充电电芯形状不同的第二可充电电芯;充电器,用于为所述第一可充电电池包和/或所述第二可充电电池包充电;所述第一可充电电池包接入所述充电器以第一电流充电;所述第二可充电电池包接入所述充电器以第二电流充电。
一种可充电电池包,包括:电池包接口,用于接入充电器;电芯组,包括多个串联连接的可充电电芯,所述可充电电芯为非圆柱型;电流控制模块,与所述至少一个可充电电芯串联,用于根据所述电池包接口接入的不同充电器来限制所述电芯组的充电电流。
可选地,所述不同充电器包括第一充电器和第二充电器,所述第一充电器具有第一充电性能,所述第二充电器具有与所述第一充电性能不同的第二充电性能。
本申请采用以上技术方案,可提高充电系统和电池包的充电兼容性。
附图说明
图1是电池包的结构图;
图2是作为实施例之一的电池包的结构图;
图3是为图1所示的电池包去除壳体的内部结构示意图;
图4是电池包的第二支架结合至第一支架的示意图;
图5是图4所示的第二支架和电路板的另一个角度的结构示意图;
图6是作为实施例之一的第二支架和电路板的示意图;
图7是为图1所示的电池包去除壳体的另一个角度的结构示意图;
图8是图3所示电池包去除第一支架的第二支架安装示意图;
图9是图3所示电池包去除第一支架的结构示意图;
图10是作为实施例之一的电流传感器与正极连接片或负极连接片位置关系的俯视图;
图11是作为实施例之一的电流传感器与正极连接片或负极连接片位置关系的侧视图;
图12是作为实施例之一的正极连接片、负极连接片和电路板在上下方向上的投影示意图;
图13是作为实施例之一的电池包的结构图;
图14是电池包及采用该电池包的电动工具的结构示意图;
图15是图14中的电动工具的结构示意图;
图16是电动工具系统结构示意图;
图17是图16中的电动工具系统中的第一可充电电池包的结构示意图;
图18是图16中的电动工具系统中的第二可充电电池包的结构示意图;
图19是第一电动工具和第二电动工具系统的模块图;
图20是作为实施例之一的第一电动工具与可充电电池包的电路框图;
图21是作为实施例之一的第二电动工具与可充电电池包的电路框图;
图22是作为实施例之一的电动工具与可充电电池包的电路框图;
图23是作为实施例之一的电动工具与又一种可充电电池包的电路框图;
图24是作为另一种实施例的电动工具与可充电电池包的电路框图;
图25是充电系统的结构示意图;
图26是作为一种实施例的可充电电池包与充电器的电路框图;
图27是作为另一种实施例的可充电电池包与充电器的电路框图;
图28是作为又一种实施例的可充电电池包与充电器的电路框图。
具体实施方式
以下结合附图和具体实施例对本申请作具体的介绍。
如图1至图2所示的电池包,电池包100包括壳体10,电芯组件11,电池包接口12。电池包100的电压通常为10.8V、24V、36V、48V、56V或80V。为了方便说明本申请的技术方案,还定义了如图1所示的前侧、后侧、左侧、右侧、上侧和下侧。
壳体10包括在分界面处组装以形成内腔的上壳体101和下壳体102。壳体10由第一材料组成,具体而言,第一材料为热塑性材料,如聚乙烯塑料,聚氯乙烯塑料等。壳体10由上壳体101和下壳体102组装形成内腔以容纳电芯组件11。壳体10至少部分形成有电池包结合部13,用于使电池包100连接至电动工具,电池包100能够沿第一方向连接至电动工具。具体的,在壳体10的上表面形成有电池包结合部13,电池包结合部13能够与电动工具的工具配合部匹配,使电池包100沿安装方向可拆卸附接到电动工具。在一些实施例中,电池包结合部13设置有一对导轨。
电芯组件11设置在壳体10所形成的内腔中。电芯组件11包括多个非圆柱型的电芯单元111,多个电芯单元111串联、并联或者串联与并联结合组成电芯组件11。在一些实施例中,单个电芯单元111的电压为4.2V。电芯组件11还包括电芯组件正极端子112和电芯组件负极端子113。其中,电芯组件正极端子112至少与所述电芯单元正极连接;电芯组件负极端子113至少与所述电芯单元负极连接。电芯组件正极端子112和电芯组件负极端子113位于电池包100的同一侧。具体的,电芯单元正极和电芯单元负极位于电池包100的同一侧。在一些实施例中,电芯单元正极和电芯单元负极位于电池包100的前侧端面上,在另一些实施例中,电芯单元正极和电芯单元负极位于电池包100的后侧端面上。在一些实施例中,电芯单元111呈扁平状袋状结构,多个电芯单元111沿上下方向沿顺序堆叠排布,电芯单元111还可以弯曲成弧形,例如软包电池包。电芯单元111还包括电芯外壳,一般采用铝塑膜为电芯外壳。可以理解的是,本申请不限于所公开的实施例,在此对电芯的结构并没有限制。
在一些实施例中,其电芯组件11的能量密度(电池包能量/质量)的取值范围为大于150Wh/kg。可选的,其电芯组件11的能量密度(电池包能量/质量)的取值范围为大于200Wh/kg。可选的,其电芯组件11的能量密度(电池包能量/质量)的取值范围为150Wh/kg~200Wh/kg。可选的,电芯组件11的能量密度(电池包能量/质量)的取值范围为200Wh/kg~250Wh/kg。可选的,电芯组件11的能量密度(电池包能量/质量)的取值范围为250wh/kg~300Wh/kg。可选的,电芯组件11的能量密度(电池包能量/质量)的取值范围为300wh/kg~450Wh/kg。
在一些实施例中,电池包100的电芯内阻小于等于10mΩ。可选的,电池包100的电芯内阻小于等于6mΩ。可选的,电池包100的电芯内阻小于等于3mΩ。
在一些实施例中,电池包100的放电电流大于等于80A。可选的,电池包100的放电电流大于等于100A。可选的,电池包100的放电电流大于等于80A。
电池包接口12形成于壳体10的一个上表面,至少与电芯组件11电性连接,用于与电动工具建立物理和电气连接。电池包接口12包括电源正接口,电源负接口和电源通信接口。电池包通过电源正接口和电源负接口输出电能;电池包通过电源通信接口与附接的电动工具或充电器进行通信。在一个具体的实施例中,外壳设置有6个电池包接口12,可以理解的是,电池包100的壳体10可根据电池包的电学特性设置更多或更少的电池包接口12。
电池包接口12内还设置有电池包正极端子121、电池包负极端子122和电池包通信端子123。其中,电池包正极端子121与电芯组件正极端子112电性连接,其位于电源正接口中;电池包负极端子122与电芯组件负极端子113电性连接,其位于电源负接口中。电池包正极端子121和电池包负极端子122被配置为与电动工具的工具端子相配合以输出电芯组件11的电能至电动工具,具体而言,电芯组件11的电能经过电芯组件正极端子112、电池包正极端子121到电动工具,再经过电池包负极端子122和电芯组件负极端子113回到电芯组件11,因此,电芯组件11、电芯组件正极端子112、电池包正极端子121、电池包负极端子122、电芯组件负极端子113和电动工具形成电流回路。另外,电池包通信端子123,其位于电源通信接口中,用于和被接入的电动工具或充电器进行通信。作为电池包正极端子121、负极端子122和通信端子123的具体结构的一种实施方式,电池包正极端子121和负极端子122和通信端子123通过从左右方向两侧用弹力分别夹住工具端子,因此,电动工具的工具端子在电池包安装至电动工具的过程中被电池包的电池包接口12引导而插入到电池包正极端子121和电池包负极端子122,使得工具端子被正极端子和负极端子夹持,从而使得电动工具与电池包100实现电连接。
在一些实施例中,电芯组件正极端子112串联在至少一个电芯单元正极和电池包正极端子121之间;电芯组件负极端子113串联在至少一个电芯单元负极和电池包负极端子122之间。电芯组件11还包括:正极引出片114和负极引出片115,其中,正极引出片114使电芯组件正极端子112和电芯单元正极连接,负极引出片115使电芯组件负极端子113和电芯单元负极连接。为了使正极引出片114在电池包100输出大的放电电流时温度不会急剧上升,正极引出片114为具有一定宽度的金属片,这样提升了正极引出片114的散热效果,从而降低了使用过程中电池包100的发热,提高了电池包100的安全性和可靠性,也延长了电池包100的使用寿命。具体而言,正极引出片114的宽度在5mm至40mm区间内,且正极引出片114的厚度在0.3mm至1.5mm区间内。可选的,正极引出片114的宽度在6mm至35mm区 间内。
在另一些实施例中,电池包100的负极连接片115采用具有一定宽度的金属片,以提高负极引出片115的散热效果,从而降低使用过程中电池包100热量的聚集,提高电池包100的安全性和可靠性,也延长了电池包100的使用寿命。则负极引出片115的宽度5mm至40mm区间内,且负极引出片115的厚度在0.3mm至1.5mm区间内。可选的,负极引出片115的宽度在6mm至35mm区间内。可以理解的是,为了提升散热效果,电池包100的正极引出片114和负极引出片115可以同时采用具有一定宽度的金属片。在本实施方式中,由于电芯组件正极端子112和电芯组件负极端子113位于电池包100的同一侧,且电芯组件11包含的多个电芯单元111串联连接,正极引出片114和负极引出片115的长度不同。
参考图3所示,电芯组件11还包括电芯连接片116,电芯连接片116连接相邻的电芯单元111。具体地,电芯连接片116连接一个电芯单元正极和另一个电芯单元负极,则电芯组件11包括多个电芯连接片116,以实现各个电芯单元111的串联连接。另外,电芯连接片116的宽度与所述正极引出片114的宽度和/或负极引出片115的宽度相同,以提高电芯连接片116的散热效果,从而降低使用过程中电池包100热量的聚集,提高电池包100的安全性和可靠性,也延长了电池包的使用寿命。在一个具体的实施例中,电芯组件11至少包括第一电芯和第二电芯,第一电芯和第二电芯串联连接,其中,第一电芯负极电性连接负极引出片115,第二电芯正极电性连接正极引出片114。则相应地,电芯组件11还包括至少一个电芯连接片116,其连接在第一电芯的正极和第二电芯的负极,以实现第一电芯和第二电芯的串联连接。
如图3至图4所示,电池包还包括盖板14、电路板15、第一支架16和第二支架17。
其中,盖板14与电池包下壳体102连接,并和下壳体102形成容纳空间以容纳电芯组件11。在一些实施例中,盖板14与电池包下壳体102通过螺栓可拆卸连接以形成容纳空间容纳电芯组件11。同样地,盖板14与电池包上壳体101也形成一个容纳空间可以容纳电池包正极端子121、电池包负极端子122和电池包通信端子123等部件。具体地,盖板14呈平板状结构。
电路板15与电芯组件11和电池包接口12形成电连接。具体地,电路板15串联在电芯组件11和电池包接口12之间,用于采集与电池包有关的电信号。本实施例中,在一些实施例中,电路板15串联在电芯组件11和电池包通信端子123之间,用于将电池包信息通过电池包通信端子123传输至附接在电池包的电动工具上。电池包信息包括:电池包的放电电流,电芯组件11和/或电芯单元111的温度,电芯单元111的电压,电芯单元111的内阻值等。
第一支架16位于下壳体102的上侧,用于固定电池包正极端子121和电池包负极端子 122。具体地,第一支架16位于盖板14与电池包的上壳体101形成的容纳空间内,即第一支架16位于盖板14的上侧。因此,第一支架16用于将电池包正极端子121和负极端子122固定在盖板14上侧的预设位置。第一支架16具备固定在盖板14上表面的平板部,该平板部以露出的状态固定有电池包正极端子121和电池包负极端子122。具体地,第一支架16还包括正极端子部161和负极端子部162,正极端子部161用于容纳电池包正极端子121,负极端子部162用于容纳电池包负极端子122。在一些实施例中,正极端子部161和负极端子部162为沿着电池包安装方向至少一端开口的结构,以使电池包100结合至电动工具时,电池包正极端子121和电池包负极端子122能够接纳工具端子从而实现电池包和电动工具的电连接,以输出电池包100的电能至电动工具。
