WO2022237357A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2022237357A1
WO2022237357A1 PCT/CN2022/083664 CN2022083664W WO2022237357A1 WO 2022237357 A1 WO2022237357 A1 WO 2022237357A1 CN 2022083664 W CN2022083664 W CN 2022083664W WO 2022237357 A1 WO2022237357 A1 WO 2022237357A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
space
data packet
threshold
Prior art date
Application number
PCT/CN2022/083664
Other languages
English (en)
French (fr)
Inventor
朱元萍
史玉龙
刘菁
曹振臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110523511.1A external-priority patent/CN115412498A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22806327.7A priority Critical patent/EP4325798A4/en
Publication of WO2022237357A1 publication Critical patent/WO2022237357A1/zh
Priority to US18/506,590 priority patent/US20240080262A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/30Routing of multiclass traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/17Shortcut routing, e.g. using next hop resolution protocol [NHRP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method and device.
  • the IAB project of R16 introduces downlink flow control feedback (flow control feedback) hop by hop, that is, the IAB node can provide flow control feedback to its parent node, and the flow control feedback It can reflect the cache status of the link between the IAB node and its own child nodes.
  • flow control feedback flow control feedback
  • the parent node when the parent node receives the flow control feedback information sent by the child node, if it knows that the link of the child node is congested, it will slow down the sending of downlink data, which will cause data packets to accumulate at the parent node, and there is still a cache Risk of packet overflow. And if link congestion cannot be alleviated in a short time, data packets will be buffered for a long time on the wireless backhaul link and cannot be sent, which will eventually cause excessive delay of data packets and affect user experience.
  • the present application provides a communication method and device, which can reduce the transmission delay of data packets and improve user experience by rerouting data packets.
  • the first aspect provides a communication method, the method includes: a first node receives first information from a second node, the first information includes the size of the available space in the first cache space of the second node, and the first cache space is used for Cache the data packets that need to be transmitted through the first path, the first path is the main path for transmitting data packets, and the second node is the next hop node of the first node on the main path; if the available space in the first cache space is The size is less than or equal to the first threshold, the first node determines to transmit the data packet that needs to be transmitted through the first path through the third node, and the third node is the next-hop node of the first node on the backup path for transmitting the data packet .
  • the first node can reroute the data packets based on the flow control feedback information received at the granularity of the path identifier when the link encounters congestion.
  • it can alleviate link congestion, on the other hand It can also reduce the average transmission delay of data packets and improve user experience.
  • the first cache space may be a certain storage space of the second node.
  • the size of the available space of the first buffer space may refer to the maximum amount of data sent by the sender.
  • the judgment result of the first node can be flexibly determined without limitation.
  • the IAB host in order to ensure the normal transmission of data between the terminal and the IAB host, the IAB host needs to configure a routing table for each IAB node, that is, configure the next-hop nodes corresponding to different paths. At the same time, the IAB host needs to determine the transmission path corresponding to the data transmission. That is to say, before data transmission, a transmission path will be determined first. This transmission path can be called the main path. Data is routed between the terminal and the IAB host through the main path. Other paths can be regarded as Backup path.
  • next hop node of the first node may be a child node or a parent node, which is not limited in this application.
  • the first node determines that the transmission through the second node needs to pass Data packets transmitted by the first path.
  • the first node judges that the cache status of the second node can send the data packet on the first path, it can determine that the second node is the next-hop node.
  • the timely transmission of data packets can be ensured, the realization of data packet transmission is reduced, and service experience is ensured.
  • the first node receiving the first information from the second node includes: the first node receiving the N information from the second node within the first duration first information, the N first information includes the size of the available space in the N first cache spaces; if X of the available spaces in the N first cache spaces is less than or equal to the first
  • the first node determines to transmit the data packet that needs to be transmitted through the first path through the third node, wherein the N is an integer greater than 1, and the X is less than or equal to the N.
  • the first node can judge the cache status of the second node within a certain period of time, which can further ensure the accuracy of the congestion judgment of the second node, thereby ensuring the successful and timely transmission of data packets.
  • the method further includes: the first node receives second information from the second node, and the second information includes the second information of the second node
  • the size of the available space in the second buffer space, the second buffer space is used to buffer the data packets of the first radio link control channel that need to be mapped on the first link, the first link is the first node and the link between the second node; the first node determines that the transmission through the third node needs to pass through according to the size of the available space in the first cache space and the size of the available space in the second cache space Data packets transmitted by the first path.
  • the first node can judge the congestion situation of the second node based on the flow control feedback information of two granularities, which can further ensure the accuracy of the congestion judgment of the second node, thereby ensuring the successful and timely transmission of data packets.
  • the first node determines, according to the size of the available space in the first cache space and the size of the available space in the second cache space, the third The node transmits the data packet that needs to be transmitted through the first path, including: if the size of the available space in the first cache space is less than or equal to the first threshold, and/or, the size of the available space in the second cache space is less than or is equal to the second threshold, and the first node determines that the data packets that need to be transmitted through the first path are transmitted through the third node.
  • the first threshold may be equal to the second threshold, or the first threshold may not be equal to the second threshold.
  • the host node can flexibly configure the threshold according to the actual situation.
  • the first node determines, according to the size of the available space in the first cache space and the size of the available space in the second cache space, the third The node transmits the data packet that needs to be transmitted through the first path, including: if the size of the available space in the first cache space received by the first node within the first duration is less than or equal to the first threshold, and/or, the The size of the available space in the second buffer space received by the first node within the second duration is less than or equal to a first threshold, and the first node determines that the data packets that need to be transmitted through the first path are transmitted by the third node.
  • the first duration may be equal to the second duration, or the first duration may not be equal to the second duration.
  • the host node can flexibly configure the threshold according to the actual situation.
  • the first node determines that the transmission through the third node needs to pass through the first
  • the data packet transmitted by the path includes: if the first node determines that the size of the data sent to the second node is equal to the size of the available space in the first buffer space within the third time period before receiving the first information
  • the data packets that need to be transmitted through the first path the first node determines that the data packets that need to be transmitted through the first path are transmitted through the third node; or, if the first node determines that the fourth node after receiving the first information Within the time period, a data packet whose data size is equal to the size of the available space in the first cache space and needs to be transmitted through the first path is sent to the second node, and the first node determines that the transmission through the third node needs to be transmitted through the Data packets transmitted by the first path.
  • the first node determines that the amount of data sent to the second node within the third time period before receiving the first information is equal to the available space in the first buffer space
  • the size of the data packet that needs to be transmitted through the first path is transmitted through the third node.
  • the first node determines that the third node before receiving the first information
  • a second type of data packet with a data volume equal to the size of the available space in the first buffer space is sent to the second node, wherein the second type of data packet is the first node that needs to be transmitted through the first path data packets.
  • the technical solution for the fourth duration can also be understood in this way.
  • the second type of data packet is a data packet that the first node needs to transmit through the first path. That is to say, when the second node has sent the second type of data packet whose data volume is the size of the available space in the first buffer space within a certain period of time before receiving the first information, the first node may also determine that the second The node is unavailable, and it is determined to transmit the data packet through the third node. Or, when the second node has sent a second type of data packet whose data volume is the size of the available space in the first buffer space within a certain period of time after receiving the first information, the first node may also determine that the second node cannot , to determine the transmission of the data packet via the third node.
  • the first node may also determine that the second node is not used, and the data can be sent through the third node Bag.
  • the first node can judge the congestion situation of the second node in time, so that the data packets can be transmitted in time, reducing the implementation of data packet transmission, and ensuring service experience.
  • the first node determines that the transmission through the third node needs to pass through the first
  • the data packet transmitted by the path includes: if the size of the available space in the first buffer space is less than or equal to the first threshold, and the first node determines that the third node is available for transmission and the need to be transmitted by the first path The first node determines to transmit the data packet that needs to be transmitted through the first path through the third node.
  • the first node determines that the second node is unavailable, it may also determine the availability of the backup link. Therefore, the congestion of the second node is alleviated, and the data packets can be transmitted from the standby link in time, which reduces the delay of the data packets and guarantees the service experience.
  • the first node determining that the third node can be used to transmit the data packet that needs to be transmitted through the first path includes: the first node from The third node receives third information, where the third information includes the size of available space in at least one cache space of the third node, where the at least one cache space corresponds to the at least one backup path one by one, so The destination node of the at least one backup path is the same as that of the first path; if the sum of the available space in the at least one cache space is greater than a third threshold, the first node determines that the third node can be used to transmit the The above-mentioned data packets that need to be transmitted through the first path.
  • the first node can judge whether the backup link is available through the granularity of the path identifier, so that the data packet can be successfully rerouted.
  • the first node determining that the third node can be used to transmit the data packet that needs to be transmitted through the first path includes: the first node from The third node receives the fourth information, the fourth information includes the size of the available space in the fourth cache space of the third node, and the fourth cache space is used for caching the first link that needs to be mapped on the second link.
  • the first node determining that the third node can be used to transmit the data packet includes: the first node receiving fourth information from the third node , the fourth information includes the size of available space in at least one buffer space of the third node, and the at least one buffer space is used for buffering data that needs to be mapped on at least one radio link control channel on the second link package, the at least one buffer space corresponds to the at least one radio link control channel, and the second link is a link between the first node and the third node; if the at least The sum of sizes of available spaces in one cache space is greater than a fourth threshold, and the first node determines that the third node can be used to transmit the data packet that needs to be transmitted through the first path.
  • the first node can determine whether the standby link is available through the granularity of the radio link control channel, so as to achieve successful rerouting of data packets.
  • the first node receives fifth information from the second node, where the fifth information includes The size of the space, if the size of the available space in the first cache space is greater than the fifth threshold, the first node determines that the second node can be used to transmit data packets that need to be transmitted through the first path.
  • the first node receiving fifth information from the second node includes: the first node receiving Yth information from the second node within the fifth duration Five pieces of information, the Y pieces of fifth information include the sizes of the available spaces in the Y first cache spaces; if the sizes of the available spaces in the Y first cache spaces are all greater than the fifth threshold, the first node determines that the The second node may be used to transmit the data packet that needs to be transmitted through the first path.
  • the Y is an integer greater than 1.
  • the first node determines that the congestion of the primary link is relieved, there is no need to reroute the data packets, thereby reducing the impact on the long-term occupation of the backup link.
  • the first threshold is configured for the host node of the first node, or the first threshold is the host node of the first node passing an indication Indicated by the information, or the first threshold is pre-configured to the first node; the first duration is configured by the host node of the first node, or the first duration is configured by the host node of the first node Indicated by the indication information, or the first duration is preconfigured to the first node.
  • the first threshold to the fifth threshold can all be configured according to the above technical solution; similarly, the first time length to the fifth time length can also be configured according to the above technical solution.
  • the thresholds in this application can be flexibly configured according to actual conditions.
  • a communication method includes: a first node receives second information from a second node, the second information includes the size of the available space in the second cache space of the second node, the The second buffer space is used for buffering data packets of the first radio link control channel that need to be mapped on the first link, and the first link is a link between the first node and the second node If the size of the available space in the second cache space is less than or equal to the second threshold, the first node determines to transmit the first data packet through the third node, wherein the first data packet needs to be mapped A data packet of the first radio link control channel on the first link, the main path of the first data packet is the first path, and the second node is the first node on the first path The next hop node, the third node is the next hop node of the first node on the second path for transmitting the first data packet, and the second path is a backup path for the first data packet, The link between the first node and the third node
  • the first node can perform rerouting on the data packet when the link encounters congestion based on the received flow control feedback information at the granularity of the wireless link control channel. On the one hand, it can To alleviate link congestion, on the other hand, it can also reduce the average transmission delay of data packets and improve user experience.
  • the first node determines to transmit the first packet.
  • the first node receiving the second information from the second node includes: the first node receiving K-th information from the second node within a second duration Two pieces of information, the K pieces of second information include the sizes of the available spaces in the K second cache spaces; if L of the sizes of the available spaces in the K second cache spaces are less than or equal to the second threshold , the first node determines to transmit the first data packet through the third node, wherein the K is an integer greater than 1, and the L is less than or equal to the K.
  • the method further includes: the first node receives first information from the second node, and the first information includes the first information of the second node The size of the available space in a cache space, the first cache space is used to cache data packets that need to be transmitted through the first path; the first node according to the size of the available space in the second cache space and the first The size of the available space in the cache space, the first node determines to transmit the first data packet through the third node, and the third node is the first node on the backup path for transmitting the first data packet The node's next hop node.
  • the first node determines, according to the size of the available space in the second cache space and the size of the available space in the first cache space, that the The transmission of the first data packet by the third node includes: if the size of the available space in the second cache space is less than or equal to a second threshold, and/or, the size of the available space in the first cache space is less than or equal to A first threshold, the first node determines to transmit the first data packet through the third node.
  • the first node determines, according to the size of the available space in the second cache space and the size of the available space in the first cache space, that the The transmission of the first data packet by the third node includes: if the size of the available space in the second buffer space received by the first node within a second duration is less than or equal to a second threshold, and/or, the The size of the available space in the first cache space received by the first node within the first duration is less than or equal to a first threshold, and the first node determines to transmit the first data packet through the third node.
  • the first node determines to transmit the first A data packet, including: if the first node determines that within a third period of time before receiving the second information, a first packet with a data volume equal to the size of the available space in the second cache space has been sent to the second node type data packet, wherein the first type data packet is a data packet sent by the first node to the first node mapped on the first radio link control channel on the first link, and the first node determines that through the The third node transmits the first data packet; or, if the first node determines that within a fourth period of time after receiving the second information, the amount of data sent to the second node is equal to the second A data packet of the first type with the size of the available space in the cache space, the first node determines to transmit the first data packet through the third node.
  • the first type of data packet is a data packet that the first node maps on the first radio link control channel on the first link and sends to the first node. That is to say, when the second node has sent the first type of data packet whose data amount is the size of the available space in the second buffer space within a certain period of time before receiving the second information, the first node may also determine that the second The node is unavailable, and it is determined to transmit the first data packet through the third node.
  • the first node may also determine that the second node cannot is used to determine the transmission of the first data packet by the third node. In other words, if the first node determines that the first type of data packet whose data volume is the size of the available space in the second cache space has been sent, the first node may also determine that the second node is not used, and the data can be sent through the third node Bag.
  • the first node determining that the third node can be used to transmit the first data packet includes: the first node receiving the first data packet from the third node Four information, the fourth information includes the size of the available space in the at least one buffer space of the third node, and the at least one buffer space is used for buffering at least one radio link control channel mapped on the second link
  • the at least one buffer space corresponds to the at least one radio link control channel; if the sum of the sizes of the available spaces in the at least one buffer space is greater than the fourth threshold, the The first node determines that the third node is available for transmitting the first data packet.
  • the first node determining to transmit the first data packet through the third node includes: the first node receiving the fourth packet from the third node information, the fourth information includes the size of the available space in the fourth buffer space of the third node, and the fourth buffer space is used for buffering the second radio link control channel mapped on the second link to
  • the third node sends a data packet, and the second link is a link between the first node and the third node; if the size of the available space in the fourth cache space is greater than a fourth threshold, the second link is a link between the first node and the third node;
  • the first node determines to transmit the first data packet through the third node.
  • the first node determining to transmit the first data packet through the third node includes: the first node receiving from the third node The third information, the third information includes the size of the available space in the at least one cache space of the third node, the at least one cache space corresponds to the at least one backup path one by one, the at least one backup path and the at least one backup path
  • the destination nodes of the first path are the same; if the sum of the sizes of available spaces in the at least one cache space is greater than a third threshold, the first node determines to transmit the first data packet through the third node.
  • the first node receives fifth information from the second node, where the fifth information includes The size of the space, if the size of the available space in the second cache space is greater than the fifth threshold, the first node determines that the second node can be used to transmit the first wireless link that needs to be mapped on the first link packets on the control channel.
  • the first node receiving fifth information from the second node includes: the first node receiving P pieces of information from the second node within the fifth duration Five pieces of information, the P pieces of fifth information include the size of the available space in the P second cache spaces; if the size of the available space in the P second cache spaces is greater than the fifth threshold, the first node determines A data packet that needs to be mapped on the first radio link control channel on the first link is transmitted by the third node; wherein the fifth threshold is greater than or equal to the second threshold, and the fifth duration is greater than or equal to the second duration; the P is an integer greater than 1, and the P is greater than or equal to the K.
  • the second threshold is configured for the host node of the first node, or the second threshold is the host node of the first node passing an indication Indicated by the information, or the second threshold is preconfigured to the first node; the second duration is configured by the host node of the first node, or the second duration is the host of the first node The node indicates through the indication information, or the second duration is preconfigured to the first node.
  • the third aspect provides a communication method, which includes: the host node configures a threshold or duration for the first node, or the host node indicates the threshold or duration of the first node through indication information.
  • the threshold may be the minimum value at which the second node is not congested.
  • a communication device configured to execute the communication method in the first aspect or any possible implementation manner of the first aspect.
  • a communication device is provided, and the device is used to execute the communication method in the second aspect or any possible implementation manner of the second aspect.
  • a communication device is provided, and the device is used to implement the communication method in the third aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory, and may be used to execute instructions in the memory, so as to implement the method in any possible implementation manner of the above first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the communication device is a host node device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in the host node.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to implement the method in any possible implementation manner of the second aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the communication device is a host node device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in the host node device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to implement the method in any possible implementation manner of the third aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a host node device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any possible implementation manner of the first aspect to the third aspect.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, a transceiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, receive signals through the transceiver, and transmit signals through the transmitter, so as to execute the method in any possible implementation manner of the first aspect to the third aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be set separately from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • a related data interaction process such as sending indication information may be a process of outputting indication information from a processor
  • receiving capability information may be a process of receiving input capability information from a processor.
  • data output by the processor may be output to the transmitter, and input data received by the processor may be from the transceiver.
  • the transmitter and the transceiver may be collectively referred to as a transceiver.
  • the processing device in the eleventh aspect above may be one or more chips.
  • the processor in the processing device may be implemented by hardware or by software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, which can Integrated in a processor, it can exist independently of that processor.
  • a computer program product includes: a computer program (also referred to as code, or instruction), which, when the computer program is executed, causes the computer to perform the above-mentioned first to The method in any possible implementation manner in the third aspect.
  • a computer program also referred to as code, or instruction
  • a computer-readable medium stores a computer program (also referred to as code, or an instruction) which, when run on a computer, causes the computer to execute the above-mentioned first aspect to The method in any possible implementation manner in the third aspect.
  • a computer program also referred to as code, or an instruction
  • a chip system including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip system executes the methods in each implementation manner of the above-mentioned first aspect to the third method .
  • a communication system includes any one of the above-mentioned device of the fourth aspect, the device of the fifth aspect, and the communication device of the sixth aspect.
  • FIG. 1 is a schematic diagram of an IAB independent networking provided by the present application.
  • FIG. 2 is a schematic diagram of an IAB non-independent networking provided by the present application.
  • Fig. 3 is a schematic diagram of an IAB system architecture provided by the present application.
  • FIG. 4 is a schematic diagram of the IAB network protocol stack provided by the present application.
  • FIG. 5 is a schematic diagram of the IAB node flow control feedback format provided by the present application.
  • Fig. 6 is a schematic diagram of node routing in the IAB network provided by the present application.
  • Fig. 7 is a schematic flowchart of a communication method provided by the present application.
  • Fig. 8 is a schematic flowchart of a communication method provided by the present application.
  • Fig. 9 is a schematic block diagram of a communication device provided by the present application.
  • Fig. 10 is a schematic block diagram of a communication device provided by the present application.
  • the wireless communication systems applicable to the embodiments of the present application include but are not limited to: global system of mobile communication (GSM) system, long term evolution (long term evolution, LTE) frequency division duplex (frequency division duplex, FDD) system , LTE time division duplex (time division duplex, TDD), LTE system, advanced long-term evolution (LTE-Advanced, LTE-A) system, next-generation communication system (for example, 5G, 6G communication system), multiple access systems A converged system, or an evolved system.
  • GSM global system of mobile communication
  • LTE long term evolution
  • FDD frequency division duplex
  • FDD frequency division duplex
  • LTE time division duplex time division duplex
  • LTE-A advanced long-term evolution
  • next-generation communication system for example, 5G, 6G communication system
  • 5G, 6G communication system multiple access systems A converged system
  • evolved system evolved system.
  • the technical solution provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), device to device (device to device, D2D) network , machine to machine (machine to machine, M2M) network, Internet of things (internet of things, IoT) network or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device to device
  • machine to machine machine to machine
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as vehicle to other devices (vehicle to X, V2X, X can represent anything), for example, the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian (vehicle to pedestrian, V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • vehicle to vehicle vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the terminal equipment involved in the embodiment of the present application is an entrance for mobile users to interact with the network, and can provide basic computing capabilities and storage capabilities, display service windows to users, and accept user operation inputs.
  • Terminal equipment in 5G can use new air interface technology to establish signal and data connections with wireless access network equipment, thereby transmitting control signals and business data to the mobile network.
  • the terminal equipment involved in the embodiments of the present application may include various access terminals, mobile equipment, user terminals or user devices with wireless communication functions.
  • the terminal device may be user equipment (user equipment, UE), for example, a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, TV, augmented reality (augmented reality, AR) terminal equipment, etc.
  • UE user equipment
  • a mobile phone mobile phone
  • a tablet computer pad
  • a desktop computer a computer with a wireless transceiver function
  • VR virtual reality
  • TV augmented reality
  • AR augmented reality
  • Terminal equipment can also be wireless terminals in industrial control (industrial control), machine type communication (machine type communication, MTC) terminals, customer premise equipment (CPE), wireless terminals in self-driving , wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ), smart speakers, electronic door locks, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs) , handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, automatic guided vehicles (automatic guided vehicle, AGV), drones, cars, vehicle-mounted devices, wearable devices, 5G network Terminal equipment or terminal equipment in the future evolved public land mobile network (public land mobile network, PLMN) or non-public network (non-public network, NPN), etc.
  • industrial control industrial control
  • MTC machine type communication
  • CPE customer premise equipment
  • wireless terminals in self-driving wireless terminals in remote medical,
  • the wireless access network equipment involved in the embodiment of this application is similar to the base station in the traditional network, and is deployed close to the terminal equipment to provide network access functions for authorized users in a specific area, and can be based on user levels, business needs, etc. Determine transmission tunnels of different qualities to transmit user data.
  • Wireless access network equipment can manage its own resources, use them reasonably, provide access services for terminal equipment on demand, and be responsible for forwarding control signals and user data between terminal equipment and the core network.
  • the radio access network device involved in the embodiment of the present application may be an access device for a terminal device to access the mobile communication system through wireless means.
  • the radio access network device may be: a base station, an evolved base station (evolved node B, eNB), a home base station, an access point (access point, AP) in a wireless fidelity (wireless fidelity, WiFi) system, a station (station , STA), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), macro base station or micro base station, high frequency base station, etc.
  • eNB evolved base station
  • AP access point in a wireless fidelity (wireless fidelity, WiFi) system
  • station station (station , STA), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), macro base station or micro base station, high frequency base station, etc.
  • the wireless access network equipment can also be a next generation base station (next generation node B, gNB) in the NR system, or it can also be a component or a part of equipment constituting a base station, such as a central unit (CU), distributed Unit (distributed unit, DU) or baseband unit (baseband unit, BBU), etc.
  • CU central unit
  • DU distributed Unit
  • BBU baseband unit
  • wireless access network equipment is referred to as network equipment for short.
  • network equipment refers to wireless access network equipment.
  • the network device may refer to the network device itself, or may be a chip applied to the network device to complete the wireless communication processing function.
  • the fifth-generation mobile communication puts forward more stringent requirements in all aspects of network performance indicators.
  • the capacity index has been increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the use of high-frequency small cell networking is becoming more and more popular.
  • the propagation characteristics of high-frequency carriers are poor, the attenuation is serious due to occlusion, and the coverage area is not wide, so a large number of densely deployed small stations are required.
  • IAB technology provides an idea to solve the above two problems: its access link and backhaul link both use wireless transmission solutions to avoid fiber deployment.
  • IAB integrated access and backhaul
  • Figure 1 shows the scenario of IAB independent networking (standalone, SA).
  • a relay node RN relay node, RN
  • IAB node IAB node
  • UE user equipment
  • the wireless backhaul link is connected to the IAB donor (IAB donor) transport.
  • an IAB donor can also be called a donor node (donor node) or a donor base station (donor gNodeB, DgNB), a base station supporting an IAB node, which can specifically include an IAB-donor-CU part and at least one IAB-donor-DU part ;
  • the IAB-donor-CU part may also include an IAB-donor-CU-CP (responsible for the control plane) and at least one IAB-donor-CU-UP (responsible for the user plane).
  • the IAB node can be composed of a mobile terminal (mobile termination, MT) part and a DU (distributed unit, DU) part.
  • the IAB node when the IAB node faces its parent node, it can be used as a terminal device, that is, the role of the MT; when the IAB faces its child node
  • a node a child node may be another IAB node, or an ordinary UE
  • it is regarded as a network device, that is, it acts as a DU.
  • the MT part of the IAB node has part or all functions of the UE.
  • the host base station DgNB can be an access network element with complete base station functions, or an access network element in the form of separation of a centralized unit (CU) and a distributed unit (DU).
  • the core network element serving the UE connect to the 5G core network, 5GC
  • the centralized unit of the host node is referred to as the donor CU (or directly referred to as the CU), and the distributed unit of the host node is referred to as the donor DU.
  • the donor CU may also be the control plane (control plane, CP) and In the form of separation of the user plane (user plane, UP), for example, a CU may consist of one CU-CP and one (or more) CU-UP.
  • multi-hop networking may be used in the IAB network.
  • IAB nodes can support dual connectivity (DC) or multi-connectivity (multi-connectivity) to deal with abnormal conditions that may occur in the backhaul link, such as link interruption Or blocking (blockage) and load fluctuations and other abnormalities, improving the reliability of transmission. Therefore, the IAB network supports multi-hop networking and can also support multi-connection networking. Between the UE served by the IAB node and the IAB donor, there exists at least one transmission path consisting of multiple links.
  • each IAB node regards the adjacent node that provides access and backhaul services as a parent node, and accordingly, each IAB node can be regarded as a child node of its parent node.
  • the parent node of IAB node 1 is IAB donor, and IAB node 1 is the parent node of IAB node 2 and IAB node 3. Both IAB node 2 and IAB node 3 are the parent node of IAB node 4.
  • IAB node The parent node of 5 is IAB node 2.
  • the uplink of the UE can be transmitted to the host site IAB donor through one or more IAB nodes, and then sent to the mobile gateway device (such as the user plane function unit UPF in the 5G core network) by the IAB donor, and the downlink will be transmitted from the mobile gateway device by the IAB donor After being received at the IAB node, it is sent to the UE.
  • Figure 1 shows the IAB independent networking scenario, where both the IAB node and the UE establish a connection with the network only through the air interface of the NR standard.
  • the IAB independent networking scenario shown in Figure 1 is only exemplary. In the IAB scenario combining multi-hop and multi-connection, there are more other possibilities, such as the IAB donor in the figure and the IAB donor under another IAB donor.
  • the IAB node forms a dual connection to serve the UE (that is, the UE supports dual connections, one of which connects directly to the cell served by the IAB donor DU, and the other connection 2 establishes a connection with the IAB node X, which the IAB node X is connected to
  • the IAB host is different from the IAB host corresponding to the UE connection 1), etc., not to be listed one by one.
  • FIG 2 shows the scenario of IAB non-standalone networking (non-standalone, NSA).
  • the IAB node supports 4G and 5G network dual connectivity (E-UTRAN NR dual connectivity, EN-DC), where the LTE base station eNB is the master base station (Master eNB, MeNB), providing the IAB node with LTE The air interface (LTE Uu) is connected, and an S1 interface is established with the 4G evolved packet core network (EPC) for user plane and control plane transmission.
  • EPC evolved packet core network
  • the LTE base station eNB is the main base station.
  • the gNB is a base station of the 5G standard.
  • the IAB-donor gNB provides the NR air interface (NR Uu) connection for the IAB node, and establishes an S1 interface with the core network EPC for user plane transmission.
  • NR Uu NR air interface
  • the UE also supports EN-DC.
  • the UE connects to the main base station eNB through the LTE Uu interface, and connects to the secondary base station IAB node through the NR Uu interface.
  • the secondary base station of the UE can also be an IAB donor gNB.
  • Figure 2 is only an example of networking, and the NSA scenario of the IAB network also supports multi-hop IAB networking.
  • the UE in Figure 2 can be another IAB node, that is, the IAB node can pass through The backhaul link is connected to the IAB donor gNB.
  • the IAB non-independent networking scenario in this application may also be called the EN-DC networking scenario of the IAB.
  • FIG. 3 is an architecture diagram of an IAB network system applicable to this application.
  • the IAB network includes a stand-alone (SA) IAB network and a non-standalone (NSA) IAB network.
  • IAB node includes MT part and DU part, IAB donor can be further divided into DU and CU part, CU can also be divided into CU-CP and CU-UP part.
  • the DU part of each IAB node has an F1 interface with the IAB donor CU.
  • the F1 interface includes two parts: the control plane and the user plane.
  • the user plane is maintained between the IAB-DU and the IAB donor CU-UP.
  • the control plane part is maintained between IAB-DU and IAB donor CU-CP. It should be noted that the F1 interface between the IAB-DU and the IAB donor CU is not shown in FIG. 3 .
  • the IAB node When the IAB node works in SA mode, the IAB node can be single-connected to one parent node, or dual-connected to two parent nodes, where the two parent nodes can be controlled by the same IAB donor, or controlled by different IAB donors . It is enough to establish an F1 interface between the DU part of the IAB node and an IAB donor, and the IAB donor can be connected to the 5G core network (5G core, 5GC).
  • 5G core 5G core, 5GC
  • the IAB-donor-CU-CP is connected to the control plane network element (such as the access and mobility management function AMF) in the 5GC through the NG control plane interface
  • the IAB-donor-CU-UP is connected to the NG user plane interface through the NG Connect to user plane network elements (eg user plane function UPF) in 5GC.
  • the 5G core network can be used for authentication of terminal equipment, mobility management, PDU session management, etc., including functional entities or network elements such as access and mobility management function AMF, user plane function UPF, etc.
  • the IAB-donor-CU-UP can be connected to the EPC (for example, connected to the service gateway (serving gateway, SGW)) through the S1 user plane interface, MeNB and IAB
  • the EPC for example, connected to the service gateway (serving gateway, SGW)
  • SGW serving gateway
  • the MeNB in Figure 3 can also be replaced by a 5G base station gNB, and the LTE-Uu interface in the dotted line in the figure is correspondingly replaced by an NR-Uu interface, and the gNB can establish a user plane and communication with the 5GC. /or the interface of the control plane, the gNB and the IAB-donor provide dual connection services for the IAB node, and the gNB can act as the main base station or the secondary base station of the IAB node.
  • the IAB node in this application may be a UE as a relay node, or a home gateway (residential gateway, RG), or customer premise equipment (customer premise Equipment, CPE) as a relay node. equipment.
  • a home gateway residential gateway, RG
  • customer premise equipment customer premise Equipment, CPE
  • the backhaul adaptation protocol (BAP) layer which can be located in the radio link control (radio link control, On top of the RLC layer, it can be used to implement functions such as routing on the wireless backhaul link and bearer mapping.
  • BAP backhaul adaptation protocol
  • FIG 4 is a schematic diagram of the IAB network user plane and control plane protocol stack
  • (a) in Figure 4 is a schematic diagram of the IAB network user plane protocol stack
  • Figure 4 (b) is a schematic diagram of the IAB network control plane protocol stack.
  • the interface supports the user plane protocol (F1-U/F1*-U) (as shown in (a) in Figure 4) and the control plane protocol (F1-C/F1*-C) (
  • the user plane protocol includes one or more of the following protocol layers: general packet radio service (general packet radio service, GPRS) tunneling protocol user plane (tunneling protocol user plane, GTP-U ), user datagram protocol (user
  • the IAB node and the IAB host can perform interface management, manage IAB-DU, and perform UE context-related configuration, etc.
  • functions such as user plane data transmission and downlink transmission status feedback can be performed between the IAB node and the IAB host.
  • the R16IAB project introduces downlink flow control feedback (flow control feedback) hop-by-hop. ), that is, the IAB node can perform flow control feedback to its parent node, and the flow control feedback can reflect the cache status of the link between the IAB node and its own child nodes.
  • flow control feedback flow control feedback
  • the second is to return the granularity of the routing identifier (BAP routing ID) of the adaptation protocol layer (that is, the available cache size fed back by the IAB node to the parent node is the size of the available cache space corresponding to each BAP routing ID, and the specific feedback BAP control (
  • the format of the control) protocol data unit (protocol data unit, PDU) can refer to (a) in Figure 5);
  • the other feedback is the backhaul link without link control channel (BH RLC channel, BH RLC CH) granularity (that is, the available buffer size fed back by the IAB node to the parent node is the size of the available buffer space corresponding to the BH RLC channel on the link between the IAB node and the parent node
  • the format of the specific feedback BAP control PDU can be referred to in Figure 5 ( b)).
  • the IAB node can send a BAP control PDU containing flow control feedback information to the parent node based on the polling of the parent node, or the IAB node can also directly trigger sending to the parent node based on its own monitoring of the cache status. BAP control PDU for flow control feedback information.
  • the IAB donor and subsequent nodes can be based on the BAP routing ID Look up the configured routing table to select the next hop node until it is transmitted to the downlink target IAB node; after the uplink is added with the BAP routing ID at the IAB node, the IAB node and subsequent nodes look up the configured routing table based on the BAP routing ID Select the next hop node until it is transmitted to the upstream target IAB donor DU.
  • the parent node Based on the hop-by-hop flow control feedback, when the parent node receives the flow control feedback information sent by the child node, if it learns that the link of the child node is congested, it will slow down the transmission of downlink data, which will cause accumulation in the parent node. There is still a risk of buffer overflow. And if link congestion cannot be alleviated in a short time, data packets will be buffered for a long time on the wireless backhaul link and cannot be sent, resulting in excessive delay and affecting user experience.
  • the present application provides a communication method that performs rerouting on data packets when the link is congested, which can relieve link congestion, thereby enabling timely transmission of data packets and reducing the number of data packets.
  • the average transmission delay improves user experience.
  • the size of the available buffer space of a certain granularity (available buffer size, or simply referred to as the available buffer size) fed back by one IAB node #B to another IAB node #A may refer to the IAB node #A can also send to the IAB node #B the maximum data volume of the data packet corresponding to the granularity.
  • the size of the available buffer space corresponding to BAP routing ID #1 is M bytes (byte), which means that IAB node #A can also send IAB
  • the total data volume of the packet carrying BAP routing ID#1 sent by node #B is at most M bytes.
  • the size of the available buffer space corresponding to BH RLC CH#1 is M bytes (byte), which means that IAB node #A is still
  • the total data volume of the data packet mapped on BH RLC CH#1 that can be transmitted to IAB node #B is M bytes at most.
  • BH RLC CH#1 identifies a wireless backhaul RLC channel on the wireless backhaul link between the first node and the second node.
  • the first node can be, for example, any node in the IAB network, or an IAB donor DU); the second node in this application can be a subordinate node of the first node on some main paths.
  • a one-hop node may be, for example, a child node or a parent node of the first node.
  • the first node in this application can be any node in the IAB network, for example, it can be IAB node 1, IAB node 2, or IAB node 5, etc., or it can be the IAB host.
  • the second node can be IAB node 2, which can correspond to downlink transmission at this time; if IAB node 1 is the first node, the IAB host can be the second node, which corresponds to uplink transmission at this time, as follows No longer.
  • the IAB host For normal transmission, the IAB host needs to configure a routing table for each IAB node, that is, configure the next-hop nodes corresponding to different transmission paths (each transmission path is identified by BAP routing ID). At the same time, the IAB host needs to determine the transmission path corresponding to the data transmission on the wireless backhaul link. That is to say, before data transmission, a transmission path will be determined first. This transmission path can be called the main path. Data is routed between the IAB node and the IAB host through the main path. Other paths can be viewed. into a backup (backup) path. It should be understood that the main path or the backup path is defined by the donor base station for transmission.
  • the routing selection is performed based on the BAP routing ID carried in the BAP layer header, and the BAP routing ID is composed of the BAP address (address) and the BAP address of the target node.
  • the BAP path label (path ID) consists of two parts. That is, the BAP routing ID identifies a specific transmission path to the destination node, that is, the main path used to transmit data packets. Normally, the BAP routing ID is unique. It can also be understood that the BAP routing ID (also known as the main route) configured for each data packet is unique. Referring to FIG.
  • the target IAB node 5 of data packet #P1 the main path is path #A: IAB node 1 ⁇ IAB node 2 ⁇ IAB node 5, then the BAP routing ID includes: IAB node 5 and path label #Path 1, the BAP routing ID uses To identify the path #A; the target IAB node 4 of the data packet #P2, the main path is path #B: IAB node 1 ⁇ IAB node 2 ⁇ IAB node 4, then the BAP routing ID includes: IAB node 4 and the path label #Path 2.
  • the BAP routing ID is used to identify the path #B; the target IAB node 4 of the data packet #P3, the main path is path #C: IAB node 1 ⁇ IAB node 3 ⁇ IAB node 4, then the BAP routing ID includes: IAB Node 4 and path label #Path 3, the BAP routing ID is used to identify the path #C.
  • a backup path and its main path are two different transmission paths, and at least one node on the two paths is different.
  • the next-hop IAB node #C on the backup path of a data packet is not the same node as the next-hop node IAB#B on the main path.
  • IAB node 1 can further determine whether backup path #3 and/or backup path #4 are available (available), or determine whether IAB node 3 on the backup path is available (available), or determine that IAB node 1 and the next step on the backup path Whether the wireless backhaul link between hop IAB nodes 3 is available. It should be noted that the IAB node 1 in Figure 6 can also be understood as an IAB donor, or an IAB donor DU.
  • the backup path can be pre-configured.
  • the IAB host can pre-configure the backup path of path #2 on node 1 as path #3 and path #4; or, the backup path can also be determined by the first node according to the destination address, for example, for a data packet carrying the BAP routing ID corresponding to path #2, the first node can determine its destination address If it is an IAB node 9, then according to the routing table configured on the first node, it can be determined that the destination address is the transmission path of the IAB node 9 (such as path #3 and path #4), and then determine the backup path of the data packet The next hop node on (for example, the next hop node of IAB node 1 on path #4 and path #3 is IAB node 3).
  • the backup link of a data packet may refer to the link between the node and the next-hop node on the backup path of the data packet, for example, for the scenario shown in Figure 6 , for IAB node 1, carrying the data packet corresponding to the BAP routing ID of path #2, its backup link may refer to link #2 between IAB node 1 and IAB node 3.
  • the second node is the next-hop node of the first node on the main path. If the main path is available, it is determined that the next hop node of the first node is the second node, that is, it can also be understood that rerouting is not required, or rerouting is stopped; the third node is the next node of the first node on the backup path jump node. If it is determined that the next hop node of the first node is the third node, it can also be understood that the main path is unavailable and rerouting needs to be performed.
  • the second node can be a child node or a parent node of the first node, and similarly, the third node can also be a child node or a parent node of the first node.
  • BH RLC CH wireless backhaul RLC channel
  • next-hop node transmission there can be one or more different BH RLC CHs on a wireless backhaul link, and each BH RLC CH on a wireless backhaul link can provide differentiated QoS guarantees.
  • the main path is unavailable can be understood as the wireless backhaul link between IAB node #A and its next-hop IAB node #B on the main path #1 is unavailable; or it can be understood that its next hop IAB node #B is unavailable; or it can also be understood that at least one wireless backhaul link in the subsequent wireless backhaul links on the main path is unavailable; it can also be It is understood that, for a specific data packet to be transmitted by IAB node #A, the next hop node is unavailable or the wireless backhaul link with the next hop node is unavailable, for example, IAB node #A and the next hop node The link between the hop IAB node #B is not available for the data packets that contain BAP routing ID#1 in the BAP layer or will be mapped to BH RLC CH#1 and transmitted to the next hop IAB node #B, as follows No longer.
  • Fig. 7 is a communication method provided by the present application, and the method in Fig. 7 includes:
  • Step S701 the second node sends information #M1 to the first node, and the information #M1 includes the size of the available buffer space corresponding to BAP routing ID#1 on the second node.
  • BAP routing ID#1 is used to identify the first path, and the second node is the next hop node of the first node on the first path.
  • the information #M1 may be the flow control feedback information of the second node, and the flow control feedback information may include cache status information at the BAP routing ID granularity, which includes the available cache corresponding to the BAP routing ID #1 used to identify the first path the size of the space.
  • the information #M1 sent by the second node includes flow control feedback information
  • the information #M1 can also be considered as being fed back by the second node to the first node.
  • the first path can be regarded as the main path carrying the data packet whose BAP layer routing identifier is BAP routing ID#1, and the data packet that needs to be transmitted through the first path, that is, the BAP layer routing identifier carried in the BAP layer header (for example, BAP routing ID#1) indicates that the transmission path is the data packet of the first path. It should be understood that there may be one or more data packets whose main path is the first path.
  • Step S702 the first node receives the information #M1, and determines according to the information #M1 that the second node is unavailable for the data packets that need to be transmitted through the first path.
  • the first node may determine the next-hop node of the first node according to the size of the available cache space corresponding to the BAP routing ID #1 contained in the information #M1 sent by the second node. For example, in a possible implementation, if in the information #M1 fed back by the second node, the size of the available buffer space corresponding to the BAP routing ID#1 is greater than the threshold TH#1 (or equal to the threshold TH#1), The first node can determine that the primary path for the data packet carrying BAP routing ID#1 is available, or the second node is available for the data packet carrying BAP routing ID#1, or the connection between the first node and the second node The wireless link is available for the data packet carrying BAP routing ID#1, and then the first node can determine that the data packet that needs to be transmitted through the first path is transmitted through the second node.
  • the first node may determine that the The primary path for packets with BAP routing ID#1 is not available, or the second node is not available for packets carrying BAP routing ID#1, or the wireless link between the first node and the second node is not available for carrying BAP Not available for packets with routing ID#1. In this case, the first node needs to select a suitable backup link for these data packets carrying BAP routing ID#1.
  • the first node can determine that there is a backup path that can be used to transmit the data packet carrying the BAP routing ID#1, and the next-hop node of the first node on the backup path is the third node, then the first node can further determine that through The third node transmits the data packets that need to be transmitted through the first path.
  • the first node does not limit the determination of the situation of being equal to the threshold.
  • the first node can determine that the main path carrying the data packet of BAP routing ID#1 is available, in this case, The first node determines that the main path of the data packet carrying the BAP routing ID#1 is unavailable only when the size of the available buffer space corresponding to the BAP routing ID#1 is smaller than the threshold TH#1.
