WO2022068331A1 - 膜层的形成方法 - Google Patents

膜层的形成方法 Download PDF

Info

Publication number
WO2022068331A1
WO2022068331A1 PCT/CN2021/107083 CN2021107083W WO2022068331A1 WO 2022068331 A1 WO2022068331 A1 WO 2022068331A1 CN 2021107083 W CN2021107083 W CN 2021107083W WO 2022068331 A1 WO2022068331 A1 WO 2022068331A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
forming
gas
etching
substrate
Prior art date
Application number
PCT/CN2021/107083
Other languages
English (en)
French (fr)
Inventor
王中磊
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/448,885 priority Critical patent/US20220102149A1/en
Publication of WO2022068331A1 publication Critical patent/WO2022068331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Definitions

  • the embodiments of the present application relate to the field of semiconductors, and in particular, to a method for forming a film layer.
  • the pros and cons of the semiconductor element manufacturing process are closely related to the deposition efficiency and film quality of the deposition film process, so the deposition rate of the film layer and the step coverage of the deposited film layer become the film deposition process. Focus on the problem.
  • the reaction source gas of plasma is mostly used to deposit the film layer, the deposition rate is low, and the step coverage of the film layer after deposition is also low, which affects the quality of the film layer.
  • the embodiments of the present application provide a method for forming a film layer, which is conducive to forming more attachment points on the surface of the substrate, increasing the deposition rate, rapidly depositing the film layer, and improving the step coverage of the film layer, thereby improving the film layer's quality.
  • an embodiment of the present application provides a method for forming a film layer, which includes: providing a substrate; and performing a preprocessing step, wherein the preprocessing step includes providing a reaction source gas, and the reaction source gas is in the substrate. forming an attachment point on the substrate; performing a deposition step, plasmatizing the reaction source gas to form a plasma, and the plasma is deposited on the substrate based on the attachment point to form a first film layer.
  • 1 to 6 are schematic structural diagrams corresponding to each step in a method for forming a film layer provided by the first embodiment of the present application;
  • FIG. 7 is a line graph comparing the effects of pretreatment steps in a method for forming a film layer provided by the first embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a method for forming a film layer provided by the second embodiment of the present application.
  • FIG. 9 is a gas-time line graph provided in each step in a method for forming a film layer provided in an embodiment of the present application.
  • 1 to 6 are schematic structural diagrams corresponding to each step in a method for forming a film layer provided by the first embodiment of the present application.
  • a method for forming a film layer includes: providing a substrate 100; performing a preprocessing step, the preprocessing step includes providing a reaction source gas 105, and the reaction source gas 105 forms an attachment point (not marked) on the substrate 100 ); the deposition step is performed, and the reaction source gas 105 is plasmatized to form the plasma 106 , and the plasma 106 is deposited on the substrate 100 based on the attachment points to form the first film layer 107 .
  • the material of the substrate 100 may be single crystal silicon, silicon-on-insulator (SOI), silicon-on-insulator (SSOI), silicon-germanium-on-insulator (S-SiGeOI), silicon-germanium-on-insulator (SiGeOI), and germanium-on-insulator (GeOI).
  • the substrate 100 is single crystal silicon.
  • a defective layer 101 is formed on a substrate 100 .
  • the defect layer 101 may be formed when an abnormality occurs in the process of depositing the film layer by the machine, resulting in poor quality of the deposited film layer, or the surface of the film layer is partially oxidized to form the defect layer 101 .
  • the defect layer 101 has the same elements as the first film layer 107 (shown in FIG. 5 ).
  • a pulsed etching step is performed, an etching gas 102 is supplied to the defect layer 101 at intervals to remove the defect layer 101 , and an inert gas is continuously supplied to the defect layer 101 to take away etching by-products.
  • the defect layer 101 can be removed relatively mildly, avoiding the risk that the continuous etching reaction violently causes some defective film layers to fall off and contaminate the reaction chamber, and the film layer can continue to be deposited after the pulsed etching. , to prevent the problem that the wafer is difficult to repair and directly scrapped after the machine is abnormal.
  • the defect layer 101 may be a titanium oxide layer.
  • the etching gas 102 and the reaction source gas 105 for forming the first film layer 107 have the same elements. In this way, it is possible to reduce the introduction of unnecessary elements into the reaction chamber and reduce the impact on subsequent reactions; at the same time, the etching gas 102 is a kind of the reaction source gas 105, and no new gas needs to be provided, which is convenient for the pulse etching step. so that the defect layer 101 is quickly etched after the defect layer 101 is formed, and the above steps can be performed in the same chamber.
  • the etching gas 102 includes titanium tetrachloride, and the inert gas can be argon. Titanium tetrachloride gas will react violently with the titanium oxide layer. Through the pulse etching method, it can be avoided that the titanium tetrachloride and titanium react too violently, causing part of the film layer to fall off and contaminate the chamber.
  • the process parameters of the pulsed etching step include: the flow rate of titanium tetrachloride is 1 ⁇ 50sccm (standard cubic centimeter per minute: standard milliliter per minute), specifically 10sccm, 20sccm, 30sccm or 40sccm; the argon gas flow is 1000sccm ⁇ 2000sccm, specifically 1300sccm, 1500sccm or 1800sccm; the temperature of the reaction chamber is 400-710 degrees Celsius, specifically 500 degrees Celsius, 600 degrees Celsius or 700 degrees Celsius; the pressure of the reaction chamber is 1-20 torr, specifically 5 Torr, 10 Torr or 15 Torr; the number of times of providing the etching gas 102 in a pulsed manner is 100 to 400 times, specifically 200 times, 250 times, and 300 times.
  • the etching gas 102 is provided to the defect layer 101 at intervals, and the time for each supply of the etching gas 102 is 0.1 to 40 seconds, specifically 10 seconds, 20 seconds or 30 seconds. Wherein, the interval between every two times of supplying the etching gas 102 is 0.1 to 5 seconds, specifically 2 seconds, 3 seconds or 4 seconds.