第二支架17,位于电路板15的上侧以固定电路板15。具体地,第二支架17和电路板15位于盖板14的上侧,即第二支架17和电路板15位于盖板14与电池包上壳形成的容纳空间内。第二支架17还用于固定电池包通信端子123。因此,第二支架17包括用于支撑电池包通信端子123的通信端子部171。此外,第二支架17还包括连接部172,连接部172为方形框体与电路板15可拆卸连接,进而使第二支架17与电路板15可拆卸连接。连接部172形成有敞开区域以封装电路板15,这样,参考图5所示,通过连接部172的方形框体可以将电路板15分成两个区域,定义电路板15在连接部172内侧的区域为第一区域151,而电路板15在连接部172外侧的区域为第二区域152。因此,为了提高电池包的防水性能,将尽可能多的电子元器件封装在第一区域151内,则所述第一区域151所容纳的电子元器件的数量大于所述第二区域152电子元器件的数量。连接部172的设置方便后续通过打胶的方式封装连接部172内侧的电子元器件,即电路板15第一区域151内的电子元器件,以提高电路板15的防水性能,从而提高电池包的可靠性。
在电路板15发生故障时,为了方便维修以延长电池包的寿命,从而降低电池包的使用成本,电路板15能够从电池包拆卸下来以进行修理,因此,第二支架17被配置为与第一支架16可拆卸连接,从而使电路板15与第一支架16可拆卸连接。在电路板15发生故障时,第二支架17带着电路板15从第一支架16拆卸,以实现电路板15与电池包分离,方便电路板15的维修。下面会结合实施例做详细的介绍。
在一些实施例中,第一支架16还包括导向部163,用于导向第二支架17沿第二方向结合至第一支架16。在一些实施例中,第一支架16的正极端子部161和负极端子部162位于导向部163的两侧。在导向部163的左右两侧形成有沿第二方向延伸的带板状,并且相对上述盖板14呈直角地树立。导向部163左右两侧的带板状形成空间以和第二支架17的通信端 子部171相适配,具体地,通信端子部171沿着导向部163左右两侧的带板滑动结合至第一支架16,导向部163能够容纳通信端子部171。在另一些实施例中,第一支架16的正极端子部161和负极端子部162相邻设置,而导向部163与正极端子部161或负极端子部162相邻设置,相应地,第二支架17通信端子部171设置的位置和导向部163相适配,以使第二支架17结合至第一支架16时,导向部163能够嵌合至通信端子部171。
在一些实施例中,第一支架16还包括基座164,基座164是用于将第一支架16固定到盖板14的预定位置的部件。基座164使得第一支架16和盖板14间形成容纳空间以容纳部分电路板15,这样使得第一支架16、第二支架17和电路板15的整体架构更加紧凑,缩小了电池包的尺寸。此外,盖板14上还设有多个限定部,以方便导向第二支架17沿第二方向结合至第一支架16,同时使电路板15的设置更加稳定,提高电池包的抗震性能。具体地,参考图3,盖板14上还设有第一限定部141,第二限定部142和第三限定部143。其中,第一限定部141和第二限定部142位于电路板15的左右两侧,以辅助第一支架16的导向部163导向第二支架17沿第二方向结合至第一支架16。同时,第一限定部141和第二限定部142辅助导向部163分电路板15沿第二方向结合至第一支架16和盖板14形成的容纳空间,使得第二支架17结合至第一支架16且电路板15结合至第一支架16和盖板14间的容纳空间后,电路板15的设置更稳定,而不会随着电池包的震动左右移动。在一些实施例中,盖板14上还设有第三限定部143,第三限定部143位于电路板15下侧,使得第二支架17结合至第一支架16且电路板15结合至第一支架16和盖板14间的容纳空间后,电路板15的设置更稳定,而不会随着电池包的震动上下移动。
参考图6所示第二支架17和电路板15的示意图,第二支架17还包括多个卡扣173,具体而言,第二支架17向下延伸出多个凸起形成卡扣173,则电路板15上与卡扣173相对应的设置了多个卡槽153。因此,第二支架17和电路板15通过卡扣173和卡槽153的配合以实现可拆卸连接。在一些实施例中,卡扣173的高度和电路板15的厚度相同;在另一些实施例中,卡扣173的高度大于电路板15的厚度,第二支架17和电路板15连接后,卡扣173凸出于电路板15的下表面,并和盖板14相抵接,这样,卡扣173相当于上述第三限定部143,使得第二支架17结合至第一支架16且电路板15结合至第一支架16和盖板14间的容纳空间后,电路板15的设置更稳定,而不会随着电池包的震动上下移动。
电池包还包括检测传感器,用于检测电芯组件11或电芯单元111的工作参数,并将工作参数传递至电路板15。检测传感器的数量可以为一个或多个。在一些实施例中,检测传感器可以为温度传感器,温度传感器设置在电芯组件11的表面或电芯单元111的表面,温度传感 器和电路板15连接,以将电芯组件11的温度信息传递至电路板15。在一些实施例中,检测传感器可以为电压传感器用于检测电芯单元111的电压,电压传感器和电路板15连接,以将电芯组件11的温度信息传递至电路板15。在一些实施例中,电池包包括温度传感器、电压传感器和检测电路板18,且温度传感器和电压传感器集成在检测电路板18上,为了方便检测,检测电路板18设置在电芯组件11的正极端子和电芯组件11的负极端子的一侧。同时,为了节省空间并提高电池包的可靠性,检测电路板18还可以为柔性电路板(FPC),柔性电路板是可以弯曲的。可以理解的是,电池包还可能包括其他类型的传感器,这样电路板15通过各种传感器可以采集电池包的信息并通过电池包通信端子123传输至附接的电动工具或充电器。
参考图7所示,电池包100还包括检测线输出插座181,检测线输出插座181连接有传感器连接线182,传感器连接线182通过检测线输出插座181和电路板15电性连接。传感器连接线182和检测电路板18上的检测传感器连接以输出传感器信号至电路板15。为了方便电路板15和电池包的可拆卸连接,检测线输出插座181和电路板15可拆卸连接,从而使得传感器连接线182和电路板15可拆卸连接。因此,在一些实施例中,检测线输出插座181和第二支架17可拆卸连接。具体地,传感器连接线182采用线束排插连接在检测线输出插座181,第二支架17上设置有插座适配结构,使得检测线输出插座181和第二支架17可拆卸连接。在另一些实施例中,检测线输出插座181的数量可以为多个,则第二支架17上设置有和检测线输出插座181的数量相匹配的插座适配结构。在本实施方式中,电池包包括第一检测线输出插座和第二检测线输出插座,第一检测线输出插座和第二检测线输出插座位于电量显示开关的两侧,其分别排插连接有6条传感器连接线182,可以理解的是,检测线输出插座181可以为1个,其上可排插连接有不同数量的传感器连接线182,其中,传感器连接线182的数量可以根据检测传感器的数量而设置,在此并没有限制。
如图7所示,多个传感器连接线182线束排插在在检测线输出插座181,由于各个传感器连接线排布较近,在插拔时,相邻的两个传感器连接线易接触而引发短路,导致检测电路板甚至电芯损坏,因此,在每一个传感器连接线上串联电阻,这样可以限制相邻两个传感器连接线短路时的电流,从而保护检测电路板和电芯。
参考图3、图8和图9,电池包还包括连接片19。具体而言,电池包100包括正极连接片19A和负极连接片19B。正极连接片19A串联在电池包正极端子121和电芯组件正极端子112之间,负极连接片19B串联在电池包负极端子122和电芯组件负极端子113之间。在一个具体地实施例中,负极连接片19B设置于电池包负极端子122的下侧,部分负极连接片19B 位于电路板15和电池包负极端子122之间。具体而言,负极连接片19B位于电池包负极端子122和盖板14之间形成的容纳空间内,同样地,正极连接片19A位于电池包正极端子121和盖板14之间形成的容纳空间内。
电池包100还包括电流传感器193,设置在电路板15上能够感应流经正极连接片19A或负极连接片19B电流的位置以检测电池包的输入电流或输出电流。通常电流传感器193设置在靠近正极连接片19A或负极连接片19B的一侧且能够感应正极连接片19A或负极连接片19B的磁场的位置。具体而言,电流传感器193设置在正极连接片19A或负极连接片19B的下侧,且电流传感器193与正极连接片19A或负极连接片19B在空间上间隔设置。
在一些实施例中,参考图10所示的电流传感器193与正极连接片19A或负极连接片19B位置关系的俯视图,电流传感器193靠近正极连接片19A或负极连接片19B的边缘设置以能够感应到流经正极连接片19A或负极连接片19B的电流。则电流传感器193所在的电路板的大小和形状可以相应地根据电流传感器193所在的位置设置,另外,电池包也可以相应地包含多个电路板以使电流传感器193靠近正极连接片19A或负极连接片19B的边缘设置。
在另一些实施例中,参考图11所示的电流传感器193与正极连接片19A或负极连接片19B位置关系的侧视图,电流传感器193靠近正极连接片19A或负极连接片19B的外表面设置,可选地,电流传感器193靠近正极连接片19A或负极连接片19B的下表面,以使其能够感应到流经正极连接片19A或负极连接片19B的电流。参考图12所示,在本实施方式中,定义电路板15形成有第三区域154,则第三区域154在上下方向上的投影面与正极连接片19A和/或负极连接片19B在上下方向的投影面重合。电流传感器193设置在电路板15上的第二区域152内,可选地,电流传感器193设置在电路板15上的第三区域内154,可选地,电流传感器193设置在电路板15上的第三区域内154的靠近第三区域154中心的位置,以接收正极连接片19A或负极连接片19B周围更多的磁场从而更精确地感应流经正极连接片19A或负极连接片19B的电流。在本实施方式中,正极连接片19A包括正极电流检测部191,负极连接片19B包括负极电流检测部192,正极电流检测部191及负极电流检测部192和电路板15平行设置,电流传感器193设置在正极电流检测部191或负极电流检测部192的下侧。
电流传感器193采用芯片式电流传感器,其可以非接触式的进行电流采样,从而实现电池包100的放电电流或充电电流不经过电路板15直接通过电池包正极端子121和电池包负极端子122输出至电动工具。这样,可以避免电池包正极端子121和电池包负极端子122产生的大量热量传导给电路板15,也减少了电路板15的发热,从而减少了电池包100的发热,提高电路板15的安全性,进而提高电池包100的可靠性。其中,所述正极连接片19A和所述 负极连接片19B由金属制成,电流传感器193可以为霍尔传感器。
电池包100还包括电芯支撑件117,电芯支撑件117用于支撑电芯组件11,电芯支撑件117具有第二材料,所述第二材料不同于所述第一材料,在一些实施例中,第二材料为热固性材料,而壳体11具有的第一材料是热塑性材料。可选地,所述第二材料的硬度不同于第一材料的硬度,在一些实施例中,第二材料的硬度小于第一材料的硬度,从而具有更高硬度的壳体能更好的保护电芯组件11。电芯支撑件117至少设置在电芯组件11的两端,至少部分电芯支撑件117封装电芯单元正极和电芯单元负极。因此,第二材料可以为绝缘材料,当电芯支撑件117封装电芯单元正极和电芯单元负极时能够绝缘,防止漏电。
在一些实施例中,电芯支撑件117包括第一支撑件和第二支撑件,第一支撑件位于电芯组件11的前端面上,前端面为电芯组件11上设有电芯芯单元111的正极和电芯单元负极的表面。第二支撑件位于电芯组件11的后端面上,后端面和前端面互为对立面。可选地,电芯支撑件117将电芯单元正极、电芯单元负极、正极引出片114和负极引出片115包覆固定。在本实施方式中,参考图13所示,电芯支撑件117从电芯组件11的前端面和后端面延伸到电芯组件11的左侧面、右侧面和下表面,围绕电芯组件11的前端面、后端面、左侧面、右侧面和下底面设置以形成上开口的容纳空间容纳电芯组件11。具体地,将电芯组件11放置于模具中,采用注胶的方式在电芯组件11的前端面、后端面、左侧面、右侧面和下表面形成支撑件,再将电芯组件11和成型的电芯支撑件117作为一个整体取出。
这样,电芯支撑件117用于支撑电芯组件11,防止由于颠簸或者震动,电芯单元111之间可能会发生相对位移,从而避免电芯的挤压或扭折的现象发生。因此,电芯支撑件117能够提高电池包的防摔减震性能,进而提高电池包的可靠性。
在一些实施例中,电芯单元111之间设置有缓冲层,缓冲层由第二材料制成。相邻的电芯单元111之间设置有缓冲层。电芯单元111间设置缓冲层有助于提高电池包的防摔减震性能,进而提高电池包的可靠性。
