WO2022068094A1 - 一种通信方法及相关设备 - Google Patents

一种通信方法及相关设备 Download PDF

Info

Publication number
WO2022068094A1
WO2022068094A1 PCT/CN2020/137817 CN2020137817W WO2022068094A1 WO 2022068094 A1 WO2022068094 A1 WO 2022068094A1 CN 2020137817 W CN2020137817 W CN 2020137817W WO 2022068094 A1 WO2022068094 A1 WO 2022068094A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
indication information
message
destination
Prior art date
Application number
PCT/CN2020/137817
Other languages
English (en)
French (fr)
Inventor
刘菁
朱元萍
史玉龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180065838.7A priority Critical patent/CN116325911A/zh
Priority to KR1020237014550A priority patent/KR20230074583A/ko
Priority to JP2023519813A priority patent/JP2023543492A/ja
Priority to PCT/CN2021/085137 priority patent/WO2022068164A1/zh
Priority to EP21873831.8A priority patent/EP4213536A4/en
Publication of WO2022068094A1 publication Critical patent/WO2022068094A1/zh
Priority to US18/192,141 priority patent/US20230239954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present application relates to the field of communication technologies, and more particularly, to a communication method and related equipment.
  • a radio link failure may occur in the radio link between the relay node and the parent node.
  • RLF radio link failure
  • the relay node will first try to restore the link.
  • the relay node will send RLF indication information to its child nodes. It is used to indicate the occurrence of RLF to the child node, so that the child node can trigger the rerouting operation and transmit the data to be transmitted through other relay nodes.
  • the original relay node succeeds in rerouting by itself, it will still send RLF indication information to its child nodes to trigger the child nodes to perform rerouting, which will cause unnecessary waste of link resources and overhead of air interface resources.
  • the present application provides a communication method and related equipment, which can realize reasonable rerouting in the case of RLF.
  • the present application provides a communication method, the method may include: when the first node determines that RLF occurs in the wireless link between the first node and the second node and there is no other available path between the first node and the destination node, the The first node will send the first indication information to the third node.
  • the first indication information is used to indicate that the RLF is or is attempting link recovery.
  • the second node is a parent node of the first node, and the third node is a child node of the first node; or, the second node is a child node of the first node, and the third node is the first node The parent node of the first node or the host node to which the first node is connected.
  • exemplary beneficial effects include: the rerouting function of the relay node can be fully utilized, the stability of the data relay can be increased, and unnecessary waste of link resources and air interface signaling overhead can be avoided.
  • the first node when the second node is the parent node of the first node and the third node is the child node of the first node, the first node is determining the wireless link between the first node and the second node.
  • the first indication information is sent to the third node under the condition that RLF occurs on the path and the radio link recovery is attempted and it is determined that there is no other available path with the destination node.
  • the first indication information is used to indicate that link recovery is being attempted.
  • exemplary beneficial effects include: the rerouting function and link recovery function of the relay node can be fully utilized, the stability of data relay can be increased, and unnecessary waste of link resources and air interface signaling overhead can be avoided.
  • the first node further sends second indication information to the third node, where the second indication information is used to indicate that the path from the first node to the destination node is unavailable.
  • exemplary beneficial effects include: enabling the third node to obtain more accurate information about the RLF, thereby realizing more efficient and accurate rerouting.
  • the second indication information includes a backhaul adaptation (Bakhaul Adaptation Protocol, BAP) layer address of the destination node.
  • BAP Backhaul adaptation
  • exemplary beneficial effects include: it can be indicated to the third node that all paths between the first node and the destination node are unavailable, so that the third node can achieve more efficient and accurate rerouting.
  • the second indication information includes a routing identity (routing identity, routing ID) corresponding to the path from the first node to the destination node.
  • the second indication information includes a path identity (path identity, path ID) corresponding to the path from the first node to the destination node.
  • the second indication information is used to indicate that the path from the first node to the destination node is unavailable, including: the second indication information is used to indicate all paths from the first node to the destination node. are not available; or, the second indication information is used to indicate that in all the paths from the first node to the destination node, the paths whose corresponding path IDs are equal to the path IDs included in the second indication information are unavailable; or, the first The second indication information is used to indicate that in all the paths that pass through the first node to the destination node, the corresponding routing ID is equal to the routing ID included in the second indication information. The path is unavailable.
  • exemplary beneficial effects include: indicating to the third node which paths between the first node and the destination node are unavailable, thereby enabling the third node to achieve more efficient and accurate rerouting.
  • the second indication information includes the identifier of the second node.
  • the second indication information is used to indicate that the path from the first node to the destination node is unavailable, including: the second indication information is used to indicate all paths from the first node to the destination node. , the path including the direct wireless link between the first node and the second node is unavailable.
  • exemplary beneficial effects include: the host node (that is, the third node) receiving the identifier of the second node from the first node can accurately determine the occurrence of RLF, so that the third node can accurately determine the occurrence of RLF. Achieve more efficient and accurate rerouting.
  • the present application provides a communication method, the method may include: receiving, at a third node, second indication information from a first node, where the second indication information is used to indicate a path to a destination node through the first node In the case of being unavailable, the third node determines to route the data to the destination node through other paths.
  • the third node further receives first indication information from the first node, where the first indication information is used to indicate RLF or is attempting link recovery.
  • the second indication information includes the BAP address of the destination node, or the routing ID corresponding to the path from the first node to the destination node, or the route ID from the first node to the destination node.
  • the path identifier path identity, path ID
  • the other path does not include the first node, or the routing ID of the other path is not equal to the routing ID included in the second indication information, or the Path ID of the other path is not equal to the second Path ID included in the indication.
  • the second indication information includes an identifier of a second node, wherein the second node is a child node of the first node, and the wireless link between the first node and the second node has occurred. RLF.
  • the routing ID of the other path is not equal to the routing ID corresponding to the path from the first node to the destination node that includes the direct wireless link between the first node and the second node.
  • the third node when the third node receives third indication information from the first node, where the third indication information is used to indicate that the wireless link is successfully recovered, the third node stops using the method through rerouting. route data to the destination node through other paths.
  • exemplary beneficial effects include: the third node can be made to stop rerouting in time, and the source path used before being notified of the RLF can be resumed to route data (or, in other words, the original routing configuration information can be resumed to route data. ), which can reduce the processing complexity of the upstream or downstream node of the third node.
  • the present application provides a communication method, the method may include: a first node receives a first message from a master base station of a fourth node, where the first message is used to request to add the first node as the fourth node's Secondary base station.
  • the first message includes: the physical cell identifier PCI of the cell of the second node accessed by the fourth node and the temporary radio network identifier C-RNTI of the cell of the fourth node in the cell of the second node, or, The identity of the third node and the identity of the fourth node on the interface between the third node and the first node.
  • the third node is the source secondary base station of the fourth node, and the fourth node is the downstream node of the second node.
  • the first node further acquires context information of the fourth node.
  • exemplary beneficial effects include: since the context information of the fourth node is already cached on the first node, it can be avoided that the message sent by the primary base station to the first node further carries the context information of the fourth node, Thus, the air interface overhead is reduced.
  • the C-RNTI enables the first node to obtain the context information of the fourth node according to the identity of the fourth node in the first message, and then makes itself a new secondary base station of the fourth node to provide services for the fourth node , to avoid data interruption of the fourth node.
  • the method before receiving the first message, further includes: the first node receives a second message from the second node, where the second message is used for requesting to establish or re-establish a communication with the second node The radio resource control RRC connection. Afterwards, the first node sends a third message to the third node, where the third message is used to request to acquire context information related to the second node. Then, the first node receives a fourth message from the third node, the fourth message including contextual information related to the second node. The third node sends a fifth message to the second node, where the fifth message is used to establish or re-establish an RRC connection with the second node.
  • the fifth message includes information for updating the cell served by the second node.
  • the information for updating the cell served by the second node includes: when the second node is connected to the first node, the global cell identity CGI and/or cell identity of the cell of the second node cell identity.
  • the context information related to the second node includes at least one of the following: context information of the second node, topology information between the second node and the fourth node, and information of the fourth node.
  • the context information is indication information indicating whether the second node is a wireless backhaul device, or indication information indicating whether the fourth node is a wireless backhaul device.
  • the context information of the fourth node includes the PCI and the C-RNTI.
  • the context information of the fourth node includes an identifier of the third node and an identifier of the fourth node on the interface between the third node and the first node.
  • the present application provides a communication method, the method may include: the master base station of the fourth node receives a sixth message from the third node, where the sixth message is used to request the first node as the fourth node's A target secondary base station, wherein the third node is the source secondary base station of the fourth node.
  • the primary base station sends a first message to the first node, where the first message is used to request to add a secondary base station whose first node is the fourth node, wherein the first message includes the information accessed by the fourth node.
  • the physical cell identifier PCI of the cell of the second node and the cell temporary radio network identifier C-RNTI of the fourth node in the cell of the second node, or the first message includes the identifier of the third node and the fourth node The identification of the node on the interface between the third node and the first node.
  • exemplary beneficial effects include: the second node can be re-established from the source secondary base station to the destination secondary base station, thereby reducing the impact on the downstream node (fourth node) of the second node, ensuring that the second node The normal operation of downstream nodes.
  • the present application provides a communication method, the method may include: the first node determines the first information. The first node determines whether to trigger rerouting according to the first information.
  • the first node determines the first information by itself.
  • the first information includes a first threshold value, and when the number of data packet transmission/retransmission times of the first node reaches/exceeds the first threshold value, the first node triggers rerouting.
  • the first information includes the configuration of the timer, and the configuration of the timer includes the duration of the timer, then when the timer expires and the data packet of the first node has not been successfully sent, the first node triggers rerouting .
  • the first node receives the first information from the third node.
  • the first information includes a first threshold, and the first information is used to indicate that rerouting is triggered when the number of times of data packet transmission/retransmission of the first node reaches/exceeds the first threshold; or, the first
  • the information includes the configuration of the timer, and the first information is used to indicate that when the timer expires and the data packet of the first node has not been successfully sent, rerouting is triggered.
  • the first node determines whether to trigger uplink rerouting according to the first information, and the data packet of the first node is an uplink data packet.
  • the third node may be a host node or an upstream node to which the first node is connected.
  • the first node determines whether to trigger downlink rerouting according to the first information, and the data packet of the first node is a downlink data packet.
  • the third node may be a host node connected to the first node.
  • the data packets of the first node may be BAP layer/RLC layer/MAC layer/PHY layer data packets.
  • the first threshold value needs to be smaller than the maximum retransmission threshold value of the RLC layer.
  • the duration of the timer needs to satisfy: before the timer expires, the transmission/replay of the RLC layer data packet of the first node The number of transmissions is less than the maximum retransmission threshold of the RLC layer.
  • the maximum retransmission threshold of the RLC layer can be used by the first node to judge whether a radio link failure occurs.
  • the maximum retransmission threshold value of the RLC layer may be configured by the host node to the first node through an RRC message.
  • the present application provides a communication device, the device including a module for performing any one of the methods of the first to fifth aspects and any design thereof.
  • the present application provides a communication device, comprising a processor and a memory, the processor is coupled to the memory, and the processor is used to implement any one of the methods of the first to fifth aspects and any design thereof method.
  • the present application provides a communication device, comprising at least one processor and an interface circuit, the interface circuit being configured to receive signals from other communication devices other than the communication device and transmit to the processor or transfer signals from the processor
  • the signal of the processor is sent to other communication devices other than the communication device, and the processor is used to implement any one of the methods of the first aspect to the fifth aspect and any one of the designs thereof through a logic circuit or executing code instructions.
  • the apparatus may be a chip or an integrated circuit in a node in any of the methods of the first to fifth aspects and any design thereof.
  • the communication device may further include at least one memory, and the memory stores the related program instructions.
  • the present application provides a communication device, the device has the function or operation of implementing any one of the methods of the first aspect to the fifth aspect and any of the methods in any design thereof, and the function or operation It can be realized by hardware, or can be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units (modules) corresponding to the above functions or operations, such as a transceiver unit and a processing unit.
  • the present application provides a computer-readable storage medium, in which related program instructions are stored, and when the related program instructions are executed, the communication device implements the first aspect to the first The method of the five aspects and any method in any design thereof.
  • the present application provides a computer program product, the computer program product includes related program instructions, when the related program instructions are executed, to implement the methods of the first to fifth aspects and any design thereof any of the methods.
  • the present application further provides a chip, the chip is used to implement any one of the methods of the first aspect to the fifth aspect and any of the designs thereof.
  • the present application provides a communication system, where the communication system includes at least one communication device according to the sixth aspect to the ninth aspect and any designs thereof.
  • FIG. 1 is a schematic diagram of a possible communication system of the present application.
  • FIG. 2 is a schematic diagram of an IAB host provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a control plane protocol stack in an IAB network provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a user plane protocol stack in an IAB network provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an IAB node networking provided by an embodiment of the present application.
  • 6A is a schematic diagram of a communication method provided by an embodiment of the present application.
  • 6B is a schematic diagram of a communication method provided by an embodiment of the present application.
  • 6C is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of an apparatus provided by an embodiment of the present application.
  • the fifth generation mobile communication (5G) or new radio (NR) system has put forward all the performance indicators of the network. More stringent requirements. For example, the capacity index has been increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the use of high-frequency small stations to form a network is becoming more and more popular. High-frequency carriers have poor propagation characteristics, are severely attenuated by occlusion, and have limited coverage, so a large number of small stations need to be densely deployed.
  • the wireless backhaul device provides an idea for solving the above two problems: both the access link and the backhaul link use a wireless transmission scheme to avoid fiber deployment.
  • the wireless backhaul device may be a relay node (Relay Node, RN), an integrated access backhaul (Integrated Access Backhaul, IAB) node, or other devices that provide wireless backhaul functions. This application does not limited.
  • an IAB node as a wireless backhaul device, can provide wireless access services for user equipment (UE), and the service data of the UE is connected to the IAB node through a wireless backhaul link.
  • the host node or the host base station transmits.
  • Using an IAB node can share antennas for access and backhaul, reducing the number of antennas at the base station.
  • the user equipment in FIG. 1 may be an access terminal equipment, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal equipment, a mobile equipment, a user terminal equipment, a wireless terminal equipment, a user agent, or a user equipment, etc. .
  • It can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication capable Handheld devices, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices (such as smart watches, smart bracelets, etc.), smart furniture or home appliances, terminal devices in 5G networks, future evolution Terminal equipment in public land mobile network (PLMN), or vehicle equipment in vehicle to everything (V2X), customer premises equipment (CPE), etc.
  • PLMN public land mobile network
  • V2X vehicle equipment in vehicle to everything
  • CPE customer premises equipment
  • the IAB node in Figure 1 may be composed of a mobile terminal (MT) and a distributed unit (DU), wherein, when the IAB node faces its parent node, it can be regarded as a terminal device, that is, an MT When an IAB node faces its subordinate device (the subordinate device may be another IAB sub-node, or a normal UE), it can be regarded as a network device, that is, it acts as a DU. It should be understood that each node in FIG. 1 only takes an IAB node as an example, and each of the IAB nodes can be replaced by a general relay node (relay node, RN).
  • relay node relay node
  • the IAB donor (IAB donor) in Figure 1 can be the donor base station, and the IAB donor can be referred to as DgNB (ie, donor gNodeB) for short in the 5G network.
  • the IAB host can be a complete entity, or can be a centralized unit (CU) (referred to as Donor-CU or gNB-CU in this application) and a distributed unit (DU) (in this application) It exists in the form of separation of Donor-DU or gNB-DU for short.
  • the IAB host can be a gNB located in a 5G radio access network (5G radio access network, 5G RAN).
  • the IAB host may be composed of gNB-CU and gNB-DU.
  • the gNB-CU and the gNB-DU are connected through an F1 interface, and the F1 interface may further include a control plane interface (F1-C) and a user plane interface (F1-U).
  • the CU and the core network are connected through a next generation (NG) interface.
  • the gNB-CU or Donor-CU may also be a user plane (UP) (referred to as CU-UP in this application) and a control plane (CP) (referred to as CU-CP in this application)
  • UP user plane
  • CP control plane
  • CU-CP control plane
  • One gNB-CU may include one gNB-CU-CP and at least one gNB-CU-UP.
  • one Donor-CU may include one Donor-CU-CP and at least one Donor-CU-UP.
  • the IAB node is connected to the core network via the IAB host.
  • the IAB node is connected to the 5GC via the IAB host.
  • the IAB node Under the dual connectivity (DC) or multi-connectivity (MC) 5G architecture (for example, non-standalone (NSA) or NR-NR DC scenarios, etc.), on the main path,
  • the IAB node can be connected to an evolved packet core (EPC) via an evolved base station (evolved NodeB, eNB), or can be connected to a 5G core network via an IAB host.
  • EPC evolved packet core
  • eNB evolved NodeB
  • the IAB network supports the networking of multi-hop IAB nodes and multi-connection IAB nodes. Therefore, there may be multiple transmission paths between the terminal and the IAB host.
  • On a path there is a definite hierarchical relationship between the IAB nodes and between the IAB nodes and the IAB hosts connected to the IAB nodes, and each IAB node regards the node that provides backhaul services for it as a parent node. Accordingly, each IAB node can be regarded as a child node of its parent node.
  • the parent node of IAB node 1 is the IAB host
  • IAB node 1 is the parent node of IAB node 2 and IAB node 3
  • both IAB node 2 and IAB node 3 are the parent nodes of IAB node 4
  • the parent node of IAB node 5 is IAB node 2.
  • the uplink data packets of the terminal may be transmitted to the IAB host via one or more IAB nodes, and the downlink data packets will be sent to the terminal by the IAB host via one or more IAB nodes.
  • terminal 1 and IAB host There are two available paths for data packet transmission between terminal 1 and IAB host, namely: terminal 1 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ IAB host, terminal 1 ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ IAB host.
  • terminal 2 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ IAB host terminal 2 ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB Node 1 ⁇ IAB host, terminal 2 ⁇ IAB node 5 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ IAB host.
  • the IAB host In order to ensure the normal transmission of data between the terminal and the IAB host, the IAB host needs to configure a routing table for each IAB node, that is, configure next-hop nodes corresponding to different paths. At the same time, the IAB host needs to determine the transmission path corresponding to the data transmission. That is to say, a transmission path will be determined before data transmission. This transmission path can be called the main path. Data is routed between the terminal and the IAB host through this main path, and other paths can be regarded as Backup path. The backup path is used for re-routing only when the primary path is unavailable, eg, an RLF occurs on a link on the primary path.
  • the main data transmission path of the IAB host configuration terminal 2 is: terminal 2 ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ IAB host, when IAB node 2 detects the connection between IAB node 1 and IAB node 1 When RLF occurs and the link cannot be recovered, the IAB node 2 sends an RLF indication message to the IAB node 4.
  • the IAB node 4 can trigger data re-routing, and the uplink data received from the terminal 2 Temporarily transmit through the backup path, namely: terminal 2 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ IAB host.
  • a wireless link recovery (recovery) mechanism is introduced, that is, when an RLF occurs between two nodes, an attempt can be made to restore the wireless link between the two nodes.
  • the IAB node 5 may attempt to perform radio link recovery, such as performing RRC re-establishment in other cells of the IAB node 2, etc., to restore the wireless link between IAB Node 5 and IAB Node 2.
  • the intermediate IAB nodes on the upstream path from the IAB node to the IAB host can be called the upstream node of the IAB node.
  • the IAB node 1 and IAB node 2 in Figure 1 can be called the upstream node of the IAB node 5.
  • the intermediate IAB nodes on the downlink path from the IAB node to the terminal can be called the downstream nodes of the IAB node.
  • IAB node 2, IAB node 3, IAB node 4 and IAB node 5 in FIG. 1 can be called IAB node 1.
  • the downstream node includes child nodes, child nodes (or grandchild nodes) of child nodes, etc., where the downstream node can be other IAB nodes or terminals.
  • the terminal 1 in FIG. 1 may be referred to as the downstream node of the IAB node 4, the IAB node 4 and the IAB node 5 may be referred to as the downstream nodes of the IAB node 1, and the terminal 1 and the terminal 2 may be referred to as the downstream nodes of the IAB node 1. downstream node.
  • a transmission path between a terminal and an IAB host may include one or more IAB nodes.
  • Each IAB node needs to maintain the wireless backhaul link facing the parent node, and also needs to maintain the wireless link with the child node. If the child node of the IAB node is a terminal, there is a wireless access link between the IAB node and the child node (ie, the terminal). If the child nodes of the IAB node are other IAB nodes, there is a wireless backhaul link between the IAB node and the child nodes (ie, other IAB nodes). Exemplarily, referring to FIG.
  • terminal 1 accesses IAB node 4 through a wireless access link
  • IAB node 4 accesses IAB node 4 through wireless
  • the backhaul link is connected to the IAB node 3
  • the IAB node 3 is connected to the IAB node 1 through the wireless backhaul link
  • the IAB node 1 is connected to the IAB host through the wireless backhaul link.
  • the above IAB networking scenario is just an example.
  • the IAB host and the IAB nodes under another IAB host are composed Dual connections are terminal services, etc., which will not be listed here.
  • the access IAB node in the embodiment of the present application refers to the IAB node accessed by the terminal, and the intermediate IAB node refers to the IAB node that provides wireless backhaul service for the terminal or the IAB node.
  • IAB node 4 is the access IAB node
  • IAB node 3 and IAB node 1 are intermediate IAB nodes.
  • an IAB node is an access IAB node for a terminal that accesses the IAB node.
  • IAB node 3 and IAB node 1 are intermediate IAB nodes.
  • an IAB node is an access IAB node for a terminal that accesses the IAB node.
  • an intermediate IAB node For a terminal that accesses other IAB nodes, it is an intermediate IAB node. Therefore, an IAB node is specifically an access IAB node.
  • the node or the intermediate IAB node is not fixed and needs to be determined according to the specific application scenario.
  • FIG. 3 and FIG. 4 are respectively a schematic diagram of a control plane protocol stack and a schematic diagram of a user plane protocol stack in an IAB network provided by an embodiment of the present application, which will be described below with reference to FIG. 3 and FIG. 4 .
  • a Uu interface is established between the terminal 1 and the IAB2-DU, and the peer-to-peer protocol layers include the RLC layer, the MAC layer, and the PHY layer.
  • IAB2-DU and IAB donor CU1 establish an F1-C interface, and the peer-to-peer protocol layers include the F1 application protocol (F1AP) layer and the stream control transmission protocol (SCTP) layer.
  • F1AP application protocol
  • SCTP stream control transmission protocol
  • the IAB donor DU 1 and the IAB donor CU 1 are connected by wire, and the peer-to-peer protocol layers include the Internet Protocol (IP) layer, L2 and L1.
  • IP Internet Protocol
  • BL is established between IAB node 2 and IAB node 3, between IAB node 3 and IAB node 1, and between IAB node 1 and IAB donor DU 1, and the peer-to-peer protocol layer includes the backhaul adaptation protocol (Bakhaul Adaptation). Protocol, BAP) layer, RLC layer, MAC layer and PHY layer.
  • BAP backhaul adaptation protocol
  • RLC backhaul adaptation protocol
  • MAC media access control
  • PHY PHY
  • a peer-to-peer RRC layer and a PDCP layer are established between the terminal 1 and the IAB donor CU 1, and a peer-to-peer IP layer is established between the IAB2-DU and the IAB donor DU 1.
  • control plane protocol stack of the IAB network is compared with the control plane protocol stack of the single air interface.
  • the DU connected to the IAB node realizes the function of the gNB-DU of the single air interface (that is, establishing a peer RLC layer, MAC layer with the terminal). and the functions of the PHY layer, as well as the functions of the F1AP layer and SCTP layer that establish peering with the CU).
  • the DU connected to the IAB node in the IAB network realizes the function of the single air interface gNB-DU; the IAB donor CU realizes the function of the single air interface gNB-CU.
  • RRC messages are encapsulated and transmitted in F1AP messages between the access IAB node and the IAB donor CU.
  • the terminal 1 encapsulates the RRC message in the PDCP protocol data unit (protocol data unit, PDU), and sends it to the IAB2-DU after being processed by the RLC layer, the MAC layer and the PHY layer in sequence.
  • PDU protocol data unit
  • IAB2-DU obtains PDCP PDU after processing by PHY layer, MAC layer and RLC layer in turn, encapsulates PDCP PDU in F1AP message, and obtains IP packet after processing by SCTP layer and IP layer in sequence
  • IAB2-MT separates IP packet It is sent to IAB3-DU after being processed by BAP layer, RLC layer, MAC layer and PHY layer.
  • the IAB3-DU is processed by the PHY layer, the MAC layer, the RLC layer and the BAP layer to obtain an IP packet, and then the IAB3-MT adopts an operation similar to the IAB2-MT to send the IP packet to the IAB1-DU.
  • IAB1 -MT sends the IP packet to IAB donor DU 1.
  • the IP packet is sent to the IAB donor CU 1, and the IAB donor CU 1 sequentially processes the IP packet through the SCTP layer, the F1AP layer and the PDCP layer to obtain the RRC message.
  • the downstream direction is similar and will not be described here.
  • a Uu interface is established between the terminal 1 and the IAB2-DU, and the peer-to-peer protocol layers include the RLC layer, the MAC layer, and the PHY layer.
  • IAB2-DU and IAB donor CU 1 establish an F1-U interface, and the peer-to-peer protocol layers include the GPRS tunneling protocol for the user plane (GTP-U) layer, the user datagram protocol (user datagram protocol, UDP) layer.
  • GTP-U GPRS tunneling protocol for the user plane
  • UDP user datagram protocol
  • the IAB donor DU 1 and the IAB donor CU 1 are connected through a wired connection, and the equivalent protocol layers include the IP layer, L2 and L1.
  • BL is established between IAB node 2 and IAB node 3, between IAB node 3 and IAB node 1, and between IAB node 1 and IAB donor DU 1, and the peer-to-peer protocol layers include BAP layer, RLC layer, and MAC layer. and the PHY layer.
  • a peer-to-peer SDAP layer and a PDCP layer are established between the terminal 1 and the IAB donor CU 1, and a peer-to-peer IP layer is established between the IAB2-DU and the IAB donor DU 1.
  • the user plane protocol stack of the IAB network is compared with the user plane protocol stack of the single air interface.
  • the DU of the IAB access node realizes the function of the single air interface gNB-DU; the IAB donor CU realizes the function of the single air interface gNB-CU.
  • PDCP packets are encapsulated and transmitted in the GTP-U tunnel between the access IAB node and the IAB donor CU.
  • the GTP-U tunnel is established on the F1-U interface.
  • FIG. 3 and FIG. 4 describe the protocol stack in the IAB scenario shown in FIG. 1 as an example.
  • an IAB node may have one or more roles, and the IAB node may have protocol stacks of the one or more roles; or, the IAB node may have a set of protocol stacks, and the protocol stack may Different roles are processed using the protocol layers corresponding to different roles.
  • the following is an example of the protocol stack in which the IAB node has the one or more roles:
  • the MT of the IAB node has the protocol stack of a common terminal, such as the protocol stack of the terminal 1 in FIG. 3 and FIG. 4 , that is, the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer.
  • the RRC message of the IAB node is encapsulated in the F1AP message between the parent node of the IAB node and the IAB donor CU; on the user plane, the PDCP data packet of the IAB node is encapsulated between the parent node of the IAB node and the IAB donor CU. transmitted in the GTP-U tunnel.
  • the IAB node can still act as a common terminal, for example, transmit its own uplink and/or downlink data packets (such as OAM data packets) with the IAB donor, and perform measurement through the RRC layer and many more.
  • uplink and/or downlink data packets such as OAM data packets
  • the IAB node After the IAB node accesses the IAB network, the IAB node can provide access services for the terminal, thereby acting as an access IAB node. At this time, the IAB node has the protocol stack for accessing the IAB node, such as Figure 3 and Figure 3 The protocol stack of IAB node 2 in 4.
  • the interface of the IAB node facing its parent node can have two sets of protocol stacks, one set is the protocol stack of the common terminal, and the other set is the protocol stack that provides backhaul services for the terminal (ie: access The protocol stack of the IAB node).
  • the same protocol layer of the two sets of protocol stacks may be shared, for example, the two sets of protocol stacks correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • the IAB node After the IAB node accesses the IAB network, the IAB node can play the role of an intermediate IAB node. At this time, the IAB node has the protocol stack of the intermediate IAB node, such as IAB node 3 or IAB node 1 in Figure 3 and Figure 4 the protocol stack.
  • the interface of the IAB node facing its parent node can have two sets of protocol stacks, one set is the protocol stack of the common terminal, and the other set is the protocol stack that provides the return service for the child IAB node (ie: The protocol stack of the intermediate IAB node).
  • the same protocol layer of the two sets of protocol stacks may be shared, for example, the two sets of protocol stacks correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • the IAB node can assume the roles of the access IAB node and the intermediate IAB node at the same time.