  • the layer 101 provides an inert gas, which can take away etching by-products and ensure the cleanliness of the reaction chamber.
  • the reaction chamber is evacuated between every two times of supplying the etching gas to take away the by-products of etching, thereby ensuring the cleanliness of the reaction chamber.
  • no inert gas is provided between each supply of the etching gas, but the reaction chamber is evacuated to carry away etching by-products.
  • the chamber pressure during vacuuming is 0.1 to 1 Torr, specifically 0.4 Torr, 0.6 Torr or 0.8 Torr. Under this pressure, the etching by-products of the chamber can be completely pumped out, thereby ensuring the cleanliness of the reaction chamber.
  • the titanium silicon oxide layer (not shown in the figure) is exposed.
  • the titanium silicon oxide layer is formed by the reaction between the substrate 100 and the defect layer 101 , and the titanium silicon oxide layer is easily destroyed in the air. Oxidation generates a native oxide layer 103 at the interface, and the existence of the oxide layer 103 will increase the surface contact resistance between the first film layer 107 and the substrate 100 and affect the product yield.
  • the substrate surface treatment step 104 is performed to remove the oxide layer 103 before depositing the first film layer 107 .
  • the oxide layer 103 includes silicon oxide.
  • the oxide layer 103 is silicon dioxide
  • the substrate surface treatment step 104 uses plasma ammonia, argon and hydrogen to remove the oxide layer 103, and the specific reaction is NH 3 +H 2 +Ar-plasma->NH X +H+Ar and NHx +H + SiO2->Si+ N2 + H2 + H2O .
  • the substrate surface treatment step 104 to remove the oxide layer 103 not only uses ammonia, argon and hydrogen plasma to reduce part of the oxide, but also uses the bombardment effect of the plasma state itself to remove part of the oxide and some impurities. In this way, not only the oxide layer 103 irrelevant to the subsequently deposited first film layer 107 is removed, but also the contact resistance between the first film layer 107 and the substrate 100 is reduced, and the contact resistance value is prevented from being too high, thereby causing the first film layer 107 is disconnected from the substrate 100, and the uniformity of the surface of the first film layer 107 formed by subsequent deposition is improved.
  • the surface of the substrate 100 is treated by directly feeding ammonia, argon and hydrogen into the deposition chamber, which can further prevent the wafer unloading station from being exposed to the atmospheric environment when the substrate surface treatment step 104 is performed.
  • the process parameters include: the flow rate of ammonia gas is 1500-3500sccm, specifically 2000sccm, 2500sccm or 3000sccm; the flow rate of argon gas is 1000-2000sccm, specifically 1300sccm, 1500sccm or 1800sccm; The flow rate is 1000-3000sccm, specifically 1500sccm, 2000sccm or 2500sccm; the temperature of the reaction chamber is 450-650 degrees Celsius, specifically 500 degrees Celsius, 550 degrees Celsius or 600 degrees Celsius; the power is 450-1200 watts, specifically 600 watts , 800 watts or 1000 watts.
  • a preprocessing step is performed after the substrate surface treatment step 104 , and a reaction source gas 105 is provided to form an attachment point on the substrate 100 .
  • a reaction source gas 105 is provided to form an attachment point on the substrate 100 .
  • the thickness of the film deposited after the pretreatment step 104 is much larger than that of the plasma deposited film. In this way, there are a large number of attachment points on the substrate 100, and the attachment points may specifically be nucleation sites.
  • the deposition rate of the first film layer 107 can be accelerated;
  • the dots are uniformly distributed on the substrate 100 , which improves the step coverage of the first film layer 107 , thereby improving the quality of the first film layer 107 .
  • the duration of the process for providing titanium tetrachloride in the pretreatment step is 2 to 10 seconds, specifically 4 seconds, 6 seconds or 8 seconds. In this way, controlling the process time for providing titanium tetrachloride in the pretreatment step can effectively save the process cost while ensuring the effect of the pretreatment step.
  • argon and hydrogen are fed for 5 to 20 seconds, specifically 8 seconds, 12 seconds or 16 seconds.
  • the reaction chamber can be cleaned so that there is no impurity gas in the pretreatment step, providing suitable reaction chamber conditions for the reactions that form the attachment points.
  • the reaction source gas 105 includes titanium tetrachloride and hydrogen gas.
  • titanium tetrachloride By using titanium tetrachloride to pretreat the surface of the substrate 100 , titanium attachment points can be formed on the surface of the substrate 100 , which can increase the rate of subsequent film deposition and improve the step coverage of the film, thereby obtaining a high-quality film.
  • the flow rate of titanium tetrachloride is 1-50sccm, specifically 20sccm, 30sccm or 40sccm; the flow rate of hydrogen gas is 1000-3000sccm, specifically 1500sccm, 2000sccm or 2500sccm.
  • the reaction source gas 105 further includes an inert gas, which is provided as a carrier gas.
  • the inert gas includes argon gas, and the flow rate of argon gas is 1000-2000 sccm, specifically 1200 sccm, 1400 sccm or 1600 sccm.
  • the reaction source gas 105 is plasmatized to form the plasma 106 , and the plasma 106 is deposited on the substrate 100 based on the attachment points to form the first film layer 107 .
  • the plasma 106 has a more active chemical property, which can speed up the reaction rate, so that the reaction rate of the deposition step is greater than that of the pretreatment step, and the deposition rate is increased.
  • the first film layer 107 includes a titanium film layer, and in the deposition step, the titanium chloride gaseous compound reacts with hydrogen gas to form the titanium film layer.
  • the process parameters of the deposition step include: the pressure of the reaction chamber is 1-20 Torr, specifically 5 Torr, 10 Torr or 15 Torr; the temperature of the reaction chamber is 450-650 degrees Celsius, specifically 500 degrees Celsius, 550 degrees Celsius or 600 degrees Celsius; the radio frequency power is 450 to 1200 watts, specifically 600 watts, 800 watts or 1000 watts.
  • the flow rate of the reaction source gas 105 used in the preprocessing step is the same as the flow rate of the reaction source gas 105 used in the deposition step. In this way, the difficulty of the process can be simplified, and the flow rate of the reaction source gas 105 does not need to be changed between the two stages of the pretreatment step and the deposition step, which is easy to operate.