本申请的电池包100适用于电动工具200,所述电池包100可拆卸地安装至所述电动工具200。如图14至图15所示,电动工具200为冲击扳手。虽然本实施例涉及到冲击扳手,但是应该理解本申请不限于所公开的实施例,而是可应用于其他类型的电动工具,例如打草机、修枝机、吹风机、链锯等的花园类工具;还可以是电钻、电锤等的扭力输出类工具,还可以是电圆锯、曲线锯、往复锯等的锯切类工具,还可以是角磨、砂光机等的研磨类工具。
电动工具200包括工具主体21及设置在工具主体21上的工具接口22及工具配合部23。工具主体21包括电机211、输出轴212和冲击机构213。输出轴212被电机211驱动,冲击 机构213连接电机211和输出轴212,冲击机构213被电机211驱动并对输出轴212施加冲击力。电动工具200还包括手柄214,手柄214可被用户握持以操作电动工具。在手柄214上还设置有触发开关215,触发开关215用于被用户驱动以启动或停止电机211运行。工具接口22设置为适配所述电池包接口12以接入电池包100为电动工具200供电。此外,工具配合部23与电池包结合部13可拆卸连接,在一些实施例中,工具配合部23设置在电动工具手柄214的下端,用于与电池包100可拆卸式连接。通常,电池包结合部13设置有呈倒L型截面的一对滑动部。相应地,滑动部能够沿着手柄底部的工具配合部23滑动,以通过工具配合部23安装至工具主体21,工具配合部23可以设置为一对导轨。具体地,当用户朝向工具主体21的前方滑动电池包时,电池包100可与其连接。
目前,用于为电动工具供电的电池包多采用圆柱型锂电芯,采用多个圆柱型锂电芯串并联的连接以保证足够的电能输出以提高电动工具的续航能力。例如一个圆柱型锂电芯的输出电压是大约3.6V,则输出电压为18V的电池包串联的锂电芯的最大数量是5。
但是,随着电池技术的发展,更高输出电压,较低阻抗化学组成和构造形式的电池包的产生可能产生与相关技术中的电动工具兼容问题。当电池包的内阻降低时,所述电池包可以向电动工具提供实质上更高的电流。当电流提高超过电动工具电机以及其电子元器件的期望或设计限制时,可能将导致电动工具烧毁或进入过流保护而无法使用。为解决相关技术的不足,本申请提供一种电动工具系统及其电池包,能够提高电池包的兼容性,拓展电池包的使用场景。接下来将详细介绍。
图16示出了一种电动工具系统300,包括电动工具310及可适配电动工具以为电动工具供电的第一可充电电池包320和第二可充电电池包330。在图16中,电动工具310为冲击扳手。虽然本实施例涉及到冲击扳手,但是应该理解本申请不限于所公开的实施例,而是可应用于其他类型的电动工具,包括但不限于电钻、砂光机、角磨机、电扳手和电锯等。
如图16至图18所示,电池包均包括壳体,电芯组件和电池包接口。以第二可充电电池包330为例,电芯组件332设置在壳体331所形成的容纳腔内,壳体331的上表面形成有第二电池包接口333和电池包结合部334。其中,电池包接口333包括电源正接口、电源负接口和电源通信接口。电池包通过电源正接口和电源负接口为电动工具提供电能;通过电源通信接口与电动工具进行通信。
在一些实施例中,如图18所示的第二可充电电池包330,其电芯组件332的能量密度(电池包能量/质量)的取值范围为大于150Wh/kg。可选的,其电芯组件332的能量密度(电池包能量/质量)的取值范围为大于200Wh/kg。可选的,其电芯组件332的能量密度(电池包 能量/质量)的取值范围为150Wh/kg~200Wh/kg。可选的,电芯组件332的能量密度(电池包能量/质量)的取值范围为200Wh/kg~250Wh/kg。可选的,电芯组件332的能量密度(电池包能量/质量)的取值范围为250wh/kg~300wh/kg。可选的,电芯组件332的能量密度(电池包能量/质量)的取值范围为300wh/kg~450wh/kg。
上述的平板状的电芯组件332组成的电池包在以下可被称为“第二可充电电池包330”,用于电动工具的圆柱型的电芯组件332’成的电池包在下面被称为“第一可充电电池包320”,以使两者相区别。其中,第一可充电电池包320如图17所示。
其中,第一可充电电池包320具有能与电动工具310的工具接口311适配的第一电池包接口323,第二可充电电池包330具有能与电动工具310的工具接口311适配的第二电池包接口333。第一电池包接口323和第二电池包接口333具有基本相同的接口形状。具体而言,第一电池包接口323和第二电池包333分别设置在第一电池包320和第二电池包330的上表面,其至少包括电源正接口、电源负接口和电源通信接口。
与第一可充电电池包320相比较,第二可充电电池包330具有不同的电特性。在一些实施例中,第一可充电电池包320具有与电动工具310适配的第一电特性,则第二可充电电池包330具有第二电特性。其中,第二电特性包括以下电性参数中的至少一种:第二可充电电池包330的内阻,第二可充电电池包330的放电电流或满电续航能力。具体而言,与第一可充电电池包320相比较,第二可充电电池包330能够输出相似的或更高的输出电压,但是具有较低的内阻。这样,第二可充电电池包330无论在充电时还是放电时,都具有较低电压降和热量聚集而能够承受较高的充电和放电电流。因此,第二可充电电池包330可以提供较高的电流和功率至电动工具310。
在一些实施例中,如图18所示的第二可充电电池包330,至少具有100A的放电能力,第二可充电电池包330以10C倍率放电时,温升小于45℃。此外,第二可充电电池包330的电芯组件332的内阻小于等于10mΩ。可选的,第二可充电电池包330的电芯组件332的内阻小于等于6mΩ。可选的,第二可充电电池包330的电芯组件332的内阻小于等于3mΩ。
在一些实施例中,如图18所示的第二可充电电池包330,其放电电流大于等于80A。可选的,第二可充电电池包330的放电电流大于等于100A。这样,与第一可充电电池包320适配的电动工具310为第一电动工具3101,而能够采用第二可充电电池包330进行供电的电动工具310被称为第二电动工具3102。因此,第一电动工具3101被设计为使用输出低电流和低功率的第一可充电电池包320来工作,第一电动工具3101具有第一输出性能。相反地,与采用第一可充电电池包320供电的第一电动工3101相比,当第二电动工具3102附接第二可 充电电池包330运行时,其能够以更大的电流和功率运行,所述第二电动工具3102具有与第一输出性能不同的第二输出性能。
然而,当第一电动工具3101使用第二可充电电池包330供电时,由于第二可充电电池包330过量的输出能力可能会导致第一电动工具3101的损坏。在给定的电流下,第二可充电电池包330将具有比第一可充电电池包320更低的电池组内压降。例如额定电压18V的第一可充电电池包320在输出电流为10C时,带电量50%时可以输出15V的输出电压,而第二可充电电池包330在同一10C放电电流下带电量50%时至少输出17.5V的输出电压。例如第一可充电电池包320和第二可充电电池包330的容量均为4Ah,输出电流都为40A时,由第一可充电电池包320供电的第一电动工具3101的输入功率大约为600W,而由第二可充电电池包330供电的第二电动工具3102的输入功率大约为700W。高的输出功率限制了第二可充电电池包330的应用场景,为了解决这个问题,下面的公开的实施方案可以拓展第二可电电池包330的应用场景,使其既能适配第一电动工具3101又能适配第二电动工具3102。
图19示出了第一电动工具系统3001的模块图和第二电动工具系统3002的模块图。图19示出了下述原理:第一电动工具3101可以采用第一可充电电池包320供电的同时,也应当可以采用第二可充电电池包330供电。同样地,第二电动工具3102采用第二可充电电池包330的同时,也同样可以使用第一可充电电池包320。换句话说,第二可充电电池包330既可以适配第二电动工具3102又可以适配第一电动工具3101,以此提高电池包的兼容性,从而拓展电池包的使用场景。
图20示出了作为一种实施例的电动工具系统的电路框图。电动工具系统包括电动工具3101和可充电电池包60(第一可充电电池包320或第二可充电电池包330)。
其中,可充电电池包60至少包括串联的多个电芯,图20中示出了4个串联的电芯而组成的电芯组件61,可充电电池包60可以具有大于4个的电芯。可充电电池包60还包括:电源正端子62,电源负端子63,电源通信端子64,电源识别模块65和温度传感器66。
电源正端子62和电源负端子63用于输出放电电流或输入充电电流。电源通信端子64用于与电动工具310进行通信。其中,电源正端子62位于电源正接口中,电源负端子63位于电源负接口中,电源通信端子64位于电源通信接口中。
温度传感器66用于检测电芯组件61的温度。在一些实施例中,温度传感器66与电源通信端子64连接。具体的,温度传感器66设置在电芯的表面,用于检测电芯表面的温度,当电芯表面的温度大于等于阈值时,温度传感器66输出过温信号至电动工具3101以使电动工具3101停止接收可充电电池包60输出的电能,防止可充电电池包60因为过热而发生爆炸。 温度传感器66可以是热敏电阻器,例如NTC或PTC。
电源识别模块65存储有可充电电池包ID,用于当插入到充电器或电动工具时使其识别第一可充电电池包320或第二可充电电池包330。可充电电池包ID包括例如型号、版本、电芯配置和电池类型,诸如圆柱型电芯电池或平板状电芯电池。可充电电池包ID可以为一个或多个通信代码,还可以为一个ID电阻器、用于显示可充电电池包的识别数据的LED显示器、在被电动工具或充电器衔接和感测时发送的串行数据、在通过电源通信接口而发送到电动工具/充电器的数据的帧中的字段等。
此外,电动工具3101至少包括电机3111,开关电路3121,工具控制模块3131和工具识别模块3141,以及工具接口正端子3151,工具接口负端子3161,工具接口通信端子3171。其中,工具接口正端子3151和工具接口负端子3161用于接入可充电电池包60输出的放电电流。工具接口通信端子3171能够使电动工具3101和可充电电池包60进行通信。具体地,工具接口正端子3151位于工具正接口中,其能够和可充电电池包60的电源正端子62可拆卸连接;工具接口负端子3161位于工具负接口中,其能够和可充电电池包60的电源负端子63可拆卸连接;工具接口通信端子3171位于工具通信接口中,其能够和可充电电池包60的电源通信端子64可拆卸连接。
开关电路3121用于驱动电机3111,与工具控制模块3131电性连接。开关电路3121接收来自可充电电池包60的电能,在工具控制模块3131输出的开关信号的驱动下将可充电电池包60的电压以一定的逻辑关系分配给电机33111的定子上的各相绕组,以使电机3111启动并持续转动。具体而言,开关电路3121包括多个电子开关。在一些实施例中,电子开关包括场效应晶体管(FET),在另一些实施例中,电子开关包括绝缘栅双极晶体管(IG-BT)等。
工具识别模块3141用于识别工具接口311接入的第一可充电电池包320或第二可充电包中330的一种。工具识别模块3141和工具接口通信端子3171连接。工具识别模块3141能够通过工具接口通信端子3171和附接的电池包通信和感测电池包信息。其中,电池包的信息包括型号、版本、电芯配置和电池类型,诸如圆柱型电芯电池或平板状电芯电池等。因此,工具识别模块3141能够根据电池包信息判断工具接口311接入的是第一可充电电池包320还是第二可充电电池包330并发送识别信号至工具控制模块3131。在一些实施例中,工具识别模块3141还能够在接收到可充电电池包60的过温信号后发送停机信号至工具控制模块3131以控制第一电动工具3101停机,从而保护电池包和电动工具的安全。
在一些实施例中,工具识别模块3141可以包括传感器。具体地,传感器可以为磁传感器或电感拾取传感器以感测附接的电池包信息。通过射频通信和光感测来识别与电动工具附接 的是第一可充电电池包320还是第二可充电电池包330。
