WO2022156785A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2022156785A1
WO2022156785A1 PCT/CN2022/073305 CN2022073305W WO2022156785A1 WO 2022156785 A1 WO2022156785 A1 WO 2022156785A1 CN 2022073305 W CN2022073305 W CN 2022073305W WO 2022156785 A1 WO2022156785 A1 WO 2022156785A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
downlink data
mapping
information
donor
Prior art date
Application number
PCT/CN2022/073305
Other languages
English (en)
French (fr)
Inventor
刘菁
朱元萍
史玉龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22742264.9A priority Critical patent/EP4266754A1/en
Publication of WO2022156785A1 publication Critical patent/WO2022156785A1/zh
Priority to US18/355,406 priority patent/US20230370943A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00695Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using split of the control plane or user plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and a communication device.
  • the integrated access and backhaul (IAB) node (node) and IAB host node (donor) were introduced. node).
  • the IAB node can provide wireless access services for the terminal and connect to the host node through a wireless backhaul link.
  • a host node can be connected to one or more IAB nodes.
  • the IAB nodes can perform handovers.
  • scenarios and solutions are proposed for the IAB node to perform intra-donor-CU handover.
  • the current communication standard does not define the process for the IAB node to perform the inter-donor-CU handover scenario, that is, there is currently no solution to ensure terminal service continuity in the Inter-donor-CU handover scenario. .
  • Embodiments of the present application provide a communication method and a communication device, which are used to improve service continuity of a terminal in an Inter-donor-CU handover scenario.
  • a communication method comprising: a first centralized unit CU of a first host node determining a first mapping, and sending the first mapping to a second CU of the second host node; and The first CU sends the downlink data to the second DU of the second donor node.
  • the first mapping includes route mapping and/or bearer mapping; the route mapping is a mapping relationship between downlink data and a downlink transmission path; the bearer mapping is a mapping relationship between the downlink data and downlink transmission bearers;
  • the downlink transmission path includes a transmission path between the first CU through the second DU and a target node of the downlink data; the downlink transmission bearer includes a wireless connection between the second DU and the first node. link control RLC channel; the first node is the next hop node of the second DU.
  • the first CU of the first host node configures the first mapping for the downlink data of the terminal, and sends the first mapping to the second CU of the second host node. Send the first map.
  • the second host node receives the downlink data from the first host node, it can perform routing and bearer selection on the downlink data according to the first mapping, that is, in the scenario where the IAB node switches between host nodes , the downlink data can reach the terminal through the second host node, so as to prevent the service continuity of the terminal from being affected.
  • the mapping relationship between the downlink data and the downlink transmission path includes: the target address of the downlink data, the service attribute information of the downlink data, and the correspondence between the target address and the service attribute information
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the target address of the downlink data, the service attribute information of the downlink data, and the correspondence between the target address and the service attribute information information of the first radio link control RLC channel; the downlink data includes the service attribute information.
  • the service attribute information includes a differentiated services code point (differentiated services code point, DSCP for short) or a flow label (flow label).
  • the service attribute information can distinguish different services for quality of service (QoS) guarantee. In this way, data carrying different service attribute information can be transmitted through different transmission paths.
  • QoS quality of service
  • the method before the first CU sends the first mapping to the second CU, the method further includes:
  • the first CU receives one or more second routing identifiers allocated by the second CU from the second CU; the first routing identifier and the one or more second routing identifiers are different. In this way, the first CU can learn the routing ID allocated by the second CU. Therefore, when the first CU reassigns the routing ID, it can allocate a different routing ID from the second CU, so as to ensure the routing ID allocated by the first CU.
  • the routing identifier allocated by the second CU does not overlap, that is, the routing identifiers allocated by both can uniquely identify the transmission path.
  • the method before the first CU sends the first mapping to the second CU, the method further includes:
  • the first CU receives, from the second CU, information of one or more RLC channels between the second DU and the first node and quality of service (QoS) information corresponding to the one or more RLC channels;
  • the one or more RLC channels include the first RLC channel.
  • the first CU only knows the corresponding RLC channel information of the IAB nodes it manages or controls, but does not know the corresponding RLC channel information of the nodes managed and controlled by other CUs (for example), and the second CU needs to know the corresponding RLC channel information of the nodes it manages and controls.
  • the channel information is sent to the first CU, so that the first CU determines the above-mentioned bearer mapping according to the information.
  • the first CU determines service attribute information of downlink data.
  • the second CU determines service attribute information of downlink data.
  • the method further includes:
  • the first CU sends, to the second CU, the general packet radio service tunneling protocol GTP tunnel information of the downlink data and the QoS information corresponding to the GTP tunnel.
  • the second CU determines the service attribute information of the downlink data according to the information received from the first CU.
  • the method further includes:
  • the first CU receives the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel from the second CU. In this way, the first CU can receive the service attribute information of the downlink data determined by the second CU from the second CU, so that the first CU can carry the corresponding service attribute information in the IP header for the downlink data accordingly.
  • the first host node is a source host node, and the second host node is a target host node; or, the first host node is a target host node, and the second host node is Source host node.
  • the first host node is a primary host node, and the second host node is a secondary host node; or, the first host node is a secondary host node, and the second host node is Primary host node.
  • the present application provides a communication method, comprising:
  • the second CU of the second host node receives the first mapping from the first centralized unit CU of the first host node; the second DU of the second host node receives downlink data from the first CU.
  • the first mapping includes route mapping and/or bearer mapping; the route mapping is a mapping relationship between downlink data and a downlink transmission path; the bearer mapping is a mapping relationship between the downlink data and downlink transmission bearers;
  • the downlink transmission path includes a transmission path between the first CU through the second DU and a target node of the downlink data; the downlink transmission bearer includes a wireless connection between the second DU and the first node. link control RLC channel; the first node is the next hop node of the second DU.
  • the mapping relationship between the downlink data and the downlink transmission path includes: the target address of the downlink data, the service attribute information of the downlink data, the target address and the corresponding service attribute information.
  • the first routing identifier; the mapping relationship between the downlink data and the downlink transmission bearer includes: the target address of the downlink data, the service attribute information of the downlink data, the target address, and the first address corresponding to the service attribute information.
  • Information of a radio link control RLC channel; the downlink data includes the service attribute information.
  • the downlink data includes the service attribute information.
  • the method further includes:
  • the second CU sends one or more second routing identifiers allocated by the second CU to the first CU; the first routing identifiers are different from the one or more second routing identifiers.
  • the method further includes:
  • the second CU sends, to the first CU, information about one or more RLC channels between the second DU and the first node, and QoS information corresponding to the one or more RLC channels;
  • the one or more RLC channels include the first RLC channel.