  • the IAB node can be the access IAB node for some terminals, and the intermediate IAB node for other terminals.
  • the IAB node There may be three sets of protocol stacks, one set is the protocol stack of the above-mentioned common terminal, the other set is the protocol stack of the access IAB node, and the other set is the protocol stack of the intermediate IAB node.
  • the same protocol layer of the three sets of protocol stacks may be shared, for example, the three sets of protocol stacks all correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • Figures 3 and 4 take the IAB network as an example.
  • the contents of Figures 3 and 4 are also applicable to other types of relay networks other than the IAB network.
  • the control plane protocol stack architecture of the relay network can be Referring to FIG. 3 , reference may be made to FIG. 4 for the user plane protocol stack architecture of the relay network.
  • the IAB nodes in Figures 3 and 4 can be replaced by relays, for example, IAB node 2 can be replaced by relay node 2, IAB node 3 can be replaced by relay node 3, and IAB node 1 can be replaced by relay nodes 1.
  • the IAB donor 1 can be replaced by the host node 1.
  • the host node has CU and DU protocol stacks. The rest of the content is the same as that described in Figures 3 and 4. For details, please refer to the descriptions in Figures 3 and 4, which will not be repeated here. Repeat.
  • the IAB network shown in FIG. 1 can be considered as a schematic diagram of an IAB independent networking, and the IAB network also supports a non-standalone (non-standalone, NSA) networking.
  • Figure 5 shows a schematic diagram of the IAB non-independent networking.
  • the IAB node supports dual connections of 4G and 5G networks, namely EN-DC (E-UTRAN NR dual connectivity), in which the LTE base station eNB is the master base station (master eNB, MeNB). ), provide LTE air interface (LTE Uu) connection for IAB nodes, and establish S1 interface with 4G core network evolved packet core (EPC) for user plane and control plane transmission.
  • EN-DC E-UTRAN NR dual connectivity
  • LTE base station eNB is the master base station (master eNB, MeNB).
  • LTE Uu LTE air interface
  • EPC 4G core network evolved packet core
  • the IAB-donor is the secondary base station, which provides the NR air interface (NR Uu) connection for the IAB node, and establishes an S1 interface with the core network EPC for user plane transmission.
  • the UE also supports EN-DC.
  • the UE connects to the primary base station eNB through the LTE Uu interface, uses the NR Uu interface to access the IAB node, and connects to the secondary base station IAB donor through the IAB node.
  • the IAB non-independent networking scenario in this application may also be referred to as the EN-DC networking scenario of the IAB.
  • the secondary base station before the change may be called the source secondary base station, and the changed secondary base station may be called the target secondary base station.
  • Figure 5 is only an example of networking, and the NSA scenario of the IAB network also supports multi-hop IAB networking.
  • the UE in Figure 5 can be another IAB node, that is, the IAB node can use a multi-hop wireless backhaul link. Connect to the IAB donor, which is not limited in this application.
  • the MT of the IAB node may be abbreviated as IAB-MT
  • the DU of the IAB node may be abbreviated as IAB-DU
  • the CU of the IAB host may be abbreviated as Donor-CU
  • the DU of the IAB host may be abbreviated as Donor-DU.
  • the IAB host connected to the IAB node may be referred to as the IAB host of the IAB node for short.
  • the IAB node may directly access the IAB host, or the IAB node may be connected to the IAB host through other IAB nodes.
  • FIG. 6A shows a communication method 600A according to an embodiment of the present application.
  • the first node may be a child node of the second node, and the first node is a parent node of the third node, and the destination node may be a host node.
  • the first node may be the parent node of the second node, and the first node may be the child node of the third node, and the destination node may be the access node of the terminal device (also referred to as node to which the terminal device is connected).
  • At least one relay node may be included between the second node and the destination node, or the second node may also be directly connected to the destination node.
  • the communication method 600A includes:
  • S601A The first node sends the first indication information to the third node.
  • the first indication information may be used to indicate that the radio link fails, or the first indication information may be used to indicate that link recovery is being attempted.
  • the first node may send the first indication information to the third node when it is determined that RLF occurs in the wireless link with the second node.
  • the first indication information may be used to indicate that the radio link fails.
  • the first node may send the first indication information to the third node when it is determined that the radio link between the first node and the second node occurs RLF, and in the case of attempting radio link recovery (recovery) .
  • the first indication information may be used to indicate that link recovery is being attempted.
  • the first node may send the first indication to the third node when it is determined that RLF occurs on the wireless link with the second node and no other available paths exist between the first node and the destination node information.
  • the first indication information may be used to indicate that the radio link fails.
  • the first node may determine that RLF occurs on the wireless link between the first node and the second node, and try to recover the wireless link, and there is no other available path between the first node and the destination node. , and send the first indication information to the third node. At this time, the first indication information may be used to indicate that link recovery is being attempted.
  • the first indication information may be carried in a backhaul adaptation protocol layer (backhaul adaptation protocol, BAP) control protocol data unit (control protocol data unit, control PDU) and sent.
  • BAP backhaul adaptation protocol
  • control protocol data unit control protocol data unit
  • the third node after receiving the first indication information, performs re-routing (re-routing) on the data packet to be sent to the destination node.
  • Rerouting the data packets to be sent to the destination node refers to routing data to the destination node through other paths.
  • the other path may also be referred to as a backup path, that is, different from the original path through which the third node routed data to the destination node through the first node before the occurrence of RLF.
  • the third node can trigger the rerouting function of the data packet after receiving the first indication information, and the data to be sent to the destination node.
  • the packet is rerouted to route the data packet to the destination node through other available paths.
  • the third node can receive the The first indication information can then trigger the rerouting operation of the data packet, and can fully utilize the rerouting function of the first node, thereby increasing the stability of the data relay and reducing the air interface signaling overhead. For example, there are multiple paths between the first node and the destination node.
  • the first node When an RLF occurs on one of the paths, the first node itself can trigger the rerouting function, and use other paths to route data to the destination node. Sending the above-mentioned first indication information to the third node, otherwise, unnecessary rerouting by the third node may result in a waste of resources, and a large amount of the above-mentioned first indication information may also be transmitted over the air interface.
  • this embodiment of the present application may further include the following operations:
  • S603A The first node sends the second indication information to the third node.
  • the second indication information is used to indicate that the path from the first node to the destination node is unavailable.
  • the second indication information includes a BAP address (address) of the destination node.
  • the BAP address of the destination node may refer to the BAP address of the Donor-DU; for downlink transmission, the BAP address of the destination node may refer to the BAP address of the access IAB node.
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may mean that all paths from the first node to the destination node are unavailable.
  • the second indication information includes a path identity (path identity, Path ID) corresponding to the path from the first node to the destination node, or a path from the first node to the destination node.
  • Path ID corresponding to the path.
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may refer to all the paths from the first node to the destination node, and the corresponding path ID is equal to the second indication The path for the path ID included in the information is not available.
  • the second indication information includes a routing identity (routing identity, routing ID) corresponding to the path from the first node to the destination node, or a route from the first node to the destination node.
  • the route ID corresponding to the path.
  • the route identifier consists of the BAP address and path ID of the destination node.
  • the second indication information may include one or more routing identifiers.
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may refer to all the paths from the first node to the destination node, the corresponding routing ID is equal to the second indication
  • the information includes the routing ID of the route is not available.
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may mean that all paths from the first node to the destination node are unavailable.
  • the third node receives the second indication information.
  • the third node may determine to route data to the destination node through other paths according to the second indication information.
  • the other path does not include the first node.
  • the third node may determine to route data to the destination node through other paths according to the second indication information.
  • the routing ID of the other path is not equal to the routing ID included in the second indication information. Or the other path does not include the first node.
  • the third node may determine to perform re-routing (re-routing) only on the data packets to be sent to the destination node. That is, the third node can determine that the data packets to be sent to other destination nodes are not rerouted, and can still be routed through the first node.
  • the host node may determine to route data to the destination node through other paths according to the second indication information.
  • the path identifier of the other path is not equal to the Path ID included in the second indication information.
  • first indication information and second indication information may be carried in the same message and sent to the third node, for example, carried in the same BAP control PDU.
  • Operation S603A is an optional operation, that is, the first node may not send the second indication information to the third node. For example, after receiving the first indication information, the third node determines to route data to the destination node through other paths. The other path does not include the first node.
  • the third node can obtain more accurate information about the RLF, thereby realizing more efficient and accurate rerouting.
  • the third node may route data to the destination node through the first node, and route other data to other destination nodes through the first node. Further, there may be multiple path.
  • the first indication information and the second indication information can enable the third node to perform more efficient and accurate rerouting.
  • this embodiment of the present application may further include the following operations:
  • S604A The first node sends third indication information to the third node.
  • the third indication information is used to indicate that the radio link is recovered successfully.
  • the first node successfully restores the link with the parent node for example: the first node successfully restores the link with the second node, or the first node is connected through the RRC re-establishment process. Enter the new parent node, and then send the third indication information to the third node.
  • the third node receives the third indication information.
  • the third node stops the rerouting function, that is, stops routing data to the destination node through other paths (backup paths), and continues to use the source path (that is, the original master path). path) to route the data to the destination node, for example: the third node continues to route the data to the first node, and the first node further routes the data to the destination node.
  • the third node after receiving the third indication information, the third node does not stop the rerouting function, and continues to route data to the destination node through other paths (backup paths) until the IAB host configures a new route configuration.
  • the third node can be made to stop rerouting (or turn off the rerouting function) in time, which can reduce the processing complexity of the upstream or downstream nodes of the third node.
  • the first indication information is only used to indicate that the radio link fails.
  • the first indication information may be used to indicate that the wireless link fails, or the first indication information may be used to indicate that the link is being attempted Road recovery.
  • the first node, the second node or the third node may be an IAB node
  • the host node may be an IAB host
  • the access node of the terminal device may be an access IAB node
  • FIG. 6B shows a communication method 600B according to an embodiment of the present application.
  • the second node is an upstream node of the first node (for example, the second node is a parent node of the first node), and the second node is a parent node of the first node.
  • the host node is the host node to which the first node and the second node are connected. At least one relay node may be included between the second node and the host node, or the second node may also be directly connected to the host node (it can be understood that the host node is the parent node of the second node).
  • the embodiments of the present application may be applied to a scenario in which the first node sends an uplink data packet to a destination node through the second node, and the destination node may be a host node.
  • the communication method 600B includes:
  • S601B The second node sends the first information to the host node.
  • the first information may include a first threshold value.
  • the first information may be used to indicate that when the number of data packet transmission/retransmission times of the first node reaches/exceeds the first threshold value, uplink rerouting is triggered.
  • the data packet of the first node may be any data packet of the BAP layer, the RLC layer, the MAC layer or the PHY layer.
  • the first information may be used to indicate: when the number of times of transmission/retransmission of the BAP layer data packet (eg, BAP PDU) of the first node is greater than or equal to the first threshold, the uplink rerouting is triggered.
  • the first information may be used to indicate that uplink rerouting is triggered when the number of times of transmission/retransmission of the RLC layer data packet (eg, RLC PDU) of the first node is greater than or equal to the first threshold.
  • the first threshold value is smaller than the maximum retransmission threshold value of the RLC layer, and the maximum retransmission threshold value of the RLC layer can be used for the first node to judge whether RLF occurs in the link between the first node and the second node.
  • the maximum retransmission threshold value of the RLC layer may be sent by the host node to the first node through an RRC message.
  • the first information may be used to indicate that the number of times of transmission/retransmission of a MAC layer data packet (such as a MAC PDU, also called a transport block (transport block) TB) at the first node is greater than or equal to the first gate When the limit is reached, uplink rerouting is triggered.
  • the first information may be used to indicate: when the number of times of transmission/retransmission of a PHY layer data packet (such as a code block group (code block group, CBG)) of the first node is greater than or equal to the first threshold value, Trigger upstream rerouting.
  • a PHY layer data packet such as a code block group (code block group, CBG)
  • the first information may include the configuration of the first timer, and the configuration of the first timer may include the duration of the first timer.
  • the first information may be used to indicate that when the first timer expires and the data packet of the first node has not been successfully sent, uplink rerouting is triggered.
  • the data packet of the first node may be any data packet of the BAP layer, the RLC layer, the MAC layer or the PHY layer.
  • the first information may be used to indicate that: when the first timer expires (that is, the timing duration of the first timer reaches/exceeds the configured first timer duration), and the BAP layer of the first node When the data packet has not been successfully sent, upstream rerouting is triggered.
  • the first information may be used to indicate that when the first timer expires and the RLC layer data packet of the first node has not been successfully sent, uplink rerouting is triggered.
  • the duration of the first timer needs to satisfy: before the first timer expires, the number of times of transmission/retransmission of the RLC layer data packet of the first node is less than the maximum retransmission threshold of the RLC layer.
  • the first information may be used to indicate that when the first timer expires and the MAC layer data packet of the first node has not been successfully sent, uplink rerouting is triggered.
  • the first information may be used to indicate that when the first timer expires and the PHY layer data packet of the first node has not been successfully sent, uplink rerouting is triggered.
  • the first node or the second node in this embodiment of the present application may be an IAB node (for example, the first node may be an access IAB node, and the second node may be an intermediate IAB node), and the host node may be an IAB host.
  • the second node may send the first information to the CU hosted by the IAB through an RRC message or an F1AP message.
  • S602B The host node sends the first information to the first node.
  • the CU of the IAB host may send the first information to the MT of the first node through an RRC message, or the CU of the IAB host may send the first information to the DU of the first node through an F1AP message.
  • This S601B is an optional step.
  • the first information may be generated by the host node and sent to the first node.
  • the second node may be optional, that is, the first node may be directly connected to the host node (that is, the host node is the parent node of the first node), and the host node generates the first node The information can then be sent directly to the first node.
  • the first information may not need to be forwarded by the host node.
  • the second node may carry the first information in a BAP control PDU or a media access control control element (media access control control element, MAC CE), through the communication between the first node and the second node.
  • a wireless backhaul link is sent to the first node.
  • the first information may be generated by the first node itself.
  • the first node may generate the first information according to a protocol, or the first information may be pre-configured in the first node, or the first node may be based on the channel quality between the first node and the second node and other parameters to generate the first information.
  • S603B The first node determines whether to trigger uplink rerouting according to the first information.
  • the first information includes the first threshold, when the first node determines that the number of times of transmission/retransmission of the BAP layer/RLC layer/MAC layer/PHY layer data packet is greater than or equal to the first threshold When the value is set, upstream rerouting is triggered.
  • the uplink rerouting when the first node detects that the number of times of transmission/retransmission of the BAP layer data packet is greater than or equal to the first threshold value, the uplink rerouting is triggered. Alternatively, when the first node detects that the number of times of transmission/retransmission of the RLC layer data packet is greater than or equal to the first threshold value, the uplink rerouting is triggered. Alternatively, when the first node detects that the number of times of transmission/retransmission of the MAC layer data packet is greater than or equal to the first threshold value, the uplink rerouting is triggered. Alternatively, when the first node detects that the number of times of transmission/retransmission of the uplink PHY layer data packet is greater than or equal to the first threshold value, the uplink rerouting is triggered.
  • the first information includes the configuration of the first timer, when the first node determines that the first timer expires, and the BAP layer/RLC layer/MAC layer/PHY layer data of the first node When the packet has not been successfully sent, upstream rerouting is triggered.
  • the first node may start the timer when the BAP layer/RLC layer/MAC layer/PHY layer data packet is transmitted for the first time, that is, the first timer starts timing.
  • uplink rerouting is triggered.
  • uplink rerouting is triggered.
  • the first timer expires and the RLC layer data packet of the first node has not been successfully sent uplink rerouting is triggered.
  • the first timer expires and the MAC layer data packet of the first node has not been successfully sent uplink rerouting is triggered.
  • uplink rerouting is triggered.
  • the number of times of transmission/retransmission of data packets at the BAP layer/RLC layer/MAC layer/PHY layer can be counted according to the granularity of the next-hop node or the next-hop link. That is, the number of times of transmission/retransmission of the BAP layer/RLC layer/MAC layer/PHY layer data packet may refer to the total transmission or total retransmission of the BAP layer/ The number of RLC layer/MAC layer/PHY layer data packets, or, the first node transmits or retransmits the BAP layer/RLC layer/ number of MAC layer/PHY layer packets).
  • triggering uplink rerouting can be understood as: the first node routes to the host node through another path (that is, a backup path, and the backup path may not include the second node) or other nodes (that is, not the second node) data pack.
  • the parent node of the first node is the second node, data packets are no longer routed to the host node through the second node; when the parent node of the first node is the host node, data packets are no longer routed directly to the host node. Bag.
  • S604B The first node stops uplink rerouting.
  • the first node Node stops upstream rerouting.
  • the first node after the first node triggers uplink rerouting, and before the first node determines that an RLF occurs between the first node and the second node/host node, if the first node passes the measurement, it is determined that the first node is connected to the host node. If the link quality between the second node/host node is greater than the preset value, the first node can stop uplink rerouting.
  • the first node After triggering the uplink rerouting, the first node starts a timer. When the timer expires and the first node has not yet determined that RLF occurs with the second node/host node, the first node may stop uplink rerouting.
  • stopping the uplink rerouting can be understood as: the first node stops sending the host node to the host node through another path (that is, a backup path, and the backup path may not include the second node) or other nodes (that is, not the second node).
  • For routing data continue to use the source path (ie, the original main path, where the main path includes the second node) or the second node to route data to the host node.
  • the parent node of the first node is the second node
  • the data packet continues to be routed to the host node through the second node; when the parent node of the first node is the host node, the data packet is continued to be routed directly to the host node.
  • This S604B is an optional step.
  • the first node may not stop uplink rerouting until the host node reconfigures a new uplink routing configuration for the first node.
  • the first node can be made to perform more efficient and accurate rerouting.
  • the first node can be configured to trigger rerouting flexibly under the configuration of the host node.
  • the rerouting of the first node can be triggered in advance, thereby reducing the possible interruption of data transmission, thereby improving the stability of data transmission.
  • FIG. 6C shows a communication method 600C according to an embodiment of the present application.
  • the first node is the parent node of the second node.
  • the first node is directly or indirectly connected to the host node, or the first node is the host node.
  • the embodiments of the present application may be applied to a scenario where the first node sends a downlink data packet to the destination node through the second node.
  • the destination node may be the access node of the terminal device.
  • At least one relay node may be included between the second node and the destination node, or the second node may also be the parent node of the destination node, or the second node may also be the destination node (then the embodiment of the present application It can be applied to the scenario where the first node sends downlink data packets to the second node).
  • the communication method 600C includes:
  • S601C The host node sends the second information to the first node.
  • the second information may include a second threshold value.
  • the second information may be used to indicate that the downlink rerouting is triggered when the number of data packet transmission/retransmission times of the first node reaches/exceeds the second threshold value.
  • the data packet of the first node may be any data packet of the BAP layer, the RLC layer, the MAC layer or the PHY layer.
  • the second information may be used to indicate that the downlink rerouting is triggered when the number of times of transmission/retransmission of the BAP layer data packet of the first node is greater than or equal to the second threshold.
  • the second information may be used to indicate that: when the number of times of transmission/retransmission of the RLC layer data packet of the first node is greater than or equal to the second threshold value, trigger downlink rerouting.
  • the second threshold value is smaller than the maximum retransmission threshold value of the above-mentioned RLC layer, and the maximum retransmission threshold value of the RLC layer can be used for the first node to judge whether the link between the first node and the second node is wireless Link failed.
  • the maximum retransmission threshold value of the RLC layer may be sent by the host node to the first node through an RRC message.
  • the second information may be used to indicate that the downlink rerouting is triggered when the number of times of transmission/retransmission of the MAC layer data packet of the first node is greater than or equal to the second threshold value.
  • the second information may be used to indicate that the downlink rerouting is triggered when the number of times of transmission/retransmission of the PHY layer data packet of the first node is greater than or equal to the second threshold value.
  • the second information may include the configuration of the second timer, and the configuration of the second timer may include the duration of the second timer.
  • the second information may be used to indicate that downlink rerouting is triggered when the second timer expires and the data packet of the first node has not been successfully sent.
  • the data packet of the first node may be any data packet of the BAP layer, the RLC layer, the MAC layer or the PHY layer.
  • the second information may be used to indicate that: when the second timer times out (that is, the timing duration of the second timer reaches/exceeds the configured second timer duration), and the BAP layer of the first node Downlink rerouting is triggered when the data packet has not been successfully sent.
  • the second information may be used to indicate that when the second timer expires and the RLC layer data packet of the first node has not been successfully sent, downlink rerouting is triggered.
  • the duration of the second timer needs to satisfy: before the second timer expires, the number of times of transmission/retransmission of the RLC layer data packet of the first node is less than the maximum retransmission threshold value of the RLC layer.
  • the second information may be used to indicate that the downlink rerouting is triggered when the second timer expires and the MAC layer data packet of the first node has not been successfully sent.
  • the second information may be used to indicate that the downlink rerouting is triggered when the second timer expires and the PHY layer data packet of the first node has not been successfully sent.
  • the first node or the second node may be an IAB node (for example, the first node may be an intermediate IAB node, and the second node may be an access IAB node), and the host node is an IAB host.
  • S601C may be that the CU hosted by the IAB sends the second information to the MT of the first node through an RRC message.
  • the CU of the IAB host may send the second information to the DU of the first node through an F1AP message.
  • the S601C is an optional step.
  • the second information may be generated by the first node itself.
  • the first node may generate the second information according to a protocol, or the second information may be pre-configured in the first node, or the first node may be based on the channel quality between the first node and the second node
  • the second information is generated.
  • the first node itself is the host node
  • the first node includes the DU of the host node and the CU of the host node
  • the second information may be sent by the CU of the host node to the DU of the host node, or by the host node.
  • the DU of the node is generated by itself.
  • S602C The first node determines whether to trigger downlink rerouting according to the second information.
  • the second information includes the second threshold
  • the first node determines that the number of times of transmission/retransmission of the BAP layer/RLC layer/MAC layer/PHY layer data packet is greater than or equal to the second threshold value, trigger downlink rerouting.
  • the downlink rerouting is triggered.
  • the downlink rerouting is triggered.
  • the downlink rerouting is triggered.
  • the downlink rerouting is triggered.
  • the downlink rerouting is triggered.
  • the downlink rerouting is triggered.
  • the second information includes the configuration of the second timer, when the first node determines that the second timer expires, the BAP layer/RLC layer/MAC layer/PHY layer data packet has not been successfully sent , trigger downlink rerouting.
  • the first node may start the timer when the BAP layer/RLC layer/MAC layer/PHY layer data packet is transmitted for the first time, that is, the second timer starts timing.
  • downlink rerouting is triggered.
  • the second timer expires and the RLC layer data packet of the first node has not been successfully sent.
  • downlink rerouting is triggered.
  • the second timer expires and the MAC layer data packet of the first node has not been successfully sent.
  • downlink rerouting is triggered.
  • the second timer expires and the PHY layer data packet of the first node has not been successfully sent.
  • the number of times of transmission/retransmission of data packets at the BAP layer/RLC layer/MAC layer/PHY layer can be counted according to the granularity of the next-hop node or the next-hop link. That is, the number of times of transmission/retransmission of the BAP layer/RLC layer/MAC layer/PHY layer data packet may refer to the total transmission or total retransmission of the BAP layer/RLC layer/MAC layer/PHY from the first node to the second node layer data packets, or the total number of times the first node transmits or retransmits the BAP layer/RLC layer/MAC layer/PHY layer data packet in total on the link between the first node and the second node).
  • triggering downlink rerouting can be understood as: the first node routes to the destination node through another path (that is, a backup path, and the backup path may not include the second node) or other nodes (that is, not the second node) data pack.
  • S603C The first node stops downlink rerouting.
  • the first node stops the downlink. Reroute.
  • the first node after the first node triggers downlink rerouting and before the first node determines that an RLF occurs between the first node and the second node, if the first node passes the measurement or feedback from the second node (for example: PHY Layer channel quality information (channel quality information, CQI) feedback), determine that the link quality between the first node and the second node is greater than the preset value, then the first node can stop downlink rerouting.
  • PHY Layer channel quality information channel quality information, CQI
  • the first node After triggering downlink rerouting, the first node starts a timer. When the timer expires and the first node has not yet determined that RLF occurs between the first node and the second node, the first node may stop downlink rerouting.
  • stopping downlink rerouting can be understood as: the first node stops sending the destination node through another path (that is, a backup path, and the backup path may not include the second node) or other nodes (that is, not the second node).
  • the first node stops sending the destination node through another path (that is, a backup path, and the backup path may not include the second node) or other nodes (that is, not the second node).
  • the source path ie, the original main path, where the main path includes the second node
  • the second node to route data to the destination node.
  • the S603C is an optional step.
  • the first node may not stop downlink rerouting until the host node reconfigures a new downlink routing configuration for the first node.
  • the first node may stop routing the data packet to the host node through the source path.
  • the first node may stop routing the data packet to the destination node through the source path.
  • the first node stopping routing the data packet to the destination node through the source path may specifically include at least one of the following: the BAP layer of the first node sends indication information to the RLC layer, where the indication information is used to instruct the RLC layer to perform re-establishment; or, The BAP layer of the first node sends indication information to the MAC layer, where the indication information is used to instruct the MAC layer to perform a reset (reset).
  • the first node may not stop routing the data packet to the destination node through the source path.
  • the first node may not stop routing the data packet to the destination node through the source path.
  • the first node supports DC, MC or NSA functionality. After the first node triggers uplink/downlink rerouting, and before the first node determines that an RLF occurs between the first node and the second node, the first node routes data through both the backup path and the source path (for example, RLC layer or MAC layer retransmission data).
  • first information in the method 600B and the second information in the method 600C may be the same third information.
  • the first threshold value and the second threshold value may be the same third threshold value, and the third information may be used to indicate that the number of times of data packet transmission/retransmission at the first node reaches/exceeds the third threshold value.
  • the threshold is three, rerouting is triggered.
  • the configuration of the first timer and the configuration of the second timer may be the configuration of the same third timer.
  • the third information may be used to indicate that the third timer expires and the first node's Rerouting is triggered when the packet has not been successfully sent.
  • FIG. 7 shows a communication method 700 according to an embodiment of the present application.
  • the first node is the parent node of the second node, and the host node is the host node connected to the first node.
  • a node may be an access node for a terminal device.
  • the communication method 700 includes:
  • S701 The first node sends first indication information to the host node.
  • the first indication information may be used to indicate a radio link failure.
  • the first node may send the first indication information to the host node when it is determined that RLF occurs in the wireless link with the second node.
  • the first indication information may be used to indicate that the radio link fails.
  • the first node may send the first indication information to the host node when it is determined that RLF occurs on the wireless link with the second node and there is no other available path with the destination node. .
  • the first indication information may be used to indicate that the radio link fails.
  • the first indication information can be carried in the F1AP message, for example, in the user equipment context release request (UE Context Release Request) message.
  • UE Context Release Request user equipment context release request
  • the reason ( cause) field is set to radio link failure indication (RLF indication).
  • the first indication information can also be carried in the BAP control PDU and sent to the host node in a hop-by-hop manner.
  • S702 The host node receives the first indication information.
  • the host node after receiving the first indication information, reroutes the data packet to be sent to the destination node.
  • Rerouting the data packets to be sent to the destination node refers to routing data to the destination node through other paths. This other path may also be referred to as a backup path.
  • the above operations S701 to S702 can cause the host node to receive the first indication information.
  • the first indication information can then trigger the rerouting function of the data packet, that is, the data packet sent to the destination node is to be rerouted, and the data packet is routed to the destination node through other available paths.
  • the first node sends the first indication information to the host node when RLF occurs on the wireless link with the second node and there is no other available path with the destination node, then pass The above operations S701 to S702 can enable the host node to trigger the rerouting operation of the data packet after receiving the first indication information, and can make full use of the rerouting function of the first node, thereby increasing the stability of the data relay and reducing the amount of time lost.
  • Air interface signaling overhead For example, there are multiple paths between the first node and the destination node. When an RLF occurs on one of the paths, the first node can perform rerouting by itself, and use other paths to route data to the destination node.
  • the host node sends the above-mentioned first indication information, otherwise, resources may be wasted due to unnecessary rerouting performed by the host node, and a large amount of the above-mentioned first indication information is transmitted over the air interface.
  • this embodiment of the present application may further include the following operations:
  • S703 The first node sends second indication information to the host node.
  • the second indication information is used to indicate that the path from the first node to the destination node is unavailable.
  • the second indication information includes a BAP address (address) of the destination node.
  • the BAP address of the destination node may refer to the BAP address of the access IAB node.
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may mean that all paths from the first node to the destination node are unavailable.
  • the second indication information includes a path identifier (Path ID) corresponding to the path from the first node to the destination node, or the path from the first node to the destination node. Path ID.
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may refer to all the paths from the first node to the destination node, and the corresponding path ID is equal to the second indication The path for the path ID included in the information is not available.
  • the second indication information includes a routing ID corresponding to the path from the first node to the destination node, or a routing ID corresponding to the path from the first node to the destination node.
  • the route identifier consists of the BAP address and path ID of the destination node.
  • the second indication information may include one or more routing IDs.
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may refer to all the paths from the first node to the destination node, the corresponding routing ID is equal to the second indication
  • the information includes the routing ID of the route is not available. Or at this time, the second indication information indicates that the path from the first node to the destination node is unavailable, which may mean that all paths from the first node to the destination node are unavailable.
  • the second indication information includes an identifier of the second node.
  • the identifier of the second node may be the BAP address of the second node.
  • the identifier of the second node may also be an identifier of the second node on the F1 interface between the second node and the host node, such as an F1 interface application layer protocol identity (F1application protocol identity, F1AP ID).
  • F1AP ID F1 interface application layer protocol identity
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may refer to all the paths from the first node to the destination node, including the first node and the second node. The path between the direct wireless links is not available.
  • the second indication information indicates that the path from the first node to the destination node is unavailable, which may mean that all paths from the first node to the destination node are unavailable.
  • S704 The host node receives the second indication information.
  • the host node may determine to route data to the destination node through other paths according to the second indication information.
  • the other path does not include the first node.
  • the host node may determine to route data to the destination node through other paths according to the second indication information.
  • the routing ID of the other path is not equal to the routing ID included in the second indication information.
  • the host node may determine that only the data packets to be sent to the destination node are to be rerouted. That is, the host node can determine that the data packets to be sent to other destination nodes are not rerouted, and can still be routed through the first node.
  • the host node may determine to route data to the destination node through other paths according to the second indication information.
  • the path identifier of the other path is not equal to the Path ID included in the second indication information.
  • the host node may determine, according to the second indication information, to route data to the destination node through another path.
  • the routing ID of other paths is not equal to the routing ID corresponding to the path from the first node to the destination node including the direct wireless link between the first node and the second node. Or the other path does not include the first node.
  • the above-mentioned first indication information and second indication information may be carried in the same message and sent to the host node, for example, carried in the same F1AP message, for example, in the UE Context Release Request message. Alternatively, it is carried in the same BAP control PDU and sent to the host node in a hop-by-hop manner.
  • Operations S703 and S704 are optional operations, that is, the first node may not send the second indication information to the host node. For example, after receiving the first indication information, the host node determines to route data to the destination node through other paths. The other path does not include the first node.
  • the host node can obtain more accurate information about the RLF, thereby realizing more efficient and accurate rerouting.
  • the host node may not only route data to the destination node through the first node, but also route other data to other destination nodes through the first node. Further, there may be multiple paths between the first node and the destination node. , in these cases, the first indication information and the second indication information can enable the host node to perform more efficient and accurate rerouting.
  • the first node, the second node or the third node may be an IAB node
  • the host node may be an IAB host
  • the access node of the terminal device may be an access IAB node
  • FIG. 8 shows a communication method 800 according to an embodiment of the present application.
  • the first node is the parent node of the second node
  • the host node is the host node connected to the first node.
  • a node may be an access node for a terminal device.
  • the communication method 800 includes:
  • S801 The primary base station sends a first message to the first node.
  • the first message is used to request to add the first node as the secondary base station of the second node.
  • the first message is used to request to add the first node as the secondary base station of the fourth node.
  • the master base station may send the first message to the first node after receiving the sixth message from the third node.
  • the third node is the source secondary base station of the second node or the fourth node.
  • the sixth message is used to request the first node to be the target secondary base station of the second node or the fourth node.
  • the sixth message may include the identifier of the first node.
  • the identity of the first node may be a base station identity (gNB ID) of the first node.
  • the master base station may be an LTE master base station (master eNodeB, MeNB).
  • the secondary base station may be an NR secondary base station (secondary gNodeB, SgNB).
  • the primary base station may also be an NR primary base station, and the secondary base station may be an NR secondary base station.
  • the first message when the first message is used to request to add a secondary base station in which the first node is a second node, the first message includes a physical cell identifier (physical cell) of a cell of a third node accessed by the second node. identity, PCI) and the cell radio network temporary identifier (cell radio network temporary identifier, C-RNTI) of the second node in the cell of the third node.
  • the second node is the third node and is the downstream node.
  • the second node may be a child node of the third node, or may be a child node of the child node of the third node.
  • the second node may be a wireless backhaul device or a terminal.
  • the cell of the third node accessed by the second node may refer to a cell provided by the third node and used to serve the fourth node.
  • the first message when the first message is used to request to add a secondary base station in which the first node is the second node, the first message includes the identifier of the third node and the location of the second node in the third node and the second node.
  • the identity of the third node may be a base station identity (eg, gNB ID) of the third node.
  • the interface between the third node and the first node may be an X2 interface, and the identifier of the second node on the interface between the third node and the first node may be that the third node is the second node
  • the user application protocol identity (UE X2 Application Protocol identity, UE X2AP ID) allocated on the X2 interface may also be the UE X2AP ID allocated by the first node to the second node on the X2 interface, or the UE X2AP ID.
  • the third node is the UE X2AP ID allocated by the second node on the X2 interface and the first node is the UE X2AP ID allocated by the second node on the X2 interface.
  • the interface between the third node and the first node may be an Xn interface
  • the identifier of the second node on the interface between the third node and the first node may be that the third node is the first node
  • the user application protocol identifier (UE Xn Application Protocol identity, UE XnAP ID) allocated by the second node on the Xn interface can also be the UE X2AP ID allocated by the first node to the second node on the Xn interface, or it can be It is the UE X2AP ID allocated by the third node on the Xn interface for the second node and the UE X2AP ID allocated by the first node on the Xn interface for the second node.
  • the first message when the first message is used to request to add a secondary base station in which the first node is a fourth node, the first message includes a physical cell identifier (physical cell) of the cell of the second node accessed by the fourth node. identity, PCI) and the cell radio network temporary identifier (cell radio network temporary identifier, C-RNTI) of the fourth node in the cell of the second node.
  • the fourth node means that the second node is a downstream node.
  • the fourth node may be a child node of the second node, or may be a child node of a child node of the second node.
  • the fourth node may be a wireless backhaul device or a terminal.
  • the cell of the second node accessed by the fourth node may refer to a cell provided by the second node and used to serve the fourth node.
  • the first message when the first message is used to request to add a secondary base station in which the first node is the fourth node, the first message includes the identifier of the third node and the location of the fourth node in the third node and the fourth node. An identifier on an interface between nodes.
  • the identity of the third node may be a base station identity (eg, gNB ID) of the third node.
  • the interface between the third node and the first node may be an X2 interface, and the identification of the fourth node on the interface between the third node and the first node may be that the third node is the fourth node
  • the user application protocol identifier (UE X2 Application Protocol identity, UE X2AP ID) allocated on the X2 interface may also be the UE X2AP ID allocated by the first node to the fourth node on the X2 interface, or the UE X2AP ID.
  • the third node is the UE X2AP ID allocated by the fourth node on the X2 interface and the first node is the UE X2AP ID allocated by the fourth node on the X2 interface.
  • the interface between the third node and the first node may be an Xn interface
  • the identification of the fourth node on the interface between the third node and the first node may be that the third node is the first node
  • the user application protocol identifier (UE Xn Application Protocol identity, UE XnAP ID) allocated by the four nodes on the Xn interface may also be the UE X2AP ID allocated by the first node to the fourth node on the Xn interface, or It is the UE X2AP ID allocated by the third node on the Xn interface for the fourth node and the UE X2AP ID allocated by the first node on the Xn interface for the fourth node.
  • the first message may be a secondary base station addition request (such as SgNB addition request) message, or a secondary base station modification request (such as SgNB modification request) message.
  • the second message may be a secondary base station change request (eg SgNB change required)
  • the first node after receiving the first information, obtains the context information of the second node.
  • the first node may extract the context information of the second node from the internal cache according to the identifier of the second node in the first message.
  • the first node after receiving the first information, obtains the context information of the fourth node.
  • the first node may extract the context information of the fourth node from the internal cache according to the identifier of the fourth node in the first message.
  • the context information of the second node or the fourth node cached on the first node may be obtained in advance from the third node and cached on the first node through the following operations:
  • S803 The first node receives the second message from the second node.
  • the second message is used to request to establish or re-establish a radio resource control (radio resource control, RRC) connection with the second node.
  • RRC radio resource control
  • the second message may be an RRC reestablishment request message (eg, RRC reestablishment request).
  • the second node may send the second message to the first node in the event of RLF in the radio link between it and the third node.
  • a scenario in which the second node is directly connected to the first node is used as an example for description.
  • This embodiment is also applicable to a scenario in which the second node is connected to the first node through at least one other wireless backhaul device, that is, the second node sends the second message to the first node through at least one other wireless backhaul device.
  • S804 The first node sends a third message to the third node.
  • the third message is used to request to obtain context information related to the second node.
  • the third message may be a request message for obtaining user equipment context (eg retrieve UE context request).
  • S805 The first node receives the fourth message from the third node.
  • the fourth message includes contextual information related to the second node.
  • the fourth message may be a retrieve UE context response message (retrieve UE context response).
  • the context information related to the second node includes at least one of the following: context information of the second node, topology information between the second node and its downstream nodes, context information of the downstream nodes of the second node, indicating the first node. Indication information indicating whether the second node is a wireless backhaul device, or indication information indicating whether the downstream node of the second node is a wireless backhaul device.
  • the downstream node of the second node includes a child node of the second node, a child node of the child node, etc., and may be a wireless backhaul device or a terminal.
  • the downstream node of the second node may refer to the fourth node.
  • the context information of the downstream node of the second node includes the PCI and the C-RNTI, or the context information of the downstream node of the second node includes the identifier of the third node and the relationship between the third node and the third node of the downstream node. An identifier on an interface between nodes.
  • the context information of the second node may include the context of the MT part of the IAB node, and/or the context of the DU part of the IAB node.
  • the context of the MT part of the IAB node includes configuration information of a backhaul radio link control channel (backhaul RLC channel, BH RLC CH).
  • backhaul RLC channel backhaul RLC channel, BH RLC CH.
  • the context of the DU part of the IAB node includes the identity of the IAB-DU, the configuration of the IAB-DU cell, and the like.
  • the topology information between the second node and the downstream node of the second node may include indicating that the downstream node of the second node is a terminal device, and/or indicating that the downstream node of the second node is a terminal device.
  • Wireless backhaul device may include indicating that the downstream node of the second node is a terminal device, and/or indicating that the downstream node of the second node is a terminal device.
  • the first node may acquire the context information of the fourth node, and the first node may cache the context information of the fourth node locally, so that the primary base station that receives the fourth node sends the information After the first message of the first message, according to the identifier of the fourth node carried in the first message, the context information of the fourth node is extracted from the cache.
  • this embodiment of the present application may further include the following operations:
  • S806 The first node sends a fifth message to the second node.
  • the fifth message is used to establish or re-establish an RRC connection with the second node.
  • the fifth message may be an RRC reestablishment message (eg, RRC reestablishment).
  • the fifth message may include information for updating the cell served by the second node.
  • the information for updating the cell served by the second node may include a cell global identifier (CGI) and/or a cell identity of the cell when the second node is connected to the first node.
  • the cellidentity may be composed of a base station identifier (such as a gNB Id) and a cell local identifier (cell local identifier, cellLocalId).
  • the CGI consists of a cell global identifier, which consists of a public land mobile network identifier (PLMNId), a base station identifier (such as a gNB Id), and a cellLocalId.
  • the first node allocates a new CGI and/or cellidentity to the cell served by the second node, and sends the new CGI and/or cellidentity to the second node through a fifth message.
  • the base station identity eg gNB ID
  • the base station identity contained in the new CGI and/or cellidentity of the cell served by the second node is the same as the base station identity to which the first node belongs.
  • the fifth message may not only be used to establish or re-establish an RRC connection with the second node, but also include the information used to update the cell served by the second node.
  • S806 can be before S801 and S802, or before S801 and after S802, or after S801 and S802.
  • a scenario in which the second node is directly connected to the first node is used as an example for description.
  • This embodiment is also applicable to a scenario in which the second node is connected to the first node through at least one other wireless backhaul device, that is, the second node sends the second message to the first node through at least one other wireless backhaul device.
  • the second node in the scenario where RLF occurs on the second node, the second node can be re-established from the source secondary base station to the new secondary base station, thereby reducing the impact on the downstream nodes of the second node and ensuring the second node's The normal operation of downstream nodes.
  • FIG. 9 is a schematic block diagram of a communication apparatus 900 provided by an embodiment of the present application. The structure and functions of the communication apparatus 900 will be described in detail below with reference to FIG. 9 .
  • the communication apparatus 900 may include a processing module 901 and a sending module 902 .
  • a processing module 901 configured to determine that a radio link failure RLF occurs in the radio link with the second node, and there is no other available path with the destination node;
  • a sending module 902 configured to send first indication information to a third node, where the first indication information is used to indicate RLF or link recovery is being attempted;
  • the second node is a parent node of the first node, and the third node is a child node of the first node; or, the second node is a child node of the first node, and the third node is a child node of the first node.
  • the three nodes are the parent node of the first node or the host node to which the first node is connected.
  • the sending module 902 is specifically configured to: attempt radio link recovery At the time, first indication information is sent to the third node, where the first indication information is used to indicate that link recovery is being attempted.
  • the sending module 902 is further configured to send second indication information to the third node, where the second indication information is used to indicate that the path from the first node to the destination node is unavailable.
  • the second indication information includes a backhaul adaptation layer BAP address of the destination node, or a routing ID corresponding to the path from the first node to the destination node, or, through all The path identifier path ID corresponding to the path from the first node to the destination node.
  • the second indication information is used to indicate that the path from the first node to the destination node is unavailable, including: the second indication information is used to indicate that the path from the first node to the destination node is unavailable. All paths are unavailable; or, the second indication information is used to indicate that among all the paths passing through the first node to the destination node, the path whose corresponding path ID is equal to the path ID included in the second indication information is unavailable Or, the second indication information is used to indicate that in all the paths that pass through the first node to the destination node, the path whose corresponding routing ID is equal to the routing ID included in the second indication information is unavailable.
  • the second indication information includes the information of the second node. logo.
  • the second indication information is used to indicate that the path from the first node to the destination node is unavailable, including: the second indication information is used to indicate that all the paths from the first node to the destination node are not available. Among the paths, the path including the direct wireless link between the first node and the second node is unavailable.
  • FIG. 10 is a schematic block diagram of a communication apparatus 1000 provided by an embodiment of the present application. The structure and functions of the communication apparatus 1000 will be described in detail below with reference to FIG. 10 .
  • the communication apparatus 1000 may include a processing module 1001 and an acquisition module 1002 .
  • an obtaining module 1002 configured to receive second indication information from the first node, where the second indication information is used to indicate that the path from the first node to the destination node is unavailable;
  • the processing module 1001 is configured to determine to route data to the destination node through other paths.
  • the obtaining module 1002 is further configured to receive first indication information from the first node, where the first indication information is used to indicate RLF or link recovery is being attempted.
  • the second indication information includes a backhaul adaptation layer BAP address of the destination node, or a routing ID corresponding to the path from the first node to the destination node, or, through all The path identifier path ID corresponding to the path from the first node to the destination node.
  • the other path does not include the first node, or the routing ID of the other path is not equal to the routing ID included in the second indication information, or the Path ID of the other path is not equal to the The Path ID included in the second indication information.
  • the second indication information includes an identifier of a second node, where the second node is a child node of the first node, and the wireless link between the first node and the second node occurs. RLF.
  • the routing ID of the other path is not equal to that including the direct wireless link between the first node and the second node, and the path corresponding to the path from the first node to the destination node. routing ID.
  • the obtaining module 1002 is further configured to receive third indication information from the first node, where the third indication information is used to indicate that the wireless link is successfully restored;
  • the processing module 1001 is further configured to stop routing data to the destination node through the other paths.
  • FIG. 11 is a schematic block diagram of a communication apparatus 1100 provided by an embodiment of the present application. The structure and functions of the communication apparatus 1100 will be described in detail below with reference to FIG. 11 .
  • the communication apparatus 1100 may include an obtaining module 1101 and a processing module 1102, and optionally, may further include a sending module 1103.
  • an obtaining module 1101 configured to receive a first message from the primary base station of the fourth node, where the first message is used to request to add the first node as the secondary base station of the fourth node;
  • the first message includes: the physical cell identifier PCI of the cell of the second node accessed by the fourth node and the temporary wireless network identifier C- of the cell of the fourth node in the cell of the second node RNTI; or, the identity of the third node and the identity of the fourth node on the interface between the third node and the first node; wherein the third node is the source of the fourth node a secondary base station, where the fourth node is a downstream node of the second node;
  • the processing module 1102 is configured to acquire the context information of the fourth node.
  • the obtaining module 1101 is further configured to receive a second message from the second node, where the second message is used to request to establish or re-establish a relationship with the second node.
  • the fifth message includes information for updating the cell served by the second node.
  • the information for updating the cell served by the second node includes: when the second node is connected to the first node, the global cell identifier CGI of the cell of the second node and/or Cell identity cell identity.
  • the context information related to the second node includes at least one of the following: context information of the second node, topology information between the second node and the fourth node, the fourth node The context information of the node, the indication information indicating whether the second node is a wireless backhaul device, or the indication information indicating whether the fourth node is a wireless backhaul device.
  • the context information of the fourth node includes: the PCI and the C-RNTI; or, the identifier of the third node and the information of the fourth node between the third node and the first node An identifier on an interface between nodes.
  • FIG. 12 is a schematic block diagram of a communication apparatus 1200 provided by an embodiment of the present application. The structure and functions of the communication apparatus 1200 will be described in detail below with reference to FIG. 12 .
  • the communication apparatus 1200 may include an obtaining module 1201 and a sending module 1202.
  • the obtaining module 1201 is configured to receive a sixth message from a third node, where the sixth message is used to request that the first node be used as a target secondary base station of the fourth node, wherein the third node is the third node Four-node source and secondary base station;
  • a sending module 1202 configured to send a first message to the first node, where the first message is used to request to add a secondary base station whose first node is the fourth node, wherein the first message includes: the physical cell identifier PCI of the cell of the second node accessed by the fourth node and the temporary radio network identifier C-RNTI of the cell of the fourth node in the cell of the second node; or, the third node and the identity of the fourth node on the interface between the third node and the first node.
  • an embodiment of the present application further provides an apparatus 1300 , and the structure and function of the apparatus 1300 will be described in detail below with reference to FIG. 13 , a schematic block diagram of the apparatus 1300 .
  • the apparatus may include at least one processor 1301 .
  • an interface circuit 1302 is also included.
  • the apparatus 1300 can be made to implement the communication method provided in any of the foregoing embodiments and any of the possible designs.
  • the processor 1301 is used to implement the communication method and any possible design provided by any of the foregoing embodiments through logic circuits or executing code instructions.
  • the interface circuit 1302 can be used to receive program instructions and transmit them to the processor, or the interface circuit 1302 can be used for the apparatus 1300 to communicate and interact with other communication devices, such as interactive control signaling and/or service data.
  • the interface circuit 1302 can be used to receive signals from other devices other than the device 1300 and transmit to the processor 1301 or send signals from the processor 1301 to other communication devices other than the device 1300 .
  • the interface circuit 1302 may be a code and/or data read/write interface circuit, or the interface circuit 1302 may be a signal transmission interface circuit between the communication processor and the transceiver.
  • the communication apparatus 1300 may further include at least one memory 1303, and the memory 1303 may be used to store required program instructions and/or data.
  • the apparatus 1300 may further include a power supply circuit 1304, and the power supply circuit 1304 may be used to supply power to the processor 1301.
  • the power supply circuit 1304 may be located in the same chip as the processor 1301, or may be located where the processor 1301 is located. outside the chip inside another chip.
  • the apparatus 1300 may further include a bus 1305 , and various parts of the apparatus 1300 may be interconnected through the bus 1305 .
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM Synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the power supply circuit described in the embodiments of the present application includes, but is not limited to, at least one of the following: a power supply line, a power supply subsystem, a power management chip, a power consumption management processor, or a power consumption management control circuit.
  • the transceiver device, the interface circuit, or the transceiver described in the embodiments of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated.
  • Transceiver devices, interface circuits, or transceivers may operate under the direction of a corresponding processor.
  • the transmitter may correspond to the transmitter in the physical device
  • the receiver may correspond to the receiver in the physical device.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • “implemented by software” may mean that the processor reads and executes the program instructions stored in the memory to realize the functions corresponding to the above modules or units, wherein the processor refers to a processing circuit with the function of executing program instructions, Including but not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processing (DSP), microcontroller (MCU), or artificial intelligence processing Various types of processing circuits that can run program instructions, such as a processor. In other embodiments, the processor may also include circuits for other processing functions (eg, hardware circuits for hardware acceleration, bus and interface circuits, etc.).
  • the processor may be presented in the form of an integrated chip, for example, in the form of an integrated chip whose processing function only includes the function of executing software instructions, or in the form of a system on a chip (SoC), that is, on a chip , in addition to including a processing circuit (usually called a "core") capable of running program instructions, it also includes other hardware circuits for implementing specific functions (of course, these hardware circuits can also be implemented independently based on ASIC and FPGA), correspondingly Yes, in addition to the function of executing software instructions, the processing function may also include various hardware acceleration functions (such as AI calculation, encoding and decoding, compression and decompression, etc.).
  • SoC system on a chip
  • the hardware processing circuit can be composed of discrete hardware components or an integrated circuit. In order to reduce power consumption and reduce size, it is usually implemented in the form of integrated circuits.
  • the hardware processing circuit may include an ASIC, or a programmable logic device (programmable logic device, PLD); wherein, the PLD may include an FPGA, a complex programmable logic device (complex programmable logic device, CPLD) and the like.
  • These hardware processing circuits can be a single semiconductor chip packaged separately (such as packaged into an ASIC); they can also be integrated with other circuits (such as CPU, DSP) and packaged into a semiconductor chip, for example, can be formed on a silicon substrate
  • a variety of hardware circuits and CPUs are individually packaged into a chip, which is also called SoC, or circuits and CPUs for implementing FPGA functions can also be formed on a silicon substrate and individually enclosed into a single chip. Also known as a programmable system on a chip (system on a programmable chip, SoPC).
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple on the network unit. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the medium may include several instructions to cause a computer device, such as a personal computer, a server, or a network device, or a processor to perform all or part of the operations of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium may include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk, or optical disk, etc. that can store program codes medium or computer-readable storage medium.
  • transmission may include the following three situations: data transmission, data reception, or data transmission and data reception.
  • data may include service data, and/or signaling data.
  • At least one means one or more. “Includes at least one of the following: A, B, C.” means that it may include A, or B, or C, or A and B, or A and C, or B and C, or A, B and C.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD LTE Time division duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G 5th generation
  • NR new radio

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信的方法及相关设备。该方法包括:当第一节点确定与第二节点之间的无线链路发生RLF且与目的节点之间不存在其他可用路径的情况下,该第一节点会向第三节点发送第一指示信息。该第一指示信息用于指示RLF或者正在尝试链路恢复。该第二节点为该第一节点的父节点,该第三节点为该第一节点的子节点,或者,该第二节点为该第一节点的子节点,该第三节点为该第一节点的父节点或者该第一节点连接的宿主节点。通过本方法,可以充分利用中继节点的重路由功能,增加数据中继的稳定性,避免不必要的链路资源浪费和空口信令开销。

Description

一种通信方法及相关设备
本申请要求于2020年09月30日提交中国专利局、申请号为PCT/CN2020/119697、发明名称为“一种通信方法及相关设备”的PCT国际申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种通信的方法及相关设备。
背景技术
在中继网络中,中继节点和父节点之间的无线链路可能会发生无线链路失败(radio link failure,RLF)。当该中继节点和父节点之间发生RLF时,中继节点首先会尝试进行链路恢复,当该中继节点链路恢复失败时,该中继节点会向其子节点发送RLF指示信息,用于向子节点指示发生RLF,以便于子节点触发重路由操作,将待传数据通过其他中继节点进行传输。
然而,在原中继节点自己重路由成功的情况下,仍然会向其子节点发送RLF指示信息,以触发子节点进行重路由,这会造成不必要的链路资源的浪费和空口资源的开销。
发明内容
有鉴于此,本申请提供了一种通信方法及相关设备,可以实现在RLF情况下的合理重路由。
第一方面,本申请提供一种通信方法,该方法可以包括:当第一节点确定与第二节点之间的无线链路发生RLF且与目的节点之间不存在其他可用路径的情况下,该第一节点会向第三节点发送第一指示信息。该第一指示信息用于指示RLF或者正在尝试链路恢复。该第二节点为该第一节点的父节点,该第三节点为该第一节点的子节点;或者,该第二节点为该第一节点的子节点,该第三节点为该第一节点的父节点或者该第一节点连接的宿主节点。
通过本设计,示例性的有益效果包括:可以充分利用中继节点的重路由功能,增加数据中继的稳定性,避免不必要的链路资源浪费和空口信令开销。
一种可行的设计中,当该第二节点为该第一节点的父节点,该第三节点为该第一节点的子节点时,该第一节点在确定与第二节点之间的无线链路发生RLF且在尝试无线链路恢复,并且确定与目的节点之间不存在其他可用路径的情况下,向该第三节点发送第一指示信息的。该第一指示信息用于指示正在尝试链路恢复。
通过本设计,示例性的有益效果包括:可以充分利用中继节点的重路由功能和链路恢复功能,增加数据中继的稳定性,避免不必要的链路资源浪费和空口信令开销。
一种可行的设计中,该第一节点还会向该第三节点发送第二指示信息,该第二指示信息用于指示经过该第一节点到该目的节点的路径不可用。
通过本设计,示例性的有益效果包括:可以使得该第三节点获得关于RLF的更加精确的信息,从而实现更加高效准确的重路由。
一种可行的设计中,该第二指示信息包括该目的节点的回传适配(Bakhaul Adaptation Protocol,BAP)层地址。
通过本设计,示例性的有益效果包括:可以向第三节点指示经过该第一节点到该目的节点之间的所有路径均不可用,从而使得该第三节点实现更加高效准确的重路由。
一种可行的设计中,该第二指示信息包括经过该第一节点到该目的节点的路径对应的路由标识(routing identity,routing ID)。
一种可行的设计中,该第二指示信息包括经过该第一节点到该目的节点的路径对应的路径标识(path identity,path ID)。
一种可行的设计中,该第二指示信息用于指示经过该第一节点到该目的节点的路径不可用,包括:该第二指示信息用于指示经过该第一节点到目的节点的所有路径均不可用;或者,该第二指示信息用于指示所有经过该第一节点到目的节点的路径中,对应的path ID等于该第二指示信息包括的path ID的路径不可用;或者,该第二指示信息用于指示所有经过该第一节点到目的节点的路径中,对应的routing ID等于该第二指示信息包括的routing ID的路径不可用。
通过本设计,示例性的有益效果包括:可以向第三节点指示经过该第一节点到该目的节点之间的哪些路径不可用,从而使得该第三节点实现更加高效准确的重路由。
一种可行的设计中,当该第二节点为该第一节点的子节点,该第三节点为该第一节点连接的宿主节点时,该第二指示信息包括该第二节点的标识。
一种可行的设计中,该第二指示信息用于指示经过该第一节点到该目的节点的路径不可用,包括:该第二指示信息用于指示所有经过该第一节点到目的节点的路径中,包括该第一节点和该第二节点之间的直连无线链路的路径不可用。
通过本设计,示例性的有益效果包括:宿主节点(也就是第三节点)从第一节点收到该第二节点的标识,就可以准确的判断出发生RLF的情况,从而使得该第三节点实现更加高效准确的重路由。
第二方面,本申请提供一种通信方法,该方法可以包括:在第三节点接收来自第一节点的第二指示信息,该第二指示信息用于指示经过该第一节点到目的节点的路径不可用的情况下,该第三节点确定通过其他路径向该目的节点路由数据。
一种可行的设计中,该第三节点还会接收来自第一节点的第一指示信息,第一指示信息用于指示RLF或者正在尝试链路恢复。
一种可行的设计中,该第二指示信息包括该目的节点的BAP地址,或者,经过该第一节点到该目的节点的路径对应的routing ID,或者,经过该第一节点到该目的节点的路径对应的路径标识(path identity,path ID)。
一种可行的设计中,该其他路径不包括该第一节点,或者,该其他路径的routing ID不等于该第二指示信息包括的routing ID,或者,该其他路径的Path ID不等于该第二指示信息中包括的Path ID。
一种可行的设计中,该第二指示信息包括第二节点的标识,其中,该第二节点为该第一节点的子节点,该第一节点和第二节点之间的无线链路发生了RLF。
一种可行的设计中,该其他路径的routing ID不等于包括该第一节点和该第二节点之间的直连无线链路的,经过该第一节点到该目的节点的路径对应的routing ID。
一种可行的设计中,在该第三节点接收来自该第一节点的第三指示信息,该第三指示信息用于指示无线链路恢复成功的情况下,该第三节点停止通过重路由使用的其他路径向该目的节点路由数据。
通过本设计,示例性的有益效果包括:可以使得该第三节点及时的停止重路由,恢复使用被通知RLF前使用的源路径来路由数据(或者说,恢复使用原来的路由配置信息来路由数据),这样可以降低该第三节点上游或者下游节点的处理复杂度。
第三方面,本申请提供一种通信方法,该方法可以包括:第一节点接收来自第四节点的主基站的第一消息,该第一消息用于请求添加该第一节点为第四节点的辅基站。其中,该第一消息包括:该第四节点接入的第二节点的小区的物理小区标识PCI和该第四节点在该第二节点的小区中的小区临时无线网络标识C-RNTI,或者,第三节点的标识和该第四节点在该第三节点和该第一节点之间的接口上的标识。其中,该第三节点为该第四节点的源辅基站,该第四节点为第二节点的下游节点。该第一节点进一步获取该第四节点的上下文信息。
通过本方法,示例性的有益效果包括:由于第一节点上已经缓存有该第四节点的上下文信息,因此可以避免主基站向第一节点发送的消息中再携带该第四节点的上下文信息,从而降低了空口开销。通过在主基站向第一节点发送的消息中携带该第四节点的标识,例如:该第四节点接入的第二节点的小区的PCI和该第四节点在该第二节点的小区中的C-RNTI,就可以使得该第一节点根据第一消息中第四节点的标识获取该第四节点的上下文信息,进而使自己成为第四节点的新的辅基站,为该第四节点提供服务,避免了第四节点的数据中断。
一种可行的设计中,在接收第一消息之前,还包括:该第一节点接收来自该第二节点的第二消息,该第二消息用于请求建立或者重建立与该第二节点之间的无线资源控制RRC连接。之后,该第一节点向该第三节点发送第三消息,该第三消息用于请求获取与该第二节点相关的上下文信息。然后,该第一节点接收来自该第三节点的第四消息,该第四消息包括与该第二节点相关的上下文信息。该第三节点向该第二节点发送第五消息,该第五消息用于建立或者重建立与该第二节点之间的RRC连接。
一种可行的设计中,该第五消息中包括用于更新该第二节点服务的小区的信息。
一种可行的设计中,该用于更新该第二节点服务的小区的信息包括:该第二节点连接到该第一节点时,该第二节点的小区的全球小区标识CGI和/或小区标识cell identity。
一种可行的设计中,与该第二节点相关的上下文信息包括以下至少一种:该第二节点的上下文信息,该第二节点与该第四节点之间的拓扑信息,该第四节点的上下文信息,指示该第二节点是否为无线回传设备的指示信息,或者指示该第四节点是否为无线回传设备的指示信息。
一种可行的设计中,该第四节点的上下文信息包括该PCI和该C-RNTI。
一种可行的设计中,该第四节点的上下文信息包括该第三节点的标识和该第四节点在该第三节点和该第一节点之间的接口上的标识。
第四方面,本申请提供一种通信方法,该方法可以包括:第四节点的主基站接收来自第三节点的第六消息,该第六消息用于请求将第一节点作为该第四节点的目标辅基站,其中,该第三节点为该第四节点的源辅基站。之后,该主基站向该第一节点发送第一消息,该第一消息用于请求添加该第一节点为该第四节点的辅基站,其中,该第一消息包括该第四节点接入的第二节点的小区的物理小区标识PCI和该第四节点在该第二节点的小区中的小区临时无线网络标识C-RNTI,或者,该第一消息包括该第三节点的标识和该第四节点在该第三节点和该第一节点之间的接口上的标识。
通过本方法,示例性的有益效果包括:第二节点可以从源辅基站重建立到目的辅基站,从而减少对第二节点的下游节点(第四节点)的影响,保证了该第二节点的下游节点的正常工作。
第五方面,本申请提供一种通信方法,该方法可以包括:第一节点确定第一信息。该第一节点根据该第一信息,确定是否触发重路由。
第一种可行的设计中,该第一节点自行确定该第一信息。该第一信息包括第一门限值, 则在该第一节点的数据包传输/重传次数达到/超过该第一门限值时,该第一节点触发重路由。或者该第一信息包括定时器的配置,该定时器的配置包括定时器时长,则在该定时器超时,且该第一节点的数据包还未被成功发送时,该第一节点触发重路由。
第二种可行的设计中,第一节点接收来自第三节点的第一信息。该第一信息包括第一门限值,该第一信息用于指示在该第一节点的数据包传输/重传次数达到/超过该第一门限值时触发重路由;或者,该第一信息包括定时器的配置,该第一信息用于指示在该定时器超时,且该第一节点的数据包还未被成功发送时,触发重路由。
在第二种可行的设计中,该第一节点根据该第一信息,确定是否触发上行重路由,该第一节点的数据包是上行数据包。其中,该第三节点可以是该第一节点连接的宿主节点或者上游节点。
在第二种可行的设计中,该第一节点根据该第一信息,确定是否触发下行重路由,该第一节点的数据包是下行数据包。其中,该第三节点可以是该第一节点连接的宿主节点。一种可行的设计中,该第一节点的数据包可以是BAP层/RLC层/MAC层/PHY层数据包。
一种可行的设计中,当该第一节点的数据包是RLC层数据包时,该第一门限值需要小于RLC层的最大重传门限值。
一种可行的设计中,当该第一节点的数据包是RLC层数据包时,该定时器的时长需要满足:在该定时器超时之前,该第一节点的RLC层数据包的传输/重传次数小于RLC层的最大重传门限值。
一种可行的设计中,该RLC层的最大重传门限值可用于该第一节点判断是否发生无线链路失败。该RLC层的最大重传门限值可以是由宿主节点通过RRC消息配置给该第一节点的。
第六方面,本申请提供一种通信装置,该装置包括用于执行第一方面至第五方面的方法及其任一设计中的任一种方法的模块。
第七方面,本申请提供一种通信装置,包括处理器和存储器,该处理器和该存储器耦合,该处理器用于实现第一方面至第五方面的方法及其任一设计中的任一种方法。
第八方面,本申请提供一种通信装置,包括至少一个处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现第一方面至第五方面的方法及其任一设计中的任一种方法。
在一个可能的设计中,该装置可以是第一方面至第五方面的方法及其任一设计中的任一种方法中的节点中的芯片或者集成电路。
可选的,该通信装置还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第九方面,本申请提供一种通信装置,该装置具有实现上述第一方面至第五方面的方法及其任一设计中的方法中的任一种方法的功能或操作,所述功能或操作可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能或操作相对应的单元(模块),比如包括收发单元和处理单元。
第十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有涉及的程序指令,该涉及的程序指令被运行时,以使得该通信装置实现第一方面至第五方面的方法及其任一设计中的任一种方法。
第十一方面,本申请提供了一种计算机程序产品,该计算机程序产品包含涉及的程序指令,该涉及的程序指令被执行时,以实现第一方面至第五方面的方法及其任一设计中的任一种方法。
第十二方面,本申请还提供一种芯片,所述芯片用于实现第一方面至第五方面的方法及其任一设计中的任一种方法。
第十三方面,本申请提供了一种通信系统,该通信系统包括第六方面至第九方面及其任一设计中至少一种通信装置。
附图说明
可以包括在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例,或特征和方面,并且用于解释本申请的原理,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以包括根据这些附图获得其他的附图。
图1是本申请一种可能的通信系统的示意图;
图2是本申请实施例提供的一种IAB宿主的示意图;
图3是本申请实施例提供的IAB网络中的控制面协议栈的示意图;
图4是本申请实施例提供的IAB网络中的用户面协议栈的示意图;
图5是本申请实施例提供的一种IAB节点组网的示意图;
图6A是本申请实施例提供的一种通信方法的示意图;
图6B是本申请实施例提供的一种通信方法的示意图;
图6C是本申请实施例提供的一种通信方法的示意图;
图7是本申请实施例提供的一种通信方法的示意图;
图8是本申请实施例提供的一种通信方法的示意图;
图9是本申请实施例提供的一种通信装置的示意性框图;
图10是本申请实施例提供的一种通信装置的示意性框图;
图11是本申请实施例提供的一种通信装置的示意性框图;
图12是本申请实施例提供的一种通信装置的示意性框图;
图13是本申请实施例提供的一种装置的示意性框图。
具体实施方式
相较于第四代移动通信或者长期演进(long term evolution,LTE)系统,第五代移动通信(5G)或者新空口(new radio,NR)系统针对网络各项性能指标,全方位得都提出了更严苛的要求。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。无线回传设备为解决上述两个问题提供了思路:其接入链路(acess link)和回传链路(backhaul link)皆采用无线传输方案,避免光纤部署。无线回传设备可以是中继节点(Relay Node,RN),也可以是接入回传一体化(Integrated Access Backhaul,IAB)节点,还可以是其他提供无线回传功能的设备,本申请并不限定。在IAB网络中,IAB节点(IAB node)作为无线回传设备,可以为用户设备(user equipment,UE)提供无线接入服务,所述UE的业务数据由IAB node通 过无线回传链路连接到宿主节点或者说宿主基站传输。使用IAB节点,可以使得进行接入和回传共享天线,减少基站的天线数目。
下面将结合附图,对本申请实施例进行描述,附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
图1中的用户设备可以是接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、无线终端设备、用户代理、或者用户装置等。还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(如智能手表、智能手环等)、还可以为智能家具或家电、5G网络中的终端设备、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、或者车联网(vehicle to everything,V2X)中的车辆设备,客户前置设备(customer premises equipment,CPE)等,本申请对用户设备的具体实现形式并不做限定。
图1中的IAB节点可以由移动终端(mobile termination,MT)和分布式单元DU(distributed unit,DU)组成,其中,当IAB节点面向其父节点时,可以被看做是终端设备,即MT的角色;当IAB节点面向其下属设备(下属设备可能是另一IAB子节点,或者普通UE)时,其可被看做网络设备,即作为DU的角色。应理解,图1中的各节点仅以IAB节点为例,其中的各IAB节点可以被替换为一般的中继节点(relay node,RN)。
图1中的IAB宿主(IAB donor)可以为宿主基站,IAB宿主在5G网络中可以简称为DgNB(即donor gNodeB)。IAB宿主可以是一个完整的实体,还可以是以集中式单元(centralized unit,CU)(本申请中简称为Donor-CU或者gNB-CU)和分布式单元(distributed unit,DU)(本申请中简称为Donor-DU或者gNB-DU)分离的形态存在,如图2所示,IAB宿主可以是位于5G无线接入网(5G radio access network,5G RAN)中的gNB。该IAB宿主可以是由gNB-CU和gNB-DU组成。gNB-CU和gNB-DU通过F1接口相连,F1接口又可以进一步包括控制面接口(F1-C)和用户面接口(F1-U)。CU和核心网之间通过下一代(next generation,NG)接口相连。其中,gNB-CU或者Donor-CU还可以是以用户面(user plane,UP)(本申请中简称为CU-UP)和控制面(control plane,CP)(本申请中简称为CU-CP)分离的形态存在,即gNB-CU或者Donor-CU由CU-CP和CU-UP组成。一个gNB-CU可以包括一个gNB-CU-CP和至少一个gNB-CU-UP。或者,一个Donor-CU可以包括一个Donor-CU-CP和至少一个Donor-CU-UP。
IAB节点经IAB宿主连接到核心网。例如,在独立组网(standalone,SA)的5G架构下,IAB节点经IAB宿主连接到5GC。在双连接(dual connectivity,DC)或者多连接(Multi-Connectivity,MC)的5G架构下(例如:非独立组网(non-standalone,NSA)或者NR-NR DC场景等),主路径上,IAB节点可以经演进型基站(evolved NodeB,eNB)连接到演进分组核心网(evolved packet core,EPC),也可以经IAB宿主连接到5G核心网。
为了保证业务传输的可靠性,IAB网络支持多跳IAB节点和多连接IAB节点组网。因此,在终端和IAB宿主之间可能存在多条传输路径。在一条路径上,IAB节点之间,以及IAB节点和IAB节点连接的IAB宿主之间有确定的层级关系,每个IAB节点将为其提供回传服务的节点视为父节点。相应地,每个IAB节点可视为其父节点的子节点。
示例性的,参见图1,IAB节点1的父节点为IAB宿主,IAB节点1又为IAB节点2和IAB节点3的父节点,IAB节点2和IAB节点3均为IAB节点4的父节点,IAB节点5的父 节点为IAB节点2。终端的上行数据包可以经一个或多个IAB节点传输至IAB宿主,下行数据包将由IAB宿主经一个或多个IAB节点发送至终端。终端1和IAB宿主之间数据包的传输有两条可用的路径,分别为:终端1→IAB节点4→IAB节点3→IAB节点1→IAB宿主,终端1→IAB节点4→IAB节点2→IAB节点1→IAB宿主。终端2和IAB宿主之间数据包的传输有三条可用的路径,分别为:终端2→IAB节点4→IAB节点3→IAB节点1→IAB宿主,终端2→IAB节点4→IAB节点2→IAB节点1→IAB宿主,终端2→IAB节点5→IAB节点2→IAB节点1→IAB宿主。
为了保证数据在终端和IAB宿主之间的正常传输,IAB宿主需要为每个IAB节点配置路由表,即:配置不同路径对应的下一跳节点。同时,IAB宿主需要确定数据传输对应的传输路径。也就是说,在数据传输之前会先确定一个传输路径,该传输路径可以称为主路径,数据在终端和IAB宿主之间通过该主路径进行路由(routing)传输,而其他路径都可以看成备份(backup)路径。仅当主路径不可用时,例如:主路径上的某个链路发生RLF,才使用该备份路径进行重路由(re-routing)。例如,如图1所示,IAB宿主配置终端2的数据传输主路径为:终端2→IAB节点4→IAB节点2→IAB节点1→IAB宿主,当IAB节点2检测到与IAB节点1之间的链路发生RLF并无法链路恢复时,IAB节点2向IAB节点4发送一个RLF指示信息,根据该指示信息,IAB节点4可以触发数据的re-routing,将从终端2收到的上行数据暂时通过备份路径进行传输,即:终端2→IAB节点4→IAB节点3→IAB节点1→IAB宿主。
为了保证数据在终端和IAB宿主之间的稳定传输,引入了无线链路恢复(recovery)机制,即当两个节点之间发生了RLF之后,可以尝试恢复该两个节点之间的无线链路。例如,如图1所示,当IAB节点5和IAB节点2之间发生了RLF之后,IAB节点5可以尝试进行无线链路恢复,例如在该IAB节点2的其他小区中进行RRC重建立等,以恢复IAB节点5和IAB节点2之间的无线链路。
IAB节点到IAB宿主的上行路径上的中间IAB节点都可以称之为IAB节点的上游节点(upstream node),例如图1中的IAB节点1和IAB节点2都可以称之为IAB节点5的上游IAB节点。IAB节点到终端的下行路径上的中间IAB节点都可以称之为IAB节点的下游节点,例如图1中IAB节点2、IAB节点3、IAB节点4和IAB节点5都可以称之为IAB节点1的下游节点(downstream node),下游节点包括子节点,子节点的子节点(或称为孙节点)等,其中,下游节点可以是其他IAB节点,也可以是终端。示例性的,图1中的终端1可以称之为IAB节点4的下游节点,IAB节点4和IAB节点5可以称为IAB节点1的下游节点,终端1和终端2可以称为IAB节点1的下游节点。
可以理解的是,在IAB网络中,终端和IAB宿主之间的一条传输路径上,可以包含一个或多个IAB节点。每个IAB节点需要维护面向父节点的无线回传链路,还需要维护和子节点的无线链路。若IAB节点的子节点是终端,该IAB节点和子节点(即终端)之间是无线接入链路。若IAB节点的子节点是其他IAB节点,该IAB节点和子节点(即其他IAB节点)之间是无线回传链路。示例性的,参见图1,在路径“终端1→IAB节点4→IAB节点3→IAB节点1→IAB宿主”中,终端1通过无线接入链路接入IAB节点4,IAB节点4通过无线回传链路连接到IAB节点3,IAB节点3通过无线回传链路连接到IAB节点1,IAB节点1通过无线回传链路连接到IAB宿主。
上述IAB组网场景仅仅是示例性的,在多跳和多连接结合的IAB场景中,IAB组网场景还有更多其他的可能性,例如,IAB宿主和另一IAB宿主下的IAB节点组成双连接为终端服 务等,此处不再一一列举。
本申请实施例中的接入IAB节点是指终端接入的IAB节点,中间IAB节点是指为终端或者IAB节点提供无线回传服务的IAB节点。示例性的,参见图1,在路径终端1→IAB节点4→IAB节点3→IAB节点1→IAB宿主”中,IAB节点4为接入IAB节点,IAB节点3和IAB节点1为中间IAB节点。需要说明的是,一个IAB节点针对接入该IAB节点的终端而言,是接入IAB节点。针对接入其他IAB节点的终端,是中间IAB节点。因此,一个IAB节点具体是接入IAB节点还是中间IAB节点,并不是固定的,需要根据具体的应用场景确定。
图3和图4分别是本申请实施例提供的IAB网络中的控制面协议栈的示意图和用户面协议栈的示意图,下面结合图3和图4进行说明。
对于控制面而言,如图3所示,终端1和IAB2-DU之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB2-DU和IAB donor CU 1建立有F1-C接口,对等的协议层包括F1应用协议(F1application protocol,F1AP)层、流控制传输协议(stream control transmission protocol,SCTP)层。IAB donor DU 1和IAB donor CU 1之间通过有线连接,对等的协议层包括互联网协议IP(internet protocol)层、L2和L1。IAB node 2和IAB node 3之间、IAB node 3和IAB node 1之间,以及IAB node 1和IAB donor DU 1之间均建立有BL,对等的协议层包括回传适配协议(Bakhaul Adaptation Protocol,BAP)层、RLC层、MAC层以及PHY层。另外,终端1和IAB donor CU 1之间建立有对等的RRC层和PDCP层,IAB2-DU和IAB donor DU 1之间建立有对等的IP层。
可以看出,IAB网络的控制面协议栈与单空口的控制面协议栈相比,接入IAB节点的DU实现了单空口的gNB-DU的功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与CU建立对等的F1AP层、SCTP层的功能)。可以理解,IAB网络中接入IAB节点的DU实现了单空口的gNB-DU的功能;IAB donor CU实现了单空口的gNB-CU的功能。
在控制面上,RRC消息封装在接入IAB节点和IAB donor CU之间的F1AP消息中传输。具体地,在上行方向上,终端1将RRC消息封装在PDCP协议数据单元(protocol data unit,PDU)中,并依次经过RLC层、MAC层和PHY层的处理后发送至IAB2-DU。IAB2-DU依次经过PHY层、MAC层和RLC层的处理后得到PDCP PDU,将PDCP PDU封装在F1AP消息中,并依次经过SCTP层、IP层处理后得到IP包,IAB2-MT将IP包分别通过BAP层、RLC层、MAC层和PHY层的处理后发送至IAB3-DU。IAB3-DU依次经过PHY层、MAC层、RLC层和BAP层的处理后得到IP包,然后IAB3-MT采用类似于IAB2-MT的操作,将该IP包发送至IAB1-DU,同理,IAB1-MT将该IP包发送至IAB donor DU 1。IAB donor DU 1解析得到IP包后,将该IP包发送至IAB donor CU 1,IAB donor CU 1将该IP包依次通过SCTP层、F1AP层和PDCP层的处理后得到RRC消息。下行方向类似,在此不再描述。
对于用户面而言,如图4所示,终端1和IAB2-DU之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB2-DU和IAB donor CU 1建立有F1-U接口,对等的协议层包括GPRS用户面隧道协议(GPRS tunnelling protocol for the user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层。IAB donor DU 1和IAB donor CU 1之间通过有线连接,对等的协议层包括IP层、L2和L1。IAB node 2和IAB node 3之间、IAB node 3和IAB node 1之间,以及IAB node 1和IAB donor DU 1之间均建立有BL,对等的协议层包括BAP层、RLC层、MAC层以及PHY层。另外,终端1和IAB donor CU 1之间建立有对等的SDAP层和PDCP层,IAB2-DU和IAB donor DU 1之间建立有对等的IP层。
可以看出,IAB网络的用户面协议栈与单空口的用户面协议栈相比,IAB接入节点的 DU实现了单空口的gNB-DU的部分功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与IAB donor CU 1建立对等的GTP-U层、UDP层的功能)。可以理解,IAB接入节点的DU实现了单空口的gNB-DU的功能;IAB donor CU实现了单空口的gNB-CU的功能。
在用户面上,PDCP数据包封装在接入IAB节点和IAB donor CU之间的GTP-U隧道中传输。GTP-U隧道建立在F1-U接口上。
图3和图4以图1所示的IAB场景下的协议栈为例进行了描述。需要说明的是,一个IAB节点可能具备一个或者多个角色,该IAB节点可以拥有该一个或者多个角色的协议栈;或者,IAB节点可以具有一套协议栈,该协议栈可以针对IAB节点的不同角色,使用不同角色对应的协议层进行处理。下面以该IAB节点拥有该一个或者多个角色的协议栈为例进行说明:
(1)普通终端的协议栈
IAB节点在接入IAB网络时,可以充当普通终端的角色。此时,该IAB节点的MT具有普通终端的协议栈,例如图3和图4中的终端1的协议栈,即RRC层、PDCP层、RLC层、MAC层和PHY层,其中,控制面上,IAB节点的RRC消息是封装在IAB节点的父节点与IAB donor CU之间的F1AP消息中传输的;用户面上,IAB节点的PDCP数据包封装在IAB节点的父节点与IAB donor CU之间的GTP-U隧道中传输的。
另外,该IAB节点接入IAB网络后,该IAB节点仍然可以充当普通终端的角色,例如,与IAB donor传输自己的上行和/或下行的数据包(例如OAM数据包),通过RRC层执行测量等等。
(2)接入IAB节点的协议栈
IAB节点在接入IAB网络后,该IAB节点可以为终端提供接入服务,从而充当一个接入IAB节点的角色,此时,该IAB节点具有接入IAB节点的协议栈,例如图3和图4中的IAB node 2的协议栈。
在这种情况下,该IAB节点面向其父节点的接口上可以有两套协议栈,一套是普通终端的协议栈,另一套是为终端提供回传服务的协议栈(即:接入IAB节点的协议栈)。可选的,该两套协议栈的相同的协议层可以共享,例如该两套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
(3)中间IAB节点的协议栈
IAB节点在接入IAB网络后,该IAB节点可以充当一个中间IAB节点的角色,此时,该IAB节点具有中间IAB节点的协议栈,例如图3和图4中的IAB node 3或者IAB node 1的协议栈。
在这种情况下,该IAB节点面向其父节点的接口上可以有两套协议栈,一套是普通终端的协议栈,另一套是为子IAB节点提供回传服务的协议栈(即:中间IAB节点的协议栈)。可选的,该两套协议栈的相同的协议层可以共享,例如该两套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
另外,IAB节点可以同时承担接入IAB节点和中间IAB节点的角色,例如,IAB节点可以针对某些终端是接入IAB节点,针对另一些终端而言,是中间IAB节点,此时该IAB节点可以有三套协议栈,一套为上述普通终端的协议栈,一套为接入IAB节点的协议栈,一套为中间IAB节点的协议栈。可选的,该三套协议栈的相同的协议层可以共享,例如该三套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
需要说明的是,图3和图4以IAB网络为例进行了介绍,图3和图4的内容同样适用于IAB网络以外的其他类型中继网络,该中继网络的控制面协议栈架构可以参考图3,该中继 网络的用户面协议栈架构可以参考图4。图3和图4中的IAB节点可以替换成中继(relay),例如IAB node 2可以替换成中继节点2,IAB node 3可以替换成中继节点3,IAB node 1可以替换成中继节点1,IAB donor 1可以替换成宿主节点1,宿主节点具有CU和DU协议栈,其余内容与图3和图4中描述的内容相同,具体可以参考图3和图4的描述,在此不再赘述。
图1所示的IAB网络可以认为是IAB独立组网的示意图,IAB网络还支持非独立(non-standalone,NSA)组网。如图5示出了IAB非独立组网的示意图,IAB节点支持4G和5G网络双连接,即EN-DC(E-UTRAN NR dual connectivity),其中LTE的基站eNB为主基站(master eNB,MeNB),为IAB节点提供LTE的空口(LTE Uu)连接,并与4G核心网演进型分组核心网(evolved packet core,EPC)建立S1接口进行用户面和控制面传输。IAB-donor为辅基站,为IAB节点提供NR的空口(NR Uu)连接,并与核心网EPC建立S1接口进行用户面传输。类似的,UE也支持EN-DC,UE通过LTE Uu接口连接到主基站eNB,使用NR Uu接口接入IAB节点,并通过IAB节点连接到辅基站IAB donor。本申请中的IAB非独立组网场景,也可以被称之为IAB的EN-DC组网场景。当UE或者IAB节点变更辅基站的场景下,变更前的辅基站可以称之为源辅基站,变更后的辅基站可以称之为目标辅基站。
应理解,图5仅为组网示例,IAB网络的NSA场景也同样支持多跳IAB组网,例如图5中的UE可以为另一个IAB节点,即IAB节点可以通过多跳无线回传链路连接到IAB donor,本申请对此不作限定。
本申请中,IAB节点的MT可以简称为IAB-MT,IAB节点的DU可以简称为IAB-DU,IAB宿主的CU可以简称为Donor-CU,IAB宿主的DU可以简称为Donor-DU。
本申请中,IAB节点连接的IAB宿主可以简称为IAB节点的IAB宿主。其中,该IAB节点可以直接接入该IAB宿主,或者,该IAB节点可以通过其他IAB节点连接到该IAB宿主。
图6A所示为本申请的一种实施例的通信方法600A。
如图6A所示,该第一节点可以是第二节点的子节点,且该第一节点是该第三节点的父节点,该目的节点可以是宿主节点。或者,如图6A所示,该第一节点可以是第二节点的父节点,且该第一节点是第三节点的子节点,该目的节点可以是终端设备的接入节点(也可以称为终端设备接入的节点)。
该第二节点和目的节点之间可以包括至少一个中继节点,或者该第二节点也可以直接连接到该目的节点。该通信方法600A包括:
S601A:第一节点向第三节点发送第一指示信息。
该第一指示信息可以用于指示无线链路失败,或者该第一指示信息可以用于指示正在尝试链路恢复。
示例性的,该第一节点可以是在确定与第二节点之间的无线链路发生RLF的情况下,向该第三节点发送该第一指示信息。此时,该第一指示信息可以用于指示无线链路失败。
示例性的,该第一节点可以是在确定与第二节点之间的无线链路发生RLF,并在尝试无线链路恢复(recovery)的情况下,向该第三节点发送该第一指示信息。此时,该第一指示信息可以用于指示正在尝试链路恢复。
示例性的,该第一节点可以是在确定与第二节点之间的无线链路发生RLF,且与目的节点之间不存在其他可用路径的情况下,向该第三节点发送该第一指示信息。此时,该第一指示信息可以用于指示无线链路失败。
示例性的,该第一节点可以是在确定与第二节点之间的无线链路发生RLF,并在尝试无 线链路恢复(recovery),且与目的节点之间不存在其他可用路径的情况下,向该第三节点发送该第一指示信息。此时,该第一指示信息可以用于指示正在尝试链路恢复。
该第一指示信息可以携带在回传适配协议层(backhaul adaptation protocol,BAP)控制协议数据单元(control protocol data unit,control PDU)中发送。
S602A:第三节点接收该第一指示信息后,触发重路由。
示例性,第三节点收到该第一指示信息后,将待发送至目的节点的数据包进行重路由(re-routing)。将待发送至目的节点的数据包进行重路由指的是通过其他路径向目的节点路由数据。该其他路径也可以称之为备份(backup)路径,即不同于发生RLF前该第三节点通过第一节点向目的节点路由数据的原路径。
示例性的,如果第一节点是在与第二节点之间的无线链路发生RLF的情况下,或者是在与第二节点之间的无线链路发生RLF并在尝试无线链路恢复的情况下,向该第三节点发送该第一指示信息,那么通过上述操作S601A至S602A可以使得第三节点收到该第一指示信息后能够触发数据包的重路由功能,即将发送至目的节点的数据包进行重路由,通过其他可用路径将数据包路由到目的节点。
示例性的,如果第一节点是在与第二节点之间的无线链路发生RLF且与目的节点之间不存在其他可用路径的情况下,或者是在与第二节点之间的无线链路发生RLF并在尝试无线链路恢复且与目的节点之间不存在其他可用路径的情况下,向该第三节点发送该第一指示信息,那么通过上述操作S601A至S602A可以使得第三节点收到该第一指示信息后能够触发数据包的重路由操作,并且可以充分利用第一节点的重路由功能,从而增加数据中继的稳定性并减少了空口信令开销。例如,第一节点到目的节点之间存在多条路径,当其中一条路径发生RLF时,该第一节点自己就可以触发重路由功能,利用其他路径将数据路由至目的节点,此时可以不需要向第三节点发送上述第一指示信息,否则可能会导致第三节点进行不必要的重路由造成资源的浪费,并且也会导致空口传输大量的上述第一指示信息。
可选的,本申请实施例还可以包括以下操作:
S603A:第一节点向第三节点发送第二指示信息。
该第二指示信息用于指示经过所述第一节点到目的节点的路径不可用。
示例性的,该第二指示信息包括该目的节点的BAP地址(address)。具体的,对上行传输而言,该目的节点的BAP地址可以指的是Donor-DU的BAP地址;对下行传输而言,该目的节点的BAP地址可以指的是接入IAB节点的BAP地址。此时,该第二指示信息指示经过所述第一节点到目的节点的路径不可用,可以指的是经过所述第一节点到目的节点的所有路径均不可用。
示例性的,该第二指示信息包括经过所述第一节点到所述目的节点的路径对应的路径标识(path identity,Path ID),或者从所述第一节点到所述目的节点之间的路径对应的路径标识。此时,该第二指示信息指示经过所述第一节点到目的节点的路径不可用,可以指的是所有经过所述第一节点到目的节点的路径中,对应的path ID等于该第二指示信息包括的path ID的路径不可用。
示例性的,该第二指示信息包括经过所述第一节点到所述目的节点的路径对应的路由标识(routing identity,routing ID),或者从所述第一节点到所述目的节点之间的路径对应的路由标识。其中,该路由标识由目的节点的BAP address和path ID组成。进一步的,如果第一节点到目的节点之间存在多条路径,当其中一条或者多条路径发生RLF时,该第二指示信息可以包括一个或者多个路由标识。此时,该第二指示信息指示经过所述第一节点到目的节点 的路径不可用,可以指的是所有经过所述第一节点到目的节点的路径中,对应的routing ID等于该第二指示信息包括的routing ID的路径不可用。或者此时,该第二指示信息指示经过所述第一节点到目的节点的路径不可用,可以指的是经过所述第一节点到目的节点的所有路径均不可用。
相应的,第三节点接收该第二指示信息。
示例性的,当该第二指示信息包括该目的节点的BAP地址(address)时,该第三节点可以根据该第二指示信息,确定通过其他路径向目的节点路由数据。该其他路径上不包括该第一节点。
示例性的,当该第二指示信息包括经过所述第一节点到所述目的节点的路径对应的路由标识(或者从该第一节点到该目的节点之间的路径对应的路由标识)时,该第三节点可以根据该第二指示信息,确定通过其他路径向目的节点路由数据。该其他路径的routing ID不等于该第二指示信息包括中包括的routing ID。或者该其他路径上不包括该第一节点。
该第三节点根据该第二指示信息,可以确定只将待发送至目的节点的数据包进行重路由(re-routing)。也就是说,该第三节点可以确定将待发送至其他目的节点的数据包不进行重路由,仍然可以通过该第一节点进行路由。
示例性的,当该第二指示信息包括经过所述第一节点到所述目的节点的路径对应的路径标识(或者从该第一节点到该目的节点之间的路径对应的路径标识)时,该宿主节点可以根据该第二指示信息,确定通过其他路径向目的节点路由数据。该其他路径的路径标识不等于该第二指示信息中包括的Path ID。
上述第一指示信息和第二指示信息可以是携带在同一条消息中发送给第三节点的,例如携带在同一个BAP control PDU中。
操作S603A是可选的操作,也就是说该第一节点可以不向该第三节点发送第二指示信息。例如,该第三节点收到该第一指示信息后,确定通过其他路径向目的节点路由数据。该其他路径上不包括该第一节点。
通过上述操作S603A可以使得第三节点获得关于RLF的更加精确的信息,从而实现更加高效准确的重路由。例如,该第三节点可能既通过该第一节点向目的节点路由数据,又通过该第一节点向其他目的节点路由其他的数据,进一步的,第一节点到目的节点之间还可能存在多条路径,在这些情况下,第一指示信息和第二指示信息可以使得第三节点进行更加高效准确的重路由。
可选的,本申请实施例还可以包括以下操作:
S604A:第一节点向第三节点发送第三指示信息。
该第三指示信息用于指示无线链路恢复成功。该第一节点可以在成功恢复与父节点之间的链路的情况下,例如:该第一节点成功恢复与第二节点之间的链路,或者,该第一节点通过RRC重建立流程接入新的父节点,再向第三节点发送该第三指示信息。
相应的,该第三节点接收该第三指示信息。
作为一种可能的实现方式,该第三节点收到该第三指示信息后,停止重路由功能,即:停止通过其他路径(备份路径)向该目的节点路由数据,继续使用源路径(即原主路径)向该目的节点路由数据,例如:该第三节点继续将数据路由到该第一节点,由该第一节点将数据进一步路由到该目的节点。
作为另一种可能的实现方式,该第三节点收到该第三指示信息后,不停止重路由功能,继续通过其他路径(备份路径)向该目的节点路由数据,直到IAB宿主配置了新的路由配置 为止。
通过上述操作S604A可以使得第三节点及时地停止重路由(或者关闭重路由功能),可以降低该第三节点上游或者下游节点的处理复杂度。
值得注意的是,当该第一节点是第三节点的子节点,且为第二节点的父节点时,该第一指示信息仅用于指示无线链路失败。当该第一节点是第三节点的父节点,且为第二节点的子节点时,该第一指示信息可以用于指示无线链路失败,或者该第一指示信息可以用于指示正在尝试链路恢复。
本申请实施例中的第一节点,第二节点或者第三节点可以是IAB节点,宿主节点可以是IAB宿主,终端设备的接入节点可以是接入IAB节点。
图6B所示为本申请的一种实施例的通信方法600B,如图6B所示,该第二节点是第一节点的上游节点(例如该第二节点是第一节点的父节点),该宿主节点为该第一节点和第二节点连接的宿主节点。该第二节点和宿主节点之间可以包括至少一个中继节点,或者该第二节点也可以直接连接到该宿主节点(可以理解为该宿主节点为该第二节点的父节点)。本申请实施例可以应用于第一节点通过第二节点向目的节点发送上行数据包的场景,目的节点可以是宿主节点。该通信方法600B包括:
S601B:第二节点向宿主节点发送第一信息。
(1)一种可能的实现方式中,该第一信息可以包括第一门限值。
示例性的,该第一信息可以用于指示在该第一节点的数据包传输/重传次数达到/超过该第一门限值时,触发上行重路由。其中,该第一节点的数据包可以是任何一个BAP层或RLC层或MAC层或PHY层的数据包。
具体的,该第一信息可以用于指示:在该第一节点的BAP层数据包(如BAP PDU)的传输/重传次数大于或等于第一门限值时,触发上行重路由。或者,该第一信息可以用于指示:在该第一节点的RLC层数据包(如RLC PDU)的传输/重传次数大于或等于第一门限值时,触发上行重路由。其中,该第一门限值小于RLC层的最大重传门限值,该RLC层的最大重传门限值可用于该第一节点判断与该第二节点之间的链路是否发生RLF。该RLC层的最大重传门限值可以是由宿主节点通过RRC消息发送给该第一节点的。或者,该第一信息可以用于指示:在该第一节点的MAC层数据包(如MAC PDU,也可以称为传输块(transport block)TB)的传输/重传次数大于或等于第一门限值时,触发上行重路由。或者,该第一信息可以用于指示:在该第一节点的PHY层数据包(如编码块组(code block group,CBG))的传输/重传次数大于或等于第一门限值时,触发上行重路由。
(2)另一种可能的实现方式中,该第一信息可以包括第一定时器的配置,该第一定时器的配置可以包括第一定时器时长。
示例性的,该第一信息可以用于指示在该第一定时器超时,且该第一节点的数据包还未被成功发送时,触发上行重路由。其中,该第一节点的数据包可以是任何一个BAP层或RLC层或MAC层或PHY层的数据包。
具体的,该第一信息可以用于指示:在该第一定时器超时(即该第一定时器的计时时长达到/超过该配置的第一定时器时长),且该第一节点的BAP层数据包还未被成功发送时,触发上行重路由。或者,该第一信息可以用于指示:在该第一定时器超时,且该第一节点的RLC层数据包还未被成功发送时,触发上行重路由。其中,该第一定时器的时长需要满足:在该第一定时器超时之前,该第一节点的RLC层数据包的传输/重传次数小于上述RLC层的最大重传门限值。或者,该第一信息可以用于指示:在该第一定时器超时,且该第一节点的MAC 层数据包还未被成功发送时,触发上行重路由。或者,该第一信息可以用于指示:在该第一定时器超时,且该第一节点的PHY层数据包还未被成功发送时,触发上行重路由。
本申请实施例中的第一节点或者第二节点可以是IAB节点(例如第一节点可以是接入IAB节点,第二节点可以是中间IAB节点),宿主节点可以是IAB宿主。示例性的,该第二节点可以通过RRC消息或者F1AP消息向IAB宿主的CU发送该第一信息。
S602B:该宿主节点向第一节点发送该第一信息。
示例性的,S602B可以是IAB宿主的CU通过RRC消息向该第一节点的MT发送该第一信息,或者可以是IAB宿主的CU通过F1AP消息向该第一节点的DU发送该第一信息。
该S601B是可选的步骤。例如,该第一信息可以是由该宿主节点自行生成后,发送给该第一节点的。又例如,该第二节点可以是可选的,也就是说,该第一节点可以直接连接到该宿主节点(即该宿主节点是该第一节点的父节点),该宿主节点生成该第一信息之后可以直接发送给该第一节点。
该S601B和S602B是可选的步骤。一种可能的实现方式中,该第一信息可以不需要经过宿主节点转发。例如,该第二节点可以将该第一信息携带在BAP control PDU或者媒体接入控制层控制单元(media access control control element,MAC CE)中,通过该第一节点和该第二节点之间的无线回传链路发送给该第一节点。另一种可能的实现方式中,该第一信息可以是由该第一节点自行生成的。例如可以是该第一节点根据协议规定生成该第一信息,或者该第一信息可以是预配置在该第一节点中,或者,该第一节点可以根据与该第二节点之间的信道质量等参数生成该第一信息。
S603B:该第一节点根据该第一信息,确定是否触发上行重路由。
(1)如果该第一信息包括该第一门限值,则当该第一节点确定BAP层/RLC层/MAC层/PHY层数据包的传输/重传次数大于或等于该第一门限值时,触发上行重路由。
示例性的,当该第一节点检测到BAP层数据包的传输/重传次数大于或等于第一门限值时,触发上行重路由。或者,当该第一节点检测到RLC层数据包的传输/重传次数大于或等于第一门限值时,触发上行重路由。或者,当该第一节点检测到MAC层数据包的传输/重传次数大于或等于第一门限值时,触发上行重路由。或者,当该第一节点检测到上行PHY层数据包的传输/重传次数大于或等于第一门限值时,触发上行重路由。
(2)如果该第一信息包括该第一定时器的配置,则当该第一节点确定在该第一定时器超时,且该第一节点的BAP层/RLC层/MAC层/PHY层数据包还未被成功发送时,触发上行重路由。
示例性的,该第一节点可以在第一次传输BAP层/RLC层/MAC层/PHY层数据包时启动该定时器,即该第一定时器开始计时。
示例性的,在第一定时器超时,且该第一节点的BAP层数据包还未被成功发送时,触发上行重路由。或者,在第一定时器超时,且该第一节点的RLC层数据包还未被成功发送时,触发上行重路由。或者,在第一定时器超时,且该第一节点的MAC层数据包还未被成功发送时,触发上行重路由。或者,在第一定时器超时,且该第一节点的PHY层数据包还未被成功发送时,触发上行重路由。
在上述(1)和(2)中,BAP层/RLC层/MAC层/PHY层数据包的传输/重传次数可以按照下一跳节点粒度来统计或者下一跳链路来统计。即,该BAP层/RLC层/MAC层/PHY层数据包的传输/重传次数可以指,该第一节点向父节点(第二节点或者宿主节点)总共传输或者总共重传该BAP层/RLC层/MAC层/PHY层数据包的次数,或者,该第一节点在与父节点(第 二节点或者宿主节点)之间的链路上总共传输或者总共重传该BAP层/RLC层/MAC层/PHY层数据包的次数)。
示例性的,触发上行重路由可以理解为:该第一节点通过其他路径(即备份路径,该备份路径可以不包括该第二节点)或者其他节点(即非该第二节点)向宿主节点路由数据包。当该第一节点的父节点是第二节点时,即不再通过第二节点向宿主节点路由数据包;当该第一节点的父节点就是宿主节点时,即不再直接向宿主节点路由数据包。
S604B:该第一节点停止上行重路由。
示例性的,在该第一节点在触发上行重路由之后,并且在该第一节点判断与第二节点/宿主节点之间发生RLF之前,如果该数据包通过源路径成功传输,则该第一节点停止上行重路由。
可选的,在该第一节点在触发上行重路由之后,并且在该第一节点判断与第二节点/宿主节点之间发生RLF之前,如果该第一节点通过测量,确定该第一节点与第二节点/宿主节点之间的链路质量大于预设值,则该第一节点可以停止上行重路由。
可选的,在触发上行重路由之后,该第一节点启动一个定时器。在该定时器超时,且该第一节点还未判断与第二节点/宿主节点之间发生RLF的情况下,该第一节点可以停止上行重路由。
示例性的,停止上行重路由可以理解为:该第一节点停止通过其他路径(即备份路径,该备份路径可以不包括该第二节点)或者其他节点(即非该第二节点)向宿主节点路由数据,继续使用源路径(即原主路径,该主路径包括该第二节点)或者该第二节点,向该宿主节点路由数据。当该第一节点的父节点是第二节点时,即继续通过第二节点向宿主节点路由数据包;当该第一节点的父节点就是宿主节点时,即继续直接向宿主节点路由数据包。
该S604B是可选的步骤。例如,该第一节点可以不停止上行重路由,直到宿主节点为该第一节点重新配置了新的上行路由配置为止。
通过本申请实施例,可以使得第一节点进行更加高效、准确的重路由。一方面,可以使得该第一节点在宿主节点的配置下,灵活触发重路由。另一方面,可以使得在发生链路RLF之前,即可提前触发该第一节点的重路由,减少了可能的数据传输中断,从而提高了数据传输的稳定性。
图6C所示为本申请的一种实施例的通信方法600C,如图6C所示,该第一节点是第二节点的父节点。该第一节点直接或间接连接到宿主节点,或者,该第一节点就是宿主节点。本申请实施例可以应用于第一节点通过第二节点向目的节点发送下行数据包的场景。目的节点可以是终端设备的接入节点。该第二节点和目的节点之间可以包括至少一个中继节点,或者该第二节点也可以是该目的节点的父节点,或者,该第二节点还可以是该目的节点(则本申请实施例可以应用于第一节点向第二节点发送下行数据包的场景)。该通信方法600C包括:
S601C:宿主节点向第一节点发送第二信息。
(1)一种可能的实现方式中,该第二信息可以包括第二门限值。
示例性的,该第二信息可以用于指示在该第一节点的数据包传输/重传次数达到/超过该第二门限值时,触发下行重路由。其中,该第一节点的数据包可以是任何一个BAP层或RLC层或MAC层或PHY层的数据包。
具体的,该第二信息可以用于指示:在该第一节点的BAP层数据包的传输/重传次数大于或等于第二门限值时,触发下行重路由。或者,该第二信息可以用于指示:在该第一节点 的RLC层数据包的传输/重传次数大于或等于第二门限值时,触发下行重路由。其中,该第二门限值小于上述RLC层的最大重传门限值,该RLC层的最大重传门限值可用于该第一节点判断与该第二节点之间的链路是否发生无线链路失败。该RLC层的最大重传门限值可以是由宿主节点通过RRC消息发送给该第一节点的。或者,该第二信息可以用于指示:在该第一节点的MAC层数据包的传输/重传次数大于或等于第二门限值时,触发下行重路由。或者,该第二信息可以用于指示:在该第一节点的PHY层数据包的传输/重传次数大于或等于第二门限值时,触发下行重路由。
(2)另一种可能的实现方式中,该第二信息可以包括第二定时器的配置,该第二定时器的配置可以包括第二定时器时长。
示例性的,该第二信息可以用于指示在该第二定时器超时,且该第一节点的数据包还未被成功发送时,触发下行重路由。其中,该第一节点的数据包可以是任何一个BAP层或RLC层或MAC层或PHY层的数据包。
具体的,该第二信息可以用于指示:在该第二定时器超时(即该第二定时器的计时时长达到/超过该配置的第二定时器时长),且该第一节点的BAP层数据包还未被成功发送时,触发下行重路由。或者,该第二信息可以用于指示:在该第二定时器超时,且该第一节点的RLC层数据包还未被成功发送时,触发下行重路由。其中,该第二定时器的时长需要满足:在该第二定时器超时之前,该第一节点的RLC层数据包的传输/重传次数小于RLC层的最大重传门限值。或者,该第二信息可以用于指示:在该第二定时器超时,且该第一节点的MAC层数据包还未被成功发送时,触发下行重路由。或者,该第二信息可以用于指示:在该第二定时器超时,且该第一节点的PHY层数据包还未被成功发送时,触发下行重路由。
本申请实施例中的第一节点或者第二节点可以是IAB节点(例如,第一节点可以是中间IAB节点,第二节点可以是接入IAB节点),则该宿主节点是IAB宿主。示例性的,S601C可以是IAB宿主的CU通过RRC消息向该第一节点的MT发送该第二信息。或者,可以是IAB宿主的CU通过F1AP消息向该第一节点的DU发送该第二信息。
该S601C是可选的步骤。例如,该第二信息可以是由该第一节点自行生成的。例如可以是该第一节点根据协议规定生成该第二信息,或者该第二信息可以是预配置在该第一节点中,或者,该第一节点可以根据与该第二节点之间的信道质量生成该第二信息。又例如,该第一节点本身就是宿主节点,该第一节点包括宿主节点的DU和宿主节点的CU,该第二信息可以是由宿主节点的的CU向宿主节点的的DU发送,或者由宿主节点的DU自行生成。
S602C:该第一节点根据该第二信息,确定是否触发下行重路由。
(1)如果该第二信息包括该第二门限值,则当该第一节点确定BAP层/RLC层/MAC层/PHY层数据包的传输/重传次数大于或等于该第二门限值时,触发下行重路由。
示例性的,当该第一节点检测到BAP层数据包的传输/重传次数大于或等于第二门限值时,触发下行重路由。或者,当该第一节点检测到RLC层数据包的传输/重传次数大于或等于第二门限值时,触发下行重路由。或者,当该第一节点检测到MAC层数据包的传输/重传次数大于或等于第二门限值时,触发下行重路由。或者,当该第一节点检测到下行PHY层数据包的传输/重传次数大于或等于第二门限值时,触发下行重路由。
(2)如果该第二信息包括该第二定时器的配置,则当该第一节点确定在该第二定时器超时,BAP层/RLC层/MAC层/PHY层数据包还未被成功发送时,触发下行重路由。
示例性的,该第一节点可以在第一次传输BAP层/RLC层/MAC层/PHY层数据包时启动该定时器,即该第二定时器开始计时。
示例性的,在第二定时器超时,该第一节点的BAP层数据包还未被成功发送时,触发下行重路由。或者,在第二定时器超时,该第一节点的RLC层数据包还未被成功发送时,触发下行重路由。或者,在第二定时器超时,该第一节点的MAC层数据包还未被成功发送时,触发下行重路由。或者,在第二定时器超时,该第一节点的PHY层数据包还未被成功发送时,触发下行重路由。
在上述(1)和(2)中,BAP层/RLC层/MAC层/PHY层数据包的传输/重传次数可以按照下一跳节点粒度来统计或者下一跳链路来统计。即,该BAP层/RLC层/MAC层/PHY层数据包的传输/重传次数可以指,该第一节点向第二节点总共传输或者总共重传该BAP层/RLC层/MAC层/PHY层数据包的次数,或者,该第一节点在与第二节点之间的链路上总共传输或者总共重传该BAP层/RLC层/MAC层/PHY层数据包的次数)。
示例性的,触发下行重路由可以理解为:该第一节点通过其他路径(即备份路径,该备份路径可以不包括该第二节点)或者其他节点(即非该第二节点)向目的节点路由数据包。
S603C:该第一节点停止下行重路由。
可选的,在该第一节点在触发下行重路由之后,并且在该第一节点判断与第二节点之间发生RLF之前,如果该数据包通过源路径成功传输,则该第一节点停止下行重路由。
可选的,在该第一节点在触发下行重路由之后,并且在该第一节点判断与第二节点之间发生RLF之前,如果该第一节点通过测量或者第二节点的反馈(例如:PHY层的信道质量信息(channel quality information,CQI)反馈),确定该第一节点与第二节点之间的链路质量大于预设值,则该第一节点可以停止下行重路由。
可选的,在触发下行重路由之后,该第一节点启动一个定时器。在该定时器超时,且该第一节点还未判断与第二节点之间发生RLF的情况下,该第一节点可以停止下行重路由。
示例性的,停止下行重路由可以理解为:该第一节点停止通过其他路径(即备份路径,该备份路径可以不包括该第二节点)或者其他节点(即非该第二节点)向目的节点路由数据,继续使用源路径(即原主路径,该主路径包括该第二节点)或者该第二节点,向该目的节点路由数据。
该S603C是可选的步骤。例如,该第一节点可以不停止下行重路由,直到宿主节点为该第一节点重新配置了新的下行路由配置为止。
需要说明的是,在方法600B中该第一节点确定触发上行重路由的情况下,该第一节点可以停止通过源路径向宿主节点路由数据包。在方法600C中该第一节点确定触发下行重路由的情况下,该第一节点可以停止通过源路径向目的节点路由数据包。该第一节点停止通过源路径向目的节点路由数据包具体可以包括以下至少一种:该第一节点的BAP层向RLC层发送指示信息,该指示信息用于指示RLC层进行重建立;或者,该第一节点的BAP层向MAC层发送指示信息,该指示信息用于指示MAC层进行复位(reset)。
当然,在方法600B中该第一节点确定触发上行重路由的情况下,该第一节点也可以不停止通过源路径向目的节点路由数据包。在方法600C中该第一节点确定触发下行重路由的情况下,该第一节点也可以不停止通过源路径向目的节点路由数据包。例如,该第一节点支持DC,MC或者NSA功能。在该第一节点触发上行/下行重路由之后,在该第一节点判断与第二节点之间发生RLF之前,该第一节点既会通过备份路径路由数据,也会通过源路径路由数据(例如RLC层或者MAC层的重传数据)。
需要说明的是,在方法600B中的第一信息和方法600C中的第二信息可以是同一个第三 信息。该第一门限值和第二门限值可以是同一个第三门限值,此时该第三信息可以用于指示在该第一节点的数据包传输/重传次数达到/超过该第三门限值时,触发重路由。该第一定时器的配置和该第二定时器的配置可以是同一个第三定时器的配置,此时该第三信息可以用于指示在该第三定时器超时,且该第一节点的数据包还未被成功发送时,触发重路由。即,该第一节点既可以根据该第三信息确定是否触发上行重路由,也可以通过该第三信息确定是否触发下行重路由。如此,可以节省空口信令开销。图7所示为本申请的一种实施例的通信方法700,如图7所示,该第一节点是第二节点的父节点,该宿主节点为该第一节点连接的宿主节点,该目的节点可以是终端设备的接入节点。该通信方法700包括:
S701:第一节点向宿主节点发送第一指示信息。
该第一指示信息可以用于指示无线链路失败。
示例性的,该第一节点可以是在确定与第二节点之间的无线链路发生RLF的情况下,向该宿主节点发送该第一指示信息。此时,该第一指示信息可以用于指示无线链路失败。
示例性的,该第一节点可以是在确定与第二节点之间的无线链路发生RLF,且与目的节点之间不存在其他可用路径的情况下,向该宿主节点发送该第一指示信息。此时,该第一指示信息可以用于指示无线链路失败。
作为一种实现方式,该第一指示信息可以携带在F1AP消息中,例如:用户设备上下文释放请求(UE Context Release Request)消息中,具体的,可以是将该UE Context Release Request消息中的原因(cause)字段设置为无线链路失败指示(RLF indication)。
作为另一种实现方式,该第一指示信息还可以携带在BAP control PDU中,通过逐跳方式发送到该宿主节点。
S702:宿主节点接收该第一指示信息。
示例性,宿主节点收到该第一指示信息后,将待发送至目的节点的数据包进行重路由。将待发送至目的节点的数据包进行重路由指的是通过其他路径向目的节点路由数据。该其他路径也可以称之为备份路径。
示例性的,如果第一节点是在与第二节点之间的无线链路发生RLF的情况下,向该宿主节点发送该第一指示信息,那么通过上述操作S701至S702可以使得宿主节点收到该第一指示信息后能够触发数据包的重路由功能,即将发送至目的节点的数据包进行重路由,通过其他可用路径将数据包路由到目的节点。
示例性的,如果第一节点是在与第二节点之间的无线链路发生RLF且与目的节点之间不存在其他可用路径的情况下,向该宿主节点发送该第一指示信息,那么通过上述操作S701至S702可以使得该宿主节点收到该第一指示信息后能够触发数据包的重路由操作,并且可以充分利用第一节点的重路由功能,从而增加数据中继的稳定性并减少了空口信令开销。例如,第一节点到目的节点之间存在多条路径,当其中一条路径发生RLF时,该第一节点自己就可以进行重路由,利用其他路径将数据路由至目的节点,此时可以不需要向宿主节点发送上述第一指示信息,否则可能会导致宿主节点进行不必要的重路由造成的资源的浪费,并且也会导致空口传输大量的上述第一指示信息。