工具控制模块3131至少与工具接口311连接,用于根据工具接口311接入的可充电电池包60来控制第一电动工具3101的输出性能。具体地,工具控制模块3131用于根据识别信号控制加载至电机两端的电压或电流从而使电机能够正常工作。例如当第一电动工具3101采用第一可充电电池包320供电时,工具识别模块3141识别出工具接口311接入的为第一可充电电池包320发送第一识别信号至工具控制模块3131,则工具控制模块3131可以将第一可充电电池包320的输出电压和电流完全加载至电机3111识别出工具接口311接入的为第二可充电电池包330发送识别信号至工具控制模块3131,则工具控制模块3131将通过开关电路3121限制加载至电机3111两端的电3131发送脉冲宽度调制(PWM)信号至开关电路3121,PWM信号可以迅速地将开关电路3121中的多个电子开关通断,分配通过电机的平均电压,平均电压低于可充电电池包60的输入电压。可以理解的是,工具识别模块3141和工具控制模块3131可以集成一体设置,也可以分开设置。
图21示出了作为另一种实施例的电动工具系统的电路框图,与图20所示电动工具系统不同的是图21所示的第二电动工具3102还包括功率限制模块3152。
功率限制模块3152用于限制来自可充电电池包60的输入电流从而限制功率输入。它可以根据从工具识别模块3142接收的识别信号来增加电阻值。工具识别模块3142可以感测与第二电动工具3102附接的可充电电池包60的类型(第一可充电电池包20或第二可充电电池包30),并发送识别信号至工具控制模块3132用于指示附接了第一可充电电池包320还是第二可充电电池包330,工具控制模块3132根据识别信号向功率限制模块3152发送控制信号。因此,功率限制模块3152被配置来接收工具控制模块3132的控制信号,以便增加阻抗以限制来自可充电电池包60的最大输入电流,或者保持可充电电池包60的最大输入电流。
在一些实施例中,功率限制模块3152串联在第二电动工具3102的工具接口正端子3162和电机之间;在另一些实施例中,功率限制模块3152串联在第二电动工具3102的工具接口负端子3182和电机之间。具体地,功率限制器件3152可以为无源电阻,功率限制器3152还可以为有源电阻器,则有源电阻器的阻值可以随着负载的改变而改变,例如场效应晶体管等具有限流功能的半导体器件或电路等。
当第一可充电电池包320为第二电动工具3102供电时,其工具识别模块3142发送识别信号至工具控制模块3132以指示第二电动工具3102附接了第一可充电电池包320,则工具控制模块3132根据识别信号向功率限制模块3152发送控制信号以使功率限制模块3152的输出电流维持来自第一可充电电池包320的放电电流;而当第二可充电电池包330为第二电动 工具3102供电时,工具识别模块3142通过工具接口通信端子3172识别出接入的为第二可充电电池包330,发送识别信号至工具控制模块3132以指示第二电动工具3102附接了第二可充电电池包330,则工具控制模块3132根据识别信号向功率限制模块3152发送控制信号以使功率限制模块3152的输出电流维持来自第二可充电电池包330的最大输入电流,以使第二电动工具3102以更大的电流和功率运行。
图22示出了作为另一种实施例的电动工具系统的电路框图,与图20所示电动工具系统不同的是可充电电池包70还包括功率限制模块77。
在本实施例中,功率限制模块77设置于可充电电池包70中,其与电源通信端子74连接。功率限制模块77用于限制可充电电池包70的输出电流从而限制功率输出。功率限制模块77可以根据从工具控制模块3131接收的控制信号来增加电阻值。工具识别模块3141可以感测与第一电动工具3101附接的可充电电池包70的类型(第一可充电电池包320或第二可充电电池包330),并发送识别信号至工具控制模块3131以指示附接了第一可充电电池包320还是第二可充电电池包330,工具控制模块3131根据识别信号向功率限制模块77发送控制信号。因此,功率限制模块77被配置来接收工具控制模块3131的识别信号,以便增加阻抗以限制来自可充电电池包70的最大输出电流,或者保持可充电电池包70的最大输入电流。具体地,工具控制模块3131通过工具接口通信端子3171和电源通信端子74向功率限制模块77发送控制信号。
功率限制模块77设置在可充电电池包70的放电路径上。在一些实施例中,功率限制模块77设置在电芯组件的负极和电源负端子73之间,功率限制模块77还可以设置在电芯组件的正极和电源正端子72之间。具体地,功率限制模块77可以为无源电阻,其可以有效提高电池包的内阻。功率限制模块77还可以为有源电阻器,则可充电电池包70的内阻可以随着负载的改变而改变,例如场效应晶体管等具有限流功能的半导体器件或电路等。
在一些实施例中,当电动工具310采用第一可充电电池包320供电时,即工具接口311接入第一可充电电池包320时,其工具识别模块发送识别信号至工具控制模块以指示电动工具310附接了第一可充电电池包320,则工具控制模块发送控制信号至第一可充电电池包320内的功率限制模块以使功率限制模块维持第一可充电电池包320以最大放电电流,即第一放电电流放电;而当电动工具使用第二可充电电池包330作为电源时,如果此时电动工具为第一电动工具3101,则工具识别模块3141通过工具通信端子3171识别出接入的为第二可充电电池包330,发送识别信号至工具控制模块3131以指示第一电动工具3101附接了第二可充电电池包330,则工具控制模块3131发送第二控制信号至功率限制模块以使功率限制模块增 加阻抗以限制可充电电池包的最大输出电流,即第二放电电流,其中,第二放电电流小于等于第一放电电流以防止电动工具烧毁或进入过流保护而无法启动。在一些实施例中,当工具识别模块通过工具通信端子识别出工具接口接入的是第二可充电电池包330时,工具识别模块发送第二控制信号至控制模块以控制第二可充电电池包330以不大于第一放电电流的第二放电电流放电。而当电动工具使用第二可充电电池包330作为电源时,如果此时电动工具为第二电动工具3102,工具识别模块通过工具通信端子识别出工具接口接入的为第二可充电电池包330,发送识别信号至控制模块以指示第二电动工具3102附接了第二可充电电池包330,则控制模块发送第一控制信号至功率限制模块以使功率限制模块维持可充电电池包的最大输出电流,以使电动工具以更大的电流和功率运行。
图23示出了作为另一种实施例的电动工具系统的电路框图,与图20所示的电动工具系统不同的是可充电电池包90还包括电源控制模块98和功率限制模块97。在本实施例中,电源控制模块98和功率限制模块97设置于可充电电池包中。其中,温度传感器96用于检测电芯组件的温度,其和电源控制模块98可通信地连接。具体的,温度传感器96用于检测电芯的温度,当电芯的温度大于等于阈值时,温度传感器96输出过温信号至电源控制模块98以使电池包90停止输出电能,防止电池包因为过热而发生爆炸。温度传感器可以是热敏电阻器,例如NTC或PTC。因为这样的温度传感器96是在本领域内公知的,因此为了简洁而省略功能操作的详细说明。
电源识别模块96用于识别所述电源接口接入的电动工具。可选地,电源识别模块96用于识别电池包接口接入的电动工具是第一电动工具3101和第二电动工具3102中的一种。电源识别模块96和电源通信端子94连接。电源识别模块96通过电源通信端子94和附接的电动工具通信和感测电动工具信息。电动工具的信息包括电动工具的功率极限、电流极限和电压极限中的一个或多个。因此,电源识别模块96能够根据电动工具信息判断电源接口接入的是第一电动工具3101还是第二电动工具3102并发送识别信号至电源控制模块98。具体而言,如可充电电池包在工作时连接到第一电动工具3101,则电源识别模块96经由电源通信端子94接收包含第一电动工具3101信息的信号。如果可充电电池包在工作时连接到第二电动工具3102,则电源识别模块96经由电源通信端子94接收包含第二电动工具3102信息的信号。
电源控制模块98控制可充电电池包输出的最大功率和最大电流。电源控制模块98和功率限制模块97可通信地连接。电源控制模块98被配置为接收电源识别模块96的识别信号,并根据识别模块的识别信号来调节功率限制模块97的阻抗以限制可充电电池包的最大功率和最大电流,或者保持其较低内阻以维持其最大功率和最大电流。电源控制模块98可以为数 字控制器,微处理器,模拟电路,数字信号处理器或专用集成电路(ASIC)类的一个或多个数字IC的智能器件。
在一些实施例中,当第二可充电电池包330连接至第一电动工具3101时,电源识别模块接收包含第一电动工具3101信息的信号并传递至放电控制模块,则放电控制模块调节功率限制模块的阻抗以控制第二可充电电池包330以不大于第一放电电流的第二放电电流放电。当第二可充电电池包330连接至第二电动工具3102时,电源识别模块接收包含第二电动工具3102信息的信号并传递至第二放电控制模块,则第二放电控制模块调节功率限制模块的阻抗至最小值以使第二可充电电池包330以第三放电电流放电,其中,第三放电电流大于第一放电电流。
此外,当第二可充电电池包330连接至第二电动工具3102时,放电控制模块控制所述第二可充电电池包330以第二电压提供电能至第二电动工,其中,第二电压大于上述第一电压。具体而言,在第二电动工具3102的工具接口接入所述第二可充电电池包330时,电源识别模块接收包含第二电动工具3102信息的信号并传递至第二放电控制模块,则第二放电控制模块调节功率限制模块的阻抗至最小值,从而使第二可充电电池包330以第二电压输出电能。
作为另一种实施方式的电动工具系统的电路框图,参考图24,电动工具40还包括连接单元47,第一放电模块48和第二放电模块49。
第一放电模块48和第二放电模块49包括电动工具中的其他电子器件,第一放电模块48和第二放电模块49至少具有不同的功率极限、电流极限或电压极限中的一个或多个。在一些实施例中,第一放电模块48适配于第一可充电电池包320,在所述第一电池包作为所述电动工具的电能来源时,所述第一放电模块工作以使所述第一电动工具具有第一输出性能;而第二放电模块49适配于第二可充电电池包330,在所述第二电池包作为所述电动工具的电能来源时,所述第二放电模块工作以使所述电动工具具有与所述第一输出性能不同的第二输出性能。
连接单元47可选择性的与第一放电模块48和第二放电模块49连接。连接单元47具有输入端、输出端和控制端,其中,连接单元47的输入端和工具正端子421连接,连接单元47的输出端可选择的与第一放电模块48或第二放电模块49连接,连接单元47的控制端和控制模块45连接。在一些实施例中,在工具接口接入第一可充电电池包320时,连接单元47与第一放电模块48连接,而在工具接口接入第二可充电电池包330时,连接单元47与第二放电模块49连接。可以理解的是,连接单元47、第一放电模块48和第二放电模块49也可以串联在工具负端子422和电机之间。
工具识别模块46可以感测与电动工具附接的可充电电池包的类型(第一可充电电池包320或第二可充电电池包330),并直接向控制模块45发送所感测的信号,用于指示附接了第一可充电电池包320还是第二可充电电池包330。因此,控制模块45被配置来根据识别信号,以控制连接单元47可选择性的与第一放电模块48和第二放电模块49连接。具体而言,控制模块45被配置为:在工具接口接入第一可充电电池包320时,控制模块45控制连接单元47使工具正端子和第一放电模块48连接,而在工具接口接入第二可充电电池包330时,控制模块45控制连接单元47使工具正端子和第二放电模块49连接。
用于为电动工具供电的电池包多采用圆柱型锂电芯,采用多个圆柱型锂电芯串并联的连接以保证足够的电能输出以提高电动工具的续航能力。例如一个圆柱型锂电芯的输出电压是大约3.6V,则输出电压为18V的电池包串联的锂电芯的最大数量是5。
随着电池技术的发展,更高输出电压,较低阻抗化学组成和构造形式的电池包以及其他各种不同的电池包的产生对于用户而言是相当不便捷的,因为不得不使用针对每个电池包专门设计的特定的电池充电器来对电池包进行充电。为解决相关技术的不足,本申请的目的在于提供一种充电系统及电池包,能够提高充电系统和电池包的充电兼容性。接下来将详细介绍。
图25至图26示出了一种充电系统400,包括第一可充电电池包320、第二可充电电池包330及可适配第一可充电电池包320和第二可充电电池包330以为电池包充电的充电器340。