  • the second CU determines service attribute information of downlink data.
  • the method further includes:
  • the second CU receives the general packet radio service tunneling protocol GTP tunnel information of the downlink data and the QoS information corresponding to the GTP tunnel from the first CU.
  • the method further includes:
  • the second CU sends the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel to the first CU.
  • the first host node is a source host node, and the second host node is a target host node; or, the first host node is a target host node, and the second host node is Source host node.
  • the first host node is a primary host node, and the second host node is a secondary host node; or, the first host node is a secondary host node, and the second host node is Primary host node.
  • the present application provides a communication method, comprising:
  • the first mapping is determined by the second centralized unit CU of the second host node, and the second DU of the second host node receives the downlink data from the first CU of the first host node.
  • the first mapping includes route mapping and/or bearer mapping; the route mapping is a mapping relationship between downlink data and a downlink transmission path; the bearer mapping is a mapping relationship between the downlink data and downlink transmission bearers;
  • the downlink transmission path includes a transmission path between the first CU through the second DU and a target node of the downlink data; the downlink transmission bearer includes an RLC between the second DU and the first node channel; the first node is the next hop node of the second DU.
  • the second host node can determine the first mapping. Therefore, when receiving downlink data, the second host node can perform routing and bearer selection on the received downlink data according to the first mapping. In the scenario of switching between host nodes, downlink data can reach the terminal through the second host node, thereby improving the service continuity of the terminal.
  • the mapping relationship between the downlink data and the downlink transmission path includes: a target address of the downlink data, service attribute information of the downlink data, the target address and the service The third routing identifier corresponding to the attribute information;
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the target address of the downlink data, the service attribute information of the downlink data, the target address and the The information of the second radio link control RLC channel corresponding to the service attribute information.
  • the method further includes:
  • the second CU receives the service attribute information of the downlink data and the quality of service QoS information corresponding to the service attribute information from the first CU.
  • the method before the second CU determines the first mapping, the method further includes:
  • the second CU receives one or more fourth routing identifiers allocated by the first CU from the first CU.
  • the third routing identification and the one or more fourth routing identifications are different.
  • the method before the second CU determines the first mapping, the method further includes:
  • the second CU receives information of one or more RLC channels and QoS information corresponding to the one or more RLC channels from the first CU.
  • the one or more RLC channels include the second RLC channel.
  • the method further includes:
  • the second CU receives the general packet radio service tunneling protocol GTP tunnel information of the downlink data and the QoS information corresponding to the GTP tunnel from the first CU.
  • the method further includes:
  • the second CU sends the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel to the first CU.
  • the present application provides a communication method in which service attribute information of downlink data is determined by a first CU of a first host node, and the method includes:
  • the first CU of the first host node determines service attribute information of the downlink data, and sends the service attribute information to the second CU of the second host node.
  • the method further includes:
  • the first CU sends the service attribute information of the downlink data and the quality of service QoS information corresponding to the service attribute information to the second CU.
  • the method further includes:
  • the first CU sends one or more fourth routing identifiers allocated by the first CU to the second CU.
  • the method further includes:
  • the first CU sends information of one or more RLC channels and QoS information corresponding to the one or more RLC channels to the second CU.
  • the present application provides a communication method.
  • a first CU of a first host node sends some information to a second CU of a second host node, so that the second CU determines service attribute information of downlink data according to the information.
  • the method include:
  • the first CU of the first host node determines information of a General Packet Radio Service Tunneling Protocol GTP tunnel of downlink data and QoS information corresponding to the GTP tunnel.
  • the first CU sends the information of the GTP tunnel and the QoS information corresponding to the GTP tunnel to the second CU of the second host node.
  • the method further includes:
  • the first CU receives the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel from the second CU.
  • the method further includes:
  • the first CU sends one or more fourth routing identifiers allocated by the first CU to the second CU.
  • the method further includes:
  • the first CU sends information of one or more RLC channels and QoS information corresponding to the one or more RLC channels to the second CU.
  • the present application provides a communication method, comprising:
  • the first CU of the first host node determines the service attribute information of the downlink data and the first mapping, and sends the first mapping to the second CU of the second host node; and the first CU sends the first mapping to the second CU of the second host node.
  • Two DUs send the downlink data.
  • the first mapping includes route mapping and/or bearer mapping; the route mapping is a mapping relationship between downlink data and a downlink transmission path; the bearer mapping is a mapping relationship between the downlink data and downlink transmission bearers;
  • the downlink transmission path includes a transmission path between the first CU through the second DU and a target node of the downlink data; the downlink transmission bearer includes a wireless connection between the second DU and the first node. link control RLC channel; the first node is the next hop node of the second DU.
  • the mapping relationship between the downlink data and the downlink transmission path includes: the target address of the downlink data, the service attribute information of the downlink data, the target address and the corresponding service attribute information.
  • the first routing identifier; the mapping relationship between the downlink data and the downlink transmission bearer includes: the target address of the downlink data, the service attribute information of the downlink data, the target address, and the first address corresponding to the service attribute information.
  • Information of a radio link control RLC channel; the downlink data includes the service attribute information.
  • the method further includes:
  • the first CU receives one or more second routing identifiers allocated by the second CU from the second CU; the first routing identifier and the one or more second routing identifiers are different.
  • the method further includes:
  • the first CU receives, from the second CU, information of one or more RLC channels between the second DU and the first node and quality of service QoS information corresponding to the one or more RLC channels.
  • the first host node is a source host node, and the second host node is a target host node; or, the first host node is a target host node, and the second host node is Source host node.
  • the first host node is a primary host node, and the second host node is a secondary host node; or, the first host node is a secondary host node, and the second host node is Primary host node.
  • the present application provides a communication method, comprising:
  • the first CU of the first host node determines the service attribute information of the downlink data
  • the second CU of the second host node determines the first mapping
  • the first CU sends the downlink data to the second DU of the second donor node.
  • the first mapping includes route mapping and/or bearer mapping; the route mapping is a mapping relationship between downlink data and a downlink transmission path; the bearer mapping is a mapping relationship between the downlink data and downlink transmission bearers;
  • the downlink transmission path includes a transmission path between the first CU through the second DU and a target node of the downlink data; the downlink transmission bearer includes a wireless connection between the second DU and the first node. link control RLC channel; the first node is the next hop node of the second DU.
  • the method before the second CU determines the first mapping, the method further includes:
  • the first CU sends the service attribute information and the service quality QoS information corresponding to the service attribute information to the second CU.
  • the method further includes:
  • the first CU sends one or more fourth routing identifiers allocated by the first CU to the second CU.
