WO2024093508A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024093508A1
WO2024093508A1 PCT/CN2023/117001 CN2023117001W WO2024093508A1 WO 2024093508 A1 WO2024093508 A1 WO 2024093508A1 CN 2023117001 W CN2023117001 W CN 2023117001W WO 2024093508 A1 WO2024093508 A1 WO 2024093508A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab node
node
random access
iab
measurement result
Prior art date
Application number
PCT/CN2023/117001
Other languages
English (en)
French (fr)
Inventor
祝慧颖
董朋朋
朱元萍
朱世超
吴方舟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093508A1 publication Critical patent/WO2024093508A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a communication method and device.
  • the integrated access backhaul (IAB) system includes terminal devices, IAB nodes and donor nodes.
  • IAB nodes can provide wireless access services for terminal devices and connect to donor nodes through backhaul links to transmit user business data.
  • Including IAB nodes in the IAB system enables terminal devices to communicate with donor nodes through IAB nodes, which is conducive to improving network capacity.
  • the terminal device When the backhaul link between the IAB node and the parent node of the IAB node (also called the upstream IAB node of the IAB node) is abnormal, the terminal device may not be able to successfully receive downlink data from the host node or send uplink data to the host node. Therefore, the communication reliability of the IAB system is low.
  • the embodiments of the present application provide a communication method and apparatus for improving the reliability of IAB system communication.
  • an embodiment of the present application provides a communication method, which can be executed by a first IAB node, or can be executed by a module (such as a chip) having the function of the first IAB node.
  • the method includes: receiving first information, the first information includes a first random access resource; on the first random access resource, the mobile terminal MT of the first IAB node sends a first random access request to the second IAB node, wherein the first random access request is used for the MT of the first IAB node to request access to the distributed unit DU of the second IAB node, and the second IAB node is a child node of the first IAB node.
  • a connection can be established between the MT of the first IAB node and the DU of the second IAB node, which is equivalent to increasing the communication link between the first IAB node and the second IAB node.
  • the MT of the first IAB node can transmit data through the connection established with the DU of the second IAB node. Therefore, the first IAB node does not need to frequently reselect or switch cells, which reduces or even avoids service interruption or data packet loss and switching signaling process overhead, improves the robustness of service transmission, and is conducive to improving the reliability of IAB system communication.
  • the MT of the first IAB node can forward the data to be sent to the parent node of the first IAB node through the DU of the second IAB node. In this way, data loss can be reduced or avoided, thereby improving the communication reliability of the IAB system.
  • the method before the mobile terminal MT of the first IAB node sends a first random access request to the second IAB node on the first random access resource, the method further includes: receiving a second random access request from the second IAB node on the second random access resource, the second random access request being used for the MT of the second IAB node to request access to the DU of the first IAB node, and the time domain resources included in the second random access resource are different from the time domain resources included in the first random access resource.
  • the time domain resources included in the second random access resource being different from the time domain resources included in the first random access resource may include that the time domain resources included in the second random access resource do not completely overlap with the time domain resources included in the first random access resource, or do not overlap at all.
  • the MT of the second IAB node may also initiate a random access process to the DU of the first IAB node, so that there are two available communication links between the first IAB node and the second IAB node, which is also conducive to improving the communication reliability of the IAB system.
  • the first random access resource is different from the second random access resource, this avoids the conflict between the two random access processes (i.e., the random access process corresponding to the first random access request and the random access process corresponding to the second random access request), which is conducive to improving the success rate of the two random access processes.
  • the method further includes: determining that the communication quality between the first IAB node and the second IAB node meets a first condition; and/or determining that the communication quality between the first IAB node and a third IAB node meets a second condition, the third IAB node being the parent node of the first IAB node.
  • the first IAB node may initiate a random access process to the DU of the second IAB node when it is determined that the communication quality between the first IAB node and the second IAB node meets certain conditions (such as relatively good), which is conducive to improving the success rate of random access between the MT of the first IAB node and the DU of the second IAB node, and to a certain extent, ensures that the communication quality of the communication link established between the MT of the first IAB node and the DU of the second IAB node is good.
  • certain conditions such as relatively good
  • the first IAB node may also initiate a random access process to the DU of the second IAB node when it is determined that the communication quality between the third IAB node and the first IAB node meets certain conditions (such as relatively poor), which is not only conducive to improving the communication reliability of the IAB system, but also makes it more likely that the communication link established between the MT of the first IAB node and the DU of the second IAB node is used to forward data, which is also conducive to improving the resource utilization of the IAB system.
  • certain conditions such as relatively poor
  • the first condition includes: a first measurement result is greater than or equal to a first threshold, the first measurement result indicates the communication quality of the communication link from the second IAB node to the first IAB node, and the first measurement result is the measurement result of the first IAB node; and/or a second measurement result is greater than or equal to a second threshold, the second measurement result indicates the communication quality of the communication link from the first IAB node to the second IAB node, and the second measurement result is the measurement result of the second IAB node.
  • the above first conditions all indicate that the communication quality between the first IAB node and the second IAB node is relatively good, which is conducive to improving the success rate of establishing random access between the first IAB node and the second IAB node, and to a certain extent, guarantees the reliability of the communication link between the MT of the first IAB node and the DU of the second IAB node.
  • the second condition includes: a third measurement result is less than or equal to a third threshold, the third measurement result indicates the communication quality of the communication link from the third IAB node to the first IAB node, and the third measurement result is the measurement result of the first IAB node; and/or, a fourth measurement result is less than or equal to a fourth threshold, the fourth measurement result indicates the communication quality of the communication link from the first IAB node to the third IAB node, and the fourth measurement result is the measurement result of the third IAB node; and/or, a beam failure or a communication link failure between the first IAB node and the third IAB node.
  • the above second conditions all indicate that the communication quality between the first IAB node and the third IAB node is relatively poor, which makes the communication link between the MT of the first IAB node and the DU of the second IAB node improve the communication reliability of the IAB system, and makes the communication link between the MT of the first IAB node and the DU of the second IAB node more likely to be used, thereby avoiding or reducing the situation where the communication link between the MT of the first IAB node and the DU of the second IAB node is idle, wasting resources of the IAB system.
  • the first information further includes one or more of the first threshold, the second threshold, the third threshold and the fourth threshold.
  • the first information may include multiple information (such as the first random access resource and the threshold), which is conducive to reducing the number of interactions between the first IAB node and other devices (such as the network device or the second IAB node, etc.) in the IAB system.
  • the method before the mobile terminal MT of the first IAB node sends a first random access request to the second IAB node on the first random access resource, the method also includes: receiving first indication information from the second IAB node, the third IAB node or the network device, the first indication information indicating that the MT of the first IAB node initiates random access to the child node of the first IAB node, the third IAB node is the parent node of the first IAB node, and the child nodes of the first IAB node include the second IAB node; or, determining that the DU of the first IAB node and the second IAB node have completed the random access process.
  • the first IAB node receives the first indication information of the second IAB node, the third IAB node or the network device, or the first IAB node determines that the DU of the first IAB node has completed the random access process with the second IAB node, that is, the first IAB node will send the first random access request to the second IAB node only under certain conditions, avoiding the situation where the first IAB node wastes the resources of the IAB system when sending the random access request to the second IAB node when it is not necessary, making the resource utilization of the IAB system more reasonable.
  • the first IAB node determines that the DU of the first IAB node has completed the random access process with the second IAB node, it initiates the random access process to the DU of the second IAB node without the indication of other devices, which is conducive to the first IAB node to initiate the random access process to the DU of the second IAB node more timely, and is conducive to the MT of the first IAB node to establish a connection with the DU of the second IAB node more timely, so as to achieve more timely connection.
  • the method before receiving the first indication information from the second IAB node, the third IAB node or the network device, the method further includes: sending a first measurement result to the second IAB node, the third IAB node or the network device, the first measurement result indicating the communication quality of the communication link between the second IAB node and the first IAB node, the first measurement result being the measurement result of the first IAB node; and/or, sending a third measurement result to the second IAB node, the third IAB node or the network device, the third measurement result indicating the communication quality of the communication link between the third IAB node and the first IAB node, the third measurement result being the measurement result of the first IAB node.
  • the first IAB node may send the first measurement result to other devices (such as the second IAB node, the third IAB node or the network device), so that the other devices can determine whether the communication quality between the first IAB node and the second IAB node meets the first condition.
  • the first IAB node does not need to determine whether the first condition and/or the second condition are met, which is conducive to relatively reducing the processing volume of the first IAB node.
  • other devices can comprehensively consider the network status (such as the congestion of the network) to determine whether the MT of the first IAB node and the second IAB node are connected, which is conducive to improving the overall performance of the IAB system.
  • the network status such as the congestion of the network
  • the first information is received by the first IAB node from a network device or the second IAB node.
  • the first IAB node can receive the first information from the network device, or receive the first information from the second IAB node, enriching the ways for the first IAB node to receive the first information.
  • the first random access resource is determined by the network device or the second IAB node, so that the network device or the second IAB node can more reasonably determine the first random access resource and the second random access resource, etc., which is conducive to avoiding the conflict between the first random access resource and the second random access resource.
  • the first information is carried in configuration information or high-layer signaling of the MT of the first IAB node.
  • the first IAB node receives the first information from the network device, then the first information can be carried in the configuration information or high-level signaling of the MT of the first IAB node, so that the network device can reuse the configuration information or high-level signaling of the MT of the first IAB node to send the first information, thereby reducing the number of interactions between the first IAB node and the network device.
  • the first information is carried in a first message, a third message or a backhaul adaptive protocol control protocol data unit, and the first message and the third message are both messages in which the MT of the second IAB node initiates a random access process to the DU of the first IAB node.
  • the first IAB node receives the first information from the second IAB node, then the first information can be carried in the first message, the third message or the return adaptive protocol control protocol data unit, so that the second IAB node can reuse the first message, the third message or the return adaptive protocol control protocol data unit to send the first information, thereby reducing the number of interactions between the first IAB node and the second IAB node.
  • the first random access resource can be indicated by the first message or the third message, so that the first IAB node can obtain the first random access resource more timely.
  • an embodiment of the present application provides a communication method, which can be executed by a second IAB node, or can be executed by a module (such as a chip) having the function of the second IAB node.
  • the method includes: receiving a first random access request from a first IAB node on a first random access resource, wherein the first random access request is used by an MT of the first IAB node to request access to a DU of the second IAB node.
  • the method before receiving a first random access request from a first IAB node on a first random access resource, the method further includes: sending first information to the first IAB node, the first information including the first random access resource, the second IAB node being a child node of the first IAB node;
  • the method before sending the first information to the first IAB node, the method further includes: receiving second information from a network device or a fourth IAB node, the second information including the first random access resource, and the fourth IAB node is a parent node of the second IAB node.
  • the second IAB node receives second information from a network device or a fourth IAB node, the second information including the first random access resource, and the fourth IAB node is a parent node of the second IAB node.
  • the method before receiving a first random access request from a first IAB node on the first random access resource, the method further includes: receiving third information, the third information including a second random access resource; and receiving a second random access request from the first IAB node on the second random access resource, the time domain resources included in the second random access resource being different from the time domain resources included in the first random access resource.
  • the method before receiving a first random access request from a first IAB node on the first random access resource, the method further includes: sending first indication information to the first IAB node, the first indication information instructing an MT of the first IAB node to initiate random access to the second IAB node.
  • the method before receiving a first random access request from a first IAB node on the first random access resource, the method further includes: determining that the communication quality between the first IAB node and the second IAB node satisfies a first condition; and/or determining that the communication quality between the first IAB node and a third IAB node satisfies a second condition, the third IAB node being a parent node of the first IAB node.
  • the first condition includes: a first measurement result is greater than or equal to a first threshold, the first measurement result indicates the communication quality of the communication link from the second IAB node to the first IAB node, and the first measurement result is the measurement result of the first IAB node; and/or a second measurement result is greater than or equal to a second threshold, the second measurement result indicates the communication quality of the communication link from the first IAB node to the second IAB node, and the second measurement result is the measurement result of the second IAB node.
  • the second condition includes: a third measurement result is less than or equal to a third threshold, the third measurement result indicates the communication quality of the communication link from the third IAB node to the first IAB node, and the third measurement result is the measurement result of the first IAB node; and/or, a fourth measurement result is less than or equal to a fourth threshold, the fourth measurement result indicates the communication quality of the communication link from the first IAB node to the third IAB node, and the fourth measurement result is the measurement result of the third IAB node; and/or, a beam failure or a communication link failure between the first IAB node and the third IAB node.
  • the method before sending the first indication information to the first IAB node, the method also includes: receiving second indication information from a third IAB node or a network device, the second indication information indicating that the DU of the second IAB node establishes a connection with the parent node of the second IAB node, the third IAB node is the parent node of the first IAB node, and the parent node of the second IAB node includes the first IAB node.
  • the first information is carried in a first message, a third message or a backhaul adaptive protocol control protocol data unit, and the first message and the third message are both messages in which the MT of the second IAB node initiates a random access process to the DU of the first IAB node.
  • an embodiment of the present application provides a communication method, which can be executed by a network device, or can be executed by a module (such as a chip) having the function of the network device.
  • a communication method which can be executed by a network device, or can be executed by a module (such as a chip) having the function of the network device.
  • a module such as a chip
  • the method includes: sending first information to a first IAB node, the first information including a first random access resource, the first random access resource is used for the MT of the first IAB node to initiate random access to the DU of the second IAB node, and the second IAB node is a child node of the first IAB node; or, sending second information to a second IAB node, the second information including a first random access resource, the first random access resource is used for the DU of the second IAB node to receive a first random access request from the MT of the first IAB node, and the second IAB node is a child node of the first IAB node.
  • the method further includes: sending first indication information to the first IAB node, the first indication information instructing the MT of the first IAB node to initiate random access to a child node of the first IAB node, the child node of the first IAB node including the second IAB node.
  • the method before sending the first indication information to the first IAB node, the method further includes: determining that the communication quality between the first IAB node and the second IAB node satisfies a first condition; and/or determining that the communication quality between the first IAB node and a third IAB node satisfies a second condition, the third IAB node being the parent node of the first IAB node.
  • the first condition includes: a first measurement result is greater than or equal to a first threshold, the first measurement result indicates the communication quality of the communication link from the second IAB node to the first IAB node, and the first measurement result is the measurement result of the first IAB node; and/or a second measurement result is greater than or equal to a second threshold, the second measurement result indicates the communication quality of the communication link from the first IAB node to the second IAB node, and the second measurement result is the measurement result of the second IAB node.
  • the third measurement result is less than or equal to a third threshold, the third measurement result indicates the communication quality of the communication link from the third IAB node to the first IAB node, and the third measurement result is the measurement result of the first IAB node; and/or, the fourth measurement result is less than or equal to a fourth threshold, the fourth measurement result indicates the communication quality of the communication link from the first IAB node to the third IAB node, and the fourth measurement result is the measurement result of the third IAB node; and/or, the beam fails or the communication link fails between the first IAB node and the third IAB node.
  • the first information is carried in the configuration information or high-level information of the MT of the first IAB node. Order in.
  • an embodiment of the present application provides a communication device, which may be the first IAB node in the above-mentioned first aspect, or an electronic device (for example, a chip system) configured in the first IAB node.
  • the communication device includes corresponding means (means) or modules for executing the above-mentioned first aspect or any possible implementation method.
  • the communication device includes a receiving module (sometimes also referred to as a receiving unit), and a sending module (sometimes also referred to as a sending unit).
  • the receiving module and the sending module may be coupled.
  • the receiving module is used to receive first information, and the first information includes a first random access resource; the sending module is used for the MT of the device to send a first random access request to the second IAB node on the first random access resource, wherein the first random access request is used for the MT of the device to request access to the distributed unit DU of the second IAB node, and the second IAB node is a child node of the device.
  • the communication device further includes a processing module (sometimes also referred to as a processing unit), the processing module, for example, is used to determine whether the communication quality between the first IAB node and the second IAB node meets a first condition; and/or, determine whether the communication quality between the first IAB node and a third IAB node meets a second condition, the third IAB node being the parent node of the first IAB node.
  • the communication device includes a storage module (sometimes also referred to as a storage unit), the storage module being used to store programs or instructions.
  • an embodiment of the present application provides a communication device, which may be the second IAB node in the second aspect above, or an electronic device (e.g., a chip system) configured in the second IAB node.
  • the communication device includes corresponding means or modules for executing the second aspect above or any possible implementation method.
  • the communication device includes a receiving module (sometimes also referred to as a receiving unit).
  • the communication device also includes a sending module (sometimes also referred to as a sending unit) and a processing module (sometimes also referred to as a processing unit).
  • the receiving module and the sending module may be coupled.
  • the receiving module is used to receive a first random access request from a first IAB node on a first random access resource, wherein the first random access request is used for the MT of the first IAB node to request access to the DU of the device.
  • the sending module is used to send first information to the first IAB node, the first information includes a first random access resource, and the device is a child node of the first IAB node.
  • the processing module is used, for example, to determine that the communication quality between the first IAB node and the second IAB node meets a first condition; and/or, to determine that the communication quality between the first IAB node and the third IAB node meets a second condition, and the third IAB node is the parent node of the first IAB node.
  • the communication device includes a storage module (sometimes also referred to as a storage unit), which can be used to store programs or instructions.
  • an embodiment of the present application provides a communication device, which may be a network device in the third aspect above, or a chip system configured with the function of a network device.
  • the communication device includes corresponding means or modules for executing the third aspect above or any possible implementation method.
  • the communication device includes a sending module (sometimes also referred to as a sending unit).
  • the communication device also includes a receiving module (sometimes also referred to as a receiving unit) and a processing module (sometimes also referred to as a processing unit).
  • the receiving module and the sending module may be coupled.
  • a sending module is used to send a first message to a first IAB node, the first message includes a first random access resource, the first random access resource is used for the MT of the first IAB node to initiate a random access to the DU of the second IAB node, and the second IAB node is a child node of the first IAB node; or, a sending module is used to send a second message to a second IAB node, the second message includes a first random access resource, the first random access resource is used for the DU of the second IAB node to receive a first random access request from the MT of the first IAB node, and the second IAB node is a child node of the first IAB node.
  • the processing module is, for example, used to determine whether the communication quality between the first IAB node and the second IAB node meets a first condition; and/or, to determine whether the communication quality between the first IAB node and a third IAB node meets a second condition, wherein the third IAB node is a parent node of the first IAB node.
  • the communication device includes a storage module (sometimes also referred to as a storage unit), which can be used to store programs or instructions.
  • an embodiment of the present application provides a communication system, which includes the communication device described in the fourth aspect or any possible implementation scheme and the communication device described in the fifth aspect or any possible implementation scheme.
  • an embodiment of the present application provides a communication system, which includes the communication device described in the fourth aspect or any possible implementation manner, the communication device described in the fifth aspect or any possible implementation manner, and the communication device described in the sixth aspect or any possible implementation manner.
  • an embodiment of the present application provides a communication device, comprising: a processor and a memory; the memory is used to store one or more computer programs, the one or more computer programs include computer execution instructions, and when the communication device is running, the processor executes the one or more computer programs stored in the memory, so that the communication device performs the first to third aspects.
  • the communication device further comprises other components, such as an antenna, an input/output module, an interface, etc. These components may be hardware, software, or a combination of software and hardware.
  • an embodiment of the present application provides a chip system, the chip system comprising: a processor and an interface.
  • the processor is used to call and run instructions from the interface, and when the processor executes the instructions, the method described in any one of the first to third aspects is implemented.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store computer programs or instructions.
  • the computer-readable storage medium When executed, it implements any one of the methods described in the first to third aspects above.
  • an embodiment of the present application provides a computer program product comprising instructions, which, when executed by a communication device, enables the communication device to execute any one of the methods described in the first to third aspects above.
  • an embodiment of the present application provides a computer program product comprising instructions, which, when executed on a computer, implements any of the methods described in any one of the first to third aspects above.
  • FIG1 is a schematic diagram of a scenario to which an embodiment of the present application is applicable.
  • FIG2 is a schematic diagram of the structure of an IAB system applicable to an embodiment of the present application.
  • FIG3 is a schematic diagram of several protocol stack architectures of an IAB node in an IAB system applicable to an embodiment of the present application;
  • FIG4 is a schematic diagram of a user plane protocol stack architecture of various parts in an IAB system applicable to an embodiment of the present application
  • FIG5 is a schematic diagram of a control plane protocol stack architecture of various parts in an IAB system applicable to an embodiment of the present application
  • FIG6 is a schematic diagram of another scenario to which the embodiment of the present application is applicable.
  • FIG7 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of another IAB system provided in an embodiment of the present application.
  • 9 to 12 are schematic flow diagrams of four communication methods provided in embodiments of the present application.
  • FIG. 13 and FIG. 14 are schematic diagrams of the architecture of two communication devices provided in embodiments of the present application.
  • a terminal device is a device with wireless transceiver functions, which can be a fixed device, a mobile device, a handheld device, a wearable device, a vehicle-mounted device, or a wireless device built into the above device (for example, a communication module or a chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (D2D), vehicle to everything (V2X), machine-to-machine/machine-type communication (M2M/MTC), Internet of Things (IoT), virtual reality (VR), augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • the terminal device may sometimes be referred to as user equipment (UE), terminal, access station, UE station, remote station, wireless communication device, or user device, etc.
  • UE user equipment
  • the various terminals introduced above, if located on a vehicle may be considered as vehicle-mounted terminal devices, which are also referred to as on-board units (OBU).
  • OBU on-board units
  • Network equipment for example, including access network equipment (or access network elements), and/or core network equipment (or core network elements).
  • the access network device is a device with wireless transceiver functions, which is used to communicate with the terminal device.
  • the access network device includes but is not limited to the base station (BTS, Node B, eNodeB/eNB, or gNodeB/gNB) in the above-mentioned communication system, the transceiver point (t(R)ANsmission reception point, TRP), the base station of the subsequent evolution of 3GPP, the access node in the wireless fidelity (wireless fidelity, WiFi) system, the wireless relay node, the wireless backhaul node, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc.
  • the base station can include one or more co-sited or non-co-sited transmission and receiving points.
  • the network device can also be a cloud radio access network (cloud radio access A wireless controller, a centralized unit (CU) in a wireless communication network (C(R)AN) scenario, which may also be referred to as an aggregation unit, and/or a distributed unit (DU).
  • the network device may also be a server, a wearable device, or a vehicle-mounted device.
  • the network device in the vehicle to everything (V2X) technology may be a road side unit (RSU).
  • the multiple network devices in the communication system may be base stations of the same type or different types.
  • the base station may communicate with the terminal device or communicate with the terminal device through a relay station.
  • the terminal device may communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement at least one of the functions of mobility management, data processing, session management, policy and billing.
  • the names of the devices that implement the core network functions in systems with different access technologies may be different, and the embodiments of the present application do not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), PCF or user plane function (UPF), etc.
  • IAB node a wireless access point that provides wireless access services for terminal devices.
  • IAB node includes distributed unit (DU) and mobile terminal (MT).
  • MT can also be understood as a component similar to terminal device in IAB node.
  • DU is relative to the centralized unit (CU) function of network equipment.
  • IAB node including MT and DU can also be described as: IAB node includes MT function and DU function, or IAB node has MT role and DU role.
  • the MT of IAB node can be used for the communication between the IAB node and the parent node of the IAB node, and the DU of IAB node can be used for the communication between the IAB node and the child node of the IAB node.
  • Both MT and DU of IAB node can have complete transceiver modules.
  • MT and DU can be logic modules, and MT and DU of IAB node can share hardware modules of IAB node, for example, they can share transceiver antenna and baseband processing module of IAB node.
  • IAB nodes can be implemented through small stations, customer premises equipment (CPE) or residential gateways (RG).
  • Donor node a wireless access point that provides a core network interface for terminal devices and wireless backhaul functions for IAB nodes.
  • a donor node is a node that accesses the core network and is a network device in a wireless access network.
  • a donor node is a base station, a donor base station, or an anchor base station in an IAB system.
  • a donor node can be used to process data at the packet data convergence protocol (PDCP) layer, receive data from the core network and forward it to the IAB node, receive data from the IAB node and forward it to the core network, etc.
  • PDCP packet data convergence protocol
  • the host node may be, for example, a radio network controller (RNC), a node B (NB), a base station controller (BSC), a base transceiver station (BTS), a home base station (e.g., home evolved NodeB, or home NodeB, HNB) or a baseband unit (BBU), etc. It may also include a next generation node B (gNB) in a new radio (NR) system, etc.
  • the host node may include a centralized unit (CU) and a distributed unit (DU).
  • the host node may also exist in a form in which a user plane (UP) (abbreviated as CU-UP) and a control plane (CP) (abbreviated as CU-CP) are separated, that is, the host node includes a CU-CP and a CU-UP.
  • UP user plane
  • CP control plane
  • a host node may include a CU-CP and at least one CU-UP.
  • the host node is implemented by a gNB, and accordingly, a gNB may include a gNB-CU-CP and at least one gNB-CU-UP.
  • the host node is implemented by a Donor-CU in the IAB system, and accordingly, a Donor-CU may include a Donor-CU-CP and at least one Donor-CU-UP.
  • a Donor-CU may include a Donor-CU-CP and at least one Donor-CU-UP.
  • the host node may be regarded as a special IAB node, and the host node may also be regarded as a network device.
  • a link refers to a path between two adjacent nodes in a transmission path, where a node is, for example, an IAB node.
  • a transmission path may be referred to as a path hereinafter.
  • the previous hop node of a node refers to the last node that receives data before the node in the path that includes the node.
  • the next hop node of a node refers to the first node that receives data in the path that includes the node and after the node.
  • the entry link of a node refers to the link between the node and the previous hop node of the node, which can also be called the previous hop link of the node.
  • the egress link of a node refers to the link between the node and the next-hop node of the node, which can also be called the next-hop link of the node.
  • Access IAB node refers to the IAB node accessed by the terminal device.
  • An intermediate IAB node which is an IAB node that provides wireless backhaul services to other IAB nodes (eg, access IAB nodes or other intermediate IAB nodes).
  • the access IAB node and the intermediate IAB node are relative to a certain terminal device.
  • IAB node 1 may be an access IAB node relative to terminal device 1, but IAB node 1 may be an intermediate node relative to terminal device 2.
  • whether an IAB node is an access IAB node or an intermediate IAB node needs to be determined according to the application scenario.
  • Half duplex constraint means that when the MT of an IAB node is sending, the DU of the IAB node cannot receive. Similarly, when the DU of the IAB node is sending, the MT of the IAB node cannot receive.
  • PRACH Physical random access channel
  • RACH random access channel
  • RACH and RACH may have a mapping relationship.
  • PRACH includes uplink random access channel.
  • FPACH fast physical access channel
  • the IAB node or terminal device may send a radio resource control connection request (RRC Connection Request) message on the PRACH channel according to the instruction of the host node to establish an RRC connection. If there are multiple PRACH channels, the IAB node or terminal device may select a PRACH channel.
  • RRC Connection Request radio resource control connection request
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • the IAB node can provide wireless access services to terminal devices through a wireless access link (AL).
  • the IAB node can be connected to the host node through a wireless backhaul link (BL) to transmit data from the terminal device.
  • BL wireless backhaul link
  • the wireless access link is referred to as the access link below, and the wireless backhaul link is also referred to as the backhaul link below.
  • Figure 1 is a schematic diagram of a scenario applicable to an embodiment of the present application.
  • Figure 1 can be understood as an architectural schematic diagram of an IAB system.
  • the scenario includes a terminal device, one or more IAB nodes, a host node, and a core network.
  • Figure 1 takes one or more IAB nodes including a first IAB node, a second IAB node, a third IAB node, and a fourth IAB node as an example.
  • One or more IAB nodes may provide wireless access services for terminal devices, and may be connected to a host node via a backhaul link.
  • the host node may provide wireless backhaul functionality for one or more IAB nodes, thereby enabling terminal devices served by one or more IAB nodes to communicate with the core network.
  • SA standalone
  • any of the one or more IAB nodes may be connected to the core network (5G core, 5GC) of the 5G communication system via a wired link via the host node.
  • any of the one or more IAB nodes may be connected to the evolved packet core (EPC) via an eNB on the control plane, and to the EPC via a host node and an eNB on the user plane.
  • EPC evolved packet core
  • the IAB system supports multi-hop IAB node networking. Accordingly, there may be multiple paths between the terminal device and the host node. On one path, there is a clear hierarchical relationship between multiple IAB nodes and the host node serving multiple IAB nodes.
  • an IAB node can regard the node that provides backhaul service for the IAB node as a parent node, or it can be understood that the adjacent upstream (or upper level) node of the host node closer to the IAB node is called the parent node of the IAB node, or it can be understood that the IAB node connected to the MT of an IAB node is the parent node of the IAB node.
  • an IAB node can be regarded as a child node of the parent node of the IAB node, or it can be understood that the adjacent downstream (lower level) node of the host node far away from the IAB node is called the child node of the IAB node, or it can be understood that the IAB node connected to the DU of an IAB node is the child node of the IAB node.
  • the parent node of the second IAB node includes the first IAB node and the fourth IAB node, in other words, the child nodes of the first IAB node and the fourth IAB node both include the second IAB node.
  • the parent node of the first IAB node includes the third IAB node, in other words, the child node of the third IAB node includes the first IAB node.
  • the parent nodes of the fourth IAB node and the third IAB node both include the host node, in other words, the child node of the host node includes the fourth IAB node and the third IAB node.
  • a path between a terminal device and a host node may include one or more IAB nodes.
  • Each of the one or more IAB nodes needs to maintain a backhaul link (parent link) to the parent node and a wireless link (child link) to the child node.
  • the IAB node and the child node i.e., terminal devices
  • the backhaul link is between the IAB node and the child nodes (i.e., other IAB nodes).
  • the terminal device accesses the second IAB node through the access link
  • the second IAB node accesses the fourth IAB node through the backhaul link
  • the fourth IAB node accesses the host node through the backhaul link
  • the second IAB node can access the first IAB node through the backhaul link
  • the first IAB node accesses the third IAB node through the backhaul link
  • the third IAB node accesses the host node through the backhaul link.
  • the access link is indicated by "AL" and the backhaul link is indicated by "BL".
  • the uplink data can be transmitted to the host node via one or more IAB nodes, and then transmitted by the host node to the device in the core network (specifically, a mobile gateway device), and the mobile gateway device is, for example, a UPF network element.
  • the mobile gateway device is, for example, a UPF network element.
  • terminal device ⁇ second IAB node ⁇ fourth IAB node ⁇ host node ⁇ core network terminal device ⁇ second IAB node ⁇ first IAB node ⁇ third IAB node ⁇ host node ⁇ core network.
  • Downlink data can be transmitted from the core network to the host node, and then transmitted to the terminal device through one or more IAB nodes. As shown in Figure 1, there are two paths for downlink data to be transmitted to the terminal device, which are: core network ⁇ host node ⁇ fourth IAB node ⁇ second IAB node ⁇ terminal device, core network ⁇ host node ⁇ third IAB node ⁇ first IAB node ⁇ second IAB node ⁇ terminal device.
  • the second IAB node in FIG1 can be regarded as an access IAB node, and the first IAB node, the third IAB node, and the fourth IAB node can all be regarded as intermediate access IAB nodes.
  • FIG1 is an example in which the number of terminal devices is 1, the number of IAB nodes is 4, and the number of host nodes is 1, but the number of terminal devices, IAB nodes, and host nodes is not actually limited.
  • the terminal device can also communicate directly with the host node, which is not shown in FIG1.
  • FIG2 includes a terminal device, a first IAB node, a second IAB node, a third IAB node, a fourth IAB node, and a host node.
  • the first IAB node in FIG2 is, for example, the first IAB node in FIG1
  • the second IAB node is, for example, the second IAB node in FIG1
  • the third IAB node is, for example, the third IAB node in FIG1
  • the fourth IAB node is, for example, the fourth IAB node in FIG1
  • the host node is, for example, the host node in FIG1.
  • any IAB node may include a DU and an MT, and a host node may include a DU and a CU.
  • a host node may include a DU and a CU.
  • the paths for transmitting uplink data and downlink data are respectively introduced.
  • terminal device ⁇ DU of the second IAB node ⁇ MT of the second IAB node ⁇ DU of the fourth IAB node ⁇ MT of the fourth IAB node ⁇ host node terminal device ⁇ DU of the second IAB node ⁇ MT of the second IAB node ⁇ DU of the first IAB node ⁇ MT of the first IAB node ⁇ DU of the third IAB node ⁇ MT of the third IAB node ⁇ host node.
  • the CU and DU of the host node may be connected via an F1 interface.
  • the F1 interface may also be referred to as an F1* interface.
  • the CU and the core network may be connected via a next generation (NG) interface.
  • the F1 interface may include a control plane interface (F1-C) and a user plane interface (F1-U).
  • the IAB node may still be called the IAB node, or it may have other names
  • the DU of the IAB node may still be called the DU of the IAB node, or it may have other names
  • the MT of the IAB node may still be called the MT of the IAB node, or it may have other names
  • the host node may still be called the host node, or it may have other names, and the embodiments of the present application are not limited to this.
  • Figure 3 involves an intermediate IAB node and an access IAB node.
  • the intermediate IAB node may be, for example, the first IAB node, the third IAB node, or the fourth IAB node in Figure 1 or Figure 2
  • the access IAB node may be, for example, the second IAB node in Figure 1 or Figure 2.
  • FIG3 (a) shows a schematic diagram of a protocol stack architecture of an intermediate IAB node.
  • the protocol stack architectures of the DU and MT of the intermediate IAB node may be the same.
  • the protocol stacks of the DU and MT of the intermediate IAB node both include an adaptation layer, a radio link control (RLC) layer, a media access control (MAC) layer, and a physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • FIG3(b) shows another schematic diagram of the protocol stack architecture of the intermediate IAB node.
  • the protocol stack architecture of the DU and MT of the intermediate IAB node is also the same.
  • the DU of the intermediate node IAB in FIG3(b) is Shares the adaptation layer with MT.
  • FIG3 (c) shows a schematic diagram of a protocol stack architecture of a user plane accessing an IAB node.
  • the protocol stack architectures of the user planes of the MT and DU accessing the IAB node are different.
  • the DU accessing the IAB node can communicate with the terminal device, so the protocol stack of the DU accessing the IAB node is adapted to the protocol stack of the terminal device.
  • the protocol stack of the user plane of the DU accessing the IAB node includes a general packet radio service tunneling protocol-U (GTP-U) layer, a user datagram protocol (UDP) layer and an internet protocol (IP) layer, an RLC layer, a MAC layer and a PHY layer.
  • GTP-U general packet radio service tunneling protocol-U
  • UDP user datagram protocol
  • IP internet protocol
  • the MT accessing the IAB node can communicate with other IAB nodes, so the protocol stack of the MT accessing the IAB node can be adapted to the protocol stack of the intermediate IAB node.
  • the protocol stack of the user plane of the MT accessing the IAB node includes an adaptation layer, an RLC layer, a MAC layer and a PHY layer.
  • Figure 3 (d) shows a schematic diagram of a protocol stack architecture of a control plane accessing an IAB node.
  • the protocol stack of the control plane of the DU accessing the IAB node includes the F1 application protocol (F1AP), the stream control transmission protocol (SCTP) layer, the IP layer, the RLC layer, the MAC layer and the PHY layer.
  • the protocol stack of the control plane of the MT accessing the IAB node includes the adaptation layer, the RLC layer, the MAC layer and the PHY layer.
  • Figure 4 is a schematic diagram of the protocol stack architecture of the user plane of each part in the IAB system.
  • Figure 4 includes a terminal device, a second IAB node, a fourth IAB node and a host node.
  • the terminal device in Figure 4 is, for example, the terminal device shown in Figure 1 or Figure 2
  • the second IAB node is, for example, the second IAB node in Figure 1 or Figure 2
  • the fourth IAB node is, for example, the fourth IAB node in Figure 1 or Figure 2
  • the host node is, for example, the host node in Figure 1 or Figure 2.
  • the fourth IAB node is taken as an intermediate IAB node
  • the second IAB node is taken as an access IAB node as an example.
  • the user plane protocol stack of the terminal device includes a packet data convergence protocol (PDCP) layer, an RLC layer, a MAC layer, and a PHY layer.
  • the user plane protocol stack of the DU of the second IAB node includes a GTP-U layer, a UDP layer, an IP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the MT of the second IAB node includes an adaptation layer, an RLC layer, a MAC layer, and a PHY layer.
  • the user plane protocol stacks of the DU and MT of the fourth IAB node both include an adaptation layer, an RLC layer, a MAC layer, and a PHY layer.
  • the user plane protocol stack of the DU of the host node includes an IP, an L2 layer, and an L1 layer.
  • the L2 layer is a link layer.
  • the L2 layer may be a data link layer in an open systems interconnection (OSI) reference model, and may specifically include an adaptation layer, an RLC layer, and a MAC layer.
  • the L1 layer may be a PHY layer in an OSI reference model.
  • the protocol stack of the user plane of the CU of the host node includes a PDCP layer, a GTP-U layer, a UDP layer, an IP layer, an L2 layer, and an L1 layer.
  • the user plane of the DU of the host node and the user plane of the CU can be connected through the F1-U interface.
  • the protocol layer of the F1-U interface includes one or more of the IP layer, the UDP layer, and the GTP-U layer.
  • the protocol layer of the F1 interface can be understood as the communication protocol layer on the F1 interface.
  • the protocol layer of the F1-U interface also includes a PDCP layer and/or an IP security (IP Security, IPsec) layer.
  • the protocol stacks of the user planes of any two devices communicating with each other can be adapted to each other.
  • the protocol stack of the user plane of the terminal device can be adapted to the protocol stack of the user plane of the DU of the second IAB node
  • the protocol stack of the user plane of the MT of the second IAB node is adapted to the protocol stack of the user plane of the DU of the fourth IAB node
  • the protocol stack of the user plane of the MT of the second IAB node is adapted to the protocol stack of the user plane of the DU of the host node
  • the protocol stack of the user plane of the DU of the host node is adapted to the protocol stack of the user plane of the CU of the host node.
  • FIG5 is a schematic diagram of the protocol stack architecture of the control plane of each part in the IAB system.
  • FIG5 includes a terminal device, a second IAB node, a fourth IAB node and a host node.
  • the terminal device in FIG5 is, for example, the terminal device shown in FIG1 or FIG2
  • the second IAB node is, for example, the second IAB node in FIG1 or FIG2
  • the fourth IAB node is, for example, the fourth IAB node in FIG1 or FIG2
  • the host node is, for example, the host node in FIG1 or FIG2.
  • the fourth IAB node is taken as an intermediate IAB node
  • the second IAB node is taken as an access IAB node as an example.
  • the protocol stack of the control plane of the terminal device includes a radio resource control (RRC) layer, an RLC layer, a MAC layer and a PHY layer.
  • the protocol stack of the control plane of the DU of the second IAB node includes an F1AP layer, an SCTP layer, an IP layer, an RLC layer, a MAC layer and a PHY layer.
  • the protocol stack of the control plane of the MT of the second IAB node includes an adaptation layer, an RLC layer, a MAC layer and a PHY layer.
  • the protocol stacks of the control planes of the DU and MT of the fourth IAB node both include an adaptation layer, an RLC layer, a MAC layer and a PHY layer.
  • the protocol stack of the control plane of the DU of the host node includes an IP, an L2 layer (specifically including an adaptation layer, an RLC layer and a MAC layer), and an L1 layer (specifically including a PHY layer).
  • the protocol stack of the control plane of the CU of the host node includes an RRC layer, an F1AP layer, an SCTP layer, an IP layer, an L2 layer and an L1 layer.
  • the control plane of the DU of the host node and the control plane of the CU can be connected through an F1-C interface.
  • the protocol layer of the F1-C interface includes one or more of an IP layer, an F1AP layer and an SCTP layer.
  • the control plane protocol layer of the F1 interface further includes one or more of a PDCP layer, an IPsec layer, and a datagram transport layer security (DTLS) layer.
  • DTLS datagram transport layer security
  • the protocol stacks of the control planes of any two devices communicating with each other can be adapted to each other.
  • the protocol stack of the control plane of the terminal device can be adapted to the protocol stack of the control plane of the DU of the second IAB node
  • the protocol stack of the control plane of the MT of the second IAB node is adapted to the protocol stack of the control plane of the DU of the fourth IAB node
  • the protocol stack of the control plane of the MT of the second IAB node is adapted to the protocol stack of the control plane of the DU of the host node
  • the protocol stack of the control plane of the DU of the host node is adapted to the CU of the host node.
  • non-backhaul link is susceptible to congestion, for example, such as the movement of terminal equipment, seasonal changes (leaves), due to severe weather conditions (e.g., rain, snow or hail), or due to infrastructure changes (e.g., new buildings), and uneven load distribution of uplink and downlink data transmission, etc., all of which may cause node congestion or backhaul link congestion, which may cause uplink or downlink data transmission failure. It can be seen that the communication reliability of the IAB system needs to be improved.
  • the destination address of the uplink data is the host node
  • the third IAB node causes a communication link failure between the third IAB node and the host node due to movement or other reasons, and the DU of the third IAB node receives uplink data from the terminal device. Since the destination address of the uplink data is the host node, and the protocol defines that when the IAB node forwards data, the data received by the MT of the IAB node needs to be forwarded to the DU of the IAB node for forwarding, or the data received by the DU of the IAB node needs to be forwarded to the MT of the IAB node for forwarding.
  • the DU of the third IAB node needs to forward the uplink data to the MT of the third IAB node for forwarding, and the communication link between the third IAB node and the host node fails, which will cause service interruption between the terminal device and the host node or loss of uplink data.
  • an embodiment of the present application provides a communication method.
  • the MT of the parent node (such as the first IAB node) of an IAB node (such as the second IAB node) can initiate random access to the DU of the second IAB node, so that a connection can be established between the MT of the first IAB node and the DU of the second IAB node.
  • the DU of the second IAB node can provide access services for the MT of the first IAB node, so that the IAB system can establish more backhaul links.
  • a backhaul link in the IAB network fails, data can be transmitted with the help of other backhaul links, thereby improving the reliability of IAB system communication.
  • the IAB system in the embodiment of the present application includes more backhaul links, the IAB system can carry more data transmission, which is conducive to improving the capacity of the IAB system.
  • the communication method provided in the embodiment of the present application can be applied to any IAB system.
  • the protocol stack architecture of the IAB node can refer to any protocol stack architecture in FIG. 3 to FIG. 5 .
  • Figure 6 is a schematic diagram of another scenario applicable to the embodiment of the present application.
  • Figure 6 can also be understood as an architectural diagram of another IAB system.
  • the scenario includes a terminal device, one or more IAB nodes, a host node, and a core network.
  • the one or more IAB nodes in Figure 6 are introduced using the first IAB node, the second IAB node, and the fourth IAB node as an example (i.e., the parent node of the first IAB node is the host node).
  • the implementation methods and functions of the IAB nodes, terminal devices, host nodes, and core networks can all refer to the previous text.
  • the first IAB node in the various embodiments of the present application can be, for example, the first IAB node in Figure 1, 2 or 6
  • the second IAB node can be, for example, the second IAB node in Figure 1, 2, 4, 5 or 6
  • the third IAB node can be, for example, the second IAB node in Figure 1 or 2, or can be the host node in Figure 6
  • the fourth IAB node can be, for example, the fourth IAB node in Figure 1, 2, 4, 5 or 6
  • the host node can be, for example, the host node in Figure 1, 2, 4, 5 or 6.
  • the network device in the various embodiments of the present application can be, for example, a host node, such as the host node in Figure 1, 2, 4, 5 or 6, or can be a device in the core network, such as a mobile gateway device, specifically, for example, a UPF network element.
  • Figure 7 is a flow chart of a communication method provided in an embodiment of the present application.
  • the flow chart shown in Figure 7 includes the following steps.
  • S701 A first IAB node receives first information.
  • S701 may be alternatively described as: an MT of the first IAB node receives first information.
  • the first information may include a first random access resource.
  • the first random access resource is used by the MT of the first IAB node to initiate random access to the DU of the second IAB node.
  • the first random resource may include a preamble sequence and/or a time domain resource, etc.
  • the preamble sequence may also be called a preamble code, or a preamble code sequence.
  • the first information may include a Zadov-Chunk (Zadoff–Chu, ZC) sequence index, PRACH configuration index and one or more of the information of time domain resources.
  • the ZC sequence index is used to indicate (or determine) the ZC sequence.
  • the ZC sequence can be used to determine the preamble sequence.
  • the ZC sequence can be cyclically shifted to obtain the preamble sequence.
  • the PRACH configuration index is used to indicate (or determine) the format of the preamble sequence and the time unit where the PRACH is located.
  • the time unit is, for example, a subframe or a time slot.
  • the information of the time domain resource may include one or more of a period scaling factor, a number of random access opportunities associated with the synchronization signal, and an offset of the random access opportunity associated with the synchronization signal relative to the time unit.
  • the period scaling factor is used to determine the period of random access resources.
  • the number of random access opportunities associated with a synchronization signal refers to the number of RACH opportunities, and the synchronization signal is, for example, a synchronization signal block (SSB).
  • the number of random access opportunities associated with a synchronization signal may include the number of random access opportunities associated with each synchronization signal in a plurality of synchronization signals.
  • the offset of the random access opportunity associated with a synchronization signal relative to a time unit refers to the offset of a time unit with a RACH opportunity.
  • the offset of the random access opportunity associated with a synchronization signal relative to a time unit may include the offset of the random access opportunity associated with each synchronization signal in a plurality of synchronization signals relative to a time unit.
  • the first IAB node there are multiple ways for the first IAB node to receive the first information, which are introduced in the following examples.
  • Mode 1 The first IAB node receives first information from a network device.
  • the network device involved in Mode 1 is, for example, a host node or a device in a core network.
  • the network device may directly send the first information to the first IAB node.
  • the network device may send the first information to the first IAB node through the parent node of the first IAB node (such as a third IAB node).
  • the first IAB node may send a first request to the network device. Accordingly, the network device receives the first request from the first IAB node and sends the first information to the first IAB node. The first request is used to request a first random access resource. Alternatively, the network device may actively send the first information to the first IAB node without the need for a request from the first IAB node.
  • the first information may be carried in high-level signaling.
  • the network device sends high-level signaling to the first IAB node. Accordingly, the first IAB node receives high-level signaling from the network device, which is equivalent to the first IAB node receiving the first information.
  • the high-level signaling is, for example, RRC signaling.
  • the first information may be carried in the configuration information of the MT of the first IAB node.
  • the network device sends the configuration information of the MT of the first IAB node to the first IAB node. Accordingly, the first IAB node receives the configuration information of the MT of the first IAB node from the network device, which is equivalent to the first IAB node receiving the first information.
  • the configuration information of the MT of the first IAB node indicates the transmission configuration of the MT of the first IAB node.
  • the network device can reuse high-level signaling or the configuration information of the MT to carry the first information without using dedicated signaling to carry the first information, which is conducive to reducing the signaling interaction between the network device and the first IAB node.
  • the configuration information of the MT of the first IAB node may also include data bearer mapping information and/or quality of service (QoS) configuration information of the MT of the first IAB node.
  • the data bearer mapping information indicates a path for the MT of the first IAB node to transmit data.
  • the quality of service configuration information indicates the quality of service of the MT of the first IAB node.
  • the first information may also be carried in a proprietary signaling.
  • the network device sends the proprietary signaling to the first IAB node. Accordingly, the first IAB node receives the proprietary signaling from the network device, which is equivalent to the first IAB node receiving the first information.
  • the second IAB node may send the first information to the first IAB node. Accordingly, the first IAB node receives the first information from the second IAB node.
  • the MT of the second IAB node may send the first information to the DU of the first IAB node, and the DU of the first IAB node sends the first information to the MT of the first IAB node.
  • the first information may be carried in a first message (message 1, Msg1).
  • the first message is a message in which the MT of the second IAB node initiates a random access process to the DU of the first IAB node.
  • the second IAB node sends the first message to the first IAB node. Accordingly, the first IAB node receives the first message from the second IAB node, which is equivalent to the first IAB receiving the first information.
  • the first information may be carried in a third message (message 3, Msg3).
  • the third message is a message in which the MT of the second IAB node initiates a random access process to the DU of the first IAB node.
  • the second IAB node sends the third message to the first IAB node. Accordingly, the first IAB node receives the third message from the second IAB node, which is equivalent to the first IAB receiving the first information.
  • the first information may be carried in a backhaul adaptation protocol control protocol data unit (BAP control PDU).
  • BAP control PDU backhaul adaptation protocol control protocol data unit
  • the first random access resource may be an IAB system or protocol configured in the second IAB node, or the first random access resource may be the second IAB node receiving the second information including the first random access resource from the network device or the parent node of the second IAB node other than the first IAB node (such as the fourth IAB node).
  • the second IAB node receives the second information, which is equivalent to obtaining the first random access resource.
  • the second IAB node may send a second request to the network device or the fourth IAB node. Accordingly, after receiving the second request, the network device or the fourth IAB node sends the second information to the second IAB node.
  • the network device or the fourth IAB node may actively send the second information to the second IAB node without the need for a request from the second IAB node.
  • the second information may be carried in the configuration information of the DU of the second IAB node.
  • the network device or the fourth IAB node sends the configuration information of the DU of the second IAB node to the second IAB node. Accordingly, the second IAB node receives the configuration information of the DU of the second IAB node from the network device or the fourth IAB node.
  • the configuration information of the DU of the second IAB node is used for the second IAB node to communicate with the parent node of the second IAB node (such as including the fourth IAB node or the first IAB node).
  • the first IAB node may send third information to the second IAB node. Accordingly, the second IAB node receives the third information from the first IAB node.
  • the third information includes a second random access resource.
  • the second random access resource is used for the MT of the second IAB node to initiate a random access process to the DU of the first IAB node.
  • the first IAB node may obtain the second random access resource from the network device or the third IAB node.
  • the network device or the third IAB node also carries the second random access resource in the first information. In this way, the first IAB node receives the first information, which is equivalent to obtaining the second random access resource.
  • the second IAB node may send a second random access request to the MT of the first IAB node based on the second random access resource.
  • the random access process initiated by the MT of the first IAB node to the DU of the second IAB node based on the first random access resource may be referred to as a first random access process.
  • the random access process initiated by the MT of the second IAB node to the DU of the first IAB node based on the second random access resource may be referred to as a second random access process.
  • the second IAB node may receive the third information from the network device or the fourth IAB node.
  • the third information may be carried in the configuration information of the DU of the second IAB node.
  • the network device or the fourth IAB node is equivalent to sending the first random access resource and the second random access resource to the second IAB node through the configuration information of the DU, which is beneficial to reducing the number of interactions between the second IAB node and the network device or the fourth IAB node.
  • the time domain resources included in the second random access resource are different from the time domain resources included in the first random access resource.
  • the difference includes that the time domain resources included in the second random access resource and the time domain resources included in the first random access resource do not completely overlap, or do not overlap at all.
  • the time domain resources included in the second random access resource are different from the time domain resources included in the first random access resource, when the MT of the first IAB node initiates a random access process to the DU of the second IAB node based on the first random access resource, and when the MT of the second IAB node initiates a random access process to the DU of the first IAB node based on the second random access resource, the first IAB node and the second IAB node will not simultaneously receive and send a random access request, thereby avoiding a conflict between the first random access process and the second random access process.
  • the time domain resources included in the second random access resource and the time domain resources included in the first random access resource may also be the same. The same includes that the time domain resources included in the second random access resource and the time domain resources included in the first random access resource completely overlap.
  • the first IAB node sends a first random access request to the second IAB node. Accordingly, on the first random resource, the second IAB node receives the first random access request from the first IAB node.
  • the first random access request can be used for the MT of the first IAB node to request access to the DU of the second IAB node.
  • S702 can be replaced by describing as: the MT of the first IAB node sends a first random access request to the DU of the second IAB node. Accordingly, the DU of the second IAB node receives the first random access request from the MT of the first IAB node.
  • a random access procedure may be completed between the MT of the first IAB node and the DU of the second IAB node, thereby establishing a connection.
  • the MT of the first IAB node may initiate a random access process to the DU of the second IAB node, so that a connection can be established between the MT of the first IAB node and the DU of the second IAB node, so that the IAB system can establish more communication links. For example, when the quality of the backhaul link of the first IAB node deteriorates or is interrupted, the first IAB node can transmit data through the communication link established with the DU of the second IAB node.
  • the first IAB node does not need to frequently reselect or switch cells, thereby reducing or even avoiding service interruption or data packet loss and switching signaling process overhead, thereby improving the robustness of service transmission, and helping to improve the reliability of IAB system communications.
  • the first IAB node may send a first random access request to the second IAB node.
  • the first IAB node may determine to send the first random access request to the second IAB node when a specific trigger condition is met. It may include any one of the following triggering situations 1 to 4. The triggering situations 1 to 4 are introduced below respectively.
  • Triggering situation 1 The first IAB node receives the first indication information from the second IAB node.
  • the first indication information indicates that the MT of the first IAB node initiates random access to the second IAB node.
  • the first indication information may be carried in a backhaul adaptive protocol control protocol data unit.
  • the second IAB node sends the first indication information to the first IAB node via the backhaul adaptive protocol control protocol data unit.
  • the second IAB node may determine to send first indication information to the first IAB node.
  • the first condition may include any one of the following conditions B1 to B3.
  • the first condition includes that the first measurement result is greater than or equal to a first threshold.
  • the first measurement result indicates the communication quality of the communication link between the second IAB node and the first IAB node.
  • the communication link between the second IAB node and the first IAB node can be understood as a link for the second IAB node to send data to the first IAB node.
  • the first measurement result may be obtained by the first IAB node measuring the first measurement signal from the second IAB node. In other words, the first measurement result is the measurement result of the first IAB node.
  • the first measurement signal may be, for example, sent by the MT of the second IAB node to the DU of the first IAB node.
  • the first measurement signal may be, for example, synchronization information, a sounding reference signal (SRS) or a channel state information-reference signal (CSI-RS), etc.
  • SRS sounding reference signal
  • CSI-RS channel state information-reference signal
  • the second IAB node may receive the first measurement result from the first IAB node, and determine that the first measurement result is greater than or equal to the first threshold.
  • the second IAB node may receive the first measurement result from the first IAB node through the network device; or, the MT of the second IAB node receives the first measurement result from the DU of the first IAB node, thereby determining that the first measurement result is greater than or equal to the first threshold.
  • the first threshold may be configured in the second IAB node through a protocol or an IAB system, or may be received by the second IAB node from the network device.
  • the first threshold is carried in the second information, and the network device sends the second information to the second IAB node, which is equivalent to sending the first threshold to the second IAB node.
  • the first threshold is carried in the configuration information of the DU of the second IAB node, and the network device sends the configuration information of the DU of the second IAB node to the second IAB node, which is equivalent to sending the first threshold to the second IAB node.
  • the second IAB node may receive third indication information from the first IAB node, and the third indication information indicates that the first measurement result is greater than or equal to the first threshold.
  • the second IAB node receiving the third indication information is equivalent to the second IAB node determining that the first measurement result is greater than or equal to the first threshold.
  • the first threshold may be configured in the first IAB node through a protocol or an IAB system; or, it may be received by the first IAB node from a network device.
  • the first threshold is carried in the first information, and the network device sends the first information or the configuration information of the MT of the first IAB node to the first IAB node, which is equivalent to sending the first threshold to the first IAB node.
  • the first threshold is carried in the configuration information of the MT of the first IAB node, and the network device sends the configuration information of the MT of the first IAB node to the first IAB node, which is equivalent to sending the first threshold to the first IAB node.
  • the first condition includes that the second measurement result is greater than or equal to a second threshold.
  • the second measurement result indicates the communication quality of the communication link between the first IAB node and the second IAB node.
  • the communication link between the first IAB node and the second IAB node can be understood as a link for the first IAB node to send data to the second IAB node.
  • the communication link between the first IAB node and the second IAB node is the same as or different from the communication link between the second IAB node and the first IAB node.
  • the second measurement result can be obtained by the second IAB node measuring the second measurement signal from the first IAB node.
  • the second measurement result is the measurement result of the second IAB node.
  • the second measurement signal can be, for example, sent by the DU of the first IAB node to the MT of the second IAB node.
  • the implementation form of the second measurement signal can refer to the content of the first measurement signal in the previous text.
  • the second IAB node After the second IAB node measures the second measurement result, it can determine whether the second measurement result is greater than or equal to the second threshold value.
  • the way in which the second IAB node obtains the second threshold value can refer to the content of the second IAB node obtaining the first threshold value in the previous text.
  • the first threshold value and the second threshold value are the same or different. For example, when the communication link between the first IAB node and the second IAB node is the same as the communication link between the second IAB node and the first IAB node, the first threshold value and the second threshold value may be the same.
  • the first condition includes that the first measurement result is greater than or equal to the first threshold, and the second measurement result is greater than or equal to the second threshold.
  • the first condition is the condition shown in B3
  • the way in which the second IAB node determines that the communication quality between the second IAB node and the first IAB node meets the first condition can refer to the contents of B1 and B2 above.
  • the second IAB node determines that the communication quality between the first IAB node and the third IAB node meets the second condition, and the second IAB node may determine to send the first indication information to the first IAB node.
  • the second condition may include any one of the following conditions C1 to C5.
  • the second condition includes that the third measurement result is less than or equal to a third threshold.
  • the third measurement result indicates the communication quality of the communication link between the third IAB node and the first IAB node.
  • the communication link between the third IAB node and the first IAB node can be understood as a link for the third IAB node to send data to the first IAB node.
  • the third measurement result can be obtained by the first IAB node measuring the third measurement signal from the third IAB node.
  • the third measurement result is the measurement result of the first IAB node.
  • the third measurement signal can be, for example, sent by the DU of the third IAB node to the MT of the first IAB node.
  • the implementation form of the third measurement signal can refer to the content of the first measurement signal in the previous text.
  • the second IAB node may receive the third measurement result from the first IAB node, and determine that the third measurement result is less than or equal to the third threshold.
  • the way in which the second IAB node obtains the third threshold may refer to the content of obtaining the first threshold in the previous text.
  • the second IAB node may receive the third measurement result from the first IAB node through a network device.
  • the MT of the second IAB node may receive the third measurement result from the DU of the first IAB node, and then determine whether the third measurement result meets the third threshold.
  • the second IAB node may receive fourth indication information from the first IAB node, and the fourth indication information indicates that the third measurement result is less than or equal to the third threshold.
  • the second IAB node receives the fourth indication information, which is equivalent to the second IAB node determining that the third measurement result is less than or equal to the third threshold.
  • the way in which the first IAB node obtains the third threshold may refer to the content of the first IAB node obtaining the first threshold in the previous text.
  • the second condition includes that the fourth measurement result is less than or equal to a fourth threshold.
  • the fourth measurement result indicates the communication quality of the communication link between the first IAB node and the third IAB node.
  • the communication link between the first IAB node and the third IAB node can be understood as a link in which the first IAB node sends data to the third IAB node.
  • the communication link between the first IAB node and the third IAB node is the same as or different from the communication link between the third IAB node and the first IAB node.
  • the fourth measurement result may be obtained by the third IAB node measuring the fourth measurement signal from the first IAB node. In other words, the fourth measurement result is the measurement result of the third IAB node.
  • the fourth measurement signal may be sent by the MT of the first IAB node to the DU of the third IAB node.
  • the implementation form of the fourth measurement signal may refer to the content of the first measurement signal in the preceding text.
  • the second IAB node may receive the fourth measurement result from the third IAB node, and determine that the fourth measurement result is less than or equal to the fourth threshold.
  • the manner in which the second IAB node obtains the fourth threshold may refer to the content of the second IAB node obtaining the first threshold in the foregoing text.
  • the second IAB node may receive the fourth measurement result from the third IAB node through the network device, or the second IAB node may receive the fourth measurement result from the third IAB node through the first IAB node, and then the second IAB node determines that the fourth measurement result is less than or equal to the fourth threshold.
  • the second IAB node may receive fifth indication information from the third IAB node, and the fifth indication information indicates that the fourth measurement result is less than or equal to the fourth threshold value.
  • the second IAB node receives the fifth indication information, which is equivalent to the second IAB node determining that the fourth measurement result is less than or equal to the fourth threshold value.
  • the way in which the third IAB node obtains the fourth threshold value can refer to the content of the first IAB node obtaining the first threshold value in the previous text.
  • the way in which the second IAB node receives the fifth indication information from the third IAB node can refer to the content of the second IAB node receiving the fourth measurement result from the third IAB node in the previous text.
  • the third threshold value and the fourth threshold value are the same or different.
  • the third threshold value and the fourth threshold value may be the same.
  • the second condition includes a beam failure between the first IAB node and the third IAB node.
  • the beam failure between the first IAB node and the third IAB node may be that the first IAB node (specifically, the physical layer of the first IAB node) determines that the measurement result of the measurement signal from the third IAB node is less than or equal to the fifth threshold value within the beam failure detection timer, and the number of times is equal to the first number, and the beam failure can be determined.
  • the first number is, for example, the maximum number of consecutive beam failures (beamFailureInstanceMaxCount).
  • the first number may be pre-stored in the first IAB node, for example, the first number is pre-configured in the first IAB node through a protocol, or may be agreed in the first IAB node through the IAB system; or, the first number may also be received by the first IAB node from a network device.
  • the first IAB node detects a beam failure and may send a sixth indication information to the second IAB node, and the sixth indication information indicates that the beam between the first IAB node and the third IAB node fails.
  • the second IAB node receives the sixth indication information, which is equivalent to the second IAB node determining that the beam between the first IAB node and the third IAB node fails.
  • the beam failure between the first IAB node and the third IAB node is, for example, that within the duration of the beam failure detection timer, the third IAB node (specifically, the physical layer of the third IAB node) determines that the number of times that the measurement result of the measurement information from the first IAB node is less than or equal to the fifth threshold is equal to the first number, then the beam failure can be determined.
  • the way in which the third IAB node obtains the first number can refer to the content of the first IAB node obtaining the first number in the previous text.
  • the third IAB node detects the beam failure and can send the sixth indication information to the second IAB node.
  • the meaning of the sixth indication information can refer to the previous text.
  • the second IAB node receives the sixth indication information, which is equivalent to the second IAB node determining that the beam between the first IAB node and the third IAB node has failed.
  • the second condition includes a communication link failure between the first IAB node and the third IAB node.
  • the first IAB node may determine that the communication link between the first IAB node and the third IAB node has failed.
  • the second number may be pre-stored in the first IAB node, for example, the second number is pre-configured in the first IAB node through a protocol, or may be agreed in the first IAB node through an IAB system; or, the second number may also be received by the first IAB node from a network device.
  • the first IAB node may send seventh indication information to the second IAB node, and the seventh indication information indicates that the communication link between the first IAB node and the third IAB node has failed.
  • the second IAB node receiving the seventh indication information is equivalent to the second IAB node determining that the communication link between the first IAB node and the third IAB node has failed.
  • the third IAB node may determine that the communication link between the first IAB node and the third IAB node has failed.
  • the second number may be pre-stored in the third IAB node or the first IAB node, for example, the second number is pre-configured in the third IAB node or the first IAB node through a protocol, or may be agreed in the third IAB node or the first IAB node through an IAB system; or, the second number may also be received by the third IAB node from a network device.
  • the third IAB node may send seventh indication information to the second IAB node, and the seventh indication information indicates that the communication link between the first IAB node and the third IAB node has failed.
  • the second IAB node receiving the seventh indication information is equivalent to the second IAB node determining that the communication link between the first IAB node and the third IAB node has failed.
  • the second condition includes two or more of the conditions in C1 to C4.
  • the second IAB node determines that the communication quality between the first IAB node and the third IAB node meets the second condition in a manner that can refer to the contents discussed in C1 to C4 above.
  • the second IAB node determines that the communication quality between the first IAB node and the second IAB node meets a first condition, and the second IAB node determines that the communication quality between the first IAB node and the third IAB node meets a second condition.
  • the second IAB node receives second indication information from the network device, the second indication information indicates that the DU of the second IAB node establishes a connection with the parent node of the second IAB node, and the second IAB node may determine to send the first indication information to the first IAB node.
  • the parent node of the second IAB node includes the first IAB node.
  • the second indication information may be carried in the configuration information of the DU of the second IAB node.
  • the network device may send the configuration information of the DU of the second IAB node to the second IAB node. Accordingly, the second IAB node receives the configuration information of the DU of the second IAB node from the network device, which is equivalent to the first IAB node receiving the second indication information.
  • the second indication information may be carried in high-layer signaling.
  • the network device may send high-layer signaling to the second IAB node. Accordingly, the second IAB node receives the high-layer signaling from the network device, which is equivalent to the first IAB node receiving the second indication information.
  • the high-layer signaling is, for example, RRC signaling.
  • Triggering situation 2 The first IAB node receives the first indication information from the third IAB node.
  • the meaning of the first indication information can be referred to in the above text.
  • the first indication information can be carried in a backhaul adaptive protocol control protocol data unit.
  • the third IAB node sends the first indication information to the first IAB node by backhauling the adaptive protocol control protocol data unit.
  • the third IAB node may send first indication information to the first IAB node.
  • the meaning of the first condition can refer to the content discussed above.
  • the first condition is different, and the content of the third IAB node determining that the communication quality between the first IAB node and the second IAB node meets the first condition is also different, which are introduced below.
  • the third IAB node may receive the first measurement result from the first IAB node, or may receive the first measurement result from the first IAB node through a network device, and determine that the first measurement result is greater than or equal to the first threshold.
  • the third IAB node receives the third indication information from the first IAB node, wherein the meaning of the third indication information may refer to the foregoing text.
  • the third IAB node receiving the third indication information is equivalent to the third IAB node determining that the first measurement result is greater than or equal to the first threshold.
  • the way in which the third IAB node obtains the first threshold may refer to the content of the first IAB node obtaining the first threshold in the foregoing text.
  • the third IAB node may receive the second measurement result from the second IAB node, or may receive the second measurement result from the second IAB node through the network device, and determine that the second measurement result is greater than or equal to the second threshold.
  • the third IAB node receives the eighth indication information from the second IAB node, and the eighth indication information indicates that the second measurement result is greater than or equal to the second threshold.
  • the third IAB node receives the eighth indication information, which is equivalent to the third IAB node determining that the second measurement result is greater than or equal to the second threshold.
  • the manner in which the third IAB node obtains the second threshold value may refer to the content of the second IAB node obtaining the second threshold value in the foregoing text.
  • the manner in which the third IAB node determines whether the first condition is satisfied can refer to the contents discussed in D1 and D2 above.
  • the third IAB node may determine to send the first indication information to the first IAB node.
  • the meaning of the second condition may refer to the above text.
  • the third IAB node may receive the third measurement result from the first IAB node, or receive the third measurement result from the first IAB node through the network device, and determine that the third measurement result is less than or equal to the third threshold value.
  • the way in which the third IAB node obtains the third threshold value can refer to the way in which the first IAB node obtains the first threshold value in the foregoing text.
  • the third IAB node receives the fourth indication information from the first IAB node, and the meaning of the fourth indication information can refer to the foregoing text.
  • the third IAB node receives the fourth indication information, which is equivalent to the third IAB node determining that the third measurement result is less than or equal to the third threshold value.
  • the third IAB node can directly measure the fourth measurement result and determine that the fourth measurement result is less than or equal to the fourth threshold.
  • the third IAB node can obtain the fourth threshold by referring to the first IAB node obtaining the first threshold above.
  • the third IAB node can detect the beam failure by itself, or the third IAB node receives the sixth indication information from the first IAB node, and the meaning of the sixth indication information can refer to the above text.
  • the third IAB node receives the sixth indication information, which is equivalent to determining that the beam between the first IAB node and the third IAB node has failed.
  • the third IAB node can determine the communication link failure between the first IAB node and the third IAB node by itself.
  • the method of determining the communication link failure between the first IAB node and the third IAB node can refer to the content of the previous text.
  • the third IAB node can receive the seventh indication information from the first IAB node.
  • the meaning of the seventh indication information can refer to the previous text.
  • the third IAB node receives the seventh indication information, which is equivalent to determining the communication link failure between the first IAB node and the third IAB node.
  • the third IAB node determines that the communication quality between the first IAB node and the second IAB node meets the first condition, and determines that the communication quality between the first IAB node and the third IAB node meets the second condition, and the third IAB node may determine to send the first indication information to the first IAB node.
  • the manner in which the third IAB node determines that the first condition and the second condition are met can refer to the content discussed above.
  • the content of the first condition and the second condition can refer to the above.
  • the third IAB node can receive the second indication information from the network device, the meaning of the second indication information can refer to the above text, and the third IAB node determines to send the first indication information to the first IAB node.
  • Triggering situation 3 The first IAB node receives the first indication information from the network device.
  • the meaning of the first indication information can be referred to in the previous text.
  • the first indication information can be carried in the RRC signaling.
  • the network device sends the RRC signaling to the first IAB node. Accordingly, the first IAB node receives the RRC signaling from the network device, which is equivalent to receiving the first indication information.
  • the network device determines that the communication quality between the first IAB node and the second IAB node meets the first condition, and the network device may determine to send the first indication information to the first IAB node.
  • the communication quality between the first IAB node and the second IAB node and the meaning of the first condition can refer to the content discussed above.
  • the first condition is different, and the content of the network device determining that the communication quality between the first IAB node and the second IAB node meets the first condition is also different, which are introduced below.
  • the network device may receive the first measurement result from the first IAB node, or may receive the first measurement result from the first IAB node through a third IAB node, and determine that the first measurement result is greater than or equal to a first threshold value.
  • the first threshold value may be configured in the network device through an IAB system or protocol.
  • the network device receives the third indication information from the first IAB node, which is equivalent to the network device determining that the first measurement result is greater than or equal to the first threshold.
  • the meaning of the third indication information can refer to the above.
  • the network device may receive the second measurement result from the second IAB node, or may receive the second measurement result from the second IAB node through the fourth IAB node, and determine that the second measurement result is greater than or equal to the second threshold value.
  • the second threshold value may be configured in the network device through the IAB system or protocol.
  • the network device receives the eighth indication information from the second IAB node, which is equivalent to the network device determining that the second measurement result is greater than or equal to the second threshold.
  • the meaning of the eighth indication information can refer to the above text.
  • the way in which the network device determines whether the first condition is satisfied can refer to the above text.
  • the network device determines that the communication quality between the first IAB node and the third IAB node meets the second condition, and the network device may send first indication information to the first IAB node.
  • the communication quality between the first IAB node and the third IAB node and the meaning of the second condition can refer to the above.
  • the network device may receive a third measurement result from the first IAB node.
  • the third IAB node receives the third measurement result from the first IAB node, and determines that the third measurement result is less than or equal to the third threshold.
  • the way in which the network device obtains the third threshold can refer to the content of the network device obtaining the first threshold in the foregoing text.
  • the network device receives fourth indication information from the first IAB node, and the meaning of the fourth indication information can refer to the above text.
  • the network device receiving the fourth indication information is equivalent to the network device determining that the third measurement result is less than or equal to the third threshold.
  • the network device may receive a fourth measurement result from the third IAB node and determine that the fourth measurement result is less than or equal to a fourth threshold.
  • the way in which the network device obtains the fourth threshold may refer to the content of the network device obtaining the first threshold above.
  • the network device may receive fifth indication information from the third IAB node, and the meaning of the fifth indication information may refer to the above text.
  • the network device receiving the fifth indication information is equivalent to the network device determining that the fourth measurement result is less than or equal to the fourth threshold.
  • the network device receives sixth indication information from the first IAB node or the third IAB node.
  • the meaning of the sixth indication information can refer to the previous text.
  • the network device receives the sixth indication information, which is equivalent to the network device determining that the beam between the first IAB node and the third IAB node has failed.
  • the network device may receive the seventh indication information from the third IAB node or the first IAB node.
  • the meaning of the seventh indication information can refer to the above text.
  • the network device receiving the seventh indication information is equivalent to determining that the communication link between the first IAB node and the third IAB node is faulty.
  • the way in which the network device determines whether the second condition is satisfied can refer to the contents of G1 to G4 above.
  • the network device determines that the communication quality between the first IAB node and the second IAB node meets the first condition, and determines that the communication quality between the first IAB node and the third IAB node meets the second condition, and the third IAB node may send the first indication information to the first IAB node.
  • Triggering situation 4 The first IAB node determines that a pre-configured triggering random access condition is met.
  • the triggering random access condition may be pre-configured in the first IAB node through an IAB system or protocol.
  • the triggering random access condition may include at least one of the following 1 to 4.
  • Triggering random access condition 1 The MT of the second IAB node has completed the second random access process with the first IAB node.
  • the MT of the second IAB node has completed the second random access process with the first IAB node, which can also be specifically described as the MT of the second IAB node has completed the second random access process with the DU of the first IAB node, or it can be understood that a connection is established between the MT of the second IAB node and the DU of the first IAB node.
  • Triggering random access condition 2 the communication quality between the first IAB node and the second IAB node meets the first condition. If the content of the first condition is different, the content of the first IAB node determining that the communication quality between the first IAB node and the second IAB node meets the first condition is also different, which is described below.
  • the first IAB node may measure the first measurement signal, obtain a first measurement result, and determine that the first measurement result is greater than or equal to a first threshold.
  • the manner in which the first IAB node obtains the first threshold may refer to the above.
  • the first IAB node may receive the second measurement result from the second IAB node, or the first IAB node may receive the second measurement result from the second IAB node through the network device, and then determine that the second measurement result is greater than or equal to the second threshold.
  • the way in which the first IAB node obtains the second threshold may refer to the content of the first IAB node obtaining the second threshold.
  • the first IAB node may receive the eighth indication information from the second IAB node, and the eighth indication information indicates that the second measurement result is greater than or equal to the second threshold.
  • the first IAB node receives the eighth indication information, which is equivalent to determining that the second measurement result is greater than or equal to the second threshold.
  • the way in which the first IAB node determines that the first measurement result is greater than or equal to the first threshold and the second measurement result is greater than or equal to the second threshold can refer to the contents of H1 and H2 above.
  • Triggering random access condition 3 the communication quality between the first IAB node and the third IAB node meets the second condition.
  • the content of the second condition can refer to the previous text. If the content of the second condition is different, the first IAB node determines that the communication quality between the first IAB node and the third IAB node meets the second condition. The content is also different, which is explained below.
  • the first IAB node may measure the third measurement signal, obtain a third measurement result, and determine that the third measurement result is less than or equal to a third threshold.
  • the manner in which the first IAB node obtains the third threshold may refer to the above content of the first IAB node obtaining the first threshold.
  • the first IAB node may receive a fourth measurement from the third IAB node.
  • the first IAB node receives the fourth measurement result from the third IAB node through the network device, or the first IAB node receives the fourth measurement result from the third IAB node through the network device, and determines that the fourth measurement result is less than or equal to the fourth threshold.
  • the way in which the first IAB node obtains the fourth threshold can refer to the content of the first IAB node obtaining the first threshold in the previous text.
  • the first IAB node can receive the fifth indication information from the third IAB node.
  • the meaning of the fifth indication information can refer to the previous text.
  • the first IAB node receiving the fifth indication information is equivalent to the first IAB node determining that the fourth measurement result is less than or equal to the fourth threshold.
  • the first IAB node can detect the beam failure between the first IAB node and the third IAB node by itself.
  • the first IAB node receives the sixth indication information from the third IAB node.
  • the meaning of the sixth indication information can be referred to in the previous text.
  • the first IAB node receives the sixth indication information, which is equivalent to determining that the beam failure between the first IAB node and the third IAB node.
  • the first IAB node can detect the communication link failure by itself.
  • the first IAB node can receive the seventh indication information from the third IAB node, and the meaning of the seventh indication information can refer to the above text.
  • the first IAB node receiving the seventh indication information is equivalent to determining that the communication link between the first IAB node and the third IAB node has failed.
  • the first IAB node may determine that the content satisfying the second condition shown in C5 may refer to the contents of K1 to K4 above.
  • Triggering random access condition 4 the communication quality between the first IAB node and the second IAB node meets the first condition, and the communication quality between the first IAB node and the third IAB node meets the second condition.
  • the first IAB node determines that the first condition and the second condition are met, as described above.
  • the first IAB node compared with other trigger cases 1 to 4, the first IAB node does not need to receive instructions from other devices, and can initiate random access to the second IAB node in a relatively more timely manner, reducing the impact of link communication quality degradation or link abnormality on the IAB system.
  • the first IAB node does not need to receive instruction information from other devices, which is conducive to reducing signaling interactions in the IAB system.
  • the above-mentioned triggering random access condition 1 may be combined with any triggering condition from the above-mentioned triggering condition 1 to the triggering condition 3.
  • the first IAB node may determine that the triggering random access condition 1 is satisfied, and when any one of the triggering conditions 1 to the triggering conditions 3 is satisfied, the first IAB node sends a first random access request to the second IAB node.
  • the following example is provided. For example, if the first IAB node receives the first indication information from the second IAB node (i.e., the triggering condition 1 is satisfied), and determines that the triggering random access condition 1 is satisfied, the first IAB node may send the first random access request to the second IAB node.
  • the first IAB node may send the first random access request to the second IAB node.
  • the first IAB node may send the first random access request to the second IAB node.
  • the first IAB node may initiate a first random access to the second IAB node under a specific triggering condition. For example, when the channel quality between the first IAB node and the second IAB node is good, or the channel quality between the first IAB node and the third IAB node is poor, the MT of the first IAB node may initiate a random access process to the DU of the second IAB node, so that the DU of the second IAB node can provide access services for the MT of the first IAB node, that is, the DU of the IAB node can be used to communicate with the upstream node of the IAB node, or the MT part of the first IAB node can establish a wireless connection with the DU of the second IAB node.
  • the IAB system includes a terminal device, a first IAB node, a second IAB node, a fourth IAB node and a host node.
  • FIG8 is an example in which the parent node of the first IAB node and the fourth IAB node includes the host node, and the parent node of the second IAB node includes the first IAB node and the fourth IAB node.
  • the MT of the first IAB node can establish a connection with the DU of the second IAB node through the method in the embodiment of the present application.
  • the MT of the first IAB node can forward the uplink data to be transmitted to the host node to the DU of the second IAB node
  • the DU of the second IAB node can forward the uplink data to the MT of the second IAB node
  • the MT of the second IAB node forwards the uplink data to the DU of the fourth IAB node
  • the DU of the fourth IAB node forwards the uplink data to the MT of the fourth IAB node
  • the MT of the fourth IAB node sends the uplink data to the host node.
  • FIG9 is a flow chart of a communication method provided in an embodiment of the present application.
  • the above-mentioned method 1 is introduced by taking as an example the receiving of the first information and the sending of the first random access request by the first IAB node to the second IAB node under triggering condition 1.
  • the flowchart shown in FIG9 includes the following steps.
  • a second IAB node sends first information to a first IAB node.
  • the first IAB node receives the first information from a network device.
  • S902 may refer to the content of S701 in FIG. 7 above.
  • the first information may include a first random access resource.
  • the meaning of the first information, the meaning of the first random access resource, and the manner in which the second IAB node sends the first information to the first IAB node may refer to the content of S701 above.
  • the second IAB node determines that the communication quality between the first IAB node and the second IAB node meets a first condition.
  • S902 may refer to the contents discussed in FIG. 7 above, for example, the first condition and the manner in which the second IAB node determines whether the first condition is satisfied may refer to the contents discussed in FIG. 7 above.
  • S903 The second IAB node sends first indication information to the first IAB node.
  • the first IAB node receives the first indication information from the second IAB node.
  • S903 may refer to the contents discussed in FIG. 7 above.
  • the meaning of the first indication information and the manner in which the second IAB node sends the first indication information to the first IAB node may refer to the contents discussed in FIG. 7 above.
  • the first IAB node sends a first random access request to the second IAB node.
  • the second IAB node receives the first random access request from the first IAB node.
  • the first random access request is used by the MT of the first IAB node to request access to the DU of the second IAB node.
  • S904 may refer to the content of S702 in FIG. 7 .
  • the meaning of the first random access request and the manner in which the first IAB node sends the first random access request to the second IAB node may refer to the content of S702 above.
  • S902 to S903 is an example of triggering the first IAB node to send a first random access request to the second IAB node, so S902 to S903 are optional steps, which are indicated by dotted lines in FIG. 9 .
  • a connection can be established between the MT of the first IAB node and the DU of the second IAB node, so that the IAB system can include more communication links, thereby improving the communication reliability of the IAB system.
  • the second IAB node triggers the MT of the first IAB node to initiate random access to the DU of the second IAB node when it is determined that the communication quality between the first IAB node and the second IAB node is good, which is conducive to reducing the situation where the MT of the first IAB node fails to initiate random access to the DU of the second IAB node.
  • Figure 10 is a flow chart of a communication method provided in an embodiment of the present application.
  • Figure 10 is an example of a first IAB node receiving first information through the above-mentioned method 1, and the first IAB node sending a first random access request to the second IAB node under triggering condition 2.
  • the flow chart shown in Figure 10 includes the following steps.
  • a second IAB node sends first information to a first IAB node.
  • the first IAB node receives the first information from the second IAB node.
  • the first information may include a first random access resource.
  • S1001 may refer to the step S701 in FIG. 7 above.
  • the meaning of the first information, the meaning of the first random access resource, and the manner in which the second IAB node sends the first information to the first IAB node may refer to the content of S701 above.
  • the third IAB node determines that the communication quality between the first IAB node and the third IAB node meets a second condition.
  • S1002 may refer to the contents discussed in the foregoing FIG. 7 , for example, the second condition and the manner in which the third IAB node determines that the second condition is satisfied may refer to the foregoing.
  • the third IAB node sends first indication information to the first IAB node.
  • the first IAB node receives the first indication information from the third IAB node.
  • S1003 may refer to the contents discussed in FIG. 7 above.
  • the meaning of the first indication information and the manner in which the third IAB node sends the first indication information to the first IAB node may refer to the contents discussed in FIG. 7 above.
  • S1002 to S1003 are an example of triggering the first IAB node to send a first random access request to the second IAB node, so S1002 to S1003 are optional steps, which are indicated by dotted lines in FIG. 10 .
  • the first IAB node sends a first random access request to the second IAB node.
  • the second IAB node receives the first random access request from the first IAB node.
  • S1004 may refer to the content of S702 in Figure 7.
  • the meaning of the first random access request and the manner in which the first IAB node sends the first random access request to the second IAB node may refer to the content of S702.
  • the first random access request is used by the MT of the first IAB node to request access to the DU of the second IAB node.
  • a connection can be established between the MT of the first IAB node and the DU of the second IAB node, so that the IAB system can include more communication links, thereby improving the communication reliability of the IAB system.
  • the MT of the first IAB node is triggered to initiate random access to the DU of the second IAB node.
  • the IAB system includes more communication links, which improves the reliability of the IAB system.
  • the probability of the communication link between the MT of the first IAB node and the DU of the second IAB node being used is relatively high, which reduces the situation where the communication link between the MT of the first IAB node and the DU of the second IAB node is not used, which is beneficial to improving the resource utilization of the IAB system.
  • Figure 11 is a flow chart of a communication method provided in an embodiment of the present application.
  • Figure 11 is an example of a first IAB node receiving first information through the above-mentioned method 2, and the first IAB node sending a first random access request to the second IAB node under triggering condition 3.
  • the flow chart shown in Figure 11 includes the following steps.
  • a network device sends first information to a first IAB node.
  • the first IAB node receives the first information from the network device.
  • the first information may include a first random access resource.
  • S1101 may refer to the content of S701 in FIG. 7 above, for example, the meaning of the first information, the meaning of the first random access resource, and the manner in which the network device sends the first information to the first IAB node may refer to the content of S701 above.
  • the network device determines that the communication quality between the first IAB node and the second IAB node meets a first condition, and that the communication quality between the first IAB node and the third IAB node meets a second condition.
  • S1102 may refer to the contents discussed in the previous FIG. 7 , for example, the meaning of the first condition, the meaning of the second condition, the manner in which the network device determines that the communication quality between the first IAB node and the second IAB node satisfies the first condition, and the manner in which the communication quality between the first IAB node and the third IAB node satisfies the second condition may all refer to the contents of the previous FIG. 7 .
  • S1103 The network device sends first indication information to the first IAB node.
  • the first IAB node receives the first indication information from the network device.
  • S1103 may refer to the contents discussed in the foregoing FIG. 7 .
  • the meaning of the first indication information and the contents of the first indication information sent by the network device to the first IAB node may refer to the contents of the foregoing FIG. 7 .
  • S1102 to S1103 is an example of triggering the first IAB node to send a first random access request to the second IAB node, so S1102 to S1103 are optional steps, which are indicated by dotted lines in FIG. 11 .
  • the first IAB node sends a first random access request to the second IAB node.
  • the second IAB node receives the first random access request from the first IAB node.
  • the first random access request is used by the MT of the first IAB node to request access to the DU of the second IAB node.
  • S1104 may refer to the content of S702 in FIG. 7 above.
  • the meaning of the first random access request and the manner in which the first IAB node sends the first random access request to the second IAB node may refer to the content of S702 above.
  • a connection can be established between the MT of the first IAB node and the DU of the second IAB node, so that the IAB system may include more communication links, thereby improving the communication reliability of the IAB system.
  • the MT of the first IAB node is triggered to initiate random access to the DU of the second IAB node, thereby making the IAB system include more communication links, thereby improving the reliability of the IAB system.
  • the MT of the first IAB node is triggered to initiate random access to the DU of the second IAB node, thereby making the communication link established by the MT of the first IAB node to the DU of the second IAB node more reliable, and the communication link is more likely to be used.
  • Figure 12 is a flow chart of a communication method provided in an embodiment of the present application.
  • Figure 12 is an example of a first IAB node receiving first information through the above-mentioned method 1, and the first IAB node sending a first random access request to the second IAB node under triggering condition 4.
  • the flow chart shown in Figure 12 includes the following steps.
  • a second IAB node sends first information to a first IAB node.
  • the first IAB node receives the first information from the second IAB node.
  • the first information includes a first random access resource.
  • S1201 may refer to the content of S701 in FIG. 7 above.
  • the content of the first information and the content of the first random access resource may refer to the content of S701 above.
  • the first IAB node determines that a condition for triggering random access is met.
  • S1202 may refer to the contents discussed in FIG. 7 above, for example, the contents of triggering the random access condition and the contents of the first IAB node determining that the triggering random access condition is satisfied may refer to the contents discussed in FIG. 7 above.
  • S1202 is an example of triggering the first IAB node to send a first random access request to the second IAB node, so S1202 is an optional step, which is indicated by a dotted line in FIG. 12 .
  • the first IAB node sends a first random access request to the second IAB node.
  • the first random access request is used by an MT of the first IAB node to request access to a DU of a second IAB node.
  • S1203 may refer to the content of S702 in FIG. 7 above, for example, the meaning of the first random access request and the manner in which the first IAB node sends the first random access request to the second IAB node may refer to the content of S702 above.
  • the first IAB node when the first IAB node determines that the conditions for triggering random access are met, random access can be initiated to the second IAB node without other devices instructing the first IAB node to initiate random access, which is beneficial to reducing the interaction between the first IAB node and other devices.
  • the first IAB node does not need to wait for instructions from other devices, so that the first IAB node can send a first random access request to the second IAB node in a timely manner.
  • FIG. 13 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device 1300 includes a receiving module 1301 and a sending module 1302.
  • the communication device 1300 also includes a processing module 1303.
  • the communication device 1300 can be used to implement the function of the first IAB node described above, such as the function of the first IAB node in any of FIG7, FIG9 to FIG12. Accordingly, the communication device 1300 can implement the steps performed by the first IAB node.
  • the communication device 1300 may be used to implement the function of the first IAB node in FIG. 7.
  • the receiving module 1301 may be used to execute S701
  • the sending module 1302 may be used to execute S702.
  • the processing module 1303 may be used to control the receiving module 1301 to execute S701, and control the sending module 1302 to execute S702.
  • the processing module 1303 may also be used to determine whether the communication quality between the first IAB node and the second IAB node meets the first condition, and/or whether the communication quality between the first IAB node and the third IAB node meets the second condition.
  • the communication device 1300 may be used to implement the function of the first IAB node in Figure 9.
  • the receiving module 1301 may be used to execute S901
  • the sending module 1302 may be used to execute S904.
  • the receiving module 1301 may also be used to execute S903.
  • the communication device 1300 may be used to implement the function of the first IAB node in Figure 10.
  • the receiving module 1301 may be used to execute S1001
  • the sending module 1302 may be used to execute S1004.
  • the receiving module 1301 may also be used to execute S1003.
  • the communication device 1300 may be used to implement the function of the first IAB node in Figure 11.
  • the receiving module 1301 may be used to execute S1101, and the sending module 1302 may be used to execute S1104.
  • the receiving module 1301 may also be used to execute S1103.
  • the communication device 1300 may be used to implement the function of the first IAB node in Figure 12.
  • the receiving module 1301 may be used to execute S1201
  • the sending module 1302 may be used to execute S1203.
  • the processing module 1303 may also be used to execute S1202.
  • the communication device 1300 includes a receiving module 1301.
  • the communication device 1300 also includes a sending module 1302 and a processing module 1303.
  • the communication device 1300 can be used to implement the function of the second IAB node described above, such as the function of the second IAB node in any of FIG. 7 , FIG. 9 to FIG. 12 . Accordingly, the communication device 1300 can implement the steps performed by the second IAB node.
  • the communication device 1300 may be used to implement the function of the second IAB node in FIG. 7.
  • the receiving module 1301 may be used to execute S702.
  • the processing module 1303 may be used to control the receiving module 1301 to execute S702, and may also be used to determine that the communication quality between the first IAB node and the second IAB node meets the first condition, and/or the communication quality between the first IAB node and the third IAB node meets the second condition.
  • the sending module 1302 may be used to send the first information to the first IAB node.
  • the communication device 1300 may be used to implement the function of the second IAB node in Figure 9.
  • the sending module 1302 may be used to execute S902, and the receiving module 1301 may be used to execute S904.
  • the sending module 1302 may also be used to execute S903, and the processing module 1303 may also be used to execute the step of S902.
  • the communication device 1300 may be used to implement the function of the second IAB node in Figure 10.
  • the sending module 1302 may be used to execute S1001
  • the receiving module 1301 may be used to execute S1004.
  • the communication device 1300 may be used to implement the function of the second IAB node in Figure 11.
  • the receiving module 1301 may be used to execute S1104.
  • the communication device 1300 may be used to implement the function of the second IAB node in Figure 12.
  • the sending module 1302 is used to execute S1201
  • the receiving module 1301 is used to execute S1203.
  • the communication device 1300 includes a sending module 1302.
  • the communication device 1300 also includes a receiving module 1301 and a processing module 1303.
  • the communication device 1300 can be used to implement the functions of the above-mentioned network device, such as the functions of any of the network devices in FIG. 7 or FIG. 11. Accordingly, the communication device 1300 can implement the steps executed by the network device.
  • the communication device 1300 may be used to implement the functions of the network device in FIG. 7.
  • the sending module 1302 is used to send the first information to the first IAB node.
  • the receiving module 1301 is used to receive the first measurement result and/or the third measurement result.
  • the processing module 1303 may be used to The control sending module 1302 and receiving module 1301 perform corresponding functions.
  • the processing module 1303 may also be used to determine whether the communication quality between the first IAB node and the second IAB node meets the first condition, and/or whether the communication quality between the first IAB node and the third IAB node meets the second condition.
  • the communication device 1300 may be used to implement the functions of the network device in Figure 11.
  • the sending module 1302 is used to execute S1101 and S1103, and the processing module 1303 is used to execute S1102.
  • the communication device 1400 includes a processor 1401 and a communication interface 1402.
  • the processor 1401 and the communication interface 1402 are coupled to each other.
  • the communication interface 1402 can be a transceiver or an input-output interface.
  • the processor 1401 and the communication interface 1402 can implement any of the communication methods described above, such as any of the communication methods in Figures 7, 9 to 12.
  • the communication device 1400 can also implement the functions of the communication device 1300 in the above text.
  • the communication device 1400 may also include a memory 1403 for storing instructions executed by the processor 1401 or storing input data required for the processor 1401 to run the instructions or storing data generated after the processor 1401 runs the instructions.
  • the memory 1403 and the processor 1401 can be coupled.
  • the processor 1401 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the communication device 1400 may be used to implement the function of the first IAB node described above, and accordingly, the steps performed by the first IAB node may also be implemented.
  • the communication device 1400 may be used to implement the function of the second IAB node described above, and accordingly, the steps performed by the second IAB node may also be implemented.
  • the communication device 1400 may be used to implement the function of the network device described above, and accordingly, the steps performed by the network device may also be implemented.
  • An embodiment of the present application provides a communication system, which includes any of the first IAB nodes and the second IAB nodes described above.
  • the first IAB node is, for example, any of the first IAB nodes in Figures 7, 9 to 12
  • the second IAB node is, for example, any of the second IAB nodes in Figures 7, 9 to 12.
  • the functions of the first IAB node and the second IAB node can refer to the above.
  • An embodiment of the present application provides a communication system, which includes any of the first IAB nodes, second IAB nodes, and network devices described above.
  • the first IAB node is, for example, any of the first IAB nodes in Figures 7, 9 to 12
  • the second IAB node is, for example, any of the second IAB nodes in Figures 7, 9 to 12
  • the network device is, for example, any of the network devices in Figures 7 or 12.
  • the functions of the first IAB node, the second IAB node, and the network device can all refer to the above.
  • the embodiment of the present application provides a chip system, which includes: a processor and an interface.
  • the processor is used to call and run instructions from the interface, and when the processor executes the instructions, it implements any of the communication methods described in the foregoing, such as any of the communication methods described in Figures 7, 9 to 12.
  • An embodiment of the present application provides a computer-readable storage medium, which is used to store computer programs or instructions.
  • the computer-readable storage medium When executed, it implements any of the communication methods described in the foregoing, such as any of the communication methods described in Figures 7, 9 to 12.
  • An embodiment of the present application provides a computer program product including instructions, which, when executed on a computer, implements any of the communication methods described above, such as any of the communication methods described in FIG. 7 and FIG. 9 to FIG. 12 .
  • the method steps in the embodiments of the present application can be implemented by hardware, or by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an erasable programmable read-only memory, an electrically erasable programmable read-only memory, a register, a hard disk, a mobile hard disk, a CD-ROM, or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a base station or a terminal.
  • the processor and the storage medium can also be present in a base station or a terminal as discrete components.
  • all or part of the embodiments can be implemented by software, hardware, firmware or any combination thereof.
  • all or part of the embodiments can be implemented in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions. When the computer program or instructions are loaded and executed on a computer, the process or function described in the embodiments of the present application is executed in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer program or instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instructions can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wire or wirelessly.
  • the computer The machine-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; an optical medium, such as a digital video disk; or a semiconductor medium, such as a solid-state hard disk.
  • the computer-readable storage medium may be a volatile or non-volatile storage medium, or may include both volatile and non-volatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,涉及通信技术领域。所述方法包括:第一IAB节点接收第一信息,所述第一信息包括第一随机接入资源;在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第二IAB节点发送第一随机接入请求,其中,所述第一随机接入请求用于所述第一IAB节点的MT请求接入第二IAB节点的分布式单元DU,所述第二IAB节点为所述第一IAB节点的子节点。如此,使得第一IAB节点的MT和第二IAB节点的DU之间可以建立连接,相当于增加了第一IAB节点和第二IAB节点之间的回传链路,提高第一IAB节点和第二IAB节点所在系统的可靠性。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年10月31日提交中国专利局、申请号为202211350983.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
集成接入回传(integrated access backhaul,IAB)系统包括终端设备、IAB节点和宿主节点。IAB节点可以为终端设备提供无线接入服务,并通过回传链路连接到宿主节点(donor node)传输用户的业务数据。在IAB系统中包括IAB节点,使得终端设备能够通过IAB节点与宿主节点通信,有利于提升网络的容量。
在IAB节点与该IAB节点的父节点(也可称为IAB节点的上游IAB节点)之间的回传链路异常的情况下,终端设备可能无法从宿主节点成功接收下行数据或者无法成功向宿主节点发送上行数据。由此可见,IAB系统的通信可靠性较低。
发明内容
本申请实施例提供一种通信方法及装置,用于提高IAB系统通信的可靠性。
第一方面,本申请实施例提供一种通信方法,该方法可由第一IAB节点执行,或者可以具有该第一IAB节点的功能的模块(如芯片)执行。为了便于描述,下文以第一IAB节点执行该方法为例进行说明。该方法包括:接收第一信息,所述第一信息包括第一随机接入资源;在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第二IAB节点发送第一随机接入请求,其中,所述第一随机接入请求用于所述第一IAB节点的MT请求接入第二IAB节点的分布式单元DU,所述第二IAB节点为所述第一IAB节点的子节点。
本申请实施例中,第一IAB节点的MT和第二IAB节点的DU之间可以建立连接,如此相当于增加了第一IAB节点和第二IAB节点之间的通信链路,当第一IAB节点与其他IAB节点的回传链路的质量下降或者发生中断后,使得第一IAB节点的MT可通过与第二IAB节点的DU建立的连接传输数据,因此第一IAB节点不用频繁地进行小区重选或者小区切换,减少甚至避免服务中断或者数据包丢失以及切换信令流程开销,提升业务传输的鲁棒性,有利于提高IAB系统通信的可靠性。例如,第一IAB节点与第一IAB节点的父节点之间的回传链路异常,第一IAB节点的MT可将需发送给第一IAB节点的父节点的数据通过第二IAB节点的DU转发,如此,可降低或避免数据丢失的情况,从而提高IAB系统的通信可靠性。
在一种可能的实施方式中,在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第二IAB节点发送第一随机接入请求之前,所述方法还包括:在第二随机接入资源上,接收来自所述第二IAB节点的第二随机接入请求,所述第二随机接入请求用于所述第二IAB节点的MT请求接入所述第一IAB节点的DU,所述第二随机接入资源包括的时域资源与所述第一随机接入资源包括的时域资源不同。其中,所述第二随机接入资源包括的时域资源与所述第一随机接入资源包括的时域资源不同可包括所述第二随机接入资源包括的时域资源与所述第一随机接入资源包括的时域资源不完全重叠,或者完全不重叠。
在上述实施方式中,第二IAB节点的MT也可向第一IAB节点的DU发起随机接入过程,如此,使得第一IAB节点和第二IAB节点之间相当于存在两条可用的通信链路,也有利于提高IAB系统的通信可靠性。并且,由于第一随机接入资源与第二随机接入资源不同,这避免了两个随机接入过程(即第一随机接入请求对应的随机接入过程以及第二随机接入请求对应的随机接入过程)的冲突,有利于提高这两个随机接入过程的成功率。
在一种可能的实施方式中,在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第 二IAB节点发送第一随机接入请求之前,所述方法还包括:确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。
在上述实施方式中,第一IAB节点可以是在确定第一IAB节点与第二IAB节点之间的通信质量满足一定条件(如相对好)的情况下,向第二IAB节点的DU发起随机接入过程,这样有利于提高第一IAB节点的MT和第二IAB节点的DU之间的随机接入的成功率,以及在一定程度上保证了第一IAB节点的MT和第二IAB节点的DU建立的通信链路的通信质量较好。另外,第一IAB节点也可以是在确定第三IAB节点与第一IAB节点之间的通信质量满足一定条件(如相对差)的情况下,向第二IAB节点的DU发起随机接入过程,不仅有利于提高IAB系统的通信可靠性,还使得第一IAB节点的MT和第二IAB节点的DU建立的通信链路被用于转发数据的可能性较高,也就有利于提高IAB系统的资源利用率。
在一种可能的实施方式中,所述第一条件包括:第一测量结果大于或等于第一阈值,所述第一测量结果指示所述第二IAB节点到所述第一IAB节点的通信链路的通信质量,所述第一测量结果为所述第一IAB节点的测量结果;和/或,第二测量结果大于或等于第二阈值,所述第二测量结果指示所述第一IAB节点到所述第二IAB节点的通信链路的通信质量,所述第二测量结果为所述第二IAB节点的测量结果。
在上述实施方式中,提供第一条件的多种可能,丰富了第一条件的实现形式。并且,上述第一条件均表示第一IAB节点和第二IAB节点之间的通信质量相对好,这有利于提高第一IAB节点和第二IAB节点之间的建立随机接入的成功率,在一定程度上保证了第一IAB节点的MT和第二IAB节点的DU之间的通信链路的可靠性。
在一种可能的实施方式中,所述第二条件包括:第三测量结果小于或等于第三阈值,所述第三测量结果指示所述第三IAB节点到所述第一IAB节点的通信链路的通信质量,所述第三测量结果为所述第一IAB节点的测量结果;和/或,第四测量结果小于或等于第四阈值,所述第四测量结果指示所述第一IAB节点到所述第三IAB节点的通信链路的通信质量,所述第四测量结果为所述第三IAB节点的测量结果;和/或,所述第一IAB节点与所述第三IAB节点之间的波束失败或通信链路故障。
在上述实施方式中,提供第二条件的多种可能,丰富了第二条件的实现形式。并且,上述第二条件均表示第一IAB节点和第三IAB节点之间的通信质量相对差,这使得第一IAB节点的MT和第二IAB节点的DU之间的通信链路可提高IAB系统的通信可靠性,并且使得第一IAB节点的MT和第二IAB节点的DU之间的通信链路被使用的可能性较大,从而避免或减少第一IAB节点的MT和第二IAB节点的DU之间的通信链路被闲置,浪费IAB系统的资源的情况。
在一种可能的实施方式中,第一信息还包括所述第一阈值、所述第二阈值、所述第三阈值和所述第四阈值中的一种或多种。
在上述实施方式中,第一信息可包括多个信息(如第一随机接入资源和阈值),这有利于减少IAB系统中的第一IAB节点与其他设备(如网络设备或第二IAB节点等)的交互次数。
在一种可能的实施方式中,在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第二IAB节点发送第一随机接入请求之前,所述方法还包括:接收来自所述第二IAB节点、第三IAB节点或网络设备的第一指示信息,所述第一指示信息指示所述第一IAB节点的MT向所述第一IAB节点的子节点发起随机接入,所述第三IAB节点为所述第一IAB节点的父节点,所述第一IAB节点的子节点包括所述第二IAB节点;或,确定所述第一IAB节点的DU与所述第二IAB节点已完成随机接入过程。
在上述实施方式中,提供了多种触发第一IAB节点的MT向第二IAB节点发送第一随机接入请求的条件,例如,第一IAB节点接收第二IAB节点、第三IAB节点或网络设备的第一指示信息,或者,第一IAB节点确定第一IAB节点的DU与第二IAB节点已完成随机接入过程,也就是说,第一IAB节点是在一定条件下才会向第二IAB节点发送第一随机接入请求,避免了第一IAB节点在非必要的情况下向第二IAB节点,浪费IAB系统的资源的情况,使得IAB系统的资源利用更合理。并且,第一IAB节点确定第一IAB节点的DU与第二IAB节点已完成随机接入过程的情况下,向第二IAB节点的DU发起随机接入过程,可无需其他设备的指示,有利于第一IAB节点能够更及时地向第二IAB节点的DU发起随机接入过程,有利于第一IAB节点的MT更及时地与第二IAB节点的DU建立连接,以更及时 地提高IAB系统的通信可靠性。
在一种可能的实施方式中,在接收来自所述第二IAB节点、第三IAB节点或网络设备的第一指示信息之前,所述方法还包括:向所述第二IAB节点、所述第三IAB节点或所述网络设备发送第一测量结果,所述第一测量结果指示所述第二IAB节点至所述第一IAB节点之间的通信链路的通信质量,所述第一测量结果为所述第一IAB节点的测量结果;和/或,向所述第二IAB节点、所述第三IAB节点或所述网络设备发送第三测量结果,所述第三测量结果指示所述第三IAB节点至所述第一IAB节点之间的通信链路的通信质量,所述第三测量结果为所述第一IAB节点的测量结果。
在上述实施方式中,第一IAB节点可在确定第一测量结果和/或第三测量结果之后,向其他设备(如第二IAB节点、第三IAB节点或网络设备)发送第一测量结果,使得其他设备可确定第一IAB节点和第二IAB节点之间的通信质量是否满足第一条件,如此,无需第一IAB节点判断是否满足第一条件和/或第二条件,有利于相对减少第一IAB节点的处理量。并且,其他设备(如第二IAB节点、第三IAB节点或网络设备)可以综合网络状态(如网络的拥塞情况),对第一IAB节点的MT和第二IAB节点是否建立连接做出判断,有利于提升IAB系统整体的性能。
在一种可能的实施方式中,所述第一信息是所述第一IAB节点从网络设备或所述第二IAB节点接收的。
在上述实施方式中,提供了第一IAB节点接收第一信息的几种方式,例如,第一IAB节点可从网络设备接收第一信息,或者,从第二IAB节点接收第一信息,丰富了第一IAB节点接收第一信息的方式。并且,由网络设备或第二IAB节点确定第一随机接入资源,使得网络设备或第二IAB节点可以更合理地确定第一随机接入资源,以及第二随机接入资源等,有利于避免第一随机接入资源和第二随机接入资源的冲突。
在一种可能的实施方式中,所述第一信息被携带在所述第一IAB节点的MT的配置信息或高层信令中。
在上述实施方式中,例如,第一IAB节点从网络设备接收第一信息,那么第一信息可被携带在第一IAB节点的MT的配置信息或高层信令中,使得网络设备可复用第一IAB节点的MT的配置信息或高层信令发送第一信息,减少第一IAB节点和网络设备之间的交互次数。
在一种可能的实施方式中,所述第一信息被携带在第一消息、第三消息或回传自适应协议控制协议数据单元中,所述第一消息和所述第三消息均为所述第二IAB节点的MT向所述第一IAB节点的DU发起随机接入过程中的消息。
在上述实施方式中,例如,第一IAB节点从第二IAB节点接收第一信息,那么第一信息可被携带在第一消息、第三消息或回传自适应协议控制协议数据单元中,使得第二IAB节点可复用第一消息、第三消息或回传自适应协议控制协议数据单元发送第一信息,减少第一IAB节点和第二IAB节点之间的交互次数。并且,第二IAB节点的MT向所述第一IAB节点的DU发起随机接入过程中,可通过第一消息或第三消息指示第一随机接入资源,使得第一IAB节点能够更及时地获得第一随机接入资源。
第二方面,本申请实施例提供一种通信方法,该方法可由第二IAB节点执行,或者可以具有该第二IAB节点的功能的模块(如芯片)执行。为了便于描述,下文以第二IAB节点执行该方法为例进行说明。该方法包括:在第一随机接入资源上,接收来自第一IAB节点第一随机接入请求,所述第一随机接入请求用于所述第一IAB节点的MT请求接入所述第二IAB节点的DU。
在一种可能的实施方式中,在第一随机接入资源上,接收来自第一IAB节点第一随机接入请求之前,所述方法还包括:向第一IAB节点发送第一信息,所述第一信息包括第一随机接入资源,所述第二IAB节点为所述第一IAB节点的子节点;
在一种可能的实施方式中,在向第一IAB节点发送第一信息之前,所述方法还包括:接收来自网络设备或第四IAB节点的第二信息,所述第二信息包括所述第一随机接入资源,所述第四IAB节点为所述第二IAB节点的父节点。在上述实施方式中,提供第二IAB节点获得第一随机接入资源的几种方式。
在一种可能的实施方式中,在所述第一随机接入资源上,接收来自第一IAB节点第一随机接入请求之前,所述方法还包括:接收第三信息,所述第三信息包括第二随机接入资源;在所述第二随机接入资源上,接收来自所述第一IAB节点的第二随机接入请求,所述第二随机接入资源包括的时域资源与所述第一随机接入资源包括的时域资源不同。
在一种可能的实施方式中,在所述第一随机接入资源上,接收来自第一IAB节点第一随机接入请求之前,所述方法还包括:向所述第一IAB节点发送第一指示信息,所述第一指示信息指示所述第一IAB节点的MT向所述第二IAB节点发起随机接入。
在一种可能的实施方式中,在所述第一随机接入资源上,接收来自第一IAB节点第一随机接入请求之前,所述方法还包括:确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。
在一种可能的实施方式中,所述第一条件包括:第一测量结果大于或等于第一阈值,所述第一测量结果指示所述第二IAB节点到所述第一IAB节点的通信链路的通信质量,所述第一测量结果为所述第一IAB节点的测量结果;和/或,第二测量结果大于或等于第二阈值,所述第二测量结果指示所述第一IAB节点到所述第二IAB节点的通信链路的通信质量,所述第二测量结果为所述第二IAB节点的测量结果。
在一种可能的实施方式中,所述第二条件包括:第三测量结果小于或等于第三阈值,所述第三测量结果指示所述第三IAB节点到所述第一IAB节点的通信链路的通信质量,所述第三测量结果为所述第一IAB节点的测量结果;和/或,第四测量结果小于或等于第四阈值,所述第四测量结果指示所述第一IAB节点到所述第三IAB节点的通信链路的通信质量,所述第四测量结果为所述第三IAB节点的测量结果;和/或,所述第一IAB节点与所述第三IAB节点之间的波束失败或通信链路故障。
在一种可能的实施方式中,在向所述第一IAB节点发送第一指示信息之前,所述方法还包括:接收来自第三IAB节点或网络设备的第二指示信息,所述第二指示信息指示所述第二IAB节点的DU与所述第二IAB节点的父节点建立连接,所述第三IAB节点为所述第一IAB节点的父节点,所述第二IAB节点的父节点包括所述第一IAB节点。
在一种可能的实施方式中,所述第一信息被携带在第一消息、第三消息或回传自适应协议控制协议数据单元中,所述第一消息和所述第三消息均为所述第二IAB节点的MT向所述第一IAB节点的DU发起随机接入过程中的消息。
第三方面,本申请实施例提供一种通信方法,该方法可由网络设备执行,或者可以具有该网络设备的功能的模块(如芯片)执行。为了便于描述,下文以网络设备执行该方法为例进行说明。该方法包括:向第一IAB节点发送第一信息,所述第一信息包括第一随机接入资源,所述第一随机接入资源用于所述第一IAB节点的MT向第二IAB节点的DU发起随机接入,所述第二IAB节点为所述第一IAB节点的子节点;或,向第二IAB节点发送第二信息,所述第二信息包括第一随机接入资源,所述第一随机接入资源用于所述第二IAB节点的DU接收来自所述第一IAB节点的MT的第一随机接入请求,所述第二IAB节点为所述第一IAB节点的子节点。
在一种可能的实施方式中,所述方法还包括:向所述第一IAB节点发送第一指示信息,所述第一指示信息指示所述第一IAB节点的MT向所述第一IAB节点的子节点发起随机接入,所述第一IAB节点的子节点包括所述第二IAB节点。
在一种可能的实施方式中,在向所述第一IAB节点发送第一指示信息之前,所述方法还包括:确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。
在一种可能的实施方式中,所述第一条件包括:第一测量结果大于或等于第一阈值,所述第一测量结果指示所述第二IAB节点到所述第一IAB节点的通信链路的通信质量,所述第一测量结果为所述第一IAB节点的测量结果;和/或,第二测量结果大于或等于第二阈值,所述第二测量结果指示所述第一IAB节点到所述第二IAB节点的通信链路的通信质量,所述第二测量结果为所述第二IAB节点的测量结果。
在一种可能的实施方式中,第三测量结果小于或等于第三阈值,所述第三测量结果指示所述第三IAB节点到所述第一IAB节点的通信链路的通信质量,所述第三测量结果为所述第一IAB节点的测量结果;和/或,第四测量结果小于或等于第四阈值,所述第四测量结果指示所述第一IAB节点到所述第三IAB节点的通信链路的通信质量,所述第四测量结果为所述第三IAB节点的测量结果;和/或,所述第一IAB节点与所述第三IAB节点之间的波束失败或通信链路故障。
在一种可能的实施方式中,所述第一信息被携带在所述第一IAB节点的MT的配置信息或高层信 令中。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为上述第一方面中的第一IAB节点,或者为配置在第一IAB节点中的电子设备(例如,芯片系统)。所述通信装置包括用于执行上述第一方面或任一可能的实施方式的相应的手段(means)或模块。例如,该通信装置包括接收模块(有时也称为接收单元),以及发送模块(有时也称为发送单元)。可选的,接收模块和发送模块可耦合设置。例如,接收模块,用于接收第一信息,所述第一信息包括第一随机接入资源;发送模块,用于在所述第一随机接入资源上,所述装置的MT向第二IAB节点发送第一随机接入请求,其中,所述第一随机接入请求用于所述装置的MT请求接入第二IAB节点的分布式单元DU,所述第二IAB节点为所述装置的子节点。
在一种可能的实施方式中,所述通信装置还包括处理模块(有时也称为处理单元),所述处理模块例如,用于确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。在一种可能的实施方式中,该通信装置包括存储模块(有时也称为存储单元),存储模块可用于存储程序或指令。
第五方面,本申请实施例提供一种通信装置,该通信装置可以为上述第二方面中的第二IAB节点,或者为配置在第二IAB节点中的电子设备(例如,芯片系统)。所述通信装置包括用于执行上述第二方面或任一可能的实施方式的相应的手段(means)或模块。例如,该通信装置包括接收模块(有时也称为接收单元)。可选的,所述通信装置还包括发送模块(有时也称为发送单元)和处理模块(有时也称为处理单元)。可选的,接收模块和发送模块可耦合设置。例如,接收模块,用于在第一随机接入资源上,接收来自第一IAB节点第一随机接入请求,所述第一随机接入请求用于所述第一IAB节点的MT请求接入所述装置的DU。
可选的,发送模块,用于向第一IAB节点发送第一信息,所述第一信息包括第一随机接入资源,所述装置为所述第一IAB节点的子节点。可选的,所述处理模块例如,用于确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。在一种可能的实施方式中,该通信装置包括存储模块(有时也称为存储单元),存储模块可用于存储程序或指令。
第六方面,本申请实施例提供一种通信装置,该通信装置可以为上述第三方面中的网络设备,或者为配置在具有网络设备的功能的芯片系统。所述通信装置包括用于执行上述第三方面或任一可能的实施方式的相应的手段(means)或模块。例如,该通信装置包括发送模块(有时也称为发送单元)。可选的,所述通信装置还包括接收模块(有时也称为接收单元)和处理模块(有时也称为处理单元)。可选的,接收模块和发送模块可耦合设置。例如,发送模块,用于向第一IAB节点发送第一信息,所述第一信息包括第一随机接入资源,所述第一随机接入资源用于所述第一IAB节点的MT向第二IAB节点的DU发起随机接入,所述第二IAB节点为所述第一IAB节点的子节点;或,发送模块,用于向第二IAB节点发送第二信息,所述第二信息包括第一随机接入资源,所述第一随机接入资源用于所述第二IAB节点的DU接收来自所述第一IAB节点的MT的第一随机接入请求,所述第二IAB节点为所述第一IAB节点的子节点。
可选的,所述处理模块例如,用于确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。在一种可能的实施方式中,该通信装置包括存储模块(有时也称为存储单元),存储模块可用于存储程序或指令。
第七方面,本申请实施例提供一种通信系统,所述通信系统包括上述第四方面或任一可能的实施方式的所述的通信装置和上述第五方面或任一可能的实施方式的所述的通信装置。
第八方面,本申请实施例提供一种通信系统,所述通信系统包括上述第四方面或任一可能的实施方式的所述的通信装置、上述第五方面或任一可能的实施方式的所述的通信装置和上述第六方面或任一可能的实施方式的所述的通信装置。
第九方面,本申请实施例提供一种通信装置,包括:处理器和存储器;所述存储器用于存储一个或多个计算机程序,所述一个或多个计算机程序包括计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述一个或多个计算机程序,以使得所述通信装置执行如第一方面至第三方面 中任一项所述的方法。可选的,该通信装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第十方面,本申请实施例提供一种芯片系统,该芯片系统包括:处理器和接口。其中,该处理器用于从该接口调用并运行指令,当该处理器执行该指令时,实现上述第一方面至第三方面中任一项所述的方法。
第十一方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序或指令,当其被运行时,实现上述第一方面至第三方面中任一项所述的方法。
第十二方面,本申请实施例提供一种包含指令的计算机程序产品,当所述指令被通信装置运行时,使得所述通信装置执行上述第一方面至第三方面中任一项所述的方法。
第十三方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,实现上述第一方面至第三方面中任一项所述的方法。
关于第二方面至第十三方面的有益效果,可参照第一方面论述的有益效果,此处不再列举。
附图说明
图1为本申请实施例适用的一种场景的示意图;
图2为本申请实施例适用的一种IAB系统的结构示意图;
图3为本申请实施例适用的一种IAB系统中的IAB节点的几种协议栈架构的示意图;
图4为本申请实施例适用的一种IAB系统中的各个部分的用户面协议栈架构的示意图;
图5为本申请实施例适用的一种IAB系统中的各个部分的控制面协议栈架构的示意图;
图6为本申请实施例适用的另一种场景的示意图;
图7为本申请实施例提供的一种通信方法的流程示意图;
图8为本申请实施例提供的又一种IAB系统的结构示意图;
图9至图12为本申请实施例提供的四种通信方法的流程示意图;
图13和图14为本申请实施例提供的两种通信装置的架构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、终端设备,是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),则可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
2、网络设备,例如包括接入网设备(或称为接入网网元),和/或核心网设备(或,称为核心网网元)。
接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于上述通信系统中的基站(BTS,Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(t(R)ANsmission reception point,TRP),3GPP后续演进的基站,无线保真(wireless fidelity,WiFi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。网络设备还可以是云无线接入网络(cloud radio access  network,C(R)AN)场景下的无线控制器、集中单元(centralized unit,CU),又可以称为汇聚单元,和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。所述通信系统中的多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。
核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能中的至少一项。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以第五代移动通信技术(5th generation,5G)系统为例,所述核心网设备包括:接入和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、PCF或用户面功能(user plane function,UPF)等。
3、IAB节点,为终端设备提供无线接入服务的无线接入点。IAB节点包括分布单元(distributed unit,DU)和移动终端(mobile terminal,MT)。MT也可以理解为在IAB节点存在类似终端设备的一个组件。DU是相对网络设备的集中单元(centralized unit,CU)功能而言的。IAB节点包括MT和DU也可以描述为:IAB节点包括MT功能和DU功能,或者IAB节点具有MT角色和DU角色。IAB节点的MT可用于该IAB节点与该IAB节点的父节点通信,IAB节点的DU可用于该IAB节点与该IAB节点的子节点通信。IAB节点的MT与DU均可具有完整的收发模块。MT与DU可均为逻辑模块,IAB节点的MT与DU可以共享IAB节点的硬件模块,例如可共享该IAB节点的收发天线和基带处理模块等。IAB节点具体可通过小站、用户驻地设备(customer premises equipment,CPE)或家庭网关(residential gateway,RG)等实现。
4、宿主节点(donor node),为终端设备提供核心网接口,以及为IAB节点提供无线回传功能的无线接入点。宿主节点是接入到核心网的节点,是无线接入网中的网络设备,例如,宿主节点为IAB系统中的基站、宿主基站(donor base station)或锚点基站。宿主节点可用于负责分组数据汇聚协议(packet data convergence protocol,PDCP)层的数据处理,负责接收核心网的数据并转发给IAB节点,以及接收IAB节点的数据并转发给核心网等。宿主节点例如可为无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)或基带单元(base band unit,BBU)等,也可以包括新空口(new radio,NR)系统中的下一代节点B(next generation node B,gNB)等。宿主节点可包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU)。宿主节点还可以是以用户面(user plane,UP)(可简称为CU-UP)和控制面(control plane,CP)(可简称为CU-CP)分离的形态存在,即宿主节点包括CU-CP和CU-UP。一个宿主节点可包括一个CU-CP和至少一个CU-UP。例如,宿主节点通过gNB实现,相应的,一个gNB可以包括一个gNB-CU-CP和至少一个gNB-CU-UP。或者,宿主节点通过IAB系统中的Donor-CU实现,相应的,一个Donor-CU可以包括一个Donor-CU-CP和至少一个Donor-CU-UP。可选的,宿主节点可以视为一种特殊的IAB节点,宿主节点也可视为一种网络设备。
5、链路,是指一条传输路径中的两个相邻节点之间的路径,节点例如为IAB节点。传输路径在下文可简称为路径。
6、节点的上一跳节点,是指在包含该节点的路径中的、以及在该节点之前最后一个接收到数据的节点。
7、节点的下一跳节点,是指在包含该节点的路径中的、以及在该节点之后第一个接收到数据的节点。
8、节点的入口链路,是指节点与该节点的上一跳节点之间的链路,也可以称为该节点的上一跳链路。
9、节点的出口链路,是指节点与该节点的下一跳节点之间的链路,也可以称为该节点的下一跳链路。
10、接入IAB节点,接入IAB节点是指终端设备接入的IAB节点。
11、中间IAB节点,为其他IAB节点(例如,接入IAB节点或其他中间IAB节点)提供无线回传服务的IAB节点。
其中,接入IAB节点和中间IAB节点相对于某个终端设备而言的。例如,IAB节点1相对于终端设备1可能是接入IAB节点,但IAB节点1相对于终端设备2可能是中间节点。换言之,一个IAB节点是接入IAB节点还是中间IAB节点,需根据应用场景确定。
12、半双工约束(half duplex constraint,HDC),是指IAB节点的MT在进行发送时,该IAB节点的DU不能进行接收。类似的,该IAB节点的DU进行发送时,该IAB节点的MT不能接收。
13、物理随机接入信道(physical random access channel,PRACH),用于传输随机接入信道(random access channel,RACH)。PRACH与RACH可具有映射关系。PRACH包括上行随机接入信道。IAB节点或终端设备接收到快速物理接入信道(fast physical access channel,FPACH)响应消息后,可根据宿主节点的指示在PRACH信道发送无线资源控制连接请求(radio resource control connection request,RRC Connection Request)消息,建立RRC连接。如果有多个PRACH信道,IAB节点或终端设备可选择一个PRACH信道。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
为了提高频谱利用率,未来的基站部署将会更加密集。但基站与核心网一般是通过光纤连接,因此部署大量的基站,则需要部署大量的光纤,而光纤的部署成本非常高昂,因此可通过IAB方案节省部分光纤部署的成本。在IAB方案下,IAB节点可通过无线接入链路(access link,AL)为终端设备提供无线接入服务,IAB节点可通过无线回传链路(backhaul link,BL)连接到宿主节点,以传输来自终端设备的数据。其中,无线接入链路在下文简称为接入链路,无线回传链路也在下文简称为回传链路。
请参照图1,为本申请实施例适用的一种场景的示意图。或者,图1可理解为一种IAB系统的架构示意图。如图1所示,该场景包括终端设备、一个或多个IAB节点、宿主节点和核心网。图1中是一个或多个IAB节点包括第一IAB节点、第二IAB节点、第三IAB节点和第四IAB节点为例。
一个或多个IAB节点可为终端设备提供无线接入服务,以及可通过回传链路连接到宿主节点。宿主节点可为一个或多个IAB节点提供无线回传功能,从而使得一个或多个IAB节点服务的终端设备与核心网通信。例如,在独立组网(standalone,SA)的5G通信系统中,一个或多个IAB节点中的任一IAB节点可经宿主节点通过有线链路连接到5G通信系统的核心网(5G core,5GC)。在非独立组网(non-standalone,NSA)的5G通信系统中,一个或多个IAB节点中的任一IAB节点可在控制面经eNB连接到演进分组核心网(evolved packet core,EPC),以及在用户面经宿主节点以及eNB连接到EPC。
为了保证业务传输的可靠性,IAB系统支持多跳IAB节点组网。相应的,终端设备和宿主节点之间可能存在多条路径。在一条路径上,多个IAB节点之间,以及为多个IAB节点服务的宿主节点存在明确的层级关系。
其中,一个IAB节点可将为所述一个IAB节点提供回传服务的节点视为父节点,或者可以理解为,更靠近一个IAB节点的宿主节点的相邻上游(或上级)节点被称为所述一个IAB节点的父节点,或者可以理解为一个IAB节点的MT连接的IAB节点为所述一个IAB节点的父节点。相应地,一个IAB节点可视为该IAB节点的父节点的子节点,或者可以理解为,远离一个IAB节点的宿主节点的相邻下游(下级)节点被称为所述一个IAB节点的子节点,或者可以理解为一个IAB节点的DU连接的IAB节点为所述一个IAB节点的子节点。
例如,如图1所示,第二IAB节点的父节点包括第一IAB节点和第四IAB节点,换言之,第一IAB节点和第四IAB节点的子节点均包括第二IAB节点。第一IAB节点的父节点包括第三IAB节点,换言之,第三IAB节点的子节点包括第一IAB节点。第四IAB节点和第三IAB节点的父节点均包括宿主节点,换言之,宿主节点的子节点包括第四IAB节点和第三IAB节点。
如上所述,在IAB系统中,终端设备和宿主节点之间的一条路径上,可以包含一个或多个IAB节点。一个或多个IAB节点中的每个IAB节点需要维护面向父节点的回传链路(父链路),还需要维护面向子节点的无线链路(子链路)。若一个IAB节点是终端设备接入的节点,所述一个IAB节点和子节点 (即终端设备)之间是接入链路。若一个IAB节点是为其他IAB节点提供回传服务的节点,所述一个IAB节点和子节点(即其他IAB节点)之间是回传链路。如图1所示,终端设备通过接入链路接入第二IAB节点,第二IAB节点通过回传链路接入第四IAB节点,第四IAB节点通过回传链路接入宿主节点。另外,第二IAB节点可通过回传链路接入第一IAB节点,第一IAB节点通过回传链路接入第三IAB节点,第三IAB节点通过回传链路接入宿主节点。在图1中,以“AL”示意接入链路,以“BL”示意回传链路。
上行数据可以经一个或多个IAB节点传输至宿主节点,再由宿主节点传输至核心网中的设备(具体如移动网关设备),移动网关设备例如UPF网元。如图1所示,来自核心网的上行数据传输至核心网的路径包括两条,这两条路径具体为:终端设备→第二IAB节点→第四IAB节点→宿主节点→核心网,终端设备→第二IAB节点→第一IAB节点→第三IAB节点→宿主节点→核心网。
下行数据可由核心网传输至宿主节点,再经一个或多个IAB节点传输至终端设备。如图1所示,下行数据传输到终端设备的路径包括两条,这两条路径具体为:核心网→宿主节点→第四IAB节点→第二IAB节点→终端设备,核心网→宿主节点→第三IAB节点→第一IAB节点→第二IAB节点→终端设备。
图1中的第二IAB节点可视为接入IAB节点,第一IAB节点、第三IAB节点和第四IAB节点均可视为中间接入IAB节点。另外,在图1中是以终端设备的数量为1,IAB节点的数量为4,以及宿主节点的数量为1进行示例,实际不限制终端设备、IAB节点和宿主节点的数量。在一种可能的实施方式中,终端设备还可直接与宿主节点通信,在图1中并未示意。
图1中的任意两个IAB节点的结构可以是相同的,下面结合图2所示的IAB系统的结构示意图进行介绍。图2包括终端设备、第一IAB节点、第二IAB节点、第三IAB节点、第四IAB节点和宿主节点。图2中的第一IAB节点例如为图1中的第一IAB节点,第二IAB节点例如为图1中的第二IAB节点,第三IAB节点例如为图1中的第三IAB节点,第四IAB节点例如为图1中的第四IAB节点,以及宿主节点例如为图1中的宿主节点。
如图2所示,任一IAB节点可包括DU和MT,宿主节点可包括DU和CU。下面结合图2所示的IAB系统的结构示意图,对传输上行数据和下行数据的路径分别进行介绍。
传输上行数据的路径包括两条,这两条路径具体为:终端设备→第二IAB节点的DU→第二IAB节点的MT→第四IAB节点的DU→第四IAB节点的MT→宿主节点,终端设备→第二IAB节点的DU→第二IAB节点的MT→第一IAB节点的DU→第一IAB节点的MT→第三IAB节点的DU→第三IAB节点的MT→宿主节点。传输下行数据的路径包括两条,这两条路径具体为:宿主节点→第四IAB节点的MT→第四IAB节点的DU→第二IAB节点的MT→第二IAB节点的DU→终端设备,以及宿主节点→第三IAB节点的MT→第三IAB节点的DU→第一IAB节点的MT→第一IAB节点的DU→第二IAB节点的MT→第二IAB节点的DU→终端设备。
其中,宿主节点的CU和DU可通过F1接口相连。F1接口也可以称为F1*接口。CU和核心网之间可通过下一代(next generation,NG)接口相连。可选的,F1接口可包括控制面接口(F1-C)和用户面接口(F1-U)。
在未来通信中,IAB节点仍称为IAB节点,或者还可以有其他的名称,IAB节点的DU仍称为IAB节点的DU,或者还可以有其他的名称,以及IAB节点的MT仍称为IAB节点的MT,或者还可以有其他的名称,以及宿主节点仍称为宿主节点,或者还可以有其他的名称,本申请实施例对此不做限定。
下面结合图3所示的一种IAB系统中的IAB节点的几种协议栈架构的示意图,对IAB节点的协议栈架构进行举例说明。图3涉及中间IAB节点和接入IAB节点。中间IAB节点例如可为图1或图2中的第一IAB节点、第三IAB节点或第四IAB节点,接入IAB节点例如可为图1或图2中的第二IAB节点。
图3中(a)示意了中间IAB节点的一种协议栈架构的示意图。如图3中(a)所示,中间IAB节点的DU和MT的协议栈架构可相同,如图3中(a)所示,中间IAB节点的DU和MT的协议栈均包括适配(adapt)层(layer)、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层。
图3中(b)示意了另一种中间IAB节点的协议栈架构的示意图。如图3中(b)所示,中间IAB节点的DU和MT的协议栈架构也相同。与图3中(a)不同的是,图3中(b)的中间节点IAB的DU 和MT共享适配层。
图3中(c)示意了一种接入IAB节点的用户面的协议栈架构的示意图。如图3中(c)所示,接入IAB节点的MT和DU的用户面的协议栈架构不同。接入IAB节点的DU可与终端设备通信,因此接入IAB节点的DU的协议栈与终端设备的协议栈适配。示例性的,接入IAB节点的DU的用户面的协议栈包括通用分组无线业务隧道协议(general packet radio service tunnelling protocol-U,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层和网际协议(internet protocol,IP)层、RLC层、MAC层和PHY层。接入IAB节点的MT可与其他IAB节点通信,因此接入IAB节点的MT的协议栈可与中间IAB节点的协议栈适配。示例性的,接入IAB节点的MT的用户面的协议栈包括适配层、RLC层、MAC层和PHY层。
图3中(d)示意了一种接入IAB节点的控制面的协议栈架构的示意图。如图3中(d)所示,接入IAB节点的DU的控制面的协议栈包括F1应用协议(F1 application protocol,F1AP)、流控制传输协议(stream control transmission protocol,SCTP)层、IP层、RLC层、MAC层和PHY层。接入IAB节点的MT的控制面的协议栈包括适配层、RLC层、MAC层和PHY层等。
请参照图4,为IAB系统中的各个部分的用户面的协议栈架构的一种示意图。图4包括终端设备、第二IAB节点、第四IAB节点和宿主节点。图4中的终端设备例如为图1或图2所示的终端设备,第二IAB节点例如为图1或图2中的第二IAB节点,第四IAB节点例如为图1或图2中的第四IAB节点,宿主节点例如为图1或图2中的宿主节点。在图4中以第四IAB节点为中间IAB节点,以及以第二IAB节点为接入IAB节点为例。
如图4所示,终端设备的用户面的协议栈包括分组数据汇聚协议(packetdata convergence protocol,PDCP)层、RLC层、MAC层和PHY层。第二IAB节点的DU的用户面的协议栈包括GTP-U层、UDP层、IP层、RLC层、MAC层和PHY层。第二IAB节点的MT包括适配层、RLC层、MAC层和PHY层。第四IAB节点的DU和MT的用户面的协议栈均包括适配层、RLC层、MAC层和PHY层。宿主节点的DU的用户面的协议栈包括IP、L2层和L1层。L2层为链路层,例如,L2层可为开放式通信系统互联(open systems interconnection,OSI)参考模型中的数据链路层,可具体包括适配层、RLC层和MAC层。L1层可为OSI参考模型中的PHY层。宿主节点的CU的用户面的协议栈包括PDCP层、GTP-U层、UDP层、IP层、L2层和L1层。
其中,宿主节点的DU的用户面和CU的用户面之间可通过F1-U接口连接。F1-U接口的协议层包括IP层、UDP层、GTP-U层中的一个或多个。其中,F1接口的协议层可以理解为在F1接口上的通信协议层。可选的,F1-U接口的协议层还包括PDCP层和/或IP安全(IP Security,IPsec)层。
示例性的,如图4所示,任意相互通信的两个设备的用户面的协议栈可以相互适配,例如,终端设备的用户面的协议栈与第二IAB节点的DU的用户面的协议栈可适配,第二IAB节点的MT的用户面的协议栈和第四IAB节点的DU的用户面的协议栈适配,第二IAB节点的MT的用户面的协议栈和宿主节点的DU的用户面的协议栈适配,以及宿主节点的DU的用户面的协议栈和宿主节点的CU的用户面的协议栈适配。
请参照图5,为IAB系统中的各个部分的控制面的协议栈架构的一种示意图。图5包括终端设备、第二IAB节点、第四IAB节点和宿主节点。图5中的终端设备例如为图1或图2所示的终端设备,第二IAB节点例如为图1或图2中的第二IAB节点,第四IAB节点例如为图1或图2中的第四IAB节点,宿主节点例如为图1或图2中的宿主节点。在图5中以第四IAB节点为中间IAB节点,以及以第二IAB节点为接入IAB节点为例。
如图5所示,终端设备的控制面的协议栈包括无线资源控制(radio resource control,RRC)层、RLC层、MAC层和PHY层。第二IAB节点的DU的控制面的协议栈包括F1AP层、SCTP层、IP层、RLC层、MAC层和PHY层。第二IAB节点的MT的控制面的协议栈包括适配层、RLC层、MAC层和PHY层。第四IAB节点的DU和MT的控制面的协议栈均包括适配层、RLC层、MAC层和PHY层。宿主节点的DU的控制面的协议栈包括IP、L2层(具体可包括适配层、RLC层和MAC层)、L1层(具体可包括PHY层)。宿主节点的CU的控制面的协议栈包括RRC层、F1AP层、SCTP层、IP层、L2层和L1层。宿主节点的DU的控制面和CU的控制面之间可通过F1-C接口连接。F1-C接口的协议层包括IP层、F1AP层、SCTP层中的一个或多个。可选的,F1接口的控制面协议层还包括PDCP层、IPsec层和数据报文传输层安全(datagram transport layer security,DTLS)层中的一个或多个。
示例性的,如图5所示,任意两个相互通信的两个设备的控制面的协议栈可以相互适配,例如,终端设备的控制面的协议栈与第二IAB节点的DU的控制面的协议栈可适配,第二IAB节点的MT的控制面的协议栈和第四IAB节点的DU的控制面的协议栈适配,第二IAB节点的MT的控制面的协议栈和宿主节点的DU的控制面的协议栈适配,以及宿主节点的DU和宿主节点的CU的控制面的协议栈适配。
由于无回传链路容易受到阻塞,例如,诸如终端设备的移动,季节变化(树叶),由于恶劣天气条件(例如,雨,雪或冰雹),或者由于基础设施变化(例如,新建筑物),而且,上行数据和下行数据传输等负载分布不均匀等问题,均可能导致节点拥塞或回传链路拥塞等,可能造成上行数据或下行数据传输失败的情况。由此可见,IAB系统的通信可靠性有待提高。
以传输上行数据为例,上行数据的目的地址是宿主节点,以及继续以图2为例,第三IAB节点因移动等原因导致第三IAB节点与宿主节点之间的通信链路故障,第三IAB节点的DU接收来自终端设备的上行数据。由于该上行数据的目的地址是宿主节点,并且,协议中定义了IAB节点转发数据时,IAB节点的MT接收的数据需转交给该IAB节点的DU转发,或者该IAB节点的DU接收的数据需转交给该IAB节点的MT转发。因此,第三IAB节点的DU需将该上行数据转交给第三IAB节点的MT转发,而第三IAB节与宿主节点之间的通信链路故障,这将导致终端设备与宿主节点之间的业务中断或者上行数据丢失。
鉴于此,本申请实施例提供一种通信方法。在该方法中,一个IAB节点(如第二IAB节点)的父节点(如第一IAB节点)的MT可向与第二IAB节点的DU发起随机接入,使得第一IAB节点的MT与第二IAB节点的DU之间可以建立连接,换言之,第二IAB节点的DU可为第一IAB节点的MT提供接入服务,使得IAB系统能够建立更多的回传链路,当IAB网络中的某个回传链路故障时,可借助其他回传链路传输数据,从而提高IAB系统通信的可靠性。并且,由于本申请实施例中的IAB系统包括更多的回传链路,因此使得该IAB系统能够承载更多的数据传输,有利于提高IAB系统的容量。
本申请实施例提供的通信方法可应用于任意的IAB系统中,例如,图1或图2所示的IAB系统中,IAB节点的协议栈架构可参照图3至图5中任一的协议栈架构。
请参照图6,为本申请实施例适用的另一种场景的示意图。或者图6也可以理解为另一种IAB系统的架构示意图。如图6所示,该场景包括终端设备、一个或多个IAB节点、宿主节点和核心网。与图1不同的是,图6中的一个或多个IAB节点是以第一IAB节点、第二IAB节点和第四IAB节点为例(即以第一IAB节点的父节点为宿主节点)进行介绍。其中,IAB节点、终端设备、宿主节点和核心网的实现方式和功能均可以参照前文。
如图6所示,传输上行数据的路径包括两条,这两条路径具体为:终端设备→第二IAB节点→第四IAB节点→宿主节点→核心网,终端设备→第二IAB节点→第一IAB节点→宿主节点→核心网。传输下行数据的路径可包括两条,这两条路径具体为:核心网→宿主节点→第四IAB节点→第二IAB节点→终端设备,以及核心网→宿主节点→第一IAB节点→第二IAB节点→终端设备。
下面结合附图,对本申请实施例中的通信方法进行介绍。在本申请的各个实施例对应的附图中,凡是用虚线表示的步骤,均为可选的步骤。本申请的各个实施例可适用于前文图1、图2或图6任一的IAB系统中。本申请的各个实施例中的第一IAB节点例如可为图1、图2或图6中的第一IAB节点,第二IAB节点例如可为图1、图2、图4、图5或图6中的第二IAB节点,第三IAB节点例如可为图1或图2中的第二IAB节点,或者可为图6中的宿主节点,第四IAB节点例如可为图1、图2、图4、图5或图6中的第四IAB节点,宿主节点例如为图1、图2、图4、图5或图6中的宿主节点。另外,在没有特别说明的情况下,本申请的各个实施例中的网络设备例如可为宿主节点,例如图1、图2、图4、图5或图6中的宿主节点,或者可为核心网中的设备,例如为移动网关设备,具体例如为UPF网元。
请参照图7,为本申请实施例提供的一种通信方法的流程示意图。图7所示的流程示意图包括如下步骤。
S701、第一IAB节点接收第一信息。可选的,S701可替换描述为:第一IAB节点的MT接收第一信息。
示例性的,第一信息可包括第一随机接入(random access)资源。第一随机接入资源用于第一IAB节点的MT向第二IAB节点的DU发起随机接入。可选的,第一随机资源可包括前导序列和/或时域资源等。其中,前导序列又可称为前导码,或者称为前导码序列。示例性的,第一信息可包括扎道夫-初 (Zadoff–Chu,ZC)序列索引、PRACH配置索引和)时域资源的信息中的一种或多种。
其中,ZC序列索引用于指示(或确定)ZC序列。ZC序列可用于确定前导(preamble)序列,例如可对ZC序列进行循环移位获得前导序列。PRACH配置索引用于指示(或确定)前导序列的格式(format),以及PRACH所在的时间单元。时间单元例如为子帧或时隙等。时域资源的信息可包括周期缩放因子、同步信号关联的随机接入的时机数和同步信号关联的随机接入的时机相对于时间单元的偏移量中的一种或多种。
周期缩放因子用于确定随机接入资源的周期。同步信号关联的随机接入的时机数是指拥有RACH时机的数目,同步信号例如为同步信号块(synchronization signal block,SSB)。同步信号关联的随机接入的时机数可包括多个同步信号中的每个同步信号关联的随机接入的时机数。同步信号关联的随机接入的时机相对于时间单元的偏移量,是指是拥有RACH时机的时间单元的偏移量。同步信号关联的随机接入的时机相对于时间单元的偏移量可包括多个同步信号中的每个同步信号关联的随机接入的时机相对于时间单元的偏移量。其中,第一IAB节点接收第一信息的方式有多种,下面示例介绍。
方式一、第一IAB节点接收来自网络设备的第一信息。方式一中涉及的网络设备例如为宿主节点,或者为核心网中的设备。
例如,第一IAB节点的父节点包括宿主节点,那么网络设备可直接向第一IAB节点发送第一信息。或者,第一IAB节点的父节点不包括宿主节点,那么网络设备可通过第一IAB节点的父节点(如第三IAB节点)向第一IAB节点发送第一信息。可选的,第一IAB节点可向网络设备发送第一请求。相应的,网络设备接收来自第一IAB节点的第一请求,并向第一IAB节点发送第一信息。第一请求用于请求第一随机接入资源。或者,网络设备可主动向第一IAB节点发送第一信息,无需第一IAB节点请求。
例如,第一信息可被携带在高层信令中。网络设备向第一IAB节点发送高层信令。相应的,第一IAB节点接收来自网络设备的高层信令,也就相当于第一IAB节点接收第一信息。高层信令例如为RRC信令。或者,第一信息可被携带在第一IAB节点的MT的配置信息中。网络设备向第一IAB节点发送第一IAB节点的MT的配置信息。相应的,第一IAB节点接收来自网络设备的第一IAB节点的MT的配置信息,也就相当于第一IAB节点接收第一信息。其中,第一IAB节点的MT的配置信息指示第一IAB节点的MT的传输配置。如此,网络设备可复用高层信令或MT的配置信息承载第一信息,而无需采用专有信令承载第一信息,有利于减少网络设备与第一IAB节点之间的信令交互。
可选的,第一IAB节点的MT的配置信息还可包括第一IAB节点的MT的数据承载映射信息和/或服务质量(quality of service,QoS)配置信息。数据承载映射信息指示第一IAB节点的MT传输数据的路径。服务质量配置信息指示第一IAB节点的MT的服务质量。
或者,第一信息也可被携带在专有信令中。网络设备向第一IAB节点发送专有信令。相应的,第一IAB节点接收来自网络设备的专有信令,也就相当于第一IAB节点接收第一信息。
方式二、第二IAB节点可向第一IAB节点发送第一信息。相应的,第一IAB节点接收来自第二IAB节点的第一信息。可选的,第二IAB节点的MT可向第一IAB节点的DU发送第一信息,第一IAB节点的DU向第一IAB节点的MT发送第一信息。
第一信息可被携带在第一消息(message 1,Msg1)中。第一消息是第二IAB节点的MT向第一IAB节点的DU发起随机接入过程中的消息。第二IAB节点向第一IAB节点发送第一消息。相应的,第一IAB节点接收来自第二IAB节点的第一消息,也就相当于第一IAB接收第一信息。或者,第一信息可被携带在第三消息(message 3,Msg3)中。第三消息是第二IAB节点的MT向第一IAB节点的DU发起随机接入过程中的消息。第二IAB节点向第一IAB节点发送第三消息。相应的,第一IAB节点接收来自第二IAB节点的第三消息,也就相当于第一IAB接收第一信息。或者,第一信息可被携带在回传自适应协议控制协议数据单元(backhaul adaptation protocol control protocol data unit,BAP control PDU)中。
第一随机接入资源可以是IAB系统或协议配置在第二IAB节点中,或者第一随机接入资源可以是第二IAB节点从网络设备或第二IAB节点除了第一IAB节点之外的父节点(如第四IAB节点)接收包括第一随机接入资源的第二信息。如此,第二IAB节点接收第二信息,也就相当于获得了第一随机接入资源。可选的,第二IAB节点可向网络设备或第四IAB节点发送第二请求。相应的,网络设备或第四IAB节点接收第二请求之后,向第二IAB节点发送第二信息。或者,网络设备或第四IAB节点可主动向第二IAB节点发送第二信息,无需第二IAB节点请求。
第二信息可被携带在第二IAB节点的DU的配置信息中。网络设备或第四IAB节点向第二IAB节点发送第二IAB节点的DU的配置信息。相应的,第二IAB节点接收来自网络设备或第四IAB节点的第二IAB节点的DU的配置信息。第二IAB节点的DU的配置信息用于第二IAB节点与第二IAB节点的父节点(如包括第四IAB节点或第一IAB节点)进行通信。
在一种可能的实施方式中,第一IAB节点可向第二IAB节点发送第三信息。相应的,第二IAB节点接收来自第一IAB节点的第三信息。第三信息包括第二随机接入资源。第二随机接入资源用于第二IAB节点的MT向第一IAB节点的DU发起随机接入过程。第一IAB节点可从网络设备或第三IAB节点获取第二随机接入资源,例如,网络设备或第三IAB节点将第二随机接入资源也携带在第一信息中,如此,第一IAB节点接收第一信息,也就相当于获取了的第二随机接入资源。
可选的,第二IAB节点接收第三信息之后,可以基于第二随机接入资源,向第一IAB节点的MT发送第二随机接入请求。为了便于区分,第一IAB节点的MT基于第一随机接入资源,向第二IAB节点的DU发起的随机接入过程可称为第一随机接入过程。第二IAB节点的MT基于第二随机接入资源,向第一IAB节点的DU发起的随机接入过程可称为第二随机接入过程。
在另一种可能的实施方式中,第二IAB节点可从网络设备或第四IAB节点接收第三信息。可选的,第三信息可被携带在第二IAB节点的DU的配置信息中。
在第二IAB节点的DU的配置信息还包括第一随机接入资源的情况下,网络设备或第四IAB节点相当于通过DU的配置信息向第二IAB节点发送第一随机接入资源和第二随机接入资源,有利于减少第二IAB节点和网络设备或第四IAB节点之间的交互次数。
由于第二IAB节点或第一IAB节点可能采用HDC机制进行通信,因此第二IAB节点或第一IAB节点在同一时间上不可能既接收随机接入请求,又发送随机接入请求,因此在一种可能的实施方式中,第二随机接入资源包括的时域资源和第一随机接入资源包括的时域资源不同。其中,不同包括第二随机接入资源包括的时域资源和第一随机接入资源包括的时域资源不完全重叠,或者完全不重叠。由于第二随机接入资源包括的时域资源和第一随机接入资源包括的时域资源不同,因此在第一IAB节点的MT基于第一随机接入资源,向第二IAB节点的DU发起随机接入过程,以及第二IAB节点的MT基于第二随机接入资源,向第一IAB节点的DU发起随机接入过程的情况下,第一IAB节点和第二IAB节点也不会同时接收随机接入请求和发送随机接入请求,从而避免第一随机接入过程和第二随机接入过程的冲突。
或者,如果第二IAB节点或第一IAB节点采用其他机制通信(例如,第一IAB节点的DU在接收数据的同时,第一IAB节点的MT可发送数据;或者,第一IAB节点的MT在发送数据的同时,第一IAB节点的DU可接收数据;第二IAB节点的DU在接收数据的同时,第二IAB节点的MT可发送数据;或者,第二IAB节点的MT在发送数据的同时,第二IAB节点的DU可接收数据等),那么第二随机接入资源包括的时域资源和第一随机接入资源包括的时域资源也可相同。其中,相同包括第二随机接入资源包括的时域资源和第一随机接入资源包括的时域资源完全重叠。
S702、在第一随机资源上,第一IAB节点向第二IAB节点发送第一随机接入请求。相应的,在第一随机资源上,第二IAB节点接收来自第一IAB节点的第一随机接入请求。示例性的,第一随机接入请求可用于第一IAB节点的MT请求接入第二IAB节点的DU。可选的,S702可替换描述为:第一IAB节点的MT向第二IAB节点的DU发送第一随机接入请求。相应的,第二IAB节点的DU接收来自第一IAB节点的MT的第一随机接入请求。
在第二IAB节点接收第一随机接入请求之后,第一IAB节点的MT和第二IAB节点的DU之间可完成随机接入过程,从而建立连接。
在本申请实施例中,第一IAB节点的MT可向第二IAB节点的DU发起随机接入过程,使得第一IAB节点的MT和第二IAB节点的DU之间可以建立连接,使得IAB系统可以建立更多的通信链路,例如,在第一IAB节点的回传链路的质量下降或者发生中断的情况下,第一IAB节点可通过与第二IAB节点的DU建立的通信链路传输数据,因此第一IAB节点不用频繁地进行小区重选或者小区切换,减少甚至避免服务中断或者数据包丢失以及切换信令流程开销,提升业务传输的鲁棒性,有利于提高IAB系统通信的可靠性。
第一IAB节点可在接收第一随机接入资源之后,向第二IAB节点发送第一随机接入请求。或者第一IAB节点也可以确定在满足特定的触发情况下,向第二IAB节点发送第一随机接入请求。触发情况 可包括如下触发情况1至触发情况4中的任意一种。下面对触发情况1至触发情况4分别介绍。
触发情况1、第一IAB节点接收来自第二IAB节点的第一指示信息。第一指示信息指示所述第一IAB节点的MT向所述第二IAB节点发起随机接入。可选的,第一指示信息可被承载在回传自适应协议控制协议数据单元中。第二IAB节点通过回传自适应协议控制协议数据单元向第一IAB节点发送第一指示信息。
在第一种可能的实施方式中,如果第一IAB节点与第二IAB节点之间的通信质量满足第一条件,第二IAB节点可确定向第一IAB节点发送第一指示信息。其中,第一条件可包括如下B1至B3所示的任一条件。
B1、第一条件包括第一测量结果大于或等于第一阈值。
第一测量结果指示第二IAB节点到第一IAB节点之间的通信链路的通信质量。第二IAB节点到第一IAB节点之间的通信链路可以理解为第二IAB节点向第一IAB节点发送数据的链路。第一测量结果可以是第一IAB节点对来自第二IAB节点的第一测量信号进行测量得到的,换言之,第一测量结果为第一IAB节点的测量结果。第一测量信号例如可为第二IAB节点的MT向第一IAB节点的DU发送的。第一测量信号例如为同步信息、探测参考信号(sounding reference signal,SRS)或信道状态信息参考信号(channel state information-reference signal,CSI-RS)等。
示例性的,第二IAB节点可从第一IAB节点接收第一测量结果,并确定第一测量结果大于或等于第一阈值。例如,第二IAB节点可通过网络设备接收来自第一IAB节点的第一测量结果;或者,第二IAB节点的MT从第一IAB节点的DU接收第一测量结果,从而确定第一测量结果大于或等于第一阈值。其中,第一阈值可通过协议或IAB系统被配置在第二IAB节点中,或者可以是第二IAB节点从网络设备接收的。示例性的,第一阈值被携带在第二信息中,网络设备向第二IAB节点发送第二信息,也就相当于向第二IAB节点发送第一阈值。或者,第一阈值被携带在第二IAB节点的DU的配置信息中,网络设备向第二IAB节点发送第二IAB节点的DU的配置信息,也就相当于向第二IAB节点发送第一阈值。
或者,第二IAB节点可从第一IAB节点接收第三指示信息,第三指示信息指示第一测量结果大于或等于第一阈值。第二IAB节点接收第三指示信息,也就相当于第二IAB节点确定第一测量结果大于或等于第一阈值。第一阈值可通过协议或IAB系统被配置在第一IAB节点中;或者,可以是第一IAB节点从网络设备接收的。
示例性的,第一阈值被携带在第一信息中,网络设备向第一IAB节点发送第一信息或第一IAB节点的MT的配置信息,也就相当于向第一IAB节点发送第一阈值。或者,第一阈值被携带在第一IAB节点的MT的配置信息中,网络设备向第一IAB节点发送第一IAB节点的MT的配置信息,也就相当于向第一IAB节点发送第一阈值。
B2、第一条件包括第二测量结果大于或等于第二阈值。
第二测量结果指示第一IAB节点到第二IAB节点之间的通信链路的通信质量。第一IAB节点到第二IAB节点之间的通信链路可以理解为第一IAB节点向第二IAB节点发送数据的链路。第一IAB节点到第二IAB节点之间的通信链路与第二IAB节点到第一IAB节点之间的通信链路相同或不同。第二测量结果可以是第二IAB节点对来自第一IAB节点的第二测量信号进行测量得到的,换言之,第二测量结果为第二IAB节点的测量结果。第二测量信号例如可为第一IAB节点的DU向第二IAB节点的MT发送的。第二测量信号的实现形式可参照前文第一测量信号的内容。
第二IAB节点测量第二测量结果之后,可确定第二测量结果是否大于或等于第二阈值。其中,第二IAB节点获取第二阈值的方式可参照前文第二IAB节点获取第一阈值的内容。可选的,第一阈值和第二阈值相同或者不同。例如,在第一IAB节点到第二IAB节点之间的通信链路与第二IAB节点到第一IAB节点之间的通信链路相同的情况下,第一阈值和第二阈值可相同。
B3、第一条件包括第一测量结果大于或等于第一阈值,以及第二测量结果大于或等于第二阈值。在第一条件为B3所示的条件的情况下,第二IAB节点确定第二IAB节点和第一IAB节点之间的通信质量满足第一条件的方式可参照前文B1和B2的内容。
在第二种可能的实施方式中,第二IAB节点确定第一IAB节点与第三IAB节点之间的通信质量满足第二条件,第二IAB节点可确定向第一IAB节点发送第一指示信息。其中,第二条件可以包括如下C1至C5所示的任一条件。
C1、第二条件包括第三测量结果小于或等于第三阈值。
第三测量结果指示第三IAB节点到第一IAB节点之间的通信链路的通信质量。第三IAB节点到第一IAB节点之间的通信链路可以理解为第三IAB节点向第一IAB节点发送数据的链路。第三测量结果可以是第一IAB节点对来自第三IAB节点的第三测量信号进行测量得到的,换言之,第三测量结果为第一IAB节点的测量结果。第三测量信号例如可为第三IAB节点的DU向第一IAB节点的MT发送的。第三测量信号的实现形式可参照前文第一测量信号的内容。
例如,第二IAB节点可从第一IAB节点接收第三测量结果,确定第三测量结果小于或等于第三阈值。其中,第二IAB节点获取第三阈值的方式可以参照前文获取第一阈值的内容。示例性的,第二IAB节点可通过网络设备从第一IAB节点接收第三测量结果。或者,第二IAB节点的MT可从第一IAB节点的DU接收第三测量结果,进而确定第三测量结果是否满足第三阈值。或者,第二IAB节点可从第一IAB节点接收第四指示信息,第四指示信息指示第三测量结果小于或等于第三阈值。第二IAB节点接收第四指示信息,也就相当于第二IAB节点确定第三测量结果小于或等于第三阈值。其中,第一IAB节点获取第三阈值的方式,可以参照前文第一IAB节点获取第一阈值的内容。
C2、第二条件包括第四测量结果小于或等于第四阈值。
第四测量结果指示第一IAB节点到第三IAB节点之间的通信链路的通信质量。第一IAB节点到第三IAB节点之间的通信链路可以理解为第一IAB节点向第三IAB节点发送数据的链路。第一IAB节点到第三IAB节点之间的通信链路与第三IAB节点到第一IAB节点之间的通信链路相同或不同。第四测量结果可以是第三IAB节点对来自第一IAB节点的第四测量信号进行测量得到的,换言之,第四测量结果为第三IAB节点的测量结果。第四测量信号可以是第一IAB节点的MT向第三IAB节点的DU发送的。第四测量信号的实现形式可参照前文第一测量信号的内容。
例如,第二IAB节点可以从第三IAB节点接收第四测量结果,确定第四测量结果小于或等于第四阈值。第二IAB节点获取第四阈值的方式可以参照前文第二IAB节点获取第一阈值的内容。示例性的,第二IAB节点可通过网络设备接收来自第三IAB节点的第四测量结果,或者,第二IAB节点可通过第一IAB节点接收来自第三IAB节点的第四测量结果,进而第二IAB节点确定第四测量结果小于或等于第四阈值。
或者,第二IAB节点可从第三IAB节点接收第五指示信息,第五指示信息指示第四测量结果小于或等于第四阈值。第二IAB节点接收第五指示信息,也就相当于第二IAB节点确定第四测量结果小于或等于第四阈值。其中,第三IAB节点获取第四阈值的方式可以参照前文第一IAB节点获取第一阈值的内容。第二IAB节点从第三IAB节点接收第五指示信息的方式可参照前文第二IAB节点从第三IAB节点接收第四测量结果的内容。可选的,第三阈值和第四阈值相同或者不同。例如,在第三IAB节点到第一IAB节点之间的通信链路与第一IAB节点到第三IAB节点之间的通信链路相同的情况下,第三阈值和第四阈值可相同。
C3、第二条件包括第一IAB节点与第三IAB节点之间的波束失败。
第一IAB节点与第三IAB节点之间的波束失败可为第一IAB节点在波束失败检测定时器时长内,第一IAB节点(具体如第一IAB节点的物理层)确定测量来自第三IAB节点的测量信号的测量结果小于或等于第五阈值的次数等于第一次数,可确定波束失败。第一次数例如为波束失败连续最大次数(beamFailureInstanceMaxCount)。其中,第一次数可以是被预存在第一IAB节点中的,例如,第一次数通过协议被预配置在第一IAB节点中,或者可以是通过IAB系统被约定在第一IAB节点中;或者,第一次数也可以第一IAB节点从网络设备接收的。示例性的,第一IAB节点检测波束失败,可向第二IAB节点发送第六指示信息,第六指示信息指示第一IAB节点与第三IAB节点之间的波束失败。第二IAB节点接收第六指示信息,也就相当于第二IAB节点确定第一IAB节点与第三IAB节点之间的波束失败。
或者,第一IAB节点与第三IAB节点之间的波束失败例如为第三IAB节点在波束失败检测定时器时长内,第三IAB节点(具体如第三IAB节点的物理层)确定测量来自第一IAB节点的测量信息的测量结果小于或等于第五阈值的次数等于第一次数,则可确定波束失败。其中第三IAB节点获取第一次数的方式可以参照前文第一IAB节点获取第一次数的内容。这种情况下,第三IAB节点检测波束失败,可向第二IAB节点发送第六指示信息,第六指示信息的含义可以参照前文。第二IAB节点接收第六指示信息,也就相当于第二IAB节点确定第一IAB节点与第三IAB节点之间的波束失败。
C4、第二条件包括第一IAB节点与第三IAB节点之间的通信链路故障。
示例性的,如果第一IAB节点向第三IAB节点重传的次数达到第二次数,那么第一IAB节点可确定第一IAB节点与第三IAB节点之间的通信链路故障。其中,第二次数可以是被预存在第一IAB节点中的,例如,第二次数通过协议被预配置在第一IAB节点中,或者可以是通过IAB系统被约定在第一IAB节点中;或者,第二次数也可以第一IAB节点从网络设备接收的。这种情况下,第一IAB节点可向第二IAB节点发送第七指示信息,第七指示信息指示第一IAB节点与第三IAB节点之间的通信链路故障。第二IAB节点接收第七指示信息,也就相当于第二IAB节点确定第一IAB节点与第三IAB节点之间的通信链路故障。
或者,第三IAB节点向第一IAB节点重传的次数达到第二次数,那么第三IAB节点可确定第一IAB节点与第三IAB节点之间的通信链路故障。其中,第二次数可以是被预存在第三IAB节点或第一IAB节点中的,例如,第二次数通过协议被预配置在第三IAB节点或第一IAB节点中,或者可以是通过IAB系统被约定在第三IAB节点或第一IAB节点中;或者,第二次数也可以第三IAB节点从网络设备接收的。这种情况下,第三IAB节点可向第二IAB节点发送第七指示信息,第七指示信息指示第一IAB节点与第三IAB节点之间的通信链路故障。第二IAB节点接收第七指示信息,也就相当于第二IAB节点确定第一IAB节点与第三IAB节点之间的通信链路故障。
C5、第二条件包括上述C1至C4中的两种或两种以上的条件。这种情况下,第二IAB节点确定第一IAB节点与第三IAB节点之间的通信质量满足第二条件的方式可参照前文C1至C4论述的内容。
在第三种可能的实施方式中,第二IAB节点确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件,以及第二IAB节点确定第一IAB节点与第三IAB节点之间的通信质量满足第二条件。
在第四种可能的实施方式中,第二IAB节点接收来自网络设备的第二指示信息,第二指示信息指示第二IAB节点的DU与第二IAB节点的父节点建立连接,第二IAB节点可确定向第一IAB节点发送第一指示信息。第二IAB节点的父节点包括第一IAB节点。
可选的,第二指示信息可被携带在第二IAB节点的DU的配置信息。网络设备可向第二IAB节点发送第二IAB节点的DU的配置信息。相应的,第二IAB节点接收来自网络设备的第二IAB节点的DU的配置信息,也就相当于第一IAB节点接收第二指示信息。或者,第二指示信息可被携带在高层信令中。网络设备可向第二IAB节点发送高层信令。相应的,第二IAB节点接收来自网络设备的高层信令,也就相当于第一IAB节点接收第二指示信息。高层信令例如为RRC信令。
触发情况2、第一IAB节点接收来自第三IAB节点的第一指示信息。其中,第一指示信息的含义可参照前文。可选的,第一指示信息可被携带在回传自适应协议控制协议数据单元中。第三IAB节点通过回传自适应协议控制协议数据单元向第一IAB节点发送第一指示信息。
在第一种可能的实施方式中,如果第三IAB节点确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件,第三IAB节点可向第一IAB节点发送第一指示信息。其中,第一条件的含义可以参照前文论述的内容。第一条件不同,第三IAB节点确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件的内容也有区别,下面分别介绍。
D1、在第一条件为上述B1所示的条件的情况下,第三IAB节点可从第一IAB节点接收第一测量结果,或者可以通过网络设备从第一IAB节点接收第一测量结果,并确定第一测量结果大于或等于第一阈值。或者,第三IAB节点从第一IAB节点接收第三指示信息,其中,第三指示信息的含义可以参照前文。第三IAB节点接收第三指示信息,也就相当于第三IAB节点确定第一测量结果大于或等于第一阈值。其中,第三IAB节点获取第一阈值的方式可参照前文第一IAB节点获取第一阈值的内容。
D2、在第一条件为上述B2所示的条件的情况下,第三IAB节点可从第二IAB节点接收第二测量结果,或者可以通过网络设备从第二IAB节点接收第二测量结果,并确定第二测量结果大于或等于第二阈值。或者,第三IAB节点从第二IAB节点接收第八指示信息,第八指示信息指示第二测量结果大于或等于第二阈值。第三IAB节点接收第八指示信息,也就相当于第三IAB节点确定第二测量结果大于或等于第二阈值。
其中,第三IAB节点获取第二阈值的方式可参照前文第二IAB节点获取第二阈值的内容。
D3、在第一条件为上述B3所示的条件的情况下,第三IAB节点确定满足第一条件的方式可以参照前文D1和D2论述的内容。
在第二种可能的实施方式中,如果第三IAB节点确定第一IAB节点与第三IAB节点之间的通信质 量满足第二条件,第三IAB节点可确定向第一IAB节点发送第一指示信息。其中,第二条件的含义可以参照前文。
E1、在第二条件为上述C1所示的条件的情况下,第三IAB节点可从第一IAB节点接收第三测量结果,或者通过网络设备从第一IAB节点接收第三测量结果,并确定第三测量结果小于或等于第三阈值。第三IAB节点获取第三阈值的方式可以参照前文第一IAB节点获取第一阈值的方式。或者,第三IAB节点从第一IAB节点接收第四指示信息,第四指示信息的含义可以参照前文。第三IAB节点接收第四指示信息,也就相当于第三IAB节点确定第三测量结果小于或等于第三阈值。
E2、在第二条件为上述C2所示的条件的情况下,第三IAB节点可直接测量第四测量结果,并确定第四测量结果小于或等于第四阈值。第三IAB节点获取第四阈值的方式可以参照前文第一IAB节点获取第一阈值的内容。
E3、在第二条件为上述C3所示的条件的情况下,第三IAB节点可自行检测波束失败,或者第三IAB节点从第一IAB节点接收第六指示信息,第六指示信息的含义可以参照前文。第三IAB节点接收第六指示信息,也就相当于确定第一IAB节点与第三IAB节点之间的波束失败。
E4、在第二条件为上述C4所示的条件的情况下,第三IAB节点可自行确定第一IAB节点与第三IAB节点之间的通信链路故障。确定第一IAB节点与第三IAB节点之间的通信链路故障的方式可参照前文的内容。或者,第三IAB节点可从第一IAB节点接收第七指示信息。第七指示信息的含义可以参照前文。第三IAB节点接收第七指示信息,也就相当于确定第一IAB节点与第三IAB节点之间的通信链路故障。
E5、在第二条件为上述C5所示的条件的情况下,第二IAB节点确定满足第二条件的方式可参照前文E1至E4的内容,此处不再赘述。
在第三种可能的实施方式中,第三IAB节点确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件,以及确定第一IAB节点与第三IAB节点之间的通信质量满足第二条件,第三IAB节点可确定向第一IAB节点发送第一指示信息。这种情况下,第三IAB节点确定满足第一条件和第二条件的方式可以参照前文论述的内容。第一条件和第二条件的内容可参照前文。
在第四种可能的实施方式中,如果第三IAB节点可接收来自网络设备的第二指示信息,第二指示信息的含义可参照前文,第三IAB节点确定向第一IAB节点发送第一指示信息。
触发情况3、第一IAB节点接收来自网络设备的第一指示信息。其中,第一指示信息的含义可参照前文。可选的,第一指示信息可被携带在RRC信令中。网络设备向第一IAB节点发送RRC信令。相应的,第一IAB节点接收来自网络设备的RRC信令,也就相当于接收了第一指示信息。
在第一种可能的实施方式中,网络设备确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件,网络设备可确定向第一IAB节点发送第一指示信息。其中,第一IAB节点与第二IAB节点之间的通信质量和第一条件的含义可以参照前文论述的内容。第一条件不同,网络设备确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件的内容也有区别,下面分别介绍。
F1、在第一条件为上述B1所示的条件的情况下,网络设备可从第一IAB节点接收第一测量结果,或者可以通过第三IAB节点从第一IAB节点接收第一测量结果,并确定第一测量结果大于或等于第一阈值。其中,第一阈值可以通过IAB系统或协议被配置在网络设备中。
或者,网络设备从第一IAB节点接收第三指示信息,也就相当于网络设备确定第一测量结果大于或等于第一阈值。其中,第三指示信息的含义可以参照前文。
F2、在第一条件为上述B2所示的条件的情况下,网络设备可以从第二IAB节点接收第二测量结果,或者可以通过第四IAB节点从第二IAB节点接收第二测量结果,并确定第二测量结果大于或等于第二阈值。其中,第二阈值可以通过IAB系统或协议被配置在网络设备中。
或者,网络设备从第二IAB节点接收第八指示信息,也就相当于网络设备确定第二测量结果大于或等于第二阈值。其中,第八指示信息的含义可以参照前文。
F3、在第一条件为上述B3所示的条件的情况下,网络设备确定满足第一条件的方式可以参照前文。
在第二种可能的实施方式中,网络设备确定第一IAB节点与第三IAB节点之间的通信质量满足第二条件,网络设备可向第一IAB节点发送第一指示信息。其中,第一IAB节点与第三IAB节点之间的通信质量和第二条件的含义可以参照前文。
G1、在第二条件为上述C1所示的条件的情况下,网络设备可从第一IAB节点接收第三测量结果, 或者通过第三IAB节点从第一IAB节点接收第三测量结果,并确定第三测量结果小于或等于第三阈值。网络设备获取第三阈值的方式可以参照前文网络设备获取第一阈值的内容。
或者,网络设备从第一IAB节点接收第四指示信息,第四指示信息的含义可以参照前文。网络设备接收第四指示信息,也就相当于网络设备确定第三测量结果小于或等于第三阈值。
G2、在第二条件为上述C2所示的条件的情况下,网络设备可以从第三IAB节点接收第四测量结果,并确定第四测量结果小于或等于第四阈值。网络设备获取第四阈值的方式可以参照前文网络设备获取第一阈值的内容。
或者,网络设备可从第三IAB节点接收第五指示信息,第五指示信息的含义可以参照前文。网络设备接收第五指示信息,也就相当于网络设备确定第四测量结果小于或等于第四阈值。
G3、在第二条件为上述C3所示的条件的情况下,网络设备例如从第一IAB节点或第三IAB节点接收第六指示信息,第六指示信息的含义可以参照前文,网络设备接收第六指示信息,也就相当于网络设备确定第一IAB节点与第三IAB节点之间的波束失败。
G4、在第二条件为上述C4所示的条件的情况下,网络设备可从第三IAB节点或第一IAB节点接收第七指示信息。第七指示信息的含义可以参照前文。网络设备接收第七指示信息,也就相当于确定第一IAB节点与第三IAB节点之间的通信链路故障。
G5、在第二条件为上述C5所示的条件的情况下,网络设备确定满足第二条件的方式可参照前文G1至G4的内容。
在第三种可能的实施方式中,网络设备确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件,以及确定第一IAB节点与第三IAB节点之间的通信质量满足第二条件,第三IAB节点可向第一IAB节点发送第一指示信息。
触发情况4、第一IAB节点确定满足预配置的触发随机接入条件。其中,触发随机接入条件可以是通过IAB系统或协议被预配置在第一IAB节点中的。触发随机接入条件可包括如下1至4中的至少一种。
触发随机接入条件1、第二IAB节点的MT与第一IAB节点已完成第二随机接入过程。
第二IAB节点的MT与第一IAB节点已完成第二随机接入过程,也可具体描述为第二IAB节点的MT与第一IAB节点的DU已完成第二随机接入过程,或者可以理解为第二IAB节点的MT与第一IAB节点的DU之间建立连接。
触发随机接入条件2、第一IAB节点与第二IAB节点之间的通信质量满足第一条件。第一条件的内容不同,则第一IAB节点确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件的内容也存在区别,下面分别说明。
H1、在第一条件为上述B1所示的条件的情况下,第一IAB节点可对第一测量信号进行测量,获得第一测量结果,并确定第一测量结果大于或等于第一阈值。其中,第一IAB节点获取第一阈值的方式可参照前文。
H2、在第一条件为上述B2所示的条件的情况下,第一IAB节点可从第二IAB节点接收第二测量结果,或者,第一IAB节点通过网络设备从第二IAB节点接收第二测量结果,进而确定第二测量结果大于或等于第二阈值。其中,第一IAB节点获取第二阈值的方式可参照第一IAB节点获取第二阈值的内容。或者,第一IAB节点可从第二IAB节点接收第八指示信息,第八指示信息指示第二测量结果大于或等于第二阈值。第一IAB节点接收第八指示信息,也就相当于确定第二测量结果大于或等于第二阈值。
H3、在第一条件为上述B3所示的条件的情况下,第一IAB节点确定第一测量结果大于或等于第一阈值,以及第二测量结果大于或等于第二阈值的方式可参照前文H1和H2的内容。
触发随机接入条件3、第一IAB节点与第三IAB节点之间的通信质量满足第二条件。其中,第二条件的内容可以参照前文。第二条件的内容不同,则第一IAB节点确定第一IAB节点与第三IAB节点之间的通信质量满足第二条件的内容也存在区别,下面分别说明。
K1、在第二条件为上述C1所示的条件的情况下,第一IAB节点可对第三测量信号进行测量,获得第三测量结果,并确定第三测量结果小于或等于第三阈值。其中,第一IAB节点获取第三阈值的方式可参照前文第一IAB节点获取第一阈值的内容。
K2、在第二条件为上述C2所示的条件的情况下,第一IAB节点可从第三IAB节点接收第四测量 结果,或者第一IAB节点通过网络设备从第三IAB节点接收第四测量结果,并确定第四测量结果小于或等于第四阈值。其中,第一IAB节点获取第四阈值的方式可参照前文第一IAB节点获取第一阈值的内容。或者,第一IAB节点可从第三IAB节点接收第五指示信息。第五指示信息的含义可参照前文。第一IAB节点接收第五指示信息,也就相当于第一IAB节点确定第四测量结果小于或等于第四阈值。
K3、在第二条件为上述C3所示的条件的情况下,第一IAB节点可自行检测第一IAB节点与第三IAB节点之间的波束失败。或者,第一IAB节点从第三IAB节点接收第六指示信息。第六指示信息的含义可参照前文。第一IAB节点接收第六指示信息,也就相当于确定第一IAB节点与第三IAB节点之间的波束失败。
K4、在第二条件为上述C4所示的条件的情况下,第一IAB节点可自行检测通信链路故障。或者,第一IAB节点可从第三IAB节点接收第七指示信息,第七指示信息的含义可参照前文。第一IAB节点接收第七指示信息,也就相当于确定第一IAB节点与第三IAB节点之间的通信链路故障。
K5、在第二条件为上述C5所示的条件的情况下,第一IAB节点确定满足上述C5所示的第二条件的内容可参照前文K1至K4的内容。
触发随机接入条件4、第一IAB节点与第二IAB节点之间的通信质量满足第一条件,以及第一IAB节点与第三IAB节点之间的通信质量满足第二条件。其中,第一IAB节点确定满足第一条件和第二条件的内容可参照前文。
在触发情况4中,相比其他触发情况1至触发情况4,第一IAB节点无需接收其他设备的指示,可以相对更及时地向第二IAB节点发起随机接入,减少链路通信质量的下降或者链路异常对IAB系统造成的影响。并且,在触发情况4中,第一IAB节点无需接收来自其他设备的指示信息,有利于减少IAB系统中的信令交互。
可选的,上述触发随机接入条件1可与上述触发情况1至触发情况3中的任一触发情况结合,换言之,第一IAB节点可以是确定满足触发随机接入条件1,以及满足触发情况1至触发情况3中的任意一种时,第一IAB节点向第二IAB节点发送第一随机接入请求,下面举例说明。例如,如果第一IAB节点接收来自第二IAB节点的第一指示信息(即满足触发情况1),以及确定满足触发随机接入条件1,第一IAB节点可向第二IAB节点发送第一随机接入请求。或者,如果第一IAB节点接收来自第三IAB节点的第一指示信息(即满足触发情况2),以及确定满足触发随机接入条件1,第一IAB节点可向第二IAB节点发送第一随机接入请求。或者,如果第一IAB节点接收来自网络设备的第一指示信息(即满足触发情况3),以及确定满足触发随机接入条件1,第一IAB节点可向第二IAB节点发送第一随机接入请求。
在本申请实施例中,第一IAB节点可以在特定的触发情况下,向第二IAB节点发起第一随机接入,例如,当第一IAB节点与第二IAB节点之间的信道质量较好,或者第一IAB节点与第三IAB节点之间的信道质量较差时,第一IAB节点的MT可向第二IAB节点的DU发起随机接入过程,使得第二IAB节点的DU可以为第一IAB节点的MT提供接入服务,即该IAB节点的DU可以用于与该IAB节点的上游节点通信,或者,第一IAB节点的MT部分可以与第二IAB节点的DU建立无线连接,如此,可以避免在不必要的时候建立连接,在保证IAB系统的可靠性的同时,还能相对减少因第一IAB节点的MT和第二IAB节点的DU之间的传输所耗的资源。
下面以图8所示的一种IAB系统的架构示意图为例,对本申请实施例方案的有益效果进行分析。如图8所示,该IAB系统包括终端设备、第一IAB节点、第二IAB节点、第四IAB节点和宿主节点。其中,图8中是以第一IAB节点和第四IAB节点的父节点包括宿主节点,第二IAB节点的父节点包括第一IAB节点和第四IAB节点为例进行示意。
如果第一IAB节点与宿主节点之间的通信链路故障(在图8中以“×”表示通信故障),那么第一IAB节点的MT可以通过本申请实施例中的方法与第二IAB节点的DU建立连接。如此,第一IAB节点的MT可将准备传输给宿主节点的上行数据转发给第二IAB节点的DU,第二IAB节点的DU可将该上行数据转发给第二IAB节点的MT,第二IAB节点的MT将该上行数据转发给第四IAB节点的DU,第四IAB节点的DU将该上行数据转发给第四IAB节点的MT,第四IAB节点的MT将上行数据发送给宿主节点。由此可见,采用本申请实施例的方法可以增加IAB系统中的通信链路,可提高IAB系统的通信可靠性。
请参照图9,为本申请实施例提供的一种通信方法的流程示意图。在图9中是以第一IAB节点通过 上述方式一接收第一信息,以及第一IAB节点在触发情况1下,向第二IAB节点发送第一随机接入请求为例进行介绍。图9所示的流程示意图包括如下步骤。
S901、第二IAB节点向第一IAB节点发送第一信息。相应的,第一IAB节点接收来自网络设备的第一信息。
示例性的,S902可参照前文图7中S701的内容。例如,第一信息可包括第一随机接入资源。其中,第一信息的含义、第一随机接入资源的含义、以及第二IAB节点向第一IAB节点发送第一信息的方式可参照前文S701的内容。
S902、第二IAB节点确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件。
示例性的,S902可参照前文图7论述的内容,例如,第一条件、以及第二IAB节点确定满足第一条件的方式可参照前文图7论述的内容。
S903、第二IAB节点向第一IAB节点发送第一指示信息。相应的,第一IAB节点接收来自第二IAB节点的第一指示信息。
示例性的,S903可参照前文图7论述的内容,例如,第一指示信息的含义、第二IAB节点向第一IAB节点发送第一指示信息的方式均可参照前文图7论述的内容。
S904、第一IAB节点向第二IAB节点发送第一随机接入请求。相应的,第二IAB节点接收来自第一IAB节点的第一随机接入请求。示例性的,第一随机接入请求用于第一IAB节点的MT请求接入第二IAB节点的DU。
S904可参照图7中S702的内容,例如,第一随机接入请求的含义、以及第一IAB节点向第二IAB节点发送第一随机接入请求的方式可参照前文S702的内容。
作为一个示例,上述S902至S903为触发第一IAB节点向第二IAB节点发送第一随机接入请求的一种示例,因此S902至S903是可选的步骤,在图9中以虚线示意。
在本申请实施例中,第一IAB节点的MT和第二IAB节点的DU之间可以建立连接,使得IAB系统可包括更多的通信链路,提高了IAB系统的通信可靠性。并且,第二IAB节点是在确定第一IAB节点和第二IAB节点之间的通信质量较好的情况下,触发第一IAB节点的MT向第二IAB节点的DU发起随机接入,有利于减少第一IAB节点的MT向第二IAB节点的DU发起随机接入不成功的情况。
请参照图10,为本申请实施例提供的一种通信方法的流程示意图。在图10中是以第一IAB节点通过上述方式一接收第一信息,以及第一IAB节点在触发情况2下,向第二IAB节点发送第一随机接入请求为例进行介绍。图10所示的流程示意图包括如下步骤。
S1001、第二IAB节点向第一IAB节点发送第一信息。相应的,第一IAB节点接收来自第二IAB节点的第一信息。示例性的,第一信息可包括第一随机接入资源。
示例性的,S1001可参照前文图7中S701的步骤,例如,第一信息的含义、第一随机接入资源的含义、以及第二IAB节点向第一IAB节点发送第一信息的方式可参照前文S701的内容。
S1002、第三IAB节点确定第一IAB节点与第三IAB节点之间的通信质量满足第二条件。
示例性的,S1002可参照前文图7论述的内容,例如,第二条件、以及第三IAB节点确定满足第二条件的方式可参照前文。
S1003、第三IAB节点向第一IAB节点发送第一指示信息。相应的,第一IAB节点接收来自第三IAB节点的第一指示信息。
示例性的,S1003可参照前文图7论述的内容,例如,第一指示信息的含义、第三IAB节点向第一IAB节点发送第一指示信息的方式均可参照前文图7论述的内容。
作为一个示例,上述S1002至S1003为触发第一IAB节点向第二IAB节点发送第一随机接入请求的一种示例,因此S1002至S1003是可选的步骤,在图10中以虚线示意。
S1004、第一IAB节点向第二IAB节点发送第一随机接入请求。相应的,第二IAB节点接收来自第一IAB节点的第一随机接入请求。
示例性的,S1004可参照前图7中S702的内容,例如,第一随机接入请求的含义、以及第一IAB节点向第二IAB节点发送第一随机接入请求的方式可参照前文S702的内容。示例性的,第一随机接入请求用于第一IAB节点的MT请求接入第二IAB节点的DU。
在本申请实施例中,第一IAB节点的MT和第二IAB节点的DU之间可以建立连接,使得IAB系统可包括更多的通信链路,提高了IAB系统的通信可靠性。并且,第三IAB节点可确定与第一IAB节 点之间通信质量较差时,触发第一IAB节点的MT向第二IAB节点的DU发起随机接入,一方面,IAB系统包括更多的通信链路,提高IAB系统的可靠性,另一方面,第三IAB节点与第一IAB节点之间的通信质量较差,那么第一IAB节点的MT和第二IAB节点的DU之间的通信链路被使用的概率较大,减少了第一IAB节点的MT与第二IAB节点的DU之间的通信链路不使用的情况,有利于提高IAB系统的资源利用率。
请参照图11,为本申请实施例提供的一种通信方法的流程示意图。在图11中是以第一IAB节点通过上述方式二接收第一信息,以及第一IAB节点在触发情况3下,向第二IAB节点发送第一随机接入请求为例进行介绍。图11所示的流程示意图包括如下步骤。
S1101、网络设备向第一IAB节点发送第一信息。相应的,第一IAB节点接收来自网络设备的第一信息。示例性的,第一信息可包括第一随机接入资源。
示例性的,S1101可参照前文图7中S701的内容,例如,第一信息的含义、第一随机接入资源的含义、以及网络设备向第一IAB节点发送第一信息的方式可参照前文S701的内容。
S1102、网络设备确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件,以及第一IAB节点与第三IAB节点之间的通信质量满足第二条件。
示例性的,S1102可参照前文图7论述的内容,例如,第一条件的含义、第二条件的含义、网络设备确定第一IAB节点与第二IAB节点之间的通信质量满足第一条件的方式,以及第一IAB节点与第三IAB节点之间的通信质量满足第二条件的方式均可参照前文图7的内容。
S1103、网络设备向第一IAB节点发送第一指示信息。相应的,第一IAB节点接收来自网络设备的第一指示信息。
示例性的,S1103可参照前文图7论述的内容,例如,第一指示信息的含义、以及网络设备向第一IAB节点发送第一指示信息的内容可参照前文图7的内容。
作为一个示例,上述S1102至S1103为触发第一IAB节点向第二IAB节点发送第一随机接入请求的一种示例,因此S1102至S1103是可选的步骤,在图11中以虚线示意。
S1104、第一IAB节点向第二IAB节点发送第一随机接入请求。相应的,第二IAB节点接收来自第一IAB节点的第一随机接入请求。示例性的,第一随机接入请求用于第一IAB节点的MT请求接入第二IAB节点的DU。
示例性的,S1104可参照前文图7中S702的内容,例如,第一随机接入请求的含义、以及第一IAB节点向第二IAB节点发送第一随机接入请求的方式可以参照前文S702的内容。
在本申请实施例中,第一IAB节点的MT和第二IAB节点的DU之间可以建立连接,使得IAB系统可包括更多的通信链路,提高了IAB系统的通信可靠性。并且,第三IAB节点可确定与第一IAB节点之间通信质量较差时,触发第一IAB节点的MT向第二IAB节点的DU发起随机接入,使得IAB系统包括更多的通信链路,提高IAB系统的可靠性。网络设备确定第一IAB节点和第二IAB节点之间的通信质量较好,以及第三IAB节点与第一IAB节点之间的通信质量较差的情况下,触发第一IAB节点的MT向第二IAB节点的DU发起随机接入,使得第一IAB节点的MT向第二IAB节点的DU建立的通信链路可靠性较高,且该通信链路被使用的可能性更高。
请参照图12,为本申请实施例提供的一种通信方法的流程示意图。在图12中是以第一IAB节点通过上述方式一接收第一信息,以及第一IAB节点在触发情况4下,向第二IAB节点发送第一随机接入请求为例进行介绍。图12所示的流程示意图包括如下步骤。
S1201、第二IAB节点向第一IAB节点发送第一信息。相应的,第一IAB节点接收来自第二IAB节点的第一信息。示例性的,第一信息包括第一随机接入资源。
示例性的,S1201可参照前文图7中S701的内容,例如,第一信息的内容和第一随机接入资源的内容可以参照前文S701的内容。
S1202、第一IAB节点确定满足触发随机接入条件。
示例性的,S1202可参照前文图7论述的内容,例如,其中,触发随机接条件的内容、以及第一IAB节点确定满足触发随机接入条件的内容可以参照前文图7论述的内容。
作为一个示例,上述S1202为触发第一IAB节点向第二IAB节点发送第一随机接入请求的一种示例,因此S1202是可选的步骤,在图12中以虚线示意。
S1203、第一IAB节点向第二IAB节点发送第一随机接入请求。相应的,第二IAB节点接收来自 第一IAB节点的第一随机接入请求。示例性的,第一随机接入请求用于第一IAB节点的MT请求接入第二IAB节点的DU。
示例性的,S1203可参照前文图7中S702的内容,例如,其中,第一随机接入请求的含义、以及第一IAB节点向第二IAB节点发送第一随机接入请求的方式可以参照前文S702的内容。
在本申请实施例中,可以由第一IAB节点确定满足触发随机接入条件时,向第二IAB节点发起随机接入,无需其他设备指示第一IAB节点发起随机接入,有利于减少第一IAB节点和其他设备之间的交互,并且,第一IAB节点无需等待其他设备指示,使得第一IAB节点可以及时地向第二IAB节点发送第一随机接入请求。
请参照图13,为本申请的实施例提供的一种通信装置的结构示意图。
在第一个可能的实施例中,如图13所示,通信装置1300包括接收模块1301和发送模块1302。可选的,通信装置1300还包括处理模块1303。在本申请实施例中,通信装置1300可用于实现上述第一IAB节点的功能,例如图7、图9至图12中任一的第一IAB节点的功能。相应的,通信装置1300可实现第一IAB节点执行的步骤。
例如,通信装置1300可用于实现图7中的第一IAB节点的功能。示例性的,接收模块1301可用于执行S701,发送模块1302可用于执行S702。可选的,处理模块1303可用于控制接收模块1301执行S701,以及控制发送模块1302执行S702。处理模块1303还可用于确定第一IAB节点和第二IAB节点之间的通信质量满足第一条件,和/或第一IAB节点和第三IAB节点之间的通信质量满足第二条件。
又例如,通信装置1300可用于实现图9中的第一IAB节点的功能。示例性的,接收模块1301可用于执行S901,发送模块1302可用于执行S904。可选的,接收模块1301还用于执行S903。
又例如,通信装置1300可用于实现图10中的第一IAB节点的功能。示例性的,接收模块1301可用于执行S1001,发送模块1302可用于执行S1004。可选的,接收模块1301还用于执行S1003。
又例如,通信装置1300可用于实现图11中的第一IAB节点的功能。示例性的,接收模块1301可用于执行S1101,发送模块1302可用于执行S1104。可选的,接收模块1301还用于执行S1103。
又例如,通信装置1300可用于实现图12中的第一IAB节点的功能。示例性的,接收模块1301可用于执行S1201,发送模块1302可用于执行S1203。可选的,处理模块1303还用于执行S1202。
在第二个可能的实施例中,继续如图13所示,通信装置1300包括接收模块1301。可选的,通信装置1300还包括发送模块1302和处理模块1303。在本申请实施例中,通信装置1300可用于实现上述第二IAB节点的功能,例如图7、图9至图12中任一的第二IAB节点的功能。相应的,通信装置1300可实现第二IAB节点执行的步骤。
例如,通信装置1300可用于实现图7中的第二IAB节点的功能。示例性的,接收模块1301可用于执行S702。可选的,处理模块1303可用于控制接收模块1301执行S702,还可用于确定第一IAB节点和第二IAB节点之间的通信质量满足第一条件,和/或第一IAB节点和第三IAB节点之间的通信质量满足第二条件。可选的,发送模块1302可用于向第一IAB节点发送第一信息。
又例如,通信装置1300可用于实现图9中的第二IAB节点的功能。示例性的,发送模块1302可用于执行S902,接收模块1301可用于执行S904。可选的,发送模块1302还可用于执行S903,以及处理模块1303还可用于执行S902的步骤。
又例如,通信装置1300可用于实现图10中的第二IAB节点的功能。示例性的,发送模块1302可用于执行S1001,接收模块1301可用于执行S1004。
又例如,通信装置1300可用于实现图11中的第二IAB节点的功能。示例性的,接收模块1301可用于执行S1104。
又例如,通信装置1300可用于实现图12中的第二IAB节点的功能。示例性的,发送模块1302用于执行S1201,接收模块1301可用于执行S1203。
在第三个可能的实施例中,继续如图13所示,通信装置1300包括发送模块1302。可选的,通信装置1300还包括接收模块1301和处理模块1303。在本申请实施例中,通信装置1300可用于实现上述网络设备的功能,例如图7或图11中任一的网络设备的功能。相应的,通信装置1300可实现网络设备执行的步骤。
例如,通信装置1300可用于实现图7中的网络设备的功能。可选的,发送模块1302用于向第一IAB节点发送第一信息。接收模块1301用于接收第一测量结果和/或第三测量结果。处理模块1303可用于 控制发送模块1302和接收模块1301执行相应的功能。处理模块1303还可用于确定第一IAB节点和第二IAB节点之间的通信质量满足第一条件,和/或第一IAB节点和第三IAB节点之间的通信质量满足第二条件。
又例如,通信装置1300可用于实现图11中的网络设备的功能。示例性的,发送模块1302用于执行S1101和S1103,处理模块1303用于执行S1102。
请参照图14,为本申请实施例提供的一种通信装置的结构示意图。如图14所示,通信装置1400包括处理器1401和通信接口1402。处理器1401和通信接口1402之间相互耦合。可以理解的是,通信接口1402可以为收发器或输入输出接口。其中,处理器1401和通信接口1402可实现前文任一所述的通信方法,例如图7、图9至图12中任一的通信方法。相应的,通信装置1400也可实现前文通信装置1300的功能。可选的,通信装置1400还可以包括存储器1403,用于存储处理器1401执行的指令或存储处理器1401运行指令所需要的输入数据或存储处理器1401运行指令后产生的数据。可选的,存储器1403和处理器1401可以耦合设置。
其中,处理器1401可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
在第一个可能的实施例中,通信装置1400可用于实现前文第一IAB节点的功能,相应的,也可实现第一IAB节点执行的步骤。在第二个可能的实施例中,通信装置1400可用于实现前文第二IAB节点的功能,相应的,也可实现第二IAB节点执行的步骤。在第三个可能的实施例中,通信装置1400可用于实现前文网络设备的功能,相应的,也可实现网络设备执行的步骤。
本申请实施例提供一种通信系统,该通信系统包括前文任一的第一IAB节点和第二IAB节点。第一IAB节点例如为图7、图9至图12中任一的第一IAB节点,第二IAB节点例如为图7、图9至图12中任一的第二IAB节点。其中,第一IAB节点和第二IAB节点的功能均可参照前文。
本申请实施例提供一种通信系统,该通信系统包括前文任一的第一IAB节点、第二IAB节点和网络设备。第一IAB节点例如为图7、图9至图12中任一的第一IAB节点,第二IAB节点例如为图7、图9至图12中任一的第二IAB节点,网络设备例如为图7或图12中任一的网络设备。其中,第一IAB节点、第二IAB节点和网络设备的功能均可参照前文。
本申请实施例提供一种芯片系统,该芯片系统包括:处理器和接口。其中,该处理器用于从该接口调用并运行指令,当该处理器执行该指令时,实现前文任一项所述的通信方法,例如图7、图9至图12中任一所述的通信方法。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序或指令,当其被运行时,实现前文任一项所述的通信方法,例如图7、图9至图12中任一所述的通信方法。
本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,实现前文任一项所述的通信方法,例如图7、图9至图12中任一所述的通信方法。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算 机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (30)

  1. 一种通信方法,其特征在于,应用于第一集成接入回传IAB节点,所述方法包括:
    接收第一信息,所述第一信息包括第一随机接入资源;
    在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第二IAB节点发送第一随机接入请求,其中,所述第一随机接入请求用于所述第一IAB节点的MT请求接入第二IAB节点的分布式单元DU,所述第二IAB节点为所述第一IAB节点的子节点。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第二IAB节点发送第一随机接入请求之前,所述方法还包括:
    在第二随机接入资源上,接收来自所述第二IAB节点的第二随机接入请求,所述第二随机接入请求用于所述第二IAB节点的MT请求接入所述第一IAB节点的DU,所述第二随机接入资源包括的时域资源与所述第一随机接入资源包括的时域资源不同。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第二IAB节点发送第一随机接入请求之前,所述方法还包括:
    确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,
    确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。
  4. 根据权利要求3所述的方法,其特征在于,所述第一条件包括:
    第一测量结果大于或等于第一阈值,所述第一测量结果指示所述第二IAB节点到所述第一IAB节点的通信链路的通信质量,所述第一测量结果为所述第一IAB节点的测量结果;和/或,
    第二测量结果大于或等于第二阈值,所述第二测量结果指示所述第一IAB节点到所述第二IAB节点的通信链路的通信质量,所述第二测量结果为所述第二IAB节点的测量结果。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二条件包括:
    第三测量结果小于或等于第三阈值,所述第三测量结果指示所述第三IAB节点到所述第一IAB节点的通信链路的通信质量,所述第三测量结果为所述第一IAB节点的测量结果;和/或,
    第四测量结果小于或等于第四阈值,所述第四测量结果指示所述第一IAB节点到所述第三IAB节点的通信链路的通信质量,所述第四测量结果为所述第三IAB节点的测量结果;和/或,
    所述第一IAB节点与所述第三IAB节点之间的波束失败或通信链路故障。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在所述第一随机接入资源上,所述第一IAB节点的移动终端MT向第二IAB节点发送第一随机接入请求之前,所述方法还包括:
    接收来自所述第二IAB节点、第三IAB节点或网络设备的第一指示信息,所述第一指示信息指示所述第一IAB节点的MT向所述第一IAB节点的子节点发起随机接入,所述第三IAB节点为所述第一IAB节点的父节点,所述第一IAB节点的子节点包括所述第二IAB节点;或,
    确定所述第一IAB节点的DU与所述第二IAB节点已完成随机接入过程。
  7. 根据权利要求6所述的方法,其特征在于,在接收来自所述第二IAB节点、第三IAB节点或网络设备的第一指示信息之前,所述方法还包括:
    向所述第二IAB节点、所述第三IAB节点或所述网络设备发送第一测量结果,所述第一测量结果指示所述第二IAB节点至所述第一IAB节点之间的通信链路的通信质量,所述第一测量结果为所述第一IAB节点的测量结果;和/或,
    向所述第二IAB节点、所述第三IAB节点或所述网络设备发送第三测量结果,所述第三测量结果指示所述第三IAB节点至所述第一IAB节点之间的通信链路的通信质量,所述第三测量结果为所述第一IAB节点的测量结果。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一信息是所述第一IAB节点从网络设备或所述第二IAB节点接收的。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信息被携带在所述第一IAB节点的MT的配置信息或高层信令中;或者,
    所述第一信息被携带在第一消息、第三消息或回传自适应协议控制协议数据单元中,所述第一消息和所述第三消息均为所述第二IAB节点的MT向所述第一IAB节点的DU发起随机接入过程中的消息。
  10. 一种通信方法,其特征在于,应用于第二IAB节点,所述方法包括:
    向第一IAB节点发送第一信息,所述第一信息包括第一随机接入资源,所述第二IAB节点为所述第一IAB节点的子节点;
    在所述第一随机接入资源上,接收来自第一IAB节点第一随机接入请求,所述第一随机接入请求用于所述第一IAB节点的MT请求接入所述第二IAB节点的DU。
  11. 根据权利要求10所述的方法,其特征在于,在向第一IAB节点发送第一信息之前,所述方法还包括:
    接收来自网络设备或第四IAB节点的第二信息,所述第二信息包括所述第一随机接入资源,所述第四IAB节点为所述第二IAB节点的父节点。
  12. 根据权利要求10或11所述的方法,其特征在于,在所述第一随机接入资源上,接收来自第一IAB节点第一随机接入请求之前,所述方法还包括:
    接收第三信息,所述第三信息包括第二随机接入资源;
    在所述第二随机接入资源上,接收来自所述第一IAB节点的第二随机接入请求,所述第二随机接入资源包括的时域资源与所述第一随机接入资源包括的时域资源不同。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,在所述第一随机接入资源上,接收来自第一IAB节点第一随机接入请求之前,所述方法还包括:
    向所述第一IAB节点发送第一指示信息,所述第一指示信息指示所述第一IAB节点的MT向所述第二IAB节点发起随机接入。
  14. 根据权利要求13所述的方法,其特征在于,在所述第一随机接入资源上,接收来自第一IAB节点第一随机接入请求之前,所述方法还包括:
    确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,
    确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。
  15. 根据权利要求14所述的方法,其特征在于,所述第一条件包括:
    第一测量结果大于或等于第一阈值,所述第一测量结果指示所述第二IAB节点到所述第一IAB节点的通信链路的通信质量,所述第一测量结果为所述第一IAB节点的测量结果;和/或,
    第二测量结果大于或等于第二阈值,所述第二测量结果指示所述第一IAB节点到所述第二IAB节点的通信链路的通信质量,所述第二测量结果为所述第二IAB节点的测量结果。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二条件包括:
    第三测量结果小于或等于第三阈值,所述第三测量结果指示所述第三IAB节点到所述第一IAB节点的通信链路的通信质量,所述第三测量结果为所述第一IAB节点的测量结果;和/或,
    第四测量结果小于或等于第四阈值,所述第四测量结果指示所述第一IAB节点到所述第三IAB节点的通信链路的通信质量,所述第四测量结果为所述第三IAB节点的测量结果;和/或,
    所述第一IAB节点与所述第三IAB节点之间的波束失败或通信链路故障。
  17. 根据权利要求13所述的方法,其特征在于,在向所述第一IAB节点发送第一指示信息之前,所述方法还包括:
    接收来自第三IAB节点或网络设备的第二指示信息,所述第二指示信息指示所述第二IAB节点的DU与所述第二IAB节点的父节点建立连接,所述第三IAB节点为所述第一IAB节点的父节点,所述第二IAB节点的父节点包括所述第一IAB节点。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述第一信息被携带在第一消息、第三消息或回传自适应协议控制协议数据单元中,所述第一消息和所述第三消息均为所述第二IAB节点的MT向所述第一IAB节点的DU发起随机接入过程中的消息。
  19. 一种通信方法,其特征在于,应用于网络设备,所述方法包括:
    向第一IAB节点发送第一信息,所述第一信息包括第一随机接入资源,所述第一随机接入资源用于所述第一IAB节点的MT向第二IAB节点的DU发起随机接入,所述第二IAB节点为所述第一IAB节点的子节点;或,
    向第二IAB节点发送第二信息,所述第二信息包括第一随机接入资源,所述第一随机接入资源用于所述第二IAB节点的DU接收来自所述第一IAB节点的MT的第一随机接入请求,所述第二IAB节点为所述第一IAB节点的子节点。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    向所述第一IAB节点发送第一指示信息,所述第一指示信息指示所述第一IAB节点的MT向所述第一IAB节点的子节点发起随机接入,所述第一IAB节点的子节点包括所述第二IAB节点。
  21. 根据权利要求20所述的方法,其特征在于,在向所述第一IAB节点发送第一指示信息之前,所述方法还包括:
    确定所述第一IAB节点与所述第二IAB节点之间的通信质量满足第一条件;和/或,
    确定所述第一IAB节点与第三IAB节点之间的通信质量满足第二条件,所述第三IAB节点为所述第一IAB节点的父节点。
  22. 根据权利要求21所述的方法,其特征在于,所述第一条件包括:
    第一测量结果大于或等于第一阈值,所述第一测量结果指示所述第二IAB节点到所述第一IAB节点的通信链路的通信质量,所述第一测量结果为所述第一IAB节点的测量结果;和/或,
    第二测量结果大于或等于第二阈值,所述第二测量结果指示所述第一IAB节点到所述第二IAB节点的通信链路的通信质量,所述第二测量结果为所述第二IAB节点的测量结果。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第二条件包括:
    第三测量结果小于或等于第三阈值,所述第三测量结果指示所述第三IAB节点到所述第一IAB节点的通信链路的通信质量,所述第三测量结果为所述第一IAB节点的测量结果;和/或,
    第四测量结果小于或等于第四阈值,所述第四测量结果指示所述第一IAB节点到所述第三IAB节点的通信链路的通信质量,所述第四测量结果为所述第三IAB节点的测量结果;和/或,
    所述第一IAB节点与所述第三IAB节点之间的波束失败或通信链路故障。
  24. 根据权利要求19-23任一项所述的方法,其特征在于,所述第一信息被携带在所述第一IAB节点的MT的配置信息或高层信令中。
  25. 一种通信装置,其特征在于,包括:
    接收模块,用于接收第一信息,所述第一信息包括第一随机接入资源;
    发送模块,用于在所述第一随机接入资源上,所述装置的MT向第二IAB节点发送第一随机接入请求,其中,所述第一随机接入请求用于所述装置的MT请求接入第二IAB节点的分布式单元DU,所述第二IAB节点为所述装置的子节点。
  26. 一种通信装置,其特征在于,包括:
    发送模块,用于向第一IAB节点发送第一信息,所述第一信息包括第一随机接入资源,所述装置为所述第一IAB节点的子节点;
    接收模块,用于在所述第一随机接入资源上,接收来自第一IAB节点第一随机接入请求,所述第一随机接入请求用于所述第一IAB节点的MT请求接入所述装置的DU。
  27. 一种通信装置,其特征在于,包括:
    发送模块,用于向第一IAB节点发送第一信息,所述第一信息包括第一随机接入资源,所述第一随机接入资源用于所述第一IAB节点的MT向第二IAB节点的DU发起随机接入,所述第二IAB节点为所述第一IAB节点的子节点;或,
    发送模块,用于向第二IAB节点发送第二信息,所述第二信息包括第一随机接入资源,所述第一随机接入资源用于所述第二IAB节点的DU接收来自所述第一IAB节点的MT的第一随机接入请求,所述第二IAB节点为所述第一IAB节点的子节点。
  28. 一种通信系统,其特征在于,包括:
    如权利要求25所述的装置和如权利要求26所述的装置;或者,
    如权利要求25所述的装置、如权利要求26所述的装置和如权利要求27所述的装置。
  29. 一种通信装置,其特征在于,包括:处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它装置,所述处理器通过逻辑电路执行代码指令实现如权利要求1-24任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-24任一项所述的方法。
PCT/CN2023/117001 2022-10-31 2023-09-05 一种通信方法及装置 WO2024093508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211350983.2 2022-10-31
CN202211350983.2A CN117979458A (zh) 2022-10-31 2022-10-31 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024093508A1 true WO2024093508A1 (zh) 2024-05-10

Family

ID=90846578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117001 WO2024093508A1 (zh) 2022-10-31 2023-09-05 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117979458A (zh)
WO (1) WO2024093508A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112470435A (zh) * 2018-07-10 2021-03-09 中兴通讯股份有限公司 用于集成接入和回程节点的随机接入资源分配
WO2021134723A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 通信方法、设备及系统
WO2022081845A2 (en) * 2020-10-15 2022-04-21 Idac Holdings, Inc. Methods, apparatuses, architectures and systems for handling link degradation and/or link failure in an integrated access and backhaul (iab) network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112470435A (zh) * 2018-07-10 2021-03-09 中兴通讯股份有限公司 用于集成接入和回程节点的随机接入资源分配
WO2021134723A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 通信方法、设备及系统
WO2022081845A2 (en) * 2020-10-15 2022-04-21 Idac Holdings, Inc. Methods, apparatuses, architectures and systems for handling link degradation and/or link failure in an integrated access and backhaul (iab) network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED, ERICSSON, AT&T: "IAB backhaul RLF recovery for architecture 1a", 3GPP DRAFT; R3-185522 IAB BACKHAUL RLF RECOVERY FOR ARCH 1A, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051528797 *

Also Published As

Publication number Publication date
CN117979458A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US9961719B2 (en) Integrated relay in wireless communication networks
US7391789B2 (en) Ad-hoc network wireless communication system and method thereof
US10869261B2 (en) Method and apparatus for determining communication method between base station and terminal in wireless communication system
US20160150459A1 (en) Techniques to support heterogeneous network data path discovery
US11968565B2 (en) User plane information reporting method and apparatus
WO2021147402A1 (zh) 一种数据传输方法及装置
CN114788397A (zh) 用于灵活聚合通信信道的方法及装置
Hossain et al. Reducing signaling overload: Flexible capillary admission control for dense MTC over LTE networks
WO2021174377A1 (zh) 切换方法和通信装置
WO2024093508A1 (zh) 一种通信方法及装置
US10499406B1 (en) Assigning a frame configuration in a relay enabled communication network
CN113796026A (zh) 用于无线电链路流量控制的方法及设备
WO2022082543A1 (zh) Iab节点的移植方法及装置
CN106454754B (zh) 数据传输方法及宽带集群系统
CN117121556A (zh) 用于时间敏感联网的切换技术
CN115412498A (zh) 通信方法和装置
WO2024139892A1 (zh) 一种通信方法及装置
KR20230069987A (ko) 라우팅 방법, 장치 및 시스템
US20240080262A1 (en) Communication method and apparatus
WO2023197105A1 (zh) 配置信息的方法、装置和通信系统
WO2024140723A1 (zh) 一种通信方法及装置
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统
CN118283646A (zh) 一种通信方法及装置
WO2023197185A1 (zh) Iab节点设备、iab宿主设备以及传输地址确定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884445

Country of ref document: EP

Kind code of ref document: A1