图26示出了一种实施例的充电系统400的电路框图。此充电系统400包括可充电电池包(第一可充电电池包320或第二可充电电池包330)和充电器(第一充电器3401或第二充电器3402)。因为,第一可充电电池包320和第二可充电电池包330的电路框图一致,且第一充电器3401和第二充电器3402的电路框图一致,在此以第一可充电电池包320和第一充电器3402的电路框图为例进行说明。
第一可充电电池包320至少包括串联的多个电芯,图26中示出了4个串联的电芯,可充电电池包可以具有大于4个的电芯,在此对电芯数量没有限制。可充电电池包还包括:电源正端3201,电源负端子3202,电源通信端子3203,电源识别模块3205和温度传感器3204。
电源正端子3201和电源负端子3202用于输出放电电流或输入充电电流。电源通信端子3203用于与充电器进行通信。其中,电源正端子3201位于电源正接口中,电源负端子3202位于电源负接口中,电源通信端子3203位于电源通信接口中。
温度传感器3204用于检测电芯组的温度。在一些实施例中,温度传感器3204与电源通信端子3203连接。具体的,温度传感3204设置在电芯表面,用于检测电芯表面的温度。温 度传感3204可以是热敏电阻器,例如NTC或PTC。
电源识别模块3205存储有可充电电池包ID,用于当插入到充电器使其识别第一可充电电池320或第二可充电电池包330。可充电电池包ID包括例如型号、版本、电芯配置和电池类型,诸如圆柱型电芯电池或平板状电芯电池。可充电电池包ID可以为一个或多个通信代码,还可以为一个ID电阻器、用于显示可充电电池包的识别数据的LED显示器、在被电动工具或充电器衔接和感测时发送的串行数据、在通过电源通信接口而发送到充电器的数据的帧中的字段等。
第一充电器3401包括电流检测模块3402、电量检测模块3403、温度检测模块3404、充电识别模块3405、充电控制模块3406、电流控制模块3407,此外,充电器3401还包括用于允许和阻止充电电流的开关模块3408以及将外部电源调整为可以为电池包和充电器中的其他电子部件或电路使用的电能的电源模块3409。当然,上述电量检测模块3403和温度检测模块3404也可以设置在电池包中,在此并非限制。
电流检测模块3402用于检测充电器3401的充电电流。在一些实施例中,电流检测模块3404是电阻器,并且检测施加在电阻器上的电压,以获得流入电池包的充电电流。
电源模块3409包括整流电路和滤波电路,用于整流来自交流电源的交流电并进行滤波以输出直流电流。
充电器3401还包括输出正端子3411,输出负端子3421,充电通信端子3431。输出正端子3411和输出负端子3421用于输出充电电流。充电通信端子3431用于与第一可充电电池包320进行通信。
当第一可充电电池包320插入充电器3401中时,温度传感器3204耦合到充电器的温度检测模块3404,电量检测模块3403电连接到电池包两端的正负极端子3201和3202,用于检测电池320的电量。
充电识别模块3431用于识别充电器接入的第一可充电电池包320或第二可充电电池包330中的一种。充电识别模块3431和充电通信端子3203连接。充电识别模块3431能够通过充电通信端子3203和附接的电池包通信和感测电池包信息以识别充电器接入的第一可充电电池包320或第二可充电电池包330中的一种并发送识别信号至充电控制模块3406。其中,电池包的信息包括型号、版本、电芯配置和电池类型,诸如圆柱型电芯电池或平板状电芯电池等。在一些实施例中,充电识别模块3431为判断电阻器,其与电源识别模块一起分压参考电压。该分压被作为电池包的信息输出。
充电控制模块34063能够根据电池包信息判断充电接口接入的是第一可充电电池包320 还是第二可充电电池包330以控制充电器的充电电流。充电控制模块3406根据识别信号发送电流控制信号至电流控制模块3407。在本实施方式中,在充电器接入所述第一可充电电池包320时,充电控制模块3406控制充电器以第一充电电流给第一可充电电池包320充电;而在充电器接入第二可充电电池包330时,充电控制模块3406控制所述充电器以第二充电电流充电。
电流控制模块3407用于调整流向电池包的充电电流,电流控制模块3407和充电控制模块3406可通信连接,因此,电流控制模块3407被配置为接收来自充电控制模块3406的电流控制信号,以限制来自电源模块的最大输出电流,或者保持电源模块的最大输出电流。具体地,电流控制模块3407包括功率限制器件,功率限制器件可以为无源电阻,功率限制器件还可以为有源电阻器,则有源电阻器的阻值可以随着电流控制信号的改变而改变,例如场效应晶体管等具有限流功能的半导体器件或电路等。
开关模块3408连接到充电回路上,并与充电控制模块3406耦合,接收充电控制模块3406的控制信号,切换开关状态,以控制充电回路的通或断。
具体工作过程如下:充电识别模块3405通过充电通信端子3203和附接的电池包通信和感测电池包信息以识别充电器接入的第一可充电电池包320或第二可充电电池包330中的一种并发送识别信号给充电控制模块3406,同时电量检测模块3403和温度检测模块3404也将接收到的电量信息和温度传感器3204的温度信息发送给充电控制模块3406,充电控制模块3406将电池包信息,电量信息和温度信息在内部处理后,发送电流控制信号给电流控制模块3407以调整充电电流,或发送给开关模块3408,控制充电回路的通断,以允许或禁止充电电流流向电池包。在本实施方式中,通过改变电流控制模块3407的电阻来改变充电电流的模式。如果电流控制模块3407的电阻变化,至少有两种可选的充电电流模式:适应第一可充电电池包320的电流相对较低的第一充电电流模式,以及其中充电电流比第一充电电流模式的电流高的第二充电电流模式,其中,第一充电模式下的充电电流为第一充电电流;第二充电模式下的充电电流为第二充电电流。
图27示出了作为另一种实施例的充电组合500的电路框图,与图26所示充电组合400不同的是电流控制模块设置在可充电电池包内,即第一可充电电池包320还包括电流控制模块3206,且电流控制模块3206和电源通信端子3203连接。
充电识别模块3405用于识别充电器接入的第一可充电电池包320或第二可充电电池包330中的一种。充电识别模块3405和充电通信端子3203连接。充电识别模块3405能够通过充电通信端子3203和附接的电池包通信和感测电池包信息以识别充电器接入的第一可充电 电池包320或第二可充电电池包330中的一种并发送识别信号至充电控制模块3406。其中,电池包的信息包括型号、版本、电芯配置和电池类型,诸如圆柱型电芯电池或平板状电芯电池等。在一些实施例中,充电识别模块为判断电阻器,其与电源识别模块一起分压参考电压。该分压被作为电池包的信息信息输出。
充电控制模块3406能够根据电池包信息判断工具接口接入的是第一可充电电池包320还是第二可充电电池包330以控制充电器的充电电流。充电控制模块1015根据识别信号发送电流控制信号至电流控制模块3206。在本实施方式中,在充电器接入所述第一可充电电池包320时,充电控制模块3406控制充电器以第一充电电流给第一可充电电池包320充电;而在充电器接入第二可充电电池包330时,充电控制模块控制所述充电器以第二充电电流或第一充电电流给第二可充电电池包330充电。
电流控制模块3206用于调整流向电芯组的充电电流。电流控制模块3206通过电源通信端子3203接收来自充电控制模块3406的电流控制信号来调整流向电芯组的充电电流。具体地,电流控制模块包括功率限制器件,功率限制器件可以为无源电阻,功率限制器件还可以为有源电阻器,则有源电阻器的阻值可以随着电流控制信号的改变而改变,例如场效应晶体管等具有限流功能的半导体器件或电路等。在本实施方式中,在充电器接入所述第一可充电电池包320时,电流控制模块3206控制以第一充电电流给电芯组充电;而在充电器接入第二可充电电池包330时,充电控制模块3206控制以第二充电电流给电芯组充电。因此,电流控制模块被配置为接收来自充电控制模块3406的电流控制信号,以便限制来自充电器的最大充电电流,或者保持来自充电器的最大充电电流。
具体工作过程如下:充电识别模块3405通过充电通信端子3203和附接的电池包通信和感测电池包信息以识别充电器接入的第一可充电电池包320或第二可充电电池包330中的一种并发送识别信号给充电控制模块,同时电量检测模块3403和温度检测模块3404也将接收到的电量信息和温度传感器的温度信息发送给充电控制模块3406,充电控制模块3406将电池包信息,电量信息和温度信息在内部处理后,发送电流控制信号给电流控制模块3206以调整充电电流,或发送给开关模块3408,控制充电回路的通断,以允许或禁止充电电流流向电池包。在本实施方式中,通过改变电流控制模块的电阻来改变充电电流的模式。如果电流控制模块的电阻变化,至少有两种可选的充电电流模式:适应第一可充电电池包320的电流相对较低的第一充电电流模式,以及其中充电电流比第一充电电流模式的电流高的第二充电电流模式,其中,第一充电模式下的充电电流为第一充电电流;第二充电模式下的充电电流为第二充电电流。
图28示出了作为另一种实施例的充电组合600的电路框图,与图27所示充电组合100不同的是充电控制模块3207设置在可充电电池包内,即可充电电池包包括充电控制模块3207,且充电控制模块3207通过通信端子3203能够控制开关模块3408导通和关断。
电源识别模块3205用于识别可充电电池包接入的第一充电器3401或第二充电器3402中的一种。电源识别模块3205和电源通信端子3203连接。电源识别模块3205能够通过电源通信端子3203和附接的充电器通信和感测充电器信息以识别可充电电池包接入的第一充电器3401或第二充电器3402中的一种并发送识别信号至充电控制模块3207。其中,充电器信息包括充电电压和充电电流等。
充电控制模块3207能够根据电池包信息判断电源接口接入的是第一充电器3401还是第二充电器3402以控制电芯组的充电电流。充电控制模块3207根据识别信号发送电流控制信号至电流控制模块。
电流控制模块3206用于调整流向电芯组的充电电流。电流控制模块3206通过电源通信端子3203接收来自充电控制模块3207的电流控制信号来调整流向电芯组的充电电流。具体地,电流控制模块3206包括功率限制器件,功率限制器件可以为无源电阻,功率限制器件还可以为有源电阻器,则有源电阻器的阻值可以随着电流控制信号的改变而改变,例如场效应晶体管等具有限流功能的半导体器件或电路等。
这样,当第一可充电电池包320与第一充电器3401连接时,第一充电器3401以第一充电电流充电。具体而言,当第一可充电电池包320采用第一充电器3401供电时,其电源识别模块3205发送识别信号至充电控制模块3207以指示第一可充电电池包320附接了第一充电器3401,则充电控制模块3207发送第一电流控制信号至电流控制模块3206以使电流控制模块3206输出至电芯组的电流维持来自第一充电器4301的第一充电电流;而当第一可充电电池包320与第二充电器3402连接时,电源识别模块3205识别出接入的为第二充电器3402,发送识别信号至充电控制模块3207以指示第一可充电电池包320附接了第二充电器3402,则充电控制模块3207发送第二电流控制信号至电流控制模块3206以使电流控制模块3206限制来自第二充电器3402的充电电流,使得电流控制模块3206输出至电芯组的电流不大于第一充电电流,防止第一可充电电池包320过充而损坏。
另外,当第二可充电电池包330与第一充电器3401连接时,其电源识别模块3205发送识别信号至充电控制模块3207以指示第二可充电电池包330附接了第一充电器3401,则充电控制模块3207发送第一电流控制信号至电流控制模块3206以使电流控制模块3206输出至电芯组的电流维持来自第一充电器3401的第一充电电流,防止第一充电器3401以超过额定 电流的电流向第二可充电电池包330供电而造成第一充电器3401的发热损坏;而当第二可充电电池包330与第二充电器3402连接时,其电源识别模块3205发送识别信号至充电控制模块3207以指示第二可充电电池包330附接了第二充电器3402,则充电控制模块3207发送第三控制信号至电流控制模块3206以使电流控制模块3206控制输出至电芯组的电流维持来自第二充电器3402的第二充电电流。