  • the method further includes:
  • the first CU sends information of one or more RLC channels and QoS information corresponding to the one or more RLC channels to the second CU.
  • the present application provides a communication method, comprising:
  • the second CU of the second host node determines the service attribute information of the downlink data, and the first mapping
  • the first CU of the first donor node sends the downlink data to the second DU of the second donor node.
  • the first mapping includes route mapping and/or bearer mapping; the route mapping is a mapping relationship between downlink data and a downlink transmission path; the bearer mapping is a mapping relationship between the downlink data and downlink transmission bearers;
  • the downlink transmission path includes a transmission path between the first CU through the second DU and a target node of the downlink data; the downlink transmission bearer includes an RLC between the second DU and the first node channel; the first node is the next hop node of the second DU.
  • the first CU sends the information of the GTP tunnel of the downlink data and the QoS information corresponding to the GTP tunnel to the second CU.
  • the first CU receives from the second CU the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel.
  • the present application provides a communication method, comprising:
  • the second CU of the second host node determines the service attribute information of the downlink data
  • the first CU of the first host node determines the first mapping, and sends the first mapping to the second CU;
  • the first CU sends the downlink data to the second DU of the second donor node.
  • the first mapping includes route mapping and/or bearer mapping; the route mapping is a mapping relationship between downlink data and a downlink transmission path; the bearer mapping is a mapping relationship between the downlink data and downlink transmission bearers;
  • the downlink transmission path includes a transmission path between the first CU through the second DU and a target node of the downlink data; the downlink transmission bearer includes an RLC between the second DU and the first node channel; the first node is the next hop node of the second DU.
  • the first CU sends the information of the GTP tunnel of the downlink data and the QoS information corresponding to the GTP tunnel to the second CU.
  • the first CU receives from the second CU the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel.
  • the present application provides a communication method, comprising:
  • the primary network device determines the first indication information, and sends the first indication information to the secondary network device.
  • the first indication information is used to request/instruct the secondary network device to transmit the first signaling to the first node through the first signaling radio bearer;
  • the method further includes: the primary network device receives second indication information from the secondary network device, where the second indication information is used to indicate that the establishment of the first signaling radio bearer fails , or, the first signaling cannot be transmitted through the first signaling radio bearer.
  • the method further includes:
  • the primary network device sends third indication information to the first node, where the third indication information is used to indicate information of an uplink transmission path used for transmitting the first signaling, and the uplink transmission path includes an MCG path or an SCG path.
  • the method further includes:
  • the primary network device sends fourth indication information to the first node, where the fourth indication information is used to indicate the information of the bearer of the first signaling transmitted on the uplink transmission path.
  • the first signaling includes an F1-C message.
  • the first signaling radio bearer includes SRB3 or split SRB.
  • the method includes:
  • the primary network device sends the first signaling to the secondary network device.
  • the secondary network device encapsulates the first signaling in an RRC message and sends it to the first node through SRB3.
  • the method includes:
  • the primary network device encapsulates the first signaling in an RRC message, and sends the RRC message to the secondary network device.
  • the secondary network device sends the RRC message to the first node through the split SRB.
  • the transmission of the F1-C message on the SCG path can be realized, and the reliability of the transmission of the F1-C message can be improved.
  • the present application provides a communication method, comprising:
  • the primary network device receives fifth indication information from the secondary network device, and sends the first signaling to the secondary network device according to the fifth indication information.
  • the fifth indication information is used to instruct the first signaling to transmit corresponding bearer information on the SCG path.
  • the method before the primary network device receives the fifth indication information from the secondary network device, the method further includes:
  • the primary network device sends sixth indication information to the secondary network device, where the sixth indication information is used to request the secondary network device to transmit the first signaling.
  • the method further includes:
  • the primary network device sends third indication information to the first node, where the third indication information is used to indicate information of an uplink transmission path used for transmitting the first signaling, and the uplink transmission path includes MCG or SCG.
  • the method further includes:
  • the primary network device sends fourth indication information to the first node, where the fourth indication information is used to indicate the information of the bearer of the first signaling transmitted on the uplink transmission path.
  • the first signaling includes an F1-C message.
  • the first signaling radio bearer includes SRB3 or split SRB.
  • the method includes:
  • the primary network device sends the first signaling to the secondary network device.
  • the secondary network device encapsulates the first signaling in an RRC message and sends it to the first node through SRB3.
  • the method includes:
  • the primary network device encapsulates the first signaling in an RRC message, and sends the RRC message to the secondary network device.
  • the secondary network device sends the RRC message to the first node through the split SRB.
  • the present application provides a communication apparatus, the apparatus comprising: a module for performing the foregoing first aspect and any possible implementation manner of the first aspect.
  • the present application provides a communication apparatus, the apparatus comprising: a module for performing the foregoing second aspect and any possible implementation manner of the second aspect.
  • the present application provides a communication apparatus, the apparatus comprising: a module for performing the foregoing third aspect and any possible implementation manner of the third aspect.
  • the present application provides a communication apparatus, the apparatus comprising: a module for performing the foregoing fourth aspect and any possible implementation manner of the fourth aspect.
  • the present application provides a communication apparatus, the apparatus comprising: a module for executing the fifth aspect and any possible implementation manner of the fifth aspect.
  • the present application provides a communication device, the device comprising: a module for performing the sixth aspect and any possible implementation manner of the sixth aspect.
  • the present application provides a communication device, the device comprising: a module for performing the seventh aspect and any possible implementation manner of the seventh aspect.
  • the present application provides a communication device, the device comprising: a module for performing the eighth aspect and any possible implementation manner of the eighth aspect.
  • the present application provides a communication apparatus, the apparatus comprising: a module for executing the foregoing ninth aspect and any possible implementation manner of the ninth aspect.
  • the present application provides a communication apparatus, the apparatus comprising: a module for performing the tenth aspect and any possible implementation manner of the tenth aspect.
  • the present application provides a communication device, the device comprising: a module for performing any possible implementation manner of the eleventh aspect and the eleventh aspect.
  • a twenty-third aspect provides a network node, including: a processor.
  • the processor is connected to the memory, the memory is used for storing computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, thereby implementing any method provided in any of the foregoing aspects.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory can be located within the network node or outside the network node.
  • the processor includes logic circuits and an input interface and/or an output interface. Wherein, the output interface is used for executing the sending action in the corresponding method, and the input interface is used for executing the receiving action in the corresponding method.
  • the network node further includes a communication interface and a communication bus, and the processor, the memory and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the actions of transceiving in the corresponding method.
  • the communication interface may also be referred to as a transceiver.
  • the communication interface includes a transmitter and a receiver. In this case, the transmitter is configured to perform the sending action in the corresponding method, and the receiver is configured to perform the receiving action in the corresponding method.
