WO2021134723A1 - 通信方法、设备及系统 - Google Patents

通信方法、设备及系统 Download PDF

Info

Publication number
WO2021134723A1
WO2021134723A1 PCT/CN2019/130982 CN2019130982W WO2021134723A1 WO 2021134723 A1 WO2021134723 A1 WO 2021134723A1 CN 2019130982 W CN2019130982 W CN 2019130982W WO 2021134723 A1 WO2021134723 A1 WO 2021134723A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
data
entity
iab
host
Prior art date
Application number
PCT/CN2019/130982
Other languages
English (en)
French (fr)
Inventor
朱元萍
卓义斌
史玉龙
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980100315.4A priority Critical patent/CN114365540B/zh
Priority to CN202311467214.5A priority patent/CN117527686A/zh
Priority to PCT/CN2019/130982 priority patent/WO2021134723A1/zh
Publication of WO2021134723A1 publication Critical patent/WO2021134723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node

Definitions

  • This application relates to the field of communication, and in particular to communication methods, devices and systems.
  • a transmission path between the terminal and the IAB host may include at least a section of wireless backhaul link and a section of wireless access link.
  • the backhaul link of the IAB node may be abnormal, so that the IAB node can no longer provide backhaul services for its child nodes, and cannot provide transmission services for terminals connected to the IAB node.
  • the IAB node performs cell reselection, selects a cell served by another available IAB node in the IAB network as the target cell, and initiates random access to restore the backhaul link, that is, the IAB node will act as the target cell.
  • the child node of the reselected IAB node re-establishes a connection between the reselected IAB node and the IAB host, and performs the configuration of the backhaul link and the bearer mapping configuration.
  • the embodiments of the present application provide communication methods, devices, and systems, which can reduce the impact of abnormal backhaul links on services.
  • a communication method and a corresponding network node are provided.
  • the method is applied to a wireless IAB network, and the method includes: a first node obtains first data, and the first data is uplink data; when the first node cannot transmit data through at least one parent node of the first node, The first node determines that the next hop node of the first data is the second node, the second node is the assisting child node of the first node, and the parent node of the assisting child node of the first node includes the first node and The third node, the assisting child node of the first node can be connected to the host node through the third node; the first node sends the first data to the second node.
  • the assisting child node of the first node can further send the uplink data to another parent node of the assisting byte point , And then the parent node transmits to the host node, and then the uplink data can be transmitted to the host node in time, reducing the impact of the abnormal return link on the service.
  • the first node determining that the next hop node of the first data is the second node includes: the first node determines that the next hop node of the first data is the second node according to the first configuration information A second node, where the first configuration information is the candidate configuration information that is pre-configured by the host node to the first node and takes effect when the first node cannot transmit data through at least one parent node of the first node; or
  • the first configuration information is the configuration information obtained from the host node after the first node sends the first reconfiguration request information to the host node through the fourth node, and the first reconfiguration request information is used to request the first reconfiguration request information.
  • Configuration information, the fourth node is any assisting child node of the first node.
  • the first node can determine that the next hop node of the first data is the second node according to the pre-configured first configuration information or the first configuration information reacquired after the network topology changes, so that the second node can The first data is transmitted to the host node through the other parent node, which avoids the situation that the data cannot be transmitted correctly, thereby reducing the impact of the abnormal wireless backhaul link on the service.
  • the first node determining that the next hop node of the first data is the second node includes: the first node sends assistance request information, and the assistance request information is used to determine the assistance of the first node Child node; the first node receives assistance response information from the second node; the first node determines that the next hop node of the first data is the second node according to the assistance response information.
  • the first node can determine the node that can serve as its assisting child node by interacting with its child nodes, thereby transmitting the first data to the host node through the assisting child node, avoiding the situation that the data cannot be transmitted correctly, thereby reducing wireless The impact of the abnormal return link on the service.
  • the inability of the first node to transmit data through at least one parent node of the first node includes: the wireless backhaul link between the first node and at least one parent node of the first node is abnormal Or, the first node receives an abnormal notification of the wireless backhaul link from at least one parent node of the first node; or, the wireless backhaul link between the first node and the primary parent node of the first node A wireless link failure occurs and the link recovery fails; or, the wireless backhaul link between the first node and all parent nodes of the first node has a wireless link failure, and the link recovery fails.
  • acquiring the first data by the first node includes: acquiring the first data by the receiving entity of the first backhaul adaptation protocol BAP layer entity of the first node; and determining the first data by the first node
  • the next hop node of the data is the second node, including: the sending entity of the first BAP layer entity of the first node determines that the next hop node of the first data is the second node, wherein the second node of the first node A BAP layer entity is a BAP layer entity of the DU part of the distributed unit of the first node.
  • the first node since the first node cannot transmit data through at least one of its parent nodes, after the receiving entity of the first BAP layer entity of the first node obtains the uplink data, it can perform routing on the sending entity of the first BAP layer entity Optionally, there is no need for the receiving entity of the first BAP layer entity of the first node to submit the uplink data to the sending entity of the second BAP layer entity of the first node.
  • the first node sending the first data to the second node includes: the first node sending a first data packet to the second node, the first data packet including the first data and a first indication Information, the first indication information is used to indicate that the first data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, wherein,
  • the first BAP layer entity of the second node is the BAP layer entity of the DU part of the second node
  • the second BAP layer entity of the second node is the BAP layer entity of the mobile terminal MT part of the second node.
  • the first node can send the first indication information at the same time when sending uplink data to its assisting child node, so that its assisting child node can send and process the MT side according to the first indication information without the assistance of the child node.
  • the receiving entity of the BAP layer entity on the MT side of the node delivers the uplink data to the sending entity of the BAP layer entity on the DU side of the assisting child node.
  • the above-mentioned first indication information is located at the BAP layer of the first data packet; or, the first indication information is located at the media access control MAC layer of the first data packet, and the first indication information is the first Logical channel identification LCID, the backhaul wireless link control channel corresponding to the first LCID is between the first node and the second node, and is used for the backhaul wireless link control for the first node to send the first type of data to the second node Channel, the first type of data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node.
  • a communication method and corresponding network nodes are provided. This method is applied to wireless IAB networks.
  • the method includes: a second node receives first data from a first node, the first data is uplink data, and the second node is a child node of the first node; and the second node determines the The next hop node of the first data is the third node, the third node is the parent node of the second node, and the second node can be connected to the host node through the third node; the second node is connected to the third node Send the first data.
  • the assisting child node of the first node can assist the first node to send the uplink data obtained by the first node to another parent node of the assisting byte point, and then the parent node can transmit the uplink data to the host node. Transmit the uplink data to the host node in time to reduce the impact of abnormal backhaul links on services.
  • the second configuration information is the uplink candidate configuration information pre-configured by the donor node to the second node; the second configuration information receives the radio from the first node at the second node It takes effect when the link abnormal notification is returned; or, the second configuration information takes effect when the second node receives the first uplink data packet from the first node; or, the second configuration information is in the second node It takes effect when the information used to instruct the second node to enable the second configuration information from the host node is received.
  • the second configuration information is the uplink configuration information obtained from the host node after the second node sends the second reconfiguration request information to the host node, and the second reconfiguration request information uses To request the second configuration information.
  • the method further includes: the second node receives assistance request information from the first node, where the assistance request information is used to determine the assistance child node of the first node; The first node sends assistance response information, where the assistance response information is used to indicate that the second node can serve as an assisting child node of the first node.
  • the second node receiving the first data from the first node includes: the second node receives the first data packet from the first node, and the first data packet includes the first data and the first data packet.
  • Indication information is used to indicate that the first data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, where the first The first BAP layer entity of the two nodes is the BAP layer entity of the distributed unit DU part of the second node, and the second BAP layer entity of the second node is the BAP layer entity of the mobile terminal MT part of the second node.
  • the first indication information is located at the BAP layer of the first data packet; or, the first indication information is located at the media access control MAC layer of the first data packet, and the first indication information Is the first logical channel identifier LCID, and the backhaul radio link control channel corresponding to the first LCID is between the first node and the second node, and is used by the first node to send the first type of data to the second node
  • the first type of data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node.
  • the second node receiving the first data packet from the first node includes: the MT part of the second node receives the first data packet from the first node; the second node according to The second configuration information, determining that the next hop node of the first data is the third node, includes: the second node determines that the sending entity of the second BAP layer entity of the second node performs the sending according to the first indication information Processing: The sending entity of the second BAP layer entity of the second node determines that the next hop node of the first data is the third node according to the second configuration information.
  • a communication method and corresponding network nodes are provided.
  • the method is applied to a wireless IAB network, and the method includes: a second node receives second data, the destination node of the second data is a first node or a fifth node, the second node is a child node of the first node, and The fifth node is a downstream node in the downlink transmission direction of the first node; the second node determines that the next hop node of the second data is the first node according to the third configuration information; the second node is directed to the first node A node sends the second data.
  • the destination node in the case that the first node cannot transmit downlink data through the parent node of the first node, the destination node is the first node or the data of the downstream node in the downlink transmission direction of the first node can pass through the child of the first node
  • the node transmits to the first node and is processed by the first node, so that the downlink data can be transmitted to the first node or downstream nodes in the downlink transmission direction of the first node in time, reducing the impact of abnormal backhaul links on services .
  • the third configuration information is downlink candidate configuration information pre-configured by the donor node to the second node; the third configuration information receives the wireless response from the first node at the second node It takes effect when the link is abnormally notified; or, the third configuration information takes effect when the second node receives the first uplink data packet from the first node; or, the third configuration information is received at the second node It takes effect when the information from the host node is used to notify the second node to enable the third configuration information.
  • the second node can determine that the next hop node of the first data is the first node according to the pre-configured third configuration information, so that the data whose destination node is the first node or the fifth node can be transmitted to the first node.
  • the node is processed by the first node to avoid the situation that the data cannot be transmitted correctly, thereby reducing the impact of the abnormal wireless backhaul link on the service.
  • the third configuration information is the downlink configuration information obtained from the host node after the second node sends the third reconfiguration request information to the host node, and the second reconfiguration request information is used To request the third configuration information.
  • the second node can determine that the next hop node of the first data is the first node according to the third configuration information re-acquired after the network topology changes, so that the destination node is the first node or the fifth node.
  • the data can be transmitted to the first node and processed by the first node, which avoids the situation that the data cannot be transmitted correctly, thereby reducing the impact of the abnormal wireless backhaul link on the service.
  • the second node receiving the second data includes: the second node receiving a second data packet, the second data packet including the second data and second indication information, and the second indication information is used To indicate that the second data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, wherein the first BAP of the second node
  • the layer entity is the BAP layer entity of the DU part of the distributed unit of the second node
  • the second BAP layer entity of the second node is the BAP layer entity of the mobile terminal MT part of the second node.
  • the second node can distinguish whether the data from the third node needs to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of its first BAP layer entity according to the second indication information. Distinguish the results for subsequent processing.
  • the second indication information is located at the BAP layer of the second data packet; or, the second indication information is located at the media access control MAC layer of the second data packet, and the second indication information is The second logical channel identifier LCID, the backhaul wireless link control channel corresponding to the second LCID is between the third node and the second node, and is used by the third node to send the first type of data to the second node.
  • the first type of data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, the third node It is the parent node of the second node.
  • the second node receiving the second data packet includes: the MT part of the second node receives the second data packet; the second node determines the next data packet according to the third configuration information
  • the hop node is the first node, including: the second node determines according to the second indication information that the sending entity of the second BAP layer entity of the second node executes the sending process; the second node of the second BAP layer entity
  • the sending entity determines that the next hop node of the second data is the first node according to the third configuration information.
  • the second node can perform sending processing on the MT side of the second node according to the second indication information, without the need for the receiving entity of the BAP layer entity on the MT side of the second node to submit the downlink data to the DU of the second node.
  • the sending entity of the BAP layer entity on the side is not limited to the second indication information.
  • the second node sending the second data to the first node includes: the MT part of the second node sends a third data packet to the first node, and the third data packet includes the first node.
  • Second data and third indication information is used to indicate that the second data is a transmission that does not need to be delivered by the receiving entity of the first BAP layer entity of the first node to the second BAP layer entity of the first node Entity data, where the first BAP layer entity of the first node is the BAP layer entity of the DU part of the first node, and the second BAP layer entity of the first node is the BAP layer of the MT part of the first node entity.
  • the first node can distinguish whether the data from the second node needs to be delivered by the receiving entity of the first BAP layer entity of the first node to the sending entity of its second BAP layer entity according to the third indication information. Distinguish the results for subsequent processing.
  • a communication method and a corresponding network node are provided.
  • the method is applied to a wireless IAB network.
  • the method includes: the centralized unit CU of the host node obtains second data, the destination node of the second data is the first node or the fifth node, and the CU of the host node determines the first
  • the second data includes the first Internet Protocol IP header information, where the fifth node is the downstream in the downlink transmission direction of the first node Node, the first IP header information is used to instruct the distributed unit DU of the host node to send fourth indication information, the fourth indication information is used to indicate that the second data is not required by the second BAP layer entity of the second node
  • the receiving entity submits the data of the sending entity of the first BAP layer entity to the second node, the second node is a child node of the first node; the CU of the host node sends the first node to the distributed unit DU of
  • the DU of the host node can send the fourth indication information while sending the second data, so that after the second data is transmitted to the second node, the second node can correctly transmit the second data to the first node ,
  • the second data is processed by the first node, and the downlink data can be transmitted to the first node or downstream nodes in the downlink transmission direction of the first node in time, reducing the impact of abnormal backhaul links on services.
  • the method further includes: the CU of the host node sends an IP header information list to the DU of the host node, and the IP header information list includes the first IP header information.
  • the DU of the host node can determine that the fourth indication needs to be sent while sending downlink data.
  • a communication method and corresponding network nodes are provided.
  • the method is applied to a wireless IAB network, and the method includes: the distributed unit DU of the host node receives second data, the destination node of the second data is the first node or the fifth node, and the second data includes the first internet protocol IP header information, the fifth node is the downstream node in the downlink transmission direction of the first node; when the first IP header information is included in the IP header information list, the DU of the host node determines that the second data is encapsulated in the DU
  • the data packet carries fourth indication information; the DU of the host node sends a fourth data packet, the fourth data packet includes the second data and fourth indication information, and the fourth indication information is used to indicate that the second data is unnecessary
  • the receiving entity of the second BAP layer entity of the second node submits data to the sending entity of the first BAP layer entity of the second node, and the second node is an assisting child node of the first node.
  • the DU of the host node sends the fourth indication information while sending the second data according to the first IP header information, so that after the second data is transmitted to the second node, the second node can correctly transfer the second data to the second node.
  • the data is transmitted to the first node, and the second data is processed by the first node, so that the downlink data can be transmitted to the first node or downstream nodes in the downlink transmission direction of the first node in time, reducing the abnormality of the backhaul link.
  • a network node for implementing the above-mentioned various methods.
  • the network node may be the first node in the foregoing first aspect, or a device including the foregoing first node, or a device included in the foregoing first node, such as a system chip; or, the network node may be the foregoing second aspect or The second node in the third aspect, or a device that includes the second node, or a device that is included in the second node, such as a system chip; or, the network node may be the host in the fourth or fifth aspect above A node, or a device including the above-mentioned host node, or a device included in the above-mentioned host node, such as a system chip.
  • the network node includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a network node including: a processor, and may also include a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the network node can execute the instructions described in any of the above aspects. Methods.
  • the network node may be the first node in the foregoing first aspect, or a device including the foregoing first node, or a device included in the foregoing first node, such as a system chip; or, the network node may be the foregoing second aspect or The second node in the third aspect, or a device that includes the second node, or a device that is included in the second node, such as a system chip; or, the network node may be the host in the fourth or fifth aspect above A node, or a device including the above-mentioned host node, or a device included in the above-mentioned host node, such as a system chip.
  • a network node including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the network node may be the first node in the foregoing first aspect, or a device including the foregoing first node, or a device included in the foregoing first node, such as a system chip; or, the network node may be the foregoing second aspect or The second node in the third aspect, or a device that includes the second node, or a device that is included in the second node, such as a system chip; or, the network node may be the host in the fourth or fifth aspect above A node, or a device including the above-mentioned host node, or a device included in the above-mentioned host node, such as a system chip.
  • a computer-readable storage medium stores instructions.
  • the network node can execute the method described in any of the above aspects.
  • the network node may be the first node in the foregoing first aspect, or a device including the foregoing first node, or a device included in the foregoing first node, such as a system chip; or, the network node may be the foregoing second aspect or The second node in the third aspect, or a device that includes the second node, or a device that is included in the second node, such as a system chip; or, the network node may be the host in the fourth or fifth aspect above A node, or a device including the above-mentioned host node, or a device included in the above-mentioned host node, such as a system chip.
  • a computer program product containing instructions when the instructions are executed on a network node, the network node can execute the method described in any one of the foregoing aspects.
  • the network node may be the first node in the foregoing first aspect, or a device including the foregoing first node, or a device included in the foregoing first node, such as a system chip; or, the network node may be the foregoing second aspect or The second node in the third aspect, or a device that includes the second node, or a device that is included in the second node, such as a system chip; or, the network node may be the host in the fourth or fifth aspect above A node, or a device including the above-mentioned host node, or a device included in the above-mentioned host node, such as a system chip.
  • An eleventh aspect provides a network node (for example, the network node may be a chip or a chip system), and the network node includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the network node also includes a memory for storing necessary program instructions and data.
  • the network node is a chip system, it can be composed of chips, or include chips and other discrete devices.
  • a network node including: a processor and an interface circuit, the interface circuit may be a code/data read-write interface circuit, the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in a memory) , May be directly read from the memory, or may be transmitted through other devices) and transmitted to the processor; the processor is used to run the computer-executable instructions to execute the method described in any of the foregoing aspects.
  • the technical effects brought by any one of the sixth aspect to the twelfth aspect can refer to the above-mentioned first aspect, second aspect, third aspect, fourth aspect, or fifth aspect.
  • the technical effects of the coming will not be repeated here.
  • a communication system including: the first node described in the first aspect, the second node described in the second or third aspect, or the fourth or fifth aspect described above.
  • Figure 1 is a schematic diagram of an IAB independent networking scenario provided by an embodiment of the application.
  • Figure 2 is a schematic diagram of an IAB non-independent networking scenario provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of nodes in a transmission path provided by an embodiment of the application.
  • 4a is a schematic diagram 1 of the protocol stack architecture of an intermediate IAB node provided by an embodiment of the application;
  • FIG. 4b is a second schematic diagram of the protocol stack architecture of an intermediate IAB node provided by an embodiment of the application.
  • FIG. 4c is a schematic diagram of a user plane protocol stack architecture for accessing an IAB node provided by an embodiment of the application;
  • Figure 4d is a schematic diagram of the control plane protocol stack architecture for accessing IAB nodes provided by an embodiment of the application;
  • FIG. 5a is a schematic diagram 1 of a user plane protocol stack of each node in a transmission path provided by an embodiment of the application;
  • FIG. 5b is a schematic diagram 1 of the control plane protocol stack of each node in a transmission path provided by an embodiment of the application;
  • FIG. 6a is a second schematic diagram of a user plane protocol stack of each node in a transmission path provided by an embodiment of the application;
  • FIG. 6b is a second schematic diagram of the control plane protocol stack of each node in a transmission path provided by an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a network node provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a scenario where a wireless backhaul link is abnormal according to an embodiment of the application.
  • FIG. 9 is a first schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another IAB networking scenario provided by an embodiment of this application.
  • FIG. 11 is a second schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a first node provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a second node provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a host node provided by an embodiment of this application.
  • IAB integrated access and backhaul
  • both the access link (AL) and the backhaul link (BL) in the IAB scenario adopt a wireless transmission solution.
  • A access link
  • BL backhaul link
  • this application implements
  • the access link in the example generally refers to the wireless access link
  • the backhaul link generally refers to the wireless backhaul link, which is described here in a unified manner, and will not be repeated in the following embodiments.
  • the IAB node can provide wireless access services for the terminal, and is connected to a donor node through a wireless backhaul link to transmit the user's service data.
  • the IAB node is connected to the core network via a wired link via the host node.
  • the IAB node is connected to the core network (5G core, 5GC) of the 5G network through a wired link via the host node.
  • the IAB node is connected to the evolved packet core (EPC) via an evolved NodeB (eNB) on the control plane, and is connected to the EPC via the donor node and eNB on the user plane.
  • EPC evolved packet core
  • eNB evolved NodeB
  • the IAB network supports multi-hop IAB node and multi-connection IAB node networking. Therefore, there may be multiple transmission paths between the terminal served by the IAB node and the host node.
  • a transmission path may include multiple nodes, such as terminals, one or more IAB nodes, and host nodes.
  • IAB nodes There is a certain hierarchical relationship between IAB nodes, as well as between IAB nodes and host nodes serving the IAB nodes, and each IAB node regards the node providing the backhaul service as its parent node.
  • each IAB node can be regarded as a child node of its parent node.
  • the parent node of the IAB node is the node that provides the backhaul service for the IAB node.
  • the IAB node can be regarded as a child node of its parent node.
  • the parent node of the parent node of the IAB node (for example, the parent node of the parent node of the IAB node, or the parent node of the IAB node a (assuming that IAB node a is the parent node of the parent node of the IAB node) ) Is regarded as the grandparent node of the IAB node, and accordingly, the lower node of the child node of the IAB node (for example, the child node of the child node of the IAB node, or the IAB node b (assuming IAB node b is the child node of the IAB node)
  • the child node of the IAB node is regarded as the grandchild of the IAB node.
  • the parent node of IAB node 1 is the host node
  • IAB node 1 is the parent node of IAB node 2 and IAB node 3
  • IAB node 2 and IAB node 3 is the parent node of IAB node 4
  • the parent node of IAB node 5 is IAB node 2.
  • the uplink data packet of the terminal can be transmitted to the host node via one or more IAB nodes, and then sent by the host node to the mobile gateway device (for example, the user plane function (UPF) network element in the 5G network), and the downlink data
  • the mobile gateway device for example, the user plane function (UPF) network element in the 5G network
  • terminal 1 and the host node there are two available paths for the transmission of data packets between terminal 1 and the host node, namely: terminal 1 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ host node, terminal 1.
  • ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ host node There are three available paths for data packet transmission between terminal 2 and host node, namely: terminal 2 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ host node, terminal 2 ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB Node 1 ⁇ host node, terminal 2 ⁇ IAB node 5 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ host node.
  • a transmission path between a terminal and a host node may include one or more IAB nodes.
  • Each IAB node needs to maintain the wireless backhaul link facing the parent node, and also needs to maintain the wireless link with the child node. If an IAB node is a node accessed by a terminal, there is a wireless access link between the IAB node and a child node (that is, a terminal). If an IAB node is a node that provides backhaul services for other IAB nodes, there is a wireless backhaul link between the IAB node and its child nodes (that is, other IAB nodes). Exemplarily, referring to Fig.
  • Terminal 1 accesses IAB node 4 through the wireless access link
  • IAB node 4 accesses IAB node 3 through the wireless backhaul link
  • IAB node 3 accesses IAB node 1 through the wireless backhaul link
  • IAB node 1 through wireless backhaul
  • the transmission link is connected to the host node.
  • the IAB node may be a customer premise equipment (customer premises equipment, CPE), a residential gateway (residential gateway, RG) and other equipment.
  • CPE customer premises equipment
  • RG residential gateway
  • the method provided in the embodiment of the present application can also be applied in a home access scenario.
  • the above-mentioned IAB independent networking scenario is only exemplary.
  • the IAB independent networking scenario has more other possibilities, for example, the host node and the IAB under another host node Nodes form a dual connection for terminal services, etc., which will not be listed here.
  • IAB network also supports non-standalone (NSA) networking.
  • IAB nodes support the fourth generation (4th generation, 4G) and the fifth generation (5th generation, 5G).
  • Dual connectivity E-UTRAN NR dual connectivity, EN-DC.
  • the eNB is the primary parent node of the IAB node, and is connected to the EPC through the S1 interface for user plane and control plane transmission.
  • the host node is the auxiliary parent node of the IAB node, and is connected to the EPC through the S1-U interface for user plane transmission.
  • the eNB communicates with the donor node through the X-2 interface.
  • the terminal also supports EN-DC.
  • the terminal is connected to the primary base station eNB of the terminal through the Uu port of LTE, and connected to the IAB node of the secondary base station of the terminal through the Uu port of NR.
  • the secondary base station of the terminal may also be the donor node.
  • IAB non-independent networking scenario is only exemplary.
  • Multi-hop networking is also supported in the IAB non-independent networking scenario.
  • one or more IAB nodes may also be included between the IAB node and the host node, that is, IAB The node can be connected to the host node through a multi-hop wireless backhaul link, etc., which will not be listed here.
  • each IAB node has only one parent node and can have one or more child nodes; when the topology of the IAB network is a directed acyclic graph topology, each IAB node can have One or two parent nodes can also have one or more child nodes.
  • DAG directed acyclic graph
  • composition of the host node is the composition of the host node:
  • the donor node may be a donor base station.
  • the host node in the 5G network can be referred to as IAB donor (IAB donor) or DgNB (ie donor gNodeB) for short.
  • the host node can be a complete entity, or a centralized unit (centralized unit, CU) (referred to as Donor-CU in this article, or CU for short) and distributed unit (DU) (referred to in this article as It is a form of Donor-DU) separation, that is, the host node is composed of Donor-CU and Donor-DU.
  • CU centralized unit
  • DU distributed unit
  • Donor-CU can also be a form in which the user plane (UP) (referred to as CU-UP in this article) and control plane (CP) (referred to as CU-CP in this article) are separated, namely Donor- CU is composed of CU-CP and CU-UP.
  • UP user plane
  • CP control plane
  • an IAB node may have the role of a mobile terminal (MT) and the role of a DU.
  • MT mobile terminal
  • UE user equipment
  • the IAB node plays the role of MT.
  • the child node may be a terminal or the terminal part of another IAB node
  • it can be regarded as a network device.
  • the IAB node plays the role of DU. Therefore, it can be considered that the IAB node is composed of an MT part and a DU part.
  • An IAB node can establish a backhaul connection with at least one parent node of the IAB node through the MT part.
  • the DU part of an IAB node can provide access services for the terminal or the MT part of other IAB nodes.
  • the terminal is connected to the host node through the IAB node 2 and the IAB node 1.
  • IAB node 1 and IAB node 2 both include a DU part and an MT part.
  • the DU part of IAB node 2 provides access services for the terminal.
  • the DU part of the IAB node 1 provides access services for the MT part of the IAB node 2.
  • Donor-DU provides access services for the MT part of IAB node 1.
  • the access IAB node in the embodiment of the present application refers to the IAB node accessed by the terminal, and the intermediate IAB node refers to the IAB node that provides wireless backhaul services for other IAB nodes (for example, access IAB nodes or other intermediate IAB nodes).
  • IAB node 4 is the access IAB node, and IAB node 3 and IAB node 1 are intermediate IAB node.
  • the IAB node 3 provides a backhaul service for the IAB node 4, and the IAB node 1 provides a backhaul service for the IAB node 3.
  • an IAB node is an IAB node.
  • it is an intermediate IAB node. Therefore, whether an IAB node is specifically connected to an IAB node or an intermediate IAB node is not fixed and needs to be determined according to specific application scenarios.
  • BAP backhaul adaptation protocol
  • the BAP layer is introduced in the wireless backhaul link.
  • the BAP layer is located above the radio link control (RLC) layer and can be used to implement the routing and routing of data packets on the wireless backhaul link. Bearer mapping and other functions.
  • each BAP layer may include one or more BAP layer entities
  • each BAP layer entity can include a sending part (tansmitting part) and a receiving part (receiving entity), where the sending part of the BAP layer entity can also be called the BAP layer sending entity (transmitting entity) or the sending of the BAP layer entity Entity
  • the receiving part of the BAP layer entity may also be referred to as the receiving entity of the BAP layer (receiving entity) or the receiving entity of the BAP layer entity.
  • the protocol stack architecture of the intermediate IAB node, access IAB node, Donor-DU, Donor-CU, and terminal is the protocol stack architecture of the intermediate IAB node, access IAB node, Donor-DU, Donor-CU, and terminal:
  • the intermediate IAB node has the same protocol stack on the user plane and the control plane. As shown in Figure 4a, the protocol stack architecture when the MT part and the DU part of the intermediate node do not share the BAP layer; as shown in Figure 4b, the protocol stack architecture layer when the MT part and the DU part of the intermediate IAB node share the BAP layer .
  • the protocol stacks of the user plane and the control plane for accessing IAB nodes are different, as shown in Fig. 4c and Fig. 4d respectively.
  • the user plane protocol stack architecture of each node may refer to FIG. 5a or FIG. 6a
  • the control plane protocol stack architecture of each node may refer to FIG. 5b or FIG. 6b.
  • the MT part and the DU part of the intermediate IAB node do not share the BAP layer as an example for drawing.
  • the MT part and the DU part of the intermediate IAB node share the BAP layer as an example for drawing.
  • each protocol layer in Figure 4a to Figure 6b is: packet data convergence protocol (PDCP) layer, general packet radio service tunneling protocol user plane (general packet radio service tunneling protocol user plane, GTP-U) ) Layer, user datagram protocol (UDP) layer, internet protocol (IP) layer, L2 layer (layer 2), L1 layer (layer 1), radio link control (radio link control) , RLC) layer, medium access control (MAC) layer, physical (PHY) layer, radio resource control (RRC) layer, F1 application protocol (F1 application protocol, F1AP) layer, flow Control transmission protocol (stream control transmission protocol, SCTP) layer.
  • the L2 layer is a link layer.
  • the L2 layer may be a data link layer in the open systems interconnection (OSI) reference model.
  • the L1 layer may be a physical layer.
  • the L1 layer may be a physical layer in the OSI reference model.
  • the host node is drawn as an example composed of Donor-DU and Donor-CU. Therefore, the protocol layers of Donor-DU and Donor-CU are shown in Fig. 5a, Fig. 5b, Fig. 6a and Fig. 6b. If the host node is a fully functional entity, the host node can retain the protocol stack of the Donor-DU and Donor-CU to the external node interface, without the need for a protocol layer on the internal interface between Donor-DU and Donor-CU.
  • the Donor-DU when it is the protocol stack architecture of the control plane or the protocol stack architecture of the user plane, when the Donor-DU is the proxy node of the F1 interface between the Donor-CU and the IAB node, the Donor-DU faces the IAB
  • the protocol stack architecture of the node above the IP layer, it also includes a UDP layer and a GTP-U layer that are equivalent to the UDP layer and the GTP-U layer in the protocol stack architecture of the DU part of the access IAB node.
  • the F1 interface refers to the logical interface between the IAB node (such as the DU part of the IAB node) and the host node (or Donor-CU or Donor-DU).
  • the F1 interface can also be called the F1* interface, which supports user plane and control surface.
  • the protocol layer of the F1 interface refers to the communication protocol layer on the F1 interface.
  • the user plane protocol layer of the F1 interface may include one or more of the IP layer, the UDP layer, and the GTP-U layer.
  • the user plane protocol layer of the F1 interface further includes a PDCP layer and/or an IP security (IP Security, IPsec) layer.
  • IP Security IP Security, IPsec
  • control plane protocol layer of the F1 interface may include one or more of the IP layer, the F1AP layer, and the SCTP layer.
  • control plane protocol layer of the F1 interface further includes one or more of a PDCP layer, an IPsec layer, and a datagram transport layer security (DTLS) layer.
  • PDCP layer PDCP layer
  • IPsec layer IP Security
  • DTLS datagram transport layer security
  • the user plane protocol layer of the F1 interface of the IAB node includes a GTP-U layer, a UDP layer, and an IP layer.
  • the GTP-U layer and UDP layer of the IAB node are equal to Donor-CU
  • the IP layer is equal to Donor-DU.
  • the Donor-DU is a proxy node of the F1 interface between the Donor-CU and the IAB node
  • the GTP-U layer, UDP layer, and IP layer of the IAB node are equivalent to the Donor-DU.
  • the user plane protocol layer of the F1 interface may also include an IPsec layer and/or a PDCP layer.
  • the IPsec layer or the PDCP layer is located above the IP layer and below the GTP-U layer.
  • the control plane protocol layer of the IAB node on the F1 interface includes the F1AP layer, the SCTP layer, and the IP layer.
  • the F1AP layer and the SCTP layer of the IAB node are equal to the Donor-CU
  • the IP layer is equal to the Donor-DU.
  • the Donor-DU is a proxy node of the F1 interface between the Donor-CU and the IAB node, and the F1AP, SCTP, and IP layers of the IAB node are equivalent to the Donor-DU.
  • control plane protocol layer of the F1 interface may also include one or more of the IPsec layer, the PDCP layer, and the DTLS layer.
  • the IPsec layer, the PDCP layer, or the DTLS layer is located above the IP layer and below the F1AP layer.
  • data packet routing in the IAB network is performed by the BAP layer of the IAB node based on the BAP layer header information of the data packet and the host node (or Donor-CU).
  • the receiving entity of the BAP layer of the IAB node After the receiving entity of the BAP layer of the IAB node receives the data packet, it judges whether the IAB node is the destination of the data packet according to the BAP layer header information in the data packet Node, if the IAB node is the destination node of the data packet, then the data packet is delivered to the upper protocol layer (such as the IP layer); if the IAB node is not the destination node of the data packet, the data packet is delivered to The BAP layer sending entity of the IAB node performs sending processing.
  • the upper protocol layer such as the IP layer
  • the BAP layer entity of the DU part of the IAB node After the BAP layer entity of the DU part of the IAB node receives the data packet, it judges whether the IAB node is the data according to the BAP layer header information in the data packet The destination node of the packet, if the IAB node is the destination node of the data packet, the data packet is delivered to the upper protocol layer (for example, the IP layer); if the IAB node is not the destination node of the data packet, the DU part The BAP layer entity submits the data packet to the BAP layer entity of the MT part of the IAB node, and the BAP layer entity of the MT part performs the sending process.
  • the upper protocol layer for example, the IP layer
  • the BAP layer entity of the MT part of the IAB node performs similar operations with the BAP layer entity of the DU part after receiving the data packet.
  • the BAP layer entity of the MT part will transfer the data
  • the packet is delivered to the BAP layer entity of the DU part, and the BAP layer entity of the DU part performs the sending process.
  • Link Refers to the link between two adjacent nodes connected in a path.
  • the last hop node of a node refers to the last node in the path containing the node that received the data packet before the node.
  • the last hop node of a node can also be called the last hop node of the data, or the last hop node of the data packet.
  • the upstream node of a node refers to any node in the path containing the node that receives the data packet before the node.
  • the next hop node of a node refers to the node in the path containing the node that receives the data packet first after the node.
  • the next hop node of a node may also be called the next hop node of the data, or the next hop node of the data packet.
  • Downstream node of a node refers to any node in the path containing the node that receives the data packet after the node.
  • the entry link of a node refers to the link between the node and the previous hop node of the node, and can also be referred to as the previous hop link of the node.
  • the egress link of a node refers to the link between the node and the next hop node of the node, and can also be called the next hop link of the node.
  • the sending processing in the embodiment of the present application includes route selection and bearer mapping.
  • route selection is used to select the next hop node for the data or data packet;
  • bearer mapping is used to select the RLC channel for sending the data or data packet.
  • sending processing may also include other processing besides routing and bearer mapping, such as adding headers, etc.
  • the specific processing may be determined according to actual conditions, and the embodiment of the present application does not specifically limit this.
  • uplink transmission uplink transmission direction, uplink data, downlink transmission, downlink transmission direction, downlink data:
  • uplink transmission refers to data transmission from the UE or IAB node to the host node.
  • the uplink transmission direction refers to the direction from the UE or IAB node to the donor node;
  • the uplink data refers to the data transmitted in the uplink transmission direction.
  • downlink transmission refers to data transmission from the host node to the UE or IAB node.
  • the downlink transmission direction refers to the direction from the host node to the UE or IAB node;
  • the downlink data refers to data transmitted in the downlink transmission direction.
  • a and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone. These three situations.
  • “plurality” means two or more than two.
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • the term “system” can be used interchangeably with "network”.
  • the OFDMA system can implement wireless technologies such as evolved universal terrestrial radio access (E-UTRA) and ultra mobile broadband (UMB).
  • E-UTRA is an evolved version of the Universal Mobile Telecommunications System (UMTS).
  • UMTS Universal Mobile Telecommunications System
  • 3GPP uses the new version of E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • the fifth-generation (5th-generation, 5G) communication system using the new radio (NR) is a next-generation communication system under study.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture to which the solution of the embodiment of the present application is applicable includes an IAB network, where the IAB network may be an independent networking IAB network or a non-independent networking IAB network, which is not specifically limited in the embodiments of the present application.
  • the system architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art knows that with the evolution of network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • the method provided is applied to an NR system or a 5G network as an example for description.
  • the method provided in the embodiments of the present application can also be applied to other networks, for example, it can be applied to an EPS network (that is, a commonly referred to as 4G network).
  • the IAB node that executes the method provided in the embodiment of the present application can be replaced with a node in the EPS network.
  • the network elements involved in this application include IAB nodes and host nodes.
  • the composition of the IAB node and the host node as well as the protocol stack architecture can be referred to the above-mentioned related descriptions, and will not be repeated here.
  • the IAB node may be any one of the first node to the fifth node in the following embodiments.
  • FIG. 7 is a schematic structural diagram of a network node 70 provided by an embodiment of the application.
  • the network node 70 includes one or more processors 701, and at least one communication interface (in FIG. 7 only the communication interface 704 and one processor 701 are taken as an example for illustration), and optionally may also include Memory 703; optionally, a communication bus 702 may also be included.
  • the processor 701, the communication interface 704, or the memory 703 may be coupled together (not shown in FIG. 7), or, as shown in FIG. 7, they may also be connected together through a communication bus 702.
  • the processor 701 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication bus 702 may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only a thick dashed line is used in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the communication bus 702 can be used to connect different components in the network node 70 so that different components can communicate.
  • the communication interface 704 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and so on.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 704 may also be a transceiver circuit located in the processor 701 to implement signal input and signal output of the processor.
  • the memory 703 may be a device having a storage function.
  • it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or other types of information and instructions that can be stored
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory may exist independently and is connected to the processor through the communication bus 702. The memory can also be integrated with the processor.
  • the memory 703 is used to store computer-executed instructions for executing the solution of the present application, and the processor 701 controls the execution.
  • the processor 701 is configured to execute computer-executable instructions stored in the memory 703, so as to implement the communication method provided in the embodiment of the present application.
  • the processor 701 may also perform processing-related functions in the communication method provided in the following embodiments of the present application, and the communication interface 704 is responsible for communicating with other devices or communication networks.
  • the embodiment does not specifically limit this.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7.
  • the network node 70 may include multiple processors, such as the processor 701 and the processor 708 in FIG. 7. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the wireless backhaul link of the IAB node may be abnormal.
  • the radio link failure (RLF) of the wireless backhaul link may occur.
  • RLF radio link failure
  • one of the IAB node 1 and the host node RLF occurs on the wireless backhaul link between IAB node 1.
  • IAB node 1 can no longer provide backhaul services for its child nodes (IAB node x and IAB node y), nor can it provide the terminal connected to IAB node 1. (Not shown in Figure 8) Provides transmission services.
  • IAB node 1 will try to perform link recovery. During the link recovery process, IAB node 1 selects an available parent node to access, and there is an available path between the available parent node and the host node. Fig. 8 takes the available parent node as IAB node y as an example. That is, IAB node 1 selects the cell served by IAB node y for random access. After IAB node 1 successfully accesses IAB node y, IAB node 1 will As a child node of the IAB node y, it re-establishes a connection with the host node via the IAB node y, and executes the routing configuration and bearer mapping configuration of the wireless backhaul link.
  • the IAB node has a long time delay for link recovery.
  • the service of the terminal (for example, terminal x) of the child node of IAB node 1 and the terminal connected to the IAB node ( Figure 8) business may be affected.
  • an embodiment of the present application provides a communication method, which includes: a first node obtains first data, and the first data is uplink data; when the first node cannot transmit data through at least one parent node of the first node Next, the first node determines that the next hop node of the first data is the second node, and sends the first data to the second node, where the second node is the assisting child node of the first node, and the assisting child node of the first node
  • the parent node of includes a first node and a third node, and the assisting child node of the first node can be connected to the host node through the third node.
  • the first node can send uplink data to the assisting child node of the first node, so that the assisting child node of the first node can further send the uplink data to another parent node of the assisting byte point, Then the parent node transmits to the host node, and then the uplink data can be transmitted to the host node in time, reducing the impact of the abnormal return link on the service.
  • the communication method includes the following steps:
  • the first data is uplink data.
  • the first data in the embodiment of the present application can be understood as a service data unit (SDU) of the BAP layer.
  • SDU service data unit
  • the destination node of the first data on the wireless backhaul link is used as the host node as an example for description.
  • the destination node of the first data in the wireless backhaul link is the DU of the host node; when the host node includes multiple DUs, the destination of the first data in the wireless backhaul link The node is the first DU of the host node.
  • the destination node of the data refers to the destination node of the data on the wireless backhaul link.
  • the first node acquiring the first data may be: the first node acquiring a first protocol data unit (protocol data unit, PDU), the first PDU includes the first data and a BAP layer header, and the BAP layer header carries the first protocol data unit (PDU).
  • PDU protocol data unit
  • the BAP layer header carries the first protocol data unit (PDU).
  • the first node acquiring the first PDU may be: the first node receives the first PDU; or, the first node acquiring the first PDU may also be: the first node generates the first PDU, which is not the case in this embodiment of the application. Make specific restrictions.
  • the first node after the first node obtains the first data, it can be determined whether the first node is the destination node of the first data, and when the first node is the destination node of the first data, the first node processes the first data (For example, the first data is submitted to the upper protocol layer of the BAP layer to perform processing); when the first node is not the destination node of the first data, the following step S902 is performed.
  • the first node is not the first node. Take the destination node of the data as an example.
  • the first node may use the identification of the first node to match the identification of the destination node carried in the first PDU.
  • the first node is the destination node of the first data; or, when the identity of the first node is different from the identity of the destination node carried in the first PDU, the first node is not the first node.
  • the destination node of the data is not the first node.
  • S902 The first node determines that the next hop node of the first data is the second node.
  • the first node determining that the next hop node of the first data is the second node may specifically be: in the case that the first node cannot transmit data through at least one parent node of the first node, the first node determines the location of the first data The next hop node is the second node.
  • the second node is an assisting child node of the first node, and the parent node of the assisting child node of the first node includes the first node and the third node.
  • the third node may be an IAB node.
  • the assisting child node of the first node can be connected to the host node through the third node.
  • the third node may be the host node or the DU of the host node. In this case, the wireless backhaul link between the assisting child node of the first node and the third node is available.
  • the first node is IAB node 1 as an example
  • the child nodes of IAB node 1 include IAB node x, IAB node y, and IAB node z, where the IAB node x
  • the parent node includes IAB node 1 and IAB node 3, and IAB node x can be connected to the host node through IAB node 3;
  • the parent node of IAB node y includes IAB node 1;
  • the parent node of IAB node z includes IAB node 1 and IAB node 2 ,
  • IAB node z can be connected to the host node through IAB node 2.
  • IAB node x and IAB node z are the assisting child nodes of IAB node 1, and IAB node y is not the assisting child node of IAB node 1, and when the second When the node is IAB node x, the third node is IAB node 3, and when the second node is IAB node z, the third node is IAB node 2.
  • the first node cannot transmit data through at least one parent node of the first node, including one or more of the following situations:
  • Case 1 The wireless backhaul link between the first node and at least one parent node of the first node is abnormal.
  • the abnormality of the wireless backhaul link in the embodiment of the present application can be understood as the wireless backhaul link cannot normally transmit data and/or signaling, for example, RLF and/or wireless backhaul link occur on the wireless backhaul link The road is blocked, etc.
  • the first node is IAB node 1 as an example
  • the abnormal wireless backhaul link between the first node and at least one parent node of the first node may be:
  • the wireless backhaul link between 1 and IAB node 5 is abnormal.
  • the abnormal wireless backhaul link between the first node and at least one parent node of the first node may include any one of the following situations: the first node has only one parent node, and the first node and the parent node RLF occurs on the wireless backhaul link between the first node; or, the first node has only one parent node, the wireless backhaul link between the first node and the parent node has RLF, and the first node performs RLF recovery (that is, initiates RRC Rebuild) but the recovery fails; or, the first node has multiple parent nodes, and the wireless backhaul links between the first node and the multiple parent nodes all have RLF; or, the first node has multiple parent nodes, and the first node has multiple parent nodes.
  • RLF occurs on the wireless backhaul link between a node and any one or more parent nodes; or, the first node has multiple parent nodes, and the wireless backhaul chain between the first node and any one or more parent nodes RLF occurred on the road, the first node tried RLF recovery but the recovery failed.
  • Case 2 The first node receives a notification that the wireless backhaul link is abnormal from at least one parent node of the first node.
  • the wireless backhaul link between the first node and the parent node of the first node may be normal, and the wireless backhaul between the parent node of the first node and the grandparent node of the first node
  • the link may be abnormal.
  • the parent node of the first node determines that the wireless backhaul link between it and the grandfather of the first node is abnormal (for example, when RLF occurs on the wireless backhaul link, the parent node of the first node attempts RLF recovery and the recovery fails)
  • a wireless backhaul link abnormal notification can be sent to the first node to notify the first node that its parent node is currently unable to provide backhaul services for the first node.
  • the wireless backhaul link abnormal notification received by the first node from the parent node of the first node may be a backhaul radio link failure notification (BH RLF notification) or a backhaul radio link failure indication (BH RLF notification).
  • RLF indication the return radio link failure notification or return radio link failure indication may be carried in the BAP layer control PDU.
  • the wireless link failure notification back and the wireless link failure indication back have similar functions, and the wireless link failure notification in the following embodiments of the present application can be replaced with a wireless link failure indication.
  • the first node is IAB node 1 as an example, if the parent node of IAB node 1 (IAB node 5) and the grandfather node (host node) of IAB node 1
  • IAB node 5 can send a wireless backhaul link abnormal notification to IAB node 1 to notify IAB node 1 that its parent node cannot currently be IAB node 1 Provide return service.
  • the first node has at least two parent nodes, among which, one parent node is the primary parent node, the other parent node is the secondary parent node, and the primary parent node of the first node is the first node ( It may be the MT part of the first node)
  • the cell group (cell group) to which the cell providing access services belongs is called the master cell group (MCG)
  • MCG master cell group
  • SCG secondary cell group
  • the first node when the first node determines that RLF occurs on the wireless backhaul link between its parent node, it can perform an RLF recovery operation, such as reestablishing an RRC connection.
  • RLF recovery operation such as reestablishing an RRC connection.
  • the first node fails to perform RLF recovery, it can be considered as the first node.
  • a node cannot transmit data through its parent node.
  • this case 4 can be understood as that RLF occurs on the wireless backhaul link between the first node and parent node 1, and the first node RLF also occurs on the wireless backhaul link between a node and the parent node 2, and the first node fails to perform RLF recovery. That is, RLF occurs on the wireless backhaul links between the first node and all parent nodes of the first node, and the first node performs RLF recovery and the recovery fails.
  • the first node may determine that the next hop node of the first data is the second node in multiple ways. Exemplarily, it may include the following two ways:
  • Manner 1 The first node determines that the next hop node of the first data is the second node according to the first configuration information.
  • the first configuration information may be pre-configured by the host node to the first node, and candidate configuration information that takes effect when the first node cannot transmit data through at least one parent node of the first node.
  • candidate configuration information that takes effect when the first node cannot transmit data through at least one parent node of the first node.
  • the first configuration information may be configuration information obtained from the host node after the first node sends the first reconfiguration request information to the host node through the fourth node.
  • the first reconfiguration request information is used to request the first configuration information
  • the fourth node is any assisting child node of the first node.
  • the first node can send the first reconfiguration request information to the host node through the fourth node, and after receiving the first reconfiguration request information, the host node can send to the first node through the assisting child node of the first node.
  • the first configuration information correspondingly, the first node can receive the first configuration information from the host node.
  • the first reconfiguration request information sent by the first node to the host node through the fourth node may carry the identity of the first node. Therefore, after receiving the first reconfiguration request information, the host node can learn that the node that needs to update the BAP layer routing configuration and bearer mapping configuration is the first node, and then sends the first configuration information to the first node.
  • the first reconfiguration request information may also include the identifier of the assisting child node of the first node.
  • the host node may also send updated information to the assisting child node of the first node.
  • the configuration information is used by the first node to assist the child nodes in route selection and bearer mapping, where the updated configuration information may include, for example, updated BAP layer routing configuration and bearer mapping configuration.
  • the host node may also send updated configuration information to other IAB nodes on the transmission path between the assisting child node of the first node and the host node for routing selection and bearer mapping of other IAB nodes.
  • a node can communicate with the host node on the transmission path through the assisting child node of the first node.
  • the first node may determine the assisting child node of the first node through the following steps:
  • Step 1 The first node sends assistance request information to the child nodes of the first node.
  • the child node of the first node receives the assistance request information from the first node.
  • the assistance request information is used to determine the assistance child node of the first node.
  • the assistance request information may be represented by a specific value of a specific field.
  • the first node may send a data packet to the child nodes of the first node, and the assistance request information may be carried in the BAP layer of the data packet, for example, in the control PDU of the BAP layer or the data PDU of the BAP layer.
  • the assistance request information may also be carried in a control element (CE) of the MAC layer of the data packet; or, the assistance request information may be carried in the system information of the cell served by the first node.
  • CE control element
  • the assistance request information may also be a backhaul radio link failure notification, that is, the BH RLF notification sent by the first node to the byte point of the first node, which may be regarded as assistance request information, that is, assistance request Information can be thought of as implicitly represented information.
  • the first node is the IAB node 1 as an example, then in step 1, the IAB node 1 sends the assistance request information to the IAB node x, the IAB node y, and the IAB node z .
  • Step 2 The assisting child node of the first node sends assistance response information to the first node.
  • the first node receives the assistance response information from the assistance child node of the first node.
  • the child node that can serve as the assistance child node of the first node sends assistance response information to the first node, and then the first node may determine to return the assistance
  • the child node of the response message is the assisting child node of the first node.
  • the assistance response information can be carried in a newly defined BAP layer control PDU, or can also be carried in an existing BAP layer control PDU, or can also be carried in a newly defined MAC CE, or also It can be carried in an existing MAC CE, which is not specifically limited in the embodiment of the present application.
  • the first node is IAB node 1, and IAB node 1 sends the assistance request information to IAB node x, IAB node y, and IAB node z as an example, then IAB node x And the IAB node z sends assistance response information to the first node.
  • the first node After receiving the assistance response information from the IAB node x and the IAB node z, the first node can determine that the assisting child nodes of the first node are the IAB node x and the IAB node z.
  • the node that cannot be the assisting child node of the first node may send assistance negative response information to the first node, and then the first node may determine that the child node that returns the assisting negative response information is not the assisting child node of the first node Or, the node that cannot be the assisting child node of the first node may not respond to the assistance request information, that is, it does not send assistance negative response information to the first node.
  • the first node is IAB node 1, and IAB node 1 sends the assistance request information to IAB node x, IAB node y, and IAB node z as an example, then IAB node y
  • the assistance negative response information may be sent to the IAB node 1, or the assistance negative response information may not be sent.
  • the first reconfiguration request information may be sent through any child node.
  • any assisting child node of the first node receives the assistance request information from the first node After that, in addition to sending the assistance response information to the first node, the first reconfiguration request information is also sent to the host node, that is, the assisting child node of the first node requests the host node for the first configuration information. After receiving the first reconfiguration request information, the host node may send the first configuration information to the first node through the assisting child node of the first node.
  • the host node can also send updated configuration information to the assisting child nodes of the first node, and other IAB nodes on the transmission path between the first node and the host node including each assisting child node, for the first node Assist child nodes and other IAB nodes to perform routing and bearer mapping.
  • the first reconfiguration request message sent by the assisting child node of the first node to the host node may carry the identification of the first node, and/or the identification of the assisting child node. Therefore, after receiving the first reconfiguration request information, the host node can learn the nodes that need to update the BAP layer routing configuration and bearer mapping configuration, and then send the updated configuration information to these nodes.
  • the identifier of the first node may be the BAP layer identifier of the first node (ie, BAP address), and the identifier of the assisting child node may also be its BAP layer identifier (ie, BAP address).
  • Manner 2 The first node sends assistance request information and receives assistance response information from the second node.
  • the assistance request information is used to determine the assisting child node of the first node
  • the assistance response information from the second node is used to indicate that the second node can serve as the assisting child node of the first node
  • the second method is the same as the method in which the first node determines the assisting child node of the first node in the above method 1, and the specific implementation can refer to the related description in the above method 1.
  • the way 2 does not need to determine the next hop node of the first data according to the configuration information.
  • the first node determines that it has multiple assisting subnodes, it can send different uplink data obtained by the first node to different assisting subnodes for transmission, or it can send different uplink data obtained by it. To the same assisting child node for transmission, this embodiment of the application does not specifically limit this.
  • the steps/functions implemented by the host node in step S902 can be implemented by the CU of the host node; further, when the CU of the host node is CU-CP In a form separated from the CU-UP, the steps/functions implemented by the host node in step S902 may be implemented by the CU-CP of the host node.
  • the foregoing first configuration information may include one or more of the following information:
  • the identification list of the assisting child nodes of the first node includes one or more node identifications, the IAB node identified by any one of the one or more node identifications is the assisting child node of the first node, and
  • assisting sub-nodes please refer to the above related descriptions, which will not be repeated here.
  • the first node is IAB node 1 as an example.
  • the identifier list of the assisting child nodes of the first node includes the identifier of IAB node x (IAB node Identification x) and the identification of the IAB node z (IAB node identification z).
  • the first routing table includes one or more routing table entries, and each routing table entry includes the identification of the destination node and the identification of the next hop node; or, each routing table entry includes the identification of the destination route and the identification of the next hop node. Identification.
  • the destination route identification includes the identification of the destination node.
  • the destination route identification may also include the path identification.
  • the path identifier is used to identify a transmission path from the access IAB node to the host node.
  • IAB node x is used as terminal x to access the IAB node.
  • the identifier of “node 4 ⁇ host node” may be path identifier 1
  • the identifier of the transmission path “IAB node x ⁇ IAB node 1 ⁇ IAB node 5 ⁇ host node” may be path identifier 2.
  • the identification of the destination node can be the BAP layer identification of the destination node (ie BAP address), the destination routing identification can be the destination BAP routing ID (BAP routing ID), and the path identification can be the BAP path ID (BAP path ID) .
  • the BAP layer identifier of the destination node carried in the BAP layer of the uplink data packet may be the identifier of the host DU or the identifier of the host CU.
  • the destination node identifier carried in the upstream data packet is the identifier of the host DU as an example.
  • the host node when the host node includes a DU, different assisting child nodes of the first node are all connected to the DU of the host node.
  • the first route The table can be as shown in Table 2, where the transmission path identified by path identifier a is "IAB node 1 ⁇ IAB node x ⁇ IAB node 3 ⁇ IAB node 4 ⁇ the DU of the host node", and the transmission path identified by path identifier b It is "IAB node 1 ⁇ IAB node z ⁇ IAB node 2 ⁇ IAB node 6 ⁇ DU of the host node"; when the host node includes multiple DUs, different assisting child nodes of the first node can be connected to different DUs of the host node For example, the host node includes a first DU and a second DU, the IAB node x can be connected to the first DU, and the IAB node z can be connected to the second DU.
  • the first routing table can be as 3, that is, in the case where the destination node of the first data is the first DU of the host node, the second node here is the IAB node x in the IAB network shown in FIG. 10, where the path identifier
  • the transmission path identified by c is "IAB node 1 ⁇ IAB node x ⁇ IAB node 3 ⁇ IAB node 4 ⁇ the first DU of the host node”
  • the transmission path identified by path identifier d is "IAB node 1 ⁇ IAB node z ⁇ IAB node 2 ⁇ IAB node 6 ⁇ the second DU of the host node".
  • the first mapping relationship is used when the first node serves as an access IAB node.
  • the first mapping relationship includes the mapping relationship between the radio link control channel (RLC channel) and the service on the wireless backhaul link between the first node and each assisting child node.
  • the radio link control channel on the wireless backhaul link may also be called the backhaul radio link control channel (BH RLC channel).
  • the mapping relationship is used to map different types of services of the first node to the radio link control channel on the wireless backhaul link between the first node and the assisting child node of the first node;
  • the type of service may include F1 One or more of interface user plane services, F1 interface control plane services, and non-F1 (non-F1 traffic) interface services.
  • the first mapping relationship may include one or more table items, one table item represents one mapping relationship, and each table item includes a service identifier, an identifier of a next hop node, and a wireless link control channel backhaul.
  • the business identifier can reflect the type of business.
  • the identifier of the next hop node is used to determine the wireless backhaul link.
  • the wireless backhaul link is a wireless backhaul link between the first node and the node identified by the next hop node's identifier.
  • the identifier of the backhaul wireless link control channel is used to identify the wireless link control channel on the wireless backhaul link between the first node and the next-hop node.
  • the service identifier may specifically be an F1AP message related to the terminal, or an F1AP message unrelated to the terminal, or it may also be a signaling radio bearer (signalling radio bearer) containing the terminal. bearers, SRB) 0/1/2/3 F1AP message.
  • the service identifier can be the transmission tunnel information of the F1-U interface corresponding to the F1 interface user plane service (that is, the GTP-U tunnel information of the F1-U interface), where the GTP-U tunnel
  • the information may be the endpoint identifier (tunnel endpoint identifier, TEID) of the GTP-U tunnel, or may be the GTP-UTEID and the target Internet protocol (IP) address.
  • the first node is IAB node 1.
  • GTP-U TEID1 + host node IP address can represent the F1 user plane service of IAB node 1, then
  • the first entry in Table 4 can indicate that the F1 interface user plane service of IAB node 1 can be mapped to the backhaul wireless identified by BH RLC channel 1 on the wireless backhaul link between IAB node 1 and IAB node x Link control channel.
  • mapping relationship between the F1 interface user plane service and the radio link control channel, the mapping relationship between the F1 interface control plane service and the radio link control channel, and the mapping relationship between the non-F1 interface service and the radio link control channel can be combined
  • the configuration can also be configured separately, which is not specifically limited in the embodiment of the present application.
  • the second mapping relationship is used when the first node serves as an access IAB node.
  • the second mapping relationship includes the corresponding relationship between the service and the candidate uplink route identifier.
  • the destination node indicated by the alternative uplink route identifier is an uplink destination node, such as a host node, or a host DU, or an IAB host CU. If the candidate uplink route identifier includes the transmission path identifier, the indicated transmission path is the uplink transmission path from the assisting child node of the first node to the host node.
  • mapping relationship is used to add uplink routing identifiers for different types of services of the first node.
  • the types of services include one or more of F1 interface user plane services, F1 interface control plane services, and non-F1 interface services.
  • the correspondence between the F1 interface user plane service and the alternative uplink route identifier may be the correspondence between the F1-U GTP-U tunnel information and the alternative uplink route identifier; the F1 interface control plane service and the alternative uplink route
  • the identification correspondence can be the correspondence between the F1 interface control plane message type and the alternative uplink routing identifier.
  • the F1 interface control plane message type can be the terminal-related F1AP message, the terminal-independent F1AP message, and the terminal-containing SRB0/1/ One or more of 2/3 F1AP messages.
  • the third mapping relationship includes the corresponding relationship between the backhaul radio link control channel of the ingress link and the backhaul radio link control channel of the egress link corresponding to the first node in the uplink transmission scenario.
  • the third mapping relationship is applicable to the case where the first node is an intermediate IAB node.
  • the ingress link corresponding to the first node is the link between the first node and the non-assisted child nodes of the first node.
  • the first node The node is IAB node 1
  • the unassisted child node of the first node is IAB node y
  • the ingress link corresponding to the first node is the link between IAB node 1 and IAB node y
  • the egress link corresponding to the first node Is the link between the first node and the assisting child node of the first node.
  • the first node is IAB node 1
  • the egress link is IAB node 1 and IAB node x
  • the link between may be the link between IAB node 1 and IAB node z.
  • the third mapping relationship may include one or more table items, one table item represents a corresponding relationship, and each table item includes the identifier of the previous hop node, the BH RLC channel identifier of the ingress link, and the next hop node
  • the ID of the BH RLC channel of the egress link is used to indicate the ingress link
  • the identifier of the next hop node is used to indicate the egress link
  • the BH RLC channel identifier of the ingress link is used to indicate the backhaul radio link control channel on the ingress link.
  • the BH RLC channel identifier of the egress link is used to indicate the backhaul radio link control channel on the egress link.
  • the third mapping relationship may be as shown in Table 5, where IAB node identifier y is the identifier of IAB node y, then the first entry in Table 5 may indicate The data received by the IAB node 1 from the backhaul wireless link channel 1 between the IAB node y and the IAB node y is sent through the backhaul wireless link channel 3 between the IAB node 1 and the IAB node x.
  • the first node may also perform bearer mapping according to the third mapping relationship in the first configuration information, for example, determine the first node A backhaul wireless link control channel used to carry the first data on the link with the second node.
  • the first node sends the first data to the second node.
  • the second node receives the first data from the first node.
  • the second node after the second node receives the first data from the first node, it can determine whether the second node is the destination node of the first data, and the judgment method is the same as that of the first node to determine whether the first node is the destination node of the first data.
  • the method is similar, and reference may be made to the related description in step S901 above, which will not be repeated here.
  • the second node processes the first data (for example, hands the first data to the upper protocol layer of its BAP layer for processing); when the second node is not the first data
  • the second node is not the destination node of the first data as an example for description.
  • the second node determines that the next hop node of the first data is the third node.
  • the second node may determine that the next hop node of the first data is the third node according to the second configuration information.
  • the third node is the parent node of the second node, and the second node can be connected to the host node through the third node.
  • the second configuration information acquisition manner may also be different, which is exemplary:
  • the second configuration information may be uplink candidate configuration information pre-configured by the donor node to the second node.
  • the second configuration information takes effect in one or more of the following situations:
  • Case 1 The second configuration information takes effect when the second node receives the notification of the wireless backhaul link abnormality from the first node.
  • the first node may send a wireless backhaul link abnormality notification to the second node, so that the second node can enable the second configuration information .
  • the wireless backhaul link abnormal notification may be a backhaul wireless link failure notification; or, the backhaul link abnormal notification may also be the aforementioned assistance request information, which is not specifically limited in the embodiment of the present application.
  • Case 2 The second configuration information takes effect when the second node receives the first uplink data packet from the first node.
  • the first node when it cannot transmit uplink data through at least one parent node of the first node, it may send an uplink data packet to its child node, and the uplink data packet carries the destination node (for example, the host node, or the host DU, Or the identity of the host CU).
  • the destination node for example, the host node, or the host DU, Or the identity of the host CU.
  • the second node may determine that the data packet is an uplink data packet according to the destination node carried therein; or may also determine that the data packet is an uplink data packet according to the first indication information carried therein, The first indication information will be described in detail in the following embodiments, and will not be repeated here.
  • the second node determines for the first time that the data packet from the first node is an uplink data packet, that is, when the second node receives the first uplink data packet from the first node, the pre-configured second configuration information is activated.
  • Case 3 The second configuration information takes effect when the second node receives information from the host node that is used to instruct the second node to enable the second configuration information.
  • the uplink data packet may be transmitted to the host node.
  • the uplink data packet may carry first notification information, and the first notification information is used to notify the host node that the first node will enable pre-configured first configuration information.
  • the host node knows the first configuration information.
  • the node will enable the pre-configured first configuration information, so that the second notification information can be sent to the second node, and the second notification information is used to instruct the second node to enable the second configuration information.
  • the second node activates the second configuration information after receiving the second notification information, that is, the second configuration information takes effect when the node receives the second notification information from the host node.
  • the second configuration information may be that when the first node sends the first reconfiguration request information to the host node through the fourth node, the host node sends the first reconfiguration request information after receiving the first reconfiguration request information.
  • the second configuration information may be any one of the above-mentioned first node assisting the child node to send the first reconfiguration request information to the host node, and the host node sends the first reconfiguration request information after receiving the first reconfiguration request information.
  • the host node can determine that the second node will finally assist the first node among the multiple assisting child nodes of the first node
  • the uplink data is transmitted, so that the second configuration information can be sent to the second node.
  • the second node may be the uplink configuration information obtained from the host node after it sends the second reconfiguration request information to the host node, that is, the second node may send the second node to the host node.
  • Reconfiguration request information where the second reconfiguration request information is used to request second configuration information.
  • the host node may send the second configuration information to the second node, and correspondingly, the second node receives the second configuration request information from the host node.
  • the second reconfiguration request information may include the identifier of the second node. Therefore, after receiving the second reconfiguration request information, the host node can learn that the node whose BAP layer routing configuration and bearer mapping configuration needs to be updated is the first node. The second node further sends second configuration information to the second node.
  • the second node may send the second node to the host node when receiving the notification of the abnormality of the backhaul link from the first node, or when receiving the first uplink data packet from the first node.
  • the upper host node may also send the second reconfiguration request information in other situations, which is not specifically limited in the embodiment of the present application.
  • the second configuration information may be routing configuration information maintained by the second node when there is no link abnormality in the IAB network. That is to say, in a scenario where the first node cannot transmit data through at least one parent node of the first node, the second node does not need to re-acquire the configuration information, and uses the original routing configuration information for routing selection.
  • the second node may only use the destination routing identifier corresponding to the first data.
  • Destination node identifier search for an entry that matches the identifier of the destination node, and select the next hop node corresponding to the destination node’s identifier as the next hop node of the first data.
  • the second node selected by the second node is selected as the next hop node.
  • the next hop node of one data is the third node as an example for description.
  • the steps/functions implemented by the host node in step S904 can be implemented by the CU of the host node; further, when the CU of the host node is CU-CP In a form separated from the CU-UP, the steps/functions implemented by the host node in this step S904 may be implemented by the CU-CP of the host node.
  • the second configuration information may include one or more of the following information:
  • the second routing table includes one or more routing table entries.
  • Each routing table entry includes the identification of the destination node and the identification of the next hop node; or, each routing table entry includes the identification of the destination route and the identification of the next hop node, and the destination routing identification includes the identification of the destination node.
  • the destination route identifier may also include a path identifier.
  • the one or more routing table entries include a routing table entry whose destination node is a host node (or host CU, or host DU).
  • the second routing table when the host node is in the form of CU-DU separation, and the destination node of the first data is the host DU, the second routing table includes the routing table entries of the DU whose destination node is the host node; when the host node includes multiple When there are two DUs and the destination node of the first data is the first DU of the host node, the second routing table includes a routing table entry of the first DU whose destination node is the host node.
  • the second routing table may be as follows 6, that is to say, the third node in this scenario is the IAB node 3 shown in FIG. 10.
  • the fourth mapping relationship includes the corresponding relationship between the backhaul radio link control channel of the ingress link and the backhaul radio link control channel of the egress link corresponding to the second node in the uplink transmission scenario.
  • the ingress link corresponding to the second node is the link between the second node and the first node.
  • the second node is IAB node x
  • the ingress link corresponding to the second node is the link between IAB node x and IAB node 1;
  • the egress link corresponding to the second node is the link between the second node and the third node, for example, in the figure
  • the third node is IAB node 3
  • the egress link corresponding to the second node is the link between IAB node x and IAB node 3.
  • the fourth mapping relationship may include the identifier of the previous hop node, the ingress link BH RLC channel identifier, the identifier of the next hop node, and the egress link BH The identifier of the RLC channel.
  • the identifier of the previous hop node is used to indicate the ingress link
  • the identifier of the next hop node is used to indicate the egress link.
  • step S904 after the second node determines that the next hop node of the first data is the third node, it may also perform bearer mapping according to the fourth mapping relationship in the second configuration information, for example, determine the second node A backhaul wireless link control channel used to carry the first data on the link with the third node.
  • S905 The second node sends the first data to the third node.
  • the third node receives the first data from the second node.
  • the third node may forward the first data to its parent node until the first data is transmitted to the host node.
  • the first node in the case that the first node cannot transmit uplink data through the parent node of the first node, the first node can send the uplink data to the assisting child node of the first node, and the first node The assisting child node further sends the uplink data to another parent node, and then the parent node transmits it to the host node, so that the uplink data can be transmitted to the host node in time, reducing the impact of the abnormal return link on the business .
  • each node in the communication method shown in FIG. 9 includes the DU part and the MT part, and the DU part and the MT part do not share the BAP layer entity.
  • the first node obtains the first data:
  • the receiving entity of the first BAP layer entity of the first node obtains the first data.
  • the first BAP layer entity of the first node is the BAP layer entity of the DU part of the first node
  • the second BAP layer entity of the first node is the BAP layer entity of the MT part of the first node. That is, step S901 is specifically that the BAP layer entity of the DU part of the first node obtains the first data.
  • the receiving entity of the first BAP layer entity of the first node determines whether the first node is the destination node of the first data.
  • processing the first data by the first node may include: the receiving entity of the first BAP layer entity of the first node submits the first data to the upper layer of the first BAP layer entity
  • the entity for example, the IP layer entity of the DU part of the first node; or, when the first node is not the destination node of the first data, the following step S902 is performed.
  • the first node determines that the next hop node of the first data is the second node, which may specifically be: the sending entity of the first BAP layer entity of the first node determines that the next hop node of the first data is the second node node.
  • the receiving entity of the first BAP layer entity of the first node delivers the first data to the sending entity of the first BAP layer entity to perform the sending process.
  • the first BAP layer entity of the first node does not need to submit the first data to the second BAP layer entity of the first node, that is, the BAP layer entity of the DU part of the first node does not need to submit the first data to the second BAP layer entity of the first node.
  • the BAP layer entity in the DU part of the first node performs sending processing, for example, determining the next hop node of the first data, and the link between the first node and the next hop node for carrying the first data Backhaul wireless link control channel, etc.
  • the first node sending the first data to the second node may specifically be: the first node sending the first data packet to the second node.
  • the second node receiving the first data from the first node may specifically be: the second node receiving the first data packet from the first node. Further optionally, the second node receiving the data packet from the first node may be: the MT part of the second node receives the first data packet from the first node.
  • the first data packet includes first data and first indication information.
  • the first indication information is used to indicate that the first data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, that is, the first data is the first BAP
  • the layer entity internally executes the data received and sent.
  • the first indication information is used to indicate that the receiving entity of the second BAP layer entity of the second node does not need to submit the first data to the sending entity of the first BAP layer entity of the second node.
  • the first BAP layer entity of the second node is the BAP layer entity of the DU part of the second node
  • the second BAP layer entity of the second node is the BAP layer entity of the MT part of the second node.
  • the first indication information may be located in the BAP layer of the first data packet, for example, in the BAP layer header of the first data packet; or, the first indication information may also be located in the MAC layer of the first data packet ,
  • the first indication information is a first logical channel identifier (LCID), and the backhaul radio link control channel corresponding to the logical channel identified by the first LCID is between the first node and the second node for
  • the first node sends the backhaul wireless link control channel of the first type of data to the second node, where the first type of data is the first type of data that does not need to be delivered to the second node by the receiving entity of the second BAP layer entity of the second node.
  • the data of the sending entity of the BAP layer entity, or in other words, the first type of data is data that performs receiving and sending processing inside the first BAP layer entity of the second node.
  • one or more specific backhaul radio link control channels may be used to carry the first type of data between the first node and the assisting child node (for example, the second node) of the first node, and the one or more Any one of the specific backhaul wireless link control channels has a logical channel corresponding to it.
  • the logical channel is identified by a logical channel identifier, and the backhaul wireless link control corresponding to the first LCID The channel is one of the one or more specific backhaul wireless link channels.
  • the above-mentioned one or more specific backhaul radio link control channels may be agreed upon by a protocol.
  • the protocol may agree on the backhaul radio link control identified by a specific value of the backhaul radio link control channel identifier.
  • the channel carries the first type of data between the first node and the assisting child node of the first node; alternatively, the protocol can also agree on the backhaul wireless link control channel corresponding to the logical channel identified by the logical channel identifier with a specific value Carry the first type of data; or, the one or more specific backhaul wireless link channels or the logical channel corresponding to each backhaul wireless control channel may also be used by the host node (specifically, the CU of the host node, Or the CU-CP of the host node is configured to the first node and/or the second node through control plane signaling.
  • the control plane signaling may be an RRC message sent to the MT part of the first node and/or the second node, or may also be an F1AP message sent to the DU part of the first node and/or the second node.
  • the second node determines that the next hop node of the first data is the third node, which may specifically be: the second node determines that the second node's second BAP layer entity's sending entity executes it according to the first indication information. Sending processing; the sending entity of the second BAP layer entity of the first node determines that the next hop node of the first data packet is the third node according to the second configuration information.
  • the second node after the second node receives the data from the first node, when it is determined that the second node is not the destination node of the data, it further determines according to the first indication information that the BAP layer entity of the MT part of the second node performs the transmission. Processing, there is no need to send the first data to the sending entity of the BAP layer entity of the DU part of the second node to perform sending processing.
  • the second node determines that the second node is not the destination node of the data packet, its second BAP layer entity
  • the receiving entity submits the BAP layer PDU or BAP layer SDU of the data packet to the sending entity of the first BAP layer entity of the second node for sending processing.
  • the receiving entity of the second BAP layer entity of the second node does not need to submit the BAP layer PDU or BAP layer SDU of the data packet to the first node.
  • the sending entity of the first BAP layer entity of the second node may subsequently perform sending processing on the sending entity of the second BAP layer entity of the second node.
  • the sending processing includes, for example, determining a next hop node and a backhaul radio link control channel used to carry data on the link between the second node and the next hop node.
  • the second node sending the first data to the third node may specifically be: the MT part of the second node sends the first data to the third node.
  • the MT part of the second node when it sends the first data to the third node, it does not need to send additional indication information b to indicate that the receiving entity of the BAP layer of the DU part of the third node does not need to submit the first data to
  • the sending entity of the BAP layer entity of the MT part of the third node that is, the third node performs sending processing according to the existing BAP layer forwarding model introduced in Article 9 of the brief introduction section of related technologies or terms in this application.
  • the first node can send the first indication information at the same time when sending uplink data to its assisting child node, so that it assists the child node to perform routing and bearer mapping on the MT side according to the first indication information.
  • the assisting child node transmits the uplink data to the host node through its other parent node, so that the uplink data can be transmitted to the host node in time, reducing the impact of the abnormal return link on the service.
  • the IAB node includes the DU part and the MT part, and the DU part and the MT part share the BAP layer entity, there is no need to transmit the first indication information at the same time during the transmission of the first data.
  • the The related functions/steps of routing and bearer mapping implemented by a node can be implemented by the BAP layer entity of the first node (specifically, the sending part of the BAP layer entity of the first node); routing and bearer implemented by the second node
  • the related functions/steps of the mapping can be implemented by the BAP layer of the second node (specifically, the sending part of the BAP layer entity of the second node), which can be referred to the above-mentioned related description, which will not be repeated here.
  • the communication method of the first node can still perform cell selection and initiate random access for wireless backhaul link recovery.
  • the link recovery can continue to follow the existing introduction in Article 9 of the brief introduction of related technologies or terms in this application.
  • the forwarding model of the BAP layer of the first node performs the sending process, that is, the uplink data and the downlink data are still transmitted through the parent node of the first node.
  • the embodiment of the application also provides a communication method in the downlink transmission scenario. As shown in FIG. 11, this embodiment of the application is directed to the downlink transmission.
  • the communication method provided by the scenario, the communication method includes the following steps:
  • the host node obtains second data.
  • the destination node of the second data is the first node or the fifth node.
  • the fifth node is a downstream node in the downlink transmission direction of the first node, and the fifth node is not an assisting child node of the first node.
  • the second data is downlink data.
  • the second data in the embodiment of this application can be understood as the SDU of the BAP layer.
  • the first node may be IAB node 1
  • the fifth node may be IAB node y.
  • the host node sends second data to the second node.
  • the second node receives the second data from the host node.
  • the host node can directly send the second data to the second node via the wireless backhaul link between the host node and the second node, and correspondingly Yes, the second node receives the second data from the host node.
  • the host node may also be referred to as the third node. If the second node is connected to the host node via the multi-hop wireless backhaul link, the host node sends the second data to the second node through the third node. At this time, the host node and the third node are different nodes, and the third node Is the parent node of the second node.
  • the second node receives the second data from the host node through the third node, that is, the transmission path from the host node to the third node may also include one or more IAB nodes.
  • the second data can be transmitted from the host node to the third node via the forwarding of each IAB node on the transmission path, and then transmitted from the third node to the second node.
  • the second node receives the second data from the host node through the third node, it can also be understood that the second node receives the second data from the third node.
  • the second node is also a child node of the first node, that is, the first node and the third node are both the parent nodes of the second node, but the second node can be connected to the host node through the third node.
  • One node is different.
  • the second node may be IAB node x
  • the third node may be IAB node 3.
  • the second node may determine whether the second node is the destination node of the second data, in a manner similar to the manner in which the first node determines whether the first node is the destination node of the first data, Reference may be made to the relevant description in step S901 above, which will not be repeated here.
  • the second node processes the second data (for example, the second data is handed over to the upper protocol layer of the BAP layer for processing); when the second node is not the second data
  • the following step S1103 is executed.
  • the second node is not the destination node of the second data as an example for description.
  • the second node determines that the next hop node of the second data is the first node.
  • the second node may determine that the next hop node of the second data is the first node according to the third configuration information.
  • the third configuration information acquisition manner may also be different, which is exemplary:
  • the third configuration information may be downlink candidate configuration information pre-configured by the donor node to the second node.
  • the third configuration information takes effect in one or more of the following situations:
  • Case 1 The third configuration information takes effect when the second node receives the wireless backhaul link abnormal notification from the first node.
  • Case 2 The third configuration information takes effect when the second node receives the first uplink data packet from the first node.
  • Case 3 The third configuration information takes effect when the second node receives information from the host node that is used to instruct the second node to enable the third configuration information.
  • step S904 the above three situations are similar to the three situations in which the second node determines the effective moment of the second configuration information in step S904.
  • step S904 please refer to the relevant description in step S904, which will not be repeated here.
  • the third configuration information may be sent by the host node to the second node when the first node sends the first reconfiguration request information to the host node through the fourth node; or Three configuration information can be sent by the host node to the second node when any one of the first node assists the child node to send the first reconfiguration request to the host node.
  • the host node receives any of the first node’s After the first reconfiguration request information of an assisting child node, it can be determined that among the multiple assisting child nodes of the first node, the second node finally assists the first node in transmitting downlink data, so that the third configuration information can be sent to the second node;
  • the third configuration information may be sent by the host node to the second node when the second node sends the second reconfiguration request information to the host node.
  • the third configuration information is the downlink configuration information obtained from the host node after the second node sends the third reconfiguration request information to the host node, that is, the second node can send the third node to the host node.
  • the host node sends third reconfiguration request information, where the third reconfiguration request information is used to request third configuration information.
  • the host node may send the third configuration information to the second node, and correspondingly, the second node receives the third configuration request information from the host node.
  • the third reconfiguration request information may include the identifier of the second node. Therefore, after receiving the third reconfiguration request information, the host node can learn that the node that needs to update the BAP layer routing configuration and bearer mapping configuration is the first node. The second node further sends third configuration information to the second node.
  • the CU of the host node when the host node is CU-DU separated, the CU of the host node (in the case of CU-CP separation, specifically CU-CP) also sends updated configuration information to the DU of the host node for the host node
  • the DU of the node performs routing and bearer mapping. In a downlink transmission scenario, it can also be used to add BAP layer header information to the DU of the host node.
  • the third configuration information may include one or more of the following information:
  • the third routing table includes one or more routing table entries.
  • Each routing table entry includes the identification of the destination node and the next hop node; or each routing table entry includes the identification of the destination route and the identification of the next hop node, the destination routing identification includes the identification of the destination node, optionally, the destination route
  • the identification can also include a path identification.
  • the one or more routing table entries include a routing table entry whose destination node is the first node or the fifth node.
  • the path identifier is used to identify a transmission path from the host node to the access IAB node.
  • the third routing table can be as shown in Table 7.
  • the transmission path identified by path identifier e is "host node ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node x ⁇ IAB node 1”
  • the transmission path identified by path identifier f is "host node ⁇ IAB node 4" ⁇ IAB node 3 ⁇ IAB node x ⁇ IAB node 1 ⁇ IAB node y".
  • the fifth mapping relationship includes the corresponding relationship between the backhaul wireless link control channel of the ingress link and the backhaul wireless link control channel of the egress link corresponding to the second node in the downlink transmission scenario.
  • the ingress link corresponding to the second node is the link between the second node and the third node.
  • the second node is IAB node x
  • the third node is IAB node 3
  • the ingress link corresponding to the second node is the link between IAB node x and IAB node 3
  • the egress link corresponding to the second node is between the second node and the first node
  • the first node is IAB node 1
  • the egress link corresponding to the second node is the link between IAB node x and IAB node 1.
  • the fifth mapping relationship may include the identifier of the previous hop node, the ingress link BH RLC channel identifier, the identifier of the next hop node, and the egress link BH RLC The ID of the channel.
  • the identifier of the previous hop node is used to indicate the ingress link
  • the identifier of the next hop node is used to indicate the egress link.
  • step S1103 after the second node determines that the next hop node of the second data is the first node, it may also perform bearer mapping according to the fifth mapping relationship in the third configuration information, for example, determine the second node The backhaul wireless link control channel used to carry the second data on the link with the first node.
  • the steps/functions implemented by the host node in step S1103 can be implemented by the CU of the host node; further, when the CU of the host node is CU-CP In the form of separation from the CU-UP, the steps/functions implemented by the host node in this step S1103 can be implemented by the CU-CP of the host node.
  • the second node sends second data to the first node.
  • the first node receives the second data from the second node.
  • the first node After the first node receives the second data, if the destination node of the second data is the first node, the first node processes the second data (for example, hands the second data to the upper protocol layer of the BAP layer) Perform processing); if the destination node of the second data is the fifth node, the first node sends the second data to the fifth node.
  • the second data for example, hands the second data to the upper protocol layer of the BAP layer
  • the first node sends the second data to the fifth node.
  • the host node in the case that the host node cannot transmit downlink data to the first node through the parent node of the first node, the host node can send the data to the first node or the first node in the downlink transmission direction.
  • the data of the downstream node is sent to the assisting child node of the first node, and then the assisting child node of the first node transmits the downlink data to the first node, which is processed by the first node, so that the downlink data can be transmitted to the first node in time.
  • the downstream node in the downlink transmission direction of the node or the first node reduces the impact on the service caused by the abnormal return link.
  • the IAB node includes a DU part and an MT part, and the DU part and the MT part do not share a BAP layer entity, and the host node is a CU-DU separated form.
  • the host node acquiring the second data may specifically include:
  • the CU of the host node obtains the second data.
  • the second data when the CU of the host node determines that the first node cannot transmit data through at least one parent node of the first node, the second data includes the first IP header information.
  • the first IP header information is used to indicate that when the DU of the host node sends the second data, the fourth indication information is carried in the data packet encapsulating the second data, that is, the first IP header information can instruct the DU of the host node to send the second data.
  • the fourth indication information is used to indicate that the second data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, or The fourth indication information is used to indicate that the receiving entity of the second BAP layer entity of the second node does not need to submit the second data to the sending entity of the first BAP layer entity of the second node.
  • the communication method provided in the embodiments of the present application also involves the second indication information and the third indication information.
  • the description of the second indication information and the third indication information will be described in detail in the following embodiments, and will not be described here. Go into details.
  • the CU of the host node determines that the first node cannot transmit data through at least one parent node of the first node:
  • Case 1 The wireless backhaul link between the first node and at least one parent node of the first node is abnormal.
  • Case 2 The first node receives a wireless backhaul link abnormal notification from at least one parent node of the first node.
  • step S902 the description of the above four situations can refer to the related description in step S902, which will not be repeated here.
  • the CU of the host node may determine that the first node cannot transmit the second data through at least one parent node of the first node in various ways.
  • the upstream node in the downlink transmission direction of the first node can send the host
  • the CU of the node (specifically, the CU-CP of the host node) reports one or more of the above four conditions in the IAB network, so that the CU of the host node determines that the first node cannot pass at least one parent node of the first node transfer data.
  • the first node may report to the CU of the host node through the assisting child node of the first node that there are the above four types in the IAB network.
  • the CU of the host node determines that the first node cannot transmit data through at least one parent node of the first node.
  • the assisting child node of the first node may report to the CU of the host node that one of the above four situations exists in the IAB network Or multiple types, so that the CU of the host node determines that the first node cannot transmit data through at least one parent node of the first node.
  • the assisting child node of the first node may receive the assistance request information from the first node, or return a radio link failure notification, or the first uplink that carries the first indication information. In the case of data packets, it is reported to the CU of the host node that one or more of the above conditions exist in the IAB network.
  • the CU-CP of the host node may send configuration information to the CU-UP of the host node, and the configuration information includes that the first node is the The GTP-U tunnel (the GTP-U tunnel corresponding to the data radio bearer of the terminal served by the first node) information of the F1 interface user plane allocated by the terminal served by the first node, and the corresponding first IP header information; or The GTP-U tunnel (the GTP-U tunnel corresponding to the data radio bearer of the terminal served by the fifth node) information of the F1 interface user plane allocated by the fifth node to the terminal served by the fifth node, and the corresponding first IP header information .
  • the first IP header information may be included in the second data.
  • the GTP-U tunnel information of the F1 interface user plane allocated by the first node or the fifth node to the terminal served by it may be the TEID of the GTP-U tunnel, or may also be the IP address and the TEID of the GTP-U tunnel.
  • the GTP-U tunnel information of the F1 interface user plane allocated by the first node to the terminal it serves is the TEID of the GTP-U tunnel, or the IP address of the first node and the GTP-U tunnel allocated on the first node side TEID.
  • the IP header information in the embodiments of the present application includes any one or more of the following: differentiated service information, quality of service (QoS) flow label in IPv6, IP address, or Transport layer port number.
  • the differentiated service information can be the differentiated service code point (DSCP) in IPv4, or the information represented by the first 6 bits in the traffic class (TC) field in IPv6;
  • the IP address can be It is the source IP address or the destination IP address;
  • the transport layer port number can be the source port number or the destination port number.
  • the foregoing first IP header information may include any one or more of the following: first differentiated service information, first flow label, first IP address, or first transport layer port number.
  • first IP header information is flow label 1 and/or the first differentiated service information, then when the CU-UP of the subsequent host node sends the second data, the flow label 1 and/or the first data may be included in the second data. 1. Differentiate service information.
  • the CU of the host node may also send an IP header information list to the DU connected to the host to specify the IP header information corresponding to the fourth indication information.
  • the IP header information list includes the first IP header information, so that after receiving the downlink data from the host node CU, the DU of the host node determines whether to send the fourth indication information according to the IP header information included in the downlink data, for example, if The DU of the host node determines that the IP header information included in the downlink data exists in the IP header information list, and the DU of the host node may further send fourth indication information when sending the downlink data.
  • the CU of the host node sends the second data to the DU of the host node.
  • the DU of the host node receives the second data from the host node CU.
  • sending the second data by the host node may specifically be: the DU of the host node sends a fourth data packet, and the fourth data packet includes the second data and the fourth indication information.
  • the DU of the host node After the DU of the host node receives the second data, it can look up whether the first IP header information is included in the IP header information list. When the first IP header information is included in the IP header information list, the DU of the host node determines that there is The data packet of the second data carries fourth indication information. After that, the DU of the host node may send a fourth data packet, and carry the second data and the fourth indication information in the fourth data packet.
  • the communication method provided by the embodiments of the present application also involves the second data packet and the third data packet.
  • the description of the second data packet and the third data packet will be described in detail in the following embodiments, and will not be described here. Go into details.
  • the fourth indication information may be located in the BAP layer of the fourth data packet, for example, in the BAP layer header of the fourth data packet; or, the fourth indication information may also be located in the MAC layer of the fourth data packet , And the fourth indication information is the fourth LCID, where the backhaul radio link control channel corresponding to the logical channel identified by the fourth LCID is the next hop node of the second data determined by the host node and the host node (for example, FIG. 10 The backhaul radio link control channel used to carry the second data between the IAB nodes in 4).
  • the fourth LCID may be specified by the protocol, or configured by the CU (specifically CU-CP) of the host node, which is not specifically limited in the embodiment of the present application.
  • each link on the transmission path from the host node to the third node will use a specific backhaul radio link control channel to carry the second data.
  • the third node sending the second data to the second node may include: the third node sending the second data packet to the second node.
  • the second node receiving the second data from the third node may include: the MT part of the second node receives the second data packet from the third node.
  • the second data packet includes second data and second indication information
  • the second indication information is used to indicate that the second data is not required to be delivered to the second node by the receiving entity of the second BAP layer entity of the second node.
  • the data of the sending entity of the first BAP layer entity, or the second indication information is used to indicate that the receiving entity of the second BAP layer entity of the second node does not need to submit the second data to the sending of the first BAP layer entity of the second node entity.
  • the second indication information may be located in the BAP layer of the second data packet, for example, in the BAP layer header of the second data packet; or, the second indication information may be located in the MAC layer of the second data packet, and
  • the second indication information is the second LCID, and the backhaul wireless link control channel corresponding to the logical channel identified by the second LCID is between the third node and the second node, and is used by the third node to send the first node to the second node.
  • Type data backhaul wireless link control channel where the first type data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node.
  • the second node determines that the next hop node of the second data is the first node, which may specifically be: the second node determines that the sending entity of the second BAP layer entity of the second node performs the sending according to the second indication information Processing: The sending entity of the second BAP layer entity of the second node determines that the next hop node of the second data is the first node according to the third configuration information.
  • the second node receives the data from the third node, when it is determined that the second node is not the destination node of the data, it is further determined according to the second indication information to be executed by the BAP layer entity of the MT part of the second node.
  • the sending process does not need to send the second data to the BAP layer entity of the DU part of the second node to perform the sending process.
  • the second node of the second node when the data packet received by the second node from the third node does not include the second indication information, after the second node confirms that the destination node of the data packet is not the second node, the second node of the second node.
  • the receiving entity of the BAP layer entity delivers the BAP layer PDU or BAP layer SDU of the data packet to the sending entity of the first BAP layer entity of the second node for sending processing.
  • the receiving entity of the second BAP layer entity of the second node does not need to submit the BAP layer PDU or BAP layer SDU of the data packet to the second node.
  • the sending entity of the first BAP layer entity of the node may subsequently perform sending processing on the sending entity of the second BAP layer entity of the second node.
  • the sending processing may include, for example, determining the next hop node, and the second node and the next node.
  • the backhaul wireless link control channel used to carry data on the link between one-hop nodes.
  • the second node sending the second data to the first node may specifically be: the MT part of the second node sends a third data packet to the first node, where the third data packet includes the second data and the third data packet.
  • the third indication information is used to indicate that the second data is data that does not need to be delivered by the receiving entity of the first BAP layer entity of the first node to the sending entity of the second BAP layer entity of the first node, or, The third indication information is used to indicate that the receiving entity of the first BAP layer entity of the first node does not need to submit the second data to the sending entity of the second BAP layer entity of the first node.
  • the third indication information may be located in the BAP layer of the third data packet, for example, in the BAP layer header of the third data packet; or, the third indication information may be located in the MAC layer of the third data packet, and
  • the third indication information is the third LCID, and the backhaul wireless link control channel corresponding to the logical channel identified by the third LCID is between the second node and the first node, and is used by the second node to send the first node to the first node.
  • Type data backhaul wireless link control channel is the third LCID, and the backhaul wireless link control channel corresponding to the logical channel identified by the third LCID is between the second node and the first node, and is used by the second node to send the first node to the first node.
  • the first node may receive the third data packet from the second node, which may specifically be: the DU part of the first node receives the third data packet from the second node.
  • the first node may determine that the sending entity of the first BAP layer entity of the first node executes the sending process, so that the sending entity of the first BAP layer entity of the first node executes the sending process to the fifth The node sends the second data.
  • IAB nodes including the third node on the transmission path between the host node and the second node except the second node (assuming that the above IAB nodes can be collectively referred to as the first IAB node) are forwarding the second data
  • the sending process will continue to be carried out according to the existing BAP layer forwarding model introduced in Article 9 of the brief introduction of related technologies or terms in this application.
  • the host node in order to prevent the first IAB node from using the BAP layer entity that receives the second data to perform the second data sending process, the host node ( Specifically, it may be the host CU, or the host CU-CP), which may send configuration information to the first IAB node, including fifth indication information.
  • the fifth indication information is used to notify the first IAB node.
  • the host node sends configuration information to the second node, which includes sixth indication information, which is used to notify the second node that it needs to perform the configuration in the BAP receiving the second data according to the second indication information in the data packet.
  • the layer entity executes the sending process of the second data.
  • the host node may also send configuration information to the first node, which includes seventh indication information, and the seventh indication information is used to notify the first node that it needs to receive the third indication information according to the third indication information in the data packet.
  • the BAP layer entity of the second data executes the sending process of the second data.
  • the content of any multiple of the first indication information, the second indication information, the third indication information, and the fourth indication information may be the same, for example, they all use the BAP layer header.
  • the 1-bit value (for example, "1") means that; the content of any multiple indication information can also be different.
  • the first LCID and the second LCID are LCIDs with different values, which is not done in the embodiment of this application. Specific restrictions.
  • the first node when it sends the second data to the fifth node, it does not need to send additional indication information b to indicate that the receiving entity of the BAP layer of the MT part of the fifth node does not need to submit the second data to the fifth node.
  • the sending entity of the BAP layer entity in the DU part of the DU that is, the fifth node, performs sending processing according to the existing BAP layer forwarding model introduced in Article 9 of the brief introduction of related technologies or terms in this application.
  • the third node can send the second indication information at the same time when sending the downlink data to the second node, so that the second node can send the second indication information according to the first node.
  • the second indication information is route selection and bearer mapping on the MT side, which can further assist the child nodes to transmit the downlink data to the first node or the fifth node in time, reducing the impact of the abnormal return link on the service.
  • the related functions/steps of routing and bearer mapping implemented by the first node may be implemented by the BAP layer entity of the first node (specifically, it may be the sending part of the BAP layer entity of the first node);
  • the related functions/steps of routing and bearer mapping implemented by the second node can be implemented by the BAP layer of the second node (specifically, the sending part of the BAP layer entity of the second node). Please refer to the above related descriptions. Go into details again.
  • each node may also be implemented by a component (for example, a chip or a circuit) that can be used for the node.
  • the foregoing mainly introduces the solutions provided by the embodiments of the present application from the perspective of interaction between various network elements.
  • the embodiment of the present application also provides a network node, which is used to implement the above-mentioned various methods.
  • the network node may be the first node in the foregoing method embodiment, or a device including the foregoing first node, or a device included in the foregoing first node, such as a system chip; or, the network node may be the foregoing method embodiment
  • the second node, or the device that includes the above-mentioned second node, or the device that is included in the above-mentioned second node, such as a system chip; or, the network node may be the host node in the above-mentioned method embodiment, or the above-mentioned host node A device, or a device included in the above-mentioned host node, such as a system chip.
  • the network node includes modules, units, or means corresponding to the above methods, and the modules, units, or means can be implemented by hardware, software, or hardware.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the network nodes into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 12 shows a schematic structural diagram of a first node 120.
  • the first node 120 includes a processing module 1201 and a transceiver module 1202.
  • the transceiver module 1202 may also be referred to as a transceiver unit for implementing sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the processing module 1201 is configured to obtain first data, and the first data is uplink data; in the case that the first node cannot transmit data through at least one parent node of the first node, the processing module 1201 is also configured to determine the first data
  • the next hop node of the data is the second node, the second node is the assisting child node of the first node, the parent node of the assisting child node of the first node includes the first node and the third node, and the assisting child node of the first node can It is connected to the host node through the third node; the transceiver module 1202 is used to send the first data to the second node.
  • the processing module 1201 is further configured to determine that the next hop node of the first data is the second node, including: the processing module 1201, is further configured to determine the next hop node of the first data according to the first configuration information The second node, where the first configuration information is the candidate configuration information pre-configured by the host node to the first node and valid when the first node cannot transmit data through at least one parent node of the first node; or, the first configuration The information is the configuration information obtained from the host node after the first node sends the first reconfiguration request information to the host node through the fourth node, the first reconfiguration request information is used to request the first configuration information, and the fourth node is the first Any one of the nodes assists the child nodes.
  • the processing module 1201 is further configured to determine that the next hop node of the first data is the second node, and includes: a processing module 1201, configured to send assistance request information through the transceiver module 1202, and the assistance request information is used to determine the second node The assisting child node of a node; the processing module 1201 is also used to receive assistance response information from the second node through the transceiver module 1202; the processing module 1201 is also used to determine the next hop node of the first data according to the assistance response information For the second node.
  • a processing module 1201 configured to send assistance request information through the transceiver module 1202, and the assistance request information is used to determine the second node The assisting child node of a node; the processing module 1201 is also used to receive assistance response information from the second node through the transceiver module 1202; the processing module 1201 is also used to determine the next hop node of the first data according to the assistance response information For the second node.
  • the processing module 1201, configured to obtain the first data includes: a processing module 1201, configured to obtain the first data by the receiving entity of the first BAP layer entity of the first node; and the processing module 1201, also configured to the first node
  • the sending entity of the first BAP layer entity determines that the next hop node of the first data is the second node, where the first BAP layer entity of the first node is the BAP layer entity of the DU part of the first node.
  • the transceiver module 1202 is configured to send first data to the second node, including: the transceiver module 1202 is configured to send a first data packet to the second node, the first data packet including the first data and the first indication information ,
  • the first indication information is used to indicate that the first data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node.
  • a BAP layer entity is the BAP layer entity of the DU part of the second node
  • the second BAP layer entity of the second node is the BAP layer entity of the mobile terminal MT part of the second node.
  • the first node 120 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the first node 120 may take the form of the network node 70 shown in FIG. 7.
  • the processor 701 in the network node 70 shown in FIG. 7 may invoke the computer execution instruction stored in the memory 703 to make the network node 70 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1201 and the transceiver module 1202 in FIG. 12 may be implemented by the processor 701 in the network node 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703.
  • the function/implementation process of the processing module 1201 in FIG. 12 can be implemented by the processor 701 in the network node 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703, and the function of the transceiver module 1202 in FIG. 12 /The realization process can be realized through the communication interface 704 in the network node 70 shown in FIG. 7.
  • the first node 120 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and details are not described herein again.
  • FIG. 13 shows a schematic structural diagram of a second node 130.
  • the second node 130 includes a processing module 1301 and a transceiver module 1302.
  • the transceiver module 1302 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 1302 is configured to receive first data from a first node, the first data is uplink data, and the second node is a child node of the first node; the processing module 1301 is configured to determine the first data according to the second configuration information The next hop node of is the third node, the third node is the parent node of the second node, and the second node can be connected to the host node through the third node; the transceiver module 1302 is also used to send the first data to the third node.
  • the transceiver module 1302 is also used to receive assistance request information from the first node, and the assistance request information is used to determine the assistance child node of the first node; the transceiver module 1302 is also used to send assistance response information to the first node , The assistance response information is used to indicate that the second node can serve as an assisting child node of the first node.
  • the transceiver module 1302 is configured to receive the first data from the first node, and includes: the transceiver module 1302 is configured to receive the first data packet from the first node, the first data packet includes the first data and the first data packet.
  • Indication information the first indication information is used to indicate that the first data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, where the second node
  • the first BAP layer entity of is the BAP layer entity of the DU part of the distributed unit of the second node
  • the second BAP layer entity of the second node is the BAP layer entity of the mobile terminal MT part of the second node.
  • the transceiver module 1302, configured to receive the first data packet from the first node includes: a transceiver module 1302, configured for the MT part of the second node to receive the first data packet from the first node; and a processing module 1301, Used to determine the next hop node of the first data as the third node according to the second configuration information, including: a processing module 1301, used to determine the sending entity of the second BAP layer entity of the second node according to the first indication information Perform sending processing; the processing module 1301 is also used for the sending entity of the second BAP layer entity of the second node to determine the next hop node of the first data as the third node according to the second configuration information.
  • the transceiver module 1302 is used to receive second data, the destination node of the second data is the first node or the fifth node, the second node is a child node of the first node, and the fifth node is the downlink transmission direction of the first node. Downstream node; processing module 1301, configured to determine the next hop node of the second data as the first node according to the third configuration information; transceiver module 1302, also configured to send second data to the first node.
  • the transceiver module 1302 is configured to receive the second data, including: the transceiver module 1302 is configured to receive a second data packet, the second data packet includes the second data and second indication information, and the second indication information is used to indicate
  • the second data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, where the first BAP layer entity of the second node is the second node
  • the BAP layer entity of the DU part of the distributed unit, and the second BAP layer entity of the second node is the BAP layer entity of the mobile terminal MT part of the second node.
  • the transceiver module 1302, configured to receive the second data packet includes: the transceiver module 1302, configured to receive the second data packet by the MT part of the second node; and the processing module 1301, configured to determine the second data packet according to the third configuration information.
  • the next hop node of the second data is the first node, including: a processing module 1301, configured to determine, according to the second indication information, that the sending entity of the second BAP layer entity of the second node performs sending processing; the processing module 1301 also uses The sending entity of the second BAP layer entity at the second node determines that the next hop node of the second data is the first node according to the third configuration information.
  • the transceiver module 1302, configured to send second data to the first node includes: a transceiver module 1302, configured to send a third data packet to the first node by the MT part of the second node, and the third data packet includes the second data packet.
  • Data and third indication information is used to indicate that the second data is data that does not need to be delivered by the receiving entity of the first BAP layer entity of the first node to the sending entity of the second BAP layer entity of the first node, where ,
  • the first BAP layer entity of the first node is a BAP layer entity of the DU part of the first node
  • the second BAP layer entity of the first node is a BAP layer entity of the MT part of the first node.
  • the second node 130 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the second node 130 may take the form of the network node 70 shown in FIG. 7.
  • the processor 701 in the network node 70 shown in FIG. 7 may invoke the computer execution instruction stored in the memory 703 to make the network node 70 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1301 and the transceiver module 1302 in FIG. 13 may be implemented by the processor 701 in the network node 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703.
  • the function/implementation process of the processing module 1301 in FIG. 13 may be implemented by the processor 701 in the network node 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703, and the function of the transceiver module 1302 in FIG. 13 /The realization process can be realized through the communication interface 704 in the network node 70 shown in FIG. 7.
  • the second node 130 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 14 shows a schematic structural diagram of a host node 140.
  • the host node 140 includes a processing module 1401 and a transceiver module 1402.
  • the transceiver module 1402 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the processing module 1401 is used for the CU of the host node to obtain the second data; the transceiver module 1402 is used for the CU of the host node to send the second data to the DU of the host node.
  • the destination node of the second data is the first node or the fifth node, and when the CU of the host node determines that the first node cannot transmit data through at least one parent node of the first node, the second data includes the first Internet Protocol IP header information, where the fifth node is a downstream node in the downlink transmission direction of the first node, the first IP header information is used to instruct the distributed unit DU of the host node to send fourth indication information, and the fourth indication information is used for It indicates that the second data is data that does not need to be delivered by the receiving entity of the second BAP layer entity of the second node to the sending entity of the first BAP layer entity of the second node, and the second node is a child node of the first node.
  • the transceiver module 1402 is further configured to send the CU of the host node to the DU of the host node an IP header information list, where the IP header information list includes the first IP header information.
  • the transceiver module 1402 is used for the DU of the host node to receive the second data, the destination node of the second data is the first node or the fifth node, the second data includes the first Internet Protocol IP header information, and the fifth node is the first node's The downstream node in the downlink transmission direction; when the first IP header information is included in the IP header information list, the processing module 1401 determines that the DU of the host node carries the fourth indication information in the data packet encapsulated with the second data, and sends and receives
  • the module 1402 is also used for sending a fourth data packet by the DU of the host node.
  • the fourth data packet includes second data and fourth indication information.
  • the fourth indication information is used to indicate that the second data is a second BAP that does not need to be sent by the second node.
  • the receiving entity of the layer entity submits the data of the sending entity of the first BAP layer entity to the second node, and the second node is a child node of the first node.
  • the host node 140 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the host node 140 may take the form of the network node 70 shown in FIG. 7.
  • the processor 701 in the network node 70 shown in FIG. 7 may invoke the computer execution instruction stored in the memory 703 to make the network node 70 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1401 and the transceiver module 1402 in FIG. 14 may be implemented by the processor 701 in the network node 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703.
  • the function/implementation process of the processing module 1401 in FIG. 14 can be implemented by the processor 701 in the network node 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703, and the function of the transceiver module 1402 in FIG. /The realization process can be realized through the communication interface 704 in the network node 70 shown in FIG. 7.
  • the host node 140 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and details are not described herein again.
  • an embodiment of the present application further provides a network node (for example, the network node may be a chip or a chip system), the network node includes a processor, and is configured to implement the method in any of the foregoing method embodiments.
  • the network node also includes memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the network node to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the network node.
  • the network node also includes an interface circuit for receiving computer-executed instructions (computer-executed instructions are stored in the memory, may be directly read from the memory, or may be obtained through other devices) and When transmitted to the processor, the processor can execute the computer-executable instructions transmitted to the processor to instruct the network node to execute the method in any of the foregoing method embodiments.
  • the network node is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the embodiment of the present application further provides a computer-readable storage medium, which stores instructions in the computer-readable storage medium, and when the instructions run on the above-mentioned network node, the network node can execute any one of the above-mentioned The method described in the aspect.
  • an embodiment of the present application also provides a computer program product containing instructions, which when the instructions run on the above-mentioned network node, enable the network node to execute the method described in any one of the above-mentioned aspects.
  • the network node does not necessarily include a memory, and the network node can execute the corresponding function by calling the instructions in the external memory; or the corresponding program instructions can be loaded into the network node at a later stage In the memory of the processor, it can be called by the processor to perform the corresponding operation.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供通信方法、设备及系统,可应用于接入回传一体化IAB网络。该方法包括:第一节点获取第一数据,该第一数据为上行数据,在第一节点无法通过第一节点的至少一个父节点传输数据的情况下,第一节点确定第一数据的下一跳节点为第二节点,并向第二节点发送第一数据。其中,第二节点为第一节点的协助子节点。第一节点的协助子节点的父节点包括第一节点和第三节点,第一节点的协助子节点能够通过第三节点连接到宿主节点。第二节点接收来自第一节点的第一数据后,根据第二配置信息确定第一数据的下一跳节点为第三节点,并向第三节点发送第一数据。基于该方案,可以降低无线回传链路异常对业务造成的影响。

Description

通信方法、设备及系统 技术领域
本申请涉及通信领域,尤其涉及通信方法、设备及系统。
背景技术
在接入回传一体化(integrated access and backhaul,IAB)网络中,存在多跳和多连接场景,即多个IAB节点可以同时为终端服务、且终端与IAB宿主(IAB donor)之间可以通过多跳IAB节点向传输数据包。也就是说,终端与IAB宿主之间的一条传输路径可以包括至少一段无线回传链路和一段无线接入链路。
其中,IAB节点的回传链路可能发生异常,从而导致该IAB节点无法再为其子节点提供回传服务,也无法为接入到该IAB节点的终端提供传输服务。目前,在该情况下,该IAB节点执行小区重选,选择IAB网络中的另一个可用的IAB节点服务的小区为目标小区,发起随机接入以恢复回传链路,即该IAB节点将作为重新选择的IAB节点的子节点,经过该重新选择的IAB节点与IAB宿主之间重新建立连接,并执行回传链路的配置和承载映射配置。
然而,该方案会带来较长的恢复时延,在该IAB节点进行回传链路恢复的过程中,该IAB节点服务的终端的业务、以及接入到该IAB节点的子节点的终端的业务可能会受到影响。
发明内容
本申请实施例提供通信方法、设备及系统,可以降低回传链路异常对业务造成的影响。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法及相应的网络节点。该方法应用于无线IAB网络,该方法包括:第一节点获取第一数据,该第一数据为上行数据;在该第一节点无法通过该第一节点的至少一个父节点传输数据的情况下,该第一节点确定该第一数据的下一跳节点为第二节点,该第二节点为该第一节点的协助子节点,该第一节点的协助子节点的父节点包括该第一节点和第三节点,该第一节点的协助子节点能够通过该第三节点连接到宿主节点;该第一节点向该第二节点发送该第一数据。
基于该方案,由于第一节点可以将上行数据发送至第一节点的协助子节点,从而使得第一节点的协助子节点可以进一步地将该上行数据发送至该协助字节点的另一个父节点,再由该父节点传输至宿主节点,进而可以及时地将上行数据传输至宿主节点,降低回传链路异常对业务造成的影响。
在一种可能的设计中,第一节点确定第一数据的下一跳节点为第二节点,包括:该第一节点根据第一配置信息,确定该第一数据的下一跳节点为该第二节点,其中,该第一配置信息为该宿主节点向该第一节点预配置的,在该第一节点无法通过该第一节点的至少一个父节点传输数据时生效的备选配置信息;或者,该第一配置信息为该第一节点通过第四节点向该宿主节点发送第一重配置请求信息后,从该宿主节点处获取的配置信息,该第一重配置请求信息用于请求第一配置信息,该第四节点为该第一节点的任意一个协助子节点。
基于该方案,在第一节点无法通过其至少一个父节点传输数据的情况下,由于IAB网络的网络拓扑已经发生了变化,使用网络拓扑发生变化前的配置信息进行路由选择将无法正确传输数据,因此,第一节点可以根据预配置的第一配置信息,或者在网络拓扑发生变化后重新获取的第一配置信息,确定第一数据的下一跳节点为第二节点,从而使得第二节点可以通过其另一个父节点将第一数据传输至宿主节点,避免了无法正确传输数据的情况,进而降低无线回传链路异常对业务造成的影响。
在一种可能的设计中,第一节点确定该第一数据的下一跳节点为第二节点,包括:该第一节点发送协助请求信息,该协助请求信息用于确定该第一节点的协助子节点;该第一节点接收来自该第二节点的协助应答信息;第一节点根据该协助应答信息,确定第一数据的下一跳节点为第二节点。
基于该方案,在第一节点无法通过其至少一个父节点传输数据的情况下,由于IAB网络的网络拓扑已经发生了变化,使用网络拓扑发生变化前的配置信息进行路由选择将无法正确传输数据,因此,第一节点可以通过与其子节点交互的方式确定能够作为其协助子节点的节点,从而通过该协助子节点将第一数据传输至宿主节点,避免了无法正确传输数据的情况,进而降低无线回传链路异常对业务造成的影响。
在一种可能的设计中,第一节点无法通过该第一节点的至少一个父节点传输数据,包括:该第一节点与该第一节点的至少一个父节点之间的无线回传链路异常;或者,该第一节点接收到来自该第一节点的至少一个父节点的无线回传链路异常通知;或者,该第一节点与该第一节点的主父节点之间的无线回传链路发生无线链路失败,且链路恢复失败;或者,该第一节点与该第一节点的所有父节点之间的无线回传链路发生无线链路失败,且链路恢复失败。
在一种可能的设计中,第一节点获取第一数据,包括:该第一节点的第一回传适配协议BAP层实体的接收实体获取该第一数据;该第一节点确定该第一数据的下一跳节点为第二节点,包括:该第一节点的第一BAP层实体的发送实体确定该第一数据的下一跳节点为该第二节点,其中,该第一节点的第一BAP层实体为该第一节点的分布式单元DU部分的BAP层实体。
基于该方案,由于第一节点无法通过其至少一个父节点传输数据,因此在第一节点的第一BAP层实体的接收实体获取到上行数据后,可以在第一BAP层实体的发送实体执行路由选择,无需由第一节点的第一BAP层实体的接收实体将上行数据递交至第一节点的第二BAP层实体的发送实体。
在一种可能的设计中,第一节点向第二节点发送第一数据,包括:第一节点向该第二节点发送第一数据包,该第一数据包包括该第一数据和第一指示信息,该第一指示信息用于指示该第一数据为无需由该第二节点的第二BAP层实体的接收实体递交至该第二节点的第一BAP层实体的发送实体的数据,其中,该第二节点的第一BAP层实体为该第二节点的DU部分的BAP层实体,该第二节点的第二BAP层实体为该第二节点的移动终端MT部分的BAP层实体。
基于该方案,由于第一节点在向其协助子节点发送上行数据时,可以同时发送第一指示信息,从而使得其协助子节点根据第一指示信息在MT侧进行发送处理,无需由其协助子节点的MT侧的BAP层实体的接收实体将上行数据递交至其协助子节点的 DU侧的BAP层实体的发送实体。
在一种可能的设计中,上述第一指示信息位于第一数据包的BAP层;或者,该第一指示信息位于第一数据包的媒体接入控制MAC层,且第一指示信息为第一逻辑信道标识LCID,该第一LCID对应的回传无线链路控制信道为第一节点与第二节点之间,用于第一节点向第二节点发送第一类型数据的回传无线链路控制信道,该第一类型数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据。
第二方面,提供了一种通信方法及相应的网络节点。该方法应用于无线IAB网络。该方法包括:第二节点接收来自第一节点的第一数据,该第一数据为上行数据,该第二节点为该第一节点的子节点;该第二节点根据第二配置信息,确定该第一数据的下一跳节点为第三节点,该第三节点为该第二节点的父节点,该第二节点能够通过该第三节点连接到宿主节点;该第二节点向该第三节点发送该第一数据。
基于该方案,由于第一节点的协助子节点可以协助第一节点将第一节点获取的上行数据发送至该协助字节点的另一个父节点,再由该父节点传输至宿主节点,进而可以及时地将上行数据传输至宿主节点,降低回传链路异常对业务造成的影响。
在一种可能的设计中,该第二配置信息为该宿主节点向该第二节点预配置的上行备选配置信息;该第二配置信息在该第二节点接收到来自该第一节点的无线回传链路异常通知时生效;或者,该第二配置信息在该第二节点接收到来自该第一节点的第一个上行数据包时生效;或者,该第二配置信息在该第二节点接收到来自该宿主节点的用于指示该第二节点启用该第二配置信息的信息时生效。
在一种可能的设计中,该第二配置信息为该第二节点向该宿主节点发送第二重配置请求信息后,从该宿主节点处获取的上行配置信息,该第二重配置请求信息用于请求该第二配置信息。
在一种可能的设计中,该方法还包括:该第二节点接收来自该第一节点的协助请求信息,该协助请求信息用于确定该第一节点的协助子节点;该第二节点向该第一节点发送协助应答信息,该协助应答信息用于指示该第二节点能够作为该第一节点的协助子节点。
在一种可能的设计中,第二节点接收来自第一节点的第一数据,包括:该第二节点接收来自第一节点的第一数据包,该第一数据包包括第一数据和第一指示信息,该第一指示信息用于指示第一数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,其中,该第二节点的第一BAP层实体为第二节点的分布式单元DU部分的BAP层实体,该第二节点的第二BAP层实体为第二节点的移动终端MT部分的BAP层实体。
在一种可能的设计中,该第一指示信息位于该第一数据包的BAP层;或者,该第一指示信息位于该第一数据包的媒体接入控制MAC层,且该第一指示信息为第一逻辑信道标识LCID,该第一LCID对应的回传无线链路控制信道为该第一节点与该第二节点之间,用于该第一节点向该第二节点发送第一类型数据的信道,该第一类型数据为无需由该第二节点的第二BAP层实体的接收实体递交至该第二节点的第一BAP层实体的发送实体的数据。
在一种可能的设计中,第二节点接收来自该第一节点的第一数据包,包括:该第二节点的MT部分接收来自该第一节点的该第一数据包;该第二节点根据第二配置信息,确定 该第一数据的下一跳节点为第三节点,包括:该第二节点根据该第一指示信息,确定由该第二节点的第二BAP层实体的发送实体执行发送处理;该第二节点的第二BAP层实体的发送实体根据该第二配置信息,确定该第一数据的下一跳节点为该第三节点。
第三方面,提供了一种通信方法及相应的网络节点。该方法应用于无线IAB网络,该方法包括:第二节点接收第二数据,该第二数据的目的节点为第一节点或第五节点,该第二节点为该第一节点的子节点,该第五节点为该第一节点的下行传输方向上的下游节点;该第二节点根据第三配置信息,确定该第二数据的下一跳节点为该第一节点;该第二节点向该第一节点发送该第二数据。
基于该方案,在第一节点无法通过第一节点的父节点传输下行数据的情况下,目的节点为第一节点或第一节点的下行传输方向上的下游节点的数据可以通过第一节点的子节点传输至第一节点,由第一节点进行处理,从而可以及时地将下行数据传输至第一节点或第一节点的下行传输方向上的下游节点,降低回传链路异常对业务造成的影响。
在一种可能的设计中,第三配置信息为该宿主节点向该第二节点预配置的下行备选配置信息;该第三配置信息在该第二节点接收到来自该第一节点的无线回传链路异常通知时生效;或者,该第三配置信息在该第二节点接收到来自该第一节点的第一个上行数据包时生效;或者,该第三配置信息在该第二节点接收到来自宿主节点的用于通知该第二节点启用该第三配置信息的信息时生效。
基于该方案,第二节点可以根据预配置的第三配置信息,确定第一数据的下一跳节点为第一节点,从而使得目的节点为第一节点或第五节点的数据可以传输至第一节点,由第一节点进行处理,避免了无法正确传输数据的情况,进而降低无线回传链路异常对业务造成的影响。
在一种可能的设计中,该第三配置信息为该第二节点向该宿主节点发送第三重配置请求信息后,从该宿主节点处获取的下行配置信息,该第二重配置请求信息用于请求该第三配置信息。
基于该方案,第二节点可以根据在网络拓扑发生变化后重新获取的第三配置信息,确定第一数据的下一跳节点为第一节点,从而使得目的节点为第一节点或第五节点的数据可以传输至第一节点,由第一节点进行处理,避免了无法正确传输数据的情况,进而降低无线回传链路异常对业务造成的影响。
在一种可能的设计中,第二节点接收第二数据,包括:该第二节点接收第二数据包,该第二数据包包括该第二数据和第二指示信息,该第二指示信息用于指示该第二数据为无需由该第二节点的第二BAP层实体的接收实体递交至该第二节点的第一BAP层实体的发送实体的数据,其中,该第二节点的第一BAP层实体为该第二节点的分布式单元DU部分的BAP层实体,该第二节点的第二BAP层实体为该第二节点的移动终端MT部分的BAP层实体。
基于该方案,可以使得第二节点根据第二指示信息区分来自第三节点的数据是否需要由第二节点的第二BAP层实体的接收实体递交至其第一BAP层实体的发送实体,从而根据区分结果进行后续处理。
在一种可能的设计中,该第二指示信息位于第二数据包的BAP层;或者,该第二指示 信息位于该第二数据包的媒体接入控制MAC层,且该第二指示信息为第二逻辑信道标识LCID,该第二LCID对应的回传无线链路控制信道为第三节点与该第二节点之间,用于该第三节点向该第二节点发送第一类型数据的回传无线链路控制信道,该第一类型数据为无需由该第二节点的第二BAP层实体的接收实体递交至该第二节点的第一BAP层实体的发送实体的数据,该第三节点为第二节点的父节点。
在一种可能的设计中,第二节点接收第二数据包,包括:该第二节点的MT部分接收第二数据包;该第二节点根据第三配置信息,确定该第二数据的下一跳节点为第一节点,包括:该第二节点根据该第二指示信息,确定由该第二节点的第二BAP层实体的发送实体执行发送处理;该第二节点的第二BAP层实体的发送实体根据该第三配置信息,确定该第二数据的下一跳节点为该第一节点。
基于该方案,可以使得第二节点根据第二指示信息在第二节点的MT侧进行发送处理,无需由第二节点的MT侧的BAP层实体的接收实体将下行数据递交至第二节点的DU侧的BAP层实体的发送实体。
在一种可能的设计中,第二节点向该第一节点发送该第二数据,包括:该第二节点的MT部分向该第一节点发送第三数据包,该第三数据包包括该第二数据和第三指示信息,该第三指示信息用于指示该第二数据为无需由该第一节点的第一BAP层实体的接收实体递交至该第一节点的第二BAP层实体的发送实体的数据,其中,该第一节点的第一BAP层实体为该第一节点的DU部分的BAP层实体,该第一节点的第二BAP层实体为该第一节点的MT部分的BAP层实体。
基于该方案,可以使得第一节点根据第三指示信息区分来自第二节点的数据是否需要由第一节点的第一BAP层实体的接收实体递交至其第二BAP层实体的发送实体,从而根据区分结果进行后续处理。
第四方面,提供了一种通信方法及相应的网络节点。该方法应用于无线IAB网络,该方法包括:宿主节点的集中式单元CU获取第二数据,该第二数据的目的节点为第一节点或第五节点,在该宿主节点的CU确定该第一节点无法通过该第一节点的至少一个父节点传输数据的情况下,该第二数据中包括第一互联网协议IP头信息,其中,该第五节点为该第一节点的下行传输方向上的下游节点,该第一IP头信息用于指示该宿主节点的分布式单元DU发送第四指示信息,该第四指示信息用于指示该第二数据为无需由第二节点的第二BAP层实体的接收实体递交至该第二节点的第一BAP层实体的发送实体的数据,该第二节点为该第一节点的子节点;该宿主节点的CU向该宿主节点的分布式单元DU发送该第二数据。
基于该方案,可以使得宿主节点的DU在发送第二数据的同时发送第四指示信息,从而使得第二数据传输至第二节点后,第二节点可以正确地将第二数据传输至第一节点,由第一节点对第二数据进行处理,进而可以及时地将下行数据传输至第一节点或第一节点的下行传输方向上的下游节点,降低回传链路异常对业务造成的影响。
在一种可能的设计中,该方法还包括:宿主节点的CU向所述宿主节点的DU发送IP头信息列表,所述IP头信息列表中包括所述第一IP头信息。
基于该方案,可以使得宿主节点的DU确定在发送下行数据的同时需要发送第四指示的。
第五方面,提供了一种通信方法及相应的网络节点。该方法应用于无线IAB网络,该方法包括:宿主节点的分布式单元DU接收第二数据,该第二数据的目的节点为第一节点或第五节点,该第二数据中包括第一互联网协议IP头信息,该第五节点为该第一节点的下行传输方向上的下游节点;当IP头信息列表中包括该第一IP头信息时,该宿主节点的DU确定在封装有第二数据的数据包中携带第四指示信息;宿主节点的DU发送第四数据包,该第四数据包包括该第二数据和第四指示信息,该第四指示信息用于指示该第二数据为无需由该第二节点的第二BAP层实体的接收实体递交至该第二节点的第一BAP层实体的发送实体的数据,第二节点为第一节点的协助子节点。
基于该方案,由于宿主节点的DU根据第一IP头信息,在发送第二数据的同时发送第四指示信息,从而使得第二数据传输至第二节点后,第二节点可以正确地将第二数据传输至第一节点,由第一节点对第二数据进行处理,进而可以及时地将下行数据传输至第一节点或第一节点的下行传输方向上的下游节点,降低回传链路异常对业务造成的影响。
第六方面,提供了一种网络节点用于实现上述各种方法。该网络节点可以为上述第一方面中的第一节点,或者包含上述第一节点的装置,或者上述第一节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第二方面或第三方面中的第二节点,或者包含上述第二节点的装置,或者上述第二节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第四方面或第五方面中的宿主节点,或者包含上述宿主节点的装置,或者上述宿主节点中包含的装置,比如系统芯片。该网络节点包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第七方面,提供了一种网络节点,包括:处理器,还可以包括存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该网络节点执行上述任一方面所述的方法。该网络节点可以为上述第一方面中的第一节点,或者包含上述第一节点的装置,或者上述第一节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第二方面或第三方面中的第二节点,或者包含上述第二节点的装置,或者上述第二节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第四方面或第五方面中的宿主节点,或者包含上述宿主节点的装置,或者上述宿主节点中包含的装置,比如系统芯片。
第八方面,提供了一种网络节点,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该网络节点可以为上述第一方面中的第一节点,或者包含上述第一节点的装置,或者上述第一节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第二方面或第三方面中的第二节点,或者包含上述第二节点的装置,或者上述第二节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第四方面或第五方面中的宿主节点,或者包含上述宿主节点的装置,或者上述宿主节点中包含的装置,比如系统芯片。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当所述指令在网络节点上运行时,使得网络节点可以执行上述任一方面所述的方法。该网络节点可以为上述第一方面中的第一节点,或者包含上述第一节点的装置, 或者上述第一节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第二方面或第三方面中的第二节点,或者包含上述第二节点的装置,或者上述第二节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第四方面或第五方面中的宿主节点,或者包含上述宿主节点的装置,或者上述宿主节点中包含的装置,比如系统芯片。
第十方面,提供了一种包含指令的计算机程序产品,当所述指令在网络节点上运行时,使得所述网络节点可以执行上述任一方面所述的方法。该网络节点可以为上述第一方面中的第一节点,或者包含上述第一节点的装置,或者上述第一节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第二方面或第三方面中的第二节点,或者包含上述第二节点的装置,或者上述第二节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述第四方面或第五方面中的宿主节点,或者包含上述宿主节点的装置,或者上述宿主节点中包含的装置,比如系统芯片。
第十一方面,提供了一种网络节点(例如,该网络节点可以是芯片或芯片系统),该网络节点包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该网络节点还包括存储器,该存储器,用于保存必要的程序指令和数据。该网络节点是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,提供了一种网络节点,包括:处理器和接口电路,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器;该处理器用于运行所述计算机执行指令以执行上述任一方面所述的方法。
其中,第六方面至第十二方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面或第四方面或第五方面中不同设计方式所带来的技术效果,此处不再赘述。
第十三方面,提供了一种通信系统,包括:上述第一方面所述的第一节点,上述第二方面或第三方面所述的第二节点、或者上述第四方面或第五方面所述的宿主节点。
附图说明
图1为本申请实施例提供的一种IAB独立组网场景示意图;
图2为本申请实施例提供的一种IAB非独立组网场景示意图;
图3为本申请实施例提供的一条传输路径中的节点的示意图;
图4a为本申请实施例提供的中间IAB节点的协议栈架构示意图一;
图4b为本申请实施例提供的中间IAB节点的协议栈架构示意图二;
图4c为本申请实施例提供的接入IAB节点的用户面协议栈架构示意图;
图4d为本申请实施例提供的接入IAB节点的控制面协议栈架构示意图;
图5a为本申请实施例提供的一条传输路径中各个节点的用户面协议栈示意图一;
图5b为本申请实施例提供的一条传输路径中各个节点的控制面协议栈示意图一;
图6a为本申请实施例提供的一条传输路径中各个节点的用户面协议栈示意图二;
图6b为本申请实施例提供的一条传输路径中各个节点的控制面协议栈示意图二;
图7为本申请实施例提供的一种网络节点的结构示意图;
图8为本申请实施例提供的一种无线回传链路异常场景示意图;
图9为本申请实施例提供的一种通信方法的流程示意图一;
图10为本申请实施例提供的另一种IAB组网场景示意图;
图11为本申请实施例提供的一种通信方法的流程示意图二;
图12为本申请实施例提供的一种第一节点的结构示意图;
图13为本申请实施例提供的一种第二节点的结构示意图;
图14为本申请实施例提供的一种宿主节点的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一、接入回传一体化(integrated access and backhaul,IAB):
随着虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)以及物联网等技术的发展,未来网络中将会有越来越多的终端,网络数据的使用量也会不断攀升。为了配合越来越多的终端以及市场极速增长的网络数据使用量,目前对5G网络的容量提出了更高的要求。在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而在热点区域需要大量密集部署小站,然而,为大量密集部署的小站提供光纤回传的成本高、施工难度大,因此需要经济便捷的回传方案,而IAB技术为解决该问题提供了思路。在使用IAB技术解决上述问题时,这些小站可以称为IAB节点。
为了设计灵活便利的接入和回传方案,IAB场景中的接入链路(access link,AL)和回传链路(backhaul link,BL)均采用无线传输方案,示例性的,本申请实施例中的接入链路一般指无线接入链路,回传链路一般指无线回传链路,在此统一说明,下述实施例中不再赘述。
在包含IAB节点的网络(以下简称IAB网络)中,IAB节点可以为终端提供无线接入服务,并通过无线回传链路连接到宿主节点(donor node)传输用户的业务数据。
IAB节点经宿主节点通过有线链路连接到核心网。例如,在独立组网的5G架构下,IAB节点经宿主节点通过有线链路连接到5G网络的核心网(5G core,5GC)。在非独立组网的5G架构下,IAB节点在控制面经演进型基站(evolved NodeB,eNB)连接到演进分组核心网(evolved packet core,EPC),在用户面经宿主节点以及eNB连接到EPC。
为了保证IAB网络的覆盖性能以及业务传输的可靠性,IAB网络支持多跳IAB节点和多连接IAB节点组网。因此,在IAB节点服务的终端和宿主节点之间可能存在多条传输路径。在一条传输路径上可能包括多个节点,例如终端、一个或多个IAB节点、宿主节点。IAB节点之间,以及IAB节点和为IAB节点服务的宿主节点有确定的层级关系,每个IAB节点将为其提供回传服务的节点视为父节点。相应地,每个IAB节点可视为其父节点的子节点。
也就是说,本申请实施例中,IAB节点的父节点是为该IAB节点提供回传服务的节点。相应的,该IAB节点可以视为其父节点的子节点。
此外,本申请实施例中将IAB节点的父节点的上层节点(例如,IAB节点的父节点的父节点,或者IAB节点a(假设IAB节点a为IAB节点的父节点的父节点)的父 节点)视为该IAB节点的祖父节点,相应的,将IAB节点的子节点的下层节点(例如,IAB节点的子节点的子节点,或者IAB节点b(假设IAB节点b为IAB节点的子节点的子节点)的子节点视为该IAB节点的孙节点。
示例性的,如图1所示,在IAB独立组网场景中,IAB节点1的父节点为宿主节点,IAB节点1又为IAB节点2和IAB节点3的父节点,IAB节点2和IAB节点3均为IAB节点4的父节点,IAB节点5的父节点为IAB节点2。终端的上行数据包可以经一个或多个IAB节点传输至宿主节点后,再由宿主节点发送至移动网关设备(例如5G网络中的用户面功能(user plane function,UPF)网元),下行数据包将由宿主节点从移动网关设备处接收后,再经一个或多个IAB节点发送至终端。
在图1所示的网络中,终端1和宿主节点之间数据包的传输有两条可用的路径,分别为:终端1→IAB节点4→IAB节点3→IAB节点1→宿主节点,终端1→IAB节点4→IAB节点2→IAB节点1→宿主节点。终端2和宿主节点之间数据包的传输有三条可用的路径,分别为:终端2→IAB节点4→IAB节点3→IAB节点1→宿主节点,终端2→IAB节点4→IAB节点2→IAB节点1→宿主节点,终端2→IAB节点5→IAB节点2→IAB节点1→宿主节点。
可以理解的是,在IAB网络中,终端和宿主节点之间的一条传输路径上,可以包含一个或多个IAB节点。每个IAB节点需要维护面向父节点的无线回传链路,还需要维护和子节点的无线链路。若一个IAB节点是终端接入的节点,该IAB节点和子节点(即终端)之间是无线接入链路。若一个IAB节点是为其他IAB节点提供回传服务的节点,该IAB节点和子节点(即其他IAB节点)之间是无线回传链路。示例性的,参见图1,在路径“终端1→IAB节点4→IAB节点3→IAB节点1→宿主节点”中。终端1通过无线接入链路接入IAB节点4,IAB节点4通过无线回传链路接入IAB节点3,IAB节点3通过无线回传链路接入IAB节点1,IAB节点1通过无线回传链路接入宿主节点。
示例性的,IAB节点可以是用户驻地设备(customer premises equipment,CPE)、家庭网关(residential gateway,RG)等设备。该情况下,本申请实施例提供的方法还可以应用于家庭连接(home access)的场景中。
上述IAB独立组网场景仅仅是示例性的,在多跳和多连接结合的IAB场景中,IAB独立组网场景还有更多其他的可能性,例如,宿主节点和另一宿主节点下的IAB节点组成双连接为终端服务等,此处不再一一列举。
此外,IAB网络还支持非独立(non-standalone,NSA)组网,示例性的,如图2所示,IAB节点支持第四代(4th generation,4G)和第五代(5th generation,5G)双连接(E-UTRAN NR dual connectivity,EN-DC)。其中,eNB为IAB节点的主父节点,通过S1接口连接到EPC进行用户面和控制面传输。宿主节点为IAB节点的辅父节点,通过S1-U接口连接到EPC进行用户面传输。eNB与宿主节点通过X-2接口通信。类似的,终端同样支持EN-DC,例如,终端通过LTE的Uu口连接到终端的主基站eNB,通过NR的Uu口连接到终端的辅基站IAB节点。其中,终端的辅基站也可以是宿主节点。
上述IAB非独立组网场景仅仅是示例性的,在IAB非独立组网场景下同样支持多 跳组网,例如,在IAB节点与宿主节点之间还可以包括一个或多个IAB节点,即IAB节点可用通过多跳无线回传链路连接到宿主节点等,此处不再一一列举。
第二、IAB网络拓扑:
在现有的IAB网络中,支持两种类型的网络拓扑:树状拓扑(tree based topology)和有向无环图(directedacyclic graph,DAG)拓扑。其中,当IAB网络的拓扑为树状拓扑时,每个IAB节点只有一个父节点,可以有一个或多个子节点;当IAB网络的拓扑为有向无环图拓扑时,每个IAB节点可以有一个或两个父节点,也可以有一个或多个子节点。
第三、宿主节点的组成:
本申请实施例中,宿主节点可以为宿主基站。宿主节点在5G网络中可以简称为IAB宿主(IAB donor)或DgNB(即donor gNodeB)。
宿主节点可以是一个完整的实体,还可以是集中式单元(centralized unit,CU)(本文中简称为Donor-CU,也可以简称为CU)和分布式单元(distributed unit,DU)(本文中简称为Donor-DU)分离的形态,即宿主节点由Donor-CU和Donor-DU组成。
其中,Donor-CU还可以是用户面(User plane,UP)(本文中简称为CU-UP)和控制面(Control plane,CP)(本文中简称为CU-CP)分离的形态,即Donor-CU由CU-CP和CU-UP组成。
第四、IAB节点的组成:
本申请实施例中,示例性的,IAB节点可以具有移动终端(mobile terminal,MT)的角色以及DU的角色。当IAB节点面向其父节点时,可以被看做是终端或者用户设备(user equipment,UE)。此时,IAB节点扮演MT的角色。当IAB节点面向其子节点(子节点可能是终端或另一IAB节点的终端部分)时,可以被看做是网络设备。此时,IAB节点扮演DU的角色。因此,可以认为IAB节点由MT部分和DU部分组成。一个IAB节点可以通过MT部分与该IAB节点的至少一个父节点之间建立回传连接。一个IAB节点的DU部分可以为终端或其他IAB节点的MT部分提供接入服务。
示例性的,参见图3,终端通过IAB节点2和IAB节点1连接到宿主节点。其中,IAB节点1和IAB节点2均包括DU部分和MT部分。IAB节点2的DU部分为终端提供接入服务。IAB节点1的DU部分为IAB节点2的MT部分提供接入服务。Donor-DU为IAB节点1的MT部分提供接入服务。
第五、接入IAB节点、中间IAB节点:
本申请实施例中的接入IAB节点是指终端接入的IAB节点,中间IAB节点是指为其他IAB节点(例如,接入IAB节点或其他中间IAB节点)提供无线回传服务的IAB节点。
示例性的,参见图1,在路径“终端1→IAB节点4→IAB节点3→IAB节点1→宿主节点”中,IAB节点4为接入IAB节点,IAB节点3和IAB节点1为中间IAB节点。IAB节点3为IAB节点4提供回传服务,IAB节点1为IAB节点3提供回传服务。
需要说明的是,一个IAB节点针对接入该IAB节点的终端而言,是接入IAB节点。针对接入其他IAB节点的终端而言,是中间IAB节点。因此,一个IAB节点具体是接入IAB节点还是中间IAB节点,并不是固定的,需要根据具体的应用场景确定。
第六、回传适配协议(backhaul adaptation protocol,BAP)层:
现有的IAB网络中,在无线回传链路引入了BAP层,BAP层位于无线链路控制(radio link control,RLC)层之上,可用于实现数据包在无线回传链路的路由以及承载映射等功能。
当IAB节点包括MT部分和DU部分时,MT部分和DU部分可以共用BAP层,也可以不共用BAP层,即MT部分和DU分别具有BAP层,其中,每个BAP层可以包括一个或多个BAP层实体,每个BAP层实体可以包括发送部分(tansmitting part)和接收部分(receiving entity),其中BAP层实体的发送部分也可以称为BAP层发送实体(transmitting entity)或BAP层实体的发送实体,BAP层实体的接收部分也可以称为BAP层接收实体(receiving entity)或BAP层实体的接收实体。
第七、中间IAB节点、接入IAB节点、Donor-DU、Donor-CU以及终端的协议栈架构:
中间IAB节点在用户面和控制面的协议栈相同。如图4a所示,为中间节点的MT部分和DU部分不共用BAP层时的协议栈架构;如图4b所示,为中间IAB节点的MT部分和DU部分共用BAP层时的协议栈架构层。
接入IAB节点在用户面和控制面的协议栈不同,可分别参见图4c和图4d。
示例性的,基于图4a至图4d所示的示例,各个节点的用户面协议栈架构可参见图5a或图6a,各个节点的控制面协议栈架构可参见图5b或图6b。其中,图5a和图5b中以中间IAB节点的MT部分和DU部分不共用BAP层为例进行绘制。图6a和图6b中以中间IAB节点的MT部分和DU部分共用BAP层为例进行绘制。
其中,图4a至图6b中各个协议层的含义为:分组数据汇聚协议(packet data convergence protocol,PDCP)层、通用分组无线服务隧道协议用户面(general packet radio service tunneling protocol user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层、网络互连协议(internet protocol,IP)层、L2层(layer 2)、L1层(layer 1)、无线链路控制(radio link control,RLC)层、媒介接入控制(medium access control,MAC)层、物理(physical,PHY)层、无线资源控制(radio resource control,RRC)层、F1应用协议(F1application protocol,F1AP)层、流控制传输协议(stream control transmission protocol,SCTP)层。其中,L2层为链路层,示例性的,L2层可以为开放式通信系统互联(open systems interconnection,OSI)参考模型中的数据链路层。L1层可以为物理层,示例性的,L1层可以为OSI参考模型中的物理层。
需要说明的是,图5a、图5b、图6a和图6b中均以宿主节点由Donor-DU和Donor-CU组成为例进行绘制。因此,图5a、图5b、图6a和图6b中示出了Donor-DU和Donor-CU的协议层。若宿主节点是功能完整的实体,则宿主节点保留Donor-DU和Donor-CU对外部节点接口的协议栈即可,无需Donor-DU和Donor-CU之间内部接口上的协议层。
另外,需要说明的是,不论是控制面的协议栈架构还是用户面的协议栈架构,在Donor-DU为Donor-CU和IAB节点之间的F1接口的代理节点时,Donor-DU中面向IAB节点的协议栈架构中,在IP层之上,还包括与接入IAB节点中的DU部分的协议栈架构中的UDP层和GTP-U层分别对等的UDP层和GTP-U层。
第八、F1接口的协议层:
其中,F1接口是指IAB节点(例如IAB节点的DU部分)和宿主节点(或Donor-CU或 Donor-DU)之间的逻辑接口,F1接口也可以称为F1*接口,支持用户面以及控制面。F1接口的协议层是指在F1接口上的通信协议层。
示例性的,F1接口的用户面协议层可以包括IP层、UDP层和GTP-U层中的一个或多个。可选的,F1接口的用户面协议层还包括PDCP层和/或IP安全(IP Security,IPsec)层。
示例性的,F1接口的控制面协议层可以包括IP层、F1AP层和SCTP层中的一个或多个。可选的,F1接口的控制面协议层还包括PDCP层、IPsec层和数据报文传输层安全(datagram transport layer security,DTLS)层中的一个或多个。
示例性的,IAB节点在F1接口的用户面协议层包括GTP-U层、UDP层和IP层。在一种情况下,参见图5a和图6a,IAB节点的GTP-U层和UDP层与Donor-CU对等,IP层与Donor-DU对等。另一种情况下,Donor-DU为Donor-CU和IAB节点之间的F1接口的代理(proxy)节点,IAB节点的GTP-U层、UDP层和IP层与Donor-DU对等。需要说明的是,若考虑对F1接口进行安全保护,则F1接口的用户面协议层还可以包含IPsec层和/或PDCP层。在一种可能的实现方式中,IPsec层或PDCP层位于IP层之上GTP-U层之下。
示例性的,IAB节点在F1接口的控制面协议层包括F1AP层、SCTP层和IP层。在一种情况下,参见图5b和图6b,IAB节点的F1AP层和SCTP层与Donor-CU对等,IP层与Donor-DU对等。另一种情况下,Donor-DU为Donor-CU和IAB节点之间的F1接口的代理节点,IAB节点的F1AP层、SCTP层和IP层与Donor-DU对等。需要说明的是,若考虑对F1接口进行安全保护,则F1接口的控制面协议层还可以包含IPsec层、PDCP层和DTLS层中的一个或多个。在一种可能的实现方式中,IPsec层、PDCP层或DTLS层位于IP层之上F1AP层之下。
可以理解的是,当在F1接口的协议层中引入安全保护的协议层,则图4a至图6b中的部分节点的协议栈架构会发生变化,具体可参考文字进行理解。本申请实施例图4a至图6b中所示的IAB网络中的各个节点的协议栈架构仅仅是一种示例,本申请实施例提供的方法并不依赖于该示例,而是通过该示例使得本申请实施例提供的方法更加的容易理解。
第九、BAP层转发模型:
现有技术中,IAB网络中的数据包路由,由IAB节点的BAP层基于数据包的BAP层头信息以及宿主节点(或Donor-CU)进行。
在IAB节点的DU部分和MT部分共用BAP层的情况下,IAB节点的BAP层接收实体接收到数据包后,根据数据包中的BAP层头信息,判断该IAB节点是否为该数据包的目的节点,若该IAB节点为该数据包的目的节点,则将该数据包递交至上层协议层(例如IP层);若该IAB节点不为该数据包的目的节点,则将该数据包递交至该IAB节点的BAP层发送实体进行发送处理。
在IAB节点的DU部分和MT部分不共用BAP层的情况下,IAB节点的DU部分的BAP层实体接收到数据包后,根据数据包中的BAP层头信息,判断该IAB节点是否为该数据包的目的节点,若该IAB节点为该数据包的目的节点,则将该数据包递交至上层协议层(例如IP层);若该IAB节点不为该数据包的目的节点,则DU部分的BAP层实体将该数据包递交至该IAB节点的MT部分的BAP层实体,由MT部分的BAP层实体进行发送处理。
同样的,IAB节点的MT部分的BAP层实体收到数据包后与DU部分的BAP层实体执行类似操作,当该数据包的目的节点不是该IAB节点时,MT部分的BAP层实体将该数据包递交至DU部分的BAP层实体,由DU部分的BAP层实体进行发送处理。
第十、链路、节点的上一跳节点、节点的上游节点、节点的下一跳节点、节点的下游节点、节点的入口链路(ingress link)、节点的出口链路(egress link):
链路:是指一条路径中的两个有连接关系的相邻节点之间的链路。
节点的上一跳节点:是指在包含该节点的路径中的、在该节点之前最后一个接收到数据包的节点。节点的上一跳节点也可以称为数据的上一跳节点,或数据包的上一跳节点。
节点的上游节点:是指在包含该节点的路径中的、在该节点之前接收到数据包的任意一个节点。
节点的下一跳节点:是指在包含该节点的路径中的、在该节点之后第一个接收到数据包的节点。节点的下一跳节点也可以称为数据的下一跳节点,或数据包的下一跳节点。
节点的下游节点:是指在包含该节点的路径中的、在该节点之后接收到数据包的任意一个节点。
节点的入口链路:是指该节点与该节点的上一跳节点之间的链路,也可以称为节点的上一跳链路。
节点的出口链路:是指该节点与该节点的下一跳节点之间的链路,也可以称为节点的下一跳链路。
第十一、发送处理:
示例性的,本申请实施例中的发送处理包括路由选择和承载映射。其中,路由选择用于为数据或数据包选择下一跳节点;承载映射用于选择发送数据或数据包的RLC信道。
需要说明的是,发送处理还可以包括除路由选择和承载映射之外的其他处理,例如添加包头等,具体处理可根据实际情况而定,本申请实施例对此不做具体限定。
第十二、上行传输、上行传输方向、上行数据、下行传输、下行传输方向、下行数据:
本申请实施例中,上行传输指由UE或IAB节点向宿主节点的数据传输。相应的,上行传输方向指由UE或IAB节点向宿主节点的方向;上行数据指在上行传输方向上传输的数据。
本申请实施例中,下行传输指由宿主节点到UE或IAB节点的数据传输。相应的,下行传输方向指由宿主节点到UE或IAB节点的方向;下行数据指在下行传输方向上传输的数据。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single  carrier frequency-division multiple access,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved universal terrestrial radio access,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)等无线技术。E-UTRA是通用移动通信系统(universal mobile telecommunications system,UMTS)演进版本。第三代合作伙伴计划(3rd generation partnership project,简称3GPP)在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的新版本。采用新空口(new radio,NR)的第五代(5th-generation,5G)通信系统是正在研究当中的下一代通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
本申请实施例的方案适用的系统架构包括IAB网络,其中,IAB网络可以为独立组网的IAB网络,也可以为非独立组网的IAB网络,本申请实施例对此不做具体限定。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。本申请实施例中以提供的方法应用于NR系统或5G网络中为例进行说明。但是需要说明的是,本申请实施例提供的方法也可以应用于其他网络中,比如,可以应用在EPS网络(即通常所说的4G网络)中。相应的,当本申请实施例提供的方法应用在EPS网络中时,执行本申请实施例提供的方法的IAB节点替换为EPS网络中的节点即可。
本申请涉及的网元包括IAB节点和宿主节点。IAB节点和宿主节点的组成以及协议栈架构可参见上述相关说明,在此不再赘述。该IAB节点可以为下述实施例中第一节点至第五节点中的任意一个节点。
可选的,本申请实施例中的IAB节点或宿主节点可以通过图7中的网络节点(或通信装置)70来实现。图7所示为本申请实施例提供的网络节点70的结构示意图。该网络节点70包括一个或多个处理器701,以及至少一个通信接口(图7中仅是示例性的以包括通信接口704,以及一个处理器701为例进行说明),可选的还可以包括存储器703;可选的还可以包括通信总线702。
可选的,处理器701、通信接口704、或者存储器703可以是耦合在一起的(图7中未示出),或者,如图7所示,也可以是通过通信总线702连接在一起的。
处理器701可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线702可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗虚线表示,但并不表示仅有一根总线或一种类型的总线。该通信总线702可以用于连接网络节点70中的不同组件,使得不同组件可以通信。
通信接口704,可以是收发模块用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks, WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口704也可以是位于处理器701内的收发电路,用以实现处理器的信号输入和信号输出。
[根据细则91更正 03.01.2020] 
存储器703可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信总线702与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器703用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。处理器701用于执行存储器703中存储的计算机执行指令,从而实现本申请实施例中提供的通信方法。
或者,可选的,本申请实施例中,也可以是处理器701执行本申请下述实施例提供的通信方法中的处理相关的功能,通信接口704负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,网络节点70可以包括多个处理器,例如图7中的处理器701和处理器708。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
目前,IAB节点的无线回传链路可能发生异常,例如无线回传链路发生无线链路失败(radio link failure,RLF),示例性的,如图8所示,IAB节点1和宿主节点之间的无线回传链路发生了RLF,在该情况下,IAB节点1无法再为其子节点(IAB节点x和IAB节点y)提供回传服务,也无法为接入到IAB节点1的终端(图8中未示出)提供传输服务。
现有技术中,IAB节点1将尝试进行链路恢复,在链路恢复过程中,IAB节点1选择一个可用的父节点接入,该可用的父节点与宿主节点之间存在一条可用的通路,图8中以该可用的父节点为IAB节点y为例进行说明,即IAB节点1选择IAB节点y服务的小区进行随机接入,在IAB节点1成功接入IAB节点y后,IAB节点1将作为IAB节点y的子节点,经由IAB节点y与宿主节点之间重新建立连接,并执行无线回传链路的路由配置和承载映射配置。
然而,IAB节点进行链路恢复的时延较长,在链路恢复过程中,接入到IAB节点1的子节点的终端(例如终端x)的业务、以及接入到IAB节点的终端(图8中未示 出)的业务可能均会被影响。
基于此,本申请实施例提供一种通信方法,该方法包括:第一节点获取第一数据,第一数据为上行数据;在第一节点无法通过第一节点的至少一个父节点传输数据的情况下,第一节点确定第一数据的下一跳节点为第二节点,并向第二节点发送第一数据,其中,第二节点为第一节点的协助子节点,第一节点的协助子节点的父节点包括第一节点和第三节点,第一节点的协助子节点能够通过第三节点连接到宿主节点。
基于该方案,第一节点可以将上行数据发送至第一节点的协助子节点,从而使得第一节点的协助子节点可以进一步地将该上行数据发送至该协助字节点的另一个父节点,再由该父节点传输至宿主节点,进而可以及时地将上行数据传输至宿主节点,降低回传链路异常对业务造成的影响。
下面将结合本申请实施例中的附图,对本申请实施例提供的通信方法进行展开说明。
需要说明的是,本申请下述实施例中各个节点之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
首先,对于上行传输场景,如图9所示,为本申请实施例提供的一种通信方法,该通信方法包括如下步骤:
S901、第一节点获取第一数据。
其中,第一数据为上行数据。本申请实施例中的第一数据可以理解为BAP层的业务数据单元(service data unit,SDU)。
需要说明的是,本申请实施例中,以第一数据在无线回传链路的目的节点为宿主节点为例进行说明。当宿主节点为CU-DU分离的形态时,第一数据在无线回传链路的目的节点为宿主节点的DU;当宿主节点包括多个DU时,第一数据在无线回传链路的目的节点为宿主节点的第一DU。
示例性的,本申请实施例中,数据的目的节点指该数据在无线回传链路的目的节点。
可选的,第一节点获取第一数据可以为:第一节点获取第一协议数据单元(protocol data unit,PDU),第一PDU包括第一数据和BAP层头,该BAP层头中携带第一数据的目的节点的标识。
可选的,第一节点获取第一PDU可以为:第一节点接收第一PDU;或者,第一节点获取第一PDU还可以为:第一节点生成第一PDU,本申请实施例对此不做具体限定。
可选的,在第一节点获取第一数据后,可以判断第一节点是否为第一数据的目的节点,当第一节点为第一数据的目的节点时,第一节点对第一数据进行处理(例如,将第一数据递交给BAP层的上层协议层执行处理);当第一节点不为第一数据的目的节点时,执行下述步骤S902,本申请实施例以第一节点不为第一数据的目的节点为例进行说明。
示例性的,第一节点在判断第一节点是否为第一数据的目的节点时,可以使用第一节点的标识匹配第一PDU中携带的目的节点的标识,当第一节点的标识与第一PDU 中携带的目的节点的标识相同时,第一节点为第一数据的目的节点;或者,当第一节点的标识与第一PDU中携带的目的节点的标识不同时,第一节点不为第一数据的目的节点。
S902、第一节点确定第一数据的下一跳节点为第二节点。
其中,第一节点确定第一数据的下一跳节点为第二节点具体可以为:在第一节点无法通过第一节点的至少一个父节点传输数据的情况下,第一节点确定第一数据的下一跳节点为第二节点。
其中,第二节点为第一节点的协助子节点,第一节点的协助子节点的父节点包括第一节点和第三节点。
在一种可能的实现方式中,第三节点可以为IAB节点,此时,第一节点的协助子节点能够通过第三节点连接到宿主节点。也就是说,第一节点的协助子节点通过第三节点与宿主节点之间存在可用的传输路径。
在另一种可能的实现方式中,第三节点可以为宿主节点或者为宿主节点的DU,此时,第一节点的协助子节点与第三节点之间的无线回传链路可用。
示例性的,以图10所示的IAB网络中,第一节点为IAB节点1为例,IAB节点的1的子节点包括IAB节点x、IAB节点y和IAB节点z,其中,IAB节点x的父节点包括IAB节点1和IAB节点3,且IAB节点x能够通过IAB节点3连接到宿主节点;IAB节点y的父节点包括IAB节点1;IAB节点z的父节点包括IAB节点1和IAB节点2,且IAB节点z能够通过IAB节点2连接到宿主节点,从而,IAB节点x和IAB节点z为IAB节点1的协助子节点,IAB节点y不为IAB节点1的协助子节点,且当第二节点为IAB节点x时,第三节点为IAB节点3,当第二节点为IAB节点z时,第三节点为IAB节点2。
可选的,第一节点无法通过第一节点的至少一个父节点传输数据,包括以下情况中的一种或多种:
情况一:第一节点与第一节点的至少一个父节点之间的无线回传链路异常。
可选的,本申请实施例中的无线回传链路异常可以理解为无线回传链路无法正常传输数据和/或信令,例如,无线回传链路发生RLF和/或无线回传链路发生阻塞等。
示例性的,以图10所示的IAB网络中,第一节点为IAB节点1为例,第一节点与第一节点的至少一个父节点之间的无线回传链路异常可以为,IAB节点1与IAB节点5之间的无线回传链路异常。
示例性的,第一节点与第一节点的至少一个父节点之间的无线回传链路异常可以包括以下情况中的任意一种:第一节点只有一个父节点,第一节点与该父节点之间的无线回传链路发生RLF;或者,第一节点只有一个父节点,第一节点与该父节点之间的无线回传链路发生RLF且第一节点执行了RLF恢复(即发起RRC重建)但恢复失败;或者,第一节点有多个父节点,第一节点与该多个父节点之间的无线回传链路均发生RLF;或者,第一节点有多个父节点,第一节点与任意一个或多个父节点之间的无线回传链路发生RLF;或者,第一节点有多个父节点,第一节点与任意一个或多个父节点之间的无线回传链路发生RLF,第一节点尝试了RLF恢复但恢复失败。
情况二、第一节点接收到来自第一节点的至少一个父节点的无线回传链路异常通 知。
可选的,在该情况二下,第一节点与第一节点的父节点之间的无线回传链路可能正常,第一节点的父节点与第一节点的祖父节点之间的无线回传链路可能异常。当第一节点的父节点确定其与第一节点的祖父节点之间的无线回传链路异常(例如该段无线回传链路发生RLF,第一节点的父节点尝试RLF恢复且恢复失败)时,可以向第一节点发送无线回传链路异常通知,以便通知第一节点其父节点目前无法为第一节点提供回传服务。
可选的,第一节点接收到的来自第一节点的父节点的该无线回传链路异常通知可以为回传无线链路失败通知(BH RLF notification)或回传无线链路失败指示(BH RLF indication),该回传无线链路失败通知或回传无线链路失败指示可以携带在BAP层控制PDU中。其中,回传无线链路失败通知和回传无线链路失败指示具有类似的功能,本申请下述实施例中的无线链路失败通知均可以替换为无线链路失败指示。
示例性的,以图10所示的IAB网络中,第一节点为IAB节点1为例,若IAB节点1的父节点(IAB节点5)与IAB节点1的祖父节点(宿主节点)之间的无线回传链路发生RLF,IAB节点5尝试RLF恢复且恢复失败时,IAB节点5可以向IAB节点1发送无线回传链路异常通知,以便通知IAB节点1其父节点目前无法为IAB节点1提供回传服务。
情况三、第一节点与第一节点的主父节点之间的无线回传链路发生RLF,且链路恢复失败。
需要说明的是,在该情况三中,第一节点有至少两个父节点,其中,一个父节点为主父节点,另一个父节点为辅父节点,第一节点的主父节点为第一节点(可以是第一节点的MT部分)提供接入服务的小区所属的小区组(cell group),被称为主小区组(master cell group,MCG),第一节点的辅父节点为第一节点(可以是第一节点的MT部分)提供接入服务的小区所属的小区组,被称为辅小区组(secondary cell group,SCG)。
可选的,当第一节点确定与其主父节点之间的无线回传链路发生RLF时,可以执行RLF恢复操作,例如进行RRC连接重建立,当第一节点执行RLF恢复失败时,可以认为第一节点无法通过其父节点传输数据。
情况四、第一节点与第一节点的所有父节点之间的无线回传链路发生RLF,且链路恢复失败。
可选的,以第一节点有父节点1和父节点2两个父节点为例,该情况四可以理解为,第一节点与父节点1之间的无线回传链路发生RLF,以及第一节点与父节点2之间的无线回传链路也发生RLF,且第一节点执行RLF恢复失败。也就是说,第一节点与第一节点的所有父节点之间的无线回传链路发生RLF,且第一节点执行RLF恢复且恢复失败。
可选的,第一节点可以通过多种方式确定第一数据的下一跳节点为第二节点,示例性的,可以包括如下两种方式:
方式一、第一节点根据第一配置信息,确定第一数据的下一跳节点为第二节点。
在一种可能的实现方式中,该第一配置信息可以是宿主节点向第一节点预配置的, 在第一节点无法通过第一节点的至少一个父节点传输数据时生效的备选配置信息。其中,第一节点无法通过第一节点的至少一个父节点传输数据的说明可参考上述相关描述,在此不再赘述。
在另一种可能的实现方式中,该第一配置信息可以为第一节点通过第四节点向宿主节点发送第一重配置请求信息后,从宿主节点处获取的配置信息。其中,该第一重配置请求信息用于请求第一配置信息,第四节点为第一节点的任意一个协助子节点。
也就是说,第一节点可以通过第四节点向宿主节点发送第一重配置请求信息,宿主节点在接收到第一重配置请求信息后,可以通过第一节点的协助子节点向第一节点发送第一配置信息,相应的,第一节点可以接收来自宿主节点的第一配置信息。
可选的,第一节点通过第四节点向宿主节点发送的第一重配置请求信息中,可以携带该第一节点的标识。从而,宿主节点接收到第一重配置请求信息后,可以获知需要更新BAP层路由配置和承载映射配置的节点为第一节点,进而向第一节点发送第一配置信息。
可选的,该第一重配置请求信息中还可以包括第一节点的协助子节点的标识,宿主节点接收到第一重配置请求信息后,还可以向第一节点的协助子节点发送更新的配置信息,用于第一节点的协助子节点进行路由选择和承载映射,其中,更新的配置信息例如可以包括更新的BAP层路由配置和承载映射配置。
可选的,宿主节点还可以向第一节点的协助子节点与宿主节点之间的传输路径上的其他IAB节点发送更新的配置信息,用于其他IAB节点进行路由选择和承载映射,其中,第一节点可以通过第一节点的协助子节点在该传输路径上与宿主节点通信。
可选的,在该实现方式中,第一节点可以通过如下步骤确定第一节点的协助子节点:
步骤1、第一节点向第一节点的子节点发送协助请求信息。相应的,第一节点的子节点接收来自第一节点的协助请求信息。
其中,该协助请求信息用于确定第一节点的协助子节点。
可选的,该协助请求信息可以通过特定字段的特定值来表示。在该情况下,第一节点可以向第一节点的子节点发送数据包,该协助请求信息可以携带在该数据包的BAP层中,例如携带在BAP层的控制PDU或BAP层的数据PDU中;或者,该协助请求信息还可以携带在该数据包的MAC层的控制元素(control element,CE)中;或者,该协助请求信息可以携带在第一节点服务的小区的系统信息中。或者,可选的,该协助请求信息也可以为回传无线链路失败通知,即第一节点向第一节点的字节点发送的BH RLF notification,可以视为协助请求信息,也即协助请求信息可以认为是隐式表示的信息。
示例性的,以图10所示的IAB网络中,第一节点为IAB节点1为例,则在步骤1中IAB节点1向IAB节点x、IAB节点y、以及IAB节点z发送该协助请求信息。
步骤2、第一节点的协助子节点向第一节点发送协助应答信息。相应的,第一节点接收来自第一节点的协助子节点的协助应答信息。
其中,在第一节点的子节点接收到第一节点的协助请求信息后,能够作为第一节点的协助子节点的子节点向第一节点发送协助应答信息,之后,第一节点可以确定返 回协助应答信息的子节点为第一节点的协助子节点。
可选的,该协助应答信息可以携带在新定义的BAP层的控制PDU中,或者也可以携带在现有的BAP层的控制PDU中,或者还可以携带在新定义的MAC CE中,或者也可以携带在现有的MAC CE中,本申请实施例对此不做具体限定。
示例性的,以图10所示的IAB网络中,第一节点为IAB节点1,IAB节点1向IAB节点x、IAB节点y、以及IAB节点z发送该协助请求信息为例,则IAB节点x和IAB节点z向第一节点发送协助应答信息,第一节点接收到来自IAB节点x和IAB节点z的协助应答信息后,可以确定第一节点的协助子节点为IAB节点x和IAB节点z。
可选的,不能作为第一节点的协助子节点的节点可以向第一节点发送协助否定应答信息,之后,第一节点可以确定返回协助否定应答信息的子节点不为第一节点的协助子节点;或者,不能作为第一节点的协助子节点的节点可以不响应该协助请求信息,即不向第一节点发送协助否定应答信息。
示例性的,以图10所示的IAB网络中,第一节点为IAB节点1,IAB节点1向IAB节点x、IAB节点y、以及IAB节点z发送该协助请求信息为例,则IAB节点y可以向IAB节点1发送协助否定应答信息,或者不发送协助否定应答信息。
可选的,当第一节点通过上述方式确定第一节点的协助子节点后,可以通过任意一个子节点发送第一重配置请求信息。
可选的,基于上述第一节点确定第一节点的协助子节点的方式,在又一种可能的实现方式中,第一节点的任意一个协助子节点在接收到来自第一节点的协助请求信息后,除了向第一节点发送协助应答信息外,还向宿主节点发送第一重配置请求信息,也就是说,由第一节点的协助子节点向宿主节点请求第一配置信息。宿主节点在接收到第一重配置请求信息后,可以通过第一节点的协助子节点向第一节点发送第一配置信息。此外,宿主节点还可以向第一节点的协助子节点,以及第一节点和宿主节点之间的包含每个协助子节点的传输路径上的其他IAB节点发送更新的配置信息,用于第一节点的协助子节点和其他IAB节点进行路由选择和承载映射。
可选的,第一节点的协助子节点向宿主节点发送的第一重配置请求信息中,可以携带该第一节点的标识,和/或,该协助子节点的标识。从而,宿主节点接收到第一重配置请求信息后,可以获知需要更新BAP层路由配置和承载映射配置的节点,进而向这些节点发送更新的配置信息。具体的,第一节点的标识可以为第一节点的BAP层标识(即BAP address),协助子节点的标识也可以为其BAP层标识(即BAP address)。
方式二、第一节点发送协助请求信息,并接收来自第二节点的协助应答信息。
其中,协助请求信息用于确定第一节点的协助子节点,来自第二节点的协助应答信息用于指示第二节点能够作为第一节点的协助子节点。
也就是说,该方式二与上述方式一中第一节点确定第一节点的协助子节点的方式相同,具体实现可参考上述方式一中的相关描述。
其中,在第一节点接收来自第二节点的协助应答信息后,可以确定第二节点为其协助子节点,从而确定第一数据的下一跳节点为第二节点。即与上述方式一相比,方式二无需根据配置信息确定第一数据的下一跳节点。
可以理解的是,当第一节点确定其有多个协助子节点时,可以将第一节点获取的不同的上行数据发送至不同的协助子节点传输,也可以将其获取的不同的上行数据发送至同一个协助子节点传输,本申请实施例对此不做具体限定。
需要说明的是,当宿主节点为CU-DU分离的形态时,该步骤S902中由宿主节点实现的步骤/功能,可以由宿主节点的CU实现;进一步的,当宿主节点的CU为CU-CP和CU-UP分离的形态时,该步骤S902中由宿主节点实现的步骤/功能,可以由宿主节点的CU-CP实现。
可选的,上述第一配置信息可以包括以下信息中的一项或多项:
1、第一节点的协助子节点的标识列表。
其中,第一节点的协助子节点的标识列表包括一个或多个节点标识,该一个或多个节点标识中任意一个节点标识所标识的IAB节点为第一节点的协助子节点,第一节点的协助子节点的说明可参见上述相关描述,在此不再赘述。
示例性的,以图10所示的IAB网络中,第一节点为IAB节点1为例,如表1所示,第一节点的协助子节点的标识列表中包括IAB节点x的标识(IAB节点标识x)和IAB节点z的标识(IAB节点标识z)。
表1
第一节点的协助子节点的标识
IAB节点标识x
IAB节点标识z
2、第一路由表。
其中,第一路由表包括一个或多个路由表项,每一个路由表项包括目的节点的标识和下一跳节点的标识;或者,每一个路由表项包括目的路由标识和下一跳节点的标识,目的路由标识包括目的节点的标识,可选的,目的路由标识还可以包括路径标识。
其中,在上行传输场景中,路径标识用于标识从接入IAB节点到宿主节点的一条传输路径。示例性的,如图10所示,IAB节点x作为终端x的接入IAB节点,则在IAB节点1的无线回传链路正常的情况下,传输路径“IAB节点x→IAB节点3→IAB节点4→宿主节点”的标识可以为路径标识1,传输路径“IAB节点x→IAB节点1→IAB节点5→宿主节点”的标识可以为路径标识2。
需要说明的是,目的节点的标识可以为目的节点的BAP层标识(即BAP address),目的路由标识可以为目的BAP路由标识(BAP routing ID),路径标识可以为BAP路径标识(BAP path ID)。
需要说明的是,本申请实施例中,若宿主节点为CU-DU分离的形态,上行数据包在BAP层携带的目的节点的BAP层标识,可以是宿主DU的标识,或者宿主CU的标识。本申请实施例中以上行数据包中携带的目的节点标识为宿主DU的标识为例。
可选的,当宿主节点包括一个DU时,第一节点的不同协助子节点均连接到宿主节点的该DU,在该情况下,示例性的,基于图10所述的IAB网络,第一路由表可以如表2所示,其中,路径标识a所标识的传输路径为“IAB节点1→IAB节点x→IAB节点3→IAB节点4→宿主节点的DU”,路径标识b所标识的传输路径为“IAB节点1→IAB节点z→IAB节点2→IAB节点6→宿主节点的DU”;当宿主节点包括多个DU 时,第一节点的不同协助子节点可以连接到该宿主节点的不同DU,例如,宿主节点包括第一DU和第二DU,IAB节点x可以连接到第一DU,IAB节点z可以连接到第二DU,在该情况下,示例性的,第一路由表可以如表3所示,也就是说,在第一数据的目的节点为宿主节点的第一DU的情况下,此处的第二节点为图10所示的IAB网络中的IAB节点x,其中,路径标识c所标识的传输路径为“IAB节点1→IAB节点x→IAB节点3→IAB节点4→宿主节点的第一DU”,路径标识d所标识的传输路径为“IAB节点1→IAB节点z→IAB节点2→IAB节点6→宿主节点的第二DU”。
表2
目的路由标识 下一跳节点的标识
宿主DU的标识+路径标识a IAB节点标识x
宿主DU的标识+路径标识b IAB节点标识z
表3
目的路由标识 下一跳节点的标识
宿主-第一DU的标识+路径标识c IAB节点标识x
宿主-第二DU的标识+路径标识d IAB节点标识z
3、第一映射关系。
其中,该第一映射关系在第一节点作为接入IAB节点时使用。第一映射关系包括第一节点和每个协助子节点之间的无线回传链路上的无线链路控制信道(RLC channel)与业务的映射关系。无线回传链路上的无线链路控制信道也可以称为回传无线链路控制信道(BH RLCchannel)。
其中,该映射关系用于将第一节点的不同类型业务映射到第一节点与第一节点的协助子节点之间的无线回传链路上的无线链路控制信道;业务的类型可以包括F1接口用户面业务、F1接口控制面业务、非F1(non-F1traffic)接口业务中的一项或多项。
可选的,该第一映射关系可以包括一个或多个表项,一个表项表示一个映射关系,每个表项包括业务标识、下一跳节点的标识、和回传无线链路控制信道的标识。其中,业务标识可以反映业务的类型。下一跳节点的标识,用于确定无线回传链路,例如,该无线回传链路为第一节点与该下一跳节点的标识所标识的节点之间的无线回传链路。回传无线链路控制信道的标识,用于识别在第一节点和下一跳节点之间的无线回传链路上的无线链路控制信道。
可选的,当业务类型为F1接口控制面业务时,其业务标识具体可以是终端相关的F1AP消息,或者是与终端无关的F1AP消息,或者还可以是包含终端的信令无线承载(signalling radio bearers,SRB)0/1/2/3的F1AP消息。当业务类型为F1接口用户面业务时,业务标识可以是F1接口用户面业务对应的F1-U接口的传输隧道信息(即F1-U接口的GTP-U隧道信息),其中,GTP-U隧道信息可以为GTP-U隧道的端点标识(tunnel endpoint identifier,TEID),或者可以为GTP-UTEID和目标互联网协议(internet protocol,IP)地址。
示例性的,以图10所示的IAB网络中,第一节点为IAB节点1为例,如表4所示,GTP-U TEID1+宿主节点IP地址可以表示IAB节点1的F1用户面业务,则表4中的第一个表项可以表示IAB节点1的F1接口用户面业务可以映射到IAB节点1与 IAB节点x之间的无线回传链路上的BH RLC channel 1所标识的回传无线链路控制信道。
表4
Figure PCTCN2019130982-appb-000001
可选的,F1接口用户面业务与无线链路控制信道的映射关系、F1接口控制面业务与无线链路控制信道的映射关系、以及非F1接口业务与无线链路控制信道的映射关系可以一起配置,也可以分开配置,本申请实施例对此不做具体限定。
4、第二映射关系。
其中,该第二映射关系在第一节点作为接入IAB节点时使用。该第二映射关系包括业务与备选的上行路由标识的对应关系。该备选的上行路由标识指示的目的节点为上行的目的节点,例如宿主节点,或者宿主DU,或者IAB宿主CU。若该备选的上行路由标识包含传输路径标识,则其指示的传输路径为经过第一节点的协助子节点到宿主节点的上行传输路径。
其中,该映射关系用于为第一节点的不同类型业务添加上行路由标识。业务的类型包括F1接口用户面业务、F1接口控制面业务、非F1接口业务中的一项或多项。
可选的,F1接口用户面业务与备选上行路由标识的对应关系可以为F1-U的GTP-U隧道信息与备选的上行路由标识的对应关系;F1接口控制面业务与备选上行路由标识对应关系可以为F1接口控制面消息类型与备选的上行路由标识的对应关系,F1接口控制面消息类型可以为终端相关的F1AP消息、与终端无关的F1AP消息、包含终端的SRB0/1/2/3的F1AP消息中的一种或多种。
5、第三映射关系。
其中,第三映射关系包括上行传输场景下,第一节点对应的入口链路的回传无线链路控制信道与出口链路的回传无线链路控制信道的对应关系。第三映射关系适用于第一节点为中间IAB节点的情况。
其中,在上行传输场景下,第一节点对应的入口链路为第一节点与第一节点的非协助子节点之间的链路,例如,在如图10所示的IAB网络中,第一节点为IAB节点1,第一节点的非协助子节点为IAB节点y,则第一节点对应的入口链路为IAB节点1与IAB节点y之间的链路;第一节点对应的出口链路为第一节点与第一节点的协助子节点之间的链路,例如,在如图10所示的IAB网络中,第一节点为IAB节点1,出口链路为IAB节点1与IAB节点x之间的链路或者为IAB节点1与IAB节点z之间的链路。
可选的,第三映射关系可以包括一个或多个表项,一个表项表示一个对应关系,每个表项包括上一跳节点的标识、入口链路的BH RLC channel标识、下一跳节点的标 识、出口链路的BH RLC channel标识。上一跳节点的标识用来指示入口链路,下一跳节点的标识用来指示出口链路,入口链路的BH RLC channel标识用于指示入口链路上的回传无线链路控制信道,出口链路的BH RLC channel标识用于指示出口链路上的回传无线链路控制信道。
示例性的,以图10所示的IAB网络为例,第三映射关系可以如表5所示,其中,IAB节点标识y为IAB节点y的标识,则表5的第一个表项可以表示IAB节点1从与IAB节点y之间的回传无线链路信道1接收到的数据通过IAB节点1与IAB节点x之间的回传无线链路信道3发送。
表5
Figure PCTCN2019130982-appb-000002
可选的,该步骤S902中,第一节点确定第一数据的下一跳节点为第二节点后,还可以根据第一配置信息中的第三映射关系进行承载映射,例如,确定第一节点与第二节点之间的链路上用于承载第一数据的回传无线链路控制信道。
S903、第一节点向第二节点发送第一数据。相应的,第二节点接收来自第一节点的第一数据。
可选的,第二节点接收来自第一节点的第一数据后,可以判断第二节点是否为第一数据的目的节点,判断方式与第一节点判断第一节点是否为第一数据的目的节点的方式类似,可参考上述步骤S901中的相关描述,在此不再赘述。当第二节点为第一数据的目的节点时,第二节点对第一数据进行处理(例如将第一数据交给其BAP层的上层协议层执行处理);当第二节点不为第一数据的目的节点时,执行下述步骤S904,本申请实施例以第二节点不为第一数据的目的节点为例进行说明。
S904、第二节点确定第一数据的下一跳节点为第三节点。
具体的,第二节点可以根据第二配置信息,确定第一数据的下一跳节点为第三节点。其中,第三节点为第二节点的父节点,第二节点能够通过第三节点连接到宿主节点。
可选的,在本申请实施例的不同实现方式中,第二配置信息的获取方式也可能不同,示例性的:
在一种可能的实现方式中,第二配置信息可以是宿主节点向第二节点预配置的上行备选配置信息。在该实现方式中,第二配置信息在以下一种或多种情况下生效:
情况一:第二配置信息在第二节点接收到来自第一节点的无线回传链路异常通知时生效。
可选的,第一节点在确定第一节点无法通过第一节点的至少一个父节点传输数据时,可以向第二节点发送无线回传链路异常通知,以便第二节点启用该第二配置信息。
可选的,该无线回传链路异常通知可以为回传无线链路失败通知;或者,该回传 链路异常通知也可以为上述协助请求信息,本申请实施例对此不做具体限定。
情况二:第二配置信息在第二节点接收到来自第一节点的第一个上行数据包时生效。
可选的,第一节点在无法通过第一节点的至少一个父节点传输上行数据时,可以向其子节点发送上行数据包,该上行数据包中携带目的节点(例如宿主节点,或宿主DU,或者宿主CU)的标识。
可选的,第二节点接收到该数据包后,可以根据其中携带的目的节点确定该数据包为上行数据包;或者还可以根据其中携带的第一指示信息确定该数据包为上行数据包,第一指示信息将在下述实施例中进行详细描述,在此不再赘述。在第二节点第一次确定来自第一节点的数据包为上行数据包,即当第二节点接收到来自第一节点的第一个上行数据包时,启用预配置的第二配置信息。
情况三:第二配置信息在第二节点接收到来自宿主节点的用于指示第二节点启用第二配置信息的信息时生效。
可选的,在第二节点接收到来自第一节点的第一个上行数据包后,可以将该上行数据包传输至宿主节点。其中,该上行数据包可以携带第一通知信息,该第一通知信息用于通知宿主节点第一节点将启用预配置的第一配置信息,宿主节点在接收到该上行数据包后,获知第一节点将启用预配置的第一配置信息,从而可以向第二节点发送第二通知信息,该第二通知信息用于指示第二节点启用第二配置信息。第二节点在接收到该第二通知信息后启用第二配置信息,即第二配置信息在节点到来自宿主节点的第二通知信息时生效。
在另一种可能的实现方式中,第二配置信息可以是上述第一节点通过第四节点向宿主节点发送第一重配置请求信息的情况下,宿主节点接收到第一重配置请求信息后发送给第二节点的;或者,第二配置信息可以是上述第一节点的任意一个协助子节点向宿主节点发送第一重配置请求信息的情况下,宿主节点接收到第一重配置请求信息后发送给第二节点的,此时,宿主节点在收到该任意一个协助子节点的第一重配置请求信息后,可以确定第一节点的多个协助子节点中最终由第二节点协助第一节点传输上行数据,从而可以向第二节点发送第二配置信息。
在又一种可能的实现方式中,第二节点可以是在其向宿主节点发送第二重配置请求信息后,从宿主节点处获取的上行配置信息,即第二节点可以向宿主节点发送第二重配置请求信息,该第二重配置请求信息用于请求第二配置信息。宿主节点在接收到该第二重配置请求信息后,可以向第二节点发送第二配置信息,相应的,第二节点接收来自宿主节点的第二配置请求信息。
可选的,该第二重配置请求信息中可以包括第二节点的标识,从而,宿主节点接收到第二重配置请求信息后,可以获知需要更新BAP层路由配置和承载映射配置的节点为第二节点,进而向第二节点发送第二配置信息。
可选的,在该方式中,第二节点可以在接收到第一节点的回传链路异常通知时、或者在接收到来自第一节点的第一个上行数据包时向宿主节点发送第二重配置请求信息,当然也可以在其他情况下上宿主节点发送第二重配置请求信息,本申请实施例对此不做具体限定。
在又一种可能的实现方式中,第二配置信息可以是在IAB网络中不存在链路异常时第二节点维护的路由配置信息。也就是说,在第一节点无法通过第一节点的至少一个父节点传输数据的场景下,第二节点无需重新获取配置信息,使用原有的路由配置信息进行路由选择。
可选的,在该实现方式中,若第二节点的原有的路由配置信息中不包括第一数据对应的目的路由标识,则第二节点可以仅根据第一数据对应的目的路由标识中的目的节点标识,查找与该目的节点的标识匹配的表项,选择该目的节点的标识对应的下一跳节点为第一数据的下一跳节点,本申请实施例中以第二节点选择的第一数据的下一跳节点为第三节点为例进行说明。
需要说明的是,当宿主节点为CU-DU分离的形态时,该步骤S904中由宿主节点实现的步骤/功能,可以由宿主节点的CU实现;进一步的,当宿主节点的CU为CU-CP和CU-UP分离的形态时,该步骤S904中由宿主节点实现的步骤/功能,可以由宿主节点的CU-CP实现。
可选的,在上述前三种可能的实现方式中,第二配置信息可以包括以下信息中的一项或多项:
1、第二路由表。
其中,第二路由表中包括一个或多个路由表项。每个路由表项包括目的节点的标识和下一跳节点的标识;或者,每个路由表项包括目的路由标识和下一跳节点的标识,目的路由标识包括目的节点的标识,可选的,目的路由标识还可以包括路径标识。
其中,该一个或多个路由表项中包括目的节点为宿主节点(或者宿主CU,或者宿主DU)的路由表项。
示例性的,当宿主节点为CU-DU分离的形态,且第一数据的目的节点为宿主DU时,第二路由表中包括目的节点为宿主节点的DU的路由表项;当宿主节点包括多个DU且第一数据的目的节点为宿主节点的第一DU时,第二路由表中包括目的节点为宿主节点的第一DU的路由表项。
示例性的,以图10所示的IAB网络为例,在第一数据的目的节点为宿主节点的第一DU的情况下,基于上述表3所示的示例,则第二路由表可以如下表6所示,也就是说,在该场景下第三节点为图10所示的IAB节点3。
表6
目的路由标识 下一跳节点的标识
宿主-第一DU的标识+路径标识c IAB节点3的标识
2、第四映射关系。
其中,第四映射关系包括上行传输场景下,第二节点对应的入口链路的回传无线链路控制信道与出口链路的回传无线链路控制信道的对应关系。
其中,在上行传输场景下,第二节点对应的入口链路为第二节点与第一节点之间的链路,例如,在如图10所示的IAB网络中,第二节点为IAB节点x,则第二节点对应的入口链路为IAB节点x与IAB节点1之间的链路;第二节点对应的出口链路为第二节点与第三节点之间的链路,例如,在图10所示的IAB网络中,第三节点为IAB节点3,则第二节点对应的出口链路为IAB节点x与IAB节点3之间的链路。
一种可能的方式中,类似于第三映射关系,在第四映射关系中,可以包括上一跳节点的标识,入口链路BH RLC channel标识,下一跳节点的标识,以及出口链路BH RLC channel的标识。其中上一跳节点的标识用来指示入口链路,下一跳节点的标识用来指示出口链路,详细说明可参考上述第三映射关系以及表5的相关描述,在此不再赘述。
可选的,该步骤S904中,第二节点确定第一数据的下一跳节点为第三节点后,还可以根据第二配置信息中的第四映射关系进行承载映射,例如,确定第二节点与第三节点之间的链路上用于承载第一数据的回传无线链路控制信道。
S905、第二节点向第三节点发送第一数据。相应的,第三节点接收来自第二节点的第一数据。
可选的,第三节点接收第一数据后,可以再向其父节点转发该第一数据,直至第一数据传输至宿主节点。
基于本申请实施例提供的通信方法,在第一节点无法通过第一节点的父节点传输上行数据的情况下,第一节点可以将该上行数据发送至第一节点的协助子节点,第一节点的协助子节点进一步地将该上行数据发送至另一个父节点,再由该父节点传输至宿主节点,从而可以及时地将上行数据传输至宿主节点,降低回传链路异常对业务造成的影响。
下面从节点内部的角度对上述图9所示的通信方法中各个节点的动作进行介绍。首先以IAB节点包括DU部分和MT部分,且DU部分和MT部分不共用BAP层实体为例进行说明。
对于上述步骤S901、第一节点获取第一数据:
具体可以为:第一节点的第一BAP层实体的接收实体获取第一数据。本申请实施例中,第一节点的第一BAP层实体为第一节点的DU部分的BAP层实体,第一节点的第二BAP层实体为第一节点的MT部分的BAP层实体。即步骤S901具体为第一节点的DU部分的BAP层实体获取第一数据。
相应的,由第一节点的第一BAP层实体的接收实体判断第一节点是否为第一数据的目的节点。当第一节点为第一数据的目的节点时,第一节点对第一数据进行处理可以包括:第一节点的第一BAP层实体的接收实体将第一数据递交至第一BAP层实体的上层实体,例如第一节点的DU部分的IP层实体;或者,当第一节点不为第一数据的目的节点时,执行下述步骤S902。
对于上述步骤S902、第一节点确定第一数据的下一跳节点为第二节点,具体可以为:第一节点的第一BAP层实体的发送实体确定第一数据的下一跳节点为第二节点。
也就是说,当第一节点不为第一数据的目的节点时,第一节点的第一BAP层实体的接收实体将第一数据交给第一BAP层实体的发送实体,执行发送处理。这种情况下,第一节点的第一BAP层实体无需将第一数据递交至第一节点的第二BAP层实体,即第一节点的DU部分的BAP层实体无需将第一数据递交至第一节点的MT部分的BAP层实体。后续在第一节点的DU部分的BAP层实体执行发送处理,例如,确定第一数据的下一跳节点、以及第一节点与下一跳节点之间的链路上用于承载第一数据的回传无线链路控制信道等。
对于上述步骤S903、第一节点向第二节点发送第一数据,具体可以为:第一节点向第二节点发送第一数据包。
相应的,第二节点接收来自第一节点的第一数据,具体可以为:第二节点接收来自第一节点的第一数据包。进一步可选的,第二节点接收来自第一节点的数据包可以为:第二节点的MT部分接收来自第一节点的第一数据包。
其中,该第一数据包中包括第一数据和第一指示信息。第一指示信息用于指示第一数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,即第一数据为第一BAP层实体内部执行接收和发送处理的数据。
或者,第一指示信息用于指示第二节点的第二BAP层实体的接收实体无需将第一数据递交至第二节点的第一BAP层实体的发送实体。
本申请实施例中,第二节点的第一BAP层实体为第二节点的DU部分的BAP层实体,第二节点的第二BAP层实体为第二节点的MT部分的BAP层实体。
可选的,该第一指示信息可以位于第一数据包的BAP层,例如,位于第一数据包的BAP层头中;或者,该第一指示信息也可以位于第一数据包的MAC层中,且第一指示信息为第一逻辑信道标识(logical channel identifier,LCID),第一LCID所标识的逻辑信道对应的回传无线链路控制信道为第一节点与第二节点之间,用于第一节点向第二节点发送第一类型数据的回传无线链路控制信道,其中,第一类型数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,或者说,第一类型数据为在第二节点的第一BAP层实体内部执行接收和发送处理的数据。
可选的,在第一节点与第一节点的协助子节点(例如第二节点)之间可以使用一个或多个特定的回传无线链路控制信道承载第一类型数据,该一个或多个特定的回传无线链路控制信道中的任意一个回传无线链路控制信道存在与其对应的一个逻辑信道,该逻辑信道由一个逻辑信道标识所标识,第一LCID对应的回传无线链路控制信道为该一个或多个特定的回传无线链路信道中的一个。
可选的,上述一个或多个特定的回传无线链路控制信道可以是协议约定的,例如协议可以约定由特定取值的回传无线链路控制信道标识所标识的回传无线链路控制信道承载第一节点与第一节点的协助子节点之间的第一类型数据;或者,协议也可以约定由特定取值的逻辑信道标识所标识的逻辑信道所对应的回传无线链路控制信道承载第一类型数据;或者,该一个或多个特定的回传无线链路信道或其中的每个回传无线控制信道对应的逻辑信道也可以是由宿主节点(具体可以是宿主节点的CU,或者是宿主节点的CU-CP)通过控制面信令向第一节点和/或第二节点配置的。其中,该控制面信令可以是发送给第一节点和/或第二节点的MT部分的RRC消息,或者也可以是发送给第一节点和/或第二节点的DU部分的F1AP消息。
对于上述步骤S904、第二节点确定第一数据的下一跳节点为第三节点,具体可以为:第二节点根据第一指示信息,确定由第二节点的第二BAP层实体的发送实体执行发送处理;第一节点的第二BAP层实体的发送实体根据第二配置信息,确定第一数据包的下一跳节点为第三节点。
也就是说,第二节点接收到来自第一节点的数据后,当判断第二节点不为该数据的目的节点时,进一步根据第一指示信息确定由第二节点MT部分的BAP层实体执行发送处理,无需将第一数据发送给第二节点的DU部分的BAP层实体的发送实体执行发送处理。
可选的,当第二节点接收的来自第一节点的数据包中不包括第一指示信息时,第二节点确定第二节点不为该数据包的目的节点后,由其第二BAP层实体的接收实体将该数据包的BAP层PDU或者BAP层SDU递交至第二节点的第一BAP层实体的发送实体进行发送处理。当第二节点接收接收的来自第一节点的数据包中包括第一指示信息时,第二节点的第二BAP层实体的接收实体无需将该数据包的BAP层PDU或者BAP层SDU递交至第二节点的第一BAP层实体的发送实体,后续在第二节点的第二BAP层实体的发送实体执行发送处理即可。所述发送处理包括例如,确定下一跳节点、以及第二节点与下一跳节点之间的链路上用于承载数据的回传无线链路控制信道。
对于上述步骤S905、第二节点向第三节点发送第一数据,具体可以为:第二节点的MT部分向第三节点发送第一数据。
需要说明的是,第二节点的MT部分在向第三节点发送第一数据时,不需要另外发送指示信息b以指示第三节点的DU部分的BAP层的接收实体无需将第一数据递交至第三节点的MT部分的BAP层实体的发送实体,即第三节点按照上述本申请相关技术或名词的简要介绍部分的第九条介绍的现有的BAP层转发模型进行发送处理。
基于该方案,由于第一节点在向其协助子节点发送上行数据时,可以同时发送第一指示信息,从而使得其协助子节点根据第一指示信息在MT侧进行路由选择和承载映射,进一步可以使协助子节点通过其另一个父节点将上行数据传输至宿主节点,进而可以及时地将上行数据传输至宿主节点,降低回传链路异常对业务造成的影响。
此外,对于IAB节点包括DU部分和MT部分,且DU部分和MT部分共用BAP层实体的场景,在第一数据的传输过程中无需同时传输第一指示信息,上述步骤S901-S905中,由第一节点实现的路由选择和承载映射的相关功能/步骤,可以由第一节点的BAP层实体(具体可以是第一节点BAP层实体的发送部分)实现;由第二节点实现的路由选择和承载映射的相关功能/步骤,可以由第二节点的BAP层(具体可以是第二节点BAP层实体的发送部分)实现,可参考上述相关描述,在此不再赘述。
需要说明的是,由于在本申请实施例的通信方法中,并未使用第一节点的MT部分实现任何功能/步骤,从而,在执行本申请实施例的通信方法的过程中,第一节点的MT部分仍然可以执行小区选择并发起随机接入以进行无线回传链路恢复,当链路恢复成功时,可以继续按照上述本申请相关技术或名词的简要介绍部分的第九条介绍的现有的BAP层转发模型进行发送处理,即仍然通过第一节点的父节点传输上行数据和下行数据。
在宿主节点无法通过第一节点的父节点向第一节点传输下行数据的情况下,本申请实施例还提供下行传输场景下的通信方法,如图11所示,为本申请实施例针对下行传输场景提供的通信方法,该通信方法包括如下步骤:
S1101、宿主节点获取第二数据。
其中,第二数据的目的节点为第一节点或第五节点。第五节点为第一节点的下行 传输方向上的下游节点,第五节点不为第一节点的协助子节点。
也就是说,第二数据为下行数据。本申请实施例中的第二数据可以理解为BAP层的SDU。
示例性的,以图10所示的IAB网络为例,第一节点可以为IAB节点1,第五节点可以为IAB节点y。
S1102、宿主节点向第二节点发送第二数据。相应的,第二节点接收来自宿主节点的第二数据。
其中,若第二节点为宿主节点(具体可以是宿主DU)的子节点,则宿主节点可以直接经由宿主节点和第二节点之间的无线回传链路向第二节点发送第二数据,相应的,第二节点接收来自宿主节点的第二数据。此时,宿主节点也可以称为第三节点。若第二节点经由多跳无线回传链路连接到宿主节点,则宿主节点通过第三节点向第二节点发送第二数据,此时,宿主节点与第三节点为不同的节点,第三节点为第二节点的父节点,相应的,第二节点通过第三节点接收来自宿主节点的第二数据,即在宿主节点至第三节点的传输路径上还可以包括一个或多个IAB节点,第二数据可以经由该传输路径上各个IAB节点的转发由宿主节点传输至第三节点,然后由第三节点传输至第二节点。
其中,若第二节点通过第三节点接收来自宿主节点的第二数据,也可以理解为第二节点接收来自第三节点的第二数据。
其中,第二节点也为第一节点的子节点,即第一节点和第三节点均为第二节点的父节点,但第二节点能够通过第三节点连接至宿主节点,第三节点与第一节点不同。
示例性的,以图10所示的IAB网络为例,第二节点可以为IAB节点x,第三节点可以为IAB节点3。
可选的,第二节点接收到第二数据后,可以判断第二节点是否为第二数据的目的节点,判断方式与第一节点判断第一节点是否为第一数据的目的节点的方式类似,可参考上述步骤S901中的相关描述,在此不再赘述。当第二节点为第二数据的目的节点时,第二节点对第二数据进行处理(例如将第二数据交给BAP层的上层协议层执行处理);当第二节点不为第二数据的目的节点时,执行下述步骤S1103,本申请实施例以第二节点不为第二数据的目的节点为例进行说明。
S1103、第二节点确定第二数据的下一跳节点为第一节点。
具体的,第二节点可以根据第三配置信息,确定第二数据的下一跳节点为第一节点。
可选的,在本申请实施例的不同实现方式中,第三配置信息的获取方式也可能不同,示例性的:
在一种可能的实现方式中,第三配置信息可以是宿主节点向第二节点预配置的下行备选配置信息。在该实现方式中,第三配置信息在以下一种或多种情况下生效:
情况一:第三配置信息在第二节点接收到来自第一节点的无线回传链路异常通知时生效。
情况二:第三配置信息在第二节点接收到来自第一节点的第一个上行数据包时生效。
情况三:第三配置信息在第二节点接收到来自宿主节点的用于指示第二节点启用第三配置信息的信息时生效。
其中,上述三种情况与上述步骤S904中第二节点确定第二配置信息的生效时刻的三种情况类似,详细说明可参考上述步骤S904中的相关描述,在此不再赘述。
在另一种可能的实现方式中,第三配置信息可以是上述第一节点通过第四节点向宿主节点发送第一重配置请求信息的情况下,宿主节点发送给第二节点的;或者,第三配置信息可以是上述第一节点的任意一个协助子节点向宿主节点发送第一重配置请求的情况下,宿主节点发送给第二节点的,此时,宿主节点在收到第一节点的任意一个协助子节点的第一重配置请求信息后,可以确定第一节点的多个协助子节点中最终由第二节点协助第一节点传输下行数据,从而可以向第二节点发送第三配置信息;或者,第三配置信息可以是上述第二节点向宿主节点发送第二重配置请求信息的情况下,宿主节点发送给第二节点的。
在又一种可能的实现方式中,第三配置信息为第二节点向宿主节点发送第三重配置请求信息后,从宿主节点处获取的下行配置信息,即第二节点可以经由第三节点向宿主节点发送第三重配置请求信息,该第三重配置请求信息用于请求第三配置信息。宿主节点在接收到该第三重配置请求信息后,可以向第二节点发送第三配置信息,相应的,第二节点接收来自宿主节点的第三配置请求信息。
可选的,该第三重配置请求信息中可以包括第二节点的标识,从而,宿主节点接收到第三重配置请求信息后,可以获知需要更新BAP层路由配置和承载映射配置的节点为第二节点,进而向第二节点发送第三配置信息。
此外,在宿主节点为CU-DU分离的情况下,宿主节点的CU(在CU-CP分离的情况下,具体可以为CU-CP)还向宿主节点的DU发送更新的配置信息,用于宿主节点的DU进行路由选择和承载映射,在下行传输场景下,还可以用于宿主节点的DU添加BAP层头信息。
可选的,第三配置信息可以包括以下信息中的一项或多项:
1、第三路由表。
其中,第三路由表中包括一个或多个路由表项。每个路由表项包括目的节点的标识和下一跳节点的标识;或者每个路由表项包括目的路由标识和下一跳节点的标识,目的路由标识包括目的节点标识,可选的,目的路由标识还可以包括路径标识。该一个或多个路由表项中包括目的节点为第一节点或第五节点的路由表项。
其中,在下行传输场景中,路径标识用于标识从宿主节点到接入IAB节点的一条传输路径。
示例性的,以图10所示的IAB网络为例,若第一节点为IAB节点1,第二节点为IAB节点x,第五节点为IAB节点y,则第三路由表可以如表7所示,其中,路径标识e所标识的传输路径为“宿主节点→IAB节点4→IAB节点3→IAB节点x→IAB节点1”,路径标识f所标识的传输路径为“宿主节点→IAB节点4→IAB节点3→IAB节点x→IAB节点1→IAB节点y”。
表7
目的路由标识 下一跳节点的标识
IAB节点1的标识+路径标识e IAB节点1的标识
IAB节点y的标识+路径标识f IAB节点1的标识
2、第五映射关系。
其中,第五映射关系包括下行传输场景下,第二节点对应的入口链路的回传无线链路控制信道与出口链路的回传无线链路控制信道的对应关系。
其中,在下行传输场景下,第二节点对应的入口链路为第二节点与第三节点之间的链路,例如,在如图10所示的IAB网络中,第二节点为IAB节点x,第三节点为IAB节点3,则第二节点对应的入口链路为IAB节点x与IAB节点3之间的链路;第二节点对应的出口链路为第二节点与第一节点之间的链路,例如,在图10所示的IAB网络中,第一节点为IAB节点1,则第二节点对应的出口链路为IAB节点x与IAB节点1之间的链路。
一种可能的方式中,类似于第三映射关系,第五映射关系中,可以包括上一跳节点的标识,入口链路BH RLC channel标识,下一跳节点的标识,以及出口链路BH RLC channel的标识。其中上一跳节点的标识用来指示入口链路,下一跳节点的标识用来指示出口链路,详细说明可参考上述第三映射关系以及表5的相关描述,在此不再赘述。
可选的,该步骤S1103中,第二节点确定第二数据的下一跳节点为第一节点后,还可以根据第三配置信息中的第五映射关系进行承载映射,例如,确定第二节点与第一节点之间的链路上用于承载第二数据的回传无线链路控制信道。
需要说明的是,当宿主节点为CU-DU分离的形态时,该步骤S1103中由宿主节点实现的步骤/功能,可以由宿主节点的CU实现;进一步的,当宿主节点的CU为CU-CP和CU-UP分离的形态时,该步骤S1103中由宿主节点实现的步骤/功能,可以由宿主节点的CU-CP实现。
S1104、第二节点向第一节点发送第二数据。相应的,第一节点接收来自第二节点的第二数据。
可选的,第一节点接收到第二数据后,若第二数据的目的节点为第一节点,则第一节点对第二数据进行处理(例如将第二数据交给BAP层的上层协议层执行处理);若第二数据的目的节点为第五节点,则第一节点向第五节点发送第二数据。
基于本申请实施例提供的通信方法,在宿主节点无法通过第一节点的父节点向第一节点传输下行数据的情况下,宿主节点可以将给第一节点或第一节点的下行传输方向上的下游节点的数据发送至第一节点的协助子节点,再由第一节点的协助子节点将下行数据传输至第一节点,由第一节点进行处理,从而可以及时地将下行数据传输至第一节点或第一节点的下行传输方向上的下游节点,降低回传链路异常对业务造成的影响。
下面从节点内部的角度对上述图11所示的通信方法中各个节点的动作进行介绍。首先以IAB节点包括DU部分和MT部分,且DU部分和MT部分不共用BAP层实体,且宿主节点为CU-DU分离的形态为例进行说明。
对于上述步骤S1101、宿主节点获取第二数据,具体可以包括:
S1101a、宿主节点的CU获取第二数据。
其中,在宿主节点的CU确定第一节点无法通过第一节点的至少一个父节点传输数据的情况下,该第二数据中包括第一IP头信息。第一IP头信息用于指示宿主节点的DU在发送第二数据时,在封装有第二数据的数据包中携带第四指示信息,也即第一IP头信息可以指示宿主节点的DU发送第四指示信息,该第四指示信息用于指示第二数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,或者,该第四指示信息用于指示第二节点的第二BAP层实体的接收实体无需将第二数据递交至第二节点的第一BAP层实体的发送实体。
需要说明的是,本申请实施例提供的通信方法还涉及第二指示信息和第三指示信息,关于第二指示信息和第三指示信息的说明将在下述实施例中详细描述,在此不再赘述。
可选的,在以下情况中的一种或多种发生时,宿主节点的CU确定第一节点无法通过第一节点的至少一个父节点传输数据:
情况一:第一节点与第一节点的至少一个父节点之间的无线回传链路异常。
情况二、第一节点接收到来自第一节点的至少一个父节点的无线回传链路异常通知。
情况三、第一节点与第一节点的主父节点之间的无线回传链路发生RLF,且链路恢复失败。
情况四、第一节点与第一节点的所有父节点之间的无线回传链路发生RLF,且链路恢复失败。
其中,上述四种情况的说明可参见步骤S902中的相关描述,在此不再赘述。
可选的,宿主节点的CU可以通过多种方式确定第一节点无法通过第一节点的至少一个父节点传输第二数据。
在一种可能的实现方式中,当出现上述四种情况中的一种或多种时,第一节点的下行传输方向上的上游节点(例如第一节点的父节点或祖父节点)可以向宿主节点的CU(具体可以为宿主节点的CU-CP)上报IAB网络中存在上述四种情况的一种或多种,从而使得宿主节点的CU确定第一节点无法通过第一节点的至少一个父节点传输数据。
在另一种可能的实现方式中,当出现上述四种情况中的一种或多种时,第一节点可以通过第一节点的协助子节点向宿主节点的CU上报IAB网络中存在上述四种情况的一种或多种,从而使得宿主节点的CU确定第一节点无法通过第一节点的至少一个父节点传输数据。
在又一种可能的实现方式中,当出现上述四种情况中的一种或多种时,第一节点的协助子节点可以向宿主节点的CU上报IAB网络中存在上述四种情况的一种或多种,从而使得宿主节点的CU确定第一节点无法通过第一节点的至少一个父节点传输数据。可选的,在该实现方式中,第一节点的协助子节点可以在接收到来自第一节点的协助请求信息、或者回传无线链路失败通知、或者第一个携带第一指示信息的上行数据包时,向宿主节点的CU上报IAB网络中存在上述一种或多种情况。
可选的,当宿主节点的CU为CU-CP和CU-UP分离的形态时,宿主节点的CU-CP 可以向宿主节点的CU-UP发送配置信息,该配置信息中包括第一节点为该第一节点服务的终端分配的F1接口用户面的GTP-U隧道(该GTP-U隧道对应于第一节点服务的终端的数据无线承载)信息,以及对应的第一IP头信息;或者包括第五节点为该第五节点服务的终端分配的F1接口用户面的GTP-U隧道(该GTP-U隧道对应于第五节点服务的终端的数据无线承载)信息,以及对应的第一IP头信息。后续在宿主节点的CU-UP向宿主节点的DU发送第二数据时,可以在该第二数据中包括第一IP头信息。
其中,第一节点或第五节点为其服务的终端分配的F1接口用户面的GTP-U隧道信息可以为GTP-U隧道的TEID,或者也可以为IP地址和GTP-U隧道的TEID。例如,第一节点为其服务的终端分配的F1接口用户面的GTP-U隧道信息为GTP-U隧道的TEID,或者为第一节点的IP地址和该GTP-U隧道在第一节点侧分配的TEID。
可选的,本申请实施例中的IP头信息包括以下任意一项或任意多项:区分服务信息、IPv6中的服务质量(quality of service,QoS)流标签(flow label)、IP地址、或者传输层端口号。其中,区分服务信息可以是IPv4中的区分服务码点(diffServ code point,DSCP),或者也可以是IPv6中的业务类型(trafficclass,TC)字段中前6个比特所表示的信息;IP地址可以是源IP地址或目的IP地址;传输层端口号可以是源端口号或目的端口号。
相应的,上述第一IP头信息可以包括以下任意一项或任意多项:第一区分服务信息、第一流标签、第一IP地址、或者第一传输层端口号。示例性的,第一IP头信息为流标签1和/或第一区分服务信息,则后续宿主节点的CU-UP发送第二数据时,可以在第二数据中包括流标签1和/或第一区分服务信息。
可选的,宿主节点的CU(具体可以为宿主节点的CU-CP)还可以向宿主接的DU发送IP头信息列表,用于指定与第四指示信息对应的IP头信息。该IP头信息列表中包括第一IP头信息,以便宿主节点的DU在接收到来自宿主节点CU的下行数据后,根据下行数据包括的IP头信息,确定是否发送第四指示信息,例如,若宿主节点的DU确定该IP头信息列表中存在下行数据中包括的IP头信息,则宿主节点的DU在发送该下行数据时,可以进一步发送第四指示信息。
S1101b、宿主节点的CU向宿主节点的DU发送第二数据。相应的,宿主节点的DU接收来自宿主节点CU的第二数据。
对于上述步骤S1102、宿主节点发送第二数据具体可以为:宿主节点的DU发送第四数据包,该第四数据包中包括第二数据和第四指示信息。
其中,宿主节点的DU接收到第二数据后,可以查找IP头信息列表中是否包括第一IP头信息,当IP头信息列表中包括第一IP头信息时,宿主节点的DU确定在封装有第二数据的数据包中携带第四指示信息。之后,宿主节点的DU可以发送第四数据包,并在该第四数据包中携带第二数据和第四指示信息。
需要说明的是,本申请实施例提供的通信方法还涉及第二数据包和第三数据包,关于第二数据包和第三数据包的说明将在下述实施例中详细描述,在此不再赘述。
可选的,该第四指示信息可以位于第四数据包的BAP层,例如,位于第四数据包的BAP层头中;或者,该第四指示信息也可以位于第四数据包的MAC层中,且第四指示信息为第四LCID,其中,第四LCID所标识的逻辑信道对应的回传无线链路控制 信道为宿主节点与宿主节点确定的第二数据的下一跳节点(例如图10中的IAB节点4)之间用于承载第二数据的回传无线链路控制信道。
可选的,该第四LCID可以是协议规定的,也可以是宿主节点的CU(具体可以是CU-CP)配置的,本申请实施例对此不做具体限定。
可以理解的是,当第四指示信息为第四LCID时,在宿主节点至第三节点的传输路径上的每一段链路都将使用特定的回传无线链路控制信道承载第二数据。可选的,当第二数据传输至第三节点时,第三节点向第二节点发送该第二数据可以包括:第三节点向第二节点发送第二数据包。相应的,第二节点接收来自第三节点的第二数据可以包括:第二节点的MT部分接收来自第三节点的第二数据包。其中,该第二数据包中包括第二数据和第二指示信息,该第二指示信息用于指示第二数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,或者,第二指示信息用于指示第二节点的第二BAP层实体的接收实体无需将第二数据递交至第二节点的第一BAP层实体的发送实体。
可选的,该第二指示信息可以位于第二数据包的BAP层,例如,位于第二数据包的BAP层头中;或者,第二指示信息可以位于第二数据包的MAC层中,且第二指示信息为第二LCID,该第二LCID所标识的逻辑信道对应的回传无线链路控制信道为第三节点与第二节点之间,用于第三节点向第二节点发送第一类型数据的回传无线链路控制信道,其中,第一类型数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据。
对于上述S1103、第二节点确定第二数据的下一跳节点为第一节点,具体可以为:第二节点根据第二指示信息,确定由第二节点的第二BAP层实体的发送实体执行发送处理;第二节点的第二BAP层实体的发送实体根据第三配置信息,确定第二数据的下一跳节点为第一节点。
也就是说,第二节点接收到来自第三节点的数据后,当判断第二节点不为该数据的目的节点时,进一步根据第二指示信息确定由第二节点的MT部分的BAP层实体执行发送处理,无需将第二数据发送给第二节点的DU部分的BAP层实体执行发送处理。
可选的,当第二节点接收的来自第三节点的数据包中不包括第二指示信息时,第二节点确认该数据包的目的节点不为第二节点后,由第二节点的第二BAP层实体的接收实体将该数据包的BAP层PDU或BAP层SDU递交至第二节点的第一BAP层实体的发送实体进行发送处理。当第二节点接收的来自第三节点的数据包中包括第二指示信息时,第二节点的第二BAP层实体的接收实体无需将该数据包的BAP层PDU或BAP层SDU递交至第二节点的第一BAP层实体的发送实体,后续在第二节点的第二BAP层实体的发送实体执行发送处理即可,该发送处理例如可以包括:确定下一跳节点、以及第二节点与下一跳节点之间的链路上用于承载数据的回传无线链路控制信道等。
对于上述步骤S1104、第二节点向第一节点发送第二数据,具体可以为:第二节点的MT部分向第一节点发送第三数据包,其中,第三数据包包括第二数据和第三指示信息,该第三指示信息用于指示第二数据为无需由第一节点的第一BAP层实体的接收实体递交至所述第一节点的第二BAP层实体的发送实体的数据,或者,第三指示信息用 于指示第一节点的第一BAP层实体的接收实体无需将第二数据递交至第一节点第二BAP层实体的发送实体。
可选的,该第三指示信息可以位于第三数据包的BAP层,例如,位于第三数据包的BAP层头中;或者,第三指示信息可以位于第三数据包的MAC层中,且第三指示信息为第三LCID,该第三LCID所标识的逻辑信道对应的回传无线链路控制信道为第二节点与第一节点之间,用于第二节点向第一节点发送第一类型数据的回传无线链路控制信道。
可选的,第一节点可以接收来自第二节点第三数据包,具体可以为:第一节点的DU部分接收来自第二节点的第三数据包。
可选的,在第一节点接收第三数据包后,当第二数据的目的节点为第一节点时,第一节点对第一数据进行处理;当第二数据的目的节点为第五节点时,第一节点可以根据第三指示信息,确定由第一节点的第一BAP层实体的发送实体执行发送处理,从而由第一节点的第一BAP层实体的发送实体执行发送处理以向第五节点发送该第二数据。
可选的,宿主节点和第二节点之间的传输路径上除第二节点之外的其他IAB节点(包括第三节点)(假设上述IAB节点可以统称为第一IAB节点)在转发第二数据时,将继续按照上述本申请相关技术或名词的简要介绍部分的第九条介绍的现有的BAP层转发模型进行发送处理。
可选的,在第一IAB节点的MT部分和DU部分不共用BAP层实体的情况下,为了避免第一IAB节点使用接收第二数据的BAP层实体执行第二数据的发送处理,宿主节点(具体可以是宿主CU,或者宿主CU-CP)可以向第一IAB节点发送配置信息,其中包括第五指示信息,所述第五指示信息用于通知第一IAB节点,无需根据数据包中的第四指示信息,改变BAP层的现有转发模型。或者,宿主节点向第二节点发送配置信息,其中包括第六指示信息,所述第六指示信息用于通知第二节点,需要根据数据包中的第二指示信息,在接收第二数据的BAP层实体执行第二数据的发送处理。可选的,宿主节点也可以向第一节点发送配置信息,其中包括第七指示信息,所述第七指示信息用于通知第一节点,需要根据数据包中的第三指示信息,在接收第二数据的BAP层实体执行第二数据的发送处理。
需要说明的是,本申请实施例中,第一指示信息、第二指示信息、第三指示信息、以及第四指示信息中任意多个指示信息的内容可以相同,例如,均使用BAP层头中的1比特的取值(例如“1”)表示;任意多个指示信息的内容也可以不同,例如,第一LCID和第二LCID分别为不同取值的LCID,本申请实施例对此不做具体限定。
需要说明的是,第一节点在向第五节点发送第二数据时,不需要另外发送指示信息b以指示第五节点的MT部分的BAP层的接收实体无需将第二数据递交至第五节点的DU部分的BAP层实体的发送实体,即第五节点按照上述本申请相关技术或名词的简要介绍部分的第九条介绍的现有的BAP层转发模型进行发送处理。
基于该方案,由于宿主节点在发送下行数据时,可以同时发送第四指示信息,从而使得第三节点向第二节点发送下行数据时可以同时发送第二指示信息,进而使得第二节点可以根据第二指示信息在MT侧进行路由选择和承载映射,进一步可以通过协 助子节点及时地将下行数据传输至第一节点或第五节点,降低回传链路异常对业务造成的影响。
此外,对于IAB节点包括DU部分和MT部分,且DU部分和MT部分共用BAP层实体的场景,在第二数据的传输过程中无需同时传输第二指示信息、第三指示信息、以及第四指示,上述步骤S1101-S1104中,由第一节点实现的路由选择和承载映射的相关功能/步骤,可以由第一节点的BAP层实体(具体可以是第一节点BAP层实体的发送部分)实现;由第二节点实现的路由选择和承载映射的相关功能/步骤,可以由第二节点的BAP层(具体可以是第二节点BAP层实体的发送部分)实现,可参考上述相关描述,在此不再赘述。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由各个节点实现的方法和/或步骤,也可以由可用于节点的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了网络节点,该网络节点用于实现上述各种方法。该网络节点可以为上述方法实施例中的第一节点,或者包含上述第一节点的装置,或者上述第一节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述方法实施例中的第二节点,或者包含上述第二节点的装置,或者上述第二节点中包含的装置,比如系统芯片;或者,该网络节点可以为上述方法实施例中的宿主节点,或者包含上述宿主节点的装置,或者上述宿主节点中包含的装置,比如系统芯片。
可以理解的是,该网络节点为了实现上述功能,其包含了实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对网络节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以网络节点为上述方法实施例中的第一节点为例。图12示出了一种第一节点120的结构示意图。该第一节点120包括处理模块1201和收发模块1202。所述收发模块1202,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块1201,用于获取第一数据,第一数据为上行数据;在第一节点无法通过第一节点的至少一个父节点传输数据的情况下,处理模块1201,还用于确定第一数据的下一跳节点为第二节点,第二节点为第一节点的协助子节点,第一节点的协助子 节点的父节点包括第一节点和第三节点,第一节点的协助子节点能够通过第三节点连接到宿主节点;收发模块1202,用于向第二节点发送第一数据。
可选的,处理模块1201,还用于确定第一数据的下一跳节点为第二节点,包括:处理模块1201,还用于根据第一配置信息,确定第一数据的下一跳节点为第二节点,其中,第一配置信息为宿主节点向第一节点预配置的,在第一节点无法通过第一节点的至少一个父节点传输数据时生效的备选配置信息;或者,第一配置信息为第一节点通过第四节点向宿主节点发送第一重配置请求信息后,从宿主节点处获取的配置信息,第一重配置请求信息用于请求第一配置信息,第四节点为第一节点的任意一个协助子节点。
可选的,处理模块1201,还用于确定第一数据的下一跳节点为第二节点,包括:处理模块1201,用于通过收发模块1202发送协助请求信息,该协助请求信息用于确定第一节点的协助子节点;处理模块1201,还用于通过收发模块1202接收来自第二节点的协助应答信息;处理模块1201,还用于根据该协助应答信息,确定第一数据的下一跳节点为第二节点。
可选的,处理模块1201,用于获取第一数据,包括:处理模块1201,用于第一节点的第一BAP层实体的接收实体获取第一数据;处理模块1201,还用于第一节点的第一BAP层实体的发送实体确定第一数据的下一跳节点为第二节点,其中,第一节点的第一BAP层实体为第一节点的DU部分的BAP层实体。
可选的,收发模块1202,用于向第二节点发送第一数据,包括:收发模块1202,用于向第二节点发送第一数据包,第一数据包包括第一数据和第一指示信息,第一指示信息用于指示第一数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,其中,第二节点的第一BAP层实体为第二节点的DU部分的BAP层实体,第二节点的第二BAP层实体为第二节点的移动终端MT部分的BAP层实体。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一节点120以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一节点120可以采用图7所示的网络节点70的形式。
比如,图7所示的网络节点70中的处理器701可以通过调用存储器703中存储的计算机执行指令,使得网络节点70执行上述方法实施例中的通信方法。
示例性的,图12中的处理模块1201和收发模块1202的功能/实现过程可以通过图7所示的网络节点70中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图12中的处理模块1201的功能/实现过程可以通过图7所示的网络节点70中的处理器701调用存储器703中存储的计算机执行指令来实现,图12中的收发模块1202的功能/实现过程可以通过图7所示的网络节点70中的通信接口704来实现。
由于本实施例提供的第一节点120可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以网络节点为上述方法实施例中的第二节点为例。图13示出了一种第二节点130的结构示意图。该第二节点130包括处理模块1301和收发模块1302。所述收发模块1302,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
在一种可能的实现方式中:
收发模块1302,用于接收来自第一节点的第一数据,第一数据为上行数据,第二节点为第一节点的子节点;处理模块1301,用于根据第二配置信息,确定第一数据的下一跳节点为第三节点,第三节点为第二节点的父节点,第二节点能够通过第三节点连接到宿主节点;收发模块1302,还用于向第三节点发送第一数据。
可选的,收发模块1302,还用于接收来自第一节点的协助请求信息,协助请求信息用于确定第一节点的协助子节点;收发模块1302,还用于向第一节点发送协助应答信息,协助应答信息用于指示第二节点能够作为第一节点的协助子节点。
可选的,收发模块1302,用于接收来自第一节点的第一数据,包括:收发模块1302,用于接收来自第一节点的第一数据包,第一数据包包括第一数据和第一指示信息,第一指示信息用于指示第一数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,其中,第二节点的第一BAP层实体为第二节点的分布式单元DU部分的BAP层实体,第二节点的第二BAP层实体为第二节点的移动终端MT部分的BAP层实体。
可选的,收发模块1302,用于接收来自第一节点的第一数据包,包括:收发模块1302,用于第二节点的MT部分接收来自第一节点的第一数据包;处理模块1301,用于根据第二配置信息,确定第一数据的下一跳节点为第三节点,包括:处理模块1301,用于根据第一指示信息,确定由第二节点的第二BAP层实体的发送实体执行发送处理;处理模块1301,还用于第二节点的第二BAP层实体的发送实体根据第二配置信息,确定第一数据的下一跳节点为第三节点。
在另一种可能的实现方式中:
收发模块1302,用于接收第二数据,第二数据的目的节点为第一节点或第五节点,第二节点为第一节点的子节点,第五节点为第一节点的下行传输方向上的下游节点;处理模块1301,用于根据第三配置信息,确定第二数据的下一跳节点为第一节点;收发模块1302,还用于向第一节点发送第二数据。
可选的,收发模块1302,用于接收第二数据,包括:收发模块1302,用于接收第二数据包,第二数据包包括第二数据和第二指示信息,第二指示信息用于指示第二数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,其中,第二节点的第一BAP层实体为第二节点的分布式单元DU部分的BAP层实体,第二节点的第二BAP层实体为第二节点的移动终端MT部分的BAP层实体。
可选的,收发模块1302,用于接收第二数据包,包括:收发模块1302,用于第二节点的MT部分接收第二数据包;处理模块1301,用于根据第三配置信息,确定第二数据的下一跳节点为第一节点,包括:处理模块1301,用于根据第二指示信息,确定由第二节点的第二BAP层实体的发送实体执行发送处理;处理模块1301,还用于第二节点的第二BAP层实体的发送实体根据第三配置信息,确定第二数据的下一跳节点为第一节点。
可选的,收发模块1302,用于向第一节点发送第二数据,包括:收发模块1302,用于第二节点的MT部分向第一节点发送第三数据包,第三数据包包括第二数据和第三指示信息,第三指示信息用于指示第二数据为无需由第一节点的第一BAP层实体的接收实体递交至第一节点的第二BAP层实体的发送实体的数据,其中,第一节点的第一BAP层实体为第一节点的DU部分的BAP层实体,第一节点的第二BAP层实体为第一节点的MT部分的BAP层实体。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第二节点130以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第二节点130可以采用图7所示的网络节点70的形式。
比如,图7所示的网络节点70中的处理器701可以通过调用存储器703中存储的计算机执行指令,使得网络节点70执行上述方法实施例中的通信方法。
示例性的,图13中的处理模块1301和收发模块1302的功能/实现过程可以通过图7所示的网络节点70中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图13中的处理模块1301的功能/实现过程可以通过图7所示的网络节点70中的处理器701调用存储器703中存储的计算机执行指令来实现,图13中的收发模块1302的功能/实现过程可以通过图7所示的网络节点70中的通信接口704来实现。
由于本实施例提供的第二节点130可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以网络节点为上述方法实施例中的宿主节点为例。图14示出了一种宿主节点140的结构示意图。该宿主节点140包括处理模块1401和收发模块1402。所述收发模块1402,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
在一种可能的实现方式中:
处理模块1401,用于宿主节点的CU获取第二数据;收发模块1402,用于宿主节点的CU向宿主节点的DU发送第二数据。其中,第二数据的目的节点为第一节点或第五节点,在宿主节点的CU确定第一节点无法通过第一节点的至少一个父节点传输数据的情况下,第二数据中包括第一互联网协议IP头信息,其中,第五节点为第一节点的下行传输方向上的下游节点,第一IP头信息用于指示宿主节点的分布式单元DU发送第四指示信息,第四指示信息用于指示第二数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,第二节点为第一节点的子节点。
可选的,收发模块1402,还用于宿主节点的CU向宿主节点的DU发送IP头信息列表,该IP头信息列表中包括第一IP头信息。
在另一种可能的实现方式中:
收发模块1402,用于宿主节点的DU接收第二数据,第二数据的目的节点为第一节点或第五节点,第二数据包括第一互联网协议IP头信息,第五节点为第一节点的下行传输方 向上的下游节点;当IP头信息列表中包括第一IP头信息时,处理模块1401,用于宿主节点的DU确定在封装有第二数据的数据包中携带第四指示信息,收发模块1402,还用于宿主节点的DU发送第四数据包,第四数据包包括第二数据和第四指示信息,第四指示信息用于指示第二数据为无需由第二节点的第二BAP层实体的接收实体递交至第二节点的第一BAP层实体的发送实体的数据,第二节点为第一节点的子节点。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该宿主节点140以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该宿主节点140可以采用图7所示的网络节点70的形式。
比如,图7所示的网络节点70中的处理器701可以通过调用存储器703中存储的计算机执行指令,使得网络节点70执行上述方法实施例中的通信方法。
示例性的,图14中的处理模块1401和收发模块1402的功能/实现过程可以通过图7所示的网络节点70中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图14中的处理模块1401的功能/实现过程可以通过图7所示的网络节点70中的处理器701调用存储器703中存储的计算机执行指令来实现,图14中的收发模块1402的功能/实现过程可以通过图7所示的网络节点70中的通信接口704来实现。
由于本实施例提供的宿主节点140可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种网络节点(例如,该网络节点可以是芯片或芯片系统),该网络节点包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该网络节点还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该网络节点执行上述任一方法实施例中的方法。当然,存储器也可以不在该网络节点中。在另一种可能的设计中,该网络节点还包括接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件获取)并传输至该处理器,处理器可以执行传输至该处理器的计算机执行指令以指令该网络节点执行上述任一方法实施例中的方法。该网络节点是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选的,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当所述指令在上述网络节点上运行时,使得网络节点可以执行上述任一方面所述的方法。
可选的,本申请实施例还提供了一种包含指令的计算机程序产品,当所述指令在上述网络节点上运行时,使得所述网络节点可以执行上述任一方面所述的方法。
上述实施例中,可以理解的是,网络节点中不一定必要包括存储器,网络节点可以通过调用外部存储器中的指令来执行相应的功能;或者,相应的程序指令,可以在后期装载到网络节点中的存储器中,以供处理器调用后执行相应的操作。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,所述方法应用于无线接入回传一体化IAB网络,所述方法包括:
    第一节点获取第一数据,所述第一数据为上行数据;
    在所述第一节点无法通过所述第一节点的至少一个父节点传输数据的情况下,所述第一节点确定所述第一数据的下一跳节点为第二节点,所述第二节点为所述第一节点的协助子节点,所述第一节点的协助子节点的父节点包括所述第一节点和第三节点,所述第一节点的协助子节点能够通过所述第三节点连接到宿主节点;
    所述第一节点向所述第二节点发送所述第一数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一节点确定所述第一数据的下一跳节点为所述第二节点,包括:
    所述第一节点根据第一配置信息,确定所述第一数据的下一跳节点为所述第二节点,其中,所述第一配置信息为所述宿主节点向所述第一节点预配置的,在所述第一节点无法通过所述第一节点的至少一个父节点传输数据时生效的备选配置信息;或者,所述第一配置信息为所述第一节点通过第四节点向所述宿主节点发送第一重配置请求信息后,从所述宿主节点处获取的配置信息,所述第一重配置请求信息用于请求第一配置信息,所述第四节点为所述第一节点的任意一个协助子节点。
  3. 根据权利要求1所述的方法,其特征在于,所述第一节点确定所述第一数据的下一跳节点为第二节点,包括:
    所述第一节点发送协助请求信息,所述协助请求信息用于确定所述第一节点的协助子节点;
    所述第一节点接收来自所述第二节点的协助应答信息;
    所述第一节点根据所述协助应答信息,确定所述第一数据的下一跳节点为所述第二节点。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一节点无法通过所述第一节点的至少一个父节点传输数据,包括:
    所述第一节点与所述第一节点的至少一个父节点之间的无线回传链路异常;或者,
    所述第一节点接收到来自所述第一节点的至少一个父节点的无线回传链路异常通知;或者,
    所述第一节点与所述第一节点的主父节点之间的无线回传链路发生无线链路失败,且链路恢复失败;或者,
    所述第一节点与所述第一节点的所有父节点之间的无线回传链路发生无线链路失败,且链路恢复失败。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一节点获取第一数据,包括:所述第一节点的第一回传适配协议BAP层实体的接收实体获取所述第一数据;
    所述第一节点确定所述第一数据的下一跳节点为第二节点,包括:
    所述第一节点的第一BAP层实体的发送实体确定所述第一数据的下一跳节点为所述第二节点,其中,所述第一节点的第一BAP层实体为所述第一节点的分布式单元DU部分的BAP层实体。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一节点向所述第二节点发送所述第一数据,包括:
    所述第一节点向所述第二节点发送第一数据包,所述第一数据包包括所述第一数据和第一指示信息,所述第一指示信息用于指示所述第一数据为无需由所述第二节点的第二BAP层实体的接收实体递交至所述第二节点的第一BAP层实体的发送实体的数据,其中,所述第二节点的第一BAP层实体为所述第二节点的DU部分的BAP层实体,所述第二节点的第二BAP层实体为所述第二节点的移动终端MT部分的BAP层实体。
  7. 根据权利要求6所述的方法,其特征在于,所述第一指示信息位于所述第一数据包的BAP层;或者,
    所述第一指示信息位于所述第一数据包的媒体接入控制MAC层,且所述第一指示信息为第一逻辑信道标识LCID,所述第一LCID对应的回传无线链路控制信道为所述第一节点与所述第二节点之间,用于所述第一节点向所述第二节点发送第一类型数据的回传无线链路控制信道,所述第一类型数据为无需由所述第二节点的第二BAP层实体的接收实体递交至所述第二节点的第一BAP层实体的发送实体的数据。
  8. 一种通信方法,其特征在于,所述方法应用于无线接入回传一体化IAB网络,所述方法包括:
    第二节点接收来自第一节点的第一数据,所述第一数据为上行数据,所述第二节点为所述第一节点的子节点;
    所述第二节点根据第二配置信息,确定所述第一数据的下一跳节点为第三节点,所述第三节点为所述第二节点的父节点,所述第二节点能够通过所述第三节点连接到宿主节点;
    所述第二节点向所述第三节点发送所述第一数据。
  9. 根据权利要求8所述的方法,其特征在于,所述第二配置信息为所述宿主节点向所述第二节点预配置的上行备选配置信息;
    所述第二配置信息在所述第二节点接收到来自所述第一节点的无线回传链路异常通知时生效;或者,
    所述第二配置信息在所述第二节点接收到来自所述第一节点的第一个上行数据包时生效;或者,
    所述第二配置信息在所述第二节点接收到来自所述宿主节点的用于指示所述第二节点启用所述第二配置信息的信息时生效。
  10. 根据权利要求8所述的方法,其特征在于,所述第二配置信息为所述第二节点向所述宿主节点发送第二重配置请求信息后,从所述宿主节点处获取的上行配置信息,所述第二重配置请求信息用于请求所述第二配置信息。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收来自所述第一节点的协助请求信息,所述协助请求信息用于确定所述第一节点的协助子节点;
    所述第二节点向所述第一节点发送协助应答信息,所述协助应答信息用于指示所述第二节点能够作为所述第一节点的协助子节点。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述第二节点接收来自第一节点的第一数据,包括:
    所述第二节点接收来自所述第一节点的第一数据包,所述第一数据包包括所述第一数据和第一指示信息,所述第一指示信息用于指示所述第一数据为无需由所述第二节点的第二BAP层实体的接收实体递交至所述第二节点的第一BAP层实体的发送实体的数据,其中,所述第二节点的第一BAP层实体为所述第二节点的分布式单元DU部分的BAP层实体,所述第二节点的第二BAP层实体为所述第二节点的移动终端MT部分的BAP层实体。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息位于所述第一数据包的BAP层;或者,
    所述第一指示信息位于所述第一数据包的媒体接入控制MAC层,且所述第一指示信息为第一逻辑信道标识LCID,所述第一LCID对应的回传无线链路控制信道为所述第一节点与所述第二节点之间,用于所述第一节点向所述第二节点发送第一类型数据的信道,所述第一类型数据为无需由所述第二节点的第二BAP层实体的接收实体递交至所述第二节点的第一BAP层实体的发送实体的数据。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第二节点接收来自所述第一节点的第一数据包,包括:所述第二节点的MT部分接收来自所述第一节点的所述第一数据包;
    所述第二节点根据第二配置信息,确定所述第一数据的下一跳节点为第三节点,包括:
    所述第二节点根据所述第一指示信息,确定由所述第二节点的第二BAP层实体的发送实体执行发送处理;
    所述第二节点的第二BAP层实体的发送实体根据所述第二配置信息,确定所述第一数据的下一跳节点为所述第三节点。
  15. 一种通信方法,其特征在于,所述方法应用于无线接入回传一体化IAB网络,所述方法包括:
    第二节点接收第二数据,所述第二数据的目的节点为第一节点或第五节点,所述第二节点为所述第一节点的子节点,所述第五节点为所述第一节点的下行传输方向上的下游节点;
    所述第二节点根据第三配置信息,确定所述第二数据的下一跳节点为所述第一节点;
    所述第二节点向所述第一节点发送所述第二数据。
  16. 根据权利要求15所述的方法,其特征在于,所述第三配置信息为宿主节点向所述第二节点预配置的下行备选配置信息;
    所述第三配置信息在所述第二节点接收到来自所述第一节点的无线回传链路异常通知时生效;或者,
    所述第三配置信息在所述第二节点接收到来自所述第一节点的第一个上行数据包时生效;或者,
    所述第三配置信息在所述第二节点接收到来自所述宿主节点的用于通知所述第二节点启用所述第三配置信息的信息时生效。
  17. 根据权利要求15所述的方法,其特征在于,所述第三配置信息为所述第二节点向宿主节点发送第三重配置请求信息后,从所述宿主节点处获取的下行配置信息,所述第三重配置请求信息用于请求所述第三配置信息。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述第二节点接收第二数 据,包括:
    所述第二节点接收第二数据包,所述第二数据包包括所述第二数据和第二指示信息,所述第二指示信息用于指示所述第二数据为无需由所述第二节点的第二BAP层实体的接收实体递交至所述第二节点的第一BAP层实体的发送实体的数据,其中,所述第二节点的第一BAP层实体为所述第二节点的分布式单元DU部分的BAP层实体,所述第二节点的第二BAP层实体为所述第二节点的移动终端MT部分的BAP层实体。
  19. 根据权利要求18所述的方法,其特征在于,所述第二指示信息位于所述第二数据包的BAP层;或者,
    所述第二指示信息位于所述第二数据包的媒体接入控制MAC层,且所述第二指示信息为第二逻辑信道标识LCID,所述第二LCID对应的回传无线链路控制信道为第三节点与所述第二节点之间,用于所述第三节点向所述第二节点发送第一类型数据的回传无线链路控制信道,所述第一类型数据为无需由所述第二节点的第二BAP层实体的接收实体递交至所述第二节点的第一BAP层实体的发送实体的数据,所述第三节点为所述第二节点的父节点。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第二节点接收第二数据包,包括:所述第二节点的MT部分接收所述第二数据包;
    所述第二节点根据第三配置信息,确定所述第二数据的下一跳节点为第一节点,包括:
    所述第二节点根据所述第二指示信息,确定由所述第二节点的第二BAP层实体的发送实体执行发送处理;
    所述第二节点的第二BAP层实体的发送实体根据所述第三配置信息,确定所述第二数据的下一跳节点为所述第一节点。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述第二节点向所述第一节点发送所述第二数据,包括:
    所述第二节点的MT部分向所述第一节点发送第三数据包,所述第三数据包包括所述第二数据和第三指示信息,所述第三指示信息用于指示所述第二数据为无需由所述第一节点的第一BAP层实体的接收实体递交至所述第一节点的第二BAP层实体的发送实体的数据,其中,所述第一节点的第一BAP层实体为所述第一节点的DU部分的BAP层实体,所述第一节点的第二BAP层实体为所述第一节点的MT部分的BAP层实体。
  22. 一种通信方法,其特征在于,所述方法应用于无线接入回传一体化IAB网络,所述方法包括:
    宿主节点的集中式单元CU获取第二数据,所述第二数据的目的节点为第一节点或第五节点,在所述宿主节点的CU确定所述第一节点无法通过所述第一节点的至少一个父节点传输数据的情况下,所述第二数据中包括第一互联网协议IP头信息,其中,所述第五节点为所述第一节点的下行传输方向上的下游节点,所述第一IP头信息用于指示所述宿主节点的分布式单元DU发送第四指示信息,所述第四指示信息用于指示所述第二数据为无需由第二节点的第二BAP层实体的接收实体递交至所述第二节点的第一BAP层实体的发送实体的数据,所述第二节点为所述第一节点的子节点;
    所述宿主节点的CU向所述宿主节点的分布式单元DU发送所述第二数据。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    所述宿主节点的CU向所述宿主节点的DU发送IP头信息列表,所述IP头信息列表中包括所述第一IP头信息。
  24. 一种通信方法,其特征在于,所述方法应用于无线接入回传一体化IAB网络,所述方法包括:
    宿主节点的分布式单元DU接收第二数据,所述第二数据的目的节点第一节点或第五节点,所述第二数据中包括第一互联网协议IP头信息,所述第五节点为所述第一节点的下行传输方向上的下游节点;
    当IP头信息列表中包括所述第一IP头信息时,所述宿主节点的DU确定在封装有第二数据的数据包中携带第四指示信息;
    所述宿主节点的DU发送第四数据包,所述第四数据包包括所述第二数据和第四指示信息,所述第四指示信息用于指示所述第二数据为无需由第二节点的第二BAP层实体的接收实体递交至所述第二节点的第一BAP层实体的发送实体的数据,所述第二节点为所述第一节点的子节点。
  25. 一种网络节点,其特征在于,所述网络节点包括:处理器;
    所述处理器用于读取存储器中的计算机执行指令,并执行所述计算机执行指令,以使所述网络节点执行如权利要求1-7中任一项所述的方法;或者,执行如权利要求8-14中任一项所述的方法;或者,执行如权利要求15-21中任一项所述的方法;或者,执行如权利要求22或23所述的方法,或者,执行如权利要求24所述的方法。
  26. 一种网络节点,其特征在于,所述网络节点包括:处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述处理器执行所述计算机执行指令时,以使所述网络节点执行如权利要求1-7中任一项所述的方法;或者,执行如权利要求8-14中任一项所述的方法;或者,执行如权利要求15-21中任一项所述的方法;或者,执行如权利要求22或23所述的方法,或者,执行如权利要求24所述的方法。
  27. 一种网络节点,其特征在于,所述网络节点包括:处理器和接口电路;
    所述接口电路,用于接收计算机执行指令并传输至所述处理器;
    所述处理器用于执行所述计算机执行指令,以使所述网络节点执行如权利要求1-7中任一项所述的方法;或者,执行如权利要求8-14中任一项所述的方法;或者,执行如权利要求15-21中任一项所述的方法;或者,执行如权利要求22或23所述的方法,或者,执行如权利要求24所述的方法。
  28. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在网络节点上运行时,以使所述网络节点执行如权利要求1-7中任一项所述的方法;或者,执行如权利要求8-14中任一项所述的方法;或者,执行如权利要求15-21中任一项所述的方法;或者,执行如权利要求22或23所述的方法,或者,执行如权利要求24所述的方法。
PCT/CN2019/130982 2019-12-31 2019-12-31 通信方法、设备及系统 WO2021134723A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980100315.4A CN114365540B (zh) 2019-12-31 2019-12-31 通信方法、设备及系统
CN202311467214.5A CN117527686A (zh) 2019-12-31 2019-12-31 通信方法、设备及系统
PCT/CN2019/130982 WO2021134723A1 (zh) 2019-12-31 2019-12-31 通信方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130982 WO2021134723A1 (zh) 2019-12-31 2019-12-31 通信方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2021134723A1 true WO2021134723A1 (zh) 2021-07-08

Family

ID=76685836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130982 WO2021134723A1 (zh) 2019-12-31 2019-12-31 通信方法、设备及系统

Country Status (2)

Country Link
CN (2) CN114365540B (zh)
WO (1) WO2021134723A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220394113A1 (en) * 2021-06-02 2022-12-08 Qualcomm Incorporated Multiplexing sidelink and radio access traffic
WO2023060401A1 (zh) * 2021-10-11 2023-04-20 富士通株式会社 无线路由方法及装置
WO2024093508A1 (zh) * 2022-10-31 2024-05-10 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190372887A1 (en) * 2018-05-31 2019-12-05 At&T Intellectual Property I, L.P. Lossless data delivery at route changes in wireless radio networks
US20190394084A1 (en) * 2018-06-20 2019-12-26 Industrial Technology Research Institute Network link topology adaptation method for intergrated access and backhaul node and intergrated access and backhaul node using the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074417A1 (en) * 2017-10-09 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) MANAGING DATA ASSISTANCE RELATING TO THE POSITION OF A SECOND NODE
CN109874153A (zh) * 2017-12-01 2019-06-11 华为技术有限公司 一种传输方法和中继节点
CN110351109B (zh) * 2018-04-04 2022-04-29 中兴通讯股份有限公司 拓扑信息的管理方法及装置、系统、存储介质、电子装置
KR20190127561A (ko) * 2018-05-03 2019-11-13 주식회사 케이티 릴레이 노드를 통한 데이터 처리 방법 및 그 장치
CN110475267B (zh) * 2018-05-11 2021-09-17 华为技术有限公司 一种配置方法、数据传输方法和装置
CN110475381B (zh) * 2018-05-11 2021-09-03 华为技术有限公司 通信方法、设备和系统
CN110621050A (zh) * 2018-06-20 2019-12-27 财团法人工业技术研究院 网络链路拓扑适应方法及接入和回传一体化节点
CN110636583B (zh) * 2018-06-21 2021-08-13 华为技术有限公司 路径变更方法及装置
CN110636643A (zh) * 2018-06-21 2019-12-31 中兴通讯股份有限公司 数据包的发送、接收方法及装置和数据包的传输系统
CN110636549B (zh) * 2018-06-21 2022-04-12 华为技术有限公司 数据传输方法、网络设备以及终端设备
WO2019246470A1 (en) * 2018-06-22 2019-12-26 Sharp Laboratories Of America, Inc. Integrated access and backhaul nex generation nodeb capabilities and signaling
US20190394687A1 (en) * 2018-06-22 2019-12-26 Sharp Laboratories Of America, Inc. Integrated Access and Backhaul Next Generation NodeB Capabilities and Signaling
CN110536350A (zh) * 2019-02-14 2019-12-03 中兴通讯股份有限公司 Iab链路控制方法、通信单元、计算机可读存储介质
GB2587653B (en) * 2019-10-03 2023-04-26 Samsung Electronics Co Ltd Flow control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190372887A1 (en) * 2018-05-31 2019-12-05 At&T Intellectual Property I, L.P. Lossless data delivery at route changes in wireless radio networks
US20190394084A1 (en) * 2018-06-20 2019-12-26 Industrial Technology Research Institute Network link topology adaptation method for intergrated access and backhaul node and intergrated access and backhaul node using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "Cell Selection for Backhaul RLF Recovery", 3GPP DRAFT; R2-1916061, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051817611 *
NEC: "IAB backhaul RLF handling", 3GPP DRAFT; R2-1914975, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051816910 *
ZTE, SANECHIPS: "Discussion on BAP control PDU", 3GPP DRAFT; R2-1915115, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051817025 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220394113A1 (en) * 2021-06-02 2022-12-08 Qualcomm Incorporated Multiplexing sidelink and radio access traffic
US11711452B2 (en) * 2021-06-02 2023-07-25 Qualcomm Incorporated Multiplexing sidelink and radio access traffic
WO2023060401A1 (zh) * 2021-10-11 2023-04-20 富士通株式会社 无线路由方法及装置
WO2024093508A1 (zh) * 2022-10-31 2024-05-10 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN114365540B (zh) 2023-11-17
CN114365540A (zh) 2022-04-15
CN117527686A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US11425600B2 (en) Wireless backhaul data transmission method and apparatus
WO2019242683A1 (zh) 路径变更方法及装置
WO2021027949A1 (zh) 一种路由方法及装置
US20200344843A1 (en) Node and communication method
US20230111021A1 (en) Communication Method, Apparatus, and System
WO2020221360A1 (zh) 一种通信方法及装置
WO2020164615A1 (zh) 一种通信方法及相关设备
WO2021134723A1 (zh) 通信方法、设备及系统
US20210378044A1 (en) Method for controlling wireless backhaul link and apparatus
WO2020098747A1 (zh) 传输路径的配置方法及装置
EP3735092A1 (en) Method and device for transmission
WO2021062803A1 (zh) 一种数据包传输方法及装置
US20230370898A1 (en) Communication method and apparatus
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
WO2023011111A1 (zh) 路由方法和通信装置
WO2023197105A1 (zh) 配置信息的方法、装置和通信系统
WO2022206317A1 (zh) 一种通信方法以及通信设备
WO2022156785A1 (zh) 一种通信方法及通信装置
WO2023060401A1 (zh) 无线路由方法及装置
WO2022205251A1 (zh) 信息收发方法,数据发送方法以及装置
WO2023065180A1 (zh) 路由方法、装置和系统
WO2023150975A1 (zh) Iab宿主设备以及传输迁移回退方法
WO2023205941A1 (zh) 信息的发送、接收、配置方法以及装置和通信系统
WO2023246746A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958630

Country of ref document: EP

Kind code of ref document: A1