Claims (96)

  1. 一种电池包,包括:
    壳体,包括在分界面处组装以形成内腔的上壳体和下壳体;
    电芯组件,设置在所述内腔内;
    电池包接口,至少与所述电芯组件电性连接;
    电路板,至少与所述电芯组件和所述电池包接口电连接;
    其中,所述电芯组件包括:
    多个电芯单元;
    电芯组件正极端子,至少与所述电芯单元的正极连接;以及
    电芯组件负极端子,至少与所述电芯单元的负极连接;
    所述电池包接口包括:
    电池包正极端子,与所述电芯组件正极端子连接;
    电池包负极端子,与所述电芯组件负极端子连接;和
    电池包通信端子,
    第一支架,位于所述下壳体的上侧,用于固定所述电池包正极端子和所述电池包负极端子;
    第二支架,位于所述电路板的上侧并与所述电路板连接,所述第二支架与所述第一支架可拆卸连接。
  2. 根据权利要求1所述的电池包,其中,
    所述电芯组件正极端子和所述电芯组件负极端子位于同一侧。
  3. 根据权利要求1所述的电池包,其中,
    所述第一支架包括:
    导向部,用于导向所述第二支架沿第二方向结合至所述第一支架。
  4. 根据权利要求1所述的电池包,其中,
    所述电路板与所述第二支架可拆卸连接。
  5. 根据权利要求1所述的电池包,其中,
    所述第二支架包括:
    通信端子部,用于支撑所述电池包通信端子;
    连接部,与所述电路板可拆卸连接,所述连接部形成敞开区域以封装所述电路板。
  6. 根据权利要求1所述的电池包,其中,
    所述电路板形成有第一区域和第二区域,所述第一区域所容纳的电子元器件的数量大于 所述第二区域电子元器件的数量。
  7. 根据权利要求3所述的电池包,其中,
    所述第一支架还包括:
    正极端子部,用于容纳所述电池包正极端子;
    负极端子部,用于容纳所述电池包负极端子;
    所述正极端子部和负极端子部位于所述导向部的两侧。
  8. 根据权利要求1所述的电池包,
    还包括:盖板,与所述下壳体连接;
    所述盖板和所述下壳体形成容纳空间容纳所述电芯组件;
    所述盖板用于固定所述第一支架。
  9. 根据权利要求8所述的电池包,其中,
    所述盖板和所述第一支架间形成容纳空间以容纳部分所述电路板。
  10. 根据权利要求7所述的电池包,其中,
    所述正极端子部能够容纳多个正极端子;
    所述负极端子部能够容纳多个负极端子。
  11. 一种电动工具,包括:
    工具主体,及设置在所述工具主体上的工具接口和工具配合部;
    电池包,所述电池包上配置有电池包接口和电池包结合部,所述电池包接口设置为适配所述工具接口以为所述电动工具供电,所述电池包结合部可与所述工具配合部可拆卸式连接;所述电池包还包括:
    壳体,包括在分界面处组装以形成内腔的上壳体和下壳体;
    电芯组件,设置在所述内腔内;
    电池包接口,至少与所述电芯组件电性连接;
    电路板,至少与所述电芯组件和所述电池包接口电连接;
    其中,所述电芯组件包括:
    多个电芯单元;
    电芯组件正极端子,至少与所述电芯单元的正极连接;以及
    电芯组件负极端子,至少与所述电芯单元的负极连接;
    所述电池包接口包括:
    电池包正极端子,与所述电芯组件正极端子连接;
    电池包负极端子,与所述电芯组件负极端子连接;和
    电池包通信端子,
    第一支架,位于所述下壳体的上侧,用于固定所述电池包正极端子和所述电池包负极端子;
    第二支架,位于所述电路板的上侧并与所述电路板连接,所述第二支架与所述第一支架可拆卸连接。
  12. 根据权利要求11所述的电动工具,其中,
    所述第一支架包括:
    导向部,用于导向所述第二支架沿第二方向结合至所述第一支架。
  13. 根据权利要求11所述的电动工具,其中,
    所述第二支架包括:
    通信端子部,用于支撑所述电池包通信端子;
    连接部,与所述电路板可拆卸连接,所述连接部形成敞开区域以封装所述电路板。
  14. 根据权利要求11所述的电动工具,其中,
    所述第一支架还包括:
    正极端子部,用于容纳所述电池包正极端子;
    负极端子部,用于容纳所述电池包负极端子;
    所述正极端子部和负极端子部位于所述导向部的两侧。
  15. 一种电池包,包括:
    壳体,形成有一内腔;
    电芯组件,位于所述内腔内,所述电芯组件包括多个电芯单元,与所述电芯单元的正极连接的电芯组件正极端子和与所述电芯单元的负极连接的电芯组件负极端子;
    电池包接口,使所述电池包可拆卸连接至电动工具,所述电池包接口包括电池包正极端子和电池包负极端子;
    其中,
    所述电池包还包括:
    电路板;
    电流传感器,用于感应流经所述电池包正极端子或所述电池包负极端子的电流。
  16. 根据权利要求15所述的电池包,其中,
    正极连接片,串联在所述电池包正极端子和所述电芯组件正极端子之间;
    负极连接片,串联在所述电池包负极端子和所述电芯组件负极端子之间。
  17. 根据权利要求15所述的电池包,其中,
    所述电池包接口还包括:
    电池包通信端子,用于与所述电动工具构成通信连接;
    所述电池包通信端子与所述电路板连接,用于采集与所述电池包有关的电信号。
  18. 根据权利要求16所述的电池包,其中,
    所述电池包还包括:
    电流传感器,设置在所述电路板上能够感应流经所述正极连接片或负极连接片电流的位置以检测所述电流。
  19. 根据权利要求16所述的电池包,其中,
    所述电路板上设有电流传感器,
    所述电流传感器位于所述正极连接片或所述负极连接片的一侧且能够感应所述正极连接片或所述负极连接片的磁场的位置。
  20. 根据权利要求16所述的电池包,其中,
    所述电路板上设有电流传感器。
    所述电流传感器设置在所述正极连接片或所述负极连接片的下侧;
    所述电流传感器与所述正极连接片或所述负极连接片间隔设置。
  21. 根据权利要求16所述的电池包,其中,
    所述正极连接片和所述负极连接片由金属制成。
  22. 根据权利要求15所述的电池包,其中,
    所述电流传感器为磁传感器。
  23. 根据权利要求16所述的电池包,其中,
    所述电路板形成有第三区域,所述第三区域在上下方向上的投影面与所述正极连接片和/或所述负极连接片在上下方向的投影面重合。
  24. 根据权利要求23所述的电池包,其中,
    所述电流传感器设置在所述第三区域。
  25. 根据权利要求16所述的电池包,其中,
    所述电芯组件正极端子和所述电芯组件负极端子位于同一侧。
  26. 一种电池包,包括:
    壳体,形成有一内腔;
    电芯组件,位于所述内腔内,所述电芯组件包括多个电芯单元,与所述电芯单元的正极连接的电芯组件正极端子和与所述电芯单元的负极连接的电芯组件负极端子;
    电池包接口,使所述电池包可拆卸连接至电动工具,所述电池包接口包括电池包正极端子和电池包负极端子;
    其中,
    所述电池包还包括:
    正极连接片,串联在所述电池包正极端子和所述电芯组件正极端子之间;
    负极连接片,串联在所述电池包负极端子和所述电芯组件负极端子之间。
  27. 根据权利要求26所述的电池包,其中,
    所述电池包接口还包括:
    电池包通信端子,用于与所述电动工具构成通信连接;
    电路板,用于采集与所述电池包有关的电信号;
    所述电路板与所述电池包通信端子连接。
  28. 根据权利要求26所述的电池包,其中,
    所述正极连接片和所述负极连接片由金属制成。
  29. 根据权利要求27所述的电池包,其中,
    所述电路板形成有第三区域,所述第三区域在上下方向上的投影面与所述正极连接片和/或所述负极连接片在上下方向的投影面重合。
  30. 根据权利要求29所述的电池包,其中,
    所述电流传感器设置在所述第三区域。
  31. 根据权利要求26所述的电池包,其中,
    所述电芯组件正极端子和所述电芯组件负极端子位于同一侧。
  32. 一种电池包,包括:
    壳体;
    电池包接口,使所述电池包可拆卸连接至电动工具,所述电池包接口包括电池包正极端子和电池包负极端子;
    电芯组件,位于所述壳体内,所述电芯组件包括多个电芯单元;
    所述电芯组件包括:
    电芯组件正极端子,串联在至少一个所述电芯单元的正极和所述电池包正极端子之间;
    电芯组件负极端子,串联在至少一个所述电芯单元的负极和所述电池包负极端子之间;
    正极引出片,使所述电芯组件正极端子和所述电芯单元正极连接;
    负极引出片,使所述电芯组件负极端子和所述电芯单元负极连接;
    其中,所述正极引出片的宽度在5mm至40mm区间内。
  33. 根据权利要求32所述的电池包,其中,
    所述负极引出片的宽度在5mm至40mm区间内。
  34. 根据权利要求32所述的电池包,其中,
    所述多个电芯单元串联连接。
  35. 根据权利要求32所述的电池包,其中,
    所述正极引出片和所述负极引出片由金属制成。
  36. 根据权利要求32所述的电池包,其中,
    所述正极引出片和所述负极引出片的长度不同。
  37. 根据权利要求34所述的电池包,其中,
    所述电芯组件包括:
    第一电芯和第二电芯;
    至少一个电芯连接片,所述电芯连接片连接所述第一电芯正极和所述第二电芯负极;
    所述正极引出片与所述第二电芯正极连接;
    所述负极引出片与所述第一电芯负极连接;
    所述电芯连接片的宽度与所述正极引出片的宽度和所述负极引出片的宽度相同。
  38. 根据权利要求32所述的电池包,其中,
    所述电池包还包括:
    正极连接片,串联在所述电池包正极端子和所述电芯组件正极端子之间;
    负极连接片,串联在所述电池包负极端子和所述电芯组件负极端子之间;
    电池包通信端子,用于与所述电动工具构成通信连接;
    电路板,用于采集与所述电池包有关的电信号;
    所述电路板与所述电池包通信端子连接。
  39. 根据权利要求38所述的电池包,其中,
    所述电池包还包括:
    电流传感器,设置在所述电路板上能够感应流经所述正极连接片或负极连接片电流的位置以检测所述电流。
  40. 根据权利要求38述的电池包,其中,
    所述电路板上设有电流传感器,
    所述电流传感器设置在所述正极连接片或所述负极连接片的下侧;
    所述电流传感器与所述正极连接片或所述负极连接片间隔设置。
  41. 根据权利要求32所述的电池包,其中,
    所述电池包的放电电流大于等于80A。
  42. 根据权利要求32所述的电池包,其中,
    所述正极引出片和所述负极引出片的厚度在0.3mm至1.5mm区间内。
  43. 一种电池包,包括:
    壳体;
    电池包接口,使所述电池包可拆卸连接至电动工具,所述电池包接口包括电池包正极端子和电池包负极端子;
    电芯组件,位于所述壳体内,所述电芯组件包括:多个非圆柱型电芯单元;
    所述电芯组件包括:
    电芯组件正极端子,串联在至少一个所述电芯单元的正极和所述电池包正极端子之间;
    电芯组件负极端子,串联在至少一个所述电芯单元的负极和所述电池包负极端子之间;
    正极引出片,使所述电芯组件正极端子和所述电芯单元正极连接;
    负极引出片,使所述电芯组件负极端子和所述电芯单元负极连接;
    其中,所述负极引出片的宽度在5mm至40mm区间内区间内。
  44. 根据权利要求43的电池包,其中,
    所述正极引出片和所述负极引出片由金属制成。
  45. 根据权利要求43的电池包,其中,
    所述正极引出片和所述负极引出片的长度不同。
  46. 根据权利要求43的电池包,其中,
    所述正极引出片和所述负极引出片的厚度在0.3mm至1.5mm区间内。
  47. 一种电池包,包括:
    具有第一材料的壳体;
    电芯组件,设置在所述壳体内;所述电芯组件包括多个电芯单元;所述电芯单元包括电芯单元正极和电芯单元负极;
    具有第二材料的电芯支撑件,至少用于支撑所述电芯组件;
    其中,所述电芯支撑件至少设置在所述电芯组件的两端,至少部分所述电芯支撑件封装 所述电芯单元正极和电芯单元负极;
    所述第一材料不同于所述第二材料。
  48. 根据权利要求47所述的电池包,其中,
    所述电芯支撑件包括第一支撑件和第二支撑件;
    所述第一支撑件位于所述电芯组件的前端面上;所述第二支撑件位于与所述前端面互为对立的后端面上;
    所述前端面和所述后端面互为对立面。
  49. 根据权利要求47所述的电池包,其中,
    所述电芯支撑件围绕所述电芯组件的前端面、后端面、左侧面、右侧面和下底面设置;
    所述电芯支撑件形成上开口的容纳空间容纳所述电芯组件。
  50. 根据权利要求47所述的电池包,其中,
    所述电芯组件包括:
    电芯组件正极端子,与至少一个所述电芯单元正极连接;
    电芯组件负极端子,与至少一个所述电芯单元负极连接;
    正极引出片,使所述电芯组件正极端子和所述电芯单元正极连接;
    负极引出片,使所述电芯组件负极端子和所述电芯单元负极连接;
    所述电芯支撑件封装所述电芯单元正极、所述电芯单元负极、所述正极引出片和所述负极引出片。
  51. 根据权利要求47所述的电池包,其中,
    所述电池包还包括:缓冲层,所述缓冲层设置在相邻的所述电芯之间;所述缓冲层由所述第二材料组成。
  52. 根据权利要求47所述的电池包,其中,
    所述第一材料为热塑性材料;
    所述第二材料为热固性材料。
  53. 根据权利要求47所述的电池包,其中,
    所述电芯支撑件以注胶的方式形成于电芯组件的两端。
  54. 根据权利要求47所述的电池包,其中,
    所述电池包的放电电流大于等于80A。
  55. 根据权利要求47所述的电池包,其中,
    所述电芯组件的能量密度的取值范围为大于等于200Wh/kg。
  56. 一种电池包,包括:
    具有第一材料的壳体;
    电芯组件,设置在所述壳体内;所述电芯组件包括多个电芯单元;所述电芯单元包括电芯单元正极和电芯单元负极;
    具有第二材料的电芯支撑件,至少用于支撑所述电芯组件;
    其中,所述电芯支撑件至少设置在所述电芯组件的两端,至少部分所述电芯支撑件封装所述电芯单元正极和电芯单元负极;
    所述第一材料的硬度不同于所述第二材料的硬度。
  57. 根据权利要求56所述的电池包,其中,
    所述电芯支撑件包括第一支撑件和第二支撑件;