  • the first node determines that the main path carrying the data packet of BAP routing ID#1 is unavailable, in this case, the first node may only be larger than the threshold if the size of the available buffer space corresponding to BAP routing ID#1 TH#1, it can be determined that the main path of the data packet carrying BAP routing ID#1 is available. The same applies to the case of being equal to the threshold described in each specific example later.
  • the flow control feedback information #M1 received by the first node may be BAP routing ID granularity.
  • the first node is IAB node 1
  • the second node is IAB node 2
  • the main path is, path 1: IAB node 1 ⁇ IAB node 2 ⁇ IAB node 4, if the size of the available cache space corresponding to BAP routing ID#1 fed back by IAB node 2 is less than (or equal to) the threshold TH#1, then IAB node 1 may determine that the primary path of packet #P1 is unavailable.
  • link #1 is unavailable, or IAB node 2 is unavailable.
  • Link #1 is a link between the first node and the second node.
  • the first node may receive M pieces of flow control feedback information from the second node within a continuous period #T1, M is a positive integer greater than or equal to 1, and the M pieces of flow control feedback information are
  • the size of the available cache space of the BAP routing ID granularity of the second node is assumed to be the M flow control feedback information, among which N contains the specific value of the available cache space corresponding to the BAP routing ID#1, starting from the first One to N is ⁇ A1, A2,...AN ⁇ (Ax is an integer greater than 0, x is a positive integer, 1 ⁇ x ⁇ N), N ⁇ M, if in ⁇ A1, A2,...AN ⁇ Each value is less than or equal to the threshold TH#1, and the first node can determine that the data packet carrying the BAP routing ID#1 is congested at the second node.
  • the first node needs to select a suitable backup link for these data packets carrying BAP routing ID#1. For example, if the first node can determine that there is a backup path that can be used to transmit the data packet carrying the BAP routing ID#1, and the next-hop node of the first node on the backup path is the third node, then the first node can further determine that through The third node transmits the data packets that need to be transmitted through the first path.
  • the first node determines that the data packet carrying BAP routing ID#1 is congested at the second node, that is, the second node is unavailable for the data packet carrying BAP routing ID#1, or carries BAP routing The primary route of the data packet with ID#1 is unavailable, or the link #1 between the first node and the second node is unavailable for the data packet carrying BAP routing ID#1.
  • the second node is the next hop node of the first node, when the first node determines the data
  • the data packet can be rerouted, that is, an appropriate backup path is selected for the data packet, and the next hop node on the backup path is sent to the next hop node on the backup path. data pack.
  • the first node may receive M pieces of flow control feedback information from the second node within a continuous period #T1, M is a positive integer greater than or equal to 1, and the M pieces of flow control feedback information It is the size of the available buffer space of the BAP routing ID granularity of the second node.
  • N of them contain the specific value of the available buffer space corresponding to the BAP routing ID#1, from The first to Nth are ⁇ A1, A2,...AN ⁇ (Ax is an integer greater than 0, x is a positive integer, 1 ⁇ x ⁇ N), N is a positive integer less than or equal to M, if ⁇ A1, There are at least Y values in A2,...AN ⁇ less than or equal to the threshold TH#1, and Y is a positive integer satisfying 1 ⁇ Y ⁇ N, then the first node can determine that the data packet carrying BAP routing ID#1 is in the second Congestion at the node. In this case, the first node needs to select a suitable backup link for these data packets carrying BAP routing ID#1.
  • the first node can determine that there is a backup path that can be used to transmit the data packet carrying the BAP routing ID#1, and the next-hop node of the first node on the backup path is the third node, then the first node can further determine that through The third node transmits the data packets that need to be transmitted through the first path.
  • the first node can consider that the second node carries BAP routing ID#1 The data packet is still available, the second node can still be selected as the next hop node of the data packet carrying the BAP routing ID#1, and the timer can be stopped.
  • the first node can consider that the second node is for the data carrying BAP routing ID#1 As far as the packet is still available, the second node can still be selected as the next-hop node of the data packet carrying the BAP routing ID#1, and the timer can be stopped.
  • the value of the available cache space of a certain granularity may also be described as the size of the available cache space of a certain granularity, or the value of the available cache space of a certain granularity, which will not be described in detail below.
  • the first node receives M (M is an integer greater than 1) flow control feedback information sent by the second node, the value of the available buffer space corresponding to BAP routing ID#1 with M0 feedback is less than (or equal to) threshold TH#1, or, among the M times of flow control feedback information, the number of flow control feedback information carrying the available cache space corresponding to BAP routing ID#1 is less than (or equal to) threshold TH#1 in
  • the proportion of the M times is greater than (or equal to) RTH1, 0 ⁇ RTH1 ⁇ 1, and the first node can determine that the second node is congested. Specifically, it may be consecutive M0 times or discontinuous M0 times.
  • M is an integer greater than or equal to 1, and M0 is less than or equal to M.
  • the first node receives M (M is an integer greater than or equal to 1) flow control feedback information sent by the second node within the duration #T1 of the timer running, it corresponds to BAP routing ID #1
  • M is an integer greater than or equal to 1
  • the values of the available cache space are all less than (or equal to) the threshold TH#1, and the first node can determine that the data packet carrying the BAP routing ID#1 is congested at the second node. Specifically, it may be consecutive M0 times or discontinuous M0 times.
  • the timer duration #T1 of the first node may also be set by the IAB donor (or IAB donor CU, or IAB donor CP) through a radio resource control (radio resource control, RRC) message or F1AP message.
  • RRC radio resource control
  • the duration #T1 can be configured by BAP routing ID, that is, different BAP routing ID values, the configured duration #T1 can be different, and a timer can be included in the configuration information provided by the IAB donor for the first node
  • BAP routing ID that is, different BAP routing ID values
  • a timer can be included in the configuration information provided by the IAB donor for the first node
  • the duration list, each item in the list contains one or more specific values of BAP routing ID, and the corresponding value of duration #T1.
  • the duration #T1 can be configured by next-hop node, that is, corresponding to each next-hop node of the first node, the configured duration #T1 can be different, but for the same next-hop node, the duration #T1 Applicable to all BAP routing IDs that will be involved in the flow control feedback information of the BAP routing ID granularity fed back by the next hop node to the first node.
  • the configuration information provided by the IAB donor needs to carry one or more values of the configured duration #T1, and it is also necessary to specify which next node each duration #T1 applies to the first node.
  • time length #T1 can also be divided into two cases: BAP routing ID and BH RLC CH, that is, two different time length values are configured for feedback information of two different granularities.
  • BAP routing ID the duration of the timers corresponding to the flow control feedback information at the BAP routing ID granularity
  • duration #T2 the duration of the corresponding timers in the flow control feedback information at the BH RLC CH granularity.
  • the configuration information provided by the IAB donor needs to carry the value of the configured timer duration, and it is also necessary to specify which granularity of flow control feedback information the timer duration is applicable to, that is, specify BAP routing
  • the duration corresponding to the flow control feedback information at the ID granularity is also the corresponding duration to the flow control feedback information at the BH RLC CH granularity.
  • the configuration information provided by the IAB donor to the first node may carry the value of the duration #T1 corresponding to the flow control feedback information at the BAP routing ID granularity, and the duration #T1 is applicable to each different BAP routing ID.
  • time length #T1 For the configuration of time length #T1 in case 3, there can also be a modified configuration method, which distinguishes between uplink and downlink for time length #T1 configuration, that is, providing the first node with the time length for judging whether the next hop node is available based on the flow control feedback information
  • the IAB donor When configuring relevant information, the IAB donor will specify whether the configured duration #T1 is specifically applicable to uplink flow control feedback (hop-by-hop flow control feedback from the parent node to the first node) or downlink flow control feedback (child node to the first node Feedback hop-by-hop flow control feedback).
  • the IAB donor configures the time length #T1-UL-1 for the flow control feedback of all uplink BAP routing ID granularities, and configures the time length #T1-DL for the flow control feedback of all downlink BAP routing ID granularities -1.
  • the first node receives flow control feedback information from the second node, where the flow control feedback information includes the value of the available buffer space corresponding to BAP routing ID#1, for example, #B1. If the first node detects that the data volume of the data packet carrying the adaptation layer routing ID #1 sent to the second node is greater than or equal to #B1, the first node determines: for carrying the adaptation layer routing ID For packets with BAP routing ID#1, the second node is not available.
  • the first node receives flow control feedback information #M1 of BAP routing ID granularity from the second node, which contains the value of the available buffer space corresponding to BAP routing ID #1, such as #B1, and the first node
  • the data volume of the data packet carrying the adaptation layer routing ID #1 that has been sent to the second node is greater than or equal to # B1.
  • the first node determines that the second node is unavailable (or in other words, the link between the first node and the second node# 1 is not available).
  • the first node can perform rerouting on these data packets carrying the adaptation layer routing identifier BAP routing ID#1, such as selecting an available backup path, and sending these data packets to the next hop node on the backup path.
  • the first node receives flow control feedback information #M1 of BAP routing ID granularity from the second node, which contains the value of the available buffer space corresponding to BAP routing ID #1, such as #B1, and the first The node sent to the second node within the duration #TA2 after receiving the flow control feedback information #M1 sent by the second node. B1. Accordingly, the first node determines that the second node is unavailable (or in other words, the link between the first node and the second node# 1 is not available). The first node can perform rerouting on these data packets carrying the adaptation layer routing identifier BAP routing ID#1, for example, select an available backup path, and send these data packets to the next hop node on the backup path.
  • the first node has not yet received another updated flow of BAP routing ID granularity sent by the second node control feedback information.
  • the first node receives flow control feedback information #M1 of BAP routing ID granularity from the second node, which contains the value of the available buffer space corresponding to BAP routing ID #1, such as #B1, the first node After receiving the flow control feedback information #M1, the amount of data sent to the second node to carry the data packet with the routing ID of the adaptation layer as BAP routing ID#1 reaches #B1, and the first node can determine: for the BAP layer to carry the adaptation layer As far as the packet with the BAP routing ID#1 is concerned, the second node is unavailable (or in other words, the link #1 between the first node and the second node is unavailable). The first node can perform rerouting on these data packets carrying the adaptation layer routing identifier BAP routing ID#1, for example, select an available backup path, and send these data packets to the next hop node on the backup path.
  • the first node receives flow control feedback information #M1 of BAP routing ID granularity from the second node, which contains the value of the available buffer space corresponding to BAP routing ID #1, such as #B1, the first node After receiving the flow control feedback information #M1, the data volume of the data packet carrying the adaptation layer routing ID #1 sent to the second node reaches #B1, and after receiving another message sent by the second node Before the flow control feedback information of the updated BAP routing ID granularity (that is, the first node has not yet received the flow control feedback information of another updated BAP routing ID granularity sent by the second node), the first node can determine: for the BAP layer For the data packet carrying the adaptation layer routing identifier BAP routing ID#1, the second node is unavailable (or in other words, the link #1 between the first node and the second node is unavailable). The first node can perform rerouting on these data packets carrying the adaptation layer routing identifier BAP routing ID#1, for example, select an available backup path, and send
  • the timer duration #TA1 of the first node can also be configured for the first node by the IAB donor (or IAB donor CU, or IAB donor CP) through the RRC message or the F1AP message, and there are many configuration methods possibilities:
  • the time length #TA1 can be configured by BAP routing ID, that is, different BAP routing ID values, the configured time length #TA1 can be different, and a timer can be included in the configuration information provided by the IAB donor for the first node Duration list, each item in the list contains one or more specific values of BAP routing ID, and the corresponding duration #TA1 value.
  • the duration #TA1 can be configured by next-hop node, that is, corresponding to each next-hop node of the first node, the configured duration #TA1 can be different, but for the same next-hop node, the duration #TA1 Applicable to all BAP routing IDs that will be involved in the flow control feedback information of the BAP routing ID granularity fed back by the next hop node to the first node.
  • the configuration information provided by the IAB donor needs to carry one or more values of the configured duration #TA, and it is also necessary to indicate which next duration of the first node each duration #TA1 is applicable to.
  • the hop node or which next hop nodes. Wherein, the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the configuration of duration #TA1 can also be to configure a unified timer duration #TA1 for the feedback information of BAP routing ID granularity. That is, the duration of the timer corresponding to the flow control feedback information of all BAP routing ID granularity is duration #TA1.
  • the configuration information provided by the IAB donor needs to carry the value of the configured timer duration #TA1, and also specify the timer duration #TA1, which is the duration of the flow control feedback information applicable to the BAP routing ID granularity .
  • the IAB donor will specify whether the configured duration #TA1 applies to uplink flow control feedback (hop-by-hop flow control feedback fed back from the parent node to the first node) or downlink flow control feedback (feedback from the child node to the first node). Hop-by-hop flow control feedback fed back by the first node).
  • the IAB donor configures the time length #TA1, TA1-UL-1 for the flow control feedback of all uplink BAP routing ID granularities, and configures the time length TA1- for the flow control feedback of all downlink BAP routing ID granularities. DL-1.
  • the acquisition method and configuration method of the timer duration #TA2 are similar to the duration #TA1, for details, refer to the above description of the timer duration #TA1, which will not be repeated here.
  • the first node receives flow control feedback information #M1 at the BAP routing ID granularity from the second node, which may include first indication information corresponding to the BAP routing ID #1.
  • the first indication information is used to indicate that: at the second node, the BAP layer carries the data packet of the adaptation layer routing identification BAP routing ID#1 and congestion has occurred, that is, for the BAP layer carrying the adaptation layer routing identification BAP routing ID# 1 packets, the second node is not available.
  • the first indication information may indicate that the second node cannot In other words, the first indication information may correspond to multiple BAP routing IDs.
  • the first node receives second indication information sent by the second node that it is trying to restore the link, and the second indication information indicates the second node and the next hop node of the second node If a wireless link failure (radio link failure, RLF) occurs between the nodes and the second node is trying to restore the connection with the next hop node, the first node may consider that the second node is unavailable, or that the first node and the next hop node are not available. The link between the second nodes is unavailable. The first node may perform rerouting for all data packets that originally need to be sent via the second node. As an example, referring to FIG.
  • RLF radio link failure
  • IAB node 4 if there is a data packet on IAB node 4 to be sent to IAB node 1, the path indicated by the BAP routing ID carried in the data packet is: IAB node 4 ⁇ IAB node 2 ⁇ IAB node 1. If the IAB node 4 receives the second indication information sent by the IAB node 2, that is, the IAB node 2 finds that the link between the IAB node 2 and the IAB node 1 has RLF and is trying to recover, then the node 4 can consider that it is related to the IAB node 2. The link between Node 2 is unavailable and cannot continue to send any packets to IAB Node 2.
  • the first node can jointly determine which data packets the second node is congested for and which data packets are not congested by the second node based on the feedback information of the two granularities, so as to determine the next hop node for different data packets .
  • the first node receives at least two different BAP layer control PDUs (BAP control PDUs) from the second node, which can be classified into two different BAP control PDUs, respectively containing flow control feedback of two different granularities information.
  • BAP control PDUs BAP layer control PDUs
  • One of the BAP control PDUs contains flow control feedback information at the BAP routing ID granularity.
  • the first node judges (or determines) that the data packet carrying the BAP routing ID#1 is in the The second node is congested, and the second node is unavailable for the data packet carrying BAP routing ID#1, and needs to perform rerouting for the data packet carrying BAP routing ID#1, where BAP routing ID#1 is used to indicate For path #1, the packet carrying BAP routing ID#1 can be regarded as a packet that needs to be transmitted on path #1.
  • the first node judges (or determines) based on the flow control feedback information of the BAP routing ID granularity that the data packet carrying the BAP routing ID # 1 is congested at the second node.
  • another BAP control PDU contains BH RLC CH granular flow control feedback information.
  • the first node can determine that the second node is Which BH RLC CH data packets of the link between the second node and the second node are unavailable, and judging which data packets of the BH RLC CH mapped to the link between the first node and the second node are still available for the second node.
  • the first node judges: which data packets are congested at the second node and the second node (or the link between the first node and the second node) is critical for these data packets If it is unavailable, and then these data packets need to be rerouted, there may be the following four different ways, as follows.
  • Mode 1 When the first node judges for which data packets the link between it and the second node is unavailable, the judgment may be made based on the intersection of two kinds of feedback information judgment results. Exemplarily, if the first node judges based on the flow control feedback information at the BAP routing ID granularity that the second node is unavailable for the data packet carrying the routing identifier BAP routing ID#1, and according to the flow control at the BH RLC CH granularity Feedback information, judging that the second node is unavailable for data packets that need to be mapped to BH RLC CH#1, where BH RLC CH#1 identifies the wireless backhaul link between the first node and the second node A wireless backhaul RLC channel.
  • the first node can take the intersection of the two types of data packets, that is, the first node can determine that for the carrying routing ID of BAP routing ID#1 that needs to be mapped to BH RLC CH# according to the mapping rules 1 to the second node, the second node is unavailable, and these data packets need to be rerouted.
  • which BH RLC CH the first node maps the data packet to and sends to the second node may be determined based on the mapping rules configured by the IAB host, or based on the configuration of the default BH RLC CH obtained by the first node Information is determined.
  • Mode 2 When the first node judges which data packets the link between it and the second node is unavailable for, it may make a judgment based on the union of the judgment results of the two kinds of feedback information. Exemplarily, if the first node judges based on the flow control feedback information at the BAP routing ID granularity that the second node is unavailable for the data packet carrying the routing identifier BAP routing ID#1, and according to the flow control at the BH RLC CH granularity Feedback information, judging that the second node is unavailable for data packets that need to be mapped to BH RLC CH#1, where BH RLC CH#1 identifies the wireless backhaul link between the first node and the second node A wireless backhaul RLC channel.
  • the first node can take the union of the two types of data packets, that is, when the first node can determine that the data packets conform to any one of the two types of data packets, the second node is unavailable, and That is, for a data packet carrying a routing ID of BAP routing ID#1, or to be mapped to a data packet sent to the second node on BH RLC CH#1, the second node is unavailable, and these data packets need to be rerouted.
  • Method 3 Based on the flow control feedback information corresponding to the routing ID granularity, that is, the first node can judge only based on the result of the flow control feedback information at the BAP routing ID granularity. Exemplarily, if the first node judges based on the flow control feedback information at the BAP routing ID granularity that the second node is unavailable for the data packet carrying the routing identifier BAP routing ID#1, and according to the flow control at the BH RLC CH granularity Feedback information, judging that the second node is not available for data packets that need to be mapped to BH RLC CH#1, but available for data packets that need to be mapped to BH RLC CH#2, where BH RLC CH#1 and BH RLC CH#2 respectively identifies two wireless backhaul RLC channels on the wireless backhaul link between the first node and the second node.
  • the first node Based on the judgment results of the two types of feedback information, the first node only determines whether the second node is available for the data packet according to the result of the flow control feedback information at the BAP routing ID granularity, that is, as long as the routing identifier carried in the data packet is BAP routing ID# 1, the first node considers the second node unavailable for this data packet. For example, if a type of data packet is to be mapped to BH RLC CH#2 and transmitted to the second node according to the mapping rules, but the routing identifier carried in this type of data packet is BAP routing ID#1, then the first node considers that the second node Nodes are not available for this type of packet. It can also be understood that at this time, the priority of the flow control information corresponding to the routing ID (BAP routing ID) granularity is high.
  • Mode 4 Based on the flow control feedback information corresponding to the BH RLC CH granularity, that is, the first node can judge only based on the result of the flow control feedback information at the BH RLC CH granularity.
  • the first node judges based on the flow control feedback information of the BAP routing ID granularity that the second node is not available for the data packet carrying the routing ID #1 of BAP routing ID#1, the routing ID carried by the second node is BAP routing ID
  • the data packet of #2 is available, and according to the flow control feedback information of BH RLC CH granularity, it is judged that the second node is not available for the data packet that needs to be mapped to BH RLC CH#1, but for the data packet that needs to be mapped to BH RLC CH
  • the data packet on #2 is available, wherein BH RLC CH#1 and BH RLC CH#2 respectively identify two wireless backhaul RLC channels on the wireless backhaul link between the first node and the second node.
  • the first node Based on the judgment results of the two types of feedback information, the first node only determines whether the second node is available for the data packet according to the result of the BH RLC CH granularity flow control feedback information, that is, as long as the data packet carries the routing identifier indicated in the transmission path
  • the next hop node is the second node, and will be mapped to BH RLC CH#1 to send to the second node, then the first node thinks that the second node is unavailable for this data packet.
  • the first node considers that the second node Nodes are not available for this type of packet. It can also be understood that at this time, the priority of the flow control feedback information corresponding to the BH RLC CH granularity is high.
  • Which decision-making method the first node adopts can be determined by the first node itself; or the second node can indicate to the first node, for example, the second node sends indication information to the first node to instruct the first node to adopt method 1 -Arbitrarily one of modes 4 is used to determine the availability of the link between the first node and the second node for the data packet, specifically through a media access control layer (media access control, MAC) control element (control element, CE) ), or BAP control PDU, etc.
  • media access control layer media access control, MAC
  • CE control element
  • BAP control PDU BAP control PDU
  • the IAB donor CU provides configuration information to the first node through an RRC message or an F1AP message, instructing the first node to use any one of modes 1-4 to judge Availability of the link between the first node and the second node for data packets.
  • the IAB donor configuration method different methods can be configured for the first node on different links (between different second nodes). In this case, the IAB donor provides the first node with In addition to carrying the indication information indicating the specific judgment mode, the configuration information of the configuration information may also carry the identifier of the second node.
  • the threshold value TH#1 and/or TH#2 of the available buffer space in the flow control feedback information involved in the availability of the second node may be determined by the IAB donor (or IAB donor CU, or IAB donor CP) is configured for the first node through RRC message or F1AP message, and there are many configuration methods:
  • the threshold TH#1 can be configured by BAP routing ID, that is, different BAP routing ID values, the configured threshold can be different, and a threshold list can be included in the configuration information provided by the IAB donor for the first node.
  • Each entry (item) in the list contains one or more specific values of the BAP routing ID and the corresponding value of the threshold TH#1.
  • the threshold TH#2 can be configured on a per-BH RLC CH basis, that is, different BH RLC CH values can configure different thresholds.
  • a list of thresholds can be included. Each item in the list contains one or more BH RLC CH identities and the value of the corresponding threshold TH#2.
  • the identity of each BH RLC CH can be determined jointly by the identity of the next-hop node and the BH RLC CH ID on the link between the first node and the next-hop node, wherein the identity of the next-hop node It can be the BAP address of the next hop node.
  • the threshold TH#1 can be configured per next-hop node, that is, each next-hop node corresponding to the first node, the configured threshold TH#1 can be different, but for the same next-hop node, the threshold TH#1 is applicable to all BAP routing IDs that will be involved in the flow control feedback information of the BAP routing ID granularity fed back by the next hop node to the first node.
  • the configuration information provided by the IAB donor needs to carry one or more configured threshold TH#1 values, and it is also necessary to indicate which next hop each of the thresholds applies to the first node. node or which next-hop nodes.
  • the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the threshold TH#2 can be configured per next-hop node, that is, the configured threshold TH#2 can be different for each next-hop node corresponding to the first node, but for the same next-hop node, the threshold TH#2 is applicable to all BH RLC CHs involved in the BH RLC CH granularity flow control feedback information fed back by the next hop node to the first node, or applicable to the connection between the first node and the next hop node. All BH RLC CHs on the inter-radio backhaul link.
  • the configuration information provided by the IAB donor needs to carry one or more configured threshold TH#2 values, and it is also necessary to specify which next hop each of the thresholds applies to the first node node or which next-hop nodes.
  • the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the configuration of the threshold TH#1 or TH#2 can also be divided into two cases of BAP routing ID and BH RLC CH, and two different thresholds are configured, for example, the flow control feedback information corresponding to all BAP routing ID granularity
  • the thresholds are all TH#1
  • the corresponding thresholds in the flow control feedback information of all BH RLC CH granularities are TH#2.
  • the configuration information provided by the IAB donor needs to carry the value of the configured threshold, and it is also necessary to specify which granularity of flow control feedback information the threshold applies to, that is, specify the flow control of the BAP routing ID granularity
  • the threshold corresponding to the feedback information is also the threshold corresponding to the flow control feedback information of BH RLC CH granularity.
  • the configuration information provided by the IAB donor for the first node may carry the value of the threshold TH#1 corresponding to the flow control feedback information at the BAP routing ID granularity, and the threshold TH#1 is applicable to each different BAP routing ID ; Or, carry the value of the threshold TH#2 corresponding to the flow control feedback information of the BH RLC CH granularity in the configuration information, and the threshold TH#2 is applicable to each different BH RLC between the first node and the next hop node CH.
  • the configuration of thresholds TH#1 and TH#2 may also be configured with the same threshold TH#S for flow control feedback of two different granularities. That is, the configuration information provided by the IAB donor carries the value of the configured threshold TH#S.
  • the threshold TH#S is also applicable to the flow control feedback information of the BAP routing ID granularity of the first node and the flow control of the BH RLC CH granularity Feedback. It can be understood that the threshold TH#S is applicable to each different BH RLC CH between the first node and the next hop node, and is also applicable to each different BAP routing ID of the first node.
  • the configuration information provided by the IAB donor needs to carry the value of the configured threshold TH#S.
  • the IAB donor will specify whether the configured threshold is suitable for uplink flow control feedback (hop-by-hop flow control feedback from the parent node to the first node) or downlink flow control feedback (child node to the first node). Hop-by-hop flow control feedback of node feedback).
  • the IAB donor configures the threshold value TH-UL-1 for the flow control feedback of all uplink BAP routing ID granularity, and configures the corresponding threshold value TH-UL-1 for the flow control feedback configuration of all uplink BH RLC CH granularity.
  • UL-2 configure the threshold TH-DL-1 for flow control feedback at the granularity of all downlink BAP routing IDs, and configure the corresponding threshold TH-DL-2 for flow control feedback at the granularity of all downlink BH RLC CHs.
  • the IAB donor configures the threshold TH-UL for all uplink flow control feedback, and configures the threshold TH-DL for all downlink flow control feedback.
  • the first node determines that the second node is unavailable for certain BAP routing ID packets, the first node can perform rerouting for those packets, select an appropriate alternate path, and then forward the selected alternate path
  • the next hop node for example, the third node
  • this embodiment of the present application further includes step S703, the third node sends flow control feedback information to the first node.
  • the flow control feedback information sent by the third node to the first node may include: BAP routing ID granularity flow control feedback information #M3, and/or BH RLC CH granularity flow control feedback information #M4.
  • the first node may receive a BAP control PDU from the third node, which includes BAP routing ID granular flow control feedback information, and the BAP routing ID granular flow control feedback information includes a plurality of corresponding to different BAP routing ID The value of available cache space.
  • step S704 the first node determines, according to the flow control feedback information sent by the third node, that the third node can be used to transmit data packets that need to be rerouted.
  • the data packet that needs to be rerouted by the first node may be a data packet that needs to be transmitted through the first path.
  • the first path can be regarded as the main path carrying the data packet whose BAP layer routing identifier is BAP routing ID#1.
  • the first node may determine according to the flow control feedback information #M3 that the third node can be used to transmit the data packet carrying the BAP layer routing identifier as BAP routing ID#1.
  • the first node determines that the third node can be used to transmit the data packet carrying the BAP layer routing ID as BAP routing ID#1. It can also be understood that the first node determines that the third node can be used for transmission and needs to perform rerouting The data packet, the data packet that needs to be rerouted, that is, the data packet that the first node determines that the second node is unavailable and needs to be rerouted in the aforementioned step S702 (for example, carrying the BAP layer routing identifier as BAP routing ID# 1 packets).
  • the first node receives the flow control feedback information #M3 sent by the third node.
  • the flow control feedback information #M3 may be BAP routing ID granularity flow control feedback information, which contains multiple corresponding Depending on the value of the available buffer space of different BAP routing IDs, among these different BAP routing IDs, one or more of the included destination nodes have the same BAP address field, then for a certain BAP address, if all of the BAP addresses in #M3 include The sum of the available cache space values corresponding to the BAP routing ID of the BAP address is greater than or equal to the preset threshold TH#3, then the first node can determine that the third node is available for the data packet whose destination node is the BAP address, or The third node can be used as the next hop node on the backup path that can be selected when the first node performs rerouting for the data packet of the BAP address at the destination node.
  • the first node can determine that the third node is for the destination node Packets for this BAP address are not available.
  • BAP routing ID#2 BAP routing ID#2, BAP routing ID#3, BAP routing ID#4 whose destination node fields are all is BAP address#1
  • SumBAP address#1 SumBAP address#1 is an integer greater than or equal to 0
  • A2 A2 is greater than 0 integer
  • the first node can determine that the third node is the data of BAP address 1 for the destination node The packet is available, that is, link #2 is available for packets whose destination node is BAP address 1.
  • Link #2 is a wireless backhaul link between the first node and the third node. If the BAP address of the destination node carried in BAP routing ID#1 is also BAP address#1, then the first node judges that the second node is not available for the data packet carrying the BAP layer routing ID as BAP routing ID#1 At this time, if rerouting is performed on these data packets, the third node may be selected as the next hop node. Therefore, link #2 can also be understood as a backup link that needs to perform rerouting and carries a data packet whose BAP layer routing identifier is BAP routing ID #1.
  • IAB node 1 the path indicated by the BAP routing identifier BAP routing ID#1 contained in the data packet to be sent is path 2, that is, the data packet
  • the destination node is IAB node 9, and the main path is path #2.
  • IAB node 1 has determined that IAB node 2 is not available for the data packet to be sent based on the flow control feedback information of IAB node 2 (the second node). Packets to be sent are rerouted.
  • the value of the available buffer space corresponding to BAP routing ID3 is B3, and the value of the available buffer space corresponding to BAP routing ID 4
  • the value is B4, where BAP routing ID3 is used to identify route 3 to IAB node 9, BAP routing ID4 is used to identify route 4 to IAB node 9, and IAB node 1 pre-configures threshold TH#3, if B3+B4 is greater than (or Equal to) threshold TH#3 (or also can be equal to threshold TH#3), then IAB node 1 determines that the link between it and IAB node 3 is the data of the BAP address of IAB node 9 for the destination node identification carried in BAP layer Packages are available links. IAB node 1 can send the data packet containing BAP routing ID#1 to be sent to IAB node 3 when performing rerouting.
  • the granularity of the preset threshold TH#3 on the first node can have the following multiple possibilities:
  • the threshold TH#3 can be the granularity of the destination node (or the granularity of the target BAP address carried by the data packet at the BAP layer ), that is, different target nodes can set different thresholds; or, the threshold TH#3 is the granularity of the first node, that is, the first node configures a threshold TH#3, which is applicable to different BAP addresses; or , the threshold TH#3 can also be at the granularity of the next-hop node, that is, there can be different thresholds TH#3 for different next-hop nodes of the first node, wherein the threshold TH#3 corresponding to each next-hop node #3, applicable to all BAP addresses involved in the flow control feedback information of the BAP routing ID granularity fed back by the next hop node to the first node.
  • the specific acquisition method of the threshold TH#3 may be pre-configured by the IAB donor (which may be the IAB donor CU, or the IAB donor CU-CP) to the first node (for example, the IAB node 1 in FIG.
  • the donor can specifically configure the threshold TH#3 to the first node through an RRC message or an F1AP message; or, the third node (such as the IAB node 3 in FIG. 6 ) notifies the first node (such as the third node) of the threshold TH#3 after determining it.
  • the node notifies the first node of the threshold TH#3 through the BAP control PDU or MAC CE); or, the threshold TH#3 can also be determined by the first node itself.
  • the IAB donor sends the threshold TH#3 to the first node
  • the configuration message for configuring the threshold TH#3 for the first node
  • the notification message for configuring the threshold TH#3 for the first node
  • it may be indicated as the first What kind of granularity is the configuration of the threshold TH#3 provided by the node.
  • the first node obtains the threshold TH#3 by means of configuration by the IAB donor or notification by the third node, for the case where the threshold TH#3 is of a different granularity, it can also be sent to the first node by the IAB donor
  • the configuration message of the configuration message or the notification message sent by the third node to the first node indicates the applicable range of each configured threshold TH#3.
  • the threshold TH#3 of the first node is the granularity of the destination node
  • the configuration message (used to configure the threshold TH#3 for the first node) sent by the IAB donor to the first node or in the configuration message sent by the third node to the first node A node's notification message (used to configure the threshold TH#3 for the first node) will carry one or more different threshold TH#3 values, and need to indicate the applicable value of each threshold TH#3
  • the identification of one or more destination nodes that is, the BAP address of the destination node
  • the configuration message sent to the first node by the IAB donor (for configuring the threshold TH#3 for the first node) or in the notification message sent by the third node to the first node (for configuring the threshold TH#3 for the first node) will carry one or more different The value of the threshold TH
  • the third node may obtain configuration information from the IAB donor (which may be the IAB donor CU, or the IAB donor CU-CP) in advance , the configuration information can include any one or more of the following: what kind of granularity threshold TH#3 the third node provides to the first node, and the thresholds of different granularities that the third node needs to provide to the first node.
  • the specific value of TH#3 and the applicable range of each threshold TH#3, and the applicable range of each threshold TH#3 can be understood in conjunction with the description in the previous paragraph.
  • the first node may receive W pieces of flow control feedback information from the third node within a continuous period #T3, W is a positive integer greater than or equal to 1, and the W pieces of flow control feedback information is the size of the available buffer space of the BAP routing ID granularity of the third node, assuming that among the W flow control feedback information, Z includes the size of the available buffer space corresponding to a backup path of a data packet to be rerouted Assuming that the target node of the rerouting data packet is the node identified by BAP address#1, among the Z flow control feedback information, each flow control feedback information includes all BAPs of the BAP address#1 The sum of the available cache space values corresponding to the routing ID, the result from the first to the Zth is ⁇ B1, B2,...BZ ⁇ (Bj is an integer greater than 0, j is a positive integer, 1 ⁇ j ⁇ Z), Z ⁇ W, if each of ⁇ B1, B2,...Bz ⁇ is greater than (or equal to) the threshold TH#
  • the first The node may determine that the third node is available for the data packet to be rerouted, or that the third node may serve as a next-hop node on a backup path that the first node may select when performing rerouting for the data packet to be rerouted. Conversely, if less than R of ⁇ B1, B2, . . . Bz ⁇ are greater than (or equal to) the threshold TH#3, the first node may determine that the third node is unavailable for the data packet to be rerouted.
  • the first node may determine the third node's The data packet is available; otherwise, if the sum of ⁇ B1, B2, ... Bz ⁇ is less than (or equal to) the threshold TH#3, the first node may determine that the third node is unavailable for the data packet to be rerouted.
  • the first node can determine that the third node is available for the data packet to be rerouted; on the contrary, if the ratio of Nabove to W is less than the threshold value RTH5, the first node can determine that the third node is available for the data packet to be rerouted. Rerouted packets are not available.
  • the first node can determine that the third node is available for the data packet to be rerouted; on the contrary, if the ratio of Nabove to W is less than the threshold value RTH5, the first node can determine that the third node is available for the data packet to be rerouted. Rerouted packets are unavailable
  • the first node receives the BAP routing ID granular flow control feedback information sent by the third node
  • BAP routing ID of BAP address #1 (for example, BAP routing ID #2, BAP address contained in BAP routing ID #3 are all BAP address #1) corresponding to the available buffer space value. If there is only the value of the available cache space corresponding to the BAP routing ID of the destination node BAP address#1, or if the sum of the available cache space values corresponding to the BAP routing ID of the destination node BAP address#1 is greater than
  • the included destination node is that the sum of the values of the available cache space corresponding to the BAP
  • the acquisition method and configuration method of the first node duration #T3 are similar to the acquisition method and configuration method of the aforementioned duration #T1, and will not be repeated here.
  • the configuration and acquisition of the flow control feedback information W, Z, R, and RTH5 received by the first node in the above embodiment are similar to the acquisition and configuration of the aforementioned threshold TH#1, and will not be repeated here.
  • the first node may determine that the third node can be used to transmit the data packet that needs to be rerouted according to the BH RLC CH granularity flow control feedback information #M4 sent by the third node.
  • the data packet that needs to be rerouted by the first node may be a data packet that needs to be transmitted through the first path.
  • the first path can be regarded as the main path carrying the data packet whose BAP layer routing identifier is BAP routing ID#1.
  • the path indicated by the BAP routing identifier (for example, BAP routing ID#1) contained in the data packet to be sent is path 2, That is, the destination node of the data packet is IAB node 9, the main path is path #2, and IAB node 1 has determined that IAB node 2 is unavailable for the data packet to be sent based on the flow control feedback information of IAB node 2 (second node) , it is necessary to perform rerouting on the data packet to be sent.
  • IAB node 1 receives BH RLC CH granularity flow control feedback information from IAB node 3 (the third node), and further judges the data packet (or rerouting data packet) to be sent by the third node based on the feedback information it's usable or not. Based on the flow control feedback information #M4 of the BH RLC CH granularity of the third node, the first node judges whether the third node is available for the rerouted data packet (for example, a data packet carrying a BAP routing ID of BAP routing ID#1), specifically There are several possibilities as follows, which will be introduced respectively below.
  • Possibility 1 the data packet that needs to be rerouted at the first node (take the data packet carrying the BAP routing ID as BAP routing ID#1 as an example) between IAB node 1 (the first node) and IAB node 3 (the third node) ) (for convenience, referred to as link #103), the appropriate BH RLC CH that needs to be mapped to (for example, BH RLC CH#02 on link #103) is configured, that is, the first The node is configured with a BH RLC CH to which rerouting packets need to be mapped on the backup link #103.
  • the first node can determine that the third node (IAB node 3) is available for the rerouting data packet carrying the BAP routing ID#1; otherwise, the IAB node 1 can determine that the IAB node 3 is BAP for carrying the BAP routing ID Rerouted packets with routing ID#1 are not available.
  • the first node can select any BH RLC CH on link #103 to send to the third node when it determines that it needs to send the rerouting data packet to the third node, therefore, if the third node In the flow control feedback information #M4 sent to the first node, if the value of the available buffer space corresponding to any BH RLC CH is greater than (or equal to) the threshold TH#4, the first node (IAB node 1) can determine The third node (IAB node 3) is available for the rerouting data packet carrying the BAP routing ID as BAP routing ID#1.
  • the IAB node 1 can determine that the IAB node 3 is identified as a BAP routing ID for carrying a BAP route Rerouted packets for #1 are not available.
  • Possibility 3 the data packet that needs to be rerouted at IAB node 1 (take the data packet carrying the BAP routing ID as BAP routing ID#1 as an example) on the link #103 between IAB node 1 and IAB node 3,
  • An appropriate BH RLC CH to be mapped to is not configured, that is, a BH RLC CH to which the first node is not configured to reroute data packets on the backup link #103 to be mapped to.
  • the first node can select any BH RLC CH on link #103 to send to the third node when it determines that it needs to send the rerouting data packet to the third node, therefore, if the third node In the flow control feedback information #M4 sent to the first node, the sum of the values of the available buffer spaces corresponding to all different BH RLC CHs is greater than (or equal to) the threshold TH#4, then the first node (IAB node 1) can determine The third node (IAB node 3) is available for the rerouting data packet carrying the BAP routing ID as BAP routing ID#1.
  • the IAB node 1 can determine that the IAB node 3 is identified as BAP routing for carrying a BAP route The rerouted packet with ID#1 is not available.
  • IAB node 1 judges the third node (IAB node 3) through any one of the above three kinds of possibilities. After the rerouting data packet carrying the BAP routing ID is BAP routing ID#1 is available, it can send the The packet containing BAP routing ID#1 is sent to IAB node 3 when performing rerouting.
  • the granularity of the preset threshold TH#4 on the first node may have the following possibilities:
  • the threshold TH#4 may be at the granularity of BH RLC CH, that is, corresponding to the threshold between the first node and the third node.
  • the threshold TH#4 is the granularity of the first node, that is, the first node configures a threshold TH#4, which is for the first node and each different All BH RLC CHs on the link between the next hop node (or the third node) on the backup path are applicable; or, the threshold TH#4 can also be the granularity of the next hop node, that is, for the first node
  • Different next-hop nodes can have different thresholds TH#4, wherein, the threshold TH#4 corresponding to each next-hop node is applicable to the BH RLC CH granularity fed back by the next-hop node to the first node All BH RLC CHs involved in the flow control feedback information.
  • the specific acquisition method of the threshold TH#4 can be pre-configured by the IAB donor (or IAB donor CU, or IAB donor CU-CP) to the first node (such as IAB node 1 in Figure 6), Specifically, the IAB donor can configure the threshold TH#4 to the first node through the RRC message or the F1AP message; or, the third node (such as the IAB node 3 in FIG. 6 ) notifies the first node (such as the first node) of the threshold TH#4 after being determined. The three nodes notify the first node of the threshold TH#4 through the BAP control PDU or MAC CE); or, the threshold TH#4 can also be determined by the first node itself.
  • the IAB donor sends the first node In the configuration message (for configuring the threshold TH#4 for the first node) or in the notification message (for configuring the threshold TH#4 for the first node) sent by the third node to the first node, it may be indicated as the first What kind of granularity (BH RLC CH granularity, or next-hop node granularity, or first node granularity) is the configuration of the threshold TH#4 provided by the node.
  • the first What kind of granularity BH RLC CH granularity, or next-hop node granularity, or first node granularity
  • the first node obtains the threshold TH#4 by means of configuration by the IAB donor or notification by the third node, for the case where the threshold TH#4 is of a different granularity, it can also be sent to the first node by the IAB donor
  • the configuration message of the configuration message or the notification message sent by the third node to the first node indicates the applicable range of each configured threshold TH#4.
  • the threshold TH#4 of the first node is BH RLC CH granularity
  • the configuration message used to configure the threshold TH#4 for the first node
  • the configuration message sent by the IAB donor to the first node or in the configuration message sent by the third node to In the notification message of the first node (used to configure the threshold TH#4 for the first node)
  • it will carry one or more different values of the threshold TH#4, and it is necessary to indicate the value of each threshold TH#4.
  • each BH RLC CH can be specifically identified by the link identifier and the BH RLC CH ID, and the link identifier can be identified by the next hop node in the first section (for example, the next Indicated by the BAP address of the hop node); for another example, if the threshold value TH#4 of the first node is the granularity of the next hop node, the configuration message sent to the first node by the IAB donor (used to configure the threshold value for the first node TH#4) or in the notification message (used to configure the threshold TH#4 for the first node) sent by the third node to the first node, will carry one or more different values of the threshold TH#4, and It is necessary to indicate the identities of one or more next-hop nodes (for example, the BAP address of the next-hop node) to which the value of each threshold TH#4 applies.