  • the pretreatment step and the deposition step are performed in the same reaction chamber.
  • the operation steps are simplified, the process is more convenient, and the amount of contamination of the reaction chamber is also reduced.
  • the pressure of the reaction chamber is the same, and the temperature of the reaction chamber is the same. In this way, in the reaction chamber, between the two stages of the pretreatment step and the deposition step, it is only necessary to change the radio frequency power of the reaction chamber, so that the whole process is easy to operate.
  • the first film layer 107 after the first film layer 107 is formed, it further includes a second deposition step, providing nitrogen source plasma 108 to the first film layer 107 to convert at least part of the first film layer 107 It is the second film layer 109 containing nitrogen.
  • the nitrogen source plasma 108 includes nitrogen plasma, and the second film layer 109 may be titanium nitride.
  • the process parameters of the second deposition step include: the ammonia gas flow rate is 1500-3500 sccm, specifically 2000 sccm, 2500 sccm or 3000 sccm; the temperature of the reaction chamber is 450-650 degrees Celsius, specifically 500 degrees Celsius, 550 degrees Celsius or 600 Celsius; the radio frequency power is 450 to 1200 watts, specifically 600 watts, 800 watts or 1000 watts.
  • the pulsed etching step, the substrate surface treatment step, the pretreatment step, the deposition step and the second deposition step are performed in the same reaction chamber.
  • all reactions are carried out in the same reaction chamber, and there is no need to replace the reaction chamber. After the layer is damaged, it can be quickly remedied to reduce losses; all reactions are carried out in the same reaction chamber to prevent the film layer from contacting the atmosphere and generate a thicker defect layer 101 .
  • a PECVD Plasma Enhanced Chemical Vapor Deposition: Plasma Enhanced Chemical Vapor Deposition
  • machine chamber can be used to perform the above reaction to obtain the second film layer 109 .
  • the first embodiment of the present application provides a method for forming a film layer.
  • a pulsed etching method is used to gently remove the defect layer, so as to avoid the continuous etching reaction violently causing part of the defect layer to be removed.
  • the film layer can continue to be deposited after the pulsed etching, to prevent the problem that the wafer is difficult to repair after the machine abnormality occurs, and thus directly scrapped; after etching to remove the defect layer,
  • the substrate surface treatment step is performed to remove the interface native oxide layer.
  • the substrate surface treatment step not only removes the interface native oxide layer irrelevant to the first film layer deposited subsequently, but also reduces the contact resistance between the first film layer and the substrate.
  • the contact resistance value is prevented from being too high, thereby causing the first film layer to be disconnected from the substrate, and the uniformity of the surface of the first film layer formed by subsequent deposition is also improved; by adding a pretreatment step before the deposition step, the reaction provided
  • the source gas forms a large number of attachment points on the substrate, which can be specifically nucleation sites.
  • the plasma reaction source gas reacts, because there are a large number of nucleation sites on the substrate.
  • the deposition step is carried out on the basis of the core site, which speeds up the deposition rate of the film layer; and the attachment points are evenly distributed on the substrate, so the step coverage of the film layer is improved, thereby improving the quality of the film layer.
  • the film layer forming method is suitable for forming a bit line contact layer or a capacitor contact layer.
  • FIG. 8 is a schematic structural diagram of a method for forming a film layer provided by the second embodiment of the present application.
  • the process of depositing the first film layer 107 or the second film layer 109 is forced to suspend due to the abnormality of the machine. Due to the high temperature of the reaction chamber, the deposited first film layer 107 or the second film layer 109 is oxidized to form a defect layer 101, and the defect layer 101 and the first film layer 107 have the same elements.
  • the wafer may be repaired in the order of the pulsed etching step, the substrate surface treatment step, the pretreatment step, the deposition step, and the second deposition step. In this way, the problem that the wafer is difficult to repair and directly scrapped after the machine abnormality occurs is prevented.
  • FIG. 9 is a gas-time line graph provided in each step in a method for forming a film layer provided in an embodiment of the present application.
  • the defect layer 101 is formed, and the pulse etching step S1 is started, and titanium tetrachloride gas is introduced at intervals, and argon gas is introduced between two times of titanium tetrachloride gas; pulse etching After the etching step S1 is completely completed, the substrate surface treatment step S2 is started, and argon, ammonia and hydrogen are continuously fed until the substrate surface treatment step S2 ends; the pretreatment step S3, argon and hydrogen are fed, and then fed Titanium tetrachloride gas, until the end of deposition step S4, stop feeding titanium tetrachloride gas, continue feeding argon and hydrogen; gas exchange step S5, reduce the flow of argon and hydrogen continuously fed, in the gas exchange step Ammonia gas is partially introduced into the second deposition step S6 after S5; argon, ammonia and hydrogen are continuously introduced into the entire second deposition step S6 until the second deposition step S6 ends, and the introduction of ammonia gas is stopped. , arg
  • the second embodiment of the present application provides a method for forming a film layer.
  • a pulsed etching step In the event that a machine abnormality occurs during deposition of a film layer, and the film layer is destroyed to form a defect layer, a pulsed etching step, a substrate surface treatment step, The sequence of the preprocessing step, the deposition step and the second deposition step repairs the wafer, preventing the problem that the wafer is difficult to repair and directly scrapped after a machine abnormality occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请实施例提供一种膜层的形成方法,包括:提供衬底;进行预处理步骤,所述预处理步骤包括提供反应源气体,所述反应源气体在所述衬底上形成附着点;进行沉积步骤,对所述反应源气体进行等离子化形成等离子体,所述等离子体在所述衬底上基于所述附着点沉积,以形成第一膜层。本申请实施例有利于在衬底表面形成更多的附着点,提高沉积速率,快速沉积膜层,提高了膜层的台阶覆盖率,从而提高了膜层的质量。