    所述第一支撑件位于所述电芯组件的前端面上;所述第二支撑件位于所述电芯组件的后端面上;
    所述前端面和所述后端面互为对立面。
  58. 根据权利要求56所述的电池包,其中,
    所述电芯支撑件围绕所述电芯组件的前端面、后端面、左侧面、右侧面和下底面设置;
    所述电芯支撑件形成上开口的容纳空间容纳所述电芯组件。
  59. 根据权利要求56所述的电池包,其中,
    所述电芯组件包括:
    电芯组件正极端子,与至少一个所述电芯单元正极连接;
    电芯组件负极端子,与至少一个所述电芯单元负极连接;
    正极引出片,使所述电芯组件正极端子和所述电芯单元正极连接;
    负极引出片,使所述电芯组件负极端子和所述电芯单元负极连接;
    所述电芯支撑件封装所述电芯单元正极、所述电芯单元负极、所述正极引出片和所述负极引出片。
  60. 根据权利要求56所述的电池包,其中,
    所述电池包还包括:缓冲层,所述缓冲层设置在相邻的所述电芯之间;所述缓冲层由所述第二材料组成。
  61. 一种电动工具系统,包括:
    电动工具,具有工具接口和电机;
    可充电电池包,具有电池包接口和电芯组件;
    第一可充电电池包,包括若干第一可充电电芯,所述第一可充电电芯为圆柱形;
    第二可充电电池包,包括若干与所述第一可充电电芯形状不同的第二可充电电芯;
    所述电动工具可使用所述第一可充电电池包或第二可充电电池包进行供电;
    其中,所述第一可充电电池包具有能与所述工具接口适配的第一接口和第一电特性,所述第二可充电电池包具有能与所述工具接口适配的第二接口,所述第一接口与所述第二接口具有基本相同的接口形状,所述第二可充电电芯的内阻小于所述第一可充电电芯的内阻。
  62. 根据权利要求61所述的电动工具系统,其中,
    所述第二可充电电池包具有与所述第一可充电电池包第一电特性不同的第二电特性。
  63. 根据权利要求62所述的电动工具系统,其中,
    所述第二电特性包括以下电性参数中的至少一种:所述第二可充电电池包的放电电流或满电续航能力。
  64. 根据权利要求61所述的电动工具系统,其中,
    所述电动工具包括:
    工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;
    工具控制模块,还被配置为:
    接收所述工具识别模块的识别信号;
    在所述工具接口接入所述第一可充电电池包时,控制所述第一可充电电池包以第一放电电流放电;
    在所述工具接口接入所述第二可充电电池包时,控制所述第二可充电电池包以不大于所述第一放电电流的第二放电电流放电。
  65. 根据权利要求61所述的电动工具系统,其中,
    所述电动工具包括:
    工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;
    工具控制模块,被配置为:
    接收所述工具识别模块的识别信号;
    在所述工具接口接入所述第一可充电电池包时,控制所述第一可充电电池包的电能以第一电压输出;
    在所述工具接口接入所述第二可充电电池包时,控制所述第二可充电电池包的电能以第 二电压输出;
    所述第二电压大于等于所述第一电压。
  66. 根据权利要求61所述的电动工具系统,
    还包括:
    第一放电模块,在所述第一电池包作为所述电动工具的电能来源时,所述第一放电模块工作以使所述电动工具具有第一输出性能;
    第二放电模块,在所述第二电池包作为所述电动工具的电能来源时,所述第二放电模块工作以使所述电动工具具有与所述第一输出性能不同的第二输出性能。
  67. 根据权利要求64所述的电动工具系统,其中,
    所述电动工具还包括:
    功率限制模块,连接在所述工具接口和所述电机之间;
    在所述工具接口接入所述第二可充电电池包时所述功率限制模块工作以限制所述第二可充电电池包的输出电流。
  68. 根据权利要求61所述的电动工具系统,其中,
    所述工具识别模块包括传感器。
  69. 根据权利要求61所述的电动工具系统,其中,
    所述第二可充电电池包包括:
    功率限制模块,至少与所述第一可充电电芯中的一个串联,所述功率限制模块用于限制所述第二可充电电池包的输出功率或电流之一。
  70. 根据权利要求61所述的电动工具系统,其中,
    所述功率限制模块包括半导体器件。
  71. 根据权利要求61所述的电动工具系统,其中,
    所述第二可充电电池包包括多个片状电芯,所述多个片状电芯层叠排布。
  72. 根据权利要求61所述的电动工具系统,其中,
    所述第二可充电电池包的能量密度的取值范围为大于200Wh/kg。
  73. 根据权利要求61所述的电动工具系统,其中,
    所述第二可充电电池至少具有100A的放电能力。
  74. 根据权利要求61所述的电动工具系统,其中,
    所述第二电池包以10C倍率放电,温升小于45℃。
  75. 一种可充电电池包,包括:
    电池包接口,用于接入电动工具;
    电芯组件,包括多个串联连接的可充电电芯,所述可充电电芯为非圆柱型;
    功率限制模块,与所述至少一个可充电电芯串联,用于根据所述电池包接口接入的不同电动工具来限制所述电池包的输出电流或输出功率之一。
  76. 根据权利要求75所述的可充电电池包,其中,
    所述不同电动工具包括第一电动工具和第二电动工具,所述第一电动工具具有第一输出性能,所述第二电动工具具有与所述第一输出性能不同的第二输出性能。
  77. 根据权利要求75所述的可充电电池包,其中,
    所述功率限制模块被适配为当所述可充电电池包连接至第一电动工具和向第一电动工具供电时提高所述可充电电池包的内阻以限制所述电池包的输出电流或输出功率之一。
  78. 根据权利要求75所述的可充电电池包,其中,
    电源识别模块,用于识别所述电池包接口接入的第一电动工具或第二电动工具中的一种;
    电源控制模块,被配置为:
    接收所述电源识别模块的识别信号;
    在所述电池包接口接入所述第一电动工具时,控制所述功率限制模块限制所述可充电电池包以第一放电电流放电;
    在所述电池包接口接入所述第二电动工具时,控制所述可充电电池包以大于所述第一放电电流的第二放电电流放电。
  79. 根据权利要求75所述的可充电电池包,其中,
    所述可充电电池包包括多个片状电芯,所述多个片状电芯层叠排布。
  80. 根据权利要求75所述的可充电电池包,其中,
    所述可充电电池包的能量密度的取值范围为大于200Wh/kg。
  81. 一种电动工具,包括:
    电机;
    工具接口,用于接入不同的可充电电池包;
    工具控制模块,至少与所述工具接口连接,用于根据所述工具接口接入的所述可充电电池包来控制所述电动工具的输出性能。
  82. 如权利要求81所述的电动工具,其中,
    所述不同的可充电电池包包括第一可充电电池包和第二可充电电池包;
    所述第一可充电电池包,包括若干第一可充电电芯,所述第一可充电电芯为圆柱型;
    所述第二可充电电池包,包括若干与所述第一可充电电芯不同的第二可充电电芯;
    所述第二可充电电芯的内阻小于所述第一可充电电芯的内阻。
  83. 如权利要求81所述的电动工具,
    包括:
    工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;
    工具控制模块,被配置为:
    接收所述工具识别模块的识别信号;
    在所述工具接口接入所述第一可充电电池包时,以使所述电动工具具有第一输出性能;
    在所述工具接口接入所述第二可充电电池包时,以使所述电动工具具有与所述第一输出性能不同的第二输出性能。
  84. 如权利要求81所述的电动工具,
    包括:
    工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;
    工具控制模块,被配置为:
    接收所述工具识别模块的识别信号;
    在所述工具接口接入所述第一可充电电池包时,控制所述第一可充电电池包以第一放电电流放电;
    在所述工具接口接入所述第二可充电电池包时,控制所述第二可充电电池包以不大于所述第一放电电流的第二放电电流放电。
  85. 如权利要求81所述的电动工具,
    包括:
    工具识别模块,用于识别所述工具接口接入的第一可充电电池包或第二可充电包中的一种;
    工具控制模块,被配置为:
    接收所述工具识别模块的识别信号;
    在所述工具接口接入所述第一可充电电池包时,控制所述第一可充电电池包的电能以第一电压输出;
    在所述工具接口接入所述第二可充电电池包时,控制所述第二可充电电池包的电能以第 二电压输出;
    所述第二电压大于等于所述第一电压。
  86. 根据权利要求84所述的电动工具,
    还包括:
    功率限制模块,连接在所述工具接口和所述电机之间;
    在所述工具接口接入所述第二可充电电池包时所述功率限制模块工作以限制所述第二可充电电池包的输出电流。
  87. 一种充电系统,包括:
    第一可充电电池包,包括若干第一电芯,所述第一电芯为圆柱型;
    第二可充电电池包,包括若干与所述第一可充电电芯形状不同的第二可充电电芯;
    充电器,用于为所述第一可充电电池包或所述第二可充电电池包充电;
    所述第二可充电电池包具有与所述第一可充电电池包不同的充电性能。
  88. 根据权利要求87所述的充电系统,其中,
    所述充电器包括:充电接口;
    所述第一可充电电池包具有能与所述充电接口适配的第一接口,所述第二可充电电池包具有能与所述充电接口适配的第二接口,所述第一接口与所述第二接口具有基本相同的接口形状。
  89. 根据权利要求87所述的充电系统,其中,
    所述充电性能至少包括以下电性参数:充电电流或充电电压。
  90. 根据权利要求87所述的充电系统,其中,
    所述第一可充电电池包具有第一内阻,所述第二可充电电池包具有第二内阻,所述第二内阻小于所述第一内阻。
  91. 根据权利要求87所述的充电系统,其中,
    所述充电器包括:
    充电识别模块,用于识别所述充电接口接入的第一可充电电池包或第二可充电电池包中的一种;
    充电控制模块,被配置为:
    接收所述充电识别模块的识别信号;
    在所述充电器接入所述第一可充电电池包时,控制所述充电器以第一充电电流充电;
    在所述充电器接入所述第二可充电电池包时,控制所述充电器以第二充电电流充电;
    其中,第二充电电流大于第一充电电流。
  92. 根据权利要求87所述的充电系统,其中,
    所述充电器还包括:
    电流控制模块,连接在所述充电接口和电源模块之间;
    在所述充电接口接入所述第一可充电电池包时所述电流控制模块工作以限制所述充电器的输出电流。
  93. 根据权利要求87所述的充电系统,其中,
    所述第二可充电电池包的充电电流大于等于80A。
  94. 一种充电系统,包括:
    第一可充电电池包,包括若干第一电芯,所述第一电芯为圆柱型;
    第二可充电电池包,包括若干与所述第一可充电电芯形状不同的第二可充电电芯;
    充电器,用于为所述第一可充电电池包和/或所述第二可充电电池包充电;
    所述第一可充电电池包接入所述充电器以第一电流充电;
    所述第二可充电电池包接入所述充电器以第二电流充电。
  95. 一种可充电电池包,包括:
    电池包接口,用于接入充电器;
    电芯组,包括多个串联连接的可充电电芯,所述可充电电芯为非圆柱型;
    电流控制模块,与所述至少一个可充电电芯串联,用于根据所述电池包接口接入的不同充电器来限制所述电芯组的充电电流。
  96. 根据权利要求95所述的可充电电池包,其中,
    所述充电器包括第一充电器和第二充电器,所述第一充电器具有第一充电性能,所述第二充电器具有与所述第一充电性能不同的第二充电性能。
PCT/CN2021/120244 2020-09-30 2021-09-24 电池包及电动工具系统和充电系统 WO2022068690A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3156090A CA3156090A1 (en) 2020-09-30 2021-09-24 BATTERY PACK, POWER TOOL SYSTEM AND CHARGING SYSTEM
EP21863088.7A EP4012828A4 (en) 2020-09-30 2021-09-24 Battery pack, electric tool system, and charging system
AU2021338586A AU2021338586B2 (en) 2020-09-30 2021-09-24 Battery pack, power tool system, and charging system
US17/689,695 US11450896B2 (en) 2020-09-30 2022-03-08 Battery pack, power tool system, and charging system
US17/886,056 US20220384860A1 (en) 2020-09-30 2022-08-11 Battery pack, power tool system, and charging system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202011057089 2020-09-30
CN202011061730 2020-09-30
CN202011061751 2020-09-30
CN202011061729 2020-09-30
CN202011061751.6 2020-09-30
CN202011057089.7 2020-09-30
CN202011057113.7 2020-09-30
CN202011057097.1 2020-09-30
CN202011061729.1 2020-09-30
CN202011057113 2020-09-30
CN202011061730.4 2020-09-30
CN202011057097 2020-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/689,695 Continuation US11450896B2 (en) 2020-09-30 2022-03-08 Battery pack, power tool system, and charging system