  • the third node may obtain configuration information from the IAB donor (which may be the IAB donor CU, or the IAB donor CU-CP) in advance , the configuration information can include any one or more of the following: what kind of granularity threshold TH#4 does the third node provide to the first node, and the thresholds of different granularities that the third node needs to provide to the first node.
  • the specific value of TH#4 and the applicable range of each threshold TH#4, and the applicable range of each threshold TH#4 can be understood in conjunction with the description in the previous paragraph.
  • the method for judging whether the backup path is available can also refer to the method for judging whether the main path is available in step S702 , which will not be repeated here.
  • the first node can choose arbitrarily One of the backup links (or backup paths) is used to reroute the packet; or, the IAB donor (or IAB donor CU, or IAB donor CU-CP) can be a different backup link (or backup path) ) to set different priorities and provide them to the first node, and the first node selects the backup link (or backup path) with the highest priority among multiple available backup links (or backup paths) to reroute the data packet .
  • the first node selects a backup link (or backup path) for rerouting the data packet, it transmits the rerouted data packet to the next-hop node corresponding to the backup link (or backup path).
  • the configuration of the backup link (or backup link and priority, or backup path and priority) can be configured at the granularity of BAP routing ID.
  • the first node determines whether to reroute a data packet, which may specifically be: in addition to judging whether the main path of the data is available (or whether the first link on the main path is available, or whether the first link on the main path is available). In addition to the next hop node of the node, that is, whether the second node is available), it is also necessary to determine whether the data packet has an available backup path (or an available backup link, or the next hop node of the first node on the available backup path) That is, whether the third node is available).
  • the data packet can be rerouted (that is, the backup path is selected and the data packet is sent to the next hop node on the backup path ), otherwise the first node does not reroute the data packet.
  • the first node may simultaneously receive the flow control feedback information sent by the second node and the flow control feedback information sent by the third node. Alternatively, the first node first receives the flow control feedback information sent by the third node, and then receives the flow control feedback information from the second node. It can also be understood that the relative order between step S703 and step S704 and the previous step S701 - step S702 is not limited in any way.
  • step S701 and step S702 can form a separate embodiment, which is used to determine whether the main path of the data packet is available, and which data packets need to be rerouted; step S703 and step S704 are optional steps, and can also form a separate An embodiment of the method is used to determine whether the backup link of the data packet is available.
  • the first node after the first node determines that the second node is unavailable and determines that the next hop is the third node, it can continue to monitor the cache status of the second node to determine whether the second node is available.
  • the first node can also cancel the rerouting of these data packets after the congestion on the main path of the data packets is alleviated, so that the data packets can continue on the main path upload.
  • the first node can start a timer (such as timer T-routing back) when rerouting the data packet, so as to monitor whether the congestion at the second node is alleviated, and judge whether the second node can continue to use.
  • this embodiment of the present application further includes step S705 and step S706.
  • step S705 the specific description is as follows.
  • Step S705 the first node receives the information #M5 sent by the second node.
  • the information #M5 may be the flow control feedback information sent by the second node, and the flow control feedback information may be the flow control feedback information of the BAP routing ID granularity, which includes the information related to the BAP routing ID #1 (used to indicate the first path, The first path is the main path of the data packet, and the next hop node of the main path is the size of the available buffer space corresponding to the second node).
  • Step S706 the first node determines whether the second node is available for the data packet carrying the BAP routing ID#1 that has been rerouted.
  • the first node judges (or determines) according to the information #M5 that the second node is available for the data packet carrying the BAP routing ID#1 that has performed rerouting, the first node can stop the packet carrying the BAP routing ID#1 to be transmitted.
  • the rerouting of the data packet of ID#1 is to re-route according to the BAP routing ID part in the data packet header, and send this type of data packet to the second node. Otherwise, the first node may continue to perform rerouting of such packets.
  • the first node During specific execution, if the first node has been described based on the aforementioned step S702, it is judged that the link between it and the second node is not available for the data packets carrying BAP routing ID#1, and has been targeted at these carrying BAP routing ID After the #1 data packet has been rerouted (it can also be understood as selecting another backup path for transmission, such as sending these data packets to the third node), if the first node receives the updated flow control feedback from the second node In the information #M5, if the value corresponding to the available buffer space of the BAP routing ID#1 is greater than (or equal to) the threshold TH#5, it can be considered that the link between the first node and the second node is suitable for carrying the BAP routing ID#1 As far as the data packets are already available, the first node can reroute these data packets to the second node when performing routing selection, that is, cancel the rerouting of these data packets, and continue to send the data packets to the second node.
  • the first node judges whether it is necessary to stop the rerouting mechanism that has been executed, and it can be judged based on the threshold TH#5 and the rerouting recovery timer (taking the timer named T-routing back#1 as an example): if the first A node has been based on the description of the aforementioned step S702, judging that the link between it and the second node is not available for the data packets carrying BAP routing ID#1, and has already carried out these data packets carrying BAP routing ID#1 After rerouting (also can be understood as selecting other backup paths for transmission, such as sending these data packets to the third node), if the first node receives the second In the one or more updated flow control feedback information sent by the node, the values corresponding to the available buffer space of BAP routing ID#1 are all greater than (or equal to) the threshold TH#5, then the first node can consider that the second node is suitable for carrying The data packet of BAP routing ID#1 is already available, in other words
  • step S702 if the first node has been described based on the aforementioned step S702, it is judged that the link between it and the second node is not available for the data packets carrying BAP routing ID#1, and the link for these carrying BAP routing ID#1 has been determined.
  • the first node receives the second node within a continuous period #T4 T flow control feedback information, T is a positive integer greater than or equal to 1, the T flow control feedback information is the size of the available cache space of the BAP routing ID granularity of the second node, assumed to be the T flow control feedback information , there are S numbers containing the specific values of the available cache space corresponding to BAP routing ID#1, from the first to the Sth are ⁇ C1, C2,...CS ⁇ (Cx is an integer greater than 0, x is positive integer, 1 ⁇ x ⁇ S), S is a positive integer less than or equal to T, if each value in ⁇ C1, C2,...CS ⁇ is greater than (or equal to) the threshold TH#5, then the first node can consider The second node is already available for the data packet carrying BAP routing ID#1.
  • T is a positive integer greater than or equal to 1
  • the T flow control feedback information is the size of the available cache space of the BAP routing ID granularity of the second node, assumed to be the
  • the link between the first node and the second node is already available for the data packet carrying BAP routing ID#1.
  • a node may reroute these data packets to the second node when performing route selection, that is, cancel the rerouting of these data packets, and continue to send the data packets to the second node.
  • step S702 if the first node has been described based on the aforementioned step S702, it is judged that the link between it and the second node is not available for the data packets carrying BAP routing ID#1, and the link for these carrying BAP routing ID#1 has been determined.
  • the first node receives the second node within a continuous period #T4 T flow control feedback information, T is a positive integer greater than or equal to 1, the T flow control feedback information is the size of the available cache space of the BAP routing ID granularity of the second node, assumed to be the T flow control feedback information , there are S numbers containing the specific values of the available cache space corresponding to BAP routing ID#1, from the first to the Sth are ⁇ C1, C2,...CS ⁇ (Cx is an integer greater than 0, x is Positive integer, 1 ⁇ x ⁇ S), S is a positive integer less than or equal to T, if there are at least V values in ⁇ C1, C2,...CS ⁇ that are greater than or equal to the threshold TH#5, V satisfies 1 ⁇ V ⁇ If S is a positive integer, the first node can consider that the second node is already available
  • the first node may consider that the second node is already available for the data packet carrying the BAP routing ID#1. Or, if before the timer expires (that is, within 35s after the timer is started), among the T updated flow control feedback information of the next-hop node, there are J pieces of flow control feedback information corresponding to the BAP
  • the values of the available cache space of routing ID#1 are all greater than (or equal to) the threshold TH#5, and J is a positive integer satisfying 1 ⁇ J ⁇ T, then the first node can consider that the second node carries the BAP routing ID Packet #1 is still available.
  • the first node can consider that the second node is for the data carrying BAP routing ID#1 As far as the packets are still available, the first node can reroute these data packets to the second node when performing routing selection, that is, cancel the rerouting of these data packets, continue to send the data packets to the second node, and Counting of this timer can be stopped.
  • the acquisition method and configuration method of the first node duration #T4 are similar to the acquisition method and configuration method of the aforementioned duration #T1, and will not be repeated here.
  • the first node determines that the second node is already available. Specifically, it may be consecutive T1 times or discontinuous T1 times. T1 is less than or equal to T.
  • the threshold value TH#5 of the available cache space in the flow control feedback information involved in judging the availability of the second node may be determined by the IAB donor (or the IAB donor CU, or the IAB
  • the donor CP is configured for the first node through the RRC message or the F1AP message, and the configuration method can have multiple situations:
  • the threshold TH#5 can be configured by BAP routing ID, that is, different BAP routing ID values, the configured threshold can be different, and a threshold list can be included in the configuration information provided by the IAB donor for the first node.
  • Each entry (item) in the list contains specific values of one or more BAP routing IDs, and corresponding threshold TH#5 values.
  • the threshold TH#5 can be configured per next-hop node, that is, the configured threshold TH#5 can be different for each next-hop node corresponding to the first node, but for the same next-hop node, the threshold TH#5 is applicable to all BAP routing IDs that will be involved in the flow control feedback information of BAP routing ID granularity fed back by the next hop node to the first node.
  • the configuration information provided by the IAB donor needs to carry one or more configured threshold TH#5 values, and it is also necessary to indicate which next hop each of the thresholds applies to the first node node or which next-hop nodes.
  • the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the threshold TH#5 can also be configured for the flow control feedback information at the BAP routing ID granularity.
  • the threshold corresponding to all the flow control feedback information at the BAP routing ID granularity is TH#5.
  • the configuration information provided by the IAB donor needs to carry the value of the configured threshold TH#5, and it is also necessary to indicate that the threshold is specifically applicable to the flow control feedback information at the BAP routing ID granularity.
  • the configuration information provided by the IAB donor for the first node may carry the value of the threshold TH#5 corresponding to the flow control feedback information at the BAP routing ID granularity, and the threshold TH#5 is applicable to each different BAP routing ID .
  • the IAB donor will specify whether the configured threshold applies to uplink flow control feedback (hop-by-hop flow control feedback from the parent node to the first node) or downlink flow control feedback (feedback from the child node to the first node). hop-by-hop flow control feedback).
  • the IAB donor configures the threshold TH#5-UL-1 for the flow control feedback of all uplink BAP routing ID granularity, and configures the threshold TH#5 for the flow control feedback of all downlink BAP routing ID granularity -DL-1.
  • the configuration method and acquisition method of the flow control feedback information T, T1, S, J, V and RTH2 received by the first node in the above embodiment are similar to the above threshold TH#1 acquisition method and configuration method, here I won't repeat them here.
  • the X, Y, M, N, B1 configuration methods and acquisition methods involved in the first node judging whether the second node is available based on the flow control feedback information and the acquisition method and threshold TH#1 in the above embodiment The configuration method is similar and will not be repeated here.
  • the start of the rerouting timer may be: as an example, after the first node determines in step S702 that the second node is unavailable for the data packet carrying the BAP routing ID#1, it starts the timer T-routing back#1 for monitoring the second node.
  • the congestion relief situation of the two nodes; or, the first node may also determine in step S702 that after the second node is unavailable for carrying the data packet with BAP routing ID#1, if the updated flow control sent by the second node is received In the feedback information, when the value of the available buffer space corresponding to the BAP routing ID (such as BAP routing ID#1) carried in the rerouting data packet is greater than (or equal to) the threshold TH#5, restart the timer T -routing back#1.
  • the rerouting timer stops operating, which can be specifically: if the first node receives the flow control feedback information updated by the second node before the rerouting timer T-routing back#1 times out, and the flow control feedback information If the value of the available cache space corresponding to the BAP routing ID#1 is less than (or equal to) the threshold TH#1, then stop the timing of the timer T-routing back#1. That is to say, if it is detected that the flow control feedback information is less than the threshold TH#1, the first node believes that the second node is still unavailable for the data packets carrying BAP routing ID#1, and the first node can continue to process these data packets at this time. Packets perform rerouting operations.
  • the duration of the rerouting recovery timer T-routing back#1 of the first node can also be determined by the IAB donor (or IAB donor CU, or IAB donor CP) through RRC messages or F1AP messages. Configured, there are many possibilities for configuration:
  • the duration of timer T-routing back#1 can be configured by BAP routing ID, that is, different BAP routing ID values, the duration of the configured timer T-routing back can be different, and it is the first in IAB donor
  • the configuration information provided by the node can include a list of timer durations, and each item in the list includes specific values of one or more BAP routing IDs and the corresponding duration of the timer T-routing back .
  • the duration of the timer T-routing back#1 can be configured one by one next hop node, that is, the duration of the configured timer T-routing back can be different for each next hop node corresponding to the first node, But for the same next-hop node, the duration of T-routing back#1 is applicable to all BAP routing IDs involved in the flow control feedback information of BAP routing ID granularity fed back by the next-hop node to the first node.
  • the configuration information provided by the IAB donor needs to carry the value of one or more configured T-routing back#1 durations, and it is also necessary to specify the duration of each T-routing back#1.
  • Which next-hop node or nodes are applicable to the first node.
  • the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the configuration of the duration of timer T-routing back#1 can also be a duration value configured for the feedback information of BAP routing ID granularity. That is, the duration of the timer corresponding to the flow control feedback information of all BAP routing ID granularities is the duration of T-routing back#1.
  • the configuration information provided by the IAB donor needs to carry the value of the configured timer duration T-routing back#1, and also need to indicate that the duration of the timer is specifically applicable to the flow control feedback information of the BAP routing ID granularity corresponding duration.
  • the configuration information provided by the IAB donor to the first node may carry the value of the duration of the timer T-routing back#1 corresponding to the flow control feedback information at the BAP routing ID granularity.
  • the timer T-routing back The duration of #1 applies to each different BAP routing ID.
  • the IAB donor will specify the configured timer T-routing back#1.
  • the hop-by-hop flow control feedback of the feedback is also the downlink flow control feedback (the hop-by-hop flow control feedback fed back from the child node to the first node).
  • the IAB donor configures the duration of the timer T-routing back for flow control feedback at the granularity of all upstream BAP routing IDs, T-routing back#1-UL-1, for all downstream BAP routing
  • the flow control feedback configuration time at ID granularity is T-routing back#1-DL-1.
  • the threshold TH#5 may be greater than or equal to the threshold TH#1. If the threshold TH#5 is set to be greater than the threshold TH#1, it can reduce the occurrence of the frequent switching of the judgment of the first node to the second node, and save resources.
  • the first node receives fifth indication information from the second node, where the fifth indication information indicates that the link recovery is successful, or; the first node receives sixth indication information from the second node, The sixth indication information indicates that the second node is available for the data packet of the BAP layer carrying the routing identifier BAP routing ID#1 of the adaptation layer.
  • the first node can think that the second node is already available for the data packet carrying BAP routing ID#1, or think that the link between the first node and the second node is not available for the data packet carrying BAP routing ID#1 If the language is already available, the first node can reroute these data packets to the second node when performing routing, that is, cancel the rerouting of these data packets, and continue to send the data packets to the second node.
  • this application can flexibly determine whether the data packet needs to be re-routed according to the feedback information of the second node, and can continue to detect the cache status of the second node after the re-routing, so as to ensure that the congestion of the main path can be relieved. Packets are transmitted using the primary path as soon as possible.
  • the first node can perform rerouting based on the received flow control feedback information when the link encounters congestion. On the one hand, it can alleviate link congestion, and on the other hand, it can also reduce The average transmission delay of small data packets improves user experience.
  • Fig. 8 is a communication method provided by the present application, and the method in Fig. 8 includes:
  • Step S801 the second node sends information #M2 to the first node, and the information #M2 includes the size of the available buffer space of the BH RLC CH#1 of the second node.
  • BH RLC CH#1 is used to identify the first radio link control channel on the link #1 between the first node and the second node, and the second node is the next link of the first node on the first link jump node.
  • the information #M2 may be flow control feedback information of the second node, and the flow control feedback information may include the size of the available buffer space of the first radio link control channel on the first link.
  • different types of business data or signaling can be mapped by the first node on different transmission channels for transmission to the next-hop node.
  • the transmission channel here can be between the first node and the next-hop node.
  • BH RLC CH backhaul RLC channel
  • the second node feeds back the buffer information of BH RLC CH granularity in the flow control feedback information, it can be understood that what the second node feeds back is the available channels corresponding to different BH RLC channels on link #1 in its buffer status.
  • the size of the buffer space, the size of the available buffer space corresponding to each BH RLC CH reflects the value of the maximum amount of data that the first node can also send data packets to the second node through the BH RLC CH of link #1.
  • the size of one or more available buffer spaces corresponding to one or more BH RLC CHs may be included in the flow control feedback information of the BH RLC CH granularity of the second node.
  • there are three radio link control channels on link #1 which are BH RLC CH#1, BH RLC CH#2 and BH RLC CH#3 respectively, and the flow control feedback information #M2 of the second node may include
  • the size of the available buffer space corresponding to BH RLC CH#1 may also include the size of the available buffer space corresponding to BH RLC CH#2, and/or the size of the available buffer space corresponding to BH RLC CH#3.
  • Step S802 the first node receives the information #M2, and determines according to the information #M2 that the data packet of the first radio link control channel that needs to be mapped on the first link to be transmitted by the second node is not available.
  • the first data packet is a data packet of the first radio link control channel that needs to be mapped on the first link
  • the main path of the first data packet is the first path
  • the second node is the first path The next hop node of the first node on .
  • the first node performs routing selection based on the BAP routing ID carried in the first data packet, it needs to send the first data packet to the second node, and according to the mapping rules configured by the first node, the first node needs to transfer the first data
  • the packet is mapped to the first radio link control channel on the first link and sent to the second node. Therefore, the first data packet can also be regarded as a data packet that originally needs to be mapped on the BH RLC CH#1 and sent to the second node among the data packets to be sent at the first node.
  • the first link is a link between the first node and the second node.
  • the first node may determine the next-hop node for the first node to transmit the first data packet according to the size of the available buffer space corresponding to the BH RLC CH#1 contained in the information #M2 sent by the second node. For example, in a possible implementation manner, if in the information #M2 fed back by the second node, the size of the available buffer space corresponding to BH RLC CH#1 is greater than the threshold TH#2 (or equal to the threshold TH#2), The first node may determine that the second node is available for packets mapped to BH RLC CH#1 of the link between the first node and the second node, or determine that the wireless link between the first node and the second node is available for the BH The data packet of RLC CH#1 is available, and then the first node can determine to transmit the first data packet through the second node.
  • the first node may determine that the second node Data packets for BH RLC CH#1 that need to be mapped to the link between the first node and the second node are not available, or the wireless link between the first node and the second node is not available for data packets of BH RLC CH#1 is not available. In this case, the first node needs to select a suitable backup link for the data packets that originally need to be mapped on the BH RLC CH#1 and transmitted to the second node.
  • the first data packet belongs to the data packet that originally needs to be mapped on BH RLC CH#1 and transmitted to the second node, if the first node can determine that there is a backup path (such as the second path) that can be used for The first data packet is transmitted, the backup path and the main path of the first data packet have the same target node, and the next hop node of the first node on the backup path is the third node, then the first node can further determine that the third A node transmits a first data packet.
  • a backup path such as the second path
  • the backup path and the main path have the same target node, which may mean that the BAP routing ID used to identify the backup path and the BAP address field of the target node contained in the BAP routing ID used to identify the main path are the same, that is The backup path and the main path have the same target node on the wireless backhaul link; or, it may also mean that the backup path and the main path have the same target node on the IP layer.
  • the first node selects an appropriate backup link for the data packets that originally need to be mapped on BH RLC CH#1 and transmitted to the second node. It can be understood that the first node selects a backup link for these data packets.
  • a suitable backup path wherein the backup link of the data packet is a link between the first node and the next hop node on the backup path.
  • the first node may determine that the second node has a BH RLC that is mapped to the link between the first node and the second node.
  • the data packet of CH#1 is available, and in this case, the first node can only determine that the second node is mapped to the first node and Packets for BH RLC CH#1 of the link between the second nodes are not available.
  • the first node determines that the second node is not available for the data packet mapped to the BH RLC CH#1 of the link between the first node and the second node. In this case, the first node can only communicate with the BH When the size of the available buffer space corresponding to RLC CH#1 is greater than the threshold TH#2, it is determined that the second node is available for the data packet mapped to the BH RLC CH#1 of the link between the first node and the second node. The same applies to the case of being equal to the threshold described in each specific example later.
  • the flow control feedback information #M2 received by the first node may be BH RLC CH granularity.
  • the first node is IAB node 1
  • the second node is IAB node 2
  • the main path of data packet #P1 (that is, the first data packet) is, path #1: IAB node 1 ⁇ IAB Node 2 ⁇ IAB node 4, if packet #P1 is transmitted along path #1, according to the mapping rules configured on IAB node 1, it can be mapped on BH RLC CH#1 and sent to IAB node 2, where BH RLC CH #1 is an RLC channel (or called BH RLC channel) on the backhaul link between IAB node 1 and IAB node 2, if IAB node 2 feeds back to the flow control feedback information #M2 of IAB node 1, and The size of the available buffer space corresponding to BH RLC CH#1 is less than (or equal to) threshold TH#2, at this moment, IAB node 1 determine
  • step S702 of the method 700 the manner of acquiring and configuring the threshold TH#2 of the first node has been described in step S702 of the method 700, and will not be repeated here.
  • the first node may receive Mz flow control feedback information from the second node within a continuous period #T2, where Mz is a positive integer greater than or equal to 1, and the Mz flow control feedback information is
  • the size of the available buffer space of the BH RLC CH granularity of the second node is assumed to be that among the Mz flow control feedback information, N2 of them contain the specific value of the available buffer space corresponding to the BH RLC CH#1, starting from the first One to N2 are ⁇ A1, A2,...AN2 ⁇ (Ax is an integer greater than 0, x is a positive integer, 1 ⁇ x ⁇ N2), N2 ⁇ Mz, if in ⁇ A1, A2,...AN2 ⁇ Each value is less than or equal to the threshold TH#2, and the first node can determine that the data packet sent to the second node mapped on the BH RLC CH#1 is congested at the second node.
  • the first node needs to select a suitable backup link for the data packets to be sent to the second node originally mapped on the BH RLC CH#1 among the data packets to be sent. For example, if the first node can determine that there is a backup path that can be used to transmit the data packet #P1 (first data packet) that needs to be mapped on BH RLC CH#1, the next hop node of the first node on the backup path is the third node , then the first node may further determine to transmit the first data packet through the third node.
  • the first node determines that the data packet that is mapped on BH RLC CH#1 to the second node is congested at the second node, that is, the second node needs to be mapped on BH RLC CH#1 to the second node for subsequent
  • the data packet sent by the node is unavailable, or it is understood that the second node is unavailable for the data packet that needs to be mapped on BH RLC CH#1, or it is understood that the data packet between the first node and the second node Link #1 is unavailable for sending packets to the second node that needs to be mapped on BH RLC CH #1, or it is understood that link #1 between the first node and the second node needs to be mapped on BH It is not available for packets of RLC CH#1.
  • the second node is the next hop node of the first node.
  • the first node determines that the second node needs to map to the data packet sent by the BH RLC CH#1 of the link between the first node and the second node to the second node
  • these data packets can be rerouted, that is, an appropriate backup path is selected for these data packets, and these data packets are sent to the next hop node on the backup path.
  • the data packet mapped on BH RLC CH#1 can be understood as the data packet mapped on BH RLC CH#1 and sent to the second node.
  • the data packets that need to be mapped on BH RLC CH#1 can be understood as the data packets that need to be mapped on BH RLC CH#1 by the first node and sent to the second node, that is, if according to the configured mapping rules, which will be The data packet sent to the second node on BH RLC CH#1 is mapped by the first node.
  • the first node may receive Mz flow control feedback information from the second node within a continuous period #T2, where Mz is a positive integer greater than or equal to 1, and the Mz flow control feedback information It is the size of the available cache space of the BH RLC CH#1 granularity of the second node.
  • N2 of them contain the specific value of the available cache space corresponding to the BH RLC CH#1 , from the first to the N2th is ⁇ A1, A2,...AN2 ⁇ (Ax is an integer greater than 0, x is a positive integer, 1 ⁇ x ⁇ N2), N2 is a positive integer less than or equal to Mz, if ⁇ There are at least Y2 values in A1, A2,...AN2 ⁇ less than or equal to the threshold TH#2, Y2 is a positive integer satisfying 1 ⁇ Y2 ⁇ N2, then the first node can be determined to be mapped on BH RLC CH#1 to the second The data packets sent by the second node are congested at the second node.
  • the first node needs to select a suitable backup link for the data packets to be sent to the second node originally mapped on the BH RLC CH#1 among the data packets to be sent. For example, if the first node can determine that there is a backup path that can be used to transmit the data packet #P1 (first data packet) that needs to be mapped on BH RLC CH#1, the next hop node of the first node on the backup path is the third node , then the first node may further determine to transmit the first data packet through the third node.
  • the first node If before the timer expires (that is, within 28s after the timer is started), the first node has received Mz updated flow control feedback information from the second node, and there are X2 flow control feedback information carried corresponding to the mapping in
  • the values of the available buffer space of BH RLC CH#1 are all greater than (or equal to) the threshold TH#2, and X2 is a positive integer satisfying 1 ⁇ X2 ⁇ Mz, then the first node can consider that the second node is suitable for mapping in the BH RLC
  • the data packet of CH#1 is still available, the second node can still be selected as the next-hop node for transmitting the first data packet, and the timer can be stopped.
  • the first node can consider that the second node is for the data mapped in BH RLC CH#1 The packet is still available, the next hop node for the second node to transmit the first data packet can still be selected, and the timer can be stopped.
  • the first node receives Mz (Mz is an integer greater than 1) flow control feedback information sent by the second node, the value of the available buffer space corresponding to the BH RLC CH#1 with M01 feedback is less than ( or equal to) threshold TH#2, or, among Mz times of flow control feedback information, the number of flow control feedback information whose value of the available buffer space corresponding to BH RLC CH#1 is less than (or equal to) threshold TH#2 is Mz times
  • the proportion in is greater than (or equal to) RTH3, 0 ⁇ RTH3 ⁇ 1
  • the first node can determine that the data packet sent to the second node mapped on BH RLC CH#1 is congested at the second node. Specifically, it may be consecutive M01 times or discontinuous M01 times.
  • Mz is an integer greater than or equal to 1, and M01 is less than or equal to Mz.
  • the first node receives Mz (Mz is an integer greater than or equal to 1) flow control feedback information sent by the second node within the duration #T2 of the timer running, it corresponds to BH RLC CH#1
  • Mz is an integer greater than or equal to 1
  • the values of the available buffer spaces are all less than (or equal to) the threshold TH#2, and the first node can determine that the data packet sent to the second node mapped on the BH RLC CH#1 is congested at the second node. Specifically, it may be consecutive M01 times or discontinuous M01 times.
  • the timer duration #T2 of the first node can also be configured for the first node by the IAB donor (or IAB donor CU, or IAB donor CP) through the RRC message or the F1AP message, and there are many configuration methods possibilities:
  • the duration #T2 can be configured on a BH RLC CH basis, that is, different BH RLC CH values, the configured duration #T2 can be different, and a timer can be included in the configuration information provided by the IAB donor for the first node
  • the duration list, each item in the list contains one or more BH RLC CH identifiers, and the corresponding duration #T2 value.
  • the duration #T2 can be configured one by one next hop node, that is, corresponding to each next hop node of the first node, the configured duration #T2 can be different, but for the same next hop node, the duration #T2 Applicable to all BH RLC CHs involved in the BH RLC CH granular flow control feedback information fed back by the next hop node to the first node, or applicable to wireless backhaul between the first node and the next hop node All BH RLC CHs on the link.
  • the configuration information provided by the IAB donor needs to carry one or more values of the configured time length #T2, and it is also necessary to indicate which next time length #T2 is applicable to the first node.
  • the hop node or which next hop nodes. Wherein, the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the configuration of duration #T2 can also be that the duration of all timers corresponding to BH RLC CH in the BH RLC CH granularity flow control feedback information is duration #T2.
  • the configuration information provided by the IAB donor needs to carry the value of the configured timer duration #T2, and also need to indicate that the duration of the timer is the duration corresponding to the flow control feedback information at the BH RLC CH granularity.
  • the configuration information provided by the IAB donor to the first node may carry the value of the time length #T2 corresponding to the BH RLC CH granular flow control feedback information, and the time length #T2 is applicable to each different BH RLC CH.
  • the configuration of duration #T2 can also be configured with the same duration #TS for flow control feedback of two different granularities. That is, the configuration information provided by the IAB donor carries the value of the configured duration #TS.
  • the duration #TS is also applicable to the flow control feedback information at the BAP routing ID granularity of the first node and the flow control feedback information at the BH RLC CH granularity . It can be understood that the duration #TS is applicable to each different BH RLC CH between the first node and the next hop node, and is also applicable to each different BAP routing ID of the first node.
  • the configuration information provided by the IAB donor needs to carry the value of the configured duration #TS.
  • time length #T2 For the configuration of time length #T2 in case 3 and case 4, there can also be a modified configuration method, which distinguishes whether to configure the time length #T2 for uplink or downlink, that is, to provide the first node based on flow control feedback information to determine whether the next hop node is
  • the IAB donor will specify whether the configured duration #T2 applies to uplink flow control feedback (hop-by-hop flow control feedback fed back from the parent node to the first node) or downlink flow control feedback (feedback from the child node to the first node). Hop-by-hop flow control feedback fed back by the first node).
  • the IAB donor configures the time length #T2-UL-2 for the flow control feedback of all uplink BH RLC CH granularity, and configures the time length #T2-DL for the flow control feedback of all downlink BH RLC CH granularity -2.
  • the IAB donor configures a duration of #T2-UL for all uplink flow control feedback, and configures a duration of #T2-DL for all downlink flow control feedback.
  • the first node receives flow control feedback information from the second node, where the flow control feedback information includes the value of the available buffer space corresponding to BH RLC CH#1, for example #B2. If the first node detects that the data volume of the data packet mapped at BH RLC CH#1 has been sent to the second node when it is greater than or equal to #B2 (that is, the first node has sent the second node through BH RLC CH#1 data packet greater than or equal to #B2), the first node determines: for the data packet mapped on the BH RLC CH#1 on the first link between the first node and the second node, the second node unavailable.
  • the first node receives flow control feedback information #M2 of BH RLC CH granularity from the second node, which contains the value of the available buffer space corresponding to BH RLC CH#1, such as #B2, and the first node In the duration #TB1 before receiving the flow control feedback information #M2 sent by the second node, a data packet with a data volume greater than or equal to #B2 has been sent to the second node through BH RLC CH#1. Accordingly, the first node determines that: the second node is unavailable for the data packet sent to the second node by the BH RLC CH#1 that needs to be mapped to the link between the first node and the second node. The first node may perform rerouting on these data packets, that is, select a suitable backup path for these data packets, and send these data packets to a next-hop node on the backup path.
  • the first node receives flow control feedback information #M2 of BH RLC CH granularity from the second node, which contains the value of the available buffer space corresponding to BH RLC CH#1, for example #B2, and the first Within the duration #TB2 after the node receives the flow control feedback information #M2 sent by the second node, the data volume of the data packet sent to the second node by BH RLC CH#1 is greater than or equal to #B2 (that is, the first node passes BH RLC CH#1 sends a data packet with a data volume greater than or equal to #B2 to the second node).
  • the first node determines that: the second node is unavailable for the data packet sent to the second node by the BH RLC CH#1 that needs to be mapped to the link between the first node and the second node.
  • the first node may perform rerouting on these data packets, for example, select an available backup path, and send these data packets to a next-hop node on the backup path.
  • the first node has not yet received another updated flow of BH RLC CH granularity sent by the second node control feedback information.
  • the first node receives flow control feedback information #M2 of BH RLC CH granularity from the second node, which contains the value of the available buffer space corresponding to BH RLC CH#1, such as #B2, the first node After receiving flow control feedback information #M2, the data volume of the data packet sent to the second node BH RLC CH#1 reaches #B2 (that is, the data packet sent by the first node to the second node through BH RLC CH#1 The amount of data reaches #B2), the first node can determine that: the second node is unavailable for the data packet sent by the BH RLC CH#1 that needs to be mapped to the link between the first node and the second node to the second node. The first node may perform rerouting on these data packets, for example, select an available backup path, and send these data packets to a next-hop node on the backup path.
  • the first node receives flow control feedback information #M2 of BH RLC CH granularity from the second node, which contains the value of the available buffer space corresponding to BH RLC CH#1, such as #B2, the first node After receiving flow control feedback information #M2, the data volume of the data packet sent to the second node BH RLC CH#1 reaches #B2 (that is, the data packet sent by the first node to the second node through BH RLC CH#1 The amount of data reaches #B2), and before receiving the flow control feedback information of another updated BH RLC CH granularity sent by the second node (that is, the first node has not yet received another updated BH sent by the second node flow control feedback information of RLC CH granularity), the first node can determine that: the second node is unavailable for the data packet sent by BH RLC CH#1 that needs to be mapped to the link between the first node and the second node to the second node .
  • the first node may perform rerou
  • the timer duration #TB1 of the first node can also be configured for the first node by the IAB donor (or IAB donor CU, or IAB donor CP) through the RRC message or the F1AP message, and there are many configuration methods possibilities:
  • the time length #TB1 can be configured on a BH RLC CH basis, that is, different BH RLC CH values, the configured time length #TB1 can be different, and a timer can be included in the configuration information provided by the IAB donor for the first node
  • the duration list, each item in the list contains one or more BH RLC CH identifiers, and the corresponding duration #TB1 value.
  • the time length #TB1 can be configured one by one next hop node, that is, corresponding to each next hop node of the first node, the configured time length #TB1 can be different, but for the same next hop node, the time length #TB1 Applicable to all BH RLC CHs involved in the BH RLC CH granular flow control feedback information fed back by the next hop node to the first node, or applicable to wireless backhaul between the first node and the next hop node All BH RLC CHs on the link.
  • the configuration information provided by the IAB donor needs to carry one or more values of the configured time length #TB1, and it is also necessary to indicate which next time length #TB1 is applicable to the first node.
  • the hop node or which next hop nodes. Wherein, the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the configuration of duration #TB1 can be that the duration of all timers corresponding to BH RLC CH in the BH RLC CH granular flow control feedback information is duration #TB1.
  • the configuration information provided by the IAB donor needs to carry the value of the configured timer duration #TB1, and it is also necessary to specify that the timer duration #TB1 is the duration corresponding to the flow control feedback information at the BH RLC CH granularity.
  • the configuration information provided by the IAB donor to the first node may carry the value of the time length #TB1 corresponding to the BH RLC CH granular flow control feedback information, and the time length #TB1 is applicable to each different BH RLC CH.
  • time length #TB1 in case 3 and case 4 there can also be a modified configuration method, which distinguishes whether to configure the time length #TB1 for uplink or downlink, that is, to provide the first node based on flow control feedback information to determine whether the next hop node is
  • the IAB donor will specify whether the configured duration #TB1 is specifically applicable to uplink flow control feedback (hop-by-hop flow control feedback fed back from the parent node to the first node) or downlink flow control feedback (feedback from the child node to the first node). Hop-by-hop flow control feedback fed back by the first node).
  • the IAB donor configures the time length #TB1-UL-2 for the flow control feedback of all uplink BH RLC CH granularity, and configures the time length TB1-DL- for the flow control feedback of all downlink BH RLC CH granularity 2.
  • the IAB donor configures the duration #TB1-UL for all uplink flow control feedback, and configures the duration TB1-DL for all downlink flow control feedback.
  • the acquisition method and configuration method of the timer duration #TB2 are similar to those of the duration #TB1. For details, please refer to the description of the timer duration #TB1 above, which will not be repeated here.
  • the configuration method, acquisition method and threshold TH# of X2, Y2, M01, Mz, N2, B2 and RTH3 involved in judging whether the second node is available based on the flow control feedback information by the first node The acquisition method and configuration method of 2 are similar and will not be repeated here.
  • the first node receives the BH RLC CH granularity flow control feedback information #M2 from the second node, which may include third indication information corresponding to the BH RLC CH #1.
  • the third indication information is used to indicate that: at the second node, the data packet mapped on BH RLC CH#1 has congested (or in other words, the data packet sent to the second node mapped on BH RLC CH#1 is Congestion at the second node), that is, the second node is unavailable for packets that need to be mapped on BH RLC CH#1.
  • the third indication information may indicate that corresponding to data packets that need to be mapped on one or more different BH RLC CHs (including BH RLC CH#1), The second node is unavailable, that is, the third indication information may correspond to multiple BH RLC CHs.
  • the first node receives fourth indication information sent by the second node that it is trying to restore the link, and the fourth indication information indicates the second node and the next hop node of the second node If a wireless link fails and the second node is trying to restore the connection with the next hop node, the first node may consider the second node unavailable, or consider the link between the first node and the second node The road is not available. The first node may perform rerouting for all data packets that originally need to be sent via the second node. As an example, referring to Fig.
  • IAB node 4 may consider that the link between it and the IAB node 2 is unavailable, and cannot continue to send any data packets to the node 2.
  • the first node may also simultaneously receive feedback information of the BAP routing ID granularity of the second node.
  • the flow control feedback information received by the first node also includes the flow control feedback report at the BAP routing ID granularity.
  • the first node can jointly determine which data packets the second node is congested for and which data packets are not congested by the second node based on the feedback information of the two granularities, so as to determine the next hop node for different data packets .
  • the first node can perform rerouting for these packets, selecting an appropriate backup path, and then send these data packets to the next-hop node (for example, the third node) on the selected backup path.
  • the embodiment of the present application further includes step S803, the third node sends flow control feedback information to the first node.
  • the flow control feedback information sent by the third node to the first node may include: BH RLC CH granularity flow control feedback information #M4, and/or BAP routing ID granularity flow control feedback information #M3.
  • the first node may receive a BAP control PDU from the third node, which includes BH RLC CH granularity flow control feedback information, and the BH RLC CH granularity flow control feedback information includes multiple corresponding to different BH RLC CH The value of available cache space.
  • step S804 the first node determines, according to the flow control feedback information sent by the third node, that the third node can be used to transmit data packets that need to be rerouted.
  • the data packet that needs to be rerouted by the first node may be a data packet that needs to be mapped on the first radio link control channel (ie, BH RLC CH#1) on the first link.
  • the first link is a link between the second node and the first node.
  • the first node may determine according to the flow control feedback information #M4: the third node can be used to transmit data packets that need to be rerouted, that is, the link between the first node and the third node can be used for Transmission of data packets that originally need to be mapped on BH RLC CH#1 to the second node, or it can be understood that the third node can be used to transmit data packets that originally need to be mapped on BH RLC CH#1 to the second node .
  • the first node can determine according to the information #M4 that the third node can be used to transmit the data packet that needs to be mapped on the BH RLC CH#1 to the second node. It can also be understood that the first node determines that the third node can Used to transmit data packets that need to be rerouted, the data packets that need to be rerouted, that is, the data packets that need to be rerouted when the first node determines that the second node is unavailable in the aforementioned step S802 (for example, according to The BAP routing ID in the data packet and the mapping rules configured on the first node, those data packets that originally need to be mapped to the second node on the BH RLC CH#1 of the link between the first node and the second node) .
  • the first node can determine that the third node can be used to transmit data packets that need to be rerouted (those that originally need A data packet sent to the second node on the BH RLC CH#1 of the link between the first node and the second node is mapped).
  • the first node determines according to information #M3 that the third node can be used to transmit data packets that need to be rerouted (those that originally need to be mapped on the link between the first node and the second node A data packet sent to the second node on BH RLC CH#1).
  • information #M3 is the flow control feedback information of BAP routing ID granularity.
  • the first node judges that the third node has a corresponding response to the first data packet that needs to be rerouted.
  • the package is available, refer to the above two implementation manners, and refer to step S704 in the method 700 for the specific process, which will not be repeated here.
  • the method for judging whether the third node is available can also refer to the method for judging whether the second node is available in step S802, and the second node can be replaced by the third node for understanding. repeat.
  • the first node can choose arbitrarily One of the backup links is used to reroute the packet; or, the IAB donor (or IAB donor CU, or IAB donor CU-CP) can set different priorities for different backup links (or backup paths) level and provide it to the first node, and the first node selects the backup link (or backup path) with the highest priority among multiple available backup links (or backup paths) to reroute the data packet. After the first node selects a backup link (or backup path) for rerouting the data packet, it transmits the rerouted data packet to the next-hop node corresponding to the backup link (or backup path).
  • the configuration of the backup link (or the backup link and its priority, or the backup path and its priority) can be configured at the granularity of BH RLC CH.
  • the first node determines whether to reroute a data packet, which may specifically be: in addition to judging whether the main path of the data packet is available (or whether the first link on the main path is available, or whether the first link on the main path is available) In addition to whether the next hop node of a node is available, that is, whether the second node is available), it is also necessary to determine whether the data packet has an available backup link (or whether there is an available backup path, or the next hop node of the first node on the backup path That is, whether the third node is available).
  • the data packet can be rerouted (that is, the backup path is selected and the next link on the backup path is selected). hop node to send the data packet), otherwise the first node does not perform the rerouting operation on the data packet.
  • the first node may simultaneously receive the flow control feedback information sent by the second node and the flow control feedback information sent by the third node. Alternatively, the first node first receives the flow control feedback information sent by the third node, and then receives the flow control feedback information from the second node. It can also be understood that there is no limitation on the relative order between step S803 and step S804 and the preceding step S801 - step S802.
  • step S801 and step S802 can form a separate embodiment, which is used to determine whether the main path of the data packet is available, and which data packets need to be rerouted; step S803 and step S804 are optional steps, and can also form a separate An embodiment of the method is used to determine whether the backup link of the data packet is available.
  • the first node after the first node determines that the second node is unavailable and determines that the next hop is the third node, it can continue to monitor the cache status of the second node to determine whether the second node is available.
  • the first node (specifically, it can be an IAB node or an IAB donor DU) can also cancel the rerouting of these data packets after the congestion of the second node of the data packets is alleviated, so that the data packets can continue to be sent on the original established link. Transport on the road.
  • the first node can start a timer (such as timer T-routing back) when rerouting the data packet, so as to monitor whether the congestion at the second node is relieved, and judge whether the second node can continue to use.
  • this embodiment of the present application further includes step S805 and step S806.
  • step S805 the specific description is as follows.
  • Step S805 the first node receives the information #M6 sent by the second node.
  • the information #M6 may be the flow control feedback information sent by the second node, and the flow control feedback information may be the flow control feedback information of the BH RLC CH granularity, which includes the information related to the BH RLC CH#1 (used to indicate that the first node and The size of the available buffer space corresponding to the first radio link control channel on the link between the second nodes, or the ID of the BH RLC CH of the first radio link control channel.
  • Step S806 the first node determines whether the second node is available for the data packet that needs to be mapped on the BH RLC CH#1 and sent to the second node according to the information #M6.
  • the first node determines whether the second node is available for the data packet that needs to be mapped on the BH RLC CH#1 and sent to the second node, which can be simplified and described as: the first node determines Whether the second node is available for data packets that need to be mapped on BH RLC CH#1.
  • the first node judges (or determines) according to information #M6 that the second node is available for the data packet that needs to be mapped on BH RLC CH#1, the first node can stop the original mapping to be transmitted on BH RLC CH#1 Rerouting of data packets sent to the second node, and then resending such data packets to the second node. Otherwise, the first node may continue to perform rerouting of such packets.
  • step S806 the first node has performed rerouting on the data packet that originally needs to be mapped on BH RLC CH#1 and sent to the second node.
  • the first node follows the aforementioned step S802, Judging that the second node is unavailable for the data packets that originally need to be mapped on the BH RLC CH#1 and sent to the second node, these data packets need to be rerouted, and the first node is further based on the description of steps S803 and S804, It is determined that the third node is available for the data packets that need to be rerouted, and rerouting is performed on these data packets (that is, the third node is selected as the next hop node).
  • the first node receives the updated flow control feedback information #M6 of the second node, the value corresponding to the available buffer space of the BH RLC CH#1 is greater than (or equal to) the threshold TH#6, then the first node can be considered
  • the link with the second node is already available for data packets that need to be mapped on BH RLC CH#1, and the first node can reroute these data packets to the second node when performing routing selection, that is, cancel For rerouting of these data packets, continue to send the data packets to the second node.
  • the first node judges whether it is necessary to stop the rerouting mechanism that has been executed, and it can be judged based on the threshold TH#6 and the rerouting recovery timer (taking the timer named T-routing back#2 as an example): if the first Based on the description of the aforementioned step S802, a node has judged that the link between it and the second node is unavailable for data packets that need to be mapped on BH RLC CH#1, and has already addressed these packets that need to be mapped on BH RLC CH#1 After the data packet has been rerouted (it can also be understood as selecting other backup links for transmission, such as sending these data packets to the third node), if the first node is within the running time of timer T-routing back#2, In receiving one or more updated flow control feedback information sent by the second node, the values corresponding to the available buffer space of BH RLC CH#1 are all greater than (or equal to) the threshold TH#6, then the first node
  • the first node may reroute these data packets to the second node when performing routing selection, that is, cancel the rerouting of these data packets, and continue to send the data packets to the second node.
  • step S802 if the first node has been described based on the aforementioned step S802, it is judged that the link between it and the second node is unavailable for data packets that need to be mapped on BH RLC CH#1, and these needs have been addressed.
  • the first node After the data packets mapped on BH RLC CH#1 are re-routed (it can also be understood as selecting other backup links for transmission, such as sending these data packets to the third node), the first node will be in a continuous period of #T5 Received T1 flow control feedback information from the second node, T1 is a positive integer greater than or equal to 1, the T1 flow control feedback information is the size of the available buffer space of the BH RLC CH granularity of the second node, assumed to be the T1 Among the flow control feedback information, S1 contains specific values of the available buffer space corresponding to BH RLC CH#1, from the first to S1 are ⁇ C1, C2,...CS1 ⁇ (Cx is greater than 0 integer, x is a positive integer, 1 ⁇ x ⁇ S1), S1 is a positive integer less than or equal to T1, if each value in ⁇ C1, C2,...CS1 ⁇ is greater than (or equal to) the threshold TH#6, then The first node may consider that the
  • the link between the first node and the second node is required to be mapped on BH RLC CH#1 If it is already available, the first node can reroute these data packets to the second node when performing routing, that is, cancel the rerouting of these data packets, and continue to send the data packets to the second node.
  • the first node will be in a continuous period of #T5 Received T1 flow control feedback information from the second node, T1 is a positive integer greater than or equal to 1, the T1 flow control feedback information is the size of the available buffer space of the BH RLC CH granularity of the second node, assumed to be the T1 Among the flow control feedback information, S1 contains specific values of the available buffer space corresponding to BH RLC CH#1, from the first to S1 are ⁇ C1, C2,...CS1 ⁇ (Cx is greater than 0 integer, x is a positive integer, 1
  • the first node can consider that the second node is already available for the data packets that need to be mapped on the BH RLC CH#1. If before the timer expires (that is, within 20s after the timer is started), among the flow control feedback information updated by the second node T1, there are J1 flow control feedback information carried in the corresponding BH RLC CH#1 The values of the available cache space are all greater than (or equal to) the threshold TH#5, and J1 is a positive integer satisfying 1 ⁇ J1 ⁇ T1, then the first node can consider that the second node needs to be mapped to BH RLC CH#1 Data packages are still available.
  • the first node can consider that the second node needs to be mapped on the BH RLC CH#1 As far as the data packets are still available, the first node can reroute these data packets to the second node when performing routing selection, that is, cancel the rerouting of these data packets, and continue to send the data packets to the second node, And can stop the timing of the timer.
  • the acquisition method and configuration method of the first node duration #T5 are similar to the acquisition method and configuration method of the aforementioned duration #T2, and will not be repeated here.
  • the first node determines that the second node is already available. Specifically, it may be continuous T01 times or discontinuous T01 times. T01 is less than or equal to T1.
  • the threshold TH#6 used to judge the available buffer space in the flow control feedback information involved in the availability of the second node can be determined by IAB donor (or IAB donor CU, or IAB
  • the donor CP is configured for the first node through the RRC message or the F1AP message, and the configuration method can have multiple situations:
  • the threshold TH#6 can be configured on a BH RLC CH basis, that is, different BH RLC CH values can configure different thresholds.
  • the configuration information provided by the IAB donor to the first node can include a list of thresholds. Each entry (item) in the list includes one or more BH RLC CH identities and corresponding threshold TH#6 values.
  • the threshold TH#6 can be configured per next-hop node, that is, each next-hop node corresponding to the first node, the configured threshold TH#6 can be different, but for the same next-hop node, the threshold TH#6 is applicable to all BH RLC CHs involved in the BH RLC CH granular flow control feedback information fed back by the next-hop node to the first node.
  • the configuration information provided by the IAB donor needs to carry one or more configured threshold TH#6 values, and it is also necessary to indicate which next hop each of the thresholds applies to the first node node or which next-hop nodes.
  • the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the threshold TH#6 may be the threshold corresponding to all BH RLC CHs in the BH RLC CH granular flow control feedback information.
  • the configuration information provided by the IAB donor needs to carry the value of the configured threshold TH#6, and it is also necessary to specify that the threshold TH#6 is the threshold corresponding to the flow control feedback information of the BH RLC CH granularity.
  • the configuration information provided by the IAB donor to the first node may carry the value of the threshold TH#6 corresponding to the flow control feedback information of BH RLC CH granularity, and the threshold TH#6 is applicable to each different BH RLC CH .
  • the configuration of the threshold TH#6 and the threshold TH#5 may also be to configure the same threshold TH#S for flow control feedback of two different granularities. That is, the configuration information provided by the IAB donor carries the value of the configured threshold TH#S.
  • the threshold TH#S is also applicable to the flow control feedback information of the BAP routing ID granularity of the first node and the flow control of the BH RLC CH granularity Feedback. It can be understood that the threshold TH#S is applicable to each different BH RLC CH between the first node and the next hop node, and is also applicable to each different BAP routing ID of the first node.
  • the configuration information provided by the IAB donor needs to carry the value of the configured threshold TH#S.
  • the IAB donor will specify whether the configured threshold is suitable for uplink flow control feedback (hop-by-hop flow control feedback from the parent node to the first node) or downlink flow control feedback (child node to the first node). Hop-by-hop flow control feedback of node feedback).
  • the IAB donor configures the threshold TH#6-UL-2 for the flow control feedback of all uplink BH RLC CH granularity, and configures the threshold TH#6 for the flow control feedback of all downlink BH RLC CH granularity -DL-2.
  • the IAB donor configures the threshold TH-UL for all uplink flow control feedback, and configures the threshold TH-DL for all downlink flow control feedback.
  • the rerouting timer may be: as an example, the first node may determine in step S802 that after the second node is unavailable for the data packet that needs to be mapped on BH RLC CH#1, it starts the timer T-routing back#2 for Monitor the congestion relief situation of the second node; or, the first node can also determine in step S802 that after the second node is unavailable for the data packets that need to be mapped on BH RLC CH#1, if the update sent by the second node is received In the flow control feedback information, when the value corresponding to the available buffer space of BH RLC CH#1 is greater than (or equal to) the threshold TH#6, the timer T-routing back#2 is started again
  • the rerouting timer stops operating, which can be specifically: if the first node receives the flow control feedback information updated by the second node before the rerouting timer T-routing back#2 times out, and the flow control feedback information If the value corresponding to the available buffer space that needs to be mapped in the BH RLC CH#1 is less than (or equal to) the threshold TH#2, then stop the timing of the timer T-routing back#2. That is to say, if it is detected that the flow control feedback information is less than the threshold TH#2, the first node thinks that the second node is still unavailable for the data packets that need to be mapped on BH RLC CH#1, and the first node can continue to process these Packets are rerouted.
  • the duration of the rerouting recovery timer T-routing back#1 of the first node can also be determined by the IAB donor (or IAB donor CU, or IAB donor CP) through RRC messages or F1AP messages. Configured, there are many possibilities for configuration:
  • the duration of timer T-routing back#1 can be configured by BH RLC CH, that is, the duration of configured timer T-routing back can be different for different BH RLC CH values, and it is the first in IAB donor
  • the configuration information provided by the node may include a timer duration list, and each item in the list includes one or more BH RLC CH identifiers and the value of the duration of the corresponding timer T-routing back.
  • the duration of the timer T-routing back#2 can be configured one by one next hop node, that is, the duration of the configured timer T-routing back can be different for each next hop node corresponding to the first node, But for the same next-hop node, the duration of T-routing back#2 is applicable to all BH RLC CHs involved in the BH RLC CH granular flow control feedback information fed back by the next-hop node to the first node.
  • the configuration information provided by the IAB donor needs to carry the value of one or more configured T-routing back#2 durations, and it is also necessary to specify the duration of each T-routing back#2.
  • Which next-hop node or nodes are applicable to the first node.
  • the next hop node of the first node may be identified by the BAP address of the next hop node.
  • the configuration of the duration of timer T-routing back#2 can be that the duration of timer T-routing back#2 corresponding to all BH RLC CHs in the flow control feedback information of BH RLC CH granularity is the same value.
  • the configuration information provided by the IAB donor needs to carry the value of the configured timer duration T-routing back#2, and also need to specify the timer duration T-routing back#2 is the BH RLC CH granularity The duration corresponding to the flow control feedback information.
  • the configuration information provided by the IAB donor to the first node may carry the value of the time length T-routing back#2 corresponding to the flow control feedback information of the BH RLC CH granularity, and the time length T-routing back#2 is applicable to Each different BH RLC CH.
  • the configuration of the duration of the timer T-routing back#2 can also be configured with the same duration #TS for flow control feedback of two different granularities. That is, the configuration information provided by the IAB donor carries the value of the configured duration #TS.
  • the duration #TS is also applicable to the flow control feedback information at the BAP routing ID granularity of the first node and the flow control feedback information at the BH RLC CH granularity . It can be understood that the duration #TS is applicable to each different BH RLC CH between the first node and the next hop node, and is also applicable to each different BAP routing ID of the first node.
  • the configuration information provided by the IAB donor needs to carry the value of the configured duration #TS.
  • the duration of timer T-routing back#2 in cases 3 and 4 there can also be a modified configuration method, which distinguishes whether to configure the duration of timer T-routing back#2 for uplink or downlink, that is, for the first
  • the IAB donor will specify the configured timer T-routing back#2.
  • the hop-by-hop flow control feedback fed back by the first node is also downlink flow control feedback (the hop-by-hop flow control feedback fed back from the child node to the first node).
  • the IAB donor configures the duration of the timer T-routing back for all uplink BH RLC CH granular flow control feedback, T-routing back#2-UL-2, for all downlink BH RLC
  • the flow control feedback configuration duration of CH granularity is T-routing back#2-DL-2.
  • the IAB donor configures the duration of the timer T-routing back for all uplink flow control feedback, T-routing back-UL, and configures the duration T for all downlink BH RLC CH granularity flow control feedback -routing back-DL.
  • the configuration method and acquisition method of T1, S1, J1, U1 and RTH4 involved in the threshold value in step S702 of the method 700 The acquisition method of TH#1 is similar to the configuration method, and will not be repeated here.
  • the threshold TH#6 may be greater than or equal to the threshold TH#2. If the threshold TH#6 is set to be greater than the threshold TH#2, it can reduce the occurrence of the first node judging the frequent switching of the second node and save resources.
  • the first node receives fifth indication information from the second node, where the fifth indication information indicates that the link between the second node and the next-hop node is successfully restored, or;
  • the first node receives the sixth indication information of the second node, where the sixth indication information indicates that the second node is available for the data packet that needs to be mapped to BH RLC CH#1.
  • the first node can determine that the second node is available, or the link between the second node and the first node is available, or the second node is available for the data packet that needs to be mapped to BH RLC CH#1.
  • the first node may reroute these data packets to the second node when performing route selection, that is, cancel the rerouting of these data packets, and continue to send the data packets to the second node.
  • this application can flexibly determine whether the data packet needs to be re-routed according to the feedback information of the second node, and can continue to detect the cache status of the second node after the re-routing, so as to ensure that the congestion of the main path can be relieved. Packets are transmitted using the primary path as soon as possible.
  • the first node can perform rerouting based on the received flow control feedback information when the link encounters congestion. On the one hand, it can alleviate link congestion, and on the other hand, it can also reduce The average transmission delay of small data packets improves user experience.
  • each node such as a transmitting end device or a receiving end device, includes a corresponding hardware structure and/or software module for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 9 is a schematic block diagram of a communication device 100 provided by an embodiment of the present application.
  • the apparatus 100 may include: a transceiver unit 110 and a processing unit 120 .
  • the communication device 100 may be the first node in the above method embodiment, or may be a chip for realizing the function of the first node in the above method embodiment. It should be understood that the device 100 may correspond to the first node in the method 700 and the method 800 according to the embodiment of the present application, and the device 100 may execute the method corresponding to the first node in the method 700 and the method 800 of the embodiment of the present application step. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit is configured to receive first information, where the first information includes the size of the available space in the first cache space of the second node, and the first cache space is used for caching the A data packet transmitted by a first path, where the first path is a main path for transmitting the data packet, and the second node is a next-hop node of the first node on the main path; the processing unit It is used to determine that the size of the available space in the first buffer space is less than or equal to a first threshold, and the processing unit is used to determine that the data packets that need to be transmitted through the first path are transmitted through the third node, and the third node is the next-hop node of the first node on the standby path for transmitting the data packet.
  • the processing unit is configured to determine that the size of the available space in the first buffer space is greater than the first threshold, and the processing unit is configured to determine that transmission through the third node needs to pass Data packets transmitted by the first path.
  • the transceiver unit is configured to receive N pieces of first information within a first duration, and the N pieces of first information include the size of available space in the N first cache spaces; the processing The unit is configured to determine that X of the sizes of the available spaces in the N first cache spaces is less than or equal to the first threshold, and the processing unit is configured to determine that the transmission through the third node needs to be transmitted through the first path data packets; wherein, the N is an integer greater than 1, and the X is less than or equal to the N.
  • the transceiver unit is configured to receive second information, where the second information includes the size of available space in a second cache space of the second node, and the second cache space is used for Buffering data packets of the first radio link control channel that needs to be mapped on the first link, the first link being a link between the first node and the second node; the processing unit using The method is to determine, according to the size of the available space in the first cache space and the size of the available space in the second cache space, that the data packets that need to be transmitted through the first path are transmitted by the third node.
  • the processing unit is configured to determine, according to the size of the available space in the first cache space and the size of the available space in the second cache space, that transmission through the third node needs to pass
  • the data packet transmitted by the first path includes: the processing unit is configured to determine that the size of the available space in the first cache space is less than or equal to a first threshold, and/or, the size of the available space in the second cache space is less than or equal to the second threshold, and the processing unit is configured to determine that the data packets that need to be transmitted through the first path are transmitted through the third node.
  • the processing unit is configured to determine, according to the size of the available space in the first cache space and the size of the available space in the second cache space, that transmission through the third node needs to pass
  • the data packet transmitted by the first path includes: the processing unit is used to determine that the size of the available space in the first buffer space received by the transceiver unit within the first duration is less than or equal to a first threshold, and/or, The size of the available space in the second buffer space received by the transceiver unit within the second duration is less than or equal to a first threshold, and the processing unit is configured to determine that the transmission through the third node needs to be transmitted through the first path data pack.
  • the processing unit is configured to determine that the size of the available space in the first buffer space is less than or equal to a first threshold, and the processing unit is configured to determine that the transmission through the third node needs to pass
  • the data packet transmitted by the first path includes: the processing unit is used to determine that the sending and receiving unit has sent a data amount equal to the first cache to the second node within a third time period before receiving the first information
  • the data packets that need to be transmitted through the first path according to the size of the available space in the space, and the processing unit is used to determine the data packets that need to be transmitted through the first path through the third node; or, the processing unit is used to determine the data packets that need to be transmitted through the first path
  • the transceiver unit has sent to the second node a data packet whose data size is equal to the size of the available space in the first buffer space and needs to be transmitted through the first path within a fourth time period after receiving the first information, and the The processing unit is configured to determine that the data packets that need to be
  • the processing unit is configured to determine that the size of the available space in the first cache space is less than or equal to a first threshold, and the processing unit is configured to determine that the transmission through the third node needs to pass through the first
  • the data packet transmitted by the path includes: the processing unit is used to determine that the size of the available space in the first buffer space is less than or equal to the first threshold, and the third node can be used to transmit the data packet that needs to be transmitted through the first path.
  • the processing unit is configured to determine to transmit the data packets that need to be transmitted through the first path through the third node.
  • the processing unit is configured to determine that the third node can be used to transmit the data packet that needs to be transmitted through the first path, including: the transceiver unit is configured to receive third information, the The third information includes the size of the available space in the at least one cache space of the third node, the at least one cache space corresponds to the at least one backup path one by one, and the at least one backup path and the first path
  • the destination node is the same; the processing unit is used to determine that the sum of the sizes of the available spaces in the at least one cache space is greater than a third threshold, and the processing unit is used to determine that the third node can be used to transmit the needs through the first A data packet transmitted along a path.
  • the processing unit is configured to determine that the third node can be used to transmit the data packet that needs to be transmitted through the first path, including: the transceiver unit is configured to receive fourth information, the The fourth information includes the size of available space in the fourth buffer space of the third node, and the fourth buffer space is used for buffering data packets that need to be mapped on the first radio link control channel on the second link, The second link is a link between the first node and the third node; the processing unit is configured to determine that the size of the available space in the fourth cache space is greater than a fourth threshold, and the processing The unit is configured to determine that the third node is available for transmitting the data packet that needs to be transmitted through the first path.
  • the processing unit is configured to determine that the third node can be used to transmit the data packet, including: the transceiver unit receives fourth information, and the fourth information includes the third node The size of the available space in the at least one buffer space of the node, the at least one buffer space is used for buffering data packets that need to be mapped to at least one radio link control channel on the second link, and the at least one buffer space is related to the At least one radio link control channel has one-to-one correspondence, and the second link is a link between the first node and the third node; the processing unit is configured to determine the at least one buffer space available The sum of the sizes of the spaces is greater than a fourth threshold, and the processing unit is configured to determine that the third node can be used to transmit the data packet that needs to be transmitted through the first path.
  • the transceiver unit is configured to receive fifth information, where the fifth information includes the size of available space in the first cache space of the second node, and the processing unit is configured to determine the The size of the available space in the first cache space is greater than a fifth threshold, and the processing unit is configured to determine that the second node is available for transmitting data packets that need to be transmitted through the first path.
  • the transceiver unit is configured to receive fifth information, including: the transceiver unit is configured to receive Y pieces of fifth information within a fifth duration, and the Y pieces of fifth information include Y The size of the available space in the first cache space; the processing unit is configured to determine that the size of the available space in the Y first cache spaces is greater than a fifth threshold, and the processing unit is configured to determine that the second node can be used for and transmitting the data packets that need to be transmitted through the first path.
  • the Y is an integer greater than 1.
  • the transceiver unit is configured to receive second information, where the second information includes the size of the available space in the second cache space of the second node, and the second cache space is used for caching A data packet of a first radio link control channel that needs to be mapped on a first link, where the first link is a link between the first node and the second node; the processing unit is used to It is determined that the size of the available space in the second cache space is less than or equal to a second threshold, and the processing unit is configured to determine to transmit a first data packet through the third node, wherein the first data packet is required A data packet of the first radio link control channel mapped on the first link, the main path of the first data packet is the first path, and the second node is the first node on the first path.
  • the next hop node of the node, the third node is the next hop node of the first node on the second path for transmitting the first data packet
  • the second path is an alternate path for the first data packet
  • the link between the first node and the third node is a second link
  • the first path and the second path have the same destination node.
  • the processing unit is configured to determine that the size of the available space in the second cache space is greater than the second threshold, and the processing unit is configured to determine that the second node transmits the first packet.
  • the transceiver unit is configured to receive second information, including: the transceiver unit is configured to receive K pieces of second information within a second duration, and the K pieces of second information include K The size of the available space in the second cache space; the processing unit is configured to determine that when L of the sizes of the available spaces in the K second cache spaces are less than or equal to the second threshold, the processing unit For determining to transmit the first data packet through the third node, the K is an integer greater than 1, and the L is less than or equal to the K.
  • the transceiving unit is configured to receive first information, where the first information includes the size of available space in a first cache space of the second node, and the first cache space is used for caching the data packets that need to be transmitted through the first path, the first path being the main path for transmitting the data packets; A size of the available space in the cache space, determining that the transmission through the third node needs to be mapped on the first data packet, and the third node is the next node of the first node on the backup path for transmitting the data packet One hop node.
  • the processing unit is configured to determine, according to the size of available space in the second cache space and the size of available space in the first cache space, to transmit the
  • the first data package includes: the processing unit is used to determine that the size of the available space in the second cache space is less than or equal to a second threshold, and/or, the size of the available space in the first cache space is less than or equal to A first threshold, the processing unit is used to determine to transmit the first data packet through the third node.
  • the processing unit is configured to determine, according to the size of the available space in the second cache space and the size of the available space in the first cache space
  • the third node transmitting the first data packet includes: the processing unit is configured to determine that the size of the available space in the second buffer space received by the transceiver unit within a second duration is less than or equal to a second threshold, and /or, the size of the available space in the first buffer space received by the transceiver unit within the first duration is less than or equal to a first threshold, and the processing unit is configured to determine to transmit the first data pack.
  • the processing unit is configured to determine that the size of the available space in the second cache space is less than or equal to a second threshold, and the processing unit is configured to determine that transmission through the third node needs to pass
  • the transmission of the first data packet by the third node includes: the processing unit is configured to determine that the sending and receiving unit has sent a data amount equal to A first type of data packet of the size of the available space in the second buffer space, wherein the first type of data packet is mapped on the first radio link control channel on the first link by the first node and sent to the first node A data packet, the processing unit is used to determine to transmit the first data packet through the third node; or, the processing unit is used to determine that the transceiver unit transmits the first data packet within a fourth time period after receiving the second information
  • the second node has sent the first type of data packet whose data size is equal to the size of the available space in the second cache space, and the processing unit is configured to determine to transmit the first type of packet through the third node data pack.
  • the processing unit is configured to determine that the size of the available space in the second cache space is less than or equal to a second threshold, and the processing unit is configured to determine that the third node transmits the
  • the first data packet includes: the size of the available space used by the processing unit in the second cache space is less than or equal to a second threshold, and it is determined that the third node can be used to transmit the first data packet, the processing unit It is used to determine to transmit the first data packet through the third node.
  • the processing unit is configured to determine to transmit the first data packet through the third node, including: the transceiver unit is configured to receive fourth information, and the fourth information includes the The size of the available space in the at least one buffer space of the third node, the at least one buffer space is used to buffer the data packets that are mapped to the at least one radio link control channel on the second link and sent to the third node, The at least one buffer space is in one-to-one correspondence with the at least one radio link control channel, and the second link is a link between the first node and the third node; the processing unit is configured to It is determined that the sum of sizes of available spaces in the at least one cache space is greater than a fourth threshold, and the processing unit is configured to determine that the third node is available for transmitting the first data packet.
  • the processing unit is configured to determine to transmit the first data packet through the third node, including: the transceiver unit is configured to receive fourth information, and the fourth information includes the The size of the available space in the fourth buffer space of the third node, the fourth buffer space is used to buffer the data packets sent to the third node by the second radio link control channel mapped on the second link, so The second link is a link between the first node and the third node; the processing unit is configured to determine that the size of the available space in the fourth cache space is greater than a fourth threshold, and the first The node determines to transmit the first data packet through the third node.
  • the processing unit is configured to determine to transmit the first data packet through the third node, including: the transceiver unit is configured to receive third information, and the third information includes the The size of the available space in the at least one cache space of the third node, the at least one cache space is in one-to-one correspondence with the at least one backup path, and the at least one backup path is the same as the destination node of the first path;
  • the processing unit is configured to determine that the sum of sizes of available spaces in the at least one cache space is greater than a third threshold, and the processing unit is configured to determine to transmit the first data packet through the third node.
  • the transceiver unit is configured to receive fifth information, where the fifth information includes the size of available space in the second cache space of the second node, and the processing unit is configured to determine the The size of the available space in the second buffer space is greater than a fifth threshold, and the processing unit is configured to determine that the second node can be used to transmit data that needs to be mapped on the first radio link control channel on the first link Bag.
  • the transceiver unit is configured to receive fifth information, including: the transceiver unit is configured to receive P pieces of fifth information within a fifth duration, and the P pieces of fifth information include P The size of the available space in the P second cache spaces; when the processing unit is configured to determine that the sizes of the available spaces in the P second cache spaces are greater than the fifth threshold, the processing unit is configured to determine that the third The node transmits a data packet that needs to be mapped on the first radio link control channel on the first link; wherein, the P is an integer greater than 1.
  • FIG. 10 is a schematic block diagram of a communication device 200 provided by an embodiment of the present application.
  • the apparatus 200 includes: at least one processor 220 .
  • the processor 220 is coupled with the memory for executing instructions stored in the memory to send signals and/or receive signals.
  • the device 200 further includes a memory 230 for storing instructions.
  • the apparatus 200 further includes a transceiver 210, and the processor 220 controls the transceiver 210 to send signals and/or receive signals.
  • processor 220 and the memory 230 may be combined into one processing device, and the processor 220 is configured to execute the program codes stored in the memory 230 to implement the above functions.
  • the memory 230 may also be integrated in the processor 220 , or be independent of the processor 220 .
  • the transceiver 210 may include a transceiver (or a receiver) and a transmitter (or a transmitter).
  • the transceiver may further include antennas, and the number of antennas may be one or more.
  • the transceiver 210 may be a communication interface or an interface circuit.
  • the transceiver 210 in the device 200 may correspond to the transceiver unit 110 in the device 100
  • the processor 220 in the device 200 may correspond to the processing unit 120 in the device 200 .
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static RAM static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct ram-bus RAM, DR RAM
  • direct ram-bus RAM direct ram-bus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute method 700 and method 800 The method of any one embodiment in the example.
  • the present application also provides a computer-readable medium, the computer-readable medium stores program code, and when the program code is run on the computer, the computer is made to execute the method 700 and the method 800.
  • the method of any one embodiment in the example.
  • the present application further provides a system, which includes the foregoing apparatus or equipment.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the network-side equipment in each of the above device embodiments corresponds to the terminal equipment and the network-side equipment or terminal equipment in the method embodiments, and the corresponding modules or units perform corresponding steps, for example, the communication unit (transceiver) executes the receiving method in the method embodiments. Or the step of sending, other steps besides sending and receiving may be performed by a processing unit (processor). For the functions of the specific units, reference may be made to the corresponding method embodiments. Wherein, there may be one or more processors.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种通信方法,该方法包括:第一节点从第二节点接收第一信息,第一信息包括第二节点的第一缓存空间中可用空间的大小,第一缓存空间用于缓存需要通过第一路径传输的数据包,第一路径为用于传输数据包的主路径,第二节点为主路径上的第一节点的下一跳节点;如果第一缓存空间中可用空间的大小小于或等于第一阈值,第一节点确定通过第三节点传输需要通过第一路径传输的数据包,第三节点为用于传输数据包的备用路径上的第一节点的下一跳节点。从而缓解了第二节点的拥塞,并且减小数据包的平均传输时延,提升用户体验。

Description

通信方法和装置
本申请要求于2021年5月11日提交中国专利局、申请号为202110512937.7、发明名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2021年5月13日提交中国专利局、申请号为202110523511.1、发明名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和装置。
背景技术
目前,考虑到接入回传一体化(integrated access and backhaul,IAB)节点的引入,在无线空口中引入了多跳无线链路。为了使父节点获取子链路的拥塞状况,R16的IAB课题中引入了下行的逐跳流控反馈(flow control feedback),即IAB节点可以向自己的父节点进行流控反馈,该流控反馈可以体现IAB节点和自己的子节点之间链路的缓存状态。然而,当父节点在收到子节点发送的流控反馈信息后,若得知子节点的链路出现了拥塞,会减缓下行数据的发送,这样会导致数据包堆积在父节点处,仍然有缓存数据包溢出的风险。并且若链路拥塞在短时间内无法缓解时,还会造成数据包在无线回传链路被长时间缓存无法发送,最终造成数据包的延时过大,影响用户的体验。
因此,如何控制数据包的发送,成为目前需要解决的技术问题。
发明内容
本申请提供一种通信方法和装置,通过对数据包进行重路由,可以减小数据包的传输时延,提升用户体验。
第一方面提供了一种通信方法,该方法包括:第一节点从第二节点接收第一信息,第一信息包括第二节点的第一缓存空间中可用空间的大小,第一缓存空间用于缓存需要通过第一路径传输的数据包,第一路径为用于传输数据包的主路径,第二节点为主路径上的第一节点的下一跳节点;如果第一缓存空间中可用空间的大小小于或等于第一阈值,第一节点确定通过第三节点传输需要通过第一路径传输的数据包,第三节点为用于传输数据包的的备用路径上的第一节点的下一跳节点。
基于该技术方法,第一节点可以基于收到的路径标识粒度的流控反馈信息,在链路遇到拥塞的情况下,对数据包执行重路由,一方面可以缓解链路拥塞,另一方面还可以减小数据包的平均传输时延,提升用户体验。
本申请中,第一缓存空间可以是第二节点的某个存储空间。第一缓存空间可用空间的大小可以是指发端最大发送的数据量。
本申请中,可用空间的大小等于阈值时,第一节点的判断结果可以灵活确定,不做限 定。
本申请中,为了保证数据在终端和IAB宿主之间的正常传输,IAB宿主需要为每个IAB节点配置路由表,即:配置不同路径对应的下一跳节点。同时,IAB宿主需要确定数据传输对应的传输路径。也就是说,在数据传输之前会先确定一个传输路径,该传输路径可以称为主路径,数据在终端和IAB宿主之间通过该主路径进行路由(routing)传输,而其他路径都可以看成备份(backup)路径。
本申请中,第一节点的下一跳节点可以是子节点也可以是父节点,本申请不做限定。
结合第一方面,在第一方面的某些实现方式中,如果所述第一缓存空间中可用空间的大小大于所述第一阈值,所述第一节点确定通过所述第二节点传输需要通过第一路径传输的数据包。
基于上述技术方案,如果第一节点判断第二节点的缓存状态可以发送第一路径上的数据包时,可以确定第二节点为下一跳节点。从而可以保证数据包及时的传输,减小了数据包的传输实现,保障业务体验。
结合第一方面,在第一方面的某些实现方式中,所述第一节点从第二节点接收第一信息,包括:所述第一节点在第一时长内从所述第二节点接收N个第一信息,所述N个第一信息包括N个第一缓存空间中可用空间的大小;如果所述N个第一缓存空间中可用空间的大小中有X个小于或等于所述第一阈值时,所述第一节点确定通过所述第三节点传输需要通过第一路径传输的数据包,其中,所述N为大于1的整数,所述X小于或等于所述N。
基于上述技术方案,第一节点可以在一段时长内判断第二节点的缓存状态,可以进一步保证对第二节点拥塞判断的准确性,从而保证数据包可以成功及时的传输。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:所述第一节点从所述第二节点接收第二信息,所述第二信息包括所述第二节点的第二缓存空间中可用空间的大小,所述第二缓存空间用于缓存需要映射在第一链路上的第一无线链路控制信道的数据包,所述第一链路为所述第一节点和所述第二节点之间的链路;所述第一节点根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过第三节点传输需要通过第一路径传输的数据包。
基于上述技术方案,第一节点可以基于两种粒度的流控反馈信息判断第二节点的拥情况,可以进一步保证对第二节点拥塞判断的准确性,从而保证数据包可以成功及时的传输。
结合第一方面,在第一方面的某些实现方式中,所述第一节点根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过第三节点传输需要通过第一路径传输的数据包,包括:如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,和/或,所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述第一节点确定通过第三节点传输需要通过第一路径传输的数据包。
本申请中,第一阈值可以等于第二阈值,第一阈值也可以不等于第二阈值。
基于上述技术方案,宿主节点可以根据实际情况灵活配置阈值。
结合第一方面,在第一方面的某些实现方式中,所述第一节点根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过第三节点传输需要通过第一路径传输的数据包,包括:如果所述第一节点在第一时长内接收的所述第一缓存空 间中可用空间的大小小于或等于第一阈值,和/或,所述第一节点在第二时长内接收的所述第二缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过第三节点传输需要通过第一路径传输的数据包。
本申请中,第一时长可以等于第二时长,第一时长也可以不等于第二时长。
基于上述技术方案,宿主节点可以根据实际情况灵活配置阈值。
结合第一方面,在第一方面的某些实现方式中,如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过第三节点传输需要通过第一路径传输的数据包,包括:如果所述第一节点确定在接收第一信息之前的第三时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述第一节点确定通过第三节点传输需要通过第一路径传输的数据包;或者,如果所述第一节点确定在接收第一信息之后的第四时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述第一节点确定通过第三节点传输需要通过第一路径传输的数据包。
需要说明的是,本申请中“如果所述第一节点确定在接收第一信息之前的第三时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述第一节点确定通过第三节点传输需要通过第一路径传输的数据包”可以理解为,第一节点确定在接收第一信息之前的第三时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的第二类型数据包,其中,第二类型数据包为第一节点需要通过第一路径传输的数据包。类似的,针对于第四时长的技术方案也可以如此理解。
本申请中第二类型数据包为第一节点需要通过第一路径传输的数据包。也就是说,当第二节点在接收第一信息前的某个时长内已经发送过数据量为第一缓存空间中可用空间的大小的第二类型数据包时,第一节点也可以确定第二节点不可用,确定通过第三节点传输该数据包。或者,当第二节点在接收第一信息后的某个时长内已经发送过数据量为第一缓存空间中可用空间的大小的第二类型数据包时,第一节点也可以确定第二节点不可用,确定通过第三节点传输该数据包。换言之,如果第一节点确定已经发送过数据量为第一缓存空间大小中可用空间大小的第二类型的数据包时,第一节点也可以确定第二节点不用,可用通过第三节点发送该数据包。
基于上述技术方案,第一节点可以及时判断第二节点的拥塞情况,使得数据包可以及时的传输,减小了数据包的传输实现,保障业务体验。
结合第一方面,在第一方面的某些实现方式中,如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过第三节点传输需要通过第一路径传输的数据包,包括:如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,且所述第一节点确定所述第三节点可用于传输所述需要通过第一路径传输的数据包,所述第一节点确定通过所述第三节点传输所述需要通过第一路径传输的数据包。
基于上述技术方案,第一节点确定第二节点不可用时,还可以确定备份链路的可用性。从而缓解第二节点的拥塞,并且保障数据包可以及时从备用链路上传输,减小了数据包的延时,保障了业务体验。
结合第一方面,在第一方面的某些实现方式中,所述第一节点确定所述第三节点可用 于传输需要通过第一路径传输的所述数据包,包括:所述第一节点从所述第三节点接收第三信息,所述第三信息包括所述第三节点的至少一个缓存空间中可用空间的大小,所述至少一个缓存空间与所述至少一个备用路径一一对应,所述至少一个备用路径和所述第一路径的目的节点相同;如果所述至少一个缓存空间中可用空间的大小之和大于第三阈值,所述第一节点确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
本申请中,需要重路由的数据包的备用路径可以有多个。
基于上述技术方案,第一节点可以通过路径标识粒度判断备用链路是否可用,从而实现数据包可以成功的重路由。
结合第一方面,在第一方面的某些实现方式中,所述第一节点确定所述第三节点可用于传输需要通过第一路径传输的所述数据包,包括:所述第一节点从第三节点接收第四信息,所述第四信息包括所述第三节点的第四缓存空间中可用空间的大小,所述第四缓存空间用于缓存需要映射在第二链路上的第一无线链路控制信道的数据包,所述第二链路为所述第一节点和所述第三节点之间的链路;如果所述第四缓存空间中可用空间的大小大于第四阈值,所述第一节点确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
结合第一方面,在第一方面的某些实现方式中,所述第一节点确定所述第三节点可用于传输所述数据包,包括:所述第一节点从第三节点接收第四信息,所述第四信息包括所述第三节点的至少一个缓存空间的中可用空间的大小,所述至少一个缓存空间用于缓存需要映射在第二链路上至少一个无线链路控制信道的数据包,所述至少一个缓存空间与所述至少一个无线链路控制信道一一对应,所述第二链路为所述第一节点和所述第三节点之间的链路;如果所述至少一个缓存空间中可用空间的大小之和大于第四阈值,所述第一节点确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
基于上述技术方案,第一节点可以通过无线链路控制信道粒度判断备用链路是否可用,从而实现数据包可以成功的重路由。
结合第一方面,在第一方面的某些实现方式中,所述第一节点从所述第二节点接收第五信息,所述第五信息包括所述第二节点的第一缓存空间中可用空间的大小,如果所述第一缓存空间中可用空间的大小大于第五阈值,所述第一节点确定所述第二节点可用于传输需要通过第一路径传输的数据包。
结合第一方面,在第一方面的某些实现方式中,所述第一节点从第二节点接收第五信息,包括:所述第一节点在第五时长内从第二节点接收Y个第五信息,所述Y个第五信息包括Y个第一缓存空间中可用空间的大小;如果所述Y个第一缓存空间中可用空间的大小均大于第五阈值,所述第一节点确定所述第二节点可用于传输所述需要通过第一路径传输的数据包。其中,所述Y为大于1的整数。
基于上述技术方案,如果第一节点确定主链路拥塞缓解时,可以无需对数据包进行重路由,从而可以减小对备份链路长期占用造成影响。
结合第一方面,在第一方面的某些实现方式中,所述第一阈值为所述第一节点的宿主节点配置的,或者所述第一阈值为所述第一节点的宿主节点通过指示信息指示的,或者所述第一阈值预配置给第一节点;所述第一时长为所述第一节点的宿主节点配置的,或者所述第一时长为所述第一节点的宿主节点通过指示信息指示的,或者所述第一时长预配置给第一节点。
应理解,本申请中第一阈值至第五阈值都可以按照如上技术方案进行配置;类似的,第一时长至第五时长也可以按照如上技术方案进行配置。
基于上述技术方案,本申请中的阈值可以根据实际情况灵活配置。
第二方面,提供了一种通信方法,该方法包括:第一节点从第二节点接收第二信息,所述第二信息包括所述第二节点的第二缓存空间中可用空间的大小,所述第二缓存空间用于缓存需要映射在第一链路上的第一无线链路控制信道的数据包,所述第一链路为所述第一节点和所述第二节点之间的链路;如果所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述第一节点确定通过所述第三节点传输第一数据包,其中,所述第一数据包为需要映射在所述第一链路上的第一无线链路控制信道的数据包,所述第一数据包的主路径为第一路径,所述第二节点为所述第一路径上的第一节点的下一跳节点,所述第三节点为用于传输所述第一数据包的第二路径上的第一节点的下一跳节点,所述第二路径为第一数据包的备用路径,所述第一节点和所述第三节点之间的链路为第二链路,所述第一路径和所述第二路径具有相同的目的节点。
基于上述技术方案,基于该技术方法,第一节点可以基于收到的无线链路控制信道粒度的流控反馈信息,在链路遇到拥塞的情况下,对数据包执行重路由,一方面可以缓解链路拥塞,另一方面还可以减小数据包的平均传输时延,提升用户体验。
结合第二方面,在第二方面的某些实现方式中,如果所述第二缓存空间中可用空间的大小大于所述第二阈值,所述第一节点确定通过所述第二节点传输所述第一数据包。
结合第二方面,在第二方面的某些实现方式中,所述第一节点从第二节点接收第二信息,包括:所述第一节点在第二时长内从第二节点接收K个第二信息,所述K个第二信息包括K个第二缓存空间中可用空间的大小;如果所述K个第二缓存空间中可用空间的大小中有L个小于或等于所述第二阈值时,所述第一节点确定通过所述第三节点传输所述第一数据包,其中,所述K为大于1的整数,所述L小于或等于所述K。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:所述第一节点从所述第二节点接收第一信息,所述第一信息包括所述第二节点的第一缓存空间中可用空间的大小,所述第一缓存空间用于缓存需要通过第一路径传输的数据包;所述第一节点根据所述第二缓存空间中可用空间的大小和所述第一缓存空间中可用空间的大小,所述第一节点确定通过所述第三节点传输所述第一数据包,所述第三节点为用于传输所述第一数据包的备用路径上的第一节点的下一跳节点。
结合第二方面,在第二方面的某些实现方式中,所述第一节点根据所述第二缓存空间中可用空间的大小和所述第一缓存空间中可用空间的大小,确定通过所述第三节点传输所述第一数据包,包括:如果所述第二缓存空间中可用空间的大小小于或等于第二阈值,和/或,所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过所述第三节点传输所述第一数据包。
结合第二方面,在第二方面的某些实现方式中,所述第一节点根据所述第二缓存空间中可用空间的大小和所述第一缓存空间中可用空间的大小,确定通过所述第三节点传输所述第一数据包,包括:如果所述第一节点在第二时长内接收的所述第二缓存空间中可用空间的大小小于或等于第二阈值,和/或,所述第一节点在第一时长内接收的所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过所述第三节点传输所 述第一数据包。
结合第二方面,在第二方面的某些实现方式中,如果所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述第一节点确定通过第三节点传输所述第一数据包,包括:如果所述第一节点确定在接收第二信息之前的第三时长内,向所述第二节点发送过数据量大小等于所述第二缓存空间中可用空间的大小的第一类型数据包,其中,所述第一类型数据包为第一节点映射在第一链路上的第一无线链路控制信道上向第一节点发送的数据包,所述第一节点确定通过所述第三节点传输所述第一的数据包;或者,如果所述第一节点确定在接收第二信息之后的第四时长内,向所述第二节点发送过数据量大小等于所述第二缓存空间中可用空间的大小的第一类型数据包,所述第一节点确定通过所述第三节点传输所述第一数据包。
需要说明的是,本申请中第一类型数据包为第一节点映射在第一链路上的第一无线链路控制信道上向第一节点发送的数据包。也就是说,当第二节点在接收第二信息前的某个时长内已经发送过数据量为第二缓存空间中可用空间的大小的第一类型数据包时,第一节点也可以确定第二节点不可用,确定通过第三节点传输第一数据包。或者,当第二节点在接收第二信息后的某个时长内已经发送过数据量为第二缓存空间中可用空间的大小的第一类型数据包时,第一节点也可以确定第二节点不可用,确定通过第三节点传输第一数据包。换言之,如果第一节点确定已经发送过数据量为第二缓存空间大小中可用空间大小的第一类型的数据包时,第一节点也可以确定第二节点不用,可用通过第三节点发送该数据包。
结合第二方面,在第二方面的某些实现方式中,如果所述第二缓存空间中可用空间的大小小于或等于第二阈值,确定通过所述第三节点传输所述第一数据包,包括:如果所述第二缓存空间中可用空间的大小小于或等于第二阈值,且所述第一节点确定第三节点可用于传输所述第一数据包,所述第一节点确定通过所述第三节点传输所述第一数据包。
结合第二方面,在第二方面的某些实现方式中,所述第一节点确定所述第三节点可用于传输所述第一数据包,包括:所述第一节点从第三节点接收第四信息,所述第四信息包括所述第三节点的至少一个缓存空间的中可用空间的大小,所述至少一个缓存空间用于缓存被映射在第二链路上至少一个无线链路控制信道上向第三节点发送的数据包,所述至少一个缓存空间与所述至少一个无线链路控制信道一一对应;如果所述至少一个缓存空间中可用空间的大小之和大于第四阈值,所述第一节点确定所述第三节点可用于传输所述第一数据包。
结合第二方面,在第二方面的某些实现方式中,所述第一节点确定通过所述第三节点传输所述第一数据包,包括:所述第一节点从第三节点接收第四信息,所述第四信息包括所述第三节点的第四缓存空间中可用空间的大小,所述第四缓存空间用于缓存被映射在第二链路上的第二无线链路控制信道向第三节点发送数据包,所述第二链路为所述第一节点和所述第三节点之间的链路;如果所述第四缓存空间中可用空间的大小大于第四阈值,所述第一节点确定通过所述第三节点传输所述第一数据包。
结合第二方面,在第二方面的某些实现方式中,所述第一节点确定通过所述第三节点传输所述第一数据包,包括:所述第一节点从所述第三节点接收第三信息,所述第三信息包括所述第三节点的至少一个缓存空间中可用空间的大小,所述至少一个缓存空间与所述 至少一个备用路径一一对应,所述至少一个备用路径和所述第一路径的目的节点相同;如果所述至少一个缓存空间中可用空间的大小之和大于第三阈值,所述第一节点确定通过所述第三节点传输所述第一数据包。
结合第二方面,在第二方面的某些实现方式中,所述第一节点从所述第二节点接收第五信息,所述第五信息包括所述第二节点的第二缓存空间中可用空间的大小,如果所述第二缓存空间中可用空间的大小大于第五阈值,所述第一节点确定所述第二节点可用于传输需要映射在所述第一链路上的第一无线链路控制信道的数据包。
结合第二方面,在第二方面的某些实现方式中,所述第一节点从第二节点接收第五信息,包括:所述第一节点在第五时长内从第二节点接收P个第五信息,所述P个第五信息包括P个第二缓存空间中可用空间的大小;如果所述P个第二缓存空间中可用空间的大小均大于第五阈值时,所述第一节点确定通过所述第三节点传输需要映射在所述第一链路上的第一无线链路控制信道的数据包;其中,所述第五阈值大于或等于所述二阈值,所述第五时长大于或等于所述第二时长;所述P为大于1的整数,所述P大于或等于所述K。
结合第二方面,在第二方面的某些实现方式中,所述第二阈值为所述第一节点的宿主节点配置的,或者所述第二阈值为所述第一节点的宿主节点通过指示信息指示的,或者所述第二阈值预配置给所述第一节点;所述第二时长为所述第一节点的宿主节点配置的,或者所述第二时长为所述第一节点的宿主节点通过指示信息指示的,或者所述第二时长预配置给所述第一节点。
第三方面提供了一种通信方法,该方法包括:宿主节点为第一节点配置阈值或者时长,或者宿主节点通过指示信息指示第一节点的阈值或者时长。该阈值可以是第二节点不拥塞的最小值。
第四方面,提供了一种通信装置,该装置用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第五方面,提供了一种通信装置,该装置用于执行第二方面或第二方面中任意一种可能的实现方式中的通信方法。
第六方面,提供了一种通信装置,该装置用于执行第三方面中的通信方法。
第七方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
在一种实现方式中,该通信装置为宿主节点设备。当该通信装置为宿主节点设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于宿主节点中的芯片。当该通信装置为配置于宿主节点中的芯片时,该通信接口可以是输入/输出接口。可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行 存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
在一种实现方式中,该通信装置为宿主节点设备。当该通信装置为宿主节点设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于宿主节点设备中的芯片。当该通信装置为配置于宿主节点设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第九方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第三方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为宿主节点设备。当该通信装置为宿主节点设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第三方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于收发器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十一方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过收发器接收信号,通过发射器发射信号,以执行第一方面至第三方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输 出给发射器,处理器接收的输入数据可以来自收发器。其中,发射器和收发器可以统称为收发器。
上述第十一方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第三方面中任一种可能实现方式中的方法。
第十三方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中任一种可能实现方式中的方法。
第十四方面,提供了一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统的设备执行上述第一方面至第三方法各实现方式中的方法。
第十五方面,提供了一种通信系统,所述通信系统包括上述任一项第四方面涉及的装置、第五方面涉及的装置以及第六方面涉及的通信装置。
附图说明
图1是本申请提供的一种IAB独立组网的示意图。
图2是本申请提供的一种IAB非独立组网的示意图。
图3是本申请提供的一种IAB系统架构的示意图。
图4是本申请提供的IAB网络协议栈的示意图。
图5是本申请提供的IAB节点流控反馈格式的示意图。
图6是本申请提供的IAB网络中节点路由的示意图。
图7是本申请提供的通信方法的示意性流程图。
图8是本申请提供的通信方法的示意性流程图。
图9是本申请提供的通信装置的示意性框图。
图10是本申请提供的通信装置的示意性框图。
具体实施方式
本申请实施例可应用的无线通信系统包括但不限于:全球移动通信(global system of mobile communication,GSM)系统、长期演进(long term evolution,LTE)频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、LTE系统、先进的长期演进(LTE-Advanced,LTE-A)系统、下一代通信系统(例如,5G、6G通信系统)、多种接入系统的融合系统,或演进系统。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网 系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请实施例中所涉及到的终端设备是移动用户与网络交互的入口,能够提供基本的计算能力,存储能力,向用户显示业务窗口,接受用户操作输入。5G中的终端设备可以采用新空口技术,与无限接入网设备建立信号连接和数据连接,从而传输控制信号和业务数据到移动网络。本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的接入终端、移动设备、用户终端或用户装置。例如,终端设备可以为用户设备(user equipment,UE),例如,手机(mobile phone)、平板电脑(pad)、台式机、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、电视、增强现实(augmented reality,AR)终端设备等。终端设备也可是工业控制(industrial control)中的无线终端、机器类型通信(machine type communication,MTC)终端、客户终端设备(customer premise equipment,CPE)、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)、智能音箱、电子门锁、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、自动导引车(automatic guided vehicle,AGV)、无人机、汽车、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)或非公共用途网络(non-public network,NPN)中的终端设备等。
本申请实施例中所涉及到无线接入网设备类似于传统网络里面的基站,部署在靠近终端设备的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等确定不同质量的传输隧道来传输用户数据。无线接入网设备能够管理自身的资源,合理利用,按需为终端设备提供接入服务,并负责把控制信号和用户数据在终端设备和核心网之间转发。本申请实施例中所涉及到无线接入网设备可以是终端设备通过无线方式接入到该移动通信系统中的接入设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、站点(station,STA)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)、宏基站或微基站、高频基站等。该无线接入网设备还可以为NR系统中的下一代基站(next generation node B,gNB),或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
相较于第四代移动通信系统,第五代移动通信(5G)针对网络各项性能指标,全方位 得都提出了更严苛的要求。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。IAB技术为解决上述两个问题提供了思路:其接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,避免光纤部署。
下面结合图1、图2和图3详细介绍本申请实施例适用的接入回传一体化(Integrated access and backhaul,IAB)的场景。
图1所示的为IAB独立组网(standalone,SA)的场景。在IAB网络中,中继节点RN(relay node,RN)或者叫IAB节点(IAB node),可以为用户设备(user equipment,UE)提供无线接入服务,所述UE的业务数据由IAB节点通过无线回传链路连接到IAB宿主(IAB donor)传输。本申请中IAB donor也可称为宿主节点(donor node)或宿主基站(donor gNodeB,DgNB),支持IAB节点的基站,具体可以包括IAB-donor-CU部分,以及至少一个IAB-donor-DU部分;对应而IAB-donor-CU部分,还可以包含一个IAB-donor-CU-CP(负责控户面)以及至少一个IAB-donor-CU-UP(负责用户面)。IAB节点可以由移动终端(mobile termination,MT)部分和DU(distributed unit,DU)部分组成,其中,当IAB节点面向其父节点时,可以作为终端设备,即MT的角色;当IAB面向其子节点(子节点可能是另一IAB节点,或者普通UE)时,其被视为网络设备,即作为DU的角色。其中IAB节点的MT部分,具有UE的部分或全部功能。宿主基站DgNB可以是一个具有完整基站功能的接入网网元,还可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离形态的接入网网元,宿主基站连接到为UE服务的核心网(例如连接到5G核心网,5GC)网元,并为IAB节点提供无线回传功能。为便于表述,将宿主节点的集中式单元简称为donor CU(或直接称为CU),宿主节点的分布式单元简称为donor DU,其中donor CU还有可能是控制面(control plane,CP)和用户面(user plane,UP)分离的形态,例如CU可由一个CU-CP和一个(或多个)CU-UP组成。
在5G当前的标准中,考虑到高频段的覆盖范围小,为了保障网络的覆盖性能,在IAB网络中可能采用多跳组网。此外,考虑到业务传输可靠性的需求,可以使IAB节点支持双连接(dual connectivity,DC)或者多连接(multi-connectivity),以应对回传链路可能发生的异常情况,例如链路的中断或阻塞(blockage)及负载波动等异常,提高传输的可靠性保障。因此,IAB网络支持多跳组网,还可以支持多连接组网。在由IAB节点服务的UE和IAB donor之间,存在至少一条由多段链路组成的传输路径。在一条传输路径上,包含多个节点,如UE,一个或多个IAB节点,IAB donor(若IAB donor为CU和DU分离的形态,则还包含IAB-donor-DU部分,和IAB-donor-CU部分),每个IAB节点将为其提供接入和回传服务的相邻节点视为父节点,相应地,每个IAB节点可视为其父节点的子节点。
例如,图1中,IAB节点1的父节点为IAB donor,IAB节点1又为IAB节点2和 IAB节点3的父节点,IAB节点2和IAB节点3均为IAB节点4的父节点,IAB节点5的父节点为IAB节点2。UE的上行可以经一个或多个IAB节点传输至宿主站点IAB donor后,再由IAB donor发送至移动网关设备(例如5G核心网中的用户平面功能单元UPF),下行将由IAB donor从移动网关设备处接收后,再通过IAB节点发送至UE。图1示出的为IAB独立组网场景,IAB节点和UE均仅通过NR制式的空口与网络建立连接。
图1所示的IAB独立组网场景仅仅是示例性的,在多跳和多连接结合的IAB场景中,还有更多其他的可能性,例如图中的IAB donor和另一IAB donor下的IAB node组成双连接为UE服务(即UE支持双连接,其中一个连接1直接接入IAB donor DU服务的小区,另一个连接2,是与IAB node X建立连接,该IAB node X所连接到的IAB宿主不同于UE连接1所对应的IAB宿主)等,不一一列举。
图2所示的为IAB非独立组网(non-standalone,NSA)的场景。如图2所示,IAB节点支持4G和5G网络双连接,(E-UTRAN NR dual connectivity,EN-DC),其中LTE的基站eNB为主基站(Master eNB,MeNB),为IAB节点提供LTE的空口(LTE Uu)连接,并与4G演进型分组核心网(evolved packet core,EPC)建立S1接口进行用户面和控制面传输。对于EN-DC模式的UE或者IAB节点来说,LTE的基站eNB为主基站。gNB为5G制式的基站,对于UE或者IAB节点来说,可以是IAB节点在双连接模式下的主基站,或者辅基站。IAB-donor gNB为IAB节点提供NR的空口(NR Uu)连接,并与核心网EPC建立S1接口进行用户面传输。类似的,UE也支持EN-DC,UE通过LTE Uu接口连接到主基站eNB,通过NR Uu接口连接到辅基站IAB node,UE的辅基站也可以是IAB donor gNB。
需要说明的是,图2仅为组网的一个示例,IAB网络的NSA场景也同样支持多跳IAB组网,例如图2中的UE可以为另一个IAB节点,即IAB节点可以通过多跳无线回传链路连接到IAB donor gNB。本申请中的IAB非独立组网场景,也可以被称之为IAB的EN-DC组网场景。
图3为本申请适用的IAB网络系统架构图。如图3所示,IAB网络包括独立组网(SA)的IAB网络,以及非独立组网(NSA)的IAB网络。如前所述,IAB node包含MT部分和DU部分,IAB donor又可以进一步分为DU和CU部分,CU还可分为CU-CP和CU-UP部分。每个IAB节点的DU部分,与IAB donor CU之间有F1接口,该F1接口包含控制面和用户面两部分,其中用户面的部分是IAB-DU与IAB donor CU-UP之间维护的,而控制面部分是IAB-DU与IAB donor CU-CP之间维护的。需要说明的是,IAB-DU和IAB donor CU之间的F1接口,在图3中未示出。
在IAB节点工作在SA模式时,IAB node可以单连接到一个父节点,或者双连接到两个父节点,其中这两个父节点可以由同一个IAB donor控制,或者分别由不同的IAB donor控制。IAB node的DU部分与一个IAB donor之间建立F1接口即可,该IAB donor可以连接到5G核心网(5G core,5GC)。其中,IAB-donor-CU-CP与通过NG控制面接口连接到5GC中的控制面网元(例如接入和移动性管理功能AMF),其中IAB-donor-CU-UP与通过NG用户面接口连接到5GC中的用户面网元(例如用户面功能UPF)。本申请中,5G核心网,可用于对终端设备进行鉴权、移动性管理、PDU会话管理等,包含接入和移动性管理功能AMF、用户面功能UPF等功能实体或网元。
当IAB节点工作在NSA模式(或者说EN-DC模式)时,IAB-donor-CU-UP可以通过S1用户面接口连接到EPC(例如连接到业务网关(serving gateway,SGW)),MeNB与IAB node的MT之间有LTE Uu空口连接,MeNB与IAB-donor-CU-CP之间有X2-C接口,MeNB通过S1接口连接到EPC(包括S1接口用户面,以及S1接口控制面)。
另一种可能的情况,图3中的MeNB也可以换成5G的基站gNB,图中的虚线部分LTE-Uu接口相应的被替换为NR-Uu接口,gNB可以和5GC之间建立用户面和/或控制面的接口,gNB和IAB-donor为IAB节点提供双连接服务,gNB可以作为IAB节点的主基站的角色,或者辅基站的角色。
需要说明的是,本申请中的IAB节点,可以是作为中继节点的UE,还可以是家庭网关(residential gateway,RG),或者用户驻地设备(customer premise Equipment,CPE)等作为中继节点的设备。
当前对IAB网络的讨论中,确定在无线回传链路引入一个新的协议层—回传适配协议(backhaul adaptation protocol,BAP)层,该协议层可以位于无线链路控制(radio link control,RLC)层之上,可用于实现在无线回传链路的路由,以及承载映射等功能。
图4为IAB网络用户面和控制面协议栈示意图,图4中的(a)为IAB网络用户面协议栈示意图;图4中的(b)为IAB网络控制面协议栈示意图。在IAB节点(例如,IAB的DU部分)和宿主节点(例如,IAB-donor-CU)之间,需要建立F1接口(或者被称为F1*接口,本申请中,可统一称为F1接口,但对名称并不做限定),该接口支持用户面协议(F1-U/F1*-U)(如图4中的(a))和控制面协议(F1-C/F1*-C)(如图4中的(b)),其中,用户面协议包括以下协议层的一个或多个:通用分组无线服务(general packet radio service,GPRS)隧道协议用户面(tunnelling protocol user plane,GTP-U),用户数据报协议(user datagram protocol,UDP)、因特网协议(internet protocol,IP)等协议层;该接口的控制面协议包括以下中的一个或者多个:F1应用协议(F1application protocol,F1AP)、流控传输协议(stream control transport protocol,SCTP)、IP等协议层。
如图4中的(b)所示:通过F1/F1*接口的控制面,IAB节点和IAB宿主之间可以进行执行接口管理、对IAB-DU进行管理,以及执行UE上下文相关的配置等。通过F1/F1*接口的用户面,IAB节点和IAB宿主之间可以执行用户面数据的传输,以及下行传输状态反馈等功能。
目前,考虑到IAB节点的引入,在无线空口引入了多跳无线链路,为了避免上游节点对下游链路的拥塞状况不知情,R16IAB课题中引入了下行的逐跳流控反馈(flow control feedback),即IAB节点可以向自己的父节点进行流控反馈,该流控反馈可以体现IAB节点和自己的子节点之间链路的缓存状态,具体可以有两种不同粒度的缓存状态反馈,一种是回传适配协议层路由标识(BAP routing ID)粒度的(即IAB node向父节点反馈的可用缓存大小是与每个BAP routing ID所对应的可用缓存空间大小,具体反馈的BAP控制(control)协议数据单元(protocol data unit,PDU)的格式可以参考图5中的(a));另一种反馈的是回传链路无链路控制信道(BH RLC channel,BH RLC CH)粒度的(即IAB node向父节点反馈的可用缓存大小是与其和父节点之间链路上的BH RLC channel所对应的可用缓存空间大小,具体反馈的BAP control PDU的格式可以参考图5中的(b))。无论哪种粒度的流控反馈,都是携带在BAP control PDU中向父节点发送的。需要说明的 是,IAB节点可以基于父节点的询问(polling),向父节点发送包含流控反馈信息的BAP control PDU,或者IAB节点也可以基于自己对缓存状态的监测直接触发向父节点发送包含流控反馈信息的BAP control PDU。
其中,下行在IAB donor(当IAB donor是CU-DU分离形态时,具体是IAB donor DU添加BAP routing ID在下行中)被添加BAP routing ID后,IAB donor和后续节点均可以基于该BAP routing ID查找配置的路由表选择下一跳节点,直至被传输至下行的目标IAB节点;上行在IAB节点处被添加BAP routing ID后,该IAB节点和后续节点均基于该BAP routing ID查找配置的路由表选择下一跳节点,直至传输至上行的目标IAB donor DU。
基于该逐跳的流控反馈,当父节点在收到子节点发送的流控反馈信息后,若得知子节点的链路出现了拥塞,会减缓下行数据的发送,这样会导致堆积在父节点处,仍然有缓存溢出的风险。并且若链路拥塞在短时间内无法缓解时,还会造成数据包在无线回传链路被长时间缓存无法发送,最终造成的延时过大,影响用户的体验。
有鉴于此,本申请提供可一种通信方法,在链路遇到拥塞的情况下,对数据包执行重路由,可以缓解链路拥塞,从而使数据包及时的传输,并且可以减小数据包的平均传输时延,提升用户体验。
需要说明的是,本申请中,一个IAB节点#B向另一个IAB节点#A反馈的某种粒度的可用缓存空间的大小(available buffer size,或简称为可用缓存大小)可以是指该IAB节点#A还可以向该IAB节点#B发送的该种粒度所对应的数据包的最大数据量。例如IAB节点#B向IAB节点#A发送的流控给反馈信息中,BAP routing ID#1对应的可用缓存空间的大小为M字节(byte),则意味着IAB节点#A还能向IAB节点#B发送的携带BAP routing ID#1的数据包的总数据量最大为M字节。又如,IAB节点#B向IAB节点#A发送的流控给反馈信息中,与BH RLC CH#1对应的可用缓存空间的大小为M字节(byte),则意味着IAB节点#A还能向IAB节点#B发送的映射在BH RLC CH#1上的数据包的总数据量最大为M字节。其中,BH RLC CH#1标识的是第一节点和第二节点之间的无线回传链路上的一个无线回传RLC信道。
需要说明的是,本申请中,第一节点例如可以是:IAB网络中任意一个节点,或者为IAB donor DU);本申请中的第二节点可以是某些主路径上的第一节点的下一跳节点,例如可以是该第一节点的子节点或父节点。参见图1,本申请中的第一节点可以是IAB网络中任意一个节点,例如可以是IAB节点1、IAB节点2、或者IAB节点5等等,也可以是IAB宿主。如果IAB节点1是第一节点,第二节点可以是IAB节点2,此时可以对应于下行传输;如果IAB节点1是第一节点,IAB宿主可以是第二节点,此时对应上行传输,以下不再赘述。
通常情况,为了保证业务数据或信令(为便于描述,本申请实施例中可以统称为数据)在IAB网络中(例如在终端和IAB宿主之间,或者在IAB节点和IAB宿主之间)的正常传输,IAB宿主需要为每个IAB节点配置路由表,即:配置不同传输路径(每个传输路径由BAP routing ID所标识)对应的下一跳节点。同时,IAB宿主需要确定在无线回传链路的数据传输对应的传输路径。也就是说,在数据传输之前会先确定一个传输路径,该传输路径可以称为主路径,数据在IAB节点和IAB宿主之间通过该主路径进行路由(routing)传输,而其他路径都可以看成备份(backup)路径。应理解,主路径或者备份路径是宿主 基站为传输而定义的。
需要说明的是,本申请中,在IAB网络的无线回传链路传输时,路由选择是基于BAP层头中携带的BAP routing ID执行的,BAP routing ID由目标节点的BAP地址(address)和BAP路径标签(path ID)两部分组成。即,BAP routing ID标识了一条到目标节点的特定传输路径,即用于传输数据包的主路径。通常情况下,的BAP routing ID是唯一的。也可以理解为,每一个数据包所配置的BAP routing ID(也可以理解为主路径)是唯一的。参见图1,假设IAB节点1上有数据包#P1、数据包#P2和数据包#P3。数据包#P1的目标IAB节点5,主路径为路径#A:IAB节点1→IAB节点2→IAB节点5,则BAP routing ID包括:IAB节点5和路径标签#Path 1,该BAP routing ID用于标识该路径#A;数据包#P2的目标IAB节点4,主路径为路径#B:IAB节点1→IAB节点2→IAB节点4,则BAP routing ID包括:IAB节点4和路径标签#Path 2,该BAP routing ID用于标识该路径#B;数据包#P3的目标IAB节点4,主路径为路径#C:IAB节点1→IAB节点3→IAB节点4,则BAP routing ID包括:IAB节点4和路径标签#Path 3,该BAP routing ID用于标识该路径#C。
需要说明的是,本申请中,对于某个数据包而言,主路径为一个(即数据包中携带的BAP routing ID所指示的传输路径),但备份路径可以有一个或多个。对于一个数据包而言,一个备份路径和其主路径是两条不同的传输路径,这两个路径上至少有一个节点不同。本申请中,从一个IAB节点#A的角度来,某个数据包的备份路径上的下一跳IAB节点#C和主路径上的下一跳节点IAB#B不是同一个节点。如图6所示,假设数据包的目标地址为IAB节点9,则如图6所示,数据包的主路径为路径#2,数据包的备份路径可以有2条,分别为路径#3和路径#4。如果节点1判断对于数据包而言,主路径不可用(not available),或者说下一跳节点2不可用或者说与下一跳节点2之间的无线回传链路不可用,此时,IAB节点1可以进一步确定备份路径#3和/或备份路径#4是否可用(available),或者确定备份路径上的IAB节点3是否可用(available),或者确定IAB节点1与备份路径上的下一跳IAB节点3之间的无线回传链路是否可用。需要说明的是,图6中的IAB节点1,还可以理解为IAB donor,或者IAB donor DU。
需要说明的是,本申请中,备份路径可以是预配置的,例如,如图6所示,对于路径#2,IAB宿主可以预先在节点1上配置好路径#2的备份路径为路径#3和路径#4;或者,备份路径也可以是第一节点根据的目的地址确定的,例如,对于某个携带有路径#2所对应的BAP routing ID的数据包,第一节点可以确定其目的地址为IAB节点9,则根据第一节点上配置的路由表便可确定目的地址为IAB节点9的传输路径还有有哪些(比如路径#3和路径#4),进而确定该数据包的备份路径上的下一跳节点(例如IAB节点1在路径#4和路径#3上的下一跳节点均为IAB节点3)。本申请中,对于一个节点来说,一个数据包的备份链路可以是指该节点与该数据包的备份路径上的下一跳节点之间的链路,例如,对于图6所示的场景,对于IAB节点1,携带有对应于路径#2的BAP routing ID的数据包,其备份链路可以指IAB节点1和IAB节点3之间的链路#2。
需要说明的是,本申请中,第二节点为主路径上第一节点的下一跳节点。如果主路径可用,则确定第一节点的下一跳节点为第二节点,即,也可以理解为不需要重路由,或者停止执行重路由;第三节点为备份路径上第一节点的下一跳节点。如果确定第一节点的下一跳节点为第三节点,也可理解为主路径不可用,需要执行重路由。第二节点可以是第一 节点的子节点或者父节点,类似的,第三节点也可以是第一节点的子节点或父节点。
对于一个数据包而言,在无线回传链路上,向下一跳节点传输该数据包时,需要被映射在一个无线回传RLC信道(backhaul RLC channel,可简称为BH RLC CH)上向下一跳节点传输,一个无线回传链路上可以有一个或多个不同的BH RLC CH,在一个无线回传链路上的每个BH RLC CH可以提供差异化的QoS保障。需要说明的是,本申请中,对于节点#A而言,“主路径不可用”,可以理解为,主路径上IAB节点#A与其下一跳IAB节点#B之间的无线回传链路#1不可用;或者可以理解为,其下一跳IAB节点#B不可用;或者还可以理解为该主路径上的后续无线回传链路中至少一段无线回传链路不可用;也可以理解为,对于IAB节点#A待传输的特定数据包而言,该下一跳节点不可用或与该下一跳节点之间的无线回传链路不可用,例如IAB节点#A与下一跳IAB节点#B之间的链路对于BAP层中包含BAP routing ID#1的或者将要映射到BH RLC CH#1上向该下一跳IAB节点#B传输的数据包而言不可用,以下不再赘述。
图7是本申请提供的通信方法,图7的方法包括:
步骤S701,第二节点向第一节点发送信息#M1,信息#M1包括第二节点上对应于BAP routing ID#1的可用缓存空间的大小。
其中,BAP routing ID#1用于标识第一路径,第二节点为第一节点在第一路径上的下一跳节点。例如,信息#M1可以是第二节点的流控反馈信息,该流控反馈信息可以包括BAP routing ID粒度的缓存状态信息,其中包含用于标识第一路径的BAP routing ID#1对应的可用缓存空间的大小。
本申请中,由于第二节点发送的信息#M1中包含流控反馈信息,因此信息#M1也可以认为是第二节点反馈给第一节点的。
本申请中,第一路径可以视为携带有BAP层路由标识为BAP routing ID#1的数据包的主路径,需要通过第一路径传输的数据包,即在BAP层头携带的BAP层路由标识(例如BAP routing ID#1)所指示的传输路径为第一路径的数据包。应理解,主路径为第一路径的数据包可以有一个或多个。
步骤S702,第一节点接收信息#M1,根据信息#M1确定第二节点对于需要通过第一路径传输的数据包不可用。
本申请中,第一节点可以根据第二节点发送的信息#M1中包含的与BAP routing ID#1对应的可用缓存空间的大小,确定第一节点的下一跳节点。例如,一种可能的实现方式中,如果第二节点反馈的信息#M1中,与BAP routing ID#1对应的可用缓存空间的大小大于阈值TH#1(也可以是等于阈值TH#1),第一节点可以确定,携带有BAP routing ID#1的数据包的主路径可用,或者第二节点对于携带BAP routing ID#1的数据包而言可用,或者第一节点与第二节点之间的无线链路对于携带BAP routing ID#1的数据包而言可用,进而第一节点可以确定通过第二节点传输需要通过第一路径传输的数据包。
在另一种可能的实现方式中,如果第二节点反馈的信息#M1中,与BAP routing ID#1对应的可用缓存空间的大小小于或等于阈值TH#1,第一节点可以确定,携带有BAP routing ID#1的数据包的主路径不可用,或者第二节点对于携带BAP routing ID#1的数据包而言不可用,或者第一节点与第二节点之间的无线链路对于携带BAP routing ID#1的数据包而言不可用。这种情况下,第一节点需要为这些携带BAP routing ID#1的数据包选择合适的备 份链路。例如,若第一节点可以确定有一备份路径可用于传输携带有BAP routing ID#1的数据包,该备份路径上第一节点的下一跳节点为第三节点,则第一节点可以进而确定通过第三节点传输需要通过第一路径传输的数据包。
需要说明的是,本申请中,第一节点对于等于阈值情况的判定不做限定。作为一个示例,如果与BAP routing ID#1对应的可用缓存空间的大小等于阈值TH#1时,第一节点可以确定携带有BAP routing ID#1的数据包的主路径可用,这种情况下,第一节点仅在与BAP routing ID#1对应的可用缓存空间的大小小于阈值TH#1时,确定携带有BAP routing ID#1的数据包的主路径不可用。也可以是,第一节点确定携带有BAP routing ID#1的数据包的主路径不可用,这种情况下,第一节点可以仅在与BAP routing ID#1对应的可用缓存空间的大小大于阈值TH#1时,才可确定携带有BAP routing ID#1的数据包的主路径可用。同样也适用于后面于各个具体示例描述的等于阈值的情况。
作为一个示例,第一节点收到流控反馈信息#M1可以是BAP routing ID粒度的。具体而言,参照图1,假设第一节点为IAB节点1,第二节点为IAB节点2,对于携带有BAP routing ID#1的数据包#P1(或者称为第一数据包)而言,主路径为,路径1:IAB节点1→IAB节点2→IAB节点4,如果IAB节点2反馈的与BAP routing ID#1对应的可用缓存空间的大小小于(或等于)阈值TH#1,此时IAB节点1可以确定数据包#P1的主路径不可用。也可以理解为,对于主路径为路径#1的数据包#P1(即需要通过路径#1发送的数据包#P1)而言,链路#1不可用,或者IAB节点2不可用。链路#1是第一节点与第二节点之间的链路。
在一种可能的实现方式中,第一节点可以在一段连续时长#T1内收到了第二节点的M个流控反馈信息,M为大于等于1的正整数,该M个流控反馈信息是第二节点的BAP routing ID粒度的可用缓存空间的大小,假设为该M个流控反馈信息中,其中有N个包含了与BAP routing ID#1对应的可用缓存空间大小的具体数值,从第一个到第N个为{A1,A2,…AN}(Ax为大于0的整数,x为正整数,1≤x≤N),N≤M,如果{A1,A2,…AN}中的每一个值,均小于或等于阈值TH#1,第一节点可以确定携带有BAP routing ID#1的数据包在第二节点处拥塞。这种情况下,第一节点需要为这些携带BAP routing ID#1的数据包选择合适的备份链路。例如,若第一节点可以确定有一备份路径可用于传输携带有BAP routing ID#1的数据包,该备份路径上第一节点的下一跳节点为第三节点,则第一节点可以进而确定通过第三节点传输需要通过第一路径传输的数据包。
本申请中,第一节点确定携带有BAP routing ID#1的数据包在第二节点处拥塞,即第二节点对于携带有BAP routing ID#1的数据包而言不可用,或者携带有BAP routing ID#1的数据包的主路径不可用,或者第一节点和第二节点之间的链路#1对于携带有BAP routing ID#1的数据包而言不可用。在由BAP routing ID#1所标识的路径(可视为携带有BAP routing ID#1的数据包的主路径)中,第二节点为第一节点的下一跳节点,当第一节点确定数据包的主路径上的下一跳节点对于该数据包而言不可用时,可以对该数据包进行重路由,即为该数据包选择合适的备份路径,向备份路径上的下一跳节点发送该数据包。
在又一种可能的实现方式中,第一节点可以在一段连续时长#T1内收到了第二节点的M个流控反馈信息,M为大于等于1的正整数,该M个流控反馈信息是第二节点的BAP routing ID粒度的可用缓存空间的大小,假设为该M个流控反馈信息中,其中有N个包含 了与BAP routing ID#1对应的可用缓存空间大小的具体数值,从第一个到第N个为{A1,A2,…AN}(Ax为大于0的整数,x为正整数,1≤x≤N),N为小于或等于M的正整数,如果{A1,A2,…AN}中有至少Y个数值小于或等于阈值TH#1,Y为满足1≤Y≤N的正整数,则第一节点可以确定携带有BAP routing ID#1的数据包在第二节点处拥塞。这种情况下,第一节点需要为这些携带BAP routing ID#1的数据包选择合适的备份链路。例如,若第一节点可以确定有一备份路径可用于传输携带有BAP routing ID#1的数据包,该备份路径上第一节点的下一跳节点为第三节点,则第一节点可以进而确定通过第三节点传输需要通过第一路径传输的数据包。
针对前述两种在一段连续时长#T1内监测流控反馈信息判断第二节点对于携带有BAP routing ID#1的数据包是否可用的实现方式,作为一个示例,第一节点在收到第二节点发来的BAP routing ID粒度的流控反馈信息,如果对应于BAP routing ID#1的可用缓存空间的取值小于(也可以是等于)阈值TH#1,则为该BAP routing ID#1启动一个定时器(以定时器名为timer为例),假设定时的时长为T1=30s,如果在定时器启动后30s内收到的流控反馈信息中,与BAP routing ID#1对应的可用缓存空间的取值都小于(或等于)阈值TH#1,此时,第一节点可以确定携带有BAP routing ID#1的数据包在第二节点处拥塞,认为第二节点对于携带有BAP routing ID#1的数据包而言不可用。如果在定时器超时前(即在定时器启动后30s内),收到了该下一跳节点M个更新的流控反馈信息中,有X个流控反馈信息中携带的对应于该BAP routing ID#1的可用缓存空间的取值均大于(或等于)阈值TH#1,X为满足1≤X≤M1的正整数,则第一节点可以认为该第二节点对于携带有BAP routing ID#1的数据包而言仍然可用,可仍然选择第二节点为携带有BAP routing ID#1的数据包的下一跳节点,并可以停止该定时器的计时。或者,如果在定时器超时前(即在定时器启动后30s内),收到了该下一跳节点更新的流控反馈信息,当累计有X个流控反馈信息中携带的对应于该BAP routing ID#1的可用缓存空间的取值(或数值)均大于(或等于)阈值TH#1,X为正整数,则第一节点可以认为该第二节点对于携带有BAP routing ID#1的数据包而言仍然可用,可仍然选择第二节点为携带有BAP routing ID#1的数据包的下一跳节点,并可以停止该定时器的计时。
本申请中,某种粒度的可用缓存空间的取值,也可以描述为某种粒度的可用缓存空间的大小,或某种粒度的可用缓存空间的数值,以下不再赘述。
作为一个示例,如果第一节点接收到第二节点发送的M(M为大于1的整数)次流控反馈信息中,有M0次反馈的与BAP routing ID#1对应的可用缓存空间的数值小于(或等于)阈值TH#1,或者,M次流控反馈信息中,携带与BAP routing ID#1对应的可用缓存空间的数值小于(或等于)阈值TH#1的流控反馈信息的数量在M次中的占比大于(或等于)RTH1,0<RTH1≤1,第一节点可以确定第二节点处拥塞。具体的,可以是连续的M0次或者不连续的M0次。M为大于等于1的整数,M0小于或等于M。
作为一个示例,如果第一节点在定时器运行的时长#T1内,接收到第二节点发送的M(M为大于或等于1的整数)次流控反馈信息中,与BAP routing ID#1对应的的可用缓存空间的数值均小于(或等于)阈值TH#1,第一节点可以确定携带有BAP routing ID#1的数据包在第二节点处拥塞。具体的,可以是连续的M0次或者不连续的M0次。
本申请中,第一节点的定时器时长#T1,也可以是由IAB donor(或者是IAB donor CU, 或IAB donor CP)通过无线资源控制(radio resource control,RRC)消息或者F1AP消息为第一节点配置的,配置方式可以有多种可能性:
情况1:时长#T1可以是逐BAP routing ID配置的,即不同的BAP routing ID取值,配置的时长#T1可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个定时器时长列表,在该列表中的每一个item,包含一个或者多个BAP routing ID的具体取值,以及相应的时长#T1的值。
情况2:时长#T1可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的时长#T1可以不同,但对于同一个下一跳节点,时长#T1适用于该下一跳节点向第一节点反馈的BAP routing ID粒度的流控反馈信息中会涉及到的所有BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的时长#T1的取值,还需指明其中的每一个时长#T1具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况3:时长#T1的配置,也可以是分BAP routing ID和BH RLC CH两种情况,即为两种不同粒度的反馈信息配置两个不同的时长值。例如所有的BAP routing ID粒度的流控反馈信息对应的定时器的时长均为时长#T1,所有BH RLC CH粒度的流控反馈信息中对应的定时器的时长均为时长#T2。这种情况下,IAB donor提供的配置信息中,需要携带配置的定时器时长的取值,还需指明定时器的时长具体是适用于哪一种粒度的流控反馈信息,即指定是BAP routing ID粒度的流控反馈信息对应的时长还是BH RLC CH粒度的流控反馈信息对应的时长。示例性的,IAB donor为第一节点提供的配置信息中,可以携带BAP routing ID粒度的流控反馈信息对应的时长#T1的取值,该时长#T1适用于各个不同的BAP routing ID。
对于情况3时长#T1的配置,也可以有一种变形的配置方式,区分上行还是下行进行时长#T1的配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的时长相关配置信息的时候,IAB donor会指定配置的时长#T1具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况3的一个变形3a,IAB donor针对所有上行的BAP routing ID粒度的流控反馈配置时长#T1-UL-1,对所有下行的BAP routing ID粒度的流控反馈配置时长#T1-DL-1。
在一种可能的实现方式中,第一节点接收第二节点的流控反馈信息,该流控反馈信息包含与BAP routing ID#1对应的可用缓存空间的数值,例如为#B1。如果第一节点检测到已经向第二节点发送过携带适配层路由标识为BAP routing ID#1的数据包的数据量大于或等于#B1时,第一节点确定:对于携带适配层路由标识为BAP routing ID#1的数据包而言,第二节点不可用。
作为一个示例,第一节点从第二节点接收到BAP routing ID粒度的流控反馈信息#M1,其中包含与BAP routing ID#1对应的可用缓存空间的数值,例如为#B1,而第一节点在接收到第二节点发送的流控反馈信息#M1之前的时长#TA1内,已经向第二节点发送过携带适配层路由标识为BAP routing ID#1的数据包的数据量大于或等于#B1。据此,第一节点确定:对于BAP层携带适配层路由标识BAP routing ID#1的数据包而言,第二节点不可用(或者换言之,第一节点与第二节点之间的链路#1不可用)。第一节点可以对这些携 带适配层路由标识BAP routing ID#1的数据包执行重路由,例如选择可用的备份路径,向备份路径上的下一跳节点发送这些数据包。
作为又一个示例,第一节点从第二节点接收到BAP routing ID粒度的流控反馈信息#M1,其中包含与BAP routing ID#1对应的可用缓存空间的数值,例如为#B1,而第一节点在接收到第二节点发送的流控反馈信息#M1之后的时长#TA2内,向第二节点发送过携带适配层路由标识为BAP routing ID#1的数据包的数据量大于或等于#B1。据此,第一节点确定:对于BAP层携带适配层路由标识BAP routing ID#1的数据包而言,第二节点不可用(或者换言之,第一节点与第二节点之间的链路#1不可用)。第一节点可以对这些携带适配层路由标识BAP routing ID#1的数据包执行重路由,例如选择可用的备份路径,向备份路径上的下一跳节点发送这些数据包。可选的,在第一节点接收到第二节点发送的流控反馈信息#M1之后的时长#TA2内,第一节点还未接收到第二节点发送的另一更新的BAP rouing ID粒度的流控反馈信息。
作为又一个示例,第一节点从第二节点接收到BAP routing ID粒度的流控反馈信息#M1,其中包含与BAP routing ID#1对应的可用缓存空间的数值,例如为#B1,第一节点在接收到流控反馈信息#M1之后,向第二节点发送了携带适配层路由标识为BAP routing ID#1的数据包的数据量达到#B1,第一节点可以确定:对于BAP层携带适配层路由标识BAP routing ID#1的数据包而言,第二节点不可用(或者换言之,第一节点与第二节点之间的链路#1不可用)。第一节点可以对这些携带适配层路由标识BAP routing ID#1的数据包执行重路由,例如选择可用的备份路径,向备份路径上的下一跳节点发送这些数据包。
作为又一个示例,第一节点从第二节点接收到BAP routing ID粒度的流控反馈信息#M1,其中包含与BAP routing ID#1对应的可用缓存空间的数值,例如为#B1,第一节点在接收到流控反馈信息#M1之后,向第二节点发送了携带适配层路由标识为BAP routing ID#1的数据包的数据量达到#B1,且在接收到第二节点发送的另一更新的BAP rouing ID粒度的流控反馈信息之前(即第一节点还未接收到第二节点发送的另一更新的BAP rouing ID粒度的流控反馈信息),第一节点可以确定:对于BAP层携带适配层路由标识BAP routing ID#1的数据包而言,第二节点不可用(或者换言之,第一节点与第二节点之间的链路#1不可用)。第一节点可以对这些携带适配层路由标识BAP routing ID#1的数据包执行重路由,例如选择可用的备份路径,向备份路径上的下一跳节点发送这些数据包。
本申请中,第一节点的定时器时长时长#TA1也可以是由IAB donor(或者是IAB donor CU,或IAB donor CP)通过RRC消息或者F1AP消息为第一节点配置的,配置方式可以有多种可能性:
情况1,时长#TA1可以是逐BAP routing ID配置的,即不同的BAP routing ID取值,配置的时长#TA1可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个定时器时长列表,在该列表中的每一个item,包含一个或者多个BAP routing ID的具体取值,以及相应的时长#TA1的值。
情况2,时长#TA1可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的时长#TA1可以不同,但对于同一个下一跳节点,时长#TA1适用于该下一跳节点向第一节点反馈的BAP routing ID粒度的流控反馈信息中会涉及到的所有BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的时长 #TA的取值,还需指明其中的每一个时长#TA1具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况3,时长#TA1的配置,也可以是为BAP routing ID粒度的反馈信息配置一个统一的定时器时长#TA1。即,所有的BAP routing ID粒度的流控反馈信息对应的定时器的时长均为时长#TA1。这种情况下,IAB donor提供的配置信息中,需要携带配置的定时器时长#TA1的取值,还需指明定时器的时长#TA1具体是适用于BAP routing ID粒度的流控反馈信息的时长。
类似的,对于情况3时长#TA1的配置,也可以有一种变形的配置方式,区分上行还是下行进行时长#TA1的配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的时长相关配置信息的时候,IAB donor会指定配置的时长#TA1具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况3的一个变形3a,IAB donor针对所有上行的BAP routing ID粒度的流控反馈配置时长#TA1,TA1-UL-1,对所有下行的BAP routing ID粒度的流控反馈配置时长TA1-DL-1。
对于定时器时长#TA2的获取方式以及配置方式和时长#TA1类似,具体可以参考上述定时器时长#TA1的描述,此处不再赘述。
在一种可能实现方式中,第一节点从第二节点接收到BAP routing ID粒度的流控反馈信息#M1,其中可以包括对应于BAP routing ID#1的第一指示信息。该第一指示信息,用于表明:在第二节点处,BAP层携带适配层路由标识BAP routing ID#1的数据包已经发生拥塞,即对于BAP层携带适配层路由标识BAP routing ID#1的数据包而言第二节点不可用。可选的,在流控反馈信息#M1中,该第一指示信息可以指示对应于一个或多个不同的BAP routing ID(其中包含BAP routing ID#1)的数据包而言,第二节点不可用,即第一指示信息可以对应于多个BAP routing ID。
在一种可能的实现方式中,第一节点收到第二节点发送的正在尝试进行链路恢复的第二指示信息,该第二指示信息指示了第二节点和第二节点的下一跳节点之间发生无线链路失败(radio link failure,RLF)且第二节点正在尝试恢复与该下一跳节点之间的连接,则第一节点可以认为第二节点不可用,或者认为第一节点与第二节点之间的链路不可用。第一节点可以为所有原本需要经由第二节点发送的数据包进行重路由。作为一个示例,参见图1,如果IAB节点4上有数据包要发送给IAB节点1,数据包中携带的BAP routing ID所指示的路径为:IAB节点4→IAB节点2→IAB节点1。如果,IAB节点4接收到IAB节点2发送的第二指示信息,即IAB节点2发现IAB节点2与IAB节点1之间的链路发生RLF,正在尝试恢复,则节点4可以认为其与该IAB节点2之间的链路不可用,无法继续向IAB节点2发送任何数据包。
在一种可能的实现方式中,如果第一节点接收到的第二节点发来的流控反馈信息中,除了有BAP routing ID粒度的流控反馈报告,还有BH RLC CH粒度的流控反馈报告。此时,第一节点可以根据两种粒度的反馈信息,共同判断第二节点对于那些数据包而言发生拥塞,对于哪些数据包而言未拥塞,从而为不同的数据包分别确定下一跳节点。
作为一个示例,第一节点从第二节点收到了至少两个不同的BAP层的控制PDU(BAP  control PDU),可分类为两种不同的BAP control PDU,分别包含两种不同粒度的流控反馈信息。其中一种BAP control PDU中包含的是BAP routing ID粒度的流控反馈信息,基于BAP routing ID粒度的流控反馈信息,第一节点判断(或确定)携带有BAP routing ID#1的数据包在第二节点发生拥塞,第二节点对于携带有BAP routing ID#1的数据包而言不可用,需要对携带有BAP routing ID#1的数据包执行重路由,其中BAP routing ID#1用于指示路径#1,携带有BAP routing ID#1的数据包即可视为需要在路径#1上传输的数据包。第一节点基于BAP routing ID粒度的流控反馈信息判断(或确定)携带有BAP routing ID#1的数据包在第二节点发生拥塞的具体可参考该步骤S702中的前述多种可能的实施方式的描述进行理解,此处不予赘述。另一方面,在另一种BAP control PDU中包含的是BH RLC CH粒度的流控反馈信息,基于该反馈信息和阈值TH#2,第一节点可以判断出第二节点对于映射到第一节点和第二节点之间链路的哪些BH RLC CH的数据包不可用,以及判断第二节点对于映射到第一节点和第二节点之间链路的哪些BH RLC CH的数据包仍可用。如何基于BH RLC CH粒度的流控反馈信息进行判断,具体可参考图8所对应的实施例方法800中的步骤S802,针对BH RLC CH粒度的流控反馈信息判断为数据包确定下一跳节点(或者说判断是否对数据包进行重路由)的描述进行理解,此处不予赘述。
基于两种不同类型的反馈信息,第一节点判断:对哪些数据包在第二节点处拥塞而认为第二节点(或者第一节点与第二节点之间的链路)对这些数据包而言不可用,进而需要对这些数据包进行重路由的,可能有以下四种不同的方式,具体如下。
方式1:第一节点判断其与第二节点之间的链路对于哪些数据包不可用时,可以基于两种反馈信息判断结果的交集来判决。示例性的,若第一节点基于BAP routing ID粒度的流控反馈信息,判断出第二节点对于携带的路由标识为BAP routing ID#1的数据包不可用,而根据BH RLC CH粒度的流控反馈信息,判断出第二节点对于需要被映射到BH RLC CH#1上的数据包不可用,其中BH RLC CH#1标识的是第一节点和第二节点之间的无线回传链路上的一个无线回传RLC信道。基于两类反馈信息的判断结果,第一节点可以对两类数据包取交集,即第一节点可以确定,对于携带路由标识为BAP routing ID#1且根据映射规则需要被映射到BH RLC CH#1上向第二节点发送的数据包,第二节点不可用,需要将这些数据包进行重路由。本申请中,第一节点将数据包映射到哪一个BH RLC CH上向第二节点发送可以是基于IAB宿主配置的映射规则确定的,还可以是基于第一节点获取的默认BH RLC CH的配置信息确定的。
方式2:第一节点判断其与第二节点之间的链路对于哪些数据包不可用时,可以基于两种反馈信息判断结果的并集来判决。示例性的,若第一节点基于BAP routing ID粒度的流控反馈信息,判断出第二节点对于携带的路由标识为BAP routing ID#1的数据包不可用,而根据BH RLC CH粒度的流控反馈信息,判断出第二节点对于需要被映射到BH RLC CH#1上的数据包不可用,其中BH RLC CH#1标识的是第一节点和第二节点之间的无线回传链路上的一个无线回传RLC信道。基于两类反馈信息的判断结果,第一节点可以对两类数据包取并集,即第一节点可以确定数据包符合这两类数据包中的任意一类时,第二节点不可用,也即对于携带路由标识为BAP routing ID#1的数据包,或者要被映射到BH RLC CH#1上向第二节点发送的数据包,第二节点不可用,需要将这些数据包进行重路由。
方式3:以路由标识粒度对应的流控反馈信息为主,即第一节点可以仅根据BAP  routing ID粒度的流控反馈信息的结果来判断。示例性的,若第一节点基于BAP routing ID粒度的流控反馈信息,判断出第二节点对于携带的路由标识为BAP routing ID#1的数据包不可用,而根据BH RLC CH粒度的流控反馈信息,判断出第二节点对于需要被映射到BH RLC CH#1上的数据包不可用,但对于需要被映射到BH RLC CH#2上的数据包可用,其中BH RLC CH#1和BH RLC CH#2分别标识的是第一节点和第二节点之间的无线回传链路上的两个无线回传RLC信道。基于两类反馈信息的判断结果,第一节点仅按照BAP routing ID粒度的流控反馈信息的结果来确定第二节点对于数据包是否可用,即只要数据包中携带的路由标识为BAP routing ID#1,则第一节点认为第二节点对于此数据包不可用。例如,如果一类数据包按照映射规则将要被映射到BH RLC CH#2上向第二节点传输,但是该类数据包中携带的路由标识为BAP routing ID#1,则第一节点认为第二节点对于该类数据包不可用。也可以理解为,此时,路由标识(BAP routing ID)粒度对应的流控信息的优先级高。
方式4:以BH RLC CH粒度对应的流控反馈信息为主,即第一节点可以仅根据BH RLC CH粒度的流控反馈信息的结果来判断。示例性的,若第一节点基于BAP routing ID粒度的流控反馈信息,判断出第二节点对于携带的路由标识为BAP routing ID#1的数据包不可用,对于携带的路由标识为BAP routing ID#2的数据包可用,而根据BH RLC CH粒度的流控反馈信息,判断出第二节点对于需要被映射到BH RLC CH#1上的数据包不可用,但对于需要被映射到BH RLC CH#2上的数据包可用,其中BH RLC CH#1和BH RLC CH#2分别标识的是第一节点和第二节点之间的无线回传链路上的两个无线回传RLC信道。基于两类反馈信息的判断结果,第一节点仅按照BH RLC CH粒度的流控反馈信息的结果来确定第二节点对于数据包是否可用,即只要数据包携带的路由标识所指示的传输路径中的下一跳节点为第二节点,且将要被映射到BH RLC CH#1上向第二节点发送,则第一节点认为第二节点对于此数据包不可用。例如,如果一类数据包按照映射规则将要被映射到BH RLC CH#1上向第二节点传输,但是该类数据包中携带的路由标识为BAP routing ID#2,则第一节点认为第二节点对于该类数据包不可用。也可以理解为,此时,BH RLC CH粒度对应的流控反馈信息的优先级高。
第一节点具体采用哪种决策方式,可以由第一节点自己确定;或者由第二节点向第一节点指示,例如第二节点向第一节点发送指示信息,用于指示第一节点采用方式1-方式4中的任意一种来判断第一节点与第二节点之间的链路对于数据包的可用性,具体可以通过媒体接入控制层(media access control,MAC)控制单元(control element,CE),或BAP control PDU等携带指示信息;或者,由IAB donor(或者,在IAB donor为CU-DU分离的架构,具体是IAB donor CU,又或者,在CU进一步为CP-UP分离的架构下,具体是IAB donor CU-CP)的配置决定,例如,IAB donor CU通过RRC消息,或者F1AP消息给第一节点提供配置信息,指示第一节点采用方式1-方式4中的任意一种来判断第一节点与第二节点之间的链路对于数据包的可用性。可选的,若为IAB donor配置的方式,可以为第一节点在不同的链路上(与不同的第二节点之间)配置不同的方式,这种情况下,IAB donor提供给第一节点的配置信息中除了携带指示具体判断方式的指示信息外,还可以携带第二节点的标识。
本申请中,第一节点中,用于判断第二节点可用性中所涉及到的流控反馈信息中的可 用缓存空间的阈值TH#1和/或TH#2,可以是由IAB donor(或者是IAB donor CU,或IAB donor CP)通过RRC消息或者F1AP消息为第一节点配置的,配置方式可以有多种情况:
情况1,阈值TH#1可以是逐BAP routing ID配置的,即不同的BAP routing ID取值,配置的阈值可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个阈值列表,在该列表中的每一个条目(item),包含一个或者多个BAP routing ID的具体取值,以及相应的阈值TH#1取值。
情况2,阈值TH#2可以是逐BH RLC CH配置,即不同的BH RLC CH取值,配置的阈值可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个阈值列表,在该列表中的每一个item,包含一个或者多个BH RLC CH的标识,以及相应的阈值TH#2的取值。本申请中,每个BH RLC CH的标识,可以是由下一跳节点的标识和第一节点与下一跳节点之间链路上的BH RLC CH ID共同确定,其中下一跳节点的标识可以是下一跳节点的BAP address。
情况3,阈值TH#1可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的阈值TH#1可以不同,但对于同一个下一跳节点,阈值TH#1适用于该下一跳节点向第一节点反馈的BAP routing ID粒度的流控反馈信息中会涉及到的所有BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的阈值TH#1的取值,还需指明其中的每一个阈值具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况4,阈值TH#2可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的阈值TH#2可以不同,但对于同一个下一跳节点,阈值TH#2适用于该下一跳节点向第一节点反馈的BH RLC CH粒度的流控反馈信息中会涉及到的所有的BH RLC CH,或者说适用于第一节点和该下一跳节点之间无线回传链路上的所有BH RLC CH。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的阈值TH#2的取值,还需指明其中的每一个阈值具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况5,阈值TH#1或TH#2的配置,也可以是分BAP routing ID和BH RLC CH两种情况,配置两个不同的阈值,例如所有的BAP routing ID粒度的流控反馈信息对应的阈值均为TH#1,所有BH RLC CH粒度的流控反馈信息中对应的阈值均为TH#2。这种情况下,IAB donor提供的配置信息中,需要携带配置的阈值的取值,还需指明阈值具体是适用于哪一种粒度的流控反馈信息,即指定是BAP routing ID粒度的流控反馈信息对应的阈值还是BH RLC CH粒度的流控反馈信息对应的阈值。示例性的,IAB donor为第一节点提供的配置信息中,可以携带BAP routing ID粒度的流控反馈信息对应的阈值TH#1的取值,该阈值TH#1适用于各个不同的BAP routing ID;或者,在配置信息中携带BH RLC CH粒度的流控反馈信息对应的阈值TH#2的取值,该阈值TH#2适用于第一节点和下一跳节点之间的各个不同的BH RLC CH。
情况6,阈值TH#1和TH#2的配置,还可以是为两种不同粒度的流控反馈配置同一个阈值TH#S。即IAB donor提供的配置信息中,携带配置的阈值TH#S的取值,该阈值TH#S同时适用于第一节点的BAP routing ID粒度的流控反馈信息,以及BH RLC CH粒 度的流控反馈信息。可以理解的是,该阈值TH#S适用于第一节点和下一跳节点之间的各个不同的BH RLC CH,还适用于第一节点各个不同的BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带配置的阈值TH#S的取值,可选的,还可以在配置信息中指明该阈值TH#S同时适用于两种不同类型的流控反馈信息。
本申请中,对于情况5和情况6的阈值的配置,还可以有一种变形的配置方式,区分上行还是下行进行门限配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的阈值相关配置信息的时候,IAB donor会指定配置的阈值具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况5的一个变形5a,IAB donor针对所有上行的BAP routing ID粒度的流控反馈配置阈值TH-UL-1,对所有上行的BH RLC CH粒度的流控反馈配置对应的阈值为TH-UL-2,对所有下行的BAP routing ID粒度的流控反馈配置阈值TH-DL-1,对所有下行的BH RLC CH粒度的流控反馈配置对应的阈值为TH-DL-2。又例如,对于情况6的一个变形6a,IAB donor针对所有上行的流控反馈配置阈值TH-UL,针对所有下行的流控反馈配置阈值TH-DL。
如上所述,如果第一节点确定对于某些BAP routing ID的数据包而言第二节点不可用,第一节点可以为这些数据包执行重路由,选择合适的备用路径,然后向选择的备用路径上的下一跳节点(例如,第三节点)发送这些数据包。
此时,可选的,本申请实施例还包括步骤S703,第三节点向第一节点发送流控反馈信息。
其中,第三节点向第一节点发送的流控反馈信息可以包括:BAP routing ID粒度的流控反馈信息#M3,和/或BH RLC CH粒度的流控反馈信息#M4。
例如,第一节点可以从第三节点接收BAP control PDU,其中包含BAP routing ID粒度流控反馈信息,该BAP routing ID粒度的流控反馈信息中,包含有多个对应于不同的BAP routing ID的可用缓存空间的取值。
步骤S704,第一节点根据第三节点发来的流控反馈信息确定第三节点可用于传输需要重路由的数据包。
可以理解的是,第一节点需要重路由的数据包,可以是需要通过第一路径传输的数据包。其中,第一路径可以视为携带有BAP层路由标识为BAP routing ID#1的数据包的主路径。一种可能的实现方式中,第一节点可以根据流控反馈信息#M3确定第三节点可用于传输携带有BAP层路由标识为BAP routing ID#1的数据包。
第一节点根据信息#M3确定第三节点可用于传输携带有BAP层路由标识为BAP routing ID#1的数据包,也可以理解为,第一节点确定第三节点可以用于传输需要执行重路由的数据包,该需要执行重路由的数据包,即在前述步骤S702中第一节点判断出第二节点不可用而需要被重路由的数据包(例如携带有BAP层路由标识为BAP routing ID#1的数据包)。
在一种可能的实现方式中,第一节点收到第三节点发送的流控反馈信息#M3,流控反馈信息#M3可以是BAP routing ID粒度的流控反馈信息,其中包含有多个对应于不同的BAP routing ID的可用缓存空间的取值,这些不同的BAP routing ID中,有一个或多个包含的目的节点的BAP address字段相同,则对于某一个BAP address,若#M3中所有包含 该BAP address的BAP routing ID所对应的可用缓存空间取值之和大于或等于预设阈值TH#3,则第一节点可以确定第三节点对于目的节点为该BAP address的数据包可用,或者说第三节点可以作为第一节点对目的节点为该BAP address的数据包执行重路由的时候可选择的备份路径上的下一跳节点。反之,若#M3中所有包含该BAP address的BAP routing ID所对应的可用缓存空间取值之和小于(或等于)预设的阈值TH#3,则第一节点可以确定第三节点对于目的节点为该BAP address的数据包不可用。示例性的,第三节点给第一节点发送的流控反馈信息#M3中,有三个BAP routing ID(BAP routing ID#2,BAP routing ID#3,BAP routing ID#4)的目的节点字段均为BAP address#1,这三个BAP routing ID分别对应的可用缓存空间的取值的和为SumBAP address#1(SumBAP address#1为大于或者等于0的整数),若假设为A2(A2为大于0的整数),如果BAP address相同的那些BAP routing ID的可用缓存空间大小之和SumBAP address#1大于或者等于阈值TH#3,第一节点可以确定第三节点对于目的节点为BAP address 1的数据包可用,即链路#2对于目的节点为BAP address 1的数据包而言可用。链路#2为第一节点和第三节点之间的无线回传链路。若BAP routing ID#1中携带的目的节点的BAP address也为BAP address#1,则第一节点在判断出第二节点对于携带有BAP层路由标识为BAP routing ID#1的数据包不可用的时候,若对这些数据包执行重路由,可以选择第三节点为下一跳节点。因此,链路#2也可以理解为,需执行重路由的携带有BAP层路由标识为BAP routing ID#1的数据包的备份链路。可以理解的是,若SumBAP address#1小于(或等于)阈值TH#3,则第一节点可以认为第三节点对于目的节点为BAP address 1的数据包不可用,即链路#2对于目的节点为BAP address 1的数据包而言不可用。
作为一个示例,如图6所示,假设在IAB节点1(第一节点)处,待发送的数据包中包含的BAP路由标识BAP routing ID#1所指示的路径为路径2,即该数据包的目的节点为IAB节点9,主路径为路径#2,IAB节点1已经基于IAB节点2(第二节点)的流控反馈信息确定IAB节点2对于该待发送的数据包不可用,需要对该待发送的数据包执行重路由。IAB节点1接收IAB节点3(第三节点)的BAP routing ID粒度流控反馈信息中,与BAP routing ID3对应的可用缓存空间的取值为B3,与BAP routing ID 4对应的可用缓存空间的取值为B4,其中BAP routing ID3用于标识到IAB节点9的路径3,BAP routing ID4用于标识到IAB节点9的路径4,IAB节点1预配置阈值TH#3,若B3+B4大于(或等于)阈值TH#3(或者也可以等于阈值TH#3),则IAB节点1确定其与IAB节点3之间的链路对于在BAP层携带的目的节点标识为IAB节点9的BAP address的数据包是可用链路。IAB节点1可以将待发送的包含BAP routing ID#1的数据包在执行重路由时,向IAB节点3发送。
本申请中,第一节点上预设的阈值TH#3的粒度可以有以下多种可能性:比如,阈值TH#3可以是目的节点粒度(或者是数据包在BAP层携带的目标BAP address粒度)的,即不同的目标节点可以设置不同的阈值;或者,阈值TH#3是第一节点的粒度的,即第一节点配置一个阈值TH#3,该阈值对于不同的BAP address都适用;或者,阈值TH#3还可以是下一跳节点粒度的,即,对于第一节点的不同下一跳节点可以有不同的阈值TH#3,其中,与每个下一跳节点所对应的阈值TH#3,适用于该下一跳节点向第一节点反馈的BAP routing ID粒度的流控反馈信息中的会涉及到的所有的BAP address。
本申请中,阈值TH#3的具体的获取方式,可以预先由IAB donor(可以是IAB donor CU,或者IAB donor CU-CP)配置给第一节点(例如图6中的IAB节点1),IAB donor具体可以通过RRC消息或者F1AP消息将阈值TH#3配置给第一节点;或者,第三节点(例如图6中的IAB节点3)确定后将阈值TH#3通知第一节点(例如第三节点通过BAP control PDU或者MAC CE,将阈值TH#3通知给第一节点);或者,阈值TH#3还可以是由第一节点自行确定。可选的,考虑到阈值TH#3的粒度的多种可能性,若第一节点获取阈值TH#3是采用由IAB donor配置或第三节点通知的方式,在IAB donor发送给第一节点的配置消息中(用于为第一节点配置阈值TH#3)或在第三节点发送给第一节点的通知消息(用于为第一节点配置阈值TH#3)中,可以指示出为第一节点提供的阈值TH#3的配置具体是何种粒度(目的节点粒度,或下一跳节点粒度,或第一节点粒度)的。进一步可选的,若第一节点获取阈值TH#3是采用由IAB donor配置或第三节点通知的方式,对于阈值TH#3为不同粒度的情况,具体还可以在IAB donor发送给第一节点的配置消息或第三节点发送给第一节点的通知消息中,指示每一个配置的阈值TH#3所适用的范围。例如,若第一节点的阈值TH#3为目的节点粒度,则在IAB donor发送给第一节点的配置消息(用于为第一节点配置阈值TH#3)中或在第三节点发送给第一节点的通知消息(用于为第一节点配置阈值TH#3)中,将携带一个或多个不同的阈值TH#3的取值,且需要指示每一个阈值TH#3的取值所适用的一个或者多个目的节点的标识(即目的节点的BAP address);又如,若第一节点的阈值TH#3为为下一跳节点粒度的,在IAB donor发送给第一节点的配置消息(用于为第一节点配置阈值TH#3)中或在第三节点发送给第一节点的通知消息(用于为第一节点配置阈值TH#3)中,将携带一个或多个不同的阈值TH#3的取值,且需要指示每一个阈值TH#3的取值所适用的一个或多个下一跳节点的标识。
可选的,若第一节点获取阈值TH#3是采用由第三节点通知的方式,则第三节点可以预先从IAB donor(可以是IAB donor CU,或者IAB donor CU-CP)处获取配置信息,该配置信息中,可以包含以下内容中的任意一项或多项:第三节点向第一节点提供何种粒度的阈值TH#3,第三节点需要向第一节点提供的不同粒度的阈值TH#3的具体取值和每个阈值TH#3所适用的范围,每个阈值TH#3所适用的范围可结合上一段的描述进行理解。
在另一种可能的实现方式中,第一节点可以在一段连续时长#T3内收到了第三节点的W个流控反馈信息,W为大于等于1的正整数,该W个流控反馈信息是第三节点的BAP routing ID粒度的可用缓存空间的大小,假设为该W个流控反馈信息中,其中有Z个包含了与某一个待重路由数据包的备用路径对应的可用缓存空间大小的具体数值,假设该重路由数据包的目标节点为BAP address#1所标识的节点,该Z个流控反馈信息中,对每个流控反馈信息中包含有该BAP address#1的所有BAP routing ID所对应的可用缓存空间取值求和,所得的结果从第一个到第Z个为{B1,B2,…BZ}(Bj为大于0的整数,j为正整数,1≤j≤Z),Z≤W,如果{B1,B2,…Bz}中的每一个均大于(或等于)阈值TH#3,则第一节点可以确定第三节点对于该待重路由的数据包可用,或者说第三节点可以作为第一节点对于该待重路由数据包执行重路由的时候可选择的备份路径上的下一跳节点;反之,如果{B1,B2,…Bz}中的任意一个取值小于(或等于)阈值TH#3,则第一节点可以确定第三节点对于该待重路由的数据包不可用。或者,又一种可能的实现方式中,如果{B1,B2,…Bz}中有至少R个大于(或等于)阈值TH#3,R为满足1≤R≤Z的正整数,则第一节点 可以确定第三节点对于该待重路由的数据包可用,或者说第三节点可以作为第一节点对于该待重路由数据包执行重路由的时候可选择的备份路径上的下一跳节点。反之,如果{B1,B2,…Bz}中不到R个大于(或等于)阈值TH#3,则第一节点可以确定第三节点对于该待重路由的数据包不可用。或者,又一种可能的实现方式中,若对{B1,B2,…Bz}求和的结果大于(或等于)阈值TH#3,则第一节点可以确定第三节点对于该待重路由的数据包可用;反之,若对{B1,B2,…Bz}求和的结果小于(或等于)阈值TH#3,则第一节点可以确定第三节点对于该待重路由的数据包不可用。或者,再一种可能的实现方式中,若{B1,B2,…Bz}中大于(或等于)阈值TH#3的个数为Nabove,Nabove与Z的比值大于(或等于)门限值RTH5,0<RTH5≤1,第一节点可以确定第三节点对于该待重路由的数据包可用;反之,若Nabove与W的比值小于门限值RTH5,第一节点可以确定第三节点对于该待重路由的数据包不可用。或者,又一种可能的实现方式中,若{B1,B2,…Bz}中大于(或等于)阈值TH#3的个数为Nabove,Nabove与Z的比值大于(或等于)门限值RTH5,0<RTH5≤1,第一节点可以确定第三节点对于该待重路由的数据包可用;反之,若Nabove与W的比值小于门限值RTH5,第一节点可以确定第三节点对于该待重路由的数据包不可用
作为一个示例,第一节点在收到第三节点发来的BAP routing ID粒度的流控反馈信息,
其中包含一个或多个目的节点为BAP address#1的BAP routing ID(例如BAP routing ID#2,BAP routing ID#3中所包含的BAP address均为BAP address#1)所对应的可用缓存空间的取值。若只要存在目的节点为BAP address#1的BAP routing ID对应的可用缓存空间的取值,或者若这几个目的节点为BAP address#1的BAP routing ID所对应的可用缓存空间取值之和大于阈值TH#3时,则启动一个定时器(以定时器名为timer为例),假设定时器的时长为#T3=40s,如果在定时器启动后40s内,收到了W个流控反馈信息,其中,有若干个(假设为Z个)包含有目的节点为BAP address#1的BAP routing ID对应的可用缓存空间的取值,若这Z个流控反馈信息中的每一个流控反馈信息所包含的目的节点为BAP address#1的BAP routing ID对应的可用缓存空间的取值之和均大于(或等于)阈值TH#3,此时,第一节点可以确定第三节点对于目的节点为BAP address#1的重路由数据包而言可用。即,第三节点可以用来传输目的节点为BAP address#1的待重路由的数据包。或者,如果在定时器超时前(即在定时器启动后40s内),收到了第三节点W个更新的流控反馈信息中,有R个流控反馈信息满足:该R个中的每个流控反馈信息中,与包含目的节点为BAP address#1的BAP routing ID对应的可用缓存空间的取值之和取值之和大于(或等于)阈值TH#3(例如R=2,其中一个包含BAP routing ID#2对应的可用缓存空间取值P,P大于TH#3,另一个包含BAP routing ID#2对应的可用缓存空间取值Q2以及BAP routing ID#3对应的可用缓存空间取值Q3,且Q2+Q3大于TH#3),R为满足1≤R≤W的正整数,则第一节点可以认为该第三节点对于目的节点为BAP address#1的重路由数据包而言可用,可选择第三节点为目的节点为BAP address#1数据包的下一跳节点,并可以停止该定时器的计时。需要说明的是,该S个流控反馈可以是连续的R个流控反馈信息,或者不连续的R个流控反馈信息。
本申请中,第一节点时长#T3的获取方式和配置方式和前述时长#T1的获取方式和配置方式类似,此处不再赘述。
上述实施例中的对于第一节点接收的流控反馈信息W,Z,R,RTH5的配置方式以及获取方式和前述阈值TH#1的获取方式和配置方式类似,此处不再赘述。
在一种可能的实现方式中,第一节点可以根据第三节点发来的BH RLC CH粒度的流控反馈信息#M4,确定第三节点可用于传输需要重路由的数据包。
可以理解的是,第一节点需要重路由的数据包,可以是需要通过第一路径传输的数据包。其中,第一路径可以视为携带有BAP层路由标识为BAP routing ID#1的数据包的主路径。
作为一个示例,如图6所示,假设在IAB节点1(第一节点)处,待发送的数据包中包含的BAP路由标识(例如为BAP routing ID#1)所指示的路径为路径2,即该数据包的目的节点为IAB节点9,主路径为路径#2,IAB节点1已经基于IAB节点2(第二节点)的流控反馈信息确定IAB节点2对于该待发送的数据包不可用,需要对该待发送的数据包执行重路由。IAB节点1从IAB节点3(第三节点)接收到BH RLC CH粒度流控反馈信息,并基于该反馈信息进一步判断第三节点对于该待发送的数据包(或者称之为重路由数据包)是否可用。第一节点基于第三节点的BH RLC CH粒度的流控反馈信息#M4,判断第三节点对于重路由的数据包(例如携带BAP路由标识为BAP routing ID#1的数据包)是否可用,具体可以有以下几种可能性,下面分别进行介绍。
可能性1,第一节点处需要被重路由的数据包(以携带BAP路由标识为BAP routing ID#1的数据包为例)在IAB节点1(第一节点)和IAB节点3(第三节点)之间的链路(为便于表述,简称为链路#103)上,配置了需要映射到的合适的BH RLC CH(例如为链路#103上的BH RLC CH#02),即第一节点被配置了重路由数据包在备份链路#103上需要映射到的一个BH RLC CH。这种情况下,若第三节点发来的流控反馈信息#M4中,与BH RLC CH#02对应的可用缓存空间的取值大于(或等于)阈值TH#4,则第一节点(IAB节点1)可以确定该第三节点(IAB节点3),对于携带BAP路由标识为BAP routing ID#1的重路由数据包可用,否则,IAB节点1可以确定IAB节点3对于携带BAP路由标识为BAP routing ID#1的重路由数据包不可用。
可能性2,IAB节点1处需要被重路由的数据包(以携带BAP路由标识为BAP routing ID#1的数据包为例)在IAB节点1和IAB节点3之间的链路#103上,未被配置需要映射到的合适的BH RLC CH,即第一节点未被配置重路由数据包在备份链路#103上需要映射到的一个BH RLC CH。在这种情况下,考虑到第一节点确定需要向第三节点发送该重路由数据包的时候可以选择任意一个链路#103上的BH RLC CH向第三节点发送,因此,若第三节点向第一节点发送的流控反馈信息#M4中,有与任意一个BH RLC CH对应的可用缓存空间的取值大于(或等于)阈值TH#4,则第一节点(IAB节点1)可以确定该第三节点(IAB节点3),对于携带BAP路由标识为BAP routing ID#1的重路由数据包可用。可以理解的是,若#M4中与所有BH RLC CH对应的可用缓存空间的取值均小于(或等于)阈值TH#4,IAB节点1可以确定IAB节点3对于携带BAP路由标识为BAP routing ID#1的重路由数据包不可用。
可能性3,IAB节点1处需要被重路由的数据包(以携带BAP路由标识为BAP routing ID#1的数据包为例)在IAB节点1和IAB节点3之间的链路#103上,未被配置需要映射到的合适的BH RLC CH,即第一节点未被配置重路由数据包在备份链路#103上需要映 射到的一个BH RLC CH。在这种情况下,考虑到第一节点确定需要向第三节点发送该重路由数据包的时候可以选择任意一个链路#103上的BH RLC CH向第三节点发送,因此,若第三节点向第一节点发送的流控反馈信息#M4中,所有不同BH RLC CH对应的可用缓存空间的取值之和大于(或等于)阈值TH#4,则第一节点(IAB节点1)可以确定该第三节点(IAB节点3)对于携带BAP路由标识为BAP routing ID#1的重路由数据包可用。可以理解的是,若#M4中与所有BH RLC CH对应的可用缓存空间的取值之和小于(或等于)阈值TH#4,IAB节点1可以确定IAB节点3对于携带BAP路由标识为BAP routing ID#1的重路由数据包不可用。
IAB节点1通过以上三种可能性种的任意一种,判断出第三节点(IAB节点3),对于携带BAP路由标识为BAP routing ID#1的重路由数据包可用后,可以将待发送的包含BAP routing ID#1的数据包在执行重路由时,向IAB节点3发送。
本申请中,第一节点上预设的阈值TH#4的粒度可以有以下多种可能性:比如,阈值TH#4可以是BH RLC CH粒度的,即对应于第一节点和第三节点之间链路上不同的BH RLC CH,可以设置不同的阈值;或者,阈值TH#4是第一节点的粒度的,即第一节点配置一个阈值TH#4,该阈值对于第一节点和各个不同的作为备份路径上的下一跳节点(或者第三节点)之间的链路上所有BH RLC CH适用;或者,阈值TH#4还可以是下一跳节点粒度的,即,对于第一节点的不同下一跳节点可以有不同的阈值TH#4,其中,与每个下一跳节点所对应的阈值TH#4,适用于该下一跳节点向第一节点反馈的BH RLC CH粒度的流控反馈信息中的会涉及到的所有的BH RLC CH。
本申请中,阈值TH#4的具体的获取方式,可以预先由IAB donor(或者可以是IAB donor CU,或者IAB donor CU-CP)配置给第一节点(例如图6中的IAB节点1),IAB donor具体可以通过RRC消息或者F1AP消息将阈值TH#4配置给第一节点;或者,第三节点(例如图6中的IAB节点3)确定后将阈值TH#4通知第一节点(例如第三节点通过BAP control PDU或者MAC CE,将阈值TH#4通知给第一节点);或者,阈值TH#4还可以是由第一节点自行确定。可选的,考虑到阈值TH#4的粒度的多种可能性,若第一节点获取阈值TH#4是采用由IAB donor配置或第三节点通知的方式,在IAB donor发送给第一节点的配置消息中(用于为第一节点配置阈值TH#4)或在第三节点发送给第一节点的通知消息(用于为第一节点配置阈值TH#4)中,可以指示出为第一节点提供的阈值TH#4的配置具体是何种粒度(BH RLC CH粒度,或下一跳节点粒度,或第一节点粒度)的。进一步可选的,若第一节点获取阈值TH#4是采用由IAB donor配置或第三节点通知的方式,对于阈值TH#4为不同粒度的情况,具体还可以在IAB donor发送给第一节点的配置消息或第三节点发送给第一节点的通知消息中,指示每一个配置的阈值TH#4所适用的范围。例如,若第一节点的阈值TH#4为BH RLC CH粒度,则在IAB donor发送给第一节点的配置消息(用于为第一节点配置阈值TH#4)中或在第三节点发送给第一节点的通知消息(用于为第一节点配置阈值TH#4)中,将携带一个或多个不同的阈值TH#4的取值,且需要指示每一个阈值TH#4的取值所适用的一个或者多个BH RLC CH,其中每个BH RLC CH具体可以用链路标识以及BH RLC CH ID共同标识,而链路标识可以用第一节的下一跳节点的标识(例如下一跳节点的BAP address)所指示;又如,若第一节点的阈值TH#4为为下一跳节点粒度的,在IAB donor发送给第一节点的配置消息(用于为第一节点配置阈值 TH#4)中或在第三节点发送给第一节点的通知消息(用于为第一节点配置阈值TH#4)中,将携带一个或多个不同的阈值TH#4的取值,且需要指示每一个阈值TH#4的取值所适用的一个或多个下一跳节点的标识(例如下一跳节点的BAP address)。
可选的,若第一节点获取阈值TH#4是采用由第三节点通知的方式,则第三节点可以预先从IAB donor(可以是IAB donor CU,或者IAB donor CU-CP)处获取配置信息,该配置信息中,可以包含以下内容中的任意一项或多项:第三节点向第一节点提供何种粒度的阈值TH#4,第三节点需要向第一节点提供的不同粒度的阈值TH#4的具体取值和每个阈值TH#4所适用的范围,每个阈值TH#4所适用的范围可结合上一段的描述进行理解。
需要说明的是,本申请中,判断备份路径是否的用的方法也可以参照步骤S702中判断主路径是否可用的方法,不再赘述。
需要说明的是,对于第一节点处的某个待传输数据包需要执行重路由,但是有多个(至少两个)可用的备份链路(或备份路径)的情况,第一节点可以任意选择其中一个备份链路(或备份路径)用来对该数据包进行重路由;或者,IAB donor(或者可以是IAB donor CU,或者IAB donor CU-CP)可以为不同的备份链路(或备份路径)设置不同的优先级并提供给第一节点,第一节点在多个可用的备份链路(或备份路径)中,选择优先级最高的备份链路(或备份路径)对数据包进行重路由。第一节点选定用于对数据包进行重路由的备份链路(或备份路径)后,向该备份链路(或备份路径)所对应的下一跳节点传输重路由的数据包。
需要说明的是,备份链路(或者备份链路及优先级,或者备份路径及优先级)的配置,可以是以BAP routing ID为粒度进行配置的。
本申请中,第一节点确定是否对一个数据包进行重路由,具体可以是:除了需要判断该数据的主路径是否可用(或者主路径上的第一链路是否可用,或者主路径上第一节点的下一跳节点,即第二节点是否可用)外,还需要判断该数据包是否有可用的备份路径(或者可用的备份链路,或者可用的备份路径上第一节点的下一跳节点即第三节点是否可用)。如果第一节点判断出数据包的主路径不可用,且有至少一个备份路径可用,则可以对该数据包进行重路由(即选择备份路径并向备份路径上的下一跳节点发送该数据包),否则第一节点不对该数据包进行重路由操作。
需要说明的是,本申请中第一节点可以同时接收第二节点发送的流控反馈信息以及第三节点发送的流控反馈信息。或者第一节点先接收第三节点发送的流控反馈信息,再接收第二节点的流控反馈信息。也可以理解为,步骤S703和步骤S704和前面的步骤S701-步骤S702之间的相对顺序没有任何限定。本申请中,步骤S701和步骤S702可以组成单独的实施例,用于判断数据包的主路径是否可用,以及哪些数据包需要执行重路由;步骤S703和步骤S704作为可选步骤,也可以组成单独的实施例,用于判断数据包的备份链路是否可用。
本申请中,第一节点确定第二节点不可用,确定下一跳为第三节点后,还可以继续监控第二节点的缓存状态,确定第二节点是否可用。也可以理解为,第一节点(具体可以是IAB node或IAB donor DU)还可以在数据包的主路径上的拥塞缓解后,取消对这些数据包的重路由,使得数据包可以继续在主路径上传输。例如,第一节点在对数据包执行了重路由时可以开启定时器(例如定时器T-routing back),以便监测第二节点处的拥塞是否缓 解,判断第二节点是否可以继续使用。
这种情况下,可选的,本申请实施例还包括步骤S705以及步骤S706。具体描述如下。
步骤S705,第一节点接收第二节点发送的信息#M5。
其中,信息#M5可以是第二节点发送的流控反馈信息,该流控反馈信息可以是BAP routing ID粒度的流控反馈信息,其中包含与BAP routing ID#1(用于指示第一路径,第一路径为数据包的主路径,该主路径的下一跳节点为第二节点)对应的可用缓存空间的大小。
步骤S706,第一节点根据信息#M5,确定第二节点对于已经执行了重路由的携带有BAP routing ID#1的数据包而言是否可用。
如果第一节点根据信息#M5判断(或者确定)第二节点对于已经执行了重路由的携带有BAP routing ID#1的数据包而言是可用,第一节点可以停止对待传输的携带有BAP routing ID#1的数据包的重路由,而是重新按照数据包头中的BAP routing ID部分进行路由选择,向第二节点发送这类数据包。否则,第一节点可继续对这类数据包执行重路由。
具体执行时,如果第一节点已经基于前述步骤S702描述,判断其和第二节点之间的链路对于携带BAP routing ID#1的数据包而言,不可用,并已经针对这些携带BAP routing ID#1的数据包进行了重路由(也可以理解为,选择其他备份路径进行传输,例如向第三节点发送这些数据包)后,若该第一节点收到第二节点的更新的流控反馈信息#M5中,对应于该BAP routing ID#1可用缓存空间的数值大于(或等于)阈值TH#5,则可以认为第一节点与第二节点之间的链路对于携带BAP routing ID#1的数据包而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
作为一个示例,第一节点判断是否需要停止已经执行的重路由机制,可以基于阈值TH#5和重路由恢复定时器(以定时器名为T-routing back#1为例)来判断:如果第一节点已经基于前述步骤S702描述,判断其和第二节点之间的链路对于携带BAP routing ID#1的数据包而言,不可用,并已经针对这些携带BAP routing ID#1的数据包进行了重路由(也可以理解为,选择其他备份路径进行传输,例如向第三节点发送这些数据包)后,若第一节点在定时器T-routing back#1运行的时间内,收到第二节点发送的一个或多个更新的流控反馈信息中,对应于BAP routing ID#1的可用缓存空间的数值均大于(或等于)阈值TH#5,则第一节点可以认为第二节点对于携带BAP routing ID#1的数据包而言已经可用,换言之,可以认为第一节点与第二节点之间的链路对于携带BAP routing ID#1的数据包而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
作为又一个示例,如果第一节点已经基于前述步骤S702描述,判断其和第二节点之间的链路对于携带BAP routing ID#1的数据包而言,不可用,并已经针对这些携带BAP routing ID#1的数据包进行了重路由(也可以理解为,选择其他备份路径进行传输,例如向第三节点发送这些数据包)后,第一节点在一段连续时长#T4内收到了第二节点的T个流控反馈信息,T为大于等于1的正整数,该T个流控反馈信息是第二节点的BAP routing ID粒度的可用缓存空间的大小,假设为该T个流控反馈信息中,其中有S个包含了与BAP routing ID#1对应的可用缓存空间大小的具体数值,从第一个到第S个为{C1,C2,…CS}(Cx为大于0的整数,x为正整数,1≤x≤S),S为小于或等于T的正整数,如果{C1, C2,…CS}中每一个数值均大于(或等于)阈值TH#5,则第一节点可以认为第二节点对于携带BAP routing ID#1的数据包而言已经可用,换言之,可以认为第一节点与第二节点之间的链路对于携带BAP routing ID#1的数据包而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
作为另一个示例,如果第一节点已经基于前述步骤S702描述,判断其和第二节点之间的链路对于携带BAP routing ID#1的数据包而言,不可用,并已经针对这些携带BAP routing ID#1的数据包进行了重路由(也可以理解为,选择其他备份路径进行传输,例如向第三节点发送这些数据包)后,第一节点在一段连续时长#T4内收到了第二节点的T个流控反馈信息,T为大于等于1的正整数,该T个流控反馈信息是第二节点的BAP routing ID粒度的可用缓存空间的大小,假设为该T个流控反馈信息中,其中有S个包含了与BAP routing ID#1对应的可用缓存空间大小的具体数值,从第一个到第S个为{C1,C2,…CS}(Cx为大于0的整数,x为正整数,1≤x≤S),S为小于或等于T的正整数,如果{C1,C2,…CS}中有至少V个数值大于或等于阈值TH#5,V为满足1≤V≤S的正整数,则第一节点可以认为第二节点对于携带BAP routing ID#1的数据包而言已经可用,换言之,可以认为第一节点与第二节点之间的链路对于携带BAP routing ID#1的数据包而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
针对前述两种在一段连续时长#T4内监测流控反馈信息判断第二节点对于携带有BAP routing ID#1的数据包是否可用的实现方式,作为一个示例,第一节点在收到第二节点发来的BAP routing ID粒度的流控反馈信息,如果对应于BAP routing ID#1的可用缓存空间的取值大于(或等于)阈值TH#5,则为该BAP routing ID#1启动一个定时器(以定时器名为timer为例),假设定时的时长为#T1=35s,如果在定时器启动后35s内收到的流控反馈信息中,与BAP routing ID#1对应的可用缓存空间的取值都大于(或等于)阈值TH#5,此时,则第一节点可以认为第二节点对于携带BAP routing ID#1的数据包而言已经可用。或者,如果在定时器超时前(即在定时器启动后35s内),收到了该下一跳节点T个更新的流控反馈信息中,有J个流控反馈信息中携带的对应于该BAP routing ID#1的可用缓存空间的取值均大于(或等于)阈值TH#5,J为满足1≤J≤T的正整数,则第一节点可以认为该第二节点对于携带有BAP routing ID#1的数据包而言仍然已经可用。或者,如果在定时器超时前(即在定时器启动后35s内),收到了该下一跳节点更新的流控反馈信息,当累计有J个流控反馈信息中携带的对应于该BAP routing ID#1的可用缓存空间的取值(或数值)均大于(或等于)阈值TH#5,J为正整数,则第一节点可以认为该第二节点对于携带有BAP routing ID#1的数据包而言仍然已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包,并可以停止该定时器的计时。
本申请中,第一节点时长#T4的获取方式和配置方式和前述时长#T1的获取方式和配置方式类似,此处不再赘述。
作为一个示例,如果第一节点接收到第二节点发送的T(T为大于1的整数)次流控反馈信息中,有T1次反馈的与BAP routing ID#1对应的可用缓存空间的数值阈值TH#5, 或者,T次流控反馈信息中,携带与BAP routing ID#1对应的可用缓存空间的数值大于(或等于)阈值TH#5的流控反馈信息的数量在T次中的占比大于(或等于)RTH2,0<RTH2≤1,第一节点确定第二节点已经可用。具体的,可以是连续的T1次或者不连续的T1次。T1小于或等于T。
本申请中,第一节点中,用于判断第二节点可用性中所涉及到的流控反馈信息中的可用缓存空间的阈值TH#5,可以是由IAB donor(或者是IAB donor CU,或IAB donor CP)通过RRC消息或者F1AP消息为第一节点配置的,配置方式可以有多种情况:
情况1,阈值TH#5可以是逐BAP routing ID配置的,即不同的BAP routing ID取值,配置的阈值可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个阈值列表,在该列表中的每一个条目(item),包含一个或者多个BAP routing ID的具体取值,以及相应的阈值TH#5取值。
情况2,阈值TH#5可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的阈值TH#5可以不同,但对于同一个下一跳节点,阈值TH#5适用于该下一跳节点向第一节点反馈的BAP routing ID粒度的流控反馈信息中会涉及到的所有BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的阈值TH#5的取值,还需指明其中的每一个阈值具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况3,阈值TH#5,也可以针对BAP routing ID粒度的流控反馈信息配置的,例如所有的BAP routing ID粒度的流控反馈信息对应的阈值均为TH#5。这种情况下,IAB donor提供的配置信息中,需要携带配置的阈值TH#5的取值,还需指明该阈值具体是适用于BAP routing ID粒度的流控反馈信息。示例性的,IAB donor为第一节点提供的配置信息中,可以携带BAP routing ID粒度的流控反馈信息对应的阈值TH#5的取值,该阈值TH#5适用于各个不同的BAP routing ID。
本申请中,对于情况3的阈值的配置,还可以有一种变形的配置方式,区分上行还是下行进行门限配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的阈值相关配置信息的时候,IAB donor会指定配置的阈值具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况3的一个变形3a,IAB donor针对所有上行的BAP routing ID粒度的流控反馈配置阈值TH#5-UL-1,对所有下行的BAP routing ID粒度的流控反馈配置阈值TH#5-DL-1。
类似的,上述实施例中的对于第一节点接收的流控反馈信息T,T1,S,J,V以及RTH2的配置方式以及获取方式和上述阈值TH#1的获取方式和配置方式类似,此处不再赘述。
类似的,上述实施例中的对于第一节点在基于流控反馈信息判断第二节点是否可用所涉及的X,Y,M,N,B1配置方式以及获取方式和阈值TH#1的获取方式和配置方式类似,此处不再赘述。
针对前述基于阈值TH#5和重路由恢复定时器监测流控反馈信息判断第二节点对于已经执行重路由的携带有BAP routing ID#1的数据包是否可用的实现方式,重路由定时器的 启动操作可以是:作为一种示例,第一节点可以在步骤S702中确定第二节点对于携带有BAP routing ID#1的数据包不可用之后,就启动定时器T-routing back#1用于监测第二节点的拥塞缓解情况;或者,第一节点还可以在在步骤S702中确定第二节点对于携带有BAP routing ID#1的数据包不可用之后,若收到第二节点发送的更新的流控反馈信息中,在对应于被执行重路由的数据包中携带的BAP routing ID(例如BAP routing ID#1)的可用缓存空间的数值大于(或等于)阈值TH#5时,再启动定时器T-routing back#1。而重路由的定时器停止操作,具体可以是:若在重路由定时器T-routing back#1超时前,第一节点收到了第二节点更新的流控反馈信息,且在该流控反馈信息中对应于该BAP routing ID#1的可用缓存空间的数值小于(或等于)阈值TH#1,则停止该定时器T-routing back#1的计时。也就是说,如果检测到流控反馈信息小于阈值TH#1时,第一节点认为第二节点对于携带有BAP routing ID#1的数据包仍然不可用,此时第一节点可以继续对这些数据包执行重路由操作。
本申请中,第一节点的重路由恢复定时器T-routing back#1的时长,也可以是由IAB donor(或者是IAB donor CU,或IAB donor CP)通过RRC消息或者F1AP消息为第一节点配置的,配置方式可以有多种可能性:
情况1:定时器T-routing back#1的时长可以是逐BAP routing ID配置的,即不同的BAP routing ID取值,配置的定时器T-routing back的时长可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个定时器时长列表,在该列表中的每一个item,包含一个或者多个BAP routing ID的具体取值,以及相应的定时器T-routing back的时长的值。
情况2:定时器T-routing back#1的时长可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的定时器T-routing back的时长可以不同,但对于同一个下一跳节点,T-routing back#1的时长适用于该下一跳节点向第一节点反馈的BAP routing ID粒度的流控反馈信息中会涉及到的所有BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的T-routing back#1的时长的取值,还需指明其中的每一个T-routing back#1的时长具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况3:定时器T-routing back#1的时长的配置,也可以是为BAP routing ID粒度的反馈信息配置的一个时长值。即,所有的BAP routing ID粒度的流控反馈信息对应的定时器的时长均为T-routing back#1的时长。这种情况下,IAB donor提供的配置信息中,需要携带配置的定时器时长T-routing back#1的取值,还需指明该定时器的时长具体是适用BAP routing ID粒度的流控反馈信息对应的时长。示例性的,IAB donor为第一节点提供的配置信息中,可以携带BAP routing ID粒度的流控反馈信息对应的定时器T-routing back#1的时长的取值,该定时器T-routing back#1的时长适用于各个不同的BAP routing ID。
对于情况3定时器T-routing back#1的时长的配置,也可以有一种变形的配置方式,区分上行还是下行进行定时器T-routing back#1的时长的配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的时长相关配置信息的时候,IAB donor会指定配置的定时器T-routing back#1的时长具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况3的一个变形3a,IAB donor针对所有上行的BAP routing ID粒度的流控反馈配置 定时器T-routing back的时长,T-routing back#1-UL-1,对所有下行的BAP routing ID粒度的流控反馈配置时长T-routing back#1-DL-1。
本申请中,阈值TH#5可以大于等于阈值TH#1。如设置阈值TH#5大于阈值TH#1,可以减少第一节点对第二节点判断频繁转换情况的发生,节省资源。
在一种可能的实现方式中,第一节点收到第二节点的第五指示信息,该第五指示信息表明链路恢复成功,或者;第一节点接收到第二节点的第六指示信息,该第六指示信息表明对于BAP层携带适配层路由标识BAP routing ID#1的数据包而言第二节点可用。则第一节点可以认为第二节点对于携带BAP routing ID#1的数据包而言已经可用,或者,认为第一节点与第二节点之间的链路对于携带BAP routing ID#1的数据包而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
也就是说,本申请可以针对第二节点的反馈信息,灵活确定是否需要该数据包重路由,以及重路由后还可以继续检测第二节点的缓存状态,从而保障在主路径的拥塞缓解后可以尽快使用主路径传输数据包。
根据本申请提供的通信方法,第一节点可以基于收到的流控反馈信息,在链路遇到拥塞的情况下,对执行重路由,一方面可以缓解链路拥塞,另一方面还可以减小数据包的平均传输时延,提升用户体验。
图8是本申请提供的通信方法,图8的方法包括:
步骤S801,第二节点向第一节点发送信息#M2,信息#M2包括第二节点的BH RLC CH#1可用缓存空间的大小。
其中,BH RLC CH#1用于标识第一节点和第二节点之间的链路#1上的第一无线链路控制信道,第二节点为第一节点在第一链路上的下一跳节点。例如,信息#M2可以是第二节点的流控反馈信息,该流控反馈信息可以包括第一链路上的第一无线链路控制信道的可用缓存空间的大小。
本申请中,对应于不同类型的业务数据或信令,可以被第一节点映射在不同传输通道上向下一跳节点传输,此处的传输通道,可以是第一节点和下一跳节点之间的回传RLC信道(BH RLC CH)。如果第二节点在流控反馈信息反馈的是BH RLC CH粒度的缓存信息,可以理解为,第二节点反馈的是其缓存状态中,与链路#1上的不同BH RLC信道所对应的可用缓存空间的大小,与每个BH RLC CH对应的可用缓存空间的大小反映了第一节点还能通过链路#1的该BH RLC CH向第二节点发送数据包的最大数据量的值。在第二节点的BH RLC CH粒度的流控反馈信息中,可以包含一个或多个BH RLC CH所对应的一个或多个可用缓存空间的大小。例如,链路#1上有3个无线链路控制信道,分别是BH RLC CH#1、BH RLC CH#2和BH RLC CH#3,第二节点的流控反馈信息#M2中,可以包含BH RLC CH#1对应的可用缓存空间的大小,还可以包含BH RLC CH#2对应的可用缓存空间的大小,和/或BH RLC CH#3对应的可用缓存空间的大小。
步骤S802,第一节点接收信息#M2,根据信息#M2确定通过第二节点传输需要映射在第一链路上的第一无线链路控制信道的数据包不可用。
其中,第一数据包为需要映射在所述第一链路上的第一无线链路控制信道的数据包,第一数据包的主路径为第一路径,第二节点为所述第一路径上的第一节点的下一跳节点。 换言之,若第一节点根据第一数据包中携带的BAP routing ID进行路由选择,需要向第二节点发送第一数据包,且按照第一节点配置的映射规则,第一节点需要将第一数据包映射到第一链路上的第一无线链路控制信道向第二节点发送。因此,第一数据包也可以视为,在第一节点处的待发送数据包中的一个原本需要被映射在BH RLC CH#1上向第二节点发送的数据包。
本申请中,第一链路为第一节点和第二节点之间的链路。
本申请中,第一节点可以根据第二节点发送的信息#M2中包含的与BH RLC CH#1对应的可用缓存空间的大小,确定第一节点传输第一数据包的下一跳节点。例如,一种可能的实现方式中,如果第二节点反馈的信息#M2中,与BH RLC CH#1对应的可用缓存空间的大小大于阈值TH#2(也可以是等于阈值TH#2),第一节点可以确定第二节点对于映射到第一节点和第二节点之间链路的BH RLC CH#1的数据包可用,或者确定第一节点与第二节点之间的无线链路对于BH RLC CH#1的数据包而言可用,进而第一节点可以确定通过第二节点传输第一数据包。
在另一种可能的实现方式中,如果第二节点反馈的信息#M2中,与BH RLC CH#1对应的可用缓存空间的大小小于或等于阈值TH#2,第一节点可以确定第二节点对于需要映射到第一节点和第二节点之间链路的BH RLC CH#1的数据包不可用,或者第一节点与第二节点之间的无线链路对于BH RLC CH#1的数据包而言不可用。这种情况下,第一节点需要为这些原本需要被映射在BH RLC CH#1上向第二节点传输的数据包选择合适的备份链路。例如,根据前面的描述,可知第一数据包属于原本需要被映射在BH RLC CH#1上向第二节点传输的数据包,若第一节点可以确定有一备份路径(例如第二路径)可用于传输第一数据包,该备份路径和第一数据包的主路径具有相同的目标节点,该备份路径上第一节点的下一跳节点为第三节点,则第一节点可以进而确定通过第三节点传输第一数据包。本申请汇总,备份路径和主路径具有相同的目标节点,可以是指用于标识备份路径的BAP routing ID和用于标识主路径的BAP routing ID中所包含的目标节点的BAP address字段相同,即备份路径和主路径在无线回传链路的目标节点相同;或者,还可以是指备份路径和主路径在IP层的目标节点相同。
本申请中,应理解,第一节点为这些原本需要被映射在BH RLC CH#1上向第二节点传输的数据包选择合适的备份链路,可以理解为是第一节点为这些数据包选择合适的备份路径,其中数据包的备份链路为备份路径上的第一节点和下一跳节点之间的链路。
需要说明的是,本实施例中,对于等于阈值情况的判定同样不做限定。作为一个示例,如果与BH RLC CH#1对应的可用缓存空间的大小等于阈值TH#2时,第一节点可以确定第二节点对于映射到第一节点和第二节点之间链路的BH RLC CH#1的数据包可用,这种情况下,第一节点可以仅在与BH RLC CH#1对应的可用缓存空间的大小小于阈值TH#2时才确定第二节点对于映射到第一节点和第二节点之间链路的BH RLC CH#1的数据包不可用。也可以是,第一节点确定第二节点对于映射到第一节点和第二节点之间链路的BH RLC CH#1的数据包不可用,这种情况下,第一节点可以仅在与BH RLC CH#1对应的可用缓存空间的大小大于阈值TH#2时才确定第二节点对于映射到第一节点和第二节点之间链路的BH RLC CH#1的数据包可用。同样也适用于后面于各个具体示例描述的等于阈值的情况。
作为一个示例,第一节点收到流控反馈信息#M2可以是BH RLC CH粒度的。具体而言,参照图1,假设第一节点为IAB节点1,第二节点为IAB节点2,数据包#P1(即第一数据包)的主路径为,路径#1:IAB节点1→IAB节点2→IAB节点4,数据包#P1如果沿着路径#1被传输,按照IAB节点1上配置的映射规则,可以被映射在BH RLC CH#1上向IAB节点2发送,其中BH RLC CH#1为IAB节点1和IAB节点2之间回传链路上的一个RLC信道(或称之为BH RLC信道),如果IAB节点2反馈给IAB节点1的流控反馈信息#M2中,与BH RLC CH#1对应的可用缓存空间的大小小于(或等于)阈值TH#2,此时,IAB节点1确定IAB节点2对于映射到两者之间链路的BH RLC CH#1的数据包不可用,即IAB节点1确定IAB节点2对于需要被映射到两者之间链路的BH RLC CH#1向IAB节点2发送的数据包不可用,换言之,IAB节点1可以确定IAB节点2对于数据包#P1而言不可用。
需要说明的,第一节点的阈值TH#2的获取方式以及配置方式在方法700中的步骤S702中已经描述,此处不再赘述。
在一种可能的实现方式中,第一节点可以在一段连续时长#T2内收到了第二节点的Mz个流控反馈信息,Mz为大于等于1的正整数,该Mz个流控反馈信息是第二节点的BH RLC CH粒度的可用缓存空间的大小,假设为该Mz个流控反馈信息中,其中有N2个包含了与BH RLC CH#1对应的可用缓存空间大小的具体数值,从第一个到第N2个为{A1,A2,…AN2}(Ax为大于0的整数,x为正整数,1≤x≤N2),N2≤Mz,如果{A1,A2,…AN2}中的每一个值,均小于或等于阈值TH#2,第一节点可以确定被映射在BH RLC CH#1上向第二节点发送的数据包在第二节点处拥塞。这种情况下,第一节点需要为其待发送的数据包中原本要被映射在BH RLC CH#1上向第二节点发送的数据包选择合适的备份链路。例如,若第一节点可以确定有一备份路径可用于传输需要映射在BH RLC CH#1的数据包#P1(第一数据包),该备份路径上第一节点的下一跳节点为第三节点,则第一节点可以进而确定通过第三节点传输第一数据包。
本申请中,第一节点确定被映射在BH RLC CH#1上向第二节点发送的数据包在第二节点处拥塞,即第二节点对于后续需要被映射在BH RLC CH#1向第二节点发送的数据包而言不可用,或者被理解为是第二节点对于需要被映射在BH RLC CH#1的数据包而言不可用,或者被理解为第一节点和第二节点之间的链路#1对于需要被映射在BH RLC CH#1向第二节点发送数据包而言不可用,或者被理解为第一节点和第二节点之间的链路#1对于需要被映射在BH RLC CH#1的数据包而言不可用。第二节点为第一节点的下一跳节点,当第一节点确定第二节点对于需要映射到第一节点和第二节点之间链路的BH RLC CH#1向第二节点发送的数据包不可用时,可以对这些数据包进行重路由,即为这些数据包选择合适的备份路径,向备份路径上的下一跳节点发送这些数据包。
本申请中,被映射在BH RLC CH#1上的数据包,可以理解为被映射在BH RLC CH#1上向第二节点发送的数据包。需要被映射在BH RLC CH#1上的数据包,可以理解为需要被第一节点映射在BH RLC CH#1上向第二节点发送的数据包,即若按照配置的映射规则,哪些本会由第一节点映射在BH RLC CH#1上向第二节点发送的数据包。
在又一种可能的实现方式中,第一节点可以在一段连续时长#T2内收到了第二节点的Mz个流控反馈信息,Mz为大于等于1的正整数,该Mz个流控反馈信息是第二节点的 BH RLC CH#1粒度的可用缓存空间的大小,假设为该Mz个流控反馈信息中,其中有N2个包含了与BH RLC CH#1对应的可用缓存空间大小的具体数值,从第一个到第N2个为{A1,A2,…AN2}(Ax为大于0的整数,x为正整数,1≤x≤N2),N2为小于或等于Mz的正整数,如果{A1,A2,…AN2}中有至少Y2个数值小于或等于阈值TH#2,Y2为满足1≤Y2≤N2的正整数,则第一节点可以确定被映射在BH RLC CH#1上向第二节点发送的数据包在第二节点处拥塞。这种情况下,第一节点需要为其待发送的数据包中原本要被映射在BH RLC CH#1上向第二节点发送的数据包选择合适的备份链路。例如,若第一节点可以确定有一备份路径可用于传输需要映射在BH RLC CH#1的数据包#P1(第一数据包),该备份路径上第一节点的下一跳节点为第三节点,则第一节点可以进而确定通过第三节点传输第一数据包。
针对步骤中前述两种在一段连续时长#T2内监测流控反馈信息判断第二节点对于需要被映射在BH RLC CH#1的数据包是否可用的实现方式,作为一个示例,第一节点在收到第二节点发来的BH RLC CH粒度的流控反馈信息,如果对应于BH RLC CH#1的可用缓存空间的取值小于(也可以是等于)阈值TH#2,则为该BH RLC CH#1启动一个定时器(以定时器名为timer为例),假设定时的时长为#T2=28s,如果在定时器启动后28s内第一节点收到第二节点发来的流控反馈信息中,与BH RLC CH#1对应的可用缓存空间的取值都小于(或等于)阈值TH#2,此时,第一节点可以确定被映射在BH RLC CH#1上向第二节点发送的数据包在第二节点处拥塞,认为第二节点对于需要被映射在BH RLC CH#1的数据包而言不可用,或者说认为第一节点和第二节点之间的链路对于传输第一数据包而言不可用。如果在定时器超时前(即在定时器启动后28s内),第一节点收到了第二节点Mz个更新的流控反馈信息中,有X2个流控反馈信息中携带的对应于该映射在BH RLC CH#1的可用缓存空间的取值均大于(或等于)阈值TH#2,X2为满足1≤X2≤Mz的正整数,则第一节点可以认为该第二节点对于映射在BH RLC CH#1的数据包而言仍然可用,可仍然选择第二节点为传输第一数据包的下一跳节点,并可以停止该定时器的计时。或者,如果在定时器超时前(即在定时器启动后28s内),收到了该下一跳节点更新的流控反馈信息,当累计有X2个流控反馈信息中携带的对应于该BH RLC CH#1的可用缓存空间的取值(或数值)均大于(或等于)阈值TH#2,X2为正整数,则第一节点可以认为该第二节点对于映射在BH RLC CH#1的数据包而言仍然可用,可仍然选择第二节点传输第一数据包的下一跳节点,并可以停止该定时器的计时。
作为一个示例,如果第一节点接收到第二节点发送的Mz(Mz为大于1的整数)次流控反馈信息中,有M01次反馈的BH RLC CH#1对应的可用缓存空间的数值小于(或等于)阈值TH#2,或者,Mz次流控反馈信息中,与BH RLC CH#1对应的可用缓存空间的数值小于(或等于)阈值TH#2的流控反馈信息的数量在Mz次中的占比大于(或等于)RTH3,0<RTH3≤1,第一节点可以确定被映射在BH RLC CH#1上向第二节点发送的数据包在第二节点处拥塞。具体的,可以是连续的M01次或者不连续的M01次。Mz为大于等于1的整数,M01小于或等于Mz。
作为一个示例,如果第一节点在定时器运行的时长#T2内,接收到第二节点发送的Mz(Mz为大于或等于1的整数)次流控反馈信息中,与BH RLC CH#1对应的的可用缓存空间的数值均小于(或等于)阈值TH#2,第一节点可以确定被映射在BH RLC CH#1 上向第二节点发送的数据包在第二节点处拥塞。具体的,可以是连续的M01次或者不连续的M01次。
本申请中,第一节点的定时器时长#T2,也可以是由IAB donor(或者是IAB donor CU,或IAB donor CP)通过RRC消息或者F1AP消息为第一节点配置的,配置方式可以有多种可能性:
情况1,时长#T2可以是逐BH RLC CH配置的,即不同的BH RLC CH取值,配置的时长#T2可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个定时器时长列表,在该列表中的每一个item,包含一个或者多个BH RLC CH的标识,以及相应的时长#T2的值。
情况2,时长#T2可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的时长#T2可以不同,但对于同一个下一跳节点,时长#T2适用于该下一跳节点向第一节点反馈的BH RLC CH粒度的流控反馈信息中会涉及到的所有BH RLC CH,或者说适用于第一节点和该下一跳节点之间无线回传链路上的所有BH RLC CH。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的时长#T2的取值,还需指明其中的每一个时长#T2具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况3,时长#T2的配置,也可以是BH RLC CH粒度的流控反馈信息中所有BH RLC CH对应的定时器的时长均为时长#T2。这种情况下,IAB donor提供的配置信息中,需要携带配置的定时器时长#T2的取值,还需指明该定时器的时长即为BH RLC CH粒度的流控反馈信息对应的时长。示例性的,IAB donor为第一节点提供的配置信息中,可以携带BH RLC CH粒度的流控反馈信息对应的时长#T2的取值,该时长#T2适用于各个不同的BH RLC CH。
情况4:时长#T2的配置还可以是为两种不同粒度的流控反馈配置同一个时长#TS。即IAB donor提供的配置信息中,携带配置的时长#TS的取值,该时长#TS同时适用于第一节点的BAP routing ID粒度的流控反馈信息,以及BH RLC CH粒度的流控反馈信息。可以理解的是,该时长#TS适用于第一节点和下一跳节点之间的各个不同的BH RLC CH,还适用于第一节点各个不同的BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带配置的时长#TS的取值,可选的,还可以在配置信息中指明该时长#TS同时适用于两种不同类型的流控反馈信息。
对于情况3和情况4时长#T2的配置,也可以有一种变形的配置方式,区分上行还是下行进行时长#T2的配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的时长相关配置信息的时候,IAB donor会指定配置的时长#T2具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况3的一个变形3a,IAB donor针对所有上行的BH RLC CH粒度的流控反馈配置时长#T2-UL-2,对所有下行的BH RLC CH粒度的流控反馈配置时长#T2-DL-2。例如作为情况4的一个变形4a,IAB donor针对所有上行的流控反馈配置时长#T2-UL,对所有下行的流控反馈配置时长#T2-DL。
在一种可能的实现方式中,第一节点接收第二节点的流控反馈信息,该流控反馈信息包含与BH RLC CH#1对应的可用缓存空间的数值,例如为#B2。如果第一节点检测到已 经向第二节点发送过映射在BH RLC CH#1的数据包的数据量大于或等于#B2时(即第一节点已经通过BH RLC CH#1向第二节点发送过数据量大于或等于#B2的数据包),第一节点确定:对于映射在第一节点和第二节点之间的第一链路上的BH RLC CH#1的数据包而言,第二节点不可用。
作为一个示例,第一节点从第二节点接收到BH RLC CH粒度的流控反馈信息#M2,其中包含与BH RLC CH#1对应的可用缓存空间的数值,例如为#B2,而第一节点在接收到第二节点发送的流控反馈信息#M2之前的时长#TB1内,已经通过BH RLC CH#1向第二节点发送过数据量大于或等于#B2的数据包。据此,第一节点确定:第二节点对于需要映射到第一节点和第二节点之间链路的BH RLC CH#1向第二节点发送的数据包不可用。第一节点可以对这些数据包进行重路由,即为这些数据包选择合适的备份路径,向备份路径上的下一跳节点发送这些数据包。
作为又一个示例,第一节点从第二节点接收到BH RLC CH粒度的流控反馈信息#M2,其中包含与BH RLC CH#1对应的可用缓存空间的数值,例如为#B2,而第一节点在接收到第二节点发送的流控反馈信息#M2之后的时长#TB2内,向第二节点发送过BH RLC CH#1的数据包的数据量大于或等于#B2(即第一节点通过BH RLC CH#1向第二节点发送了数据量大于或等于#B2的数据包)。据此,第一节点确定:第二节点对于需要映射到第一节点和第二节点之间链路的BH RLC CH#1向第二节点发送的数据包不可用。第一节点可以对这些数据包执行重路由,例如选择可用的备份路径,向备份路径上的下一跳节点发送这些数据包。可选的,在第一节点接收到第二节点发送的流控反馈信息#M2之后的时长#TB2内,第一节点还未接收到第二节点发送的另一更新的BH RLC CH粒度的流控反馈信息。
作为又一个示例,第一节点从第二节点接收到BH RLC CH粒度的流控反馈信息#M2,其中包含与BH RLC CH#1对应的可用缓存空间的数值,例如为#B2,第一节点在接收到流控反馈信息#M2之后,向第二节点发送了BH RLC CH#1的数据包的数据量达到#B2(即第一节点通过BH RLC CH#1向第二节点发送的数据包的数据量达到#B2),第一节点可以确定:第二节点对于需要映射到第一节点和第二节点之间链路的BH RLC CH#1向第二节点发送的数据包不可用。第一节点可以对这些数据包执行重路由,例如选择可用的备份路径,向备份路径上的下一跳节点发送这些数据包。
作为又一个示例,第一节点从第二节点接收到BH RLC CH粒度的流控反馈信息#M2,其中包含与BH RLC CH#1对应的可用缓存空间的数值,例如为#B2,第一节点在接收到流控反馈信息#M2之后,向第二节点发送了BH RLC CH#1的数据包的数据量达到#B2(即第一节点通过BH RLC CH#1向第二节点发送的数据包的数据量达到#B2),且在接收到第二节点发送的另一更新的BH RLC CH粒度的流控反馈信息之前(即第一节点还未接收到第二节点发送的另一更新的BH RLC CH粒度的流控反馈信息),第一节点可以确定:第二节点对于需要映射到第一节点和第二节点之间链路的BH RLC CH#1向第二节点发送的数据包不可用。第一节点可以对这些数据包执行重路由,例如选择可用的备份路径,向备份路径上的下一跳节点发送这些数据包。
本申请中,第一节点的定时器时长时长#TB1也可以是由IAB donor(或者是IAB donor CU,或IAB donor CP)通过RRC消息或者F1AP消息为第一节点配置的,配置方式可以 有多种可能性:
情况1:时长#TB1可以是逐BH RLC CH配置的,即不同的BH RLC CH取值,配置的时长#TB1可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个定时器时长列表,在该列表中的每一个item,包含一个或者多个BH RLC CH的标识,以及相应的时长#TB1的值。
情况2:时长#TB1可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的时长#TB1可以不同,但对于同一个下一跳节点,时长#TB1适用于该下一跳节点向第一节点反馈的BH RLC CH粒度的流控反馈信息中会涉及到的所有BH RLC CH,或者说适用于第一节点和该下一跳节点之间无线回传链路上的所有BH RLC CH。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的时长#TB1的取值,还需指明其中的每一个时长#TB1具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况3:时长#TB1的配置,可以是BH RLC CH粒度的流控反馈信息中所有BH RLC CH对应的定时器的时长均为时长#TB1。这种情况下,IAB donor提供的配置信息中,需要携带配置的定时器时长#TB1的取值,还需要指定该定时器时长#TB1即为BH RLC CH粒度的流控反馈信息对应的时长。示例性的,IAB donor为第一节点提供的配置信息中,可以携带BH RLC CH粒度的流控反馈信息对应的时长#TB1的取值,该时长#TB1适用于各个不同的BH RLC CH。
情况4:时长#TB1的配置,还可以是为两种不同粒度的流控反馈配置同一个时长#TS。即IAB donor提供的配置信息中,携带配置的时长#TS的取值,该时长#TS同时适用于第一节点的BAP routing ID粒度的流控反馈信息,以及BH RLC CH粒度的流控反馈信息。可以理解的是,该时长#TS适用于第一节点和下一跳节点之间的各个不同的BH RLC CH,还适用于第一节点各个不同的BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带配置的时长#TS的取值,可选的,还可以在配置信息中指明该时长#TS同时适用于两种不同类型的流控反馈信息。
对于情况3和情况4时长#TB1的配置,也可以有一种变形的配置方式,区分上行还是下行进行时长#TB1的配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的时长相关配置信息的时候,IAB donor会指定配置的时长#TB1具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况3的一个变形3a,IAB donor针对所有上行的BH RLC CH粒度的流控反馈配置时长#TB1-UL-2,对所有下行的BH RLC CH粒度的流控反馈配置时长TB1-DL-2。例如作为情况4的一个变形4a,IAB donor针对所有上行的流控反馈配置时长#TB1-UL,对所有下行的流控反馈配置时长TB1-DL。
对于定时器时长#TB2的获取方式以及配置方式和时长#TB1类似,具体可以参考上述定时器时长#TB1的描述,此处不再赘述。
类似的,上述实施例中的对于第一节点在基于流控反馈信息判断第二节点是否可用所涉及的X2,Y2,M01,Mz,N2,B2以及RTH3的配置方式以及获取方式和阈值TH#2的获取方式和配置方式类似,此处不再赘述。
在一种可能实现方式中,第一节点从第二节点接收到BH RLC CH粒度的流控反馈信 息#M2,其中可以包括对应于BH RLC CH#1的第三指示信息。该第三指示信息,用于表明:在第二节点处,映射在BH RLC CH#1的数据包已经发生拥塞(或者说被映射在BH RLC CH#1上向第二节点发送的数据包在第二节点处拥塞),即对于需要被映射在BH RLC CH#1的数据包而言第二节点不可用。可选的,在流控反馈信息#M2中,该第三指示信息可以指示对应于需要被映射在一个或多个不同的BH RLC CH(其中包含BH RLC CH#1)的数据包而言,第二节点不可用,即第三指示信息可以对应于多个BH RLC CH。
在一种可能的实现方式中,第一节点收到第二节点发送的正在尝试进行链路恢复的第四指示信息,该第四指示信息指示了第二节点和第二节点的下一跳节点之间发生无线链路失败且第二节点正在尝试恢复与该下一跳节点之间的连接,则第一节点可以认为第二节点不可用,或者认为第一节点与第二节点之间的链路不可用。第一节点可以为所有原本需要经由第二节点发送的数据包进行重路由。作为一个示例,参见图1,如果IAB节点4上有数据包要发送给IAB节点1,如果IAB节点4接收到IAB节点2发送的第四指示信息,即IAB节点2发现IAB节点2与IAB节点1之间的链路发生RLF,正在尝试恢复,则IAB节点4可以认为其与该IAB节点2之间的链路不可用,无法继续向节点2发送任何数据包。
应理解,本实施例中,第一节点也可以同时接收第二节点BAP routing ID粒度的反馈信息。此时,第一节点接收的流控反馈信息中除了BH RLC CH粒度的流控反馈报告,还有BAP routing ID粒度的流控反馈报告。此时,第一节点可以根据两种粒度的反馈信息,共同判断第二节点对于那些数据包而言发生拥塞,对于哪些数据包而言未拥塞,从而为不同的数据包分别确定下一跳节点。具体可以参见方法700中步骤S702中方式1-方式4中任一种判断方法进行决策,此处不再赘述。
如上所述,如果第一节点确定对于需要映射到第一链路的某些BH RLC CH的数据包而言第二节点不可用,第一节点可以为这些数据包执行重路由,选择合适的备用路径,然后向选择的备用路径上的下一跳节点(例如,第三节点)发送这些数据包。
此时,可选的,本申请实施例还包括步骤S803,第三节点向第一节点发送流控反馈信息。
其中,第三节点向第一节点发送的流控反馈信息可以包括:BH RLC CH粒度的流控反馈信息#M4,和/或,BAP routing ID粒度的流控反馈信息#M3。
例如,第一节点可以从第三节点接收BAP control PDU,其中包含BH RLC CH粒度流控反馈信息,该BH RLC CH粒度的流控反馈信息中,包含有多个对应于不同的BH RLC CH的可用缓存空间的取值。
步骤S804,第一节点根据第三节点发来的流控反馈信息确定第三节点可用于传输需要被重路由的数据包。
可以理解的是,第一节点需要被重路由的数据包,可以是需要映射在第一链路上的第一无线链路控制信道(即BH RLC CH#1)的数据包。其中,第一链路为第二节点和第一节点之间的链路。一种可能的实现方式中,第一节点可以根据流控反馈信息#M4确定:第三节点可用于传输需要被重路由的数据包,即第一节点和第三节点之间的链路可用于传输原本需要被映射在BH RLC CH#1上向第二节点传输的数据包,或者可以理解为第三节点可用于传输原本需要被映射在BH RLC CH#1上向第二节点传输的数据包。
例如,第一节点可以根据信息#M4确定第三节点可用于传输原本需要被映射在BH  RLC CH#1上向第二节点传输的数据包,也可以理解为,第一节点确定第三节点可以用于传输需要被执行重路由的数据包,该需要被执行重路由的数据包,即在前述步骤S802中第一节点判断出第二节点不可用而需要被重路由的数据包(例如,按照数据包中的BAP routing ID以及配置在第一节点的映射规则,那些原本需要被映射在第一节点和第二节点之间链路的BH RLC CH#1上向第二节点发送的数据包)。