  • the network node exists in the form of a chip product.
  • a twenty-fourth aspect provides a computer-readable storage medium comprising instructions that, when executed on a computer, cause the computer to perform any of the methods provided in any of the foregoing aspects.
  • a twenty-fifth aspect provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform any of the methods provided in any of the preceding aspects.
  • a twenty-sixth aspect provides a system chip, the system chip is applied in a network node, the system chip includes: at least one processor, and the involved program instructions are executed in the at least one processor to execute any one of the above Any method provided in the aspect.
  • a twenty-seventh aspect provides a communication system, comprising: one or more network nodes among the network nodes provided in the twelfth aspect to the twenty-second aspect.
  • FIG. 1 is a schematic diagram of an IAB networking scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a node in a transmission path provided by an embodiment of the present application
  • FIG. 3 and FIG. 4 are respectively schematic diagrams of a protocol stack architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an RLC channel, an RLC bearer, and a logical channel provided by an embodiment of the present application;
  • Fig. 6 is the schematic diagram of switching scene in host node
  • 7-1 to 7-3 are respectively schematic diagrams of scenarios of switching between host nodes according to an embodiment of the present application.
  • 15-1 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 15-2 is a schematic diagram of related protocol stack processing of SRB3 transmission provided by an embodiment of the present application.
  • Figure 15-3 is a schematic diagram of a related protocol stack processing of split SRB transmission provided by an embodiment of the present application.
  • 20 to 22 are respectively schematic structural diagrams of a network node according to an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • the term "system” is interchangeable with "network”.
  • the OFDMA system can implement wireless technologies such as evolved universal terrestrial radio access (E-UTRA) and ultra mobile broadband (UMB).
  • E-UTRA is an evolved version of the universal mobile telecommunications system (UMTS for short).
  • 3GPP is a new version using E-UTRA in long term evolution (long term evolution, LTE for short) and various versions based on LTE evolution.
  • a fifth-generation (5G) communication system using a new radio (NR) is a next-generation communication system under study.
  • the communication system may also be applicable to future-oriented communication technologies, and the technical solutions provided by the embodiments of the present application are all applicable.
  • the devices involved in this application include terminals and wireless backhaul nodes.
  • the terminal in this embodiment of the present application may also be referred to as user equipment (UE for short), access terminal, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, User Agent or User Device.
  • the terminal may also be a station (station, ST for short) in wireless local area networks (WLAN for short), a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP for short) phone, a wireless local loop Wireless local loop (WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices ( Also known as wearable smart devices).
  • the terminal may also be a terminal in a next-generation communication system, for example, a terminal in 5G or a terminal in a future evolved public land mobile network (public land mobile network, PLMN for short).
  • PLMN public land mobile network
  • the wireless backhaul node is used to provide wireless backhaul services for nodes (eg, terminals) that wirelessly access the wireless backhaul node.
  • the wireless backhaul service refers to a data and/or signaling backhaul service provided through a wireless backhaul link.
  • the methods provided in the embodiments of the present application may also be applied to other networks, for example, may be applied to an evolved packet system (EPS) network (the so-called fourth generation (4th generation) network for short) , referred to as 4G) network).
  • EPS evolved packet system
  • 4G fourth generation
  • the network nodes that execute the methods provided by the embodiments of the present application may be replaced with network nodes in the EPS network.
  • the wireless backhaul node in the following may be a wireless backhaul node in a 5G network, and exemplarily, a wireless backhaul node in a 5G network It may be called an IAB node, or may have other names, which are not specifically limited in this embodiment of the present application.
  • the wireless backhaul node in the following may be a wireless backhaul node in the EPS network.
  • the wireless backhaul node in the EPS network may be referred to as a relay Node (relay node, RN for short).
  • both the access link (AL) and the backhaul link (BL) in the IAB scenario can adopt a wireless transmission scheme.
  • the IAB node can provide wireless access services for terminals, and connect to a donor node through a wireless backhaul link to transmit user service data.
  • the donor node may be a donor base station.
  • the host node can be referred to as IAB host (IAB donor) or DgNB (that is, donor gNodeB) in the 5G network.
  • the host node can be a complete entity, or can be a centralized unit (CU for short) (herein referred to as donor-CU, also referred to as CU) and a distributed unit (distributed unit, referred to as DU) (herein (referred to as donor-DU) in the form of separation, that is, the host node is composed of donor-CU and donor-DU.
  • donor-CU centralized unit
  • DU distributed unit
  • donor-DU distributed unit in the form of separation
  • the host node is composed of donor-CU and donor-DU.
  • the method provided by the embodiments of the present application is exemplified mainly by taking the example that the host node is composed of a donor-CU and a donor-DU.
  • the donor-CU may also be a form in which the user plane (UP) (hereinafter referred to as CU-UP) and the control plane (CP) (hereinafter referred to as CU-CP) are separated, that is Donor-CU consists of CU-CP and CU-UP.
  • UP user plane
  • CP control plane
  • the IAB node is connected to the core network via the host node through a wired link.
  • the IAB node is connected to the core network (5G core, 5GC for short) of the 5G network through a wired link through the host node.
  • the IAB node is connected to the evolved packet core (EPC) through the evolved base station (evolved NodeB, eNB) on the control plane, and is connected to the host node and eNB on the user plane. to EPC.
  • EPC evolved packet core
  • evolved NodeB, eNB evolved base station
  • the IAB network supports the networking of multi-hop IAB nodes and multi-connection IAB nodes. Therefore, there may be multiple transmission paths between the terminal and the host node.
  • On a path there is a definite hierarchical relationship between the IAB nodes, as well as the IAB nodes and the host node serving the IAB nodes, and each IAB node regards the node that provides backhaul services for it as a parent node. Accordingly, each IAB node can be regarded as a child node of its parent node.
  • the parent node of IAB node 1 is the host node
  • IAB node 1 is the parent node of IAB node 2 and IAB node 3
  • both IAB node 2 and IAB node 3 are parent nodes of IAB node 4
  • the parent node of IAB node 5 is IAB node 2.
  • the uplink data packets of the terminal can be transmitted to the host node through one or more IAB nodes, and then sent by the host node to the mobile gateway device (for example, the user plane function (UPF) network element in the 5G network), transmission
  • the mobile gateway device for example, the user plane function (UPF) network element in the 5G network
  • the downlink data packet will be received by the host node from the mobile gateway device, and then sent to the terminal through one or more IAB nodes.
  • the path for transmitting downlink data packets is called the downlink transmission path.
  • FIG. 1 there are two available paths for data packet transmission between terminal 1 and the host node, namely: terminal 1 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ host node, terminal 1 ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ host node.
  • terminal 2 ⁇ IAB node 4 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ host node terminal 2 ⁇ IAB node 4 ⁇ IAB node 2 ⁇ IAB Node 1 ⁇ host node
  • terminal 2 ⁇ IAB node 5 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ host node terminal 2 ⁇ IAB node 5 ⁇ IAB node 2 ⁇ IAB node 1 ⁇ host node.
  • a transmission path between the terminal and the host node may include one or more IAB nodes.
  • Each IAB node needs to maintain the wireless backhaul link facing the parent node, and also needs to maintain the wireless link with the child node.
  • a wireless access link is formed between the IAB node and a sub-node (ie, a terminal).
  • an IAB node is a node that provides backhaul services for other IAB nodes, there is a wireless backhaul link between the IAB node and child nodes (ie, other IAB nodes).
  • Terminal 1 accesses IAB node 4 through a wireless access link
  • IAB node 4 accesses IAB node 3 through a wireless backhaul link
  • IAB node 3 accesses IAB node 1 through a wireless backhaul link
  • IAB node 1 accesses IAB node 1 through a wireless backhaul link.
  • the transmission link is connected to the host node.
  • the IAB node may be equipment such as customer premises equipment (customer premises equipment, CPE for short), residential gateway (residential gateway, RG for short).
  • CPE customer premises equipment
  • residential gateway residential gateway
  • RG residential gateway
  • the method provided by the embodiment of the present application may also be applied to a scenario of home access (home access).
  • the host node is composed of an IAB node under another host node. Dual connections are terminal services, etc., which will not be listed here.
  • Link A path between two adjacent nodes in a path.
  • the node's previous hop node refers to the last node in the path including the node that receives the data packet before the node.
  • the node's previous hop node may also be referred to as the data packet's previous hop node.
  • the IAB node 3 may be referred to as the previous hop node of the IAB node 4 .
  • IAB node 4 may be referred to as the previous hop node of IAB node 3 .
  • Next-hop node of a node refers to the first node in the path containing the node that receives the data packet after the node.
  • a node's next hop node may also be referred to as a data packet's next hop node.
  • the ingress link of a node refers to the link between the node and the previous hop node of the node, which may also be called the previous hop link of the node.
  • the egress link of a node refers to the link between the node and the next-hop node of the node, which may also be referred to as the next-hop link of the node.
  • Ingress RLC radio link control channel refers to the backhaul radio link control channel between the node and the previous hop node of the node.
  • Egress (egress) RLC radio link control channel refers to the backhaul radio link control channel between the node and the next hop node of the node.
  • the access IAB node in the embodiments of the present application refers to the IAB node accessed by the terminal, and the intermediate IAB node refers to the IAB node that provides wireless backhaul services for other IAB nodes (eg, access IAB nodes or other intermediate IAB nodes).
  • IAB node 4 is an access IAB node
  • IAB node 3 and IAB node 1 are intermediate IABs. node.
  • IAB node 3 provides backhaul service for IAB node 4
  • IAB node 1 provides backhaul service for IAB node 3 .
  • an IAB node is an access IAB node. All other IAB nodes on the path between the access IAB node and the host node are intermediate IAB nodes. Therefore, whether an IAB node is an access IAB node or an intermediate IAB node is not fixed and needs to be determined according to a specific application scenario.
  • IAB node 4 may be referred to as an access IAB node of UE1
  • IAB node 3 may be referred to as an intermediate IAB node.
  • An IAB node can have the role of MT as well as the role of DU.
  • An IAB node can be considered a terminal when it faces its parent node. At this time, the IAB node plays the role of MT.
  • An IAB node can be considered a network device when it faces its child nodes (child nodes may be terminals or terminal parts of another IAB node). At this time, the IAB node plays the role of DU. Therefore, an IAB node can be considered to be composed of an MT part and a DU part.
  • An IAB node can establish a backhaul connection with at least one parent node of the IAB node through the MT part.
  • the DU part of an IAB node can provide access services for the terminal or the MT part of other IAB nodes.
  • the terminal is connected to the host node through the IAB node 2 and the IAB node 1 in sequence.
  • the IAB node 1 and the IAB node 2 both include a DU part and an MT part.
  • the DU part of the IAB node 2 provides access services for the terminal.
  • the DU part of the IAB node 1 provides access services for the MT part of the IAB node 2.
  • the donor-DU provides access services for the MT part of the IAB node 1.
  • the donor-DU and donor-CU can be connected through the F1 interface.
  • the donor-CU can be connected to the core network through the NG interface.
  • the MT part of the IAB node may be referred to as IAB-MT (or referred to as IAB-UE) for short, and the DU part of the IAB node may be referred to as IAB-DU for short.
  • the protocol stack on the user plane (as shown in (a) of FIG. 3 ) and the protocol stack on the control plane (as shown in (b) of FIG. 3 ) of the intermediate IAB node are the same.
  • the protocol stacks on the user plane and the control plane of the access IAB node are different, please refer to (c) in FIG. 3 and (d) in FIG. 3 respectively.
  • the user plane protocol stack architecture of each node can refer to (a) in FIG. 4
  • the control plane protocol stack architecture of each node can refer to FIG. 4 (b).
  • Packet Data Convergence Protocol for short
  • General Packet Radio Service Tunneling Protocol User Plane general packet radio service tunneling protocol user plane, GTP for short
  • UDP user datagram protocol
  • IP network interconnection protocol
  • L2 layer layer 2
  • L1 layer layer 1
  • radio link control radio link control
  • MAC medium access control
  • PHY physical
  • RRC radio resource control
  • F1 application protocol F1application protocol
  • SCTP stream control transmission protocol
  • the L2 layer is a link layer, and exemplarily, the L2 layer may be a data link layer in an open systems interconnection (open systems interconnection, OSI for short) reference model.
  • the L1 layer may be a physical layer, and exemplarily, the L1 layer may be a physical layer in the OSI reference model.
  • the host node is composed of a donor-DU and a donor-CU as an example for drawing. Therefore, the protocol layers of donor-DU and donor-CU are shown in FIG. 4 . If the host node is an entity with complete functions, the host node only needs to retain the protocol stack of the donor-DU and the donor-CU interface to the external node, and the protocol layer on the internal interface between the donor-DU and the donor-CU is not required.
  • the donor-DU when the donor-DU is the proxy node of the F1 interface between the donor-CU and the IAB node, the donor-DU faces the IAB.
  • the protocol stack architecture of the node above the IP layer, it also includes the UDP layer and the GTP-U layer respectively equivalent to the UDP layer and the GTP-U layer in the protocol stack architecture of the DU part of the IAB node (not shown in Figure 4).
  • Protocol layer of F1 interface protocol layer of wireless backhaul interface
  • the F1 interface may refer to a logical interface between an IAB node (for example, IAB-DU) and a host node (for example, a donor-CU).
  • the F1 interface may also have other names, supporting a user plane and a control plane.
  • the protocol layer of the F1 interface refers to the communication protocol layer on the F1 interface.
  • the F1 interface may also refer to a wired interface between the donor-CU and the donor-DU.
  • the user plane protocol layer of the F1 interface may include one or more of an IP layer, a UDP layer and a GTP-U layer.
  • the user plane protocol layer of the F1 interface further includes a PDCP layer and/or an IP security (IP Security, IPsec for short) layer.
  • IP Security IP Security, IPsec for short
  • control plane protocol layer of the F1 interface may include one or more of the IP layer, the F1AP layer and the SCTP layer.
  • control plane protocol layer of the F1 interface further includes one or more of the PDCP layer, the IPsec layer, and the datagram transport layer security (DTLS for short) layer.
  • the wireless backhaul interface refers to a logical interface between IAB nodes or between an IAB node and a host node (or donor-DU).
  • the protocol layer of the wireless backhaul interface refers to the communication protocol layer on the wireless backhaul interface.
  • the protocol layers of the wireless backhaul interface include one or more of the following protocol layers: (Backhaul Adaptation Protocol, BAP) layer, RLC layer, MAC layer, and PHY layer.
  • the user plane protocol layer of the IAB node on the F1 interface includes a GTP-U layer, a UDP layer and an IP layer.
  • the GTP-U layer and UDP layer of the IAB node are peered with the donor-CU, and the IP layer is peered with the donor-DU.
  • the donor-DU is the proxy node of the F1 interface between the donor-CU and the IAB node, and the GTP-U layer, UDP layer and IP layer of the IAB node and the protocol layer in the donor-DU are respectively aligned with each other. Wait.
  • the user plane protocol layer of the F1 interface may further include an IPsec layer and/or a PDCP layer.
  • the IPsec layer or the PDCP layer is located above the IP layer and below the GTP-U layer.
  • the control plane protocol layer of the IAB node on the F1 interface includes the F1AP layer, the SCTP layer and the IP layer.
  • the F1AP layer and the SCTP layer of the IAB node are peered with the donor-CU, and the IP layer is peered with the donor-DU.
  • the donor-DU is a proxy node of the F1 interface between the donor-CU and the IAB node, and the F1AP layer, the SCTP layer and the IP layer of the IAB node are equivalent to the donor-DU.
  • the control plane protocol layer of the F1 interface may further include one or more of the IPsec layer, the PDCP layer and the DTLS layer.
  • the IPsec layer, the PDCP layer or the DTLS layer is located above the IP layer and below the F1AP layer.
  • the protocol stack on the sending side of a node in the embodiments of the present application refers to the protocol stack facing the next hop node in the node
  • the protocol stack on the receiving side of a node refers to the protocol stack facing the previous hop node in the node.
  • the terminal-oriented protocol stack in the DU part of the access IAB node (IAB node 2) is the receiving-side protocol stack, facing the host node or donor-
  • the protocol stack of the CU is the protocol stack of the sending side
  • the protocol stack of the MT part of the access IAB node is the protocol stack of the sending side
  • the protocol stack of the DU part of the intermediate IAB node is the protocol stack of the receiving side
  • the protocol stack of the MT part of the intermediate IAB node is the protocol stack of the receiving side.
  • the protocol stack facing the IAB node in the donor-DU is the protocol stack on the receiving side
  • the protocol stack facing the donor-CU in the donor-DU is the protocol stack on the sending side.
  • the terminal-oriented protocol stack in the DU part of the access IAB node is the sending side protocol stack
  • the protocol stack facing the host node or donor-CU is the receiving side protocol stack
  • the protocol stack of the MT part of the access IAB node is the protocol stack
  • the protocol stack of the DU part of the intermediate IAB node is the sending side protocol stack
  • the protocol stack of the MT part of the intermediate IAB node is the receiving side protocol stack
  • the protocol stack facing the IAB node in the donor-DU is the sending side.
  • the protocol stack, the donor-CU-oriented protocol stack in the donor-DU is the receiving side protocol stack.
  • the protocol stack on the transmitting side is simply referred to as the transmitting side
  • the protocol stack on the receiving side is simply referred to as the receiving side.
  • the upper and lower relationship of the protocol layers is defined as: in the process of sending data by a node, the protocol layer that processes the data packets first is above the protocol layer that processes the data packets, that is, the data packets are processed first.
  • the protocol layer that processes the packets can be considered as the upper protocol layer of the protocol layer that processes the data packets; or, in the process of a node receiving data, the protocol layer that processes the data packets first processes the data packets.
  • Below the protocol layer that is, the protocol layer that processes the data packet first can be regarded as the lower protocol layer of the protocol layer that processes the data packet later.
  • the BAP layer is the upper protocol layer of the RLC layer, the MAC layer and the PHY layer, and the RLC layer, the MAC layer and the PHY layer are the lower protocol layers of the BAP layer.
  • the protocol stack on the sending side is considered to be a lower-layer protocol stack of the protocol stack on the receiving side.
  • the BAP layer of the MT part that is, the protocol stack on the sending side
  • the BAP layer of the DU part that is, the protocol stack on the receiving side
  • the BAP layer of the MT part is the lower protocol layer of the IP layer of the DU part.
  • the BAP layer of the MT part It is the lower protocol layer of the IP layer of the DU part.
  • RLC channel RLC channel, referred to as RLC CH
  • LCH logical channel
  • the RLC channel refers to the channel between the RLC layer and the upper protocol layer (eg, the Adapt layer).
  • a logical channel refers to a channel between the RLC layer and the lower protocol layer (eg, the MAC layer).
  • Logical channels may also be referred to as MAC logical channels.
  • the RLC bearer refers to the RLC layer entity and the MAC logical channel.
  • the configuration of the radio bearer (RB) of the terminal corresponds to the configuration of the upper layer (for example, the PDCP layer) and the configuration of the lower layer (for example, the RLC layer and the MAC layer).
  • the configuration of the RLC bearer refers to the lower layer corresponding to the RB.
  • Part of the configuration specifically including the configuration of the RLC layer entity and the MAC logical channel.
  • the RLC bearer of the IAB node on the wireless backhaul link includes the RLC layer and the MAC logical channel part.
  • the RLC channel on the wireless backhaul link can refer to the channel between the RLC layer and the PDCP layer, or it can be Refers to the channel between the RLC layer and the Adapt layer, depending on the upper protocol layer of the RLC layer.
  • the following description is given by taking an example that the RLC channel is a channel between the RLC layer and the Adapt layer.
  • the RLC channel of the IAB node on the wireless backhaul link corresponds to the RLC layer entity one-to-one, and the RLC channel also corresponds to the RLC bearer one-to-one. For details, please refer to FIG. 5 for understanding.
  • the RB of the terminal may be a data radio bearer (DRB for short) or a signaling radio bearer (signalling radio bearer, SRB for short).
  • DRB data radio bearer
  • SRB signaling radio bearer
  • the RLC channel, the RLC bearer and the logical channel are collectively referred to as the service differentiation channel hereinafter. That is to say, the service differentiation channel in the following can be replaced with any one of the RLC channel, the RLC bearer and the logical channel.
  • the routing in this embodiment of the present application is used to determine a routing ID (Routing ID) for packet selection.
  • Bearer selection in this embodiment of the present application may also be referred to as QoS selection.
  • Bearer selection is used to select the RLC bearer or RLC channel or logical channel to send data packets.
  • the routing table includes one or more routing identifiers, and an identifier of the next hop node of the node corresponding to the one or more routing identifiers.
  • Different nodes corresponding to the same routing identifier have different routing tables.
  • the three nodes included in the transmission path are node 1-node 2-node 3 in sequence.
  • the routing table of the node 1 includes a routing identifier 1 and an identifier of the node 2, and the routing identifier 1 has a corresponding relationship with the identifier of the node 2.
  • the routing table of node 2 includes routing ID 1 and ID of node 3 .
  • the donor-CU delivers a corresponding routing table to each IAB node it manages/controls.
  • the donor-CU also sends the routing table corresponding to the donor-DU to the donor-DU at the same site.
  • the IAB node switches from the source parent node donor-DU1 to the target parent node donor-DU2 , where the source parent and target parent are connected to the same donor-CU.
  • the IAB node where the handover occurs may be referred to as the handover IAB node.
  • the IAB-MT and IAB-DU that switch IAB nodes are only managed/controlled by the same donor-CU.
  • the service data of the terminal can be continuous and uninterrupted.
  • the current standard does not propose how to avoid terminal data interruption in an Inter-donor-CU handover scenario.
  • the MT and DU parts of the IAB node are connected to the same host node.
  • the MT and DU parts of the IAB node can be connected to different hosts. Therefore, the existing Intra-donor-CU switching scheme cannot be applied to the Inter-donor-CU switching scenario.
  • the embodiments of the present application provide the communication methods shown in the following embodiments.
  • the embodiments of the present application are applied to an Inter-donor-CU handover scenario.
  • FIG. 7-1 it is an example of an Inter-donor-CU switching scenario applicable to this embodiment of the present application.
  • the handover performed by the IAB2 node is taken as an example, that is, the IAB2-MT is handed over from the source parent node IAB1-DU to the target parent node IAB4-DU.
  • IAB1-DU and IAB4-DU are managed/controlled by different donor-CUs. Specifically, IAB1-DU is managed/controlled by donor-CU1, and IAB4-DU is managed/controlled by donor-CU2.
  • the donor-CU1 is referred to as the source donor-CU of this handover, and the donor-CU2 is referred to as the target donor-CU of this handover.
  • the host node of each IAB node and the connection relationship between the IAB node and the host node are as follows:
  • the host nodes of the IAB1 node, the IAB2 node, the IAB3 node, and the terminal are all donor-CU1, that is, the IAB1 node, the IAB2 node, the IAB3 node, and the terminal are all managed/controlled by the donor-CU1.
  • IAB1-MT establishes an RRC connection with donor-CU1
  • IAB1-DU establishes an F1 connection with donor-CU1.
  • IAB2-MT establishes an RRC connection with donor-CU1
  • IAB2-DU (the IAB-DU on the left of the two IAB-DUs in Figure 7-1) establishes an F1 connection with donor-CU1.
  • IAB3-MT establishes an RRC connection with donor-CU1
  • IAB3-DU (the IAB3-DU on the left of the two IAB3-DUs in Figure 7-1) establishes an F1 connection with donor-CU1.
  • the UE establishes an RRC connection with donor-CU1;
  • the IAB4 node is managed/controlled by the donor-CU2, that is, the IAB4-MT establishes an RRC connection with the donor-CU2, and the IAB4-DU establishes an F1 connection with the donor-CU2.
  • IAB2-MT performs handover first, or the handover is completed first, that is, IAB2-MT switches to donor-CU2 first, and IAB2-DU has not yet switched to donor-CU2 (ie IAB2- DU has not established F1 connection with donor-CU2).
  • the host node of each IAB node and the connection relationship with the host node are as follows:
  • the IAB1 node, the IAB3 node, and the terminal are also managed/controlled by the donor-CU1, and the IAB4 node is also managed/controlled by the donor-CU2. That is, the IAB1-MT maintains the RRC connection with the donor-CU1, and the IAB1-DU maintains the F1 connection with the donor-CU1.
  • the IAB3-MT maintains the RRC connection with the donor-CU1, and the IAB3-DU (the IAB3-DU on the left of the two IAB3-DUs in Figure 7-1) maintains the F1 connection with the donor-CU1.
  • the terminal maintains the RRC connection with donor-CU1.
  • IAB4-MT maintains an RRC connection with donor-CU2, and IAB4-DU maintains an F1 connection with donor-CU2.
  • the management/control change of the IAB2 node that is: the IAB2-MT establishes an RRC connection with the donor-CU2, but the IAB2-DU (the IAB2-DU on the left of the two IAB2-DUs in Figure 7-1) remains connected with the donor-CU1 F1 connection between. That is to say, the DU and MT of the same station are respectively connected to different donor-CUs.
  • the handover situation is called top-down handover (or there may be other name).
  • the IAB2-MT is handed over to the target parent node, that is, the IAB4 node, before the IAB2-DU, and this handover situation is a top-to-bottom handover.
  • the IAB2-DU may perform the handover prior to the IAB2-MT, or the IAB2-DU may complete the handover prior to the IAB2-MT (the IAB2-DU handover refers to The F1 interface of IAB2-DU is switched.
  • IAB2-DU establishes an F1 connection with donor-CU1
  • IAB2-DU establishes an F1 connection with donor-CU2
  • the terminal has been switched to In the case of donor-CU2, IAB2-MT has not yet switched to donor-CU2.
  • the host node of each IAB node and the connection relationship between the host node and the host node are as follows:
  • the host nodes of the IAB1 node and the IAB4 node remain unchanged. Specifically, the IAB1-MT maintains the RRC connection with the donor-CU1, and the IAB1-DU maintains the F1 connection with the donor-CU1. IAB4-MT maintains an RRC connection with donor-CU2, and IAB4-DU maintains an F1 connection with donor-CU2.