Description

膜层的形成方法
相关申请的交叉引用
本申请基于申请号为202011051630.3、申请日为2020年09月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及半导体领域,特别涉及一种膜层的形成方法。
背景技术
随着半导体工业的发展,半导体元件制程工艺的优劣与沉积膜层工序的沉积效率和膜层质量密切相关,所以沉积膜层的速率和沉积后膜层的台阶覆盖率成为沉积膜层工序的重点关注问题。
现有沉积膜层工序中,多采用等离子体的反应源气体反应沉积膜层,沉积速率较低,沉积后膜层的台阶覆盖率也较低,影响膜层质量。
发明内容
本申请实施例提供一种膜层的形成方法,有利于在衬底表面形成更多的附着点,提高沉积速率,快速沉积膜层,提高了膜层的台阶覆盖率,从而提高了膜层的质量。
为解决上述问题,本申请实施例提供一种膜层的形成方法,包括:提供衬底;进行预处理步骤,所述预处理步骤包括提供反应源气体,所述反应源气体在所述衬底上形成附着点;进行沉积步骤,对所述反应源气体进行等离子化形成等离子体,所述等离子体在所述衬底上基于所述附着点沉积,以形成第一膜层。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制。
图1~图6为本申请第一实施例提供的一种膜层的形成方法中各步骤对应的结构示意图;
图7为本申请第一实施例提供的一种膜层的形成方法中预处理步骤的效果对比折线图;
图8为本申请第二实施例提供的一种膜层的形成方法的结构示意图;
图9为本申请实施例提供的一种膜层的形成方法中各步骤提供的气体-时间折线图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
图1~图6为本申请第一实施例提供的一种膜层的形成方法中各步骤对应的结构示意图。
参考图4和图5,膜层的形成方法,包括:提供衬底100;进行预处理步骤,预处理步骤包括提供反应源气体105,反应源气体105在衬底100上形成附着点(未标记);进行沉积步骤,对反应源气体105进行等离子化形成等离子体106,等离子体106在衬底100上基于附着点沉积,以形成第一膜层107。
衬底100的材料可以为单晶硅、绝缘体上硅(SOI)、绝缘体上层叠硅 (SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)。本实施例中,衬底100为单晶硅。
参考图1和图2,在第一实施例中,衬底100上形成有缺陷层101。所述缺陷层101可以为机台沉积膜层过程出现异常,导致沉积的膜层质量不佳,或膜层表面存在部分被氧化的情况,形成缺陷层101。
缺陷层101与第一膜层107(如图5所示)具有相同的元素。
进行脉冲式刻蚀步骤,间隔的向缺陷层101提供刻蚀气体102去除缺陷层101,及持续的向缺陷层101提供惰性气体以带走刻蚀副产物。
如此,采用脉冲式刻蚀的方法,可以较为温和的去除缺陷层101,避免持续刻蚀反应剧烈使部分缺陷膜层脱落和污染反应腔室的风险,脉冲式刻蚀后还可以继续沉积膜层,防止在发生机台异常后,晶圆难以修复,从而直接报废的问题。
在第一实施例中,缺陷层101可以为氧化钛层。
本申请第一实施例中,刻蚀气体102与形成第一膜层107的反应源气体105具有相同元素。如此,可以减少在反应腔室中带入多余的元素,减少对后续反应造成的影响;同时刻蚀气体102是反应源气体105的一种,不用提供新的气体,方便脉冲式刻蚀步骤的进行,从而在形成缺陷层101之后快速的对缺陷层101进行刻蚀,且在同一腔室中就可以进行上述步骤。
在本实施例中,刻蚀气体102包括四氯化钛,惰性气体可以为氩气。四氯化钛气体会和氧化钛层发生剧烈反应,通过脉冲式刻蚀方法,可以避免四氯化钛和钛反应过于激烈,导致部分膜层脱落及污染腔室。
具体地,脉冲式刻蚀步骤的工艺参数包括:四氯化钛流量为1~50sccm(standard cubic centimeter per minute:标准毫升每分钟),具体可以为10sccm、20sccm、30sccm或40sccm;氩气流量为1000sccm~2000sccm,具体可以为1300sccm、1500sccm或1800sccm;反应腔室的温度为400~710摄氏度,具体可以为500摄氏度、600摄氏度或700摄氏度;反应腔室的压 力为1~20托,具体可以为5托、10托或15托;脉冲式提供刻蚀气体102的次数为100~400次,具体可以为200次、250次、300次。
在一个实施例中,间隔的向缺陷层101提供刻蚀气体102,每次提供刻蚀气体102的时间为0.1~40秒,具体可以为10秒、20秒或30秒。其中,每两次提供刻蚀气体102之间间隔0.1~5秒,具体可以为2秒、3秒或4秒。
在刻蚀气体102与缺陷层101反应时,会产生刻蚀副产物,刻蚀副产物会污染反应腔室,影响在反应腔室进行的反应,因此,在本实施例中,持续的向缺陷层101提供惰性气体,可以带走刻蚀副产物,保证了反应腔室的清洁度。
在其他实施例中,在每两次提供刻蚀气体之间对反应腔室进行抽真空处理,以带走刻蚀副产物,从而保证了反应腔室的清洁度。
在一个例子中,在每两次提供刻蚀气体之间不提供惰性气体,但对反应腔室进行抽真空处理,以带走刻蚀副产物。
具体地,抽真空时的腔室压力为0.1~1托,具体可以为0.4托、0.6托或0.8托。在此压力下,腔室的刻蚀副产物能够完全被抽走,从而保证反应腔室的清洁度。
参考图3,刻蚀去除缺陷层101之后,露出钛化硅层(图中未示出),钛化硅层为衬底100与缺陷层101反应生成,钛化硅层在空气中极易被氧化生成界面原生氧化层103,氧化层103的存在会增加第一膜层107和衬底100的表面接触电阻,影响产品良率。本实施例中,在沉积第一膜层107之前,先进行衬底表面处理步骤104,去除氧化层103。
氧化层103包括氧化硅。
具体地,氧化层103为二氧化硅,衬底表面处理步骤104采用等离子体的氨气、氩气和氢气反应去除氧化层103,具体反应为NH 3+H 2+Ar-等离子化->NH X+H+Ar和NH X+H+SiO 2->Si+N 2+H 2+H 2O。
衬底表面处理步骤104去除氧化层103不仅是利用氨气、氩气和氢气 等离子体还原一部分氧化物,而且利用等离子状态本身的轰击效应去除部分氧化物和一些杂质。如此,不仅去除了与后续沉积的第一膜层107无关的氧化层103,降低了第一膜层107与衬底100的接触阻值,防止了接触阻值过高,从而造成第一膜层107与衬底100断路,而且提高了后续沉积形成的第一膜层107表面的均匀性。
本实施例中,采用在沉积腔室直接通入氨气、氩气和氢气来对衬底100表面进行处理,可以进一步防止晶圆出机台进行衬底表面处理步骤104时,会接触大气环境造成界面原生氧化层103的形成,从而提高膜层和衬底100接触界面的质量,提高产品良率。
具体地,衬底表面处理步骤104中,工艺参数包括:氨气流量为1500~3500sccm,具体可以为2000sccm、2500sccm或3000sccm;氩气流量为1000~2000sccm,具体可以为1300sccm、1500sccm或1800sccm;氢气流量为1000~3000sccm,具体可以为1500sccm、2000sccm或2500sccm;反应腔室的温度为450~650摄氏度,具体可以为500摄氏度、550摄氏度或600摄氏度;功率为450~1200瓦,具体可以为600瓦、800瓦或1000瓦。
参考图4,本申请第一实施例中,在衬底表面处理步骤104后进行预处理步骤,提供反应源气体105在衬底100上形成附着点。参考图7,在同样的最佳反应温度下,同样的反应时间内,进行预处理步骤104后沉积的膜层厚度远大于等离子沉积的膜层厚度。如此,衬底100上有大量的附着点,附着点具体可以为成核位点,在成核位点的基础上进行下一步沉积步骤时,可以加快第一膜层107的沉积速率;而且附着点在衬底100上分布均匀,提高了第一膜层107的台阶覆盖率,从而提高了第一膜层107的质量。
具体地,预处理步骤中提供四氯化钛的工艺时长为2~10秒,具体可以为4秒、6秒或8秒。如此,控制预处理步骤中提供四氯化钛的工艺时长,可以在保证预处理步骤效果的同时,有效节省工艺成本。
在提供四氯化钛之前,通入5~20秒的氩气和氢气,具体可以为8秒、 12秒或16秒。如此,可以清洁反应腔室,使得预处理步骤中没有杂质气体,为形成附着点的反应提供合适的反应腔室条件。
在本实施例预处理步骤中,反应源气体105包括四氯化钛和氢气。通过采用四氯化钛预处理衬底100表面,可以在衬底100表面形成钛附着点,能够提高后续膜层沉积的速率,且提高膜层的台阶覆盖率,从而得到高质量膜层。
在一个例子中,四氯化钛的流量为1~50sccm,具体可以为20sccm、30sccm或40sccm;氢气流量为1000~3000sccm,具体可以为1500sccm、2000sccm或2500sccm。
在另一个例子中,反应源气体105还包括惰性气体,提供惰性气体作为载流气体。惰性气体包括氩气,氩气流量为1000~2000sccm,具体可以为1200sccm、1400sccm或1600sccm。
参考图5,本申请第一实施例的沉积步骤中,对反应源气体105进行等离子化形成等离子体106,等离子体106在衬底100上基于附着点沉积,形成第一膜层107。如此,等离子体106具有更活跃的化学性质,可以加快反应速率,从而使得沉积步骤的反应速率大于预处理步骤的反应速率,提高了沉积速率。
第一膜层107包括钛膜层,在沉积步骤中,氯化钛气态化合物和氢气反应生成钛膜层。
具体地,沉积步骤的工艺参数包括:反应腔室的压强为1~20托,具体可以为5托、10托或15托;反应腔室的温度为450~650摄氏度,具体可以为500摄氏度、550摄氏度或600摄氏度;射频功率为450~1200瓦,具体可以为600瓦、800瓦或1000瓦。
本申请第一实施例中,预处理步骤采用的反应源气体105流量和沉积步骤采用的反应源气体105流量相同。如此,可以简化工艺难度,不用在预处理步骤和沉积步骤两个阶段间改变反应源气体105流量,易于操作。
在本申请第一实施例中,预处理步骤与沉积步骤在同一反应腔室进行。如此,在形成第一膜层107的过程中,简化了操作步骤,使得工艺更方便的进行,也减少了反应腔室的污染数量。
并且,在预处理步骤和沉积步骤中,反应腔室的压强均相同,且反应腔室的温度均相同。如此,在反应腔室中,预处理步骤和沉积步骤两个阶段之间,只需改变反应腔室的射频功率即可实现,使得整个工艺易于操作。
参考图6,本申请第一实施例中,在形成第一膜层107之后,还包括第二沉积步骤,向第一膜层107提供氮源等离子体108,将至少部分第一膜层107转化为含氮的第二膜层109。
氮源等离子体108包括氮气等离子体,第二膜层109可以为氮化钛。
具体地,第二沉积步骤的工艺参数包括:氨气流量为1500~3500sccm,具体可以为2000sccm、2500sccm或3000sccm;反应腔室的温度为450~650摄氏度,具体可以为500摄氏度、550摄氏度或600摄氏度;射频功率为450~1200瓦,具体可以为600瓦、800瓦或1000瓦。
本申请第一实施例中,脉冲式刻蚀步骤、衬底表面处理步骤、预处理步骤、沉积步骤和第二沉积步骤在同一反应腔室进行。如此,在对缺陷层101进行处理并继续形成新的膜层的过程中,所有反应在同一个反应腔室中进行,不用更换反应腔室,整个工艺操作可以更便捷的进行,有利于在膜层毁坏后快速补救,减少了损失;所有反应在同一反应腔室进行,防止膜层接触大气,生成更厚的缺陷层101。在本实施例中,可以采用PECVD(Plasma Enhanced Chemical Vapor Deposition:等离子体增强化学气相沉积法)机台腔室进行上述反应获得第二膜层109。
本申请第一实施例提供一种膜层的形成方法,对于在衬底上形成缺陷层的情况,通过采用脉冲式刻蚀的方法,较为温和的去除缺陷层,避免持续刻蚀反应剧烈使部分缺陷膜层脱落和反应腔室污染的风险,脉冲式刻蚀后还可以继续沉积膜层,防止在发生机台异常后,晶圆难以修复,从而直 接报废的问题;刻蚀去除缺陷层之后,进行衬底表面处理步骤,去除界面原生氧化层,衬底表面处理步骤不仅去除了与后续沉积的第一膜层无关的界面原生氧化层,降低了第一膜层与衬底的接触阻值,防止了接触阻值过高,从而造成第一膜层与衬底断路,而且还提高了后续沉积形成的第一膜层表面的均匀性;通过在沉积步骤之前增加预处理步骤阶段,提供的反应源气体在衬底上形成了大量的附着点,具体可以为成核位点,后续的沉积步骤,等离子化的反应源气体发生反应,因为在衬底上有大量的成核位点,在成核位点的基础上进行沉积步骤,加快了沉积膜层的速率;而且附着点在衬底上均匀分布,所以提高了膜层的台阶覆盖率,从而提高了膜层的质量,本实施例的膜层形成方法适用于形成位线接触层或电容接触层。
图8为本申请第二实施例提供的一种膜层的形成方法的结构示意图。
参考图8,在本申请第二实施例中,由于机台异常,沉积第一膜层107或第二膜层109的工艺被迫暂停,由于反应腔室温度高,已经沉积的第一膜层107或第二膜层109被氧化形成缺陷层101,缺陷层101与第一膜层107具有相同的元素。此时可按照脉冲式刻蚀步骤、衬底表面处理步骤、预处理步骤、沉积步骤和第二沉积步骤的顺序对晶圆进行修复。如此,防止了在发生机台异常后,晶圆难以修复直接报废的问题。
图9为本申请实施例提供的一种膜层的形成方法中各步骤提供的气体-时间折线图。
参考图9,在本申请实施例中,对由于机台异常导致形成的缺陷层101进行处理并继续形成新的膜层的过程中,每一个阶段不同气体的提供时间点进行具体的解释。
当机台异常时,形成了缺陷层101,开始脉冲式刻蚀步骤S1,间隔的通入四氯化钛气体,在两次通入四氯化钛气体之间通入氩气;脉冲式刻蚀步骤S1完全结束后,开始衬底表面处理步骤S2,持续通入氩气、氨气和氢气直至衬底表面处理步骤S2结束;预处理步骤阶段S3,通入氩气和氢气, 再通入四氯化钛气体,直至沉积步骤S4结束,停止通入四氯化钛气体,持续通入氩气和氢气;气体交换步骤S5,降低持续通入的氩气和氢气的流量,在气体交换步骤S5后部分通入氨气,进入第二沉积步骤S6;在整个第二沉积步骤S6持续通入氩气、氨气和氢气三种气体,直至第二沉积步骤S6结束时,停止通入氨气,仍持续通入氩气和氢气,进入清洁步骤S7;在清洁步骤S7,通入氩气和氨气。
本申请第二实施例提供一种膜层的形成方法,对于在沉积膜层时发生机台异常,膜层毁坏形成缺陷层的情况,通过依次采用脉冲式刻蚀步骤、衬底表面处理步骤、预处理步骤、沉积步骤和第二沉积步骤的顺序对晶圆进行修复,防止了在发生机台异常后,晶圆难以修复直接报废的问题。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。任何本领域技术人员,在不脱离申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。

Claims (13)

  1. 一种膜层的形成方法,包括:
    提供衬底;
    进行预处理步骤,所述预处理步骤包括提供反应源气体,所述反应源气体在所述衬底上形成附着点;
    进行沉积步骤,对所述反应源气体进行等离子化形成等离子体,所述等离子体在所述衬底上基于所述附着点沉积,以形成第一膜层。
  2. 根据权利要求1所述的膜层的形成方法,其中,所述预处理步骤采用的所述反应源气体流量和所述沉积步骤采用的所述反应源气体流量相同。
  3. 根据权利要求1所述的膜层的形成方法,其中,所述第一膜层包括钛膜层,所述反应源气体包括四氯化钛和氢气。
  4. 根据权利要求3所述的膜层的形成方法,其中,所述预处理步骤中提供所述四氯化钛的工艺时长为2~10秒。
  5. 根据权利要求1所述的膜层的形成方法,其中,在进行所述预处理步骤之前,所述衬底上形成有氧化层;在进行所述预处理步骤之前,还包括:
    衬底表面处理步骤,去除所述氧化层。
  6. 根据权利要求5所述的膜层的形成方法,其中,所述衬底表面处理步骤采用等离子体的氨气、氩气和氢气反应去除所述氧化层。
  7. 根据权利要求6所述的膜层的形成方法,其中,所述衬底表面处理步骤中,工艺参数包括:所述氨气流量为1500~3500sccm,所述氩气流量为1000~2000sccm,所述氢气流量为1000~3000sccm,反应腔室的温度为450~650摄氏度,功率为450~1200瓦。
  8. 根据权利要求5所述的膜层的形成方法,其中,在进行所述衬底表 面处理步骤之前,所述衬底上形成有缺陷层;在进行所述衬底表面处理步骤之前,还包括:
    进行脉冲式刻蚀步骤,间隔的向所述缺陷层提供刻蚀气体去除所述缺陷层,及持续的向所述缺陷层提供惰性气体以带走刻蚀副产物。
  9. 根据权利要求8所述的膜层的形成方法,其中,所述刻蚀气体与形成所述第一膜层的所述反应源气体具有相同元素。
  10. 根据权利要求8所述的膜层的形成方法,其中,所述间隔的向所述缺陷层提供所述刻蚀气体,每次提供所述刻蚀气体0.1~40秒,每两次提供所述刻蚀气体之间间隔0.1~5秒。
  11. 根据权利要求8所述的膜层的形成方法,其中,在每两次提供所述刻蚀气体之间对反应腔室进行抽真空带走所述刻蚀副产物,所述抽真空时的压力为0.1~1托。
  12. 根据权利要求8所述的膜层的形成方法,其中,在形成所述第一膜层之后,还包括:第二沉积步骤,向所述第一膜层提供氮源等离子体,将至少部分第一膜层转化为含氮的第二膜层。
  13. 根据权利要求12所述的膜层的形成方法,其中,所述脉冲式刻蚀步骤、所述衬底表面处理步骤、所述预处理步骤、所述沉积步骤和所述第二沉积步骤在同一反应腔室进行。
PCT/CN2021/107083 2020-09-29 2021-07-19 膜层的形成方法 WO2022068331A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/448,885 US20220102149A1 (en) 2020-09-29 2021-09-25 Method for forming film layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011051630.3A CN114334796A (zh) 2020-09-29 2020-09-29 膜层的形成方法
CN202011051630.3 2020-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/448,885 Continuation US20220102149A1 (en) 2020-09-29 2021-09-25 Method for forming film layer

Publications (1)

Publication Number Publication Date
WO2022068331A1 true WO2022068331A1 (zh) 2022-04-07

Family

ID=80949632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107083 WO2022068331A1 (zh) 2020-09-29 2021-07-19 膜层的形成方法

Country Status (2)

Country Link
CN (1) CN114334796A (zh)
WO (1) WO2022068331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769089A (zh) * 2022-04-25 2022-07-22 四川大学 一种采用pecvd涂层敷形保护的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224824A1 (en) * 2006-03-23 2007-09-27 International Business Machines Corporation Method of repairing process induced dielectric damage by the use of gcib surface treatment using gas clusters of organic molecular species
CN101325176A (zh) * 2007-06-15 2008-12-17 株式会社瑞萨科技 半导体器件的制造方法
CN102543672A (zh) * 2010-12-22 2012-07-04 中芯国际集成电路制造(上海)有限公司 去除自然氧化硅层和形成自对准硅化物的方法
CN102832112A (zh) * 2011-06-17 2012-12-19 中芯国际集成电路制造(上海)有限公司 金属硅化物形成方法
CN107978510A (zh) * 2016-10-21 2018-05-01 朗姆研究公司 通过减少和去除金属氧化物形成接触和互连的系统和方法
CN108109955A (zh) * 2017-12-13 2018-06-01 华中科技大学 一种用于填充垂直硅通孔tsv的复合材料及其填充方法
CN111584348A (zh) * 2020-05-28 2020-08-25 上海华力集成电路制造有限公司 三层光刻材料的返工方法
CN111627859A (zh) * 2019-02-28 2020-09-04 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224824A1 (en) * 2006-03-23 2007-09-27 International Business Machines Corporation Method of repairing process induced dielectric damage by the use of gcib surface treatment using gas clusters of organic molecular species
CN101325176A (zh) * 2007-06-15 2008-12-17 株式会社瑞萨科技 半导体器件的制造方法
CN102543672A (zh) * 2010-12-22 2012-07-04 中芯国际集成电路制造(上海)有限公司 去除自然氧化硅层和形成自对准硅化物的方法
CN102832112A (zh) * 2011-06-17 2012-12-19 中芯国际集成电路制造(上海)有限公司 金属硅化物形成方法
CN107978510A (zh) * 2016-10-21 2018-05-01 朗姆研究公司 通过减少和去除金属氧化物形成接触和互连的系统和方法
CN108109955A (zh) * 2017-12-13 2018-06-01 华中科技大学 一种用于填充垂直硅通孔tsv的复合材料及其填充方法
CN111627859A (zh) * 2019-02-28 2020-09-04 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN111584348A (zh) * 2020-05-28 2020-08-25 上海华力集成电路制造有限公司 三层光刻材料的返工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769089A (zh) * 2022-04-25 2022-07-22 四川大学 一种采用pecvd涂层敷形保护的方法

Also Published As

Publication number Publication date
CN114334796A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
KR100447284B1 (ko) 화학기상증착 챔버의 세정 방법
US5089441A (en) Low-temperature in-situ dry cleaning process for semiconductor wafers
US5403434A (en) Low-temperature in-situ dry cleaning process for semiconductor wafer
KR0132375B1 (ko) 박막형성방법
US5264396A (en) Method for enhancing nitridation and oxidation growth by introducing pulsed NF3
JPH1187341A (ja) 成膜方法及び成膜装置
JP2010205854A (ja) 半導体装置の製造方法
JP6325057B2 (ja) 半導体素子の製造方法
WO2013171988A1 (ja) 成膜方法及び成膜装置
US20220189777A1 (en) Film formation method and film formation apparatus
US20060258174A1 (en) Substrate treatment apparatus and method of manufacturing semiconductor device
US9972490B2 (en) Plasma stabilization method and deposition method using the same
KR101321424B1 (ko) 반도체 소자의 표면 처리 및 박막 성장 방법, 그리고 이를 구현하는 표면 처리 및 박막 성장 장치
TWI796388B (zh) 減少或消除鎢膜中缺陷的方法
US20050026434A1 (en) Method of improving the wafer-to-wafer thickness uniformity of silicon nitride layers
WO2022068331A1 (zh) 膜层的形成方法
JP3112880B2 (ja) Cvd装置のクリーニング方法
JP2001110747A (ja) 半導体装置の製造方法
US20240055259A1 (en) Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
TW202217062A (zh) 基板處理方法
TWI440093B (zh) 半導體裝置之製造方法及半導體裝置之製造裝置
KR20090025053A (ko) 화학기상증착 챔버의 시즈닝 방법
US20220102149A1 (en) Method for forming film layer
JP2001185489A (ja) クリ−ニング方法
JP3820212B2 (ja) Cvdチャンバクリーニング後にcvdチャンバをコンディショニングする方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873993

Country of ref document: EP

Kind code of ref document: A1