在一种可能的实现方式中,第一节点可以根据第三节点发来的BH RLC CH粒度的流控反馈信息#M4,确定第三节点可用于传输需要被重路由的数据包(那些原本需要被映射在第一节点和第二节点之间链路的BH RLC CH#1上向第二节点发送的数据包)。
在另一种可能的实现方式中,第一节点根据信息#M3确定第三节点可用于传输需要被重路由的数据包(那些原本需要被映射在第一节点和第二节点之间链路的BH RLC CH#1上向第二节点发送的数据包)。其中,信息#M3是BAP routing ID粒度的流控反馈信息。
以需要被重路由的数据包为第一数据包为例,第一数据包中包含的BAP路由标识为BAP routing ID#1,则第一节点判断第三节点对于需要被重路由的第一数据包可用,可以参考以上两种实施方式,具体过程可以参见方法700中的步骤S704,此处不再赘述。
应理解,本实施例中,判断第三节点是否的用的方法也可以参照步骤S802中判断第二节点是否可用的方法,将其中的第二节点替换为第三节点进行理解即可,不再赘述。
需要说明的是,对于第一节点处的某个待传输数据包需要执行重路由,但是有多个(至少两个)可用的备份链路(或备份路径)的情况,第一节点可以任意选择其中一个备份链路用来对该数据包进行重路由;或者,IAB donor(或者可以是IAB donor CU,或者IAB donor CU-CP)可以为不同的备份链路(或备份路径)设置不同的优先级并提供给第一节点,第一节点在多个可用的备份链路(或备份路径)中,选择优先级最高的备份链路(或备份路径)对数据包进行重路由。第一节点选定用于对数据包进行重路由的备份链路(或备份路径)后,向该备份链路(或备份路径)所对应的下一跳节点传输重路由的数据包。
需要说明的是,备份链路(或者备份链路及优先级,或者备份路径及优先级)的配置,可以是以BH RLC CH为粒度进行配置的。
本申请中,第一节点确定是否对一个数据包进行重路由,具体可以是:除了需要判断该数据包的主路径是否可用(或者主路径上的第一链路是否可用,或者主路径上第一节点的下一跳节点即第二节点是否可用)外,还需要判断该数据包是否有可用的备份链路(或者是否有可用的备份路径,或者备份路径上第一节点的下一跳节点即第三节点是否可用)。如果第一节点判断出数据包的主路径上的第一链路不可用,且有至少一个备份路径可用,则可以对该数据包进行重路由(即选择备份路径并向备份路径上的下一跳节点发送该数据包),否则第一节点不对该数据包进行重路由操作。
需要说明的是,本申请中第一节点可以同时接收第二节点发送的流控反馈信息以及第三节点发送的流控反馈信息。或者第一节点先接收第三节点发送的流控反馈信息,再接收第二节点的流控反馈信息。也可以理解为,步骤S803和步骤S804和前面的步骤S801-步骤S802之间的相对顺序没有任何限定。本申请中,步骤S801和步骤S802可以组成单独的实施例,用于判断数据包的主路径是否可用,以及哪些数据包需要执行重路由;步骤S803和步骤S804作为可选步骤,也可以组成单独的实施例,用于判断数据包的备份链路是否可用。
本申请中,第一节点确定第二节点不可用,确定下一跳为第三节点后,还可以继续监控第二节点的缓存状态,确定第二节点是否可用。也可以理解为,第一节点(具体可以是IAB node或IAB donor DU)还可以在数据包第二节点拥塞缓解后,取消对这些数据包的重路由,使得数据包可以继续在原来既定的链路上传输。例如,第一节点在对数据包执行了重路由时可以开启定时器(例如定时器T-routing back),以便监测第二节点处的拥塞是否缓解,判断第二节点是否可以继续使用。
这种情况下,可选的,本申请实施例还包括步骤S805以及步骤S806。具体描述如下。
步骤S805,第一节点接收第二节点发送的信息#M6。
其中,信息#M6可以是第二节点发送的流控反馈信息,该流控反馈信息可以是BH RLC CH粒度的流控反馈信息,其中包含与BH RLC CH#1(用于指示第一节点与第二节点之间链路上的第一无线链路控制信道,或者说是该第一无线链路控制信道的BH RLC CH的ID)对应的可用缓存空间的大小。
步骤S806,第一节点根据信息#M6,确定第二节点对于需要被映射在BH RLC CH#1上向第二节点发送的数据包而言是否可用。
需说明的是,该步骤中,第一节点确定第二节点对于需要被映射在BH RLC CH#1上向第二节点发送的的数据包而言是否可用,可以简化描述为:第一节点确定第二节点对于需要被映射在BH RLC CH#1上的数据包而言是否可用。
如果第一节点根据信息#M6判断(或者确定)第二节点对于需要映射在BH RLC CH#1的数据包而言可用,第一节点可以停止对待传输的原本需要映射在BH RLC CH#1上向第二节点发送的数据包的重路由,然后重新向第二节点发送这类数据包。否则,第一节点可继续对这类数据包执行重路由。
其中,可以理解的是,在步骤S806之前,第一节点已经对原本需要被映射在BH RLC CH#1上向第二节点发送的数据包执行了重路由,例如第一节点按照前述步骤S802,判断出第二节点对于原本需要被映射在BH RLC CH#1上向第二节点发送的数据包不可用,需要对这些数据包执行重路由,而第一节点进一步基于步骤S803和S804的描述,判断出第三节点对于这些需要执行重路由的数据包可用,并对这些数据包进行了重路由(即选择第三节点作为下一跳节点)。若该第一节点收到第二节点的更新的流控反馈信息#M6中,对应于该BH RLC CH#1可用缓存空间的数值大于(或等于)阈值TH#6,则可以认为第一节点与第二节点之间的链路对于需要映射在BH RLC CH#1的数据包而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
作为一个示例,第一节点判断是否需要停止已经执行的重路由机制,可以基于阈值TH#6和重路由恢复定时器(以定时器名为T-routing back#2为例)来判断:如果第一节点已经基于前述步骤S802描述,判断其和第二节点之间的链路对于需要映射在BH RLC CH#1的数据包而言不可用,并已经针对这些需要映射在BH RLC CH#1的数据包进行了重路由(也可以理解为,选择其他备份链路进行传输,例如向第三节点发送这些数据包)后,若第一节点在定时器T-routing back#2运行的时间内,收到第二节点发送的一个或多个更新的流控反馈信息中,对应于BH RLC CH#1的可用缓存空间的数值均大于(或等于)阈值TH#6,则第一节点可以认为第二节点对于需要映射在BH RLC CH#1的数据包而言 已经可用,换言之,可以认为第一节点与第二节点之间的链路对于需要映射在BH RLC CH#1的数据包而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
作为又一个示例,如果第一节点已经基于前述步骤S802描述,判断其和第二节点之间的链路对于需要映射在BH RLC CH#1的数据包而言,不可用,并已经针对这些需要映射在BH RLC CH#1的数据包进行了重路由(也可以理解为,选择其他备份链路进行传输,例如向第三节点发送这些数据包)后,第一节点在一段连续时长#T5内收到了第二节点的T1个流控反馈信息,T1为大于等于1的正整数,该T1个流控反馈信息是第二节点的BH RLC CH粒度的可用缓存空间的大小,假设为该T1个流控反馈信息中,其中有S1个包含了与BH RLC CH#1对应的可用缓存空间大小的具体数值,从第一个到第S1个为{C1,C2,…CS1}(Cx为大于0的整数,x为正整数,1≤x≤S1),S1为小于或等于T1的正整数,如果{C1,C2,…CS1}中每一个数值均大于(或等于)阈值TH#6,则第一节点可以认为第二节点对于需要映射在BH RLC CH#1的数据包而言已经可用,换言之,可以认为第一节点与第二节点之间的链路对于需要映射在BH RLC CH#1而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
作为另一个示例,如果第一节点已经基于前述步骤S802描述,判断其和第二节点之间的链路对于需要映射在BH RLC CH#1的数据包而言,不可用,并已经针对这些需要映射在BH RLC CH#1的数据包进行了重路由(也可以理解为,选择其他备份链路进行传输,例如向第三节点发送这些数据包)后,第一节点在一段连续时长#T5内收到了第二节点的T1个流控反馈信息,T1为大于等于1的正整数,该T1个流控反馈信息是第二节点的BH RLC CH粒度的可用缓存空间的大小,假设为该T1个流控反馈信息中,其中有S1个包含了与BH RLC CH#1对应的可用缓存空间大小的具体数值,从第一个到第S1个为{C1,C2,…CS1}(Cx为大于0的整数,x为正整数,1≤x≤S1),S1为小于或等于T1的正整数,如果{C1,C2,…CN}中有至少U1个数值小于或等于阈值TH#5,U1为满足1≤U1≤S1的正整数,则第一节点可以认为第二节点对于需要映射在BH RLC CH#1的数据包而言已经可用,换言之,可以认为第一节点与第二节点之间的链路对于需要映射在BH RLC CH#1的数据包而言已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
针对本步骤中的前述两种在一段连续时长#T5内监测流控反馈信息判断第二节点对于需要映射在BH RLC CH#1的数据包是否可用的实现方式,作为一个示例,第一节点在收到第二节点发来的BH RLC CH粒度的流控反馈信息,如果对应于BH RLC CH#1的可用缓存空间的取值小于(或等于)阈值TH#6,则启动一个定时器(以定时器名为timer为例),假设定时的时长为#T5=20s,如果在定时器启动后20s内收到的第二节点发来的流控反馈信息中,与BH RLC CH#1对应的可用缓存空间的取值都大于(或等于)阈值TH#6,此时,则第一节点可以认为第二节点对于需要映射在BH RLC CH#1的数据包而言已经可用。如果在定时器超时前(即在定时器启动后20s内),收到了第二节点T1个更新的流控反馈信息中,有J1个流控反馈信息中携带的对应于该BH RLC CH#1的可用缓存空间的取值均大于(或等于)阈值TH#5,J1为满足1≤J1≤T1的正整数,则第一节点可以认为该第 二节点对于需要映射在BH RLC CH#1的数据包而言仍然已经可用。或者,如果在定时器超时前(即在定时器启动后20s内),收到了该下一跳节点更新的流控反馈信息,当累计有J1个流控反馈信息中携带的对应于该BH RLC CH#1的可用缓存空间的取值(或数值)均大于(或等于)阈值TH#6,J1为正整数,则第一节点可以认为该第二节点对于需要映射在BH RLC CH#1的数据包而言仍然已经可用,第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包,并可以停止该定时器的计时。
本申请中,第一节点时长#T5的获取方式和配置方式和前述时长#T2的获取方式和配置方式类似,此处不再赘述。
作为一个示例,如果第一节点接收到第二节点发送的T1(T1为大于1的整数)次流控反馈信息中,有T01次反馈的与BH RLC CH#1对应的可用缓存空间的数值阈值TH#6,或者,T1次流控反馈信息中,BH RLC CH#1对应的可用缓存空间的数值大于(或等于)阈值TH#6的流控反馈信息的数量在T1次中的占比大于(或等于)RTH4,0<RTH4≤1,第一节点确定第二节点已经可用。具体的,可以是连续的T01次或者不连续的T01次。T01小于或等于T1。
本申请中,第一节点中,用于判断第二节点可用性中所涉及到的流控反馈信息中的可用缓存空间的阈值TH#6,可以是由IAB donor(或者是IAB donor CU,或IAB donor CP)通过RRC消息或者F1AP消息为第一节点配置的,配置方式可以有多种情况:
情况1,阈值TH#6可以是逐BH RLC CH配置的,即不同的BH RLC CH取值,配置的阈值可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个阈值列表,在该列表中的每一个条目(item),包含一个或者多个BH RLC CH的标识,以及相应的阈值TH#6取值。
情况2,阈值TH#6可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的阈值TH#6可以不同,但对于同一个下一跳节点,阈值TH#6适用于该下一跳节点向第一节点反馈的BH RLC CH粒度的流控反馈信息中会涉及到的所有BH RLC CH。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的阈值TH#6的取值,还需指明其中的每一个阈值具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况3,阈值TH#6,可以是BH RLC CH粒度的流控反馈信息中所有BH RLC CH对应的阈值。这种情况下,IAB donor提供的配置信息中,需要携带配置的阈值TH#6的取值,还需要指定该阈值TH#6即为BH RLC CH粒度的流控反馈信息对应的阈值。示例性的,IAB donor为第一节点提供的配置信息中,可以携带BH RLC CH粒度的流控反馈信息对应的阈值TH#6的取值,该阈值TH#6适用于各个不同的BH RLC CH。
情况4,阈值TH#6和阈值TH#5的配置,还可以是为两种不同粒度的流控反馈配置同一个阈值TH#S。即IAB donor提供的配置信息中,携带配置的阈值TH#S的取值,该阈值TH#S同时适用于第一节点的BAP routing ID粒度的流控反馈信息,以及BH RLC CH粒度的流控反馈信息。可以理解的是,该阈值TH#S适用于第一节点和下一跳节点之间的各个不同的BH RLC CH,还适用于第一节点各个不同的BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带配置的阈值TH#S的取值,可选的,还可以在配置信 息中指明该阈值TH#S同时适用于两种不同类型的流控反馈信息。
本申请中,对于情况3和情况4的阈值的配置,还可以有一种变形的配置方式,区分上行还是下行进行门限配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的阈值相关配置信息的时候,IAB donor会指定配置的阈值具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况3的一个变形3a,IAB donor针对所有上行的BH RLC CH粒度的流控反馈配置阈值TH#6-UL-2,对所有下行的BH RLC CH粒度的流控反馈配置阈值TH#6-DL-2。又例如,对于情况4的一个变形4a,IAB donor针对所有上行流控反馈配置阈值TH-UL,针对所有下行的流控反馈配置阈值TH-DL。
针对前述基于阈值TH#6和重路由恢复定时器监测流控反馈信息判断第二节点对于已经执行重路由的需要映射在BH RLC CH#1的数据包是否可用的实现方式,重路由定时器的启动操作可以是:作为一种示例,第一节点可以在步骤S802中确定第二节点对于需要映射在BH RLC CH#1的数据包不可用之后,就启动定时器T-routing back#2用于监测第二节点的拥塞缓解情况;或者,第一节点还可以在在步骤S802中确定第二节点对于需要映射在BH RLC CH#1的数据包不可用之后,若收到第二节点发送的更新的流控反馈信息中,在对应于BH RLC CH#1的可用缓存空间的数值大于(或等于)阈值TH#6时,再启动定时器T-routing back#2。而重路由的定时器停止操作,具体可以是:若在重路由定时器T-routing back#2超时前,第一节点收到了第二节点更新的流控反馈信息,且在该流控反馈信息中对应于该需要映射在BH RLC CH#1的可用缓存空间的数值小于(或等于)阈值TH#2,则停止该定时器T-routing back#2的计时。也就是说,如果检测到流控反馈信息小于阈值TH#2时,第一节点认为第二节点对于需要映射在BH RLC CH#1的数据包仍然不可用,此时第一节点可以继续对这些数据包执行重路由操作。
本申请中,第一节点的重路由恢复定时器T-routing back#1的时长,也可以是由IAB donor(或者是IAB donor CU,或IAB donor CP)通过RRC消息或者F1AP消息为第一节点配置的,配置方式可以有多种可能性:
情况1,定时器T-routing back#1的时长可以是逐BH RLC CH配置的,即不同的BH RLC CH取值,配置的定时器T-routing back的时长可以不同,在IAB donor为第一节点提供的配置信息中,可以包含一个定时器时长列表,在该列表中的每一个item,包含一个或者多个BH RLC CH的标识,以及相应的定时器T-routing back的时长的值。
情况2,定时器T-routing back#2的时长可以是逐下一跳节点配置的,即对应于第一节点的每一个下一跳节点,配置的定时器T-routing back的时长可以不同,但对于同一个下一跳节点,T-routing back#2的时长适用于该下一跳节点向第一节点反馈的BH RLC CH粒度的流控反馈信息中会涉及到的所有BH RLC CH。这种情况下,IAB donor提供的配置信息中,需要携带一个或多个配置的T-routing back#2的时长的取值,还需指明其中的每一个T-routing back#2的时长具体是适用于第一节点的哪一个下一跳节点或哪一些下一跳节点。其中,第一节点的下一跳节点,可以用下一跳节点的BAP address来标识。
情况3,定时器T-routing back#2的时长的配置,可以是BH RLC CH粒度的流控反馈信息中所有BH RLC CH对应的定时器T-routing back#2的时长均为同一数值。这种情况下,IAB donor提供的配置信息中,需要携带配置的定时器时长T-routing back#2的取值,还需 要指定该定时器时长T-routing back#2即为BH RLC CH粒度的流控反馈信息对应的时长。示例性的,IAB donor为第一节点提供的配置信息中,可以携带BH RLC CH粒度的流控反馈信息对应的时长T-routing back#2的取值,该时长T-routing back#2适用于各个不同的BH RLC CH。
情况4,定时器T-routing back#2的时长的配置,还可以是为两种不同粒度的流控反馈配置同一个时长#TS。即IAB donor提供的配置信息中,携带配置的时长#TS的取值,该时长#TS同时适用于第一节点的BAP routing ID粒度的流控反馈信息,以及BH RLC CH粒度的流控反馈信息。可以理解的是,该时长#TS适用于第一节点和下一跳节点之间的各个不同的BH RLC CH,还适用于第一节点各个不同的BAP routing ID。这种情况下,IAB donor提供的配置信息中,需要携带配置的时长#TS的取值,可选的,还可以在配置信息中指明该时长#TS同时适用于两种不同类型的流控反馈信息。
对于情况3和情况4定时器T-routing back#2的时长的配置,也可以有一种变形的配置方式,区分上行还是下行进行定时器T-routing back#2的时长的配置,即在为第一节点提供基于流控反馈信息判断下一跳节点是否可用的时长相关配置信息的时候,IAB donor会指定配置的定时器T-routing back#2的时长具体适用于上行流控反馈(父节点向第一节点反馈的逐跳流控反馈)还是下行的流控反馈(子节点向第一节点反馈的逐跳流控反馈)。例如作为情况3的一个变形3a,IAB donor针对所有上行的BH RLC CH粒度的流控反馈配置定时器T-routing back的时长,T-routing back#2-UL-2,对所有下行的BH RLC CH粒度的流控反馈配置时长T-routing back#2-DL-2。例如作为情况4的一个变形4a,IAB donor针对所有上行的流控反馈配置定时器T-routing back的时长,T-routing back-UL,对所有下行的BH RLC CH粒度的流控反馈配置时长T-routing back-DL。
类似的,上述实施例中的对于第一节点在基于流控反馈信息判断第二节点是否可用所涉及的T1,S1,J1,U1以及RTH4的配置方式以及获取方式和方法700中步骤S702中阈值TH#1的获取方式和配置方式类似,此处不再赘述。
本申请中,可选的,阈值TH#6可以大于等于阈值TH#2。如设置阈值TH#6大于阈值TH#2,可以减少第一节点对第二节点判断频繁转换情况的发生,节省资源。
在一种可能的实现方式中,第一节点收到第二节点的第五指示信息,该第五指示信息表明第二节点和下一跳节点之间链路恢复成功链路恢复成功,或者;第一节点接收到第二节点的第六指示信息,该第六指示信息表明对于需要映射到BH RLC CH#1的数据包而言第二节点可用。则第一节点可以确定第二节点可用,或者第二节点与第一节点之间的链路可用,或者对于需要映射到BH RLC CH#1的数据包而言第二节点可用。第一节点可以在执行路由选择的时候,将这些数据包重新路由至第二节点,即取消对这些数据包的重路由,继续向第二节点发送该数据包。
也就是说,本申请可以针对第二节点的反馈信息,灵活确定是否需要该数据包重路由,以及重路由后还可以继续检测第二节点的缓存状态,从而保障在主路径的拥塞缓解后可以尽快使用主路径传输数据包。
根据本申请提供的通信方法,第一节点可以基于收到的流控反馈信息,在链路遇到拥塞的情况下,对执行重路由,一方面可以缓解链路拥塞,另一方面还可以减小数据包的平均传输时延,提升用户体验。
以上,结合图7和图8详细说明了本申请实施例提供的通信方法。下面结合图9和图10介绍本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图9是本申请实施例提供的通信装置100的示意性框图。如图所示,该装置100可以包括:收发单元110和处理单元120。
该通信装置100可以是上文方法实施例中的第一节点,也可以是用于实现上文方法实施例中第一节点的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法700、方法800中的第一节点,该装置100可以执行本申请实施例的方方法700、方法800中的第一节点所对应的步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在一种可能的设计中,所述收发单元用于接收第一信息,所述第一信息包括第二节点的第一缓存空间中可用空间的大小,所述第一缓存空间用于缓存需要通过第一路径传输的数据包,所述第一路径为用于传输所述数据包的主路径,所述第二节点为所述主路径上的第一节点的下一跳节点;所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包,所述第三节点为用于传输所述数据包的的备用路径上的第一节点的下一跳节点。
在一种可能的实现方式中,所述处理单元用于确定所述第一缓存空间中可用空间的大小大于所述第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述收发单元用于在第一时长内接收N个第一信息,所述N个第一信息包括N个第一缓存空间中可用空间的大小;所述处理单元用于确定所述N个第一缓存空间中可用空间的大小中有X个小于或等于所述第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包;其中,所述N为大于1的整数,所述X小于或等于所述N。
在一种可能的实现方式中,所述收发单元用于接收第二信息,所述第二信息包括所述第二节点的第二缓存空间中可用空间的大小,所述第二缓存空间用于缓存需要映射在第一 链路上的第一无线链路控制信道的数据包,所述第一链路为所述第一节点和所述第二节点之间的链路;所述处理单元用于根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述处理单元用于根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,和/或,所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述处理单元用于根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:所述处理单元用于确定所述收发单元在第一时长内接收的所述第一缓存空间中可用空间的大小小于或等于第一阈值,和/或,所述收发单元在第二时长内接收的所述第二缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:所述处理单元用于确定所述收发单元在接收第一信息之前的第三时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述处理单元用于确定通过第三节点传输需要通过第一路径传输的数据包;或者,所述处理单元用于确定所述收发单元在接收第一信息之后的第四时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过第三节点传输需要通过第一路径传输的数据包,包括:所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,且所述第三节点可用于传输所述需要通过第一路径传输的数据包,所述处理单元用于确定通过所述第三节点传输所述需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述处理单元用于确定所述第三节点可用于传输需要通过第一路径传输的所述数据包,包括:所述收发单元用于接收第三信息,所述第三信息包括所述第三节点的至少一个缓存空间中可用空间的大小,所述至少一个缓存空间与所述至少一个备用路径一一对应,所述至少一个备用路径和所述第一路径的目的节点相同;所述处理单元用于确定所述至少一个缓存空间中可用空间的大小之和大于第三阈值,所述处理单元用于确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述处理单元用于确定所述第三节点可用于传输需要通过第一路径传输的所述数据包,包括:所述收发单元用于接收第四信息,所述第四信息包括所述第三节点的第四缓存空间中可用空间的大小,所述第四缓存空间用于缓存需要映射在第二链路上的第一无线链路控制信道的数据包,所述第二链路为所述第一节点和所述第三节点之间的链路;所述处理单元用于确定所述第四缓存空间中可用空间的大小大于第四阈 值,所述处理单元用于确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述处理单元用于确定所述第三节点可用于传输所述数据包,包括:所述收发单元接收第四信息,所述第四信息包括所述第三节点的至少一个缓存空间的中可用空间的大小,所述至少一个缓存空间用于缓存需要映射在第二链路上至少一个无线链路控制信道的数据包,所述至少一个缓存空间与所述至少一个无线链路控制信道一一对应,所述第二链路为所述第一节点和所述第三节点之间的链路;所述处理单元用于确定所述至少一个缓存空间中可用空间的大小之和大于第四阈值,所述处理单元用于确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述收发单元用于接收第五信息,所述第五信息包括所述第二节点的第一缓存空间中可用空间的大小,所述处理单元用于确定所述第一缓存空间中可用空间的大小大于第五阈值,所述处理单元用于确定所述第二节点可用于传输需要通过第一路径传输的数据包。
在一种可能的实现方式中,所述收发单元用于接收第五信息,包括:所述收发单元用于在第五时长内接收Y个第五信息,所述Y个第五信息包括Y个第一缓存空间中可用空间的大小;所述处理单元用于确定所述Y个第一缓存空间中可用空间的大小均大于第五阈值,所述处理单元用于确定所述第二节点可用于传输所述需要通过第一路径传输的数据包。其中,所述Y为大于1的整数。
在一种可能的设计中,所述收发单元用于接收第二信息,所述第二信息包括所述第二节点的第二缓存空间中可用空间的大小,所述第二缓存空间用于缓存需要映射在第一链路上的第一无线链路控制信道的数据包,所述第一链路为所述第一节点和所述第二节点之间的链路;所述处理单元用于确定所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述处理单元用于确定通过所述第三节点传输第一数据包数据包,其中,所述第一数据包为需要映射在所述第一链路上的第一无线链路控制信道的数据包,所述第一数据包的主路径为第一路径,所述第二节点为所述第一路径上的第一节点的下一跳节点,所述第三节点为用于传输所述第一数据包的第二路径上的第一节点的下一跳节点,所述第二路径为第一数据包的备用路径,所述第一节点和所述第三节点之间的链路为第二链路,所述第一路径和所述第二路径具有相同的目的节点。
在一种可能的实现方式中,所述处理单元用于确定所述第二缓存空间中可用空间的大小大于所述第二阈值,所述处理单元用于确定通过所述第二节点传输所述第一数据包。
在一种可能的实现方式中,所述收发单元用于接收第二信息,包括:所述收发单元用于在第二时长内接收K个第二信息,所述K个第二信息包括K个第二缓存空间中可用空间的大小;所述处理单元用于确定所述K个第二缓存空间中可用空间的大小中有L个小于或等于所述第二阈值时,所述所述处理单元用于确定通过所述第三节点传输所述第一数据包,所述K为大于1的整数,所述L小于或等于所述K。
在一种可能的实现方式中,所述收发单元用于接收第一信息,所述第一信息包括所述第二节点的第一缓存空间中可用空间的大小,所述第一缓存空间用于缓存需要通过第一路径传输的数据包,所述第一路径为用于传输所述数据包的主路径;所述处理单元用于根据所述第二缓存空间中可用空间的大小和所述第一缓存空间中可用空间的大小,确定通过所述第三节点传输需要映射在所述第一数据包,所述第三节点为用于传输所述数据包的备用 路径上的第一节点的下一跳节点。
在一种可能的实现方式中,所述处理单元用于根据所述第二缓存空间中可用空间的大小和所述第一缓存空间中可用空间的大小,确定通过所述第三节点传输所述第一数据包,包括:所述处理单元用于确定所述第二缓存空间中可用空间的大小小于或等于第二阈值,和/或,所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过所述第三节点传输所述第一数据包。
在一种可能的实现方式中,所述处理单元用于根据所述第二缓存空间中可用空间的大小和所述第一缓存空间中可用空间的大小,所述处理单元用于确定通过所述第三节点传输所述第一数据包,包括:所述处理单元用于确定所述收发单元在第二时长内接收的所述第二缓存空间中可用空间的大小小于或等于第二阈值,和/或,所述收发单元在第一时长内接收的所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过所述第三节点传输所述第一数据包。
在一种可能的实现方式中,所述处理单元用于确定所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述处理单元用于确定通过所述第三节点传输需要通过所述第三节点传输所述第一数据包,包括:所述处理单元用于确定所述收发单元在接收第二信息之前的第三时长内,向所述第二节点发送过数据量大小等于所述第二缓存空间中可用空间的大小的第一类型数据包,其中第一类型数据包为第一节点映射在第一链路上的第一无线链路控制信道上向第一节点发送的数据包,所述处理单元用于确定通过所述第三节点传输所述第一数据包;或者,所述处理单元用于确定所述收发单元在接收第二信息之后的第四时长内,向所述第二节点发送过数据量大小等于所述第二缓存空间中可用空间的大小的所述第一类型的数据包,所述处理单元用于确定通过所述第三节点传输所述第一数据包。
在一种可能的实现方式中,所述处理单元用于确定所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述处理单元用于确定通过所述第三节点传输所述第一数据包,包括:所述处理单元用于所述第二缓存空间中可用空间的大小小于或等于第二阈值,且确定第三节点可用于传输所述第一数据包,所述处理单元用于确定通过所述第三节点传输所述第一数据包。
在一种可能的实现方式中,所述处理单元用于确定通过所述第三节点传输所述第一数据包,包括:所述收发单元用于接收第四信息,所述第四信息包括所述第三节点的至少一个缓存空间的中可用空间的大小,所述至少一个缓存空间用于缓存被映射在第二链路上至少一个无线链路控制信道上向第三节点发送的数据包,所述至少一个缓存空间与所述至少一个无线链路控制信道一一对应,所述第二链路为所述第一节点和所述第三节点之间的链路;所述处理单元用于确定所述至少一个缓存空间中可用空间的大小之和大于第四阈值,所述处理单元用于确定通过所述第三节点可用于传输所述第一数据包。
在一种可能的实现方式中,所述处理单元用于确定通过所述第三节点传输所述第一数据包,包括:所述收发单元用于接收第四信息,所述第四信息包括所述第三节点的第四缓存空间中可用空间的大小,所述第四缓存空间用于缓存被映射在第二链路上的第二无线链路控制信道向第三节点发送的数据包,所述第二链路为所述第一节点和所述第三节点之间的链路;所述处理单元用于确定所述第四缓存空间中可用空间的大小大于第四阈值,所述第一节点确定通过所述第三节点传输所述第一数据包。
在一种可能的实现方式中,所述处理单元用于确定通过所述第三节点传输所述第一数据包,包括:所述收发单元用于接收第三信息,所述第三信息包括所述第三节点的至少一个缓存空间中可用空间的大小,所述至少一个缓存空间与所述至少一个备用路径一一对应,所述至少一个备用路径和所述第一路径的目的节点相同;所述处理单元用于确定所述至少一个缓存空间中可用空间的大小之和大于第三阈值,所述处理单元用于确定通过所述第三节点传输所述第一数据包。
在一种可能的实现方式中,所述收发单元用于接收第五信息,所述第五信息包括所述第二节点的第二缓存空间中可用空间的大小,所述处理单元用于确定所述第二缓存空间中可用空间的大小大于第五阈值,所述处理单元用于确定所述第二节点可用于传输需要映射在所述第一链路上的第一无线链路控制信道的数据包。
在一种可能的实现方式中,所述收发单元用于接收接收第五信息,包括:所述收发单元用于在第五时长内接收P个第五信息,所述P个第五信息包括P个第二缓存空间中可用空间的大小;所述处理单元用于确定所述P个第二缓存空间中可用空间的大小均大于第五阈值时,所述处理单元用于确定通过所述第三节点传输需要映射在所述第一链路上的第一无线链路控制信道的数据包;其中,所述P为大于1的整数。
图10是本申请实施例提供的通信装置200的示意性框图。如图所示,该装置200包括:至少一个处理器220。该处理器220与存储器耦合,用于执行存储器中存储的指令,以发送信号和/或接收信号。可选地,该装置200还包括存储器230,用于存储指令。可选的,该装置200还包括收发器210,处理器220控制收发器210发送信号和/或接收信号。
应理解,上述处理器220和存储器230可以合成一个处理装置,处理器220用于执行存储器230中存储的程序代码来实现上述功能。具体实现时,该存储器230也可以集成在处理器220中,或者独立于处理器220。
还应理解,收发器210可以包括收发器(或者称,接收机)和发射器(或者称,发射机)。收发器还可以进一步包括天线,天线的数量可以为一个或多个。收发器210有可以是通信接口或者接口电路。
具体的,该装置200中的收发器210可以对应于装置100中的收发单元110,该装置200中的处理器220可对应于装置200中的处理单元120。
应理解,各收发器处理器执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶 体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch-link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram-bus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法700、方法800实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行方法700、方法800实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的装置或设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络侧设备与终端设备和方法实施例中的网络侧设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种通信方法,其特征在于,包括:
    第一节点从第二节点接收第一信息,所述第一信息包括所述第二节点的第一缓存空间中可用空间的大小,所述第一缓存空间用于缓存需要通过第一路径传输的数据包,所述第一路径为用于传输所述数据包的主路径,所述第二节点为所述主路径上的第一节点的下一跳节点;
    如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过第三节点传输需要通过第一路径传输的数据包,所述第三节点为用于传输所述数据包的备用路径上的第一节点的下一跳节点。
  2. 根据权利要求1所述的方法,其特征在于,
    如果所述第一缓存空间中可用空间的大小大于所述第一阈值,所述第一节点确定通过所述第二节点传输需要通过第一路径传输的数据包。
  3. 根据权利要求1或2任一项所述的方法,其特征在于,所述第一节点从第二节点接收第一信息,包括:
    所述第一节点在第一时长内从第二节点接收N个第一信息,所述N个第一信息包括N个第一缓存空间中可用空间的大小;
    如果所述N个第一缓存空间中可用空间的大小中有X个小于或等于所述第一阈值时,所述第一节点确定通过所述第三节点传输需要通过第一路径传输的数据包;
    其中,所述N为大于1的整数,所述X小于或等于所述N。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点从所述第二节点接收第二信息,所述第二信息包括所述第二节点的第二缓存空间中可用空间的大小,所述第二缓存空间用于缓存需要映射在第一链路上的第一无线链路控制信道的数据包,所述第一链路为所述第一节点和所述第二节点之间的链路;
    所述第一节点根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包。
  5. 根据权利要求4所述的方法,其特征在于,所述第一节点根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:
    如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,和/或,所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述第一节点确定通过所述第三节点传输需要通过第一路径传输的数据包。
  6. 根据权利要求4所述的方法,其特征在于,所述第一节点根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:
    如果所述第一节点在第一时长内接收的所述第一缓存空间中可用空间的大小小于或等于第一阈值,和/或,所述第一节点在第二时长内接收的所述第二缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过所述第三节点传输需要通过第一路径 传输的数据包。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:
    如果所述第一节点确定在接收第一信息之前的第三时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述第一节点确定通过所述第三节点传输需要通过第一路径传输的数据包;或者,
    如果所述第一节点确定在接收第一信息之后的第四时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述第一节点确定通过所述第三节点传输需要通过第一路径传输的数据包。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述第一节点确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:
    如果所述第一缓存空间中可用空间的大小小于或等于第一阈值,且所述第一节点确定所述第三节点可用于传输所述需要通过第一路径传输的数据包,所述第一节点确定通过所述第三节点传输所述需要通过第一路径传输的数据包。
  9. 根据权利要求8所述的方法,其特征在于,所述第一节点确定所述第三节点可用于传输需要通过第一路径传输的所述数据包,包括:
    所述第一节点从所述第三节点接收第三信息,所述第三信息包括所述第三节点的至少一个缓存空间中可用空间的大小,所述至少一个缓存空间与所述至少一个备用路径一一对应,所述至少一个备用路径和所述第一路径的目的节点相同;
    如果所述至少一个缓存空间中可用空间的大小之和大于第三阈值,所述第一节点确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一节点确定所述第三节点可用于传输需要通过第一路径传输的所述数据包,包括:
    所述第一节点从第三节点接收第四信息,所述第四信息包括所述第三节点的第四缓存空间中可用空间的大小,所述第四缓存空间用于缓存需要映射在第二链路上的第一无线链路控制信道的数据包,所述第二链路为所述第一节点和所述第三节点之间的链路;
    如果所述第四缓存空间中可用空间的大小大于第四阈值,所述第一节点确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第一节点确定所述第三节点可用于传输所述数据包,包括:
    所述第一节点从第三节点接收第四信息,所述第四信息包括所述第三节点的至少一个缓存空间的中可用空间的大小,所述至少一个缓存空间用于缓存需要映射在第二链路上至少一个无线链路控制信道的数据包,所述至少一个缓存空间与所述至少一个无线链路控制信道一一对应,所述第二链路为所述第一节点和所述第三节点之间的链路;
    如果所述至少一个缓存空间中可用空间的大小之和大于第四阈值,所述第一节点确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一节点从所述 第二节点接收第五信息,所述第五信息包括所述第二节点的第一缓存空间中可用空间的大小,
    如果所述第一缓存空间中可用空间的大小大于第五阈值,所述第一节点确定所述第二节点可用于传输需要通过第一路径传输的数据包。
  13. 根据权利要求12所述的方法,其特征在于,所述第一节点从所述第二节点接收第五信息,包括:
    所述第一节点在第五时长内从第二节点接收Y个第五信息,所述Y个第五信息包括Y个第一缓存空间中可用空间的大小;
    如果所述Y个第一缓存空间中可用空间的大小均大于第五阈值,所述第一节点确定所述第二节点可用于传输所述需要通过第一路径传输的数据包;
    其中,所述Y为大于1的整数。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,
    所述第一阈值为所述第一节点的宿主节点配置的,或者所述第一阈值为所述第一节点的宿主节点通过指示信息指示的,或者所述第一阈值预配置给第一节点。
  15. 根据权利要求14所述的方法,其特征在于,
    当所述第一节点是接入回传一体化宿主分布式单元时,所述第一节点的宿主节点是接入回传一体化宿主集中式单元;当所述第一节点是接入回传一体化节点时,所述第一节点的宿主节点是接入回传一体化宿主或者接入回传一体化宿主集中式单元。
  16. 根据权利要求3至13中任一项所述的方法,其特征在于,
    所述第一时长为所述第一节点的宿主节点配置的,或者所述第一时长为所述第一节点的宿主节点通过指示信息指示的,或者所述第一时长预配置给第一节点。
  17. 一种通信装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于接收第一信息,所述第一信息包括第二节点的第一缓存空间中可用空间的大小,所述第一缓存空间用于缓存需要通过第一路径传输的数据包,所述第一路径为用于传输所述数据包的主路径,所述第二节点为所述主路径上的第一节点的下一跳节点;
    所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包,所述第三节点为用于传输所述数据包的的备用路径上的第一节点的下一跳节点。
  18. 根据权利要求17所述的装置,其特征在于,
    所述处理单元用于确定所述第一缓存空间中可用空间的大小大于所述第一阈值,所述处理单元用于确定通过所述第二节点传输需要通过第一路径传输的数据包。
  19. 根据权利要求17或18任一项所述的装置,其特征在于,
    所述收发单元用于在第一时长内接收N个第一信息,所述N个第一信息包括N个第一缓存空间中可用空间的大小;
    所述处理单元用于确定所述N个第一缓存空间中可用空间的大小中有X个小于或等于所述第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包;
    其中,所述N为大于1的整数,所述X小于或等于所述N。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,
    所述收发单元用于接收第二信息,所述第二信息包括所述第二节点的第二缓存空间中可用空间的大小,所述第二缓存空间用于缓存需要映射在第一链路上的第一无线链路控制信道的数据包,所述第一链路为所述第一节点和所述第二节点之间的链路;
    所述处理单元用于根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元用于根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:
    所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,和/或,所述第二缓存空间中可用空间的大小小于或等于第二阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包。
  22. 根据权利要求20所述的装置,其特征在于,所述处理单元用于根据所述第一缓存空间中可用空间的大小和所述第二缓存空间中可用空间的大小,确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:
    所述处理单元用于确定所述收发单元在第一时长内接收的所述第一缓存空间中可用空间的大小小于或等于第一阈值,和/或,所述收发单元在第二时长内接收的所述第二缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包。
  23. 根据权利要求17至22中任一项所述的装置,其特征在于,所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包,包括:
    所述处理单元用于确定所述收发单元在接收第一信息之前的第三时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述处理单元用于确定通过第三节点传输需要通过第一路径传输的数据包;或者,
    所述处理单元用于确定所述收发单元在接收第一信息之后的第四时长内,向所述第二节点发送过数据量大小等于所述第一缓存空间中可用空间的大小的需要通过第一路径传输的数据包,所述处理单元用于确定通过所述第三节点传输需要通过第一路径传输的数据包。
  24. 根据权利要求17至22中任一项所述的装置,其特征在于,所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,所述处理单元用于确定通过第三节点传输需要通过第一路径传输的数据包,包括:
    所述处理单元用于确定所述第一缓存空间中可用空间的大小小于或等于第一阈值,且所述第三节点可用于传输所述需要通过第一路径传输的数据包,所述处理单元用于确定通过所述第三节点传输所述需要通过第一路径传输的数据包。
  25. 根据权利要求24所述的装置,其特征在于,所述处理单元用于确定所述第三节点可用于传输需要通过第一路径传输的所述数据包,包括:
    所述收发单元用于接收第三信息,所述第三信息包括所述第三节点的至少一个缓存空间中可用空间的大小,所述至少一个缓存空间与所述至少一个备用路径一一对应,所述至 少一个备用路径和所述第一路径的目的节点相同;
    所述处理单元用于确定所述至少一个缓存空间中可用空间的大小之和大于第三阈值,所述处理单元用于确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
  26. 根据权利要求24或25所述的装置,其特征在于,所述处理单元用于确定所述第三节点可用于传输需要通过第一路径传输的所述数据包,包括:
    所述收发单元用于接收第四信息,所述第四信息包括所述第三节点的第四缓存空间中可用空间的大小,所述第四缓存空间用于缓存需要映射在第二链路上的第一无线链路控制信道的数据包,所述第二链路为所述第一节点和所述第三节点之间的链路;
    所述处理单元用于确定所述第四缓存空间中可用空间的大小大于第四阈值,所述处理单元用于确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
  27. 根据权利要求24或25所述的装置,其特征在于,所述处理单元用于确定所述第三节点可用于传输所述数据包,包括:
    所述收发单元接收第四信息,所述第四信息包括所述第三节点的至少一个缓存空间的中可用空间的大小,所述至少一个缓存空间用于缓存需要映射在第二链路上至少一个无线链路控制信道的数据包,所述至少一个缓存空间与所述至少一个无线链路控制信道一一对应,所述第二链路为所述第一节点和所述第三节点之间的链路;
    所述处理单元用于确定所述至少一个缓存空间中可用空间的大小之和大于第四阈值,所述处理单元用于确定所述第三节点可用于传输所述需要通过第一路径传输的数据包。
  28. 根据权利要求17至27中任一项所述的装置,其特征在于,所述收发单元用于接收第五信息,所述第五信息包括所述第二节点的第一缓存空间中可用空间的大小,
    所述处理单元用于确定所述第一缓存空间中可用空间的大小大于第五阈值,所述处理单元用于确定所述第二节点可用于传输需要通过第一路径传输的数据包。
  29. 根据权利要求28所述的装置,其特征在于,所述收发单元用于接收第五信息,包括:
    所述收发单元用于在第五时长内接收Y个第五信息,所述Y个第五信息包括Y个第一缓存空间中可用空间的大小;
    所述处理单元用于确定所述Y个第一缓存空间中可用空间的大小均大于第五阈值,所述处理单元用于确定所述第二节点可用于传输所述需要通过第一路径传输的数据包;
    其中,所述Y为大于1的整数。
  30. 根据权利要求17至29中任一项所述的装置,其特征在于,
    所述第一阈值为所述第一节点的宿主节点配置的,或者所述第一阈值为所述第一节点的宿主节点通过指示信息指示的,或者所述第一阈值预配置给所述装置。
  31. 根据权利要求30所述的装置,其特征在于,
    当所述第一节点是接入回传一体化宿主分布式单元时,所述第一节点的宿主节点是接入回传一体化宿主集中式单元;当所述第一节点是接入回传一体化节点时,所述第一节点的宿主节点是接入回传一体化宿主或者接入回传一体化宿主集中式单元。
  32. 根据权利要求20至29中任一项所述的装置,其特征在于,
    所述第一时长为所述第一节点的宿主节点配置的,或者所述第一时长为所述第一节点的宿主节点通过指示信息指示的,或者所述第一时长预配置给所述装置。
  33. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述通信装置实现如权利要求1至16中任一项所述的方法。
  34. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至16中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至16中任一项所述的方法。
PCT/CN2022/083664 2021-05-11 2022-03-29 通信方法和装置 WO2022237357A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22806327.7A EP4325798A4 (en) 2021-05-11 2022-03-29 COMMUNICATION METHOD AND APPARATUS
US18/506,590 US20240080262A1 (en) 2021-05-11 2023-11-10 Communication method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110512937 2021-05-11
CN202110512937.7 2021-05-11
CN202110523511.1A CN115412498A (zh) 2021-05-11 2021-05-13 通信方法和装置
CN202110523511.1 2021-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/506,590 Continuation US20240080262A1 (en) 2021-05-11 2023-11-10 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022237357A1 true WO2022237357A1 (zh) 2022-11-17

Family

ID=84029370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083664 WO2022237357A1 (zh) 2021-05-11 2022-03-29 通信方法和装置

Country Status (3)

Country Link
US (1) US20240080262A1 (zh)
EP (1) EP4325798A4 (zh)
WO (1) WO2022237357A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636583A (zh) * 2018-06-21 2019-12-31 华为技术有限公司 路径变更方法及装置
CN111050353A (zh) * 2018-10-11 2020-04-21 华为技术有限公司 用于无线回传网络的数据传输方法和装置
WO2021066547A1 (en) * 2019-10-03 2021-04-08 Samsung Electronics Co., Ltd. Method and apparatus for flow control in a wireless communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020032127A1 (ja) * 2018-08-08 2021-05-20 京セラ株式会社 中継装置
WO2020223919A1 (en) * 2019-05-08 2020-11-12 Lenovo (Beijing) Limited Method and apparatus for radio link flow control
CN110581778A (zh) * 2019-08-13 2019-12-17 中兴通讯股份有限公司 一种路由方法、bsr的生成方法、装置和存储介质
CN113905418B (zh) * 2020-06-22 2024-06-21 大唐移动通信设备有限公司 一种流量控制方法及设备
KR20230069987A (ko) * 2020-10-21 2023-05-19 후지쯔 가부시끼가이샤 라우팅 방법, 장치 및 시스템
WO2022086429A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Rerouting of ul/dl traffic in an iab network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636583A (zh) * 2018-06-21 2019-12-31 华为技术有限公司 路径变更方法及装置
CN111050353A (zh) * 2018-10-11 2020-04-21 华为技术有限公司 用于无线回传网络的数据传输方法和装置
WO2021066547A1 (en) * 2019-10-03 2021-04-08 Samsung Electronics Co., Ltd. Method and apparatus for flow control in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Some considerations about congestion handling and flow control for IAB networks", 3GPP DRAFT; R2-1812711 SOME CONSIDERATIONS ABOUT CONGESTION HANDLING AND FLOW CONTROL FOR IAB NETWORKS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051522305 *
See also references of EP4325798A4

Also Published As

Publication number Publication date
EP4325798A1 (en) 2024-02-21
EP4325798A4 (en) 2024-10-09
US20240080262A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US20210377787A1 (en) Downlink buffer status feedback method and apparatus
EP4221324A1 (en) Communication method and related device
US20240073971A1 (en) Iab node connection update method and apparatus
US20230180327A1 (en) Communication control method
US11452026B2 (en) Method and device for transmitting data by means of wireless backhaul network
US20240073736A1 (en) Communication control method
US20240032129A1 (en) Communication control method
WO2022082602A1 (en) Method and apparatus for packet rerouting
US20230328607A1 (en) Communication control method
US20230328629A1 (en) Communication control method
WO2021026936A1 (zh) 一种处理回传链路发生链路失败的方法及装置
WO2023011621A1 (zh) 一种通信方法及通信装置
WO2022237357A1 (zh) 通信方法和装置
CN115412498A (zh) 通信方法和装置
WO2021159238A1 (zh) 一种数据处理方法、通信装置和通信系统
WO2023131091A1 (zh) 通信方法和装置
EP4213536A1 (en) Communication method and related device
US20230354139A1 (en) Communication control method
US20240267780A1 (en) Communication control method and relay node
WO2023131094A1 (zh) 通信方法及通信装置
US20240179543A1 (en) Communication control method
US20230345346A1 (en) Communication control method
WO2024093508A1 (zh) 一种通信方法及装置
KR20240004357A (ko) 무선 통신을 위한 방법 및 장치
WO2022083865A1 (en) Method, apparatus and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202327076326

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022806327

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022806327

Country of ref document: EP

Effective date: 20231114

NENP Non-entry into the national phase

Ref country code: DE