  • IAB3-MT establishes an RRC connection with donor-CU2
  • IAB3-DU the black IAB3-DU in Figure 7-2
  • the terminal establishes an RRC connection with donor-CU2.
  • IAB2-MT maintains an RRC connection with donor-CU1, but IAB2-DU (black IAB2-DU in Figure 7-1) establishes an F1 connection with donor-CU2.
  • the technical solutions of the present application may also be applicable to dual-connectivity (DC) scenarios.
  • DC dual-connectivity
  • the IAB2-MT works in the dual connection mode, which means that there are two parent nodes IAB1-DU and IAB4-DU at the same time.
  • the M-donor is used as the primary base station of IAB2-MT
  • the S-donor is used as the secondary base station of IAB2-MT.
  • connection relationship between each IAB node or terminal and the host node is as follows:
  • the IAB1 node is managed/controlled by M-donor-CU1, that is: IAB1-MT establishes an RRC connection with M-donor-CU1, and IAB1-DU establishes an F1 connection with M-donor-CU1;
  • IAB2-MT establishes an RRC connection with M-donor-CU1
  • IAB2-DU (the white part in Figure 7-4) establishes an F1 connection with M-donor-CU1.
  • the IAB3 node is managed/controlled by M-donor-CU1, that is: IAB3-MT establishes an RRC connection with M-donor-CU1, and IAB3-DU (the white part on the right in Figure 7-4) establishes F1 with M-donor-CU1 connect;
  • the terminal is managed/controlled by M-donor-CU1, that is, the terminal establishes an RRC connection with M-donor-CU1;
  • the IAB4 node is managed/controlled by the S-donor-CU2, that is, the IAB4-MT establishes an RRC connection with the S-donor-CU2, and the IAB4-DU establishes an F1 connection with the S-donor-CU2.
  • this handover situation is called bottom-up handover (or may have other names).
  • the IAB2-DU is handed over to the target parent node, that is, the IAB4 node, before the IAB2-MT, then this handover situation is a bottom-to-up handover.
  • FIG. 7-1 is only an example of a communication system to which the embodiments of the present application are applied.
  • the communication system may also include more or less devices.
  • the topology of the communication system (such as the specific number of connections and hops) may be of other types.
  • the IAB2 node can be directly connected to the donor-CU node, that is, there is no IAB1 node or IAB4 node, or there are at least two between the IAB2 node and the donor-CU node.
  • Intermediate IAB node that is, in addition to the IAB1 node or the IAB4 node, there is at least one other IAB node between the IAB2 node and the donor-CU.
  • the terminal can directly connect to the IAB2 node, that is, there is no IAB3 node, or there are at least 2 intermediate nodes between the terminal and the IAB2 node, that is: in addition to the IAB3 node, There is also at least one other IAB node between the terminal and the IAB2 node.
  • An embodiment of the present application provides a communication method, as shown in FIG. 8 , the method includes:
  • the first CU determines a first mapping.
  • the "CU of the first host node” mentioned in the embodiments of this application may be referred to as the first CU
  • the "CU of the second host node” may be referred to as the second CU
  • the "DU of the first host node” It may be referred to as the first DU
  • the "DU of the second donor node” may be referred to as the second DU.
  • the first host node is a source host node, and the second host node is a target host node; or, the first host node is a target host node, and the second host node is a source host node.
  • the source host node controls the host node of the IAB node before switching
  • the target host node that is, the IAB node
  • the first host node is the primary host node, and the second host node is the secondary host node; or, the first host node is the secondary host node, and the second host node is the primary host node.
  • the first mapping includes route mapping and/or bearer mapping.
  • Route mapping is the mapping relationship between downlink data and downlink transmission paths.
  • the downlink transmission path includes a transmission path between the first CU and the target node of the downlink data through the second DU.
  • the downlink transmission path includes a transmission path between the first CU and the target node of the downlink data through the second DU.
  • Figure 7-1 shows an example of a downlink transmission path.
  • the mapping relationship between the downlink data and the downlink transmission path includes: a target address of the downlink data, service attribute information of the downlink data, and a first routing ID (Routing ID) corresponding to the target address and the service attribute information.
  • the routing identifier can be used to uniquely identify a transmission path. Different transmission paths correspond to different routing identifiers.
  • the downlink data includes service attribute information.
  • the target address includes a target IP address.
  • the service attribute information includes a differentiated services code point (differentiated services code point, DSCP for short) or a flow label (flow label).
  • the service attribute information can distinguish different services for quality of service (QoS) guarantee. In this way, data carrying different service attribute information can be transmitted through different transmission paths.
  • QoS quality of service
  • the first CU is donor-CU1 and the second CU is donor-CU2.
  • Downlink data is sent to the terminal, and the terminal's access IAB node is the IAB3 node. Therefore, the target node of the downlink data is the IAB3 node, the target address of the downlink data is the address of the IAB3 node, and the downlink transmission path is donor-CU1 through donor- Transmission path 1 between DU2 and IAB3 nodes.
  • the downlink transmission path 1 corresponds to a routing identifier 1 .
  • the route map is the mapping relationship between the downlink data and the route identifier 1 .
  • the mapping relationship between the downlink data and the routing identifier 1 may refer to the address of the IAB3 node, the service attribute information of the downlink data, the address of the IAB3 node, and the routing identifier 1 corresponding to the service attribute information.
  • the downlink data 1 for the downlink data (for example, downlink data 1) that has corresponding service attributes (for example, DSCP is 000111) and is sent to the IAB3 node, donor-DU2 transmits the downlink transmission path (for example, transmission path 1) corresponding to the corresponding routing identifier.
  • the downlink data 1 for the downlink data (for example, downlink data 1) that has corresponding service attributes (for example, DSCP is 000111) and is sent
  • the bearer is mapped as a mapping relationship between the downlink data and the downlink transmission bearer; the downlink transmission bearer includes the first RLC channel between the second DU and the first node; the first node is the next hop node of the second DU.
  • the radio link control RLC channel may also be referred to as a backhaul RLC channel.
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the target address of the downlink data, the service attribute information of the downlink data, the target address, and the information of the first RLC channel corresponding to the service attribute information.
  • the information of the RLC channel includes the identifier of the RLC channel, and the identifiers of nodes at both ends of the RLC channel (for example, the BAP addresses of the nodes).
  • the explanation of the information about the RLC channel is applicable in all the embodiments of this application.
  • the downlink transmission bearer includes the first RLC channel between donor-DU2 and IAB4-MT.
  • Bearer mapping