Publications (1)

Publication Number Publication Date
WO2022068690A1 true WO2022068690A1 (zh) 2022-04-07

Family

ID=80951114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120244 WO2022068690A1 (zh) 2020-09-30 2021-09-24 电池包及电动工具系统和充电系统

Country Status (5)

Country Link
US (2) US11450896B2 (zh)
EP (1) EP4012828A4 (zh)
AU (1) AU2021338586B2 (zh)
CA (1) CA3156090A1 (zh)
WO (1) WO2022068690A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2023004790A (es) * 2020-11-23 2023-05-09 Hantover Inc Sistema de control de accionamiento de motor inalambrico para cuchillas portatiles.
US20230136719A1 (en) * 2021-11-03 2023-05-04 Qualcomm Incorporated Excessive interference indication
CN116388352B (zh) * 2023-06-06 2023-08-15 深圳市乐祺微电子科技有限公司 一种用于电动工具的供电自动识别方法、电池包及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101758488A (zh) * 2008-10-30 2010-06-30 苏州宝时得电动工具有限公司 电动工具以及电动工具和电池包的组合
CN102162820A (zh) * 2010-02-12 2011-08-24 阿尔卑斯绿色器件株式会社 电流传感器及具备该电流传感器的蓄电池
CN103081167A (zh) * 2010-08-27 2013-05-01 株式会社自动网络技术研究所 电流传感器和电池组
US20140087227A1 (en) * 2012-09-25 2014-03-27 Tung-Hsiu Shih Solid state battery having mismatched battery cells
CN104103799A (zh) * 2013-04-05 2014-10-15 株式会社牧田 电动工具电池组
CN106233571A (zh) * 2014-04-25 2016-12-14 微软技术许可有限责任公司 多电池设备中的负载调度
CN109713764A (zh) * 2019-03-06 2019-05-03 常州格力博有限公司 电池包

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589500B2 (en) * 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
EP1676427B1 (en) * 2003-10-03 2012-08-01 Black & Decker Inc. Methods of discharge control for a battery pack of a cordless power tool system, a cordless power tool system and battery pack adapted to provide over-discharge protection and discharge control
JP4104648B1 (ja) * 2007-09-13 2008-06-18 和征 榊原 電池パック
CN101714647B (zh) * 2008-10-08 2012-11-28 株式会社牧田 电动工具用蓄电池匣以及电动工具
JP5461221B2 (ja) * 2010-02-12 2014-04-02 株式会社マキタ 複数のバッテリパックを電源とする電動工具
JP2012035398A (ja) * 2010-08-11 2012-02-23 Makita Corp 複数の単セルバッテリパックを有する電動工具
JP5593200B2 (ja) * 2010-10-27 2014-09-17 株式会社マキタ 電動工具システム
JP2012183611A (ja) * 2011-03-07 2012-09-27 Makita Corp 複数の二次電池セルを電源とする電動工具
JP5817075B2 (ja) * 2011-07-19 2015-11-18 ダイヤモンド電機株式会社 車載用電源装置
US10821591B2 (en) * 2012-11-13 2020-11-03 Milwaukee Electric Tool Corporation High-power cordless, hand-held power tool including a brushless direct current motor
US10348110B2 (en) * 2015-02-13 2019-07-09 Makita Corporation Battery pack
JP6577229B2 (ja) * 2015-02-13 2019-09-18 株式会社マキタ バッテリパック、及びバッテリシステム
DE102016205568A1 (de) * 2016-04-05 2017-10-05 Robert Bosch Gmbh Handwerkzeugmaschine und Akkupack für eine Handwerkzeugmaschine
DE102016209822A1 (de) * 2016-06-03 2017-12-07 Robert Bosch Gmbh Akkupack für eine Handwerkzeugmaschine und/oder ein Ladegerät
JP6507136B2 (ja) * 2016-10-20 2019-04-24 矢崎総業株式会社 電池パック
CN109906522B (zh) * 2016-10-31 2022-05-10 工机控股株式会社 电池组以及使用电池组的电动机器
EP3549229A4 (en) * 2016-11-29 2020-09-23 TTI (Macao Commercial Offshore) Limited MULTIPLE OUTPUT MODES BATTERY PACK
DE102017109919A1 (de) * 2017-05-09 2018-11-15 C. & E. Fein Gmbh Akkumulatorpaket
US11394216B2 (en) * 2017-10-27 2022-07-19 Positec Power Tools (Suzhou) Co., Ltd. Automatic working system
US10862176B2 (en) * 2018-06-15 2020-12-08 Florida Power & Light Company Portable rechargeable battery pack with a selectable battery switch and state of charge display for cordless power tools
CA3038137A1 (en) * 2018-07-04 2020-01-04 Tti (Macao Commercial Offshore) Limited Battery charger for multiple battery packs
EP4222838A1 (en) * 2020-09-29 2023-08-09 Milwaukee Electric Tool Corporation Universal wireless charging of power tool battery packs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101758488A (zh) * 2008-10-30 2010-06-30 苏州宝时得电动工具有限公司 电动工具以及电动工具和电池包的组合
CN102162820A (zh) * 2010-02-12 2011-08-24 阿尔卑斯绿色器件株式会社 电流传感器及具备该电流传感器的蓄电池
CN103081167A (zh) * 2010-08-27 2013-05-01 株式会社自动网络技术研究所 电流传感器和电池组
US20140087227A1 (en) * 2012-09-25 2014-03-27 Tung-Hsiu Shih Solid state battery having mismatched battery cells
CN104103799A (zh) * 2013-04-05 2014-10-15 株式会社牧田 电动工具电池组
CN106233571A (zh) * 2014-04-25 2016-12-14 微软技术许可有限责任公司 多电池设备中的负载调度
CN109713764A (zh) * 2019-03-06 2019-05-03 常州格力博有限公司 电池包

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4012828A4

Also Published As

Publication number Publication date
US20220384860A1 (en) 2022-12-01
CA3156090A1 (en) 2022-04-07
EP4012828A4 (en) 2023-06-28
AU2021338586B2 (en) 2023-07-20
US20220190393A1 (en) 2022-06-16
EP4012828A1 (en) 2022-06-15
US11450896B2 (en) 2022-09-20
AU2021338586A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2022068690A1 (zh) 电池包及电动工具系统和充电系统
CN220400799U (zh) 一种电池包、电动工具及充电系统
US20050280398A1 (en) Mobile charger
US20180198292A1 (en) Universal Power Tool Battery Pack And Recharging System
US20110181243A1 (en) Battery charger for a battery pack housing rechargeable batteries
US20220109217A1 (en) Battery pack and combination of a power tool and the battery pack
EP1781074B1 (en) Diode assembly for a cordless power tool
JP2015226941A (ja) 電池冷却アダプタ及び電動工具
TWM596486U (zh) 多個電池組的電池充電器
US10707459B2 (en) Transportation safe battery
US20080179078A1 (en) Remote diodes in a cordless tool
CN117015487A (zh) 便携式跨接启动器和空气压缩机装置
CN114362342B (zh) 电动工具系统及其电池包
US20220416553A1 (en) Battery pack and power tool system
CN114335833A (zh) 电池包及采用该电池包的电动工具
CN114335863A (zh) 电池包
CN111030218A (zh) 电池包适配器
CN114792867B (zh) 电池包
CN211629893U (zh) 一种具有夹持电子设备功能的移动电源
CN114335853A (zh) 电池包
WO2019112578A1 (en) Modular battery charger and associated systems
CN114361674A (zh) 电池包
CN211239382U (zh) 电池包适配器
JP2022129280A (ja) 電池パック、及び電動工具
CN114362273A (zh) 充电系统及电池包

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021863088

Country of ref document: EP

Effective date: 20220311

ENP Entry into the national phase

Ref document number: 2021338586

Country of ref document: AU

Date of ref document: 20210924

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE