WO2022068565A1 - 三相电源变换电路、电路控制方法、线路板及空调器 - Google Patents

三相电源变换电路、电路控制方法、线路板及空调器 Download PDF

Info

Publication number
WO2022068565A1
WO2022068565A1 PCT/CN2021/118016 CN2021118016W WO2022068565A1 WO 2022068565 A1 WO2022068565 A1 WO 2022068565A1 CN 2021118016 W CN2021118016 W CN 2021118016W WO 2022068565 A1 WO2022068565 A1 WO 2022068565A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
bidirectional switch
capacitor
power supply
Prior art date
Application number
PCT/CN2021/118016
Other languages
English (en)
French (fr)
Inventor
黄招彬
龙谭
赵鸣
杨建宁
徐锦清
曾贤杰
霍兆镜
文先仕
Original Assignee
重庆美的制冷设备有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆美的制冷设备有限公司, 广东美的制冷设备有限公司 filed Critical 重庆美的制冷设备有限公司
Priority to EP21874226.0A priority Critical patent/EP4191862A4/en
Priority to US18/021,182 priority patent/US20230318433A1/en
Publication of WO2022068565A1 publication Critical patent/WO2022068565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a three-phase power conversion circuit, a circuit control method, a circuit board and an air conditioner.
  • the three-phase power supply outputs the high-voltage DC bus voltage after passing through a passive PFC rectifier circuit or a two-level active PFC rectifier circuit, and the inverter compressor load is connected to the high-voltage DC bus voltage; The power is taken from the high-voltage DC bus voltage, but is rectified through another independent channel of phase voltage to supply power.
  • the IPM (Intelligent Power Module) module that drives the DC fan has insufficient voltage resistance and cannot directly take power from the high-voltage DC bus.
  • the RMS value of the three-phase line voltage is nominally 380V, then the rectified high-voltage DC bus voltage is 537V; plus 10% of the power supply voltage fluctuation tolerance, the high-voltage DC bus voltage may reach 590V; if active PFC control is used , the DC bus voltage can further rise.
  • the withstand voltage of high-voltage electrolytic capacitors is generally 450V or below.
  • the high-voltage electrolytic capacitors of the DC bus must use a two-stage series connection to increase the withstand voltage, and the two-stage series series withstand voltage can theoretically reach 900V.
  • the withstand voltage of the DC fan IPM module is generally 500V or 600V.
  • the input voltage of the DC fan IPM module is generally below 450V. Because the voltage of the high-voltage DC bus is higher than the input voltage requirement of the DC fan IPM module, it is impossible to directly draw power from the high-voltage DC bus.
  • the purpose of the present invention is to solve at least one of the technical problems existing in the prior art, and to provide a three-phase power conversion circuit, a circuit control method, a circuit board and an air conditioner, which can provide a stable voltage, balance the three-phase current, and effectively reduce the harmonic.
  • an embodiment of the present invention provides a three-phase power conversion circuit, including a rectifier module, an energy storage module, a DC load module, and a control module;
  • the rectifier module includes a three-phase rectifier bridge and a two-way switch assembly, the three-phase rectifier bridge includes a first bridge arm, a second bridge arm and a third bridge arm connected in parallel;
  • the two-way switch assembly includes a first two-way switch, A second bidirectional switch and a third bidirectional switch, one end of the first bidirectional switch is connected to the midpoint of the first bridge arm, one end of the second bidirectional switch is connected to the midpoint of the second bridge arm, the One end of the third bidirectional switch is connected to the midpoint of the third bridge arm;
  • the energy storage module is connected to the DC output end of the rectifier module, the energy storage module includes a first capacitor and a second capacitor connected in series with each other, the other end of the first bidirectional switch, the other end of the second bidirectional switch. The other end and the other end of the third bidirectional switch are both connected between the first capacitor and the second capacitor;
  • the DC load module includes a first DC load connected in parallel with the first capacitor or a second DC load connected in parallel with the second capacitor;
  • the control module is connected to the bidirectional switch assembly, and is used for controlling the first bidirectional switch, the second bidirectional switch and the third bidirectional switch according to the three-phase voltage of the three-phase AC power supply, so that the first bidirectional switch is The voltage across a capacitor or the voltage across the second capacitor remains the target voltage.
  • the three-phase power conversion circuit provided according to the embodiment of the present invention has at least the following beneficial effects: by connecting the first DC load in parallel with the two ends of the first capacitor or the second DC load in parallel with the two ends of the second capacitor, and according to the three
  • the three-phase voltage of the phase AC power source controls the first bidirectional switch, the second bidirectional switch and the third bidirectional switch, so that the voltage across the first capacitor or the voltage across the second capacitor is maintained as target voltage, so as to keep the voltage across the first capacitor or the second capacitor stable, that is, the first capacitor or the second capacitor can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies, and can balance three-phase AC
  • the three-phase current of the power supply can prevent the harmonics of a certain phase current from being significantly larger, which can effectively reduce the harmonics.
  • control of the first bidirectional switch, the second bidirectional switch and the third bidirectional switch according to the three-phase voltage of the three-phase AC power supply includes:
  • control module When the difference between the maximum phase voltage and the intermediate phase voltage of the three-phase AC power supply is less than the first voltage value, and the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is less than the second voltage value, the control module will pre- A modulation strategy is set to control the on-off of the bidirectional switch assembly;
  • the preset modulation strategy is: the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the voltage of one phase of the three-phase AC power supply except the intermediate phase voltage is kept on. The switch is kept off, and the bidirectional switch corresponding to the other phase voltage is alternately turned on and off.
  • the on-off of the bidirectional switch component is controlled by a preset modulation strategy, so that within this time range, the first capacitor or the second capacitor is charged, so as to keep the voltage across the first capacitor or the second capacitor stable, and then the first capacitor or the second capacitor can pass through the first capacitor.
  • the second capacitor can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies, and can balance the three-phase currents of the three-phase AC power supply, avoiding that the harmonics of a certain phase current are significantly larger, and can effectively reduce the harmonics.
  • the DC load module includes a first DC load connected in parallel with the first capacitor, and the preset modulation strategy is specifically:
  • the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is kept off, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply is alternately turned on and off.
  • the preset modulation strategy is: the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply maintains Cut off, the two-way switch corresponding to the intermediate phase voltage of the three-phase AC power supply remains on, and the two-way switch corresponding to the maximum phase voltage of the three-phase AC power supply is alternately turned on and off; it can meet the maximum phase voltage and intermediate phase voltage of the three-phase AC power supply.
  • the difference between the three-phase AC power supply and the minimum phase voltage is less than the first voltage value and the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is less than the second voltage value. , and can balance the three-phase current of the three-phase AC power supply, avoid the harmonic current of a certain phase being significantly larger, and can effectively reduce the harmonic.
  • the DC load module includes a second DC load connected in parallel with the second capacitor, and the preset modulation strategy is specifically:
  • the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply is kept off, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is alternately turned on and off.
  • the preset modulation strategy is: the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply remains off, The bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is alternately turned on and off; it can meet the difference between the maximum phase voltage and the intermediate phase voltage of the three-phase AC power supply.
  • the value is less than the first voltage value and the difference between the intermediate phase voltage of the three-phase AC power supply and the minimum phase voltage is less than the second voltage value within the time range of the condition, the second capacitor is charged, so as to keep the voltage of the second capacitor stable, and It can balance the three-phase current of the three-phase AC power supply, prevent the harmonics of a certain phase current from being significantly larger, and effectively reduce the harmonics.
  • the first voltage value is a target voltage setting value of the first capacitor or a voltage measured value of the first capacitor.
  • the first voltage value is set as the target voltage setting value or voltage measurement value of the first capacitor, which means that the difference between the maximum phase voltage of the three-phase AC power supply and the intermediate phase voltage is smaller than the target voltage setting value or voltage of the first capacitor.
  • the measured value at this time, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is turned on, so that the intermediate phase voltage is connected to one end of the first capacitor, and the maximum phase voltage of the three-phase AC power supply will be connected to the first capacitor through the diode of the three-phase rectifier bridge.
  • the other end of a capacitor so the voltage applied to both ends of the first capacitor is exactly the difference between the maximum phase voltage of the three-phase AC power supply and the intermediate phase voltage, which is smaller than the target voltage setting value of the first capacitor or the measured voltage value , which can ensure that the actual voltage across the first capacitor will not exceed the target voltage setting value or the voltage measured value, and prevent the first capacitor from being damaged by overvoltage.
  • the second voltage value is a voltage upper limit set value of the second capacitor or a voltage measured value of the second capacitor.
  • the second voltage value is set as the voltage upper limit setting value of the second capacitor or the voltage measured value, which means that the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is smaller than the voltage upper limit setting value or voltage of the second capacitor.
  • the measured value at this time, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is turned on, so that the intermediate phase voltage is connected to one end of the second capacitor, and the minimum phase voltage of the three-phase AC power supply will be connected to the third through the diode of the three-phase rectifier bridge.
  • the other end of the second capacitor so the voltage applied to both ends of the second capacitor is exactly the difference between the intermediate phase voltage of the three-phase AC power supply and the minimum phase voltage, and the difference is smaller than the voltage upper limit setting value of the second capacitor or the measured voltage value. , which can ensure that the actual voltage across the second capacitor will not exceed the voltage upper limit set value or the voltage measured value, and prevent the second capacitor from being damaged by overvoltage.
  • the first bidirectional switch, the second bidirectional switch and the third bidirectional switch all include two antiparallel power switch tubes.
  • the bidirectional switch composed of two anti-parallel power switch tubes is a fully controlled bidirectional conduction power switch, that is, bidirectional conduction can be realized through control signals, and bidirectional blocking can also be realized through control signals. Specifically, bidirectional conduction is achieved by controlling the two power switch tubes to be turned on at the same time, and bidirectional blocking is achieved by controlling the two power switch tubes to be turned off at the same time.
  • the first bidirectional switch, the second bidirectional switch and the third bidirectional switch all include two power switch tubes connected in reverse series, and the two power switch tubes are reversed. A diode is connected in parallel.
  • a bidirectional switch composed of power switch tubes with inverse parallel diodes connected in reverse series is a fully controlled bidirectional conduction power switch, that is, bidirectional conduction can be achieved through control signals, or bidirectional blocking can be achieved through control signals.
  • bidirectional conduction is achieved by controlling the two power switch tubes to be turned on at the same time
  • bidirectional blocking is achieved by controlling the two power switch tubes to be turned off at the same time.
  • the diode can choose a fast recovery diode.
  • the first bidirectional switch, the second bidirectional switch and the third bidirectional switch all include a fourth bridge arm, a fifth bridge arm and a sixth bridge arm connected in parallel with each other, and the Both the fourth bridge arm and the sixth bridge arm include two diodes connected in series with each other, and the fifth bridge arm includes a power switch tube.
  • an embodiment of the present invention provides a circuit control method, which is applied to a three-phase power conversion circuit, where the three-phase power conversion circuit includes a rectifier module, an energy storage module, and a DC load module, and the rectifier module includes a three-phase rectifier A bridge and a bidirectional switch assembly, the three-phase rectifier bridge includes a first bridge arm, a second bridge arm and a third bridge arm connected in parallel; the bidirectional switch assembly includes a first bidirectional switch, a second bidirectional switch and a third bidirectional switch One end of the first two-way switch is connected to the midpoint of the first bridge arm, one end of the second two-way switch is connected to the midpoint of the second bridge arm, and one end of the third two-way switch is connected to the the midpoint of the third bridge arm; the energy storage module is connected to the DC output end of the rectifier module, the energy storage module includes a first capacitor and a second capacitor connected in series with each other, and the other side of the first bidirectional switch One end, the other
  • the method includes:
  • the first bidirectional switch, the second bidirectional switch and the third bidirectional switch are controlled according to the three-phase voltage of the three-phase AC power source, so that the voltage across the first capacitor or the voltage across the second capacitor remain at the target voltage.
  • the circuit control method provided according to the embodiment of the present invention has at least the following beneficial effects: by connecting the first DC load in parallel with both ends of the first capacitor or connecting the second DC load in parallel with the two ends of the second capacitor, and according to the three-phase AC
  • the three-phase voltage of the power supply controls the first bidirectional switch, the second bidirectional switch and the third bidirectional switch, so that the voltage across the first capacitor or the voltage across the second capacitor is maintained as the target voltage , so as to keep the voltage across the first capacitor or the second capacitor stable, that is, the first capacitor or the second capacitor can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies, and can balance the three-phase AC power supply.
  • Three-phase current to avoid the harmonics of a certain phase current being significantly larger, which can effectively reduce the harmonics.
  • the controlling the first bidirectional switch, the second bidirectional switch and the third bidirectional switch according to the three-phase voltage of the three-phase AC power supply includes:
  • the preset modulation strategy is used to control on-off of the two-way switch assembly
  • the preset modulation strategy is: the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the voltage of one phase of the three-phase AC power supply except the intermediate phase voltage is kept on. The switch is kept off, and the bidirectional switch corresponding to the other phase voltage is alternately turned on and off.
  • the on-off of the bidirectional switch component is controlled by a preset modulation strategy, so that within this time range, the first capacitor or the second capacitor is charged, so as to keep the voltage across the first capacitor or the second capacitor stable, and then the first capacitor or the second capacitor can pass through the first capacitor.
  • the second capacitor can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies, and can balance the three-phase currents of the three-phase AC power supply, avoiding that the harmonics of a certain phase current are significantly larger, and can effectively reduce the harmonics.
  • the DC load module includes a first DC load connected in parallel with the first capacitor, and the preset modulation strategy is specifically:
  • the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is kept off, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply is alternately turned on and off.
  • the preset modulation strategy is: the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply maintains Cut off, the two-way switch corresponding to the intermediate phase voltage of the three-phase AC power supply remains on, and the two-way switch corresponding to the maximum phase voltage of the three-phase AC power supply is alternately turned on and off; it can meet the maximum phase voltage and intermediate phase voltage of the three-phase AC power supply.
  • the difference between the three-phase AC power supply and the minimum phase voltage is less than the first voltage value and the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is less than the second voltage value. , and can balance the three-phase current of the three-phase AC power supply, avoid the harmonic current of a certain phase being significantly larger, and can effectively reduce the harmonic.
  • the DC load module includes a second DC load connected in parallel with the second capacitor, and the preset modulation strategy is specifically:
  • the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply is kept off, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is alternately turned on and off.
  • the preset modulation strategy is: the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply remains off, The bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is alternately turned on and off; it can meet the difference between the maximum phase voltage and the intermediate phase voltage of the three-phase AC power supply.
  • the value is less than the first voltage value and the difference between the intermediate phase voltage of the three-phase AC power supply and the minimum phase voltage is less than the second voltage value within the time range of the condition, the second capacitor is charged, so as to keep the voltage of the second capacitor stable, and It can balance the three-phase current of the three-phase AC power supply, prevent the harmonics of a certain phase current from being significantly larger, and effectively reduce the harmonics.
  • the first voltage value is the target voltage setting value of the first capacitor or the measured voltage value of the first capacitor.
  • the first voltage value is set as the target voltage setting value or voltage measurement value of the first capacitor, which means that the difference between the maximum phase voltage of the three-phase AC power supply and the intermediate phase voltage is smaller than the target voltage setting value or voltage of the first capacitor.
  • the measured value at this time, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is turned on, so that the intermediate phase voltage is connected to one end of the first capacitor, and the maximum phase voltage of the three-phase AC power supply will be connected to the first capacitor through the diode of the three-phase rectifier bridge.
  • the other end of a capacitor so the voltage applied to both ends of the first capacitor is exactly the difference between the maximum phase voltage of the three-phase AC power supply and the intermediate phase voltage, which is smaller than the target voltage setting value of the first capacitor or the measured voltage value , which can ensure that the actual voltage across the first capacitor will not exceed the target voltage setting value or the voltage measured value, and prevent the first capacitor from being damaged by overvoltage.
  • the second voltage value is a set value of the upper limit of the voltage of the second capacitor or an actual measured value of the voltage of the second capacitor.
  • the second voltage value is set as the voltage upper limit setting value of the second capacitor or the voltage measured value, which means that the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is smaller than the voltage upper limit setting value or voltage of the second capacitor.
  • the measured value at this time, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is turned on, so that the intermediate phase voltage is connected to one end of the second capacitor, and the minimum phase voltage of the three-phase AC power supply will be connected to the third through the diode of the three-phase rectifier bridge.
  • the other end of the second capacitor so the voltage applied to both ends of the second capacitor is exactly the difference between the intermediate phase voltage of the three-phase AC power supply and the minimum phase voltage, and the difference is smaller than the voltage upper limit setting value of the second capacitor or the measured voltage value. , which can ensure that the actual voltage across the second capacitor will not exceed the voltage upper limit set value or the voltage measured value, and prevent the second capacitor from being damaged by overvoltage.
  • an embodiment of the present invention provides a circuit board including the three-phase power conversion circuit described in the embodiment of the first aspect of the present invention.
  • the circuit board provided according to the embodiment of the present invention has at least the following beneficial effects: by connecting the first DC load in parallel with both ends of the first capacitor or connecting the second DC load in parallel with the two ends of the second capacitor, and according to the three-phase AC power supply
  • the three-phase voltage of the first two-way switch, the second two-way switch and the third two-way switch are controlled to keep the voltage across the first capacitor or the voltage across the second capacitor as the target voltage, In this way, the voltage across the first capacitor or the second capacitor can be kept stable, that is, the first capacitor or the second capacitor can supply power to the DC loads with lower voltage levels such as the DC fan and the auxiliary power supply, and can balance the three-phase AC power supply.
  • the phase current can be avoided to be significantly larger in a certain phase current, which can effectively reduce the harmonics.
  • an embodiment of the present invention provides an operation control device, comprising at least one processor and a memory for being communicatively connected to the at least one processor; the memory stores a program that can be executed by the at least one processor. instructions, the instructions are executed by the at least one processor, so that the at least one processor can execute the circuit control method according to the embodiment of the second aspect of the present invention.
  • the operation control device provided according to the embodiment of the present invention has at least the following beneficial effects: by connecting the first DC load in parallel with the two ends of the first capacitor or the second DC load in parallel with the two ends of the second capacitor, and according to the three-phase AC
  • the three-phase voltage of the power supply controls the first bidirectional switch, the second bidirectional switch and the third bidirectional switch, so that the voltage across the first capacitor or the voltage across the second capacitor is maintained as the target voltage , so as to keep the voltage across the first capacitor or the second capacitor stable, that is, the first capacitor or the second capacitor can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies, and can balance the three-phase AC power supply.
  • Three-phase current to avoid the harmonics of a certain phase current being significantly larger, which can effectively reduce the harmonics.
  • an embodiment of the present invention provides an air conditioner, comprising the circuit board according to the embodiment of the third aspect of the present invention or the operation control device according to the embodiment of the fourth aspect of the present invention.
  • the air conditioner provided according to the embodiment of the present invention has at least the following beneficial effects: by connecting the first DC load in parallel with the two ends of the first capacitor or the second DC load in parallel with the two ends of the second capacitor, and according to the three-phase AC power supply
  • the three-phase voltage of the first two-way switch, the second two-way switch and the third two-way switch are controlled to keep the voltage across the first capacitor or the voltage across the second capacitor as the target voltage, In this way, the voltage across the first capacitor or the second capacitor can be kept stable, that is, the first capacitor or the second capacitor can supply power to the DC loads with lower voltage levels such as the DC fan and the auxiliary power supply, and can balance the three-phase AC power supply.
  • the phase current can be avoided to be significantly larger in a certain phase current, which can effectively reduce the harmonics.
  • an embodiment of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the embodiment of the second aspect of the present invention.
  • the described circuit control method is not limited to:
  • the computer-readable storage medium provided according to the embodiment of the present invention has at least the following beneficial effects: by connecting the first DC load in parallel with both ends of the first capacitor or connecting the second DC load in parallel with the two ends of the second capacitor, and according to three
  • the three-phase voltage of the phase AC power source controls the first bidirectional switch, the second bidirectional switch and the third bidirectional switch, so that the voltage across the first capacitor or the voltage across the second capacitor is maintained as target voltage, so as to keep the voltage across the first capacitor or the second capacitor stable, that is, the first capacitor or the second capacitor can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies, and can balance three-phase AC
  • the three-phase current of the power supply can prevent the harmonics of a certain phase current from being significantly larger, which can effectively reduce the harmonics.
  • FIG. 1 is a circuit schematic diagram of a three-phase power conversion circuit provided by an embodiment of the present invention
  • FIG. 2 is a circuit schematic diagram of a three-phase power conversion circuit provided by another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a preset modulation strategy of a three-phase power conversion circuit provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a preset modulation strategy of a three-phase power conversion circuit provided by another embodiment of the present invention.
  • FIG. 5 is a specific structural diagram of a bidirectional switch provided by an embodiment of the present invention.
  • FIG. 6 is a specific structural diagram of a bidirectional switch provided by another embodiment of the present invention.
  • FIG. 7 is a structural diagram of an operation control device provided by an embodiment of the present invention.
  • Fig. 8 is the circuit schematic diagram of the first case of the first DC load in Fig. 1;
  • Fig. 9 is the circuit schematic diagram of the second case of the first DC load in Fig. 1;
  • FIG. 10 is a schematic circuit diagram of the third case of the first DC load in FIG. 1;
  • FIG. 11 is a schematic circuit diagram of the fourth case of the first DC load in FIG. 1;
  • FIG. 12 is a schematic circuit diagram of the fifth case of the first DC load in FIG. 1;
  • Fig. 13 is the circuit schematic diagram of the sixth case of the first DC load in Fig. 1;
  • FIG. 14 is a schematic circuit diagram of the seventh case of the first DC load in FIG. 1;
  • FIG. 15 is a schematic circuit diagram of the second DC load in the first case of FIG. 2;
  • Fig. 16 is the circuit schematic diagram of the second case of the second DC load in Fig. 2;
  • Fig. 17 is the circuit schematic diagram of the third case of the second DC load in Fig. 2;
  • FIG. 18 is a schematic circuit diagram of the fourth case of the second DC load in FIG. 2;
  • FIG. 19 is a schematic circuit diagram of the fifth case of the second DC load in FIG. 2;
  • FIG. 20 is a circuit schematic diagram of the sixth case of the second DC load in FIG. 2;
  • FIG. 21 is a schematic circuit diagram of the seventh case of the second DC load in FIG. 2;
  • 22 is a circuit schematic diagram of a three-phase power conversion circuit provided by another embodiment of the present invention.
  • FIG. 23 is a schematic circuit diagram of the first case of the first DC load and the second DC load in FIG. 22;
  • FIG. 24 is a schematic circuit diagram of the second case of the first DC load and the second DC load in FIG. 22;
  • FIG. 25 is a schematic circuit diagram of the third case of the first DC load and the second DC load in FIG. 22;
  • FIG. 26 is a schematic circuit diagram of the fourth case of the first DC load and the second DC load in FIG. 22;
  • FIG. 27 is a schematic circuit diagram of the case five of the first DC load and the second DC load in FIG. 22;
  • FIG. 28 is a schematic circuit diagram of case six of the first DC load and the second DC load in FIG. 22.
  • FIG. 29 is a specific structural diagram of a bidirectional switch provided by another embodiment of the present invention.
  • the invention provides a three-phase power conversion circuit, a circuit control method, a circuit board and an air conditioner, which can provide stable voltage, balance three-phase current, and effectively reduce harmonics.
  • the first aspect of the present invention provides a three-phase power conversion circuit, including a rectifier module 100, an energy storage module 200, a control module and a DC load module; not shown in Figures 1 and 2 control module, but does not affect the understanding of this embodiment.
  • the rectifier module 100 includes a three-phase rectifier bridge 110 and a bidirectional switch assembly 120.
  • the three-phase rectifier bridge 110 includes a first bridge arm 111, a second bridge arm 112 and a third bridge arm 113 connected in parallel with each other, and the first bridge arm 111 includes a series connection.
  • the first diode D1 and the second diode D2, the second bridge arm 112 includes a third diode D3 and a fourth diode D4 connected in series with each other, and the third bridge arm 113 includes a fifth and second diodes connected in series with each other
  • the diode D5 and the sixth diode D6 it can be understood that the first bridge arm 111, the second bridge arm 112 and the third bridge arm 113 can use two diodes connected in series, or two connected in series.
  • the bidirectional switch assembly 120 includes a first bidirectional switch 121, a second bidirectional switch 122 and a third bidirectional switch 123.
  • first bidirectional switch 121 is connected to the midpoint of the first bridge arm 111, that is, the first bidirectional switch 121.
  • connection point a of the diode D1 and the second diode D2 one end of the second bidirectional switch 122 is connected to the midpoint of the second bridge arm 112, that is, the connection between the third diode D3 and the fourth diode D4
  • one end of the third bidirectional switch 123 is connected to the midpoint of the third bridge arm 113, that is, the connection point c of the fifth diode D5 and the sixth diode D6;
  • the energy storage module 200 is connected to the DC output end of the rectifier module 100.
  • the energy storage module 200 includes a first capacitor C1 and a second capacitor C2 connected in series with each other, the other end of the first bidirectional switch 121, the other end of the second bidirectional switch 122,
  • the other end of the third bidirectional switch 123 is connected between the first capacitor C1 and the second capacitor C2; specifically, the DC output end of the rectifier module 100 includes a positive bus bar end d and a negative bus bar end e, and one end of the first capacitor C1 Connected to the positive bus terminal d, one end of the second capacitor C2 is connected to the negative bus terminal e, the other end of the first capacitor C1 and the other end of the second capacitor C2 are connected together, and between the first capacitor C1 and the second capacitor C2
  • the connection point is the DC bus midpoint f, and the other end of the first bidirectional switch 121, the other end of the second bidirectional switch 122, and the other end of the third bidirectional switch
  • the three-phase AC power supply includes A-phase voltage, B-phase voltage and C-phase voltage
  • the A-phase voltage is connected to the connection point a of the first diode D1 and the second diode D2 through the first inductor L1
  • the B-phase voltage is connected to the connection point b of the third diode D3 and the fourth diode D4
  • the C-phase voltage is connected to the connection of the fifth diode D5 and the sixth diode D6 through the third inductance L3 point c;
  • the DC load module includes a first DC load connected in parallel with the first capacitor C1 or a second DC load connected in parallel with the second capacitor C2;
  • the control module is connected to the two-way switch assembly 120, that is, the control module is connected to the first two-way switch 121, the second two-way switch 122 and the third two-way switch 123 respectively, and the control module is used for controlling the first two-way switch according to the three-phase voltage of the three-phase AC power supply.
  • the switch 121 , the second bidirectional switch 122 and the third bidirectional switch 123 keep the voltage across the first capacitor C1 or the voltage across the second capacitor C2 as the target voltage.
  • the first DC load is connected in parallel at both ends of the first capacitor C1 or the second DC load is connected in parallel at both ends of the second capacitor C2, and according to the three-phase AC power supply
  • the three-phase voltage controls the first bidirectional switch 121 , the second bidirectional switch 122 and the third bidirectional switch 123 to keep the voltage across the first capacitor C1 or the voltage across the second capacitor C2 as the target voltage, thereby maintaining the first capacitor C1 Or the voltage across the second capacitor C2 is stable, that is, the first capacitor C1 or the second capacitor C2 can supply power to DC loads with lower voltage levels such as the DC fan and the auxiliary power supply, and can balance the three-phase current of the three-phase AC power supply , to avoid significantly larger harmonics of a certain phase current, which can effectively reduce the harmonics.
  • the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123 are controlled according to the three-phase voltage of the three-phase AC power supply, including:
  • control module modulates the The strategy controls the on and off of the two-way switch assembly 120;
  • the preset modulation strategy is: the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, the bidirectional switch corresponding to the voltage of one of the three-phase AC power supply except the intermediate phase voltage is kept off, and the voltage of the other phase is turned off.
  • the corresponding bidirectional switches are alternately turned on and off.
  • the maximum phase voltage, intermediate phase voltage and minimum phase voltage of the three-phase AC power supply are determined according to the voltage amplitude at the current moment.
  • the maximum phase voltage of the AC power supply is the A-phase voltage
  • the intermediate phase voltage is the B-phase voltage
  • the minimum phase voltage is the C-phase voltage
  • the maximum phase voltage of the three-phase AC power supply is the B-phase voltage
  • the minimum phase voltage is the A phase voltage.
  • the difference between the maximum phase voltage and the intermediate phase voltage of the three-phase AC power supply is less than the first voltage value and the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is satisfied.
  • the on-off of the bidirectional switch component 120 is controlled by a preset modulation strategy, so that within this time range, the first capacitor C1 or the second capacitor C2 is charged, thereby maintaining the first capacitor C1 or the second capacitor C2.
  • the voltage across the capacitor C1 or the second capacitor C2 is stable, so that the first capacitor C1 or the second capacitor C2 can supply power to the DC loads with lower voltage levels such as the DC fan and the auxiliary power supply, and can balance the three-phase AC power supply.
  • the phase current can be avoided to be significantly larger in a certain phase current, which can effectively reduce the harmonics.
  • the DC load module includes a first DC load connected in parallel with the first capacitor C1, and the preset modulation strategy is specifically:
  • the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is kept off, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply is alternately turned on and off.
  • part (a) in Figure 3 is the waveform diagram of the three-phase AC power supply;
  • part (b) part is the waveform diagram of the Umax-Umid-Uhigh curve and the Umid-Umin-Ulow curve, wherein Umax is the three-phase AC power supply Umid is the intermediate phase voltage of the three-phase AC power supply, Umin is the minimum phase voltage of the three-phase AC power supply;
  • Uhigh is the first voltage value, and the first voltage value can be selected as the target voltage setting of the first capacitor C1
  • Ulow is the second voltage value, and the second voltage value can be selected as the voltage upper limit setting value of the second capacitor C2;
  • part is the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123.
  • Control signal waveform diagram; (d) part is the waveform diagram of A-phase inductor current Ia, B-phase inductor current Ib, C-phase inductor current Ic, charging current I1 of the first capacitor C1 and charging current I2 of the second capacitor C2.
  • the control strategy for the bidirectional switch assembly 120 is as follows: the bidirectional switch corresponding to the minimum phase voltage Umin of the three-phase AC power supply is kept off, and the bidirectional switch corresponding to the intermediate phase voltage Umid of the three-phase AC power supply is kept on , the bidirectional switch corresponding to the maximum phase voltage Umax of the three-phase AC power supply is alternately turned on and off.
  • the maximum phase voltage Umax of the three-phase AC power supply is the A-phase voltage, so the first bidirectional switch 121 corresponding to the A-phase voltage is alternately turned on and off, and the three-phase AC power is turned on and off alternately.
  • the intermediate-phase voltage Umid of the power supply is the B-phase voltage, so the second bidirectional switch 122 corresponding to the B-phase voltage remains on, and the minimum phase voltage Umin of the three-phase AC power supply is the C-phase voltage, so the third bidirectional switch corresponding to the C-phase voltage 123 remains off; similarly, in the T2 time period, the maximum phase voltage Umax of the three-phase AC power supply is the B-phase voltage, so the second bidirectional switch 122 corresponding to the B-phase voltage is alternately turned on and off, and the intermediate phase voltage of the three-phase AC power supply Umid is the A-phase voltage, so the first bidirectional switch 121 corresponding to the A-phase voltage remains on, and the minimum phase voltage Umin of the three-phase AC power supply is the C-phase voltage, so the third bidirectional switch 123 corresponding to the C-phase voltage remains off; T3 The situations in the time period, the T4 time period, the T5 time period, and the T6 time period can be inferred similarly.
  • the waveform of each phase current in each time period is: the inductor current corresponding to the maximum phase voltage Umax of the three-phase AC power source increases from zero to a certain value, and in the time period It drops to zero before the end; the inductor current corresponding to the intermediate phase voltage Umid and the inductor current corresponding to the maximum phase voltage Umax are the same in magnitude and opposite in direction.
  • the maximum phase voltage Umax of the three-phase AC power supply is the A-phase voltage, and the corresponding A-phase inductor current Ia increases from zero to a certain value, and at T1 It drops to zero before the end of the time period, the intermediate phase voltage Umid of the three-phase AC power supply is the B-phase voltage, and the corresponding B-phase inductor current Ib and A-phase inductor current Ia have the same magnitude and opposite direction; in the T2 time period, the three-phase AC power supply
  • the maximum phase voltage Umax is the B-phase voltage, the corresponding B-phase inductor current Ib increases from zero to a certain value, and drops to zero before the end of the T2 time period, the intermediate phase voltage Umid of the three-phase AC power supply is A Phase voltage, the corresponding A-phase inductor current Ia and B-phase inductor current Ib have the same magnitude and opposite directions; the same can be inferred for the T3 time period, T4
  • the proportion of the T1 time period, the T2 time period, the T3 time period, the T4 time period, the T5 time period and the T6 time period in a three-phase AC power cycle can be adjusted by adjusting the first voltage value Uhigh and the third time period.
  • the two voltage values Ulow are changed, that is, the target voltage setting value of the first capacitor C1 and the voltage upper limit setting value of the second capacitor C2 are adjusted.
  • the preset modulation strategy at this time is: corresponding to the minimum phase voltage of the three-phase AC power supply
  • the two-way switch of Umin remains off, the two-way switch corresponding to the intermediate phase voltage Umid of the three-phase AC power supply remains on, and the two-way switch corresponding to the maximum phase voltage Umax of the three-phase AC power supply is alternately turned on and off; it can meet the requirements of the three-phase AC power supply.
  • the difference between the maximum phase voltage Umax and the intermediate phase voltage Umid is less than the first voltage value Uhigh and the difference between the intermediate phase voltage Umid and the minimum phase voltage Umin of the three-phase AC power supply is less than the second voltage value Ulow.
  • a capacitor C1 is charged, so as to keep the voltage of the first capacitor C1 stable, and can balance the three-phase current of the three-phase AC power supply, prevent the harmonics of a certain phase current from being significantly larger, and effectively reduce the harmonics.
  • the first DC load may be a combination of the auxiliary power supply and one or more of a plurality of DC fans.
  • the air conditioner has a In the case of auxiliary power supply, DC fan 1 and DC fan 2
  • the first DC load can be auxiliary power supply, DC fan 1, DC fan 2, auxiliary power supply + DC fan 1, auxiliary power supply + DC fan 2, DC fan 1 + DC fan 2.
  • Auxiliary power supply + DC fan 1 + DC fan 2 as shown in Figure 8 to Figure 15 respectively.
  • the DC load module includes a second DC load connected in parallel with the second capacitor C2, and the preset modulation strategy is specifically:
  • the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply is kept off, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is alternately turned on and off.
  • part (a) in Figure 4 is the waveform diagram of the three-phase AC power supply;
  • part (b) part is the waveform diagram of the Umax-Umid-Uhigh curve and the Umid-Umin-Ulow curve, wherein Umax is the three-phase AC power supply Umid is the intermediate phase voltage of the three-phase AC power supply, Umin is the minimum phase voltage of the three-phase AC power supply;
  • Uhigh is the first voltage value, and the first voltage value can be selected as the target voltage setting of the first capacitor C1
  • Ulow is the second voltage value, and the second voltage value can be selected as the voltage upper limit setting value of the second capacitor C2;
  • part is the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123.
  • Control signal waveform diagram; (d) part is the waveform diagram of A-phase inductor current Ia, B-phase inductor current Ib, C-phase inductor current Ic, charging current I1 of the first capacitor C1 and charging current I2 of the second capacitor C2.
  • the control strategy for the bidirectional switch assembly 120 is: the bidirectional switch corresponding to the maximum phase voltage Umax of the three-phase AC power supply is kept off, and the bidirectional switch corresponding to the intermediate phase voltage Umid of the three-phase AC power supply is kept on , the bidirectional switches corresponding to the minimum phase voltage Umin of the three-phase AC power supply are alternately turned on and off.
  • the bidirectional switch corresponding to the maximum phase voltage Umax of the three-phase AC power supply is kept off
  • the bidirectional switch corresponding to the intermediate phase voltage Umid of the three-phase AC power supply is kept on
  • the bidirectional switches corresponding to the minimum phase voltage Umin of the three-phase AC power supply are alternately turned on and off.
  • the maximum phase voltage Umax of the three-phase AC power supply is the A-phase voltage, so the first bidirectional switch 121 corresponding to the A-phase voltage remains off, and the three-phase AC power supply is The intermediate phase voltage Umid is the B-phase voltage, so the second bidirectional switch 122 corresponding to the B-phase voltage remains on, and the minimum phase voltage Umin of the three-phase AC power supply is the C-phase voltage, so the third bidirectional switch 123 corresponding to the C-phase voltage alternates
  • the maximum phase voltage Umax of the three-phase AC power supply is the B-phase voltage, so the second bidirectional switch 122 corresponding to the B-phase voltage remains off, and the intermediate phase voltage Umid of the three-phase AC power supply is A-phase voltage, so the first bidirectional switch 121 corresponding to the A-phase voltage remains on, and the minimum phase voltage Umin of the three-phase AC power supply is the C-phase voltage, so the third bidirectional switch 123 corresponding
  • the waveform of each phase current in each time period is as follows: the inductor current corresponding to the intermediate phase voltage Umid of the three-phase AC power supply increases from zero to a certain value, and in the time period It drops to zero before the end; the inductor current corresponding to the minimum phase voltage Umin and the inductor current corresponding to the intermediate phase voltage Umid are the same in magnitude and opposite in direction.
  • the intermediate phase voltage Umid of the three-phase AC power supply is the B-phase voltage, and the corresponding B-phase inductor current Ib increases from zero to a certain value, and at T1 Before the time period ends, the minimum phase voltage Umin of the three-phase AC power supply is the C-phase voltage, and the corresponding C-phase inductor current Ic and B-phase inductor current Ib have the same magnitude and opposite direction; in the T2 time period, the three-phase AC power supply
  • the intermediate phase voltage Umid is the A-phase voltage
  • the corresponding A-phase inductor current Ia increases from zero to a certain value, and drops to zero before the end of the T2 time period
  • the minimum phase voltage Umin of the three-phase AC power supply is C Phase voltage, the corresponding C-phase inductor current Ic and A-phase inductor current Ia have the same magnitude and opposite directions; the same can be inferred for the T3 time period, T4 time period, T5 time
  • the preset modulation strategy at this time is: corresponding to the maximum phase voltage Umax of the three-phase AC power supply
  • the two-way switch remains off, the two-way switch corresponding to the intermediate phase voltage Umid of the three-phase AC power supply remains on, and the two-way switch corresponding to the minimum phase voltage Umin of the three-phase AC power supply is alternately turned on and off; it can meet the maximum phase voltage of the three-phase AC power supply.
  • the difference between the voltage Umax and the intermediate phase voltage Umid is less than the first voltage value Uhigh and the difference between the intermediate phase voltage Umid and the minimum phase voltage Umin of the three-phase AC power supply is less than the second voltage value Ulow.
  • C2 is charged, so as to keep the voltage of the second capacitor C2 stable, and can balance the three-phase current of the three-phase AC power supply, prevent the harmonics of a certain phase current from being significantly larger, and can effectively reduce the harmonics.
  • the second DC load may be a combination of an auxiliary power source and one or more of a plurality of DC fans, for example, when the air conditioner has an auxiliary
  • the second DC load can be auxiliary power supply, DC fan 1, DC fan 2, auxiliary power supply + DC fan 1, auxiliary power supply + DC fan 2, DC fan 1 + DC fan 2, Auxiliary power supply + DC fan 1 + DC fan 2, as shown in Figure 15 to Figure 21 respectively.
  • the DC load module may also include a first DC load and a second DC load, the first DC load is connected in parallel with the first capacitor C1, and the second DC load is connected with the second capacitor C2 in parallel.
  • the air conditioner has an auxiliary power supply, DC fan 1 and DC fan 2
  • the possible combinations of the first DC load and the second DC load are:
  • the first DC load is the auxiliary power supply, and the second DC load is DC fan 1 + DC fan 2, as shown in Figure 23;
  • the first DC load is DC fan 1
  • the second DC load is auxiliary power supply + DC fan 2, as shown in Figure 24;
  • the first DC load is DC fan 2, and the second DC load is auxiliary power supply + DC fan 1, as shown in Figure 25;
  • the first DC load is auxiliary power supply + DC fan 1
  • the second DC load is DC fan 2, as shown in Figure 26;
  • the first DC load is auxiliary power supply + DC fan 2, and the second DC load is DC fan 1, as shown in Figure 27;
  • the first DC load is DC fan 1 + DC fan 2
  • the second DC load is the auxiliary power supply, as shown in Figure 28.
  • the first voltage value is the target voltage setting value of the first capacitor C1 or the measured voltage value of the first capacitor C1.
  • the first voltage value is set as the target voltage setting value of the first capacitor C1 or the voltage measured value, which means that the difference between the maximum phase voltage of the three-phase AC power supply and the intermediate phase voltage is smaller than the target voltage setting value of the first capacitor C1 Or the measured voltage value, at this time, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is turned on so that the intermediate phase voltage is connected to one end of the first capacitor C1, and the maximum phase voltage of the three-phase AC power supply will pass through the three-phase rectifier bridge 110.
  • the diode is connected to the other end of the first capacitor C1, so the voltage applied across the first capacitor C1 is exactly the difference between the maximum phase voltage of the three-phase AC power supply and the intermediate phase voltage, which is less than the target voltage of the first capacitor C1
  • the set value or the measured voltage value can ensure that the actual voltage across the first capacitor C1 does not exceed the target voltage set value or the measured voltage value, so as to prevent the first capacitor C1 from being damaged by overvoltage.
  • the second voltage value is a voltage upper limit setting value of the second capacitor C2 or a voltage measured value of the second capacitor C2.
  • the second voltage value is set as the voltage upper limit setting value of the second capacitor C2 or the voltage measured value, which means that the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is smaller than the voltage upper limit setting value of the second capacitor C2 Or the measured voltage value, at this time, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is turned on so that the intermediate phase voltage is connected to one end of the second capacitor C2, and the minimum phase voltage of the three-phase AC power supply will pass through the three-phase rectifier bridge 110.
  • the diode is connected to the other end of the second capacitor C2, so the voltage applied across the second capacitor C2 is exactly the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply, which is less than the upper limit of the voltage of the second capacitor C2
  • the set value or the measured voltage value can ensure that the actual voltage across the second capacitor C2 does not exceed the upper limit set value of the voltage or the measured voltage value, so as to prevent the second capacitor C2 from being damaged by overvoltage.
  • the first bidirectional switch 121 , the second bidirectional switch 122 and the third bidirectional switch 123 all include two antiparallel power switch tubes, as shown in FIG. 5 .
  • the bidirectional switch composed of two anti-parallel power switch tubes is a fully controlled bidirectional conduction power switch, that is, bidirectional conduction can be realized through control signals, and bidirectional blocking can also be realized through control signals. Specifically, bidirectional conduction is achieved by controlling the two power switch tubes to be turned on at the same time, and bidirectional blocking is achieved by controlling the two power switch tubes to be turned off at the same time.
  • the first bidirectional switch 121 , the second bidirectional switch 122 and the third bidirectional switch 123 can be replaced by two power switch tubes connected in reverse series. There are diodes in antiparallel, as shown in Figure 6.
  • a bidirectional switch composed of power switch tubes with inverse parallel diodes connected in reverse series is a fully controlled bidirectional conduction power switch, that is, bidirectional conduction can be achieved through control signals, or bidirectional blocking can be achieved through control signals.
  • bidirectional conduction is achieved by controlling the two power switch tubes to be turned on at the same time
  • bidirectional blocking is achieved by controlling the two power switch tubes to be turned off at the same time.
  • the diode can choose a fast recovery diode.
  • the first bidirectional switch 121 , the second bidirectional switch 122 and the third bidirectional switch 123 all include a fourth bridge arm, a fifth bridge arm and a sixth bridge arm that are connected in parallel with each other.
  • both the fourth bridge arm and the sixth bridge arm include two diodes connected in series
  • the fifth bridge arm includes a power switch tube, as shown in Figure 13
  • the fourth bridge arm includes a diode D7 and a diode D8 connected in series with each other
  • the fourth bridge arm includes a diode D7 and a diode D8 in series.
  • the fifth bridge arm includes a power switch tube Q1
  • the sixth bridge arm includes a diode D9 and a diode D10 connected in series with each other.
  • the forward conduction of the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123 is the flow direction of the diode D7-power switch tube Q1-diode D8.
  • the first bidirectional switch 121, the second bidirectional switch 122 and the The reverse conduction of the third bidirectional switch 123 is the flow direction of the diode D9-power switch tube Q1-diode D10; when the power switch tube Q1 is turned off, the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123 For the bidirectional blocking state.
  • an embodiment of the present invention provides a circuit control method, which is applied to a three-phase power conversion circuit as shown in FIG. 1 or FIG. 2 .
  • the three-phase power conversion circuit includes a rectifier module 100, an energy storage module 200 and a DC load module,
  • the rectifier module 100 includes a three-phase rectifier bridge 110 and a bidirectional switch assembly 120.
  • the three-phase rectifier bridge 110 includes a first bridge arm 111, a second bridge arm 112 and a third bridge arm 113 that are connected in parallel with each other;
  • the bidirectional switch assembly 120 includes a first bidirectional bridge arm 111.
  • the switch 121, the second two-way switch 122 and the third two-way switch 123 are examples of the switches.
  • One end of the first two-way switch 121 is connected to the midpoint of the first bridge arm 111, and one end of the second two-way switch 122 is connected to the midpoint of the second bridge arm 112.
  • One end of the three-way switch 123 is connected to the midpoint of the third bridge arm 113;
  • the energy storage module 200 is connected to the DC output end of the rectifier module 100, and the energy storage module 200 includes a first capacitor C1 and a second capacitor C2 connected in series with each other.
  • the other end of the bidirectional switch 121, the other end of the second bidirectional switch 122, and the other end of the third bidirectional switch 123 are all connected between the first capacitor C1 and the second capacitor C2;
  • the DC load module includes a parallel connection with the first capacitor C1. the first DC load or the second DC load in parallel with the second capacitor C2;
  • Circuit control methods include:
  • the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123 are controlled according to the three-phase voltage of the three-phase AC power source, so that the voltage across the first capacitor C1 or the voltage across the second capacitor C2 is maintained as the target voltage.
  • the first DC load is connected in parallel at both ends of the first capacitor C1 or the second DC load is connected in parallel at both ends of the second capacitor C2, and according to the three-phase AC power supply
  • the voltage controls the first bidirectional switch 121, the second bidirectional switch 122, and the third bidirectional switch 123, so that the voltage across the first capacitor C1 or the voltage across the second capacitor C2 is maintained as the target voltage, thereby maintaining the first capacitor C1 or the voltage across the second capacitor C2.
  • the voltage at both ends of the second capacitor C2 is stable, that is, the first capacitor C1 or the second capacitor C2 can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies, and can balance the three-phase current of the three-phase AC power supply, avoiding The harmonics of a certain phase current are obviously larger, which can effectively reduce the harmonics.
  • controlling the first bidirectional switch 121 , the second bidirectional switch 122 and the third bidirectional switch 123 according to the three-phase voltage of the three-phase AC power supply includes:
  • the preset modulation strategy is used to control On-off of the two-way switch assembly 120;
  • the preset modulation strategy is: the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, the bidirectional switch corresponding to the voltage of one of the three-phase AC power supply except the intermediate phase voltage is kept off, and the voltage of the other phase is turned off.
  • the corresponding bidirectional switches are alternately turned on and off.
  • the on-off of the bidirectional switch component 120 is controlled by a preset modulation strategy, so that within the time range, the first capacitor C1 or the second capacitor C2 is charged, so as to keep the voltage at both ends of the first capacitor C1 or the second capacitor C2 stable, and then It can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies through the first capacitor C1 or the second capacitor C2, and can balance the three-phase current of the three-phase AC power supply, avoiding that the current harmonics of a certain phase are significantly larger, Can effectively reduce harmonics.
  • the DC load module includes a first DC load connected in parallel with the first capacitor C1.
  • the preset modulation strategy is specifically:
  • the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is kept off, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply is alternately turned on and off.
  • the preset modulation strategy at this time is: corresponding to the bidirectional voltage of the minimum phase voltage of the three-phase AC power supply
  • the switch is kept off, the two-way switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the two-way switch corresponding to the maximum phase voltage of the three-phase AC power supply is alternately turned on and off; it can meet the maximum phase voltage of the three-phase AC power supply and the middle
  • the first capacitor C1 is charged within the time range of the condition that the difference between the phase voltages is less than the first voltage value and the difference between the intermediate phase voltage of the three-phase AC power supply and the minimum phase voltage is less than the second voltage value, thereby maintaining the first capacitor C1
  • the voltage of C1 is stable, and it can balance the three-phase current of the three-phase AC power supply, avoid the harmonic current of a certain phase being significantly larger, and can effectively reduce the harmonic
  • the DC load module includes a second DC load connected in parallel with the second capacitor C2.
  • the preset modulation strategy is specifically:
  • the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply is kept off, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is kept on, and the bidirectional switch corresponding to the minimum phase voltage of the three-phase AC power supply is alternately turned on and off.
  • the preset modulation strategy at this time is: the bidirectional switch corresponding to the maximum phase voltage of the three-phase AC power supply maintains Cut off, the two-way switch corresponding to the intermediate phase voltage of the three-phase AC power supply remains on, and the two-way switch corresponding to the minimum phase voltage of the three-phase AC power supply is alternately turned on and off; it can meet the maximum phase voltage and intermediate phase voltage of the three-phase AC power supply.
  • the difference between the three-phase AC power supply and the minimum phase voltage is less than the first voltage value and the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is less than the second voltage value.
  • the voltage is stable, and it can balance the three-phase current of the three-phase AC power supply, avoid the harmonic current of a certain phase being significantly larger, and can effectively reduce the harmonic.
  • the first voltage value is the target voltage setting value of the first capacitor C1 or the measured voltage value of the first capacitor C1.
  • the first voltage value is set as the target voltage setting value of the first capacitor C1 or the voltage measured value, which means that the difference between the maximum phase voltage of the three-phase AC power supply and the intermediate phase voltage is smaller than the target voltage setting value of the first capacitor C1 Or the measured voltage value.
  • the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is turned on so that the intermediate phase voltage is connected to one end of the first capacitor C1, and the maximum phase voltage of the three-phase AC power supply will pass through the three-phase rectifier bridge 110.
  • the diode is connected to the other end of the first capacitor C1, so the voltage applied across the first capacitor C1 is exactly the difference between the maximum phase voltage of the three-phase AC power supply and the intermediate phase voltage, which is less than the target voltage of the first capacitor C1
  • the set value or the measured voltage value can ensure that the actual voltage across the first capacitor C1 does not exceed the target voltage set value or the measured voltage value, so as to prevent the first capacitor C1 from being damaged by overvoltage.
  • the second voltage value is a set value of the upper limit of the voltage of the second capacitor C2 or a measured value of the voltage of the second capacitor C2.
  • the second voltage value is set as the voltage upper limit setting value of the second capacitor C2 or the voltage measured value, which means that the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is smaller than the voltage upper limit setting value of the second capacitor C2 Or the measured voltage value, at this time, the bidirectional switch corresponding to the intermediate phase voltage of the three-phase AC power supply is turned on so that the intermediate phase voltage is connected to one end of the second capacitor C2, and the minimum phase voltage of the three-phase AC power supply will pass through the three-phase rectifier bridge 110.
  • the diode is connected to the other end of the second capacitor C2, so the voltage applied across the second capacitor C2 is exactly the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply, which is less than the upper limit of the voltage of the second capacitor C2
  • the set value or the measured voltage value can ensure that the actual voltage across the second capacitor C2 does not exceed the upper limit set value of the voltage or the measured voltage value, so as to prevent the second capacitor C2 from being damaged by overvoltage.
  • an embodiment of the present invention provides a circuit board including the three-phase power conversion circuit according to the embodiment of the first aspect of the present invention.
  • the first DC load is connected in parallel at both ends of the first capacitor C1 or the second DC load is connected in parallel at both ends of the second capacitor C2, and according to the three-phase voltage of the three-phase AC power supply
  • the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123 are controlled to keep the voltage across the first capacitor C1 or the voltage across the second capacitor C2 as the target voltage, thereby maintaining the first capacitor C1 or the second
  • the voltage across the capacitor C2 is stable, that is, the first capacitor C1 or the second capacitor C2 can supply power to the DC loads with lower voltage levels such as the DC fan and the auxiliary power supply, and can balance the three-phase current of the three-phase AC power supply to avoid certain problems.
  • the phase current harmonics are significantly larger, which can effectively reduce the harmonics.
  • an embodiment of the present invention provides an operation control apparatus 700, including at least one processor 710 and a memory 720 for communicating with the at least one processor 710; The instructions are executed by the processor 710, and the instructions are executed by the at least one processor 710, so that the at least one processor 710 can execute the circuit control method according to the embodiment of the second aspect of the present invention.
  • the first DC load is connected in parallel to the two ends of the first capacitor C1 or the second DC load is connected in parallel to the two ends of the second capacitor C2, and according to the three-phase AC power supply three
  • the phase voltage controls the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123, so that the voltage across the first capacitor C1 or the voltage across the second capacitor C2 is maintained as the target voltage, thereby maintaining the first capacitor C1 or
  • the voltage across the second capacitor C2 is stable, that is, the first capacitor C1 or the second capacitor C2 can supply power to DC loads with lower voltage levels such as the DC fan and the auxiliary power supply, and can balance the three-phase current of the three-phase AC power supply, Avoiding that the harmonics of a certain phase current are significantly larger can effectively reduce the harmonics.
  • an embodiment of the present invention provides an air conditioner, including the circuit board according to the embodiment of the third aspect of the present invention or the operation control device 700 according to the embodiment of the fourth aspect of the present invention.
  • the first DC load is connected in parallel at both ends of the first capacitor C1 or the second DC load is connected in parallel at both ends of the second capacitor C2, and the three-phase voltage of the three-phase AC power
  • the first bidirectional switch 121, the second bidirectional switch 122 and the third bidirectional switch 123 are controlled to keep the voltage across the first capacitor C1 or the voltage across the second capacitor C2 as the target voltage, thereby maintaining the first capacitor C1 or the second
  • the voltage across the capacitor C2 is stable, that is, the first capacitor C1 or the second capacitor C2 can supply power to the DC loads with lower voltage levels such as the DC fan and the auxiliary power supply, and can balance the three-phase current of the three-phase AC power supply to avoid certain problems.
  • the phase current harmonics are significantly larger, which can effectively reduce the harmonics.
  • an embodiment of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the circuit control method according to the embodiment of the second aspect of the present invention .
  • the first DC load is connected in parallel at both ends of the first capacitor C1 or the second DC load is connected in parallel at both ends of the second capacitor C2, and according to the three-phase AC power supply
  • the three-phase voltage controls the first bidirectional switch 121 , the second bidirectional switch 122 and the third bidirectional switch 123 to keep the voltage across the first capacitor C1 or the voltage across the second capacitor C2 as the target voltage, thereby maintaining the first capacitor C1 Or the voltage at both ends of the second capacitor C2 is stable, that is, the first capacitor C1 or the second capacitor C2 can supply power to DC loads with lower voltage levels such as DC fans and auxiliary power supplies, and can balance the three-phase current of the three-phase AC power supply. , to prevent the harmonic current of a certain phase from being significantly larger, which can effectively reduce the harmonic.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

一种三相电源变换电路、电路控制方法、线路板及空调器,三相电源变换电路包括整流模块(100)、储能模块(200)、控制模块和直流负载模块;整流模块(100)包括三相整流桥(110)和双向开关组件(120);储能模块(200)包括第一电容(C1)和第二电容(C2);直流负载模块包括与第一电容(C1)并联的第一直流负载或者与第二电容(C2)并联的第二直流负载;根据三相交流电源的三相电压控制第一双向开关(121)、第二双向开关(122)和第三双向开关(123),以使第一电容(C1)两端的电压或者第二电容(C2)两端的电压保持稳定。

Description

三相电源变换电路、电路控制方法、线路板及空调器
相关申请的交叉引用
本申请要求于2020年09月30日提交的申请号为202011066402.3、名称为“三相电源变换电路、电路控制方法、线路板及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调器技术领域,特别涉及一种三相电源变换电路、电路控制方法、线路板及空调器。
背景技术
在三相电源供电的高能效变频空调系统中,除了变频压缩机负载外,还有直流风机负载,有的空调系统带一个直流风机,有的空调系统带有两个直流风机甚至更多。现有技术方案一般是,三相电源经过无源PFC整流电路或者两电平有源PFC整流电路后输出高压直流母线电压,变频压缩机负载接在高压直流母线电压上;而直流风机负载不是从高压直流母线电压上取电,而是通过另外独立的一路相电压整流后供电。
这样设计的原因在于,驱动直流风机的IPM(Intelligent Power Module,智能功率模块)模块耐压不够,不能直接从高压直流母线取电。一般地,三相线电压有效值标称380V,那么整流后的高压直流母线电压为537V;加上10%的电源电压波动允许误差,高压直流母线电压将可能达到590V;如果采用有源PFC控制,直流母线电压可以进一步上升。高压电解电容的耐压一般字450V或以下,在此应用场景下,直流母线的高压电解电容必须采用两级串联方式提高耐压,两级串联耐压理论上可达900V。而驱动直流风机IPM模块的耐压一般为500V或者600V,加上IPM模块耐压降额设计要求,实际上直流风机IPM模块的输入电压一般也要在450V以下。由于高压直流母线的电压高于直流风机IPM模块输入电压要求,导致无法直接从高压直流母线取电。
现有技术方案,采用独立的一路相电压整流后给直流风机负载供电,这样可以整流出来的直流电压是满足直流风机IPM模块耐压要求的。但这也导致驱动直流风机这一相供电的负载高于另外两相,并且增加的这一部分负载没有经过两电平有源PFC电路,造成该相电流谐波明显更大,三相电流不平衡,且难以满足IEC(International Electro technical Commission,国际电工委员会)谐波要求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种三相电源变换电路、电路控制方法、线路板及空调器,能够提供稳定的电压,平衡三相电流,有效降低谐波。
第一方面,本发明实施例提供一种三相电源变换电路,包括整流模块、储能模块、直流负载模块和控制模块;
所述整流模块包括三相整流桥和双向开关组件,所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所述双向开关组件包括第一双向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;
所述储能模块与所述整流模块的直流输出端连接,所述储能模块包括相互串联的第一电容和第二电容,所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开 关的另一端均连接于所述第一电容和所述第二电容之间;
所述直流负载模块包括与所述第一电容并联的第一直流负载或者与所述第二电容并联的第二直流负载;
所述控制模块与所述双向开关组件连接,用于根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压。
根据本发明实施例提供的三相电源变换电路,至少具有如下有益效果:通过在第一电容两端并联有第一直流负载或者在第二电容两端并联有第二直流负载,并根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压,从而保持第一电容或者第二电容两端的电压稳定,即可以通过第一电容或者第二电容供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述三相电源变换电路中,所述根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,包括:
当三相交流电源的最大相电压与中间相电压的差值小于第一电压值,且三相交流电源的中间相电压与最小相电压的差值小于第二电压值,所述控制模块以预设调制策略控制所述双向开关组件的通断;
其中,所述预设调制策略为:所述三相交流电源的中间相电压对应的双向开关保持导通,所述三相交流电源中除所述中间相电压外的其中一相电压对应的双向开关保持截止,另一相电压对应的双向开关交替导通截止。
通过在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,以预设调制策略控制双向开关组件的通断,使得在该时间范围内,对第一电容或者第二电容充电,从而保持第一电容或者第二电容两端的电压稳定,进而可以通过第一电容或者第二电容供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述三相电源变换电路中,所述直流负载模块包括与所述第一电容并联的第一直流负载,所述预设调制策略具体为:
对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止。
当第一直流负载并联在第一电容两端时,即通过第一电容供电给到第一直流负载,此时预设调制策略为:对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止;能够在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,对第一电容进行充电,从而保持第一电容的电压稳定,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述三相电源变换电路中,所述直流负载模块包括与所述第二电容并联的第二直流负载,所述预设调制策略具体为:
对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止。
当第二直流负载并联在第二电容两端时,即通过第二电容供电给到第二直流负载,此时预设调制策略为:对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止;能够在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流 电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,对第二电容进行充电,从而保持第二电容的电压稳定,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述三相电源变换电路中,所述第一电压值为所述第一电容的目标电压设定值或者为所述第一电容的电压实测值。
第一电压值设定为第一电容的目标电压设定值或者电压实测值,意味着三相交流电源的最大相电压与中间相电压的差值小于第一电容的目标电压设定值或者电压实测值,此时三相交流电源的中间相电压对应的双向开关导通使得中间相电压连接至第一电容的一端,三相交流电源的最大相电压会通过三相整流桥的二极管连接至第一电容的另一端,因此施加在第一电容两端的电压正好为三相交流电源的最大相电压与中间相电压的差值,该差值小于第一电容的目标电压设定值或者电压实测值,能够保证第一电容两端的实际电压不会超过目标电压设定值或者电压实测值,避免第一电容受到过压而损坏。
上述三相电源变换电路中,所述第二电压值为所述第二电容的电压上限设定值或者为所述第二电容的电压实测值。
第二电压值设定为第二电容的电压上限设定值或者电压实测值,意味着三相交流电源的中间相电压与最小相电压的差值小于第二电容的电压上限设定值或者电压实测值,此时三相交流电源的中间相电压对应的双向开关导通使得中间相电压连接至第二电容的一端,三相交流电源的最小相电压会通过三相整流桥的二极管连接至第二电容的另一端,因此施加在第二电容两端的电压正好为三相交流电源的中间相电压与最小相电压的差值,该差值小于第二电容的电压上限设定值或者电压实测值,能够保证第二电容两端的实际电压不会超过电压上限设定值或者电压实测值,避免第二电容受到过压而损坏。
上述三相电源变换电路中,所述第一双向开关、所述第二双向开关和所述第三双向开关均包括两个反向并联的功率开关管。
采用两个反向并联的功率开关管组成的双向开关,为全控型双向导通功率开关,即可以通过控制信号实现双向导通,也可以通过控制信号实现双向阻断。具体的,通过控制两个功率开关管同时导通即为双向导通,通过控制两个功率开关管同时关断即为双向阻断。
上述三相电源变换电路中,所述第一双向开关、所述第二双向开关和所述第三双向开关均包括两个反向串联的功率开关管,两个所述功率开关管均反向并联有二极管。
采用反向串联的具有反向并联二极管的功率开关管组成的双向开关,为全控型双向导通功率开关,即可以通过控制信号实现双向导通,也可以通过控制信号实现双向阻断。具体的,通过控制两个功率开关管同时导通即为双向导通,通过控制两个功率开关管同时关断即为双向阻断。另外,二极管可以选用快恢复二极管。
上述三相电源变换电路中,所述第一双向开关、所述第二双向开关和所述第三双向开关均包括相互并联的第四桥臂、第五桥臂和第六桥臂,所述第四桥臂和所述第六桥臂均包括两个相互串联的二极管,所述第五桥臂包括一个功率开关管。
第二方面,本发明实施例提供一种电路控制方法,应用于三相电源变换电路,所述三相电源变换电路包括整流模块、储能模块和直流负载模块,所述整流模块包括三相整流桥和双向开关组件,所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所述双向开关组件包括第一双向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;所述储能模块与所述整流模块的直流输出端连接,所述储能模块包括相互串联的第一电容和第二电容,所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开关的另一端均连接于所述第一电容和所述第二电容之间;所述直流负载模块包括与所述第一电容并联的第一直流负载或者与所述第二电容并联的第二直流负载;
所述方法包括:
根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压。
根据本发明实施例提供的电路控制方法,至少具有如下有益效果:通过在第一电容两端并联有第一直流负载或者在第二电容两端并联有第二直流负载,并根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压,从而保持第一电容或者第二电容两端的电压稳定,即可以通过第一电容或者第二电容供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述的电路控制方法中,所述根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,包括:
当三相交流电源的最大相电压与中间相电压的差值小于第一电压值,且三相交流电源的中间相电压与最小相电压的差值小于第二电压值,以预设调制策略控制所述双向开关组件的通断;
其中,所述预设调制策略为:所述三相交流电源的中间相电压对应的双向开关保持导通,所述三相交流电源中除所述中间相电压外的其中一相电压对应的双向开关保持截止,另一相电压对应的双向开关交替导通截止。
通过在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,以预设调制策略控制双向开关组件的通断,使得在该时间范围内,对第一电容或者第二电容充电,从而保持第一电容或者第二电容两端的电压稳定,进而可以通过第一电容或者第二电容供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述的电路控制方法中,所述直流负载模块包括与所述第一电容并联的第一直流负载,所述预设调制策略具体为:
对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止。
当第一直流负载并联在第一电容两端时,即通过第一电容供电给到第一直流负载,此时预设调制策略为:对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止;能够在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,对第一电容进行充电,从而保持第一电容的电压稳定,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述的电路控制方法中,所述直流负载模块包括与所述第二电容并联的第二直流负载,所述预设调制策略具体为:
对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止。
当第二直流负载并联在第二电容两端时,即通过第二电容供电给到第二直流负载,此时预设调制策略为:对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止;能够在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,对第二电容进行充电,从而保持第二电容的电压稳定,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述的电路控制方法中,所述第一电压值为所述第一电容的目标电压设定值或者为所述 第一电容的电压实测值。
第一电压值设定为第一电容的目标电压设定值或者电压实测值,意味着三相交流电源的最大相电压与中间相电压的差值小于第一电容的目标电压设定值或者电压实测值,此时三相交流电源的中间相电压对应的双向开关导通使得中间相电压连接至第一电容的一端,三相交流电源的最大相电压会通过三相整流桥的二极管连接至第一电容的另一端,因此施加在第一电容两端的电压正好为三相交流电源的最大相电压与中间相电压的差值,该差值小于第一电容的目标电压设定值或者电压实测值,能够保证第一电容两端的实际电压不会超过目标电压设定值或者电压实测值,避免第一电容受到过压而损坏。
上述的电路控制方法中,所述第二电压值为所述第二电容的电压上限设定值或者为所述第二电容的电压实测值。
第二电压值设定为第二电容的电压上限设定值或者电压实测值,意味着三相交流电源的中间相电压与最小相电压的差值小于第二电容的电压上限设定值或者电压实测值,此时三相交流电源的中间相电压对应的双向开关导通使得中间相电压连接至第二电容的一端,三相交流电源的最小相电压会通过三相整流桥的二极管连接至第二电容的另一端,因此施加在第二电容两端的电压正好为三相交流电源的中间相电压与最小相电压的差值,该差值小于第二电容的电压上限设定值或者电压实测值,能够保证第二电容两端的实际电压不会超过电压上限设定值或者电压实测值,避免第二电容受到过压而损坏。
第三方面,本发明实施例提供一种线路板,包括有如本发明第一方面实施例所述的三相电源变换电路。
根据本发明实施例提供的线路板,至少具有如下有益效果:通过在第一电容两端并联有第一直流负载或者在第二电容两端并联有第二直流负载,并根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压,从而保持第一电容或者第二电容两端的电压稳定,即可以通过第一电容或者第二电容供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
第四方面,本发明实施例提供一种运行控制装置,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如本发明第二方面实施例所述的电路控制方法。
根据本发明实施例提供的运行控制装置,至少具有如下有益效果:通过在第一电容两端并联有第一直流负载或者在第二电容两端并联有第二直流负载,并根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压,从而保持第一电容或者第二电容两端的电压稳定,即可以通过第一电容或者第二电容供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
第五方面,本发明实施例提供一种空调器,包括如本发明第三方面实施例所述的线路板或者包括如本发明第四方面实施例所述的运行控制装置。
根据本发明实施例提供的空调器,至少具有如下有益效果:通过在第一电容两端并联有第一直流负载或者在第二电容两端并联有第二直流负载,并根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压,从而保持第一电容或者第二电容两端的电压稳定,即可以通过第一电容或者第二电容供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
第六方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如本发明第二方面实施例所述的电路控制方法。
根据本发明实施例提供的计算机可读存储介质,至少具有如下有益效果:通过在第一电容两端并联有第一直流负载或者在第二电容两端并联有第二直流负载,并根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压,从而保持第一电容或者第二电容两端的电压稳定,即可以通过第一电容或者第二电容供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1是本发明的一个实施例提供的一种三相电源变换电路的电路原理图;
图2是本发明的另一个实施例提供的一种三相电源变换电路的电路原理图;
图3是本发明的一个实施例提供的一种三相电源变换电路的预设调制策略的示意图;
图4是本发明的另一个实施例提供的一种三相电源变换电路的预设调制策略的示意图;
图5是本发明的一个实施例提供的双向开关的具体结构图;
图6是本发明的另一个实施例提供的双向开关的具体结构图;
图7是本发明实施例提供的运行控制装置的结构图;
图8是图1中第一直流负载的情况一的电路原理图;
图9是图1中第一直流负载的情况二的电路原理图;
图10是图1中第一直流负载的情况三的电路原理图;
图11是图1中第一直流负载的情况四的电路原理图;
图12是图1中第一直流负载的情况五的电路原理图;
图13是图1中第一直流负载的情况六的电路原理图;
图14是图1中第一直流负载的情况七的电路原理图;
图15是图2中第二直流负载的情况一的电路原理图;
图16是图2中第二直流负载的情况二的电路原理图;
图17是图2中第二直流负载的情况三的电路原理图;
图18是图2中第二直流负载的情况四的电路原理图;
图19是图2中第二直流负载的情况五的电路原理图;
图20是图2中第二直流负载的情况六的电路原理图;
图21是图2中第二直流负载的情况七的电路原理图;
图22是本发明的又一个实施例提供的一种三相电源变换电路的电路原理图;
图23是图22中第一直流负载和第二直流负载的情况一的电路原理图;
图24是图22中第一直流负载和第二直流负载的情况二的电路原理图;
图25是图22中第一直流负载和第二直流负载的情况三的电路原理图;
图26是图22中第一直流负载和第二直流负载的情况四的电路原理图;
图27是图22中第一直流负载和第二直流负载的情况五的电路原理图;
图28是图22中第一直流负载和第二直流负载的情况六的电路原理图;以及
图29是本发明的又一个实施例提供的双向开关的具体结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明提供了一种三相电源变换电路、电路控制方法、线路板及空调器,能够提供稳定的电压,平衡三相电流,有效降低谐波。
下面结合附图,对本发明实施例作进一步阐述。
参照图1和图2,本发明的第一方面实施例提供一种三相电源变换电路,包括整流模块100、储能模块200、控制模块和直流负载模块;图1和图2中没有画出控制模块,但不影响对本实施例的理解。
整流模块100包括三相整流桥110和双向开关组件120,三相整流桥110包括相互并联的第一桥臂111、第二桥臂112和第三桥臂113,第一桥臂111包括相互串联的第一二极管D1和第二二极管D2,第二桥臂112包括相互串联的第三二极管D3和第四二极管D4,第三桥臂113包括相互串联的第五二极管D5和第六二极管D6;可以理解的是,第一桥臂111、第二桥臂112和第三桥臂113除了可以采用两个相互串联的二极管,也可以采用两个相互串联的开关管来实现;双向开关组件120包括第一双向开关121、第二双向开关122和第三双向开关123,第一双向开关121的一端连接第一桥臂111的中点,也即第一二极管D1和第二二极管D2的连接点a,第二双向开关122的一端连接第二桥臂112的中点,也即第三二极管D3和第四二极管D4的连接点b,第三双向开关123的一端连接第三桥臂113的中点,也即第五二极管D5和第六二极管D6的连接点c;
储能模块200与整流模块100的直流输出端连接,储能模块200包括相互串联的第一电容C1和第二电容C2,第一双向开关121的另一端、第二双向开关122的另一端、第三双向开关123的另一端均连接于第一电容C1和第二电容C2之间;具体地,整流模块100的直流输出端包括正母线端d和负母线端e,第一电容C1的一端连接至正母线端d,第二电容C2的一端连接至负母线端e,第一电容C1的另一端和第二电容C2的另一端连接在一起,第一电容C1和第二电容C2之间的连接点为直流母线中点f,第一双向开关121的另一端、第二双向开关122的另一端、第三双向开关123的另一端均连接至直流母线中点f;
另外,三相交流电源包括A相电压、B相电压和C相电压,A相电压通过第一电感L1连接至第一二极管D1和第二二极管D2的连接点a,B相电压通过第二电感L2连接至第三二极管D3和第四二极管D4的连接点b,C相电压通过第三电感L3连接至第五二极管D5和第六二极管D6的连接点c;
直流负载模块包括与第一电容C1并联的第一直流负载或者与第二电容C2并联的第二直流负载;
控制模块与双向开关组件120连接,即控制模块分别与第一双向开关121、第二双向开关122和第三双向开关123连接,控制模块用于根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,以使第一电容C1两端的电压或者第二电容C2两端的电压保持为目标电压。
根据本发明实施例提供的三相电源变换电路,通过在第一电容C1两端并联有第一直流负载或者在第二电容C2两端并联有第二直流负载,并根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,以使第一电容C1两端的电压或者第二电容C2两端的电压保持为目标电压,从而保持第一电容C1或者第二电容C2两端的电压稳定, 即可以通过第一电容C1或者第二电容C2供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
具体地,上述三相电源变换电路中,根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,包括:
当三相交流电源的最大相电压与中间相电压的差值小于第一电压值,且三相交流电源的中间相电压与最小相电压的差值小于第二电压值,控制模块以预设调制策略控制双向开关组件120的通断;
其中,预设调制策略为:三相交流电源的中间相电压对应的双向开关保持导通,三相交流电源中除中间相电压外的其中一相电压对应的双向开关保持截止,另一相电压对应的双向开关交替导通截止。
另外,需要说明的是,三相交流电源的最大相电压、中间相电压和最小相电压是根据当前时刻的电压幅值来决定的,例如某一个时刻或者在某一个连续的时间段,三相交流电源的最大相电压为A相电压,中间相电压为B相电压,最小相电压为C相电压;在下一个时刻或者下一个连续的时间段,三相交流电源的最大相电压为B相电压,中间相电压为A相电压,最小相电压为C相电压;再下一个时刻或者下一个连续的时间段,三相交流电源的最大相电压为B相电压,中间相电压为C相电压,最小相电压为A相电压。其他情况以此类推。
根据本发明实施例提供的三相电源变换电路,通过在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,以预设调制策略控制双向开关组件120的通断,使得在该时间范围内,对第一电容C1或者第二电容C2充电,从而保持第一电容C1或者第二电容C2两端的电压稳定,进而可以通过第一电容C1或者第二电容C2供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
参照图1,上述的三相电源变换电路中,直流负载模块包括与第一电容C1并联的第一直流负载,预设调制策略具体为:
对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止。
参照图3,图3中的(a)部分为三相交流电源的波形图;(b)部分为Umax-Umid-Uhigh曲线和Umid-Umin-Ulow曲线的波形图,其中Umax为三相交流电源的最大相电压,Umid为三相交流电源的中间相电压,Umin为三相交流电源的最小相电压;Uhigh为第一电压值,第一电压值可以选取为第一电容C1的目标电压设定值;Ulow为第二电压值,第二电压值可以选取为第二电容C2的电压上限设定值;(c)部分为第一双向开关121、第二双向开关122和第三双向开关123的控制信号波形图;(d)部分为A相电感电流Ia、B相电感电流Ib、C相电感电流Ic、第一电容C1的充电电流I1和第二电容C2的充电电流I2的波形图。
由图3中的(a)部分结合(b)部分可以看到,在三相交流电源的一个周期内,满足三相交流电源的最大相电压Umax与中间相电压Umid的差值小于第一电压值Uhigh,且三相交流电源的中间相电压Umid与最小相电压Umin的差值小于第二电压值Ulow的时间段共有6个,即T1时间段、T2时间段、T3时间段、T4时间段、T5时间段和T6时间段。在这6个时间段中,对双向开关组件120的控制策略为:对应三相交流电源的最小相电压Umin的双向开关保持截止,对应三相交流电源的中间相电压Umid的双向开关保持导通,对应三相交流电源的最大相电压Umax的双向开关交替导通截止。例如,结合图3中的(c)部分,在T1时间段,三相交流电源的最大相电压Umax为A相电压,因此A相电压对应的第一双向开关121交替导通截止,三相交流电源的中间相电压Umid为B相电压,因此B相电压对应的第二双向开关122保持导通,三相交流电源的最小相电压Umin为C相电压,因此C相电压对应的第三双向开关123保持截止;同理,在T2时间段,三相交流电源的最大相电压Umax为B相电压,因此B 相电压对应的第二双向开关122交替导通截止,三相交流电源的中间相电压Umid为A相电压,因此A相电压对应的第一双向开关121保持导通,三相交流电源的最小相电压Umin为C相电压,因此C相电压对应的第三双向开关123保持截止;T3时间段、T4时间段、T5时间段和T6时间段中的情况同理可推。相应地,在此控制策略下,在每个时间段内各相电流的波形为:三相交流电源的最大相电压Umax对应的电感电流由零正向增大到某个值,并在时间段结束前下降到零;中间相电压Umid对应的电感电流和最大相电压Umax对应的电感电流大小一致,方向相反。结合图4中的(d)部分,在T1时间段,三相交流电源的最大相电压Umax为A相电压,对应的A相电感电流Ia由零正向增大到某个值,并在T1时间段结束前下降到零,三相交流电源的中间相电压Umid为B相电压,对应的B相电感电流Ib和A相电感电流Ia大小一致,方向相反;在T2时间段,三相交流电源的最大相电压Umax为B相电压,对应的B相电感电流Ib由零正向增大到某个值,并在T2时间段结束前下降到零,三相交流电源的中间相电压Umid为A相电压,对应的A相电感电流Ia和B相电感电流Ib大小一致,方向相反;T3时间段、T4时间段、T5时间段和T6时间段中的情况同理可推。
需要说明的是,T1时间段、T2时间段、T3时间段、T4时间段、T5时间段和T6时间段在一个三相交流电源周期内的占比,可以通过调整第一电压值Uhigh和第二电压值Ulow来改变,也即调整第一电容C1的目标电压设定值和第二电容C2的电压上限设定值。
因此,当第一直流负载并联在第一电容C1两端时,即通过第一电容C1供电给到第一直流负载,此时预设调制策略为:对应三相交流电源的最小相电压Umin的双向开关保持截止,对应三相交流电源的中间相电压Umid的双向开关保持导通,对应三相交流电源的最大相电压Umax的双向开关交替导通截止;能够在满足三相交流电源的最大相电压Umax与中间相电压Umid的差值小于第一电压值Uhigh且三相交流电源的中间相电压Umid与最小相电压Umin的差值小于第二电压值Ulow条件的时间范围内,对第一电容C1进行充电,从而保持第一电容C1的电压稳定,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
可以理解的是,当上述三相电源变换电路应用在空调器中时,第一直流负载可以是辅助电源和多个直流风机中的一个或者多个的组合,例如,当空调器带有一个辅助电源、直流风机1和直流风机2时,第一直流负载可以是辅助电源、直流风机1、直流风机2、辅助电源+直流风机1、辅助电源+直流风机2、直流风机1+直流风机2、辅助电源+直流风机1+直流风机2,分别如图8至图15所示。
参照图2,上述三相电源变换电路中,直流负载模块包括与第二电容C2并联的第二直流负载,预设调制策略具体为:
对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止。
参照图4,图4中的(a)部分为三相交流电源的波形图;(b)部分为Umax-Umid-Uhigh曲线和Umid-Umin-Ulow曲线的波形图,其中Umax为三相交流电源的最大相电压,Umid为三相交流电源的中间相电压,Umin为三相交流电源的最小相电压;Uhigh为第一电压值,第一电压值可以选取为第一电容C1的目标电压设定值;Ulow为第二电压值,第二电压值可以选取为第二电容C2的电压上限设定值;(c)部分为第一双向开关121、第二双向开关122和第三双向开关123的控制信号波形图;(d)部分为A相电感电流Ia、B相电感电流Ib、C相电感电流Ic、第一电容C1的充电电流I1和第二电容C2的充电电流I2的波形图。
由图4中的(a)部分结合(b)部分可以看到,在三相交流电源的一个周期内,满足三相交流电源的最大相电压Umax与中间相电压Umid的差值小于第一电压值Uhigh,且三相交流电源的中间相电压Umid与最小相电压Umin的差值小于第二电压值Ulow的时间段共有6个,即T1时间段、T2时间段、T3时间段、T4时间段、T5时间段和T6时间段。在这6个时间段中,对双向开关组件120的控制策略为:对应三相交流电源的最大相电压Umax的双向开关保持截止,对应三相交流电源的中间相电压Umid的双向开关保持导通,对应三相交流电源的最 小相电压Umin的双向开关交替导通截止。例如,结合图4中的(c)部分,在T1时间段,三相交流电源的最大相电压Umax为A相电压,因此A相电压对应的第一双向开关121保持截止,三相交流电源的中间相电压Umid为B相电压,因此B相电压对应的第二双向开关122保持导通,三相交流电源的最小相电压Umin为C相电压,因此C相电压对应的第三双向开关123交替导通截止;同理,在T2时间段,三相交流电源的最大相电压Umax为B相电压,因此B相电压对应的第二双向开关122保持截止,三相交流电源的中间相电压Umid为A相电压,因此A相电压对应的第一双向开关121保持导通,三相交流电源的最小相电压Umin为C相电压,因此C相电压对应的第三双向开关123交替导通截止;T3时间段、T4时间段、T5时间段和T6时间段中的情况同理可推。相应地,在此控制策略下,在每个时间段内各相电流的波形为:三相交流电源的中间相电压Umid对应的电感电流由零正向增大到某个值,并在时间段结束前下降到零;最小相电压Umin对应的电感电流和中间相电压Umid对应的电感电流大小一致,方向相反。结合图4中的(d)部分,在T1时间段,三相交流电源的中间相电压Umid为B相电压,对应的B相电感电流Ib由零正向增大到某个值,并在T1时间段结束前下降到零,三相交流电源的最小相电压Umin为C相电压,对应的C相电感电流Ic和B相电感电流Ib大小一致,方向相反;在T2时间段,三相交流电源的中间相电压Umid为A相电压,对应的A相电感电流Ia由零正向增大到某个值,并在T2时间段结束前下降到零,三相交流电源的最小相电压Umin为C相电压,对应的C相电感电流Ic和A相电感电流Ia大小一致,方向相反;T3时间段、T4时间段、T5时间段和T6时间段中的情况同理可推。
因此,当第二直流负载并联在第二电容C2两端时,即通过第二电容C2供电给到第二直流负载,此时预设调制策略为:对应三相交流电源的最大相电压Umax的双向开关保持截止,对应三相交流电源的中间相电压Umid的双向开关保持导通,对应三相交流电源的最小相电压Umin的双向开关交替导通截止;能够在满足三相交流电源的最大相电压Umax与中间相电压Umid的差值小于第一电压值Uhigh且三相交流电源的中间相电压Umid与最小相电压Umin的差值小于第二电压值Ulow条件的时间范围内,对第二电容C2进行充电,从而保持第二电容C2的电压稳定,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
可以理解的是,当上述三相电源变换电路应用在空调器中时,第二直流负载可以是辅助电源和多个直流风机中的一个或者多个的组合,例如,当空调器带有一个辅助电源、直流风机1和直流风机2时,第二直流负载可以是辅助电源、直流风机1、直流风机2、辅助电源+直流风机1、辅助电源+直流风机2、直流风机1+直流风机2、辅助电源+直流风机1+直流风机2,分别如图15至图21所示。
参照图22,三相电源变换电路中,直流负载模块还可以同时包括第一直流负载和第二直流负载,第一直流负载与第一电容C1并联,第二直流负载与第二电容C2并联。当空调器带有一个辅助电源、直流风机1和直流风机2时,第一直流负载和第二直流负载可能出现的组合情况为:
第一直流负载为辅助电源,第二直流负载为直流风机1+直流风机2,如图23所示;
第一直流负载为直流风机1,第二直流负载为辅助电源+直流风机2,如图24所示;
第一直流负载为直流风机2,第二直流负载为辅助电源+直流风机1,如图25所示;
第一直流负载为辅助电源+直流风机1,第二直流负载为直流风机2,如图26所示;
第一直流负载为辅助电源+直流风机2,第二直流负载为直流风机1,如图27所示;
第一直流负载为直流风机1+直流风机2,第二直流负载为辅助电源,如图28所示。
上述的三相电源变换电路中,第一电压值为第一电容C1的目标电压设定值或者为第一电容C1的电压实测值。
第一电压值设定为第一电容C1的目标电压设定值或者电压实测值,意味着三相交流电源的最大相电压与中间相电压的差值小于第一电容C1的目标电压设定值或者电压实测值,此时三相交流电源的中间相电压对应的双向开关导通使得中间相电压连接至第一电容C1的一端, 三相交流电源的最大相电压会通过三相整流桥110的二极管连接至第一电容C1的另一端,因此施加在第一电容C1两端的电压正好为三相交流电源的最大相电压与中间相电压的差值,该差值小于第一电容C1的目标电压设定值或者电压实测值,能够保证第一电容C1两端的实际电压不会超过目标电压设定值或者电压实测值,避免第一电容C1受到过压而损坏。
上述的三相电源变换电路中,第二电压值为第二电容C2的电压上限设定值或者为第二电容C2的电压实测值。
第二电压值设定为第二电容C2的电压上限设定值或者电压实测值,意味着三相交流电源的中间相电压与最小相电压的差值小于第二电容C2的电压上限设定值或者电压实测值,此时三相交流电源的中间相电压对应的双向开关导通使得中间相电压连接至第二电容C2的一端,三相交流电源的最小相电压会通过三相整流桥110的二极管连接至第二电容C2的另一端,因此施加在第二电容C2两端的电压正好为三相交流电源的中间相电压与最小相电压的差值,该差值小于第二电容C2的电压上限设定值或者电压实测值,能够保证第二电容C2两端的实际电压不会超过电压上限设定值或者电压实测值,避免第二电容C2受到过压而损坏。
上述图1和图2的三相电源变换电路中,第一双向开关121、第二双向开关122和第三双向开关123均包括两个反向并联的功率开关管,如图5所示。
采用两个反向并联的功率开关管组成的双向开关,为全控型双向导通功率开关,即可以通过控制信号实现双向导通,也可以通过控制信号实现双向阻断。具体的,通过控制两个功率开关管同时导通即为双向导通,通过控制两个功率开关管同时关断即为双向阻断。
上述图1和图2的三相电源变换电路中,第一双向开关121、第二双向开关122和第三双向开关123可以替换成两个反向串联的功率开关管,两个功率开关管均反向并联有二极管,如图6所示。
采用反向串联的具有反向并联二极管的功率开关管组成的双向开关,为全控型双向导通功率开关,即可以通过控制信号实现双向导通,也可以通过控制信号实现双向阻断。具体的,通过控制两个功率开关管同时导通即为双向导通,通过控制两个功率开关管同时关断即为双向阻断。另外,二极管可以选用快恢复二极管。
上述图1和图2的三相电源变换电路中,第一双向开关121、第二双向开关122和第三双向开关123均包括相互并联的第四桥臂、第五桥臂和第六桥臂,第四桥臂和第六桥臂均包括两个相互串联的二极管,第五桥臂包括一个功率开关管,如图13所示,第四桥臂包括相互串联的二极管D7和二极管D8,第五桥臂包括功率开关管Q1,第六桥臂包括相互串联的二极管D9和二极管D10。第一双向开关121、第二双向开关122和第三双向开关123的正向导通,即为二极管D7-功率开关管Q1-二极管D8的流通方向,第一双向开关121、第二双向开关122和第三双向开关123的反向导通,即为二极管D9-功率开关管Q1-二极管D10的流通方向;功率开关管Q1截止时,第一双向开关121、第二双向开关122和第三双向开关123为双向阻断状态。
第二方面,本发明实施例提供一种电路控制方法,应用于如图1或者图2所示三相电源变换电路,三相电源变换电路包括整流模块100、储能模块200和直流负载模块,整流模块100包括三相整流桥110和双向开关组件120,三相整流桥110包括相互并联的第一桥臂111、第二桥臂112和第三桥臂113;双向开关组件120包括第一双向开关121、第二双向开关122和第三双向开关123,第一双向开关121的一端连接第一桥臂111的中点,第二双向开关122的一端连接第二桥臂112的中点,第三双向开关123的一端连接第三桥臂113的中点;储能模块200与整流模块100的直流输出端连接,储能模块200包括相互串联的第一电容C1和第二电容C2,第一双向开关121的另一端、第二双向开关122的另一端、第三双向开关123的另一端均连接于第一电容C1和第二电容C2之间;直流负载模块包括与第一电容C1并联的第一直流负载或者与第二电容C2并联的第二直流负载;
电路控制方法包括:
根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开 关123,以使第一电容C1两端的电压或者第二电容C2两端的电压保持为目标电压。
根据本发明实施例提供的电路控制方法,通过在第一电容C1两端并联有第一直流负载或者在第二电容C2两端并联有第二直流负载,并根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,以使第一电容C1两端的电压或者第二电容C2两端的电压保持为目标电压,从而保持第一电容C1或者第二电容C2两端的电压稳定,即可以通过第一电容C1或者第二电容C2供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
具体地,上述的电路控制方法中,根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,包括:
当三相交流电源的最大相电压与中间相电压的差值小于第一电压值,且三相交流电源的中间相电压与最小相电压的差值小于第二电压值,以预设调制策略控制双向开关组件120的通断;
其中,预设调制策略为:三相交流电源的中间相电压对应的双向开关保持导通,三相交流电源中除中间相电压外的其中一相电压对应的双向开关保持截止,另一相电压对应的双向开关交替导通截止。
通过在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,以预设调制策略控制双向开关组件120的通断,使得在该时间范围内,对第一电容C1或者第二电容C2充电,从而保持第一电容C1或者第二电容C2两端的电压稳定,进而可以通过第一电容C1或者第二电容C2供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述的电路控制方法中,直流负载模块包括与第一电容C1并联的第一直流负载,如图1所示,预设调制策略具体为:
对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止。
当第一直流负载并联在第一电容C1两端时,即通过第一电容C1供电给到第一直流负载,此时预设调制策略为:对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止;能够在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,对第一电容C1进行充电,从而保持第一电容C1的电压稳定,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述的电路控制方法中,直流负载模块包括与第二电容C2并联的第二直流负载,如图2所示,预设调制策略具体为:
对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止。
当第二直流负载并联在第二电容C2两端时,即通过第二电容C2供电给到第二直流负载,此时预设调制策略为:对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止;能够在满足三相交流电源的最大相电压与中间相电压的差值小于第一电压值且三相交流电源的中间相电压与最小相电压的差值小于第二电压值条件的时间范围内,对第二电容C2进行充电,从而保持第二电容C2的电压稳定,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
上述的电路控制方法中,第一电压值为第一电容C1的目标电压设定值或者为第一电容C1的电压实测值。
第一电压值设定为第一电容C1的目标电压设定值或者电压实测值,意味着三相交流电源的最大相电压与中间相电压的差值小于第一电容C1的目标电压设定值或者电压实测值,此时三相交流电源的中间相电压对应的双向开关导通使得中间相电压连接至第一电容C1的一端,三相交流电源的最大相电压会通过三相整流桥110的二极管连接至第一电容C1的另一端,因此施加在第一电容C1两端的电压正好为三相交流电源的最大相电压与中间相电压的差值,该差值小于第一电容C1的目标电压设定值或者电压实测值,能够保证第一电容C1两端的实际电压不会超过目标电压设定值或者电压实测值,避免第一电容C1受到过压而损坏。
上述的电路控制方法中,第二电压值为第二电容C2的电压上限设定值或者为第二电容C2的电压实测值。
第二电压值设定为第二电容C2的电压上限设定值或者电压实测值,意味着三相交流电源的中间相电压与最小相电压的差值小于第二电容C2的电压上限设定值或者电压实测值,此时三相交流电源的中间相电压对应的双向开关导通使得中间相电压连接至第二电容C2的一端,三相交流电源的最小相电压会通过三相整流桥110的二极管连接至第二电容C2的另一端,因此施加在第二电容C2两端的电压正好为三相交流电源的中间相电压与最小相电压的差值,该差值小于第二电容C2的电压上限设定值或者电压实测值,能够保证第二电容C2两端的实际电压不会超过电压上限设定值或者电压实测值,避免第二电容C2受到过压而损坏。
第三方面,本发明实施例提供一种线路板,包括有如本发明第一方面实施例的三相电源变换电路。
根据本发明实施例提供的线路板,通过在第一电容C1两端并联有第一直流负载或者在第二电容C2两端并联有第二直流负载,并根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,以使第一电容C1两端的电压或者第二电容C2两端的电压保持为目标电压,从而保持第一电容C1或者第二电容C2两端的电压稳定,即可以通过第一电容C1或者第二电容C2供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
第四方面,参照图7,本发明实施例提供一种运行控制装置700,包括至少一个处理器710和用于与至少一个处理器710通信连接的存储器720;存储器720存储有能够被至少一个处理器710执行的指令,指令被至少一个处理器710执行,以使至少一个处理器710能够执行如本发明第二方面实施例的电路控制方法。
根据本发明实施例提供的运行控制装置700,通过在第一电容C1两端并联有第一直流负载或者在第二电容C2两端并联有第二直流负载,并根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,以使第一电容C1两端的电压或者第二电容C2两端的电压保持为目标电压,从而保持第一电容C1或者第二电容C2两端的电压稳定,即可以通过第一电容C1或者第二电容C2供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
第五方面,本发明实施例提供一种空调器,包括如本发明第三方面实施例所述的线路板或者包括如本发明第四方面实施例所述的运行控制装置700。
根据本发明实施例提供的空调器,通过在第一电容C1两端并联有第一直流负载或者在第二电容C2两端并联有第二直流负载,并根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,以使第一电容C1两端的电压或者第二电容C2两端的电压保持为目标电压,从而保持第一电容C1或者第二电容C2两端的电压稳定,即可以通过第一电容C1或者第二电容C2供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
第六方面,本发明实施例提供一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行如本发明第二方面实施例的电路控制方法。
根据本发明实施例提供的计算机可读存储介质,通过在第一电容C1两端并联有第一直流负载或者在第二电容C2两端并联有第二直流负载,并根据三相交流电源的三相电压控制第一双向开关121、第二双向开关122和第三双向开关123,以使第一电容C1两端的电压或者第二电容C2两端的电压保持为目标电压,从而保持第一电容C1或者第二电容C2两端的电压稳定,即可以通过第一电容C1或者第二电容C2供电给到直流风机和辅助电源等电压等级较低的直流负载,而且能够平衡三相交流电源的三相电流,避免某相电流谐波明显较大,能够有效降低谐波。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (19)

  1. 一种三相电源变换电路,包括:
    整流模块,所述整流模块包括三相整流桥和双向开关组件,所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所述双向开关组件包括第一双向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;
    储能模块,所述储能模块与所述整流模块的直流输出端连接,所述储能模块包括相互串联的第一电容和第二电容,所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开关的另一端均连接于所述第一电容和所述第二电容之间;
    直流负载模块,包括与所述第一电容并联的第一直流负载或者与所述第二电容并联的第二直流负载;以及
    控制模块,与所述双向开关组件连接,用于根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压。
  2. 根据权利要求1所述的三相电源变换电路,其中,所述根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,包括:
    当三相交流电源的最大相电压与中间相电压的差值小于第一电压值,且三相交流电源的中间相电压与最小相电压的差值小于第二电压值,所述控制模块以预设调制策略控制所述双向开关组件的通断;
    其中,所述预设调制策略为:所述三相交流电源的中间相电压对应的双向开关保持导通,所述三相交流电源中除所述中间相电压外的其中一相电压对应的双向开关保持截止,另一相电压对应的双向开关交替导通截止。
  3. 根据权利要求2所述的三相电源变换电路,其中,所述直流负载模块包括与所述第一电容并联的第一直流负载,所述预设调制策略具体为:
    对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止。
  4. 根据权利要求2所述的三相电源变换电路,其中,所述直流负载模块包括与所述第二电容并联的第二直流负载,所述预设调制策略具体为:
    对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止。
  5. 根据权利要求2所述的三相电源变换电路,其中,所述第一电压值为所述第一电容的目标电压设定值或者为所述第一电容的电压实测值。
  6. 根据权利要求2所述的三相电源变换电路,其中,所述第二电压值为所述第二电容的电压上限设定值或者为所述第二电容的电压实测值。
  7. 根据权利要求2所述的三相电源变换电路,其中,所述第一双向开关、所述第二双向开关和所述第三双向开关均包括两个反向并联的功率开关管。
  8. 根据权利要求2所述的三相电源变换电路,其中,所述第一双向开关、所述第二双向开关和所述第三双向开关均包括两个反向串联的功率开关管,两个所述功率开关管均反向并联有二极管。
  9. 根据权利要求2所述的三相电源变换电路,其中,所述第一双向开关、所述第二双向开关和所述第三双向开关均包括相互并联的第四桥臂、第五桥臂和第六桥臂,所述第四桥臂和所述第六桥臂均包括两个相互串联的二极管,所述第五桥臂包括一个功率开关管。
  10. 一种电路控制方法,应用于三相电源变换电路,其中,所述三相电源变换电路包括整流模块、储能模块和直流负载模块,所述整流模块包括三相整流桥和双向开关组件,所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所述双向开关组件包括第一双 向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;所述储能模块与所述整流模块的直流输出端连接,所述储能模块包括相互串联的第一电容和第二电容,所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开关的另一端均连接于所述第一电容和所述第二电容之间;所述直流负载模块包括与所述第一电容并联的第一直流负载或者与所述第二电容并联的第二直流负载;所述方法包括:
    根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,以使所述第一电容两端的电压或者所述第二电容两端的电压保持为目标电压。
  11. 根据权利要求10所述的电路控制方法,其中,所述根据三相交流电源的三相电压控制所述第一双向开关、所述第二双向开关和所述第三双向开关,包括:
    当三相交流电源的最大相电压与中间相电压的差值小于第一电压值,且三相交流电源的中间相电压与最小相电压的差值小于第二电压值,以预设调制策略控制所述双向开关组件的通断;
    其中,所述预设调制策略为:所述三相交流电源的中间相电压对应的双向开关保持导通,所述三相交流电源中除所述中间相电压外的其中一相电压对应的双向开关保持截止,另一相电压对应的双向开关交替导通截止。
  12. 根据权利要求11所述的电路控制方法,其中,所述直流负载模块包括与所述第一电容并联的第一直流负载,所述预设调制策略具体为:
    对应三相交流电源的最小相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最大相电压的双向开关交替导通截止。
  13. 根据权利要求11所述的电路控制方法,其中,所述直流负载模块包括与所述第二电容并联的第二直流负载,所述预设调制策略具体为:
    对应三相交流电源的最大相电压的双向开关保持截止,对应三相交流电源的中间相电压的双向开关保持导通,对应三相交流电源的最小相电压的双向开关交替导通截止。
  14. 根据权利要求11所述的电路控制方法,其中,所述第一电压值为所述第一电容的目标电压设定值或者为所述第一电容的电压实测值。
  15. 根据权利要求11所述的电路控制方法,其中,所述第二电压值为所述第二电容的电压上限设定值或者为所述第二电容的电压实测值。
  16. 一种线路板,包括有如权利要求1至9任一项所述的三相电源变换电路。
  17. 一种运行控制装置,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求10至15中任意一项所述的电路控制方法。
  18. 一种空调器,包括如权利要求16所述的线路板或者包括如权利要求17所述的运行控制装置。
  19. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求10至15中任意一项所述的电路控制方法。
PCT/CN2021/118016 2020-09-30 2021-09-13 三相电源变换电路、电路控制方法、线路板及空调器 WO2022068565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21874226.0A EP4191862A4 (en) 2020-09-30 2021-09-13 THREE PHASE POWER SUPPLY CONVERSION CIRCUIT, CIRCUIT CONTROL METHOD, CIRCUIT BOARD AND AIR CONDITIONER
US18/021,182 US20230318433A1 (en) 2020-09-30 2021-09-13 Three-phase power supply conversion circuit, circuit control method,circuit board and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011066402.3 2020-09-30
CN202011066402.3A CN114337332B (zh) 2020-09-30 2020-09-30 三相电源变换电路、电路控制方法、线路板及空调器

Publications (1)

Publication Number Publication Date
WO2022068565A1 true WO2022068565A1 (zh) 2022-04-07

Family

ID=80949651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118016 WO2022068565A1 (zh) 2020-09-30 2021-09-13 三相电源变换电路、电路控制方法、线路板及空调器

Country Status (4)

Country Link
US (1) US20230318433A1 (zh)
EP (1) EP4191862A4 (zh)
CN (1) CN114337332B (zh)
WO (1) WO2022068565A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765515A (zh) * 2022-11-17 2023-03-07 深圳市迪威电气有限公司 一种可双向变换的三相升降压变换器及其控制方法
WO2024116695A1 (ja) * 2022-11-29 2024-06-06 株式会社デンソー マルチレベルインバータの制御装置、プログラム、及びマルチレベルインバータ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117986A (zh) * 2022-06-29 2022-09-27 华为数字能源技术有限公司 充电模块、方法和充电设备
CN117375594A (zh) * 2022-06-30 2024-01-09 施耐德电器工业公司 固态开关设备和用于该固态开关设备的操作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009432A (zh) * 2006-01-24 2007-08-01 艾默生网络能源系统有限公司 用于三电平功率因数校正电路的采样电路及其电压采样方法
US20110116293A1 (en) * 2009-11-17 2011-05-19 Fuji Electric Holdings Co., Ltd. Power conversion equipment
CN103187887A (zh) * 2011-12-31 2013-07-03 伊顿公司 用于三相三线Vienna 整流器的控制器
CN110521101A (zh) * 2017-04-04 2019-11-29 雷诺股份公司 用于控制电动或混合动力车辆上车载的充电设备的方法
CN110581643A (zh) * 2019-09-17 2019-12-17 广东希塔变频技术有限公司 三相pfc电路、电机驱动电路和设备
CN110612658A (zh) * 2017-01-12 2019-12-24 雷诺股份公司 双向蓄电电池组的充电器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369615B2 (ja) * 2008-10-30 2013-12-18 富士電機株式会社 交流電動機駆動回路及び電気車駆動回路
CN103036461B (zh) * 2011-09-29 2016-03-30 台达电子企业管理(上海)有限公司 三相整流模组、其适用的系统及谐波抑制方法
CN105071670A (zh) * 2015-08-13 2015-11-18 厦门科华恒盛股份有限公司 三相整流升压电路及其控制方法以及不间断电源
JP6541074B2 (ja) * 2016-03-29 2019-07-10 三菱重工業株式会社 三相倍電圧整流回路、インバータ装置、空気調和機、三相倍電圧整流回路の制御方法及びプログラム
CN110677059B (zh) * 2019-10-12 2021-07-20 南京博兰得电子科技有限公司 一种三相单级式整流电路及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009432A (zh) * 2006-01-24 2007-08-01 艾默生网络能源系统有限公司 用于三电平功率因数校正电路的采样电路及其电压采样方法
US20110116293A1 (en) * 2009-11-17 2011-05-19 Fuji Electric Holdings Co., Ltd. Power conversion equipment
CN103187887A (zh) * 2011-12-31 2013-07-03 伊顿公司 用于三相三线Vienna 整流器的控制器
CN110612658A (zh) * 2017-01-12 2019-12-24 雷诺股份公司 双向蓄电电池组的充电器
CN110521101A (zh) * 2017-04-04 2019-11-29 雷诺股份公司 用于控制电动或混合动力车辆上车载的充电设备的方法
CN110581643A (zh) * 2019-09-17 2019-12-17 广东希塔变频技术有限公司 三相pfc电路、电机驱动电路和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191862A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765515A (zh) * 2022-11-17 2023-03-07 深圳市迪威电气有限公司 一种可双向变换的三相升降压变换器及其控制方法
CN115765515B (zh) * 2022-11-17 2023-09-12 深圳市迪威电气有限公司 一种可双向变换的三相升降压变换器及其控制方法
WO2024116695A1 (ja) * 2022-11-29 2024-06-06 株式会社デンソー マルチレベルインバータの制御装置、プログラム、及びマルチレベルインバータ

Also Published As

Publication number Publication date
EP4191862A1 (en) 2023-06-07
EP4191862A4 (en) 2024-01-17
US20230318433A1 (en) 2023-10-05
CN114337332A (zh) 2022-04-12
CN114337332B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2022068565A1 (zh) 三相电源变换电路、电路控制方法、线路板及空调器
CN107086770B (zh) Pfc电路及变频空调器
US8531854B2 (en) Power factor correction converter and power factor correction conversion device
CN212305171U (zh) 电子电路和空调器
EP2899836A1 (en) On-line uninterrupted power supply topology
WO2020042429A1 (zh) 一种用于消除列车直流母线二次谐振的方法
CN107104589B (zh) Pfc电路及变频空调器
US20120025609A1 (en) Very high efficiency uninterruptible power supply
CN105553250A (zh) 一种功率因数校正电路
CN114337331B (zh) 三相电源变换电路、电路控制方法、线路板及空调器
CN106849708B (zh) 一种pfc整流装置
CN107800185B (zh) 在线式不间断电源
JP2007202378A (ja) インバータ装置
WO2022017322A1 (zh) 图腾柱pfc电路、控制方法、线路板及空调器
JP5432325B2 (ja) インバータ装置
CN109660120A (zh) 切换电路、切换电路的控制方法、电源装置及空调器
CN110896282A (zh) 一种用于磁悬浮列车直流供电的整流装置及其控制方法
CN110912193B (zh) 一种微逆变器交流侧功率耦合系统及控制方法
CN209767411U (zh) 一种变流电路
CN208820711U (zh) 一种变频器
WO2022068566A1 (zh) 电子电路和空调器
CN114337328A (zh) 电子电路和空调器
Deepak et al. A novel Bi-Directional converter for electric vehicle to grid applications
CN217135394U (zh) 控制电路和空调器
CN113452262B (zh) 一种变频器及其升压控制方法、电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021874226

Country of ref document: EP

Effective date: 20230227

NENP Non-entry into the national phase

Ref country code: DE