可选的,本申请实施例还可以包括以下操作:
S703:第一节点向宿主节点发送第二指示信息。
该第二指示信息用于指示经过所述第一节点到目的节点的路径不可用。
示例性的,该第二指示信息包括该目的节点的BAP地址(address)。具体的,该目的节点的BAP地址可以指的是接入IAB节点的BAP地址。此时,该第二指示信息指示经过所述 第一节点到目的节点的路径不可用,可以指的是经过所述第一节点到目的节点的所有路径均不可用。
示例性的,该第二指示信息包括经过所述第一节点到所述目的节点的路径对应的路径标识(Path ID),或者从所述第一节点到所述目的节点之间的路径对应的路径标识。此时,该第二指示信息指示经过所述第一节点到目的节点的路径不可用,可以指的是所有经过所述第一节点到目的节点的路径中,对应的path ID等于该第二指示信息包括的path ID的路径不可用。
示例性的,该第二指示信息包括经过所述第一节点到所述目的节点的路径对应的routing ID,或者从所述第一节点到所述目的节点之间的路径对应的路由标识。其中,该路由标识由目的节点的BAP address和path ID组成。进一步的,如果第一节点到目的节点之间存在多条路径,当其中一条或者多条路径发生RLF时,该第二指示信息可以包括一个或者多个routing ID。此时,该第二指示信息指示经过所述第一节点到目的节点的路径不可用,可以指的是所有经过所述第一节点到目的节点的路径中,对应的routing ID等于该第二指示信息包括的routing ID的路径不可用。或者此时,该第二指示信息指示经过所述第一节点到目的节点的路径不可用,可以指的是经过所述第一节点到目的节点的所有路径均不可用。
示例性的,该第二指示信息包括该第二节点的标识。该第二节点的标识可以是第二节点的BAP address。该第二节点的标识也可以是该第二节点在与该宿主节点之间的F1接口上的标识,如F1接口应用层协议标识(F1application protocol identity,F1AP ID)。此时,该第二指示信息指示经过所述第一节点到目的节点的路径不可用,可以指的是所有经过所述第一节点到目的节点的路径中,包括该第一节点和第二节点之间的直连无线链路的路径不可用。或者此时,该第二指示信息指示经过所述第一节点到目的节点的路径不可用,可以指的是经过所述第一节点到目的节点的所有路径均不可用。
S704:宿主节点接收该第二指示信息。
示例性的,当该第二指示信息包括该目的节点的BAP address时,该宿主节点可以根据该第二指示信息,确定通过其他路径向目的节点路由数据。该其他路径上不包括该第一节点。
示例性的,当该第二指示信息包括经过所述第一节点到所述目的节点的路径对应的routing ID(或者从所述第一节点到所述目的节点之间的路径对应的路由标识)时,该宿主节点可以根据该第二指示信息,确定通过其他路径向目的节点路由数据。该其他路径的routing ID不等于该第二指示信息包括的routing ID。
该宿主节点根据该第二指示信息,可以确定只有将待发送至目的节点的数据包进行重路由。也就是说,该宿主节点可以确定将待发送至其他目的节点的数据包不进行重路由,仍然可以通过该第一节点进行路由。
示例性的,当该第二指示信息包括经过所述第一节点到所述目的节点的路径对应的路径标识(或者从该第一节点到该目的节点之间的路径对应的路径标识)时,该宿主节点可以根据该第二指示信息,确定通过其他路径向目的节点路由数据。该其他路径的路径标识不等于该第二指示信息中包括的Path ID。
示例性的,当该第二指示信息包括该第二节点的标识时,该宿主节点可以根据该第二指示信息,确定通过其他路径向目的节点路由数据。其他路径的routing ID不等于包括该第一节点和第二节点之间的直连无线链路的,经过第一节点到所述目的节点的路径对应的routing ID。或者该其他路径上不包括该第一节点。
上述第一指示信息和第二指示信息可以是携带在同一条消息中发送给宿主节点的,例如携带在同一个F1AP消息中,例如:UE Context Release Request消息中。或者,携带在同一 个BAP control PDU中通过逐跳方式发送到该宿主节点。
操作S703和S704是可选的操作,也就是说该第一节点可以不向该宿主节点发送第二指示信息。例如,该宿主节点收到该第一指示信息后,确定通过其他路径向目的节点路由数据。该其他路径上不包括该第一节点。
通过上述操作S701至S704可以使得宿主节点获得关于RLF的更加精确的信息,从而实现更加高效准确的重路由。例如,该宿主节点可能既通过该第一节点向目的节点路由数据,又通过该第一节点向其他目的节点路由其他的数据,进一步的,第一节点到目的节点之间还可能存在多条路径,在这些情况下,第一指示信息和第二指示信息可以使得宿主节点进行更加高效准确的重路由。
本申请实施例中的第一节点,第二节点或者第三节点可以是IAB节点,宿主节点可以是IAB宿主,终端设备的接入节点可以是接入IAB节点。
图8所示为本申请的一种实施例的通信方法800,如图8所示,该第一节点是第二节点的父节点,该宿主节点为该第一节点连接的宿主节点,该目的节点可以是终端设备的接入节点。该通信方法800包括:
S801:主基站向第一节点发送第一消息。
当该主基站是第二节点的主基站时,该第一消息用于请求添加该第一节点为第二节点的辅基站。
当该主基站是第四节点的主基站时,该第一消息用于请求添加该第一节点为第四节点的辅基站。
主基站可以是在接收到来自第三节点的第六消息之后,再向该第一节点发送该第一消息的。该第三节点为该第二节点或者该第四节点的源辅基站。该第六消息用于请求将该第一节点作为该第二节点或者该第四节点的目标辅基站。该第六消息中可以包括该第一节点的标识。该第一节点的标识可以是第一节点的基站标识(gNB ID)。
该主基站可以是LTE主基站(master eNodeB,MeNB)。该辅基站可以是NR辅基站(secondary gNodeB,SgNB)。可选的,该主基站还可以是NR主基站,该辅基站可以是NR辅基站。
示例性的,当该第一消息用于请求添加该第一节点为第二节点的辅基站时,该第一消息包括该第二节点接入的第三节点的小区的物理小区标识(physical cell identity,PCI)和所述第二节点在该第三节点的小区中的小区临时无线网络标识(cell radio network temporary identifier,C-RNTI)。该第二节点是第三节点是下游节点,例如,该第二节点可以是该第三节点的子节点,也可以是该第三节点的子节点的子节点。该第二节点可以是无线回传设备,也可以是终端。该第二节点接入的第三节点的小区可以是指第三节点提供的用来服务该第四节点的小区。
示例性的,当该第一消息用于请求添加该第一节点为第二节点的辅基站时,该第一消息包括该第三节点的标识和该第二节点在该第三节点和该第一节点之间的接口上的标识。第三节点的标识可以是第三节点的基站标识(例如gNB ID)。该第三节点和该第一节点之间的接口可以是X2接口,该第二节点在该第三节点和该第一节点之间的接口上的标识可以是该第三节点为该第二节点在该X2接口上分配的用户应用协议标识(UE X2 Application Protocol identity,UE X2AP ID),也可以是该第一节点为该第二节点在该X2接口上分配的UE X2AP ID,也可以是该第三节点为该第二节点在该X2接口上分配的UE X2AP ID和该第一节点为该第二 节点在该X2接口上分配的UE X2AP ID。或者,该第三节点和该第一节点之间的接口可以是Xn接口,该第二节点在该第三节点和该第一节点之间的接口上的标识可以是该第三节点为该第二节点在该Xn接口上分配的用户应用协议标识(UE Xn Application Protocol identity,UE XnAP ID),也可以是该第一节点为该第二节点在该Xn接口上分配的UE X2AP ID,也可以是该第三节点为该第二节点在该Xn接口上分配的UE X2AP ID和该第一节点为该第二节点在该Xn接口上分配的UE X2AP ID。
示例性的,当该第一消息用于请求添加该第一节点为第四节点的辅基站时,该第一消息包括该第四节点接入的第二节点的小区的物理小区标识(physical cell identity,PCI)和所述第四节点在该第二节点的小区中的小区临时无线网络标识(cell radio network temporary identifier,C-RNTI)。该第四节点是第二节点是下游节点,例如,该第四节点可以是该第二节点的子节点,也可以是该第二节点的子节点的子节点。该第四节点可以是无线回传设备,也可以是终端。该第四节点接入的第二节点的小区可以是指第二节点提供的用来服务该第四节点的小区。示例性的,当该第一消息用于请求添加该第一节点为第四节点的辅基站时,该第一消息包括该第三节点的标识和该第四节点在该第三节点和该第一节点之间的接口上的标识。第三节点的标识可以是第三节点的基站标识(例如gNB ID)。该第三节点和该第一节点之间的接口可以是X2接口,该第四节点在该第三节点和该第一节点之间的接口上的标识可以是该第三节点为该第四节点在该X2接口上分配的用户应用协议标识(UE X2 Application Protocol identity,UE X2AP ID),也可以是该第一节点为该第四节点在该X2接口上分配的UE X2AP ID,也可以是该第三节点为该第四节点在该X2接口上分配的UE X2AP ID和该第一节点为该第四节点在该X2接口上分配的UE X2AP ID。或者,该第三节点和该第一节点之间的接口可以是Xn接口,该第四节点在该第三节点和该第一节点之间的接口上的标识可以是该第三节点为该第四节点在该Xn接口上分配的用户应用协议标识(UE Xn Application Protocol identity,UE XnAP ID),也可以是该第一节点为该第四节点在该Xn接口上分配的UE X2AP ID,也可以是该第三节点为该第四节点在该Xn接口上分配的UE X2AP ID和该第一节点为该第四节点在该Xn接口上分配的UE X2AP ID。
该第一消息可以是辅基站添加请求(如SgNB addition request)消息,或者辅基站修改请求(如SgNB modification request)消息。该第二消息可以是辅基站更改请求(如SgNB change required)
S802:第一节点接收该第一消息。
示例性的,该第一节点收到该第一信息后,获取该第二节点的上下文信息。示例性的,该第一节点可以根据该第一消息中的第二节点的标识从内部缓存中提取该第二节点的上下文信息。
示例性的,该第一节点收到该第一信息后,获取该第四节点的上下文信息。示例性的,该第一节点可以根据该第一消息中的第四节点的标识从内部缓存中提取该第四节点的上下文信息。
可选的,该缓存在第一节点上的该第二节点或者该第四节点的上下文信息,可以是通过以下操作预先从第三节点获取并缓存在该第一节点上的:
S803:第一节点接收来自所述第二节点的第二消息。
该第二消息用于请求建立或者重建立与该第二节点之间的无线资源控制(radio resource control,RRC)连接。该第二消息可以是RRC重建立请求消息(如RRC reestablishment request)。
该第二节点可以是在其与第三节点之间的无线链路发生RLF的情况下,向该第一节点发 送该第二消息。
注意:本实施例中,以第二节点直接连接到第一节点的场景为例进行说明。本实施例同样适用于第二节点通过至少一个其他无线回传设备连接到第一节点的场景,即:该第二节点通过至少一个其他无线回传设备向该第一节点发送该第二消息。
S804:第一节点向第三节点发送第三消息。
该第三消息用于请求获取与该第二节点相关的上下文信息。该第三消息可以是获取用户设备上下文请求消息(如retrieve UE context request)。
S805:第一节点接收来自第三节点的第四消息。
该第四消息包括与该第二节点相关的上下文信息。该第四消息可以是获取用户设备上下文响应消息(retrieve UE context response)。
与该第二节点相关的上下文信息包括以下至少一种:该第二节点的上下文信息,该第二节点与其下游节点之间的拓扑信息,该第二节点的下游节点的上下文信息,指示该第二节点是否为无线回传设备的指示信息,或者指示该第二节点的下游节点是否为无线回传设备的指示信息。其中,该第二节点的下游节点包括该第二节点的子节点、子节点的子节点等,可以是无线回传设备,也可以是终端。本实施例中,该第二节点的下游节点可以指该第四节点。
该第二节点的下游节点的上下文信息包括该PCI和该C-RNTI,或者,该第二节点的下游节点的上下文信息包括该第三节点的标识和该下游节点在该第三节点和该第一节点之间的接口上的标识。
当该第二节点是IAB节点时,该第二节点的上下文信息可以包括该IAB节点的MT部分的上下文,和/或,该IAB节点的DU部分的上下文。其中,该IAB节点的MT部分的上下文包括回传无线链路控制信道(backhaul RLC channel,BH RLC CH)的配置信息。该IAB节点的DU部分的上下文包括该IAB-DU的标识、该IAB-DU小区的配置等。
可选的,该第二节点与该第二节点的下游节点之间的拓扑信息可以包括指示所述第二节点的下游节点为终端设备,和/或,指示所述第二节点的下游节点是无线回传设备。
通过上述操作S803至S805,第一节点可以获取该第四节点的上下文信息,该第一节点可以将该第四节点的上下文信息缓存在本地,以便于在接收到该第四节点的主基站发送的第一消息之后,根据该第一消息中携带的该第四节点的标识,从缓存中提取出该第四节点的上下文信息。
可选的,本申请实施例还可以包括以下操作:
S806:第一节点向该第二节点发送第五消息。
示例性的,该第五消息用于建立或者重建立与该第二节点之间的RRC连接。该第五消息可以是RRC重建立消息(如RRC reestablishment)。
示例性的,该第五消息可以包括用于更新所述第二节点服务的小区的信息。该用于更新该第二节点服务的小区的信息可以包括该第二节点连接到第一节点时的小区的全球小区标识(cell global identifier,CGI),和/或,小区标识(cellidentity)。其中,cellidentity可以由基站标识(如gNB Id)以及小区本地标识(cell local identifier,cellLocalId)组成。CGI由小区全球标识由公共陆地移动网标识(public land mobile network identifier,PLMNId),基站标识(如gNB Id)以及cellLocalId组成。具体的,第一节点为第二节点服务的小区分配新的CGI和/或cellidentity,并通过第五消息发送给第二节点。其中,该第二节点服务的小区的新CGI和/或cellidentity包含的基站标识(如gNB ID)与第一节点所属的基站标识相同。
示例性的,该第五消息可以既用于建立或者重建立与该第二节点之间的RRC连接,又包 括该用于更新所述第二节点服务的小区的信息。
S806和S801或者S802之间的顺序不限。即S806可以在S801和S802之前,也可以在S801之前在S802之后,也可以在S801和S802之后。
注意:本实施例中,以第二节点直接连接到第一节点的场景为例进行说明。本实施例同样适用于第二节点通过至少一个其他无线回传设备连接到第一节点的场景,即:该第二节点通过至少一个其他无线回传设备向该第一节点发送该第二消息。
通过本申请实施例,在第二节点发生RLF场景下,第二节点可以从源辅基站重建立到新的辅基站,从而减少对第二节点的下游节点的影响,保证了该第二节点的下游节点的正常工作。
图9是本申请实施例提供的一种通信装置900的示意性框图,下面将结合图9,对通信装置900的结构和功能进行具体的描述。该通信装置900,可以包括处理模块901和发送模块902。
处理模块901,用于确定与第二节点之间的无线链路发生无线链路失败RLF,且与目的节点之间不存在其他可用路径;
发送模块902,用于向第三节点发送第一指示信息,所述第一指示信息用于指示RLF或者正在尝试链路恢复;
所述第二节点为所述第一节点的父节点,所述第三节点为所述第一节点的子节点;或者,所述第二节点为所述第一节点的子节点,所述第三节点为所述第一节点的父节点或者所述第一节点连接的宿主节点。
可选的,当所述第二节点为所述第一节点的父节点,所述第三节点为所述第一节点的子节点时,所述发送模块902具体用于:尝试无线链路恢复时,向所述第三节点发送第一指示信息,所述第一指示信息用于指示正在尝试链路恢复。
可选的,所述发送模块902还用于向所述第三节点发送第二指示信息,所述第二指示信息用于指示经过所述第一节点到所述目的节点的路径不可用。
可选的,所述第二指示信息包括所述目的节点的回传适配层BAP地址,或者,经过所述第一节点到所述目的节点的路径对应的路由标识routing ID,或者,经过所述第一节点到所述目的节点的路径对应的路径标识path ID。
可选的,所述第二指示信息用于指示经过所述第一节点到所述目的节点的路径不可用,包括:所述第二指示信息用于指示经过所述第一节点到目的节点的所有路径均不可用;或者,所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,对应的path ID等于所述第二指示信息包括的path ID的路径不可用;或者,所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,对应的routing ID等于所述第二指示信息包括的routing ID的路径不可用。
可选的,当所述第二节点为所述第一节点的子节点,所述第三节点为所述第一节点连接的宿主节点时,所述第二指示信息包括所述第二节点的标识。
可选的,所述第二指示信息用于指示经过所述第一节点到所述目的节点的路径不可用,包括:所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,包括所述第一节点和所述第二节点之间的直连无线链路的路径不可用。
图10是本申请实施例提供的一种通信装置1000的示意性框图,下面将结合图10,对通信装置1000的结构和功能进行具体的描述。该通信装置1000,可以包括处理模块1001和获取模块1002。
获取模块1002,用于接收来自第一节点的第二指示信息,所述第二指示信息用于指示经过所述第一节点到目的节点的路径不可用;
处理模块1001,用于确定通过其他路径向所述目的节点路由数据。
可选的,所述获取模块1002还用于接收来自第一节点的第一指示信息,第一指示信息用于指示RLF或者正在尝试链路恢复。
可选的,所述第二指示信息包括所述目的节点的回传适配层BAP地址,或者,经过所述第一节点到所述目的节点的路径对应的路由标识routing ID,或者,经过所述第一节点到所述目的节点的路径对应的路径标识path ID。
可选的,所述其他路径不包括所述第一节点,或者,所述其他路径的routing ID不等于所述第二指示信息包括的routing ID,或者,所述其他路径的Path ID不等于所述第二指示信息中包括的Path ID。
可选的,所述第二指示信息包括第二节点的标识,其中,所述第二节点为所述第一节点的子节点,所述第一节点和第二节点之间的无线链路发生RLF。
可选的,所述其他路径的routing ID不等于包括所述第一节点和所述第二节点之间的直连无线链路的,经过所述第一节点到所述目的节点的路径对应的routing ID。
可选的,所述获取模块1002还用于接收来自所述第一节点的第三指示信息,所述第三指示信息用于指示无线链路恢复成功;
所述处理模块1001还用于停止通过所述其他路径向所述目的节点路由数据。
图11是本申请实施例提供的一种通信装置1100的示意性框图,下面将结合图11,对通信装置1100的结构和功能进行具体的描述。该通信装置1100,可以包括获取模块1101和处理模块1102,可选的,还可以包括发送模块1103。
获取模块1101,用于接收来自第四节点的主基站的第一消息,所述第一消息用于请求添加所述第一节点为第四节点的辅基站;
其中,所述第一消息包括:所述第四节点接入的第二节点的小区的物理小区标识PCI和所述第四节点在所述第二节点的小区中的小区临时无线网络标识C-RNTI;或者,第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识;其中,所述第三节点为所述第四节点的源辅基站,所述第四节点为第二节点的下游节点;
处理模块1102,用于获取所述第四节点的上下文信息。
可选的,在接收第一消息之前,所述获取模块1101还用于接收来自所述第二节点的第二消息,所述第二消息用于请求建立或者重建立与所述第二节点之间的无线资源控制RRC连接;发送模块1103,用于向所述第三节点发送第三消息,所述第三消息用于请求获取与所述第二节点相关的上下文信息;所述获取模块1101还用于接收来自所述第三节点的第四消息,所述第四消息包括所述与所述第二节点相关的上下文信息;所述发送模块1103还用于向所述第二节点发送第五消息,所述第五消息用于建立或者重建立与所述第二节点之间的RRC连接。
可选的,所述第五消息中包括用于更新所述第二节点服务的小区的信息。
可选的,所述用于更新所述第二节点服务的小区的信息包括:所述第二节点连接到所述第一节点时,所述第二节点的小区的全球小区标识CGI和/或小区标识cell identity。
可选的,与所述第二节点相关的上下文信息包括以下至少一种:所述第二节点的上下文信息,所述第二节点与所述第四节点之间的拓扑信息,所述第四节点的上下文信息,指示所述第二节点是否为无线回传设备的指示信息,或者指示所述第四节点是否为无线回传设备的指示信息。
可选的,所述第四节点的上下文信息包括:所述PCI和所述C-RNTI;或者,所述第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识。
图12是本申请实施例提供的一种通信装置1200的示意性框图,下面将结合图12,对通信装置1200的结构和功能进行具体的描述。该通信装置1200,可以包括获取模块1201和发送模块1202。
获取模块1201,用于接收来自第三节点的第六消息,所述第六消息用于请求将第一节点作为所述第四节点的目标辅基站,其中,所述第三节点为所述第四节点的源辅基站;
发送模块1202,用于向所述第一节点发送第一消息,所述第一消息用于请求添加所述第一节点为所述第四节点的辅基站,其中,所述第一消息包括:所述第四节点接入的第二节点的小区的物理小区标识PCI和所述第四节点在所述第二节点的小区中的小区临时无线网络标识C-RNTI;或者,所述第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识。
基于相同的技术构思,本申请实施例还提供了一种装置1300,下面将结合装置1300的示意性框图图13,对装置1300的结构和功能进行具体的描述。该装置可以包括至少一个处理器1301。可选的还包括接口电路1302。当涉及的程序指令在该至少一个处理器1301中执行时,可以使得该装置1300实现前述任一实施例所提供的通信方法及其中任一可能的设计。或者,该处理器1301通过逻辑电路或执行代码指令用于实现前述任一实施例所提供的通信方法及其中任一可能的设计。该接口电路1302,可以用于接收程序指令并传输至所述处理器,或者,该接口电路1302可以用于装置1300与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。示例性的,该接口电路1302可以用于接收来自该装置1300之外的其它装置的信号并传输至该处理器1301或将来自该处理器1301的信号发送给该装置1300之外的其它通信装置。该接口电路1302可以为代码和/或数据读写接口电路,或者,该接口电路1302可以为通信处理器与收发机之间的信号传输接口电路。可选的,该通信装置1300还可以包括至少一个存储器1303,该存储器1303可以用于存储所需的涉及的程序指令和/或数据。可选的,该装置1300还可以包括供电电路1304,该供电电路1304可以用于为该处理器1301供电,该供电电路1304可以与处理器1301位于同一个芯片内,或者,位于处理器1301所在的芯片之外的另一个芯片内。可选的,该装置1300还可以包括总线1305,该装置1300中的各个部分可以通过总线1305互联。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、或者分立硬件组件等。通用处理器可以是微处理器,或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、 双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)、或者直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例所述的供电电路包括但不限于如下至少一个:供电线路,供电子系统、电源管理芯片、功耗管理处理器、或者功耗管理控制电路。
本申请实施例所述的收发装置、接口电路、或者收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发装置、接口电路、或者收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元或者算法操作,能够通过硬件实现,或者,通过软件实现,或者,通过软件和硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请中,“通过软件实现”可以指处理器读取并执行存储在存储器中的程序指令来实现上述模块或单元所对应的功能,其中,处理器是指具有执行程序指令功能的处理电路,包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(digital signal processing,DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类能够运行程序指令的处理电路。在另一些实施例中,处理器还可以包括其他处理功能的电路(如用于硬件加速的硬件电路、总线和接口电路等)。处理器可以以集成芯片的形式呈现,例如,以处理功能仅包括执行软件指令功能的集成芯片的形式呈现,或者还可以片上系统(system on a chip,SoC)的形式呈现,即在一个芯片上,除了包括能够运行程序指令的处理电路(通常被称为“核”)外,还包括其他用于实现特定功能的硬件电路(当然,这些硬件电路也可以是基于ASIC、FPGA单独实现),相应的,处理功能除了包括执行软件指令功能外,还可以包括各种硬件加速功能(如AI计算、编解码、压缩解压等)。
本申请中,“通过硬件实现”是指通过不具有程序指令处理功能的硬件处理电路来实现上述模块或者单元的功能,该硬件处理电路可以通过分立的硬件元器件组成,也可以是集成电路。为了减少功耗、降低尺寸,通常会采用集成电路的形式来实现。硬件处理电路可以包括ASIC,或者可编程逻辑器件(programmable logic device,PLD);其中,PLD又可包括FPGA、 复杂可编程逻辑器件(complex programmable logic device,CPLD)等等。这些硬件处理电路可以是单独封装的一块半导体芯片(如封装成一个ASIC);也可以跟其他电路(如CPU、DSP)集成在一起后封装成一个半导体芯片,例如,可以在一个硅基上形成多种硬件电路以及CPU,并单独封装成一个芯片,这种芯片也称为SoC,或者也可以在硅基上形成用于实现FPGA功能的电路以及CPU,并单独封闭成一个芯片,这种芯片也称为可编程片上系统(system on a programmable chip,SoPC)。
需要说明的是,本申请在通过软件、硬件或者软件硬件结合的方式实现时,可以使用不同的软件、硬件,并不限定只使用一种软件或者硬件。例如,其中,其中一个模块或者单元可以使用CPU来实现,另一个模块或者单元可以使用DSP来实现。同理,当使用硬件实现时,其中一个模块或者单元可以使用ASIC来实现,另一个模块或者单元可以使用FPGA实现。当然,也不限定部分或者所有的模块或者单元使用同一种软件(如都通过CPU)或者同一种硬件(如都通过ASIC)来实现。此外,对于本领域技术人员,可以知道,软件通常来说灵活性更好,但性能不如硬件,而硬件正好相反,因此,本领域技术人员可以结合实际需求来选择软件或者硬件或者两者结合的形式来实现。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。本申请实施例之间可以结合,实施例中的某些技术特征也可以从具体实施例中解耦出来,结合现有技术可以解决本申请实施例涉及的技术问题。
本申请实施例中,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的全部或部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,可以包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分操作。而前述的存储介质可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟、或者光盘等各种可以存储程序代码的介质或计算机可读存储介质。
在本申请的描述中,“第一”,“第二”,“S201”,或“S202”等词汇,仅用于区分描述以及上下文行文方便的目的,不同的次序编号本身不具有特定技术含义,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示操作的执行顺序。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请中,“传输”可以包括以下三种情况:数据的发送,数据的接收,或者数据的发送和数据的接收。本申请中,“数据”可以包括业务数据,和/或,信令数据。
本申请中术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包括,例如, 包括了一系列步骤的过程/方法,或一系列单元的系统/产品/设备,不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程/方法/产品/设备固有的其它步骤或单元。
在本申请的描述中,“至少一个”,表示一个或者多个。“包括以下至少一个:A,B,C。”表示可以包括A,或者包括B,或者包括C,或者包括A和B,或者包括A和C,或者包括B和C,或者包括A,B和C。
本申请实施例提供的方案可适用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统、或者新无线(new radio,NR)系统,以及其他可用于提供移动通信服务的网络系统等,本申请不做限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (46)

  1. 一种通信方法,其特征在于,应用于第一节点,包括:
    确定与第二节点之间的无线链路发生无线链路失败RLF,且与目的节点之间不存在其他可用路径;
    向第三节点发送第一指示信息,所述第一指示信息用于指示RLF或者正在尝试链路恢复;
    所述第二节点为所述第一节点的父节点,所述第三节点为所述第一节点的子节点;或者,
    所述第二节点为所述第一节点的子节点,所述第三节点为所述第一节点的父节点或者所述第一节点连接的宿主节点。
  2. 根据权利要求1所述的方法,其特征在于,当所述第二节点为所述第一节点的父节点,所述第三节点为所述第一节点的子节点时,所述方法还包括:
    尝试无线链路恢复时,向所述第三节点发送第一指示信息,所述第一指示信息用于指示正在尝试链路恢复。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    向所述第三节点发送第二指示信息,所述第二指示信息用于指示经过所述第一节点到所述目的节点的路径不可用。
  4. 根据权利要求3所述的方法,其特征在于,所述第二指示信息包括所述目的节点的回传适配层BAP地址,或者,经过所述第一节点到所述目的节点的路径对应的路由标识routing ID,或者,经过所述第一节点到所述目的节点的路径对应的路径标识path ID。
  5. 根据权利要求4所述的方法,其特征在于,所述第二指示信息用于指示经过所述第一节点到所述目的节点的路径不可用,包括:
    所述第二指示信息用于指示经过所述第一节点到目的节点的所有路径均不可用;或者,
    所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,对应的path ID等于所述第二指示信息包括的path ID的路径不可用;或者,
    所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,对应的routing ID等于所述第二指示信息包括的routing ID的路径不可用。
  6. 根据权利要求3所述的方法,其特征在于,当所述第二节点为所述第一节点的子节点,所述第三节点为所述第一节点连接的宿主节点时,所述第二指示信息包括所述第二节点的标识。
  7. 根据权利要求6所述的方法,其特征在于,所述第二指示信息用于指示经过所述第一节点到所述目的节点的路径不可用,包括:
    所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,包括所述第一节点和所述第二节点之间的直连无线链路的路径不可用。
  8. 一种通信方法,其特征在于,应用于第三节点,包括:
    接收来自第一节点的第二指示信息,所述第二指示信息用于指示经过所述第一节点到目的节点的路径不可用;
    确定通过其他路径向所述目的节点路由数据。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收来自第一节点的第一指示信息,第一指示信息用于指示RLF或者正在尝试链路恢复。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二指示信息包括所述目的节点的回传适配层BAP地址,或者,经过所述第一节点到所述目的节点的路径对应的路由标识routing ID,或者,经过所述第一节点到所述目的节点的路径对应的路径标识path ID。
  11. 根据权利要求10所述的方法,其特征在于,所述其他路径不包括所述第一节点,或者,所述其他路径的routing ID不等于所述第二指示信息包括的routing ID,或者,所述其他路径的Path ID不等于所述第二指示信息中包括的Path ID。
  12. 根据权利要求8或9所述的方法,其特征在于,所述第二指示信息包括第二节点的标识,其中,所述第二节点为所述第一节点的子节点,所述第一节点和第二节点之间的无线链路发生RLF。
  13. 根据权利要求12所述的方法,其特征在于,所述其他路径的routing ID不等于包括所述第一节点和所述第二节点之间的直连无线链路的,经过所述第一节点到所述目的节点的路径对应的routing ID。
  14. 根据权利要求8-13中任一所述的方法,其特征在于,还包括:
    接收来自所述第一节点的第三指示信息,所述第三指示信息用于指示无线链路恢复成功;
    停止通过所述其他路径向所述目的节点路由数据。
  15. 一种通信方法,其特征在于,应用于第一节点,包括:
    接收来自第四节点的主基站的第一消息,所述第一消息用于请求添加所述第一节点为第四节点的辅基站;
    其中,所述第一消息包括:
    所述第四节点接入的第二节点的小区的物理小区标识PCI和所述第四节点在所述第二节点的小区中的小区临时无线网络标识C-RNTI;
    或者,第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识;
    其中,所述第三节点为所述第四节点的源辅基站,所述第四节点为第二节点的下游节点;
    获取所述第四节点的上下文信息。
  16. 根据权利要求15所述的方法,其特征在于,在接收第一消息之前,所述方法还包括:
    接收来自所述第二节点的第二消息,所述第二消息用于请求建立或者重建立与所述第二节点之间的无线资源控制RRC连接;
    向所述第三节点发送第三消息,所述第三消息用于请求获取与所述第二节点相关的上下文信息;
    接收来自所述第三节点的第四消息,所述第四消息包括所述与所述第二节点相关的上下文信息;
    向所述第二节点发送第五消息,所述第五消息用于建立或者重建立与所述第二节点之间的RRC连接。
  17. 根据权利要求16所述的方法,其特征在于,所述第五消息中包括用于更新所述第二节点服务的小区的信息。
  18. 根据权利要求17所述的方法,其特征在于,所述用于更新所述第二节点服务的小区的信息包括:所述第二节点连接到所述第一节点时,所述第二节点的小区的全球小区标识CGI和/或小区标识cell identity。
  19. 根据权利要求15-18中任一所述的方法,其特征在于,与所述第二节点相关的上下文信息包括以下至少一种:所述第二节点的上下文信息,所述第二节点与所述第四节点之间的拓扑信息,所述第四节点的上下文信息,指示所述第二节点是否为无线回传设备的指示信息,或者指示所述第四节点是否为无线回传设备的指示信息。
  20. 根据权利要求19所述的方法,其特征在于,所述第四节点的上下文信息包括:
    所述PCI和所述C-RNTI;或者,
    所述第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识。
  21. 一种通信方法,其特征在于,应用于第四节点的主基站,包括:
    接收来自第三节点的第六消息,所述第六消息用于请求将第一节点作为所述第四节点的目标辅基站,其中,所述第三节点为所述第四节点的源辅基站;
    向所述第一节点发送第一消息,所述第一消息用于请求添加所述第一节点为所述第四节点的辅基站,其中,所述第一消息包括:
    所述第四节点接入的第二节点的小区的物理小区标识PCI和所述第四节点在所述第二节点的小区中的小区临时无线网络标识C-RNTI;
    或者,所述第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识。
  22. 一种通信装置,其特征在于,包括:
    处理模块,用于确定与第二节点之间的无线链路发生无线链路失败RLF,且与目的节点之间不存在其他可用路径;
    发送模块,用于向第三节点发送第一指示信息,所述第一指示信息用于指示RLF或者正在尝试链路恢复;
    所述第二节点为所述第一节点的父节点,所述第三节点为所述第一节点的子节点;或者,
    所述第二节点为所述第一节点的子节点,所述第三节点为所述第一节点的父节点或者所述第一节点连接的宿主节点。
  23. 根据权利要求22所述的装置,其特征在于,当所述第二节点为所述第一节点的父节点,所述第三节点为所述第一节点的子节点时,所述发送模块具体用于:
    尝试无线链路恢复时,向所述第三节点发送第一指示信息,所述第一指示信息用于指示正在尝试链路恢复。
  24. 根据权利要求22或23所述的装置,其特征在于,所述发送模块还用于:
    向所述第三节点发送第二指示信息,所述第二指示信息用于指示经过所述第一节点到所述目的节点的路径不可用。
  25. 根据权利要求24所述的装置,其特征在于,所述第二指示信息包括所述目的节点的回传适配层BAP地址,或者,经过所述第一节点到所述目的节点的路径对应的路由标识routing ID,或者,经过所述第一节点到所述目的节点的路径对应的路径标识path ID。
  26. 根据权利要求25所述的装置,其特征在于,所述第二指示信息用于指示经过所述第一节点到所述目的节点的路径不可用,包括:
    所述第二指示信息用于指示经过所述第一节点到目的节点的所有路径均不可用;或者,
    所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,对应的path ID等于所述第二指示信息包括的path ID的路径不可用;或者,
    所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,对应的routing ID等于所述第二指示信息包括的routing ID的路径不可用。
  27. 根据权利要求24所述的装置,其特征在于,当所述第二节点为所述第一节点的子节点,所述第三节点为所述第一节点连接的宿主节点时,所述第二指示信息包括所述第二节点的标识。
  28. 根据权利要求27所述的装置,其特征在于,所述第二指示信息用于指示经过所述第 一节点到所述目的节点的路径不可用,包括:
    所述第二指示信息用于指示所有经过所述第一节点到目的节点的路径中,包括所述第一节点和所述第二节点之间的直连无线链路的路径不可用。
  29. 一种通信装置,其特征在于,包括:
    获取模块,用于接收来自第一节点的第二指示信息,所述第二指示信息用于指示经过所述第一节点到目的节点的路径不可用;
    处理模块,用于确定通过其他路径向所述目的节点路由数据。
  30. 根据权利要求29所述的装置,其特征在于,所述获取模块还用于:
    接收来自第一节点的第一指示信息,第一指示信息用于指示RLF或者正在尝试链路恢复。
  31. 根据权利要求29或30所述的装置,其特征在于,所述第二指示信息包括所述目的节点的回传适配层BAP地址,或者,经过所述第一节点到所述目的节点的路径对应的路由标识routing ID,或者,经过所述第一节点到所述目的节点的路径对应的路径标识path ID。
  32. 根据权利要求31所述的装置,其特征在于,所述其他路径不包括所述第一节点,或者,所述其他路径的routing ID不等于所述第二指示信息包括的routing ID,或者,所述其他路径的Path ID不等于所述第二指示信息中包括的Path ID。
  33. 根据权利要求29或30所述的装置,其特征在于,所述第二指示信息包括第二节点的标识,其中,所述第二节点为所述第一节点的子节点,所述第一节点和第二节点之间的无线链路发生RLF。
  34. 根据权利要求33所述的装置,其特征在于,所述其他路径的routing ID不等于包括所述第一节点和所述第二节点之间的直连无线链路的,经过所述第一节点到所述目的节点的路径对应的routing ID。
  35. 根据权利要求29-34中任一所述的装置,其特征在于,
    所述获取模块还用于接收来自所述第一节点的第三指示信息,所述第三指示信息用于指示无线链路恢复成功;
    所述处理模块还用于停止通过所述其他路径向所述目的节点路由数据。
  36. 一种通信装置,其特征在于,包括:
    获取模块,用于接收来自第四节点的主基站的第一消息,所述第一消息用于请求添加所述第一节点为第四节点的辅基站;
    其中,所述第一消息包括:
    所述第四节点接入的第二节点的小区的物理小区标识PCI和所述第四节点在所述第二节点的小区中的小区临时无线网络标识C-RNTI;
    或者,第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识;
    其中,所述第三节点为所述第四节点的源辅基站,所述第四节点为第二节点的下游节点;
    处理模块,用于获取所述第四节点的上下文信息。
  37. 根据权利要求36所述的装置,其特征在于,在接收第一消息之前,所述获取模块还用于接收来自所述第二节点的第二消息,所述第二消息用于请求建立或者重建立与所述第二节点之间的无线资源控制RRC连接;
    发送模块,用于向所述第三节点发送第三消息,所述第三消息用于请求获取与所述第二节点相关的上下文信息;
    所述获取模块还用于接收来自所述第三节点的第四消息,所述第四消息包括所述与所述 第二节点相关的上下文信息;
    所述发送模块还用于向所述第二节点发送第五消息,所述第五消息用于建立或者重建立与所述第二节点之间的RRC连接。
  38. 根据权利要求37所述的装置,其特征在于,所述第五消息中包括用于更新所述第二节点服务的小区的信息。
  39. 根据权利要求38所述的装置,其特征在于,所述用于更新所述第二节点服务的小区的信息包括:所述第二节点连接到所述第一节点时,所述第二节点的小区的全球小区标识CGI和/或小区标识cell identity。
  40. 根据权利要求36-39中任一所述的装置,其特征在于,与所述第二节点相关的上下文信息包括以下至少一种:所述第二节点的上下文信息,所述第二节点与所述第四节点之间的拓扑信息,所述第四节点的上下文信息,指示所述第二节点是否为无线回传设备的指示信息,或者指示所述第四节点是否为无线回传设备的指示信息。
  41. 根据权利要求40所述的装置,其特征在于,所述第四节点的上下文信息包括:
    所述PCI和所述C-RNTI;或者,
    所述第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识。
  42. 一种通信装置,其特征在于,应用于第四节点的主基站,包括:
    获取模块,用于接收来自第三节点的第六消息,所述第六消息用于请求将第一节点作为所述第四节点的目标辅基站,其中,所述第三节点为所述第四节点的源辅基站;
    发送模块,用于向所述第一节点发送第一消息,所述第一消息用于请求添加所述第一节点为所述第四节点的辅基站,其中,所述第一消息包括:
    所述第四节点接入的第二节点的小区的物理小区标识PCI和所述第四节点在所述第二节点的小区中的小区临时无线网络标识C-RNTI;
    或者,所述第三节点的标识和所述第四节点在所述第三节点和所述第一节点之间的接口上的标识。
  43. 一种通信装置,其特征在于,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至21中任一项所述的方法。
  44. 一种通信系统,其特征在于,包括如权利要求22至28中任一项所述的通信装置和如权利要求29至35中任一项所述的通信装置,或者,包括如权利要求36至41中任一项所述的通信装置和如权利要求42中任一项所述的通信装置。
  45. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,其特征在于,当所述计算机程序或指令被通信装置执行时,使得通信装置执行如权利要求1至21中任一项所述的方法。
  46. 一种计算机程序产品,包含计算机程序指令,其特征在于,所述计算机程序指令被通信装置执行时,使得通信装置执行实现如权利要求1至21中任一项所述的方法。
PCT/CN2020/137817 2020-09-30 2020-12-19 一种通信方法及相关设备 WO2022068094A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180065838.7A CN116325911A (zh) 2020-09-30 2021-04-01 一种通信方法及相关设备
KR1020237014550A KR20230074583A (ko) 2020-09-30 2021-04-01 통신 방법 및 관련 디바이스
JP2023519813A JP2023543492A (ja) 2020-09-30 2021-04-01 通信方法及び関連デバイス
PCT/CN2021/085137 WO2022068164A1 (zh) 2020-09-30 2021-04-01 一种通信方法及相关设备
EP21873831.8A EP4213536A4 (en) 2020-09-30 2021-04-01 COMMUNICATION METHOD AND ASSOCIATED DEVICE
US18/192,141 US20230239954A1 (en) 2020-09-30 2023-03-29 Communication method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/119697 2020-09-30
PCT/CN2020/119697 WO2022067781A1 (zh) 2020-09-30 2020-09-30 一种通信方法及相关设备

Publications (1)

Publication Number Publication Date
WO2022068094A1 true WO2022068094A1 (zh) 2022-04-07

Family

ID=80949464

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/119697 WO2022067781A1 (zh) 2020-09-30 2020-09-30 一种通信方法及相关设备
PCT/CN2020/137817 WO2022068094A1 (zh) 2020-09-30 2020-12-19 一种通信方法及相关设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119697 WO2022067781A1 (zh) 2020-09-30 2020-09-30 一种通信方法及相关设备

Country Status (1)

Country Link
WO (2) WO2022067781A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3589069A1 (en) * 2017-03-25 2020-01-01 LG Electronics Inc. -1- Method and apparatus for improving procedure for lte/nr interworking in wireless communication system
CN110831095A (zh) * 2018-08-11 2020-02-21 华为技术有限公司 通信方法和通信装置
CN111586744A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种iab节点的切换方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666727B (zh) * 2016-07-25 2023-04-11 中兴通讯股份有限公司 能力协商的方法及装置、系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3589069A1 (en) * 2017-03-25 2020-01-01 LG Electronics Inc. -1- Method and apparatus for improving procedure for lte/nr interworking in wireless communication system
CN110831095A (zh) * 2018-08-11 2020-02-21 华为技术有限公司 通信方法和通信装置
CN111586744A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种iab节点的切换方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "(TP for NR_IAB BL CR for TS 38.401): Backhaul RLF recovery", 3GPP DRAFT; R3-195467 BACKHAUL RLF RECOVERY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Chongqing, China; 20191014 - 20191018, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051792502 *
HUAWEI: "(TP for NR_IAB BL CR for TS 38.401): Backhaul RLF recovery", 3GPP DRAFT; R3-196993, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, NV, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820652 *

Also Published As

Publication number Publication date
WO2022067781A1 (zh) 2022-04-07

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US11425600B2 (en) Wireless backhaul data transmission method and apparatus
KR102615567B1 (ko) 정보 전송 방법 및 디바이스
WO2022082679A1 (zh) 一种通信方法及相关设备
WO2022001503A1 (zh) 一种用于iab网络通信的方法及相关设备
US20230247521A1 (en) Lossless data transmission communication method, apparatus, and system
WO2022011496A1 (zh) 一种通信方法和通信装置
WO2021026706A1 (zh) 一种f1接口管理方法及装置
US20230328607A1 (en) Communication control method
WO2020029080A1 (zh) 切换网络的方法、网络节点、芯片和通信系统
WO2020029414A1 (zh) 无线通信方法、通信设备、芯片和通信系统
WO2022068094A1 (zh) 一种通信方法及相关设备
WO2022068164A1 (zh) 一种通信方法及相关设备
WO2021026936A1 (zh) 一种处理回传链路发生链路失败的方法及装置
WO2023131091A1 (zh) 通信方法和装置
WO2023011111A1 (zh) 路由方法和通信装置
US20240073762A1 (en) Communication method, apparatus, and system
WO2022237357A1 (zh) 通信方法和装置
WO2023010298A1 (zh) 信息发送方法,信息处理方法以及装置
WO2023150968A1 (zh) 收发信号的方法、装置和通信系统
WO2023123335A1 (zh) 通信方法和设备
WO2023273926A1 (zh) 一种多连接下的通信方法及装置
WO2020029074A1 (zh) 无线通信方法、通信设备、芯片和通信系统
JP2024516255A (ja) ワイヤレス通信のための方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956110

Country of ref document: EP

Kind code of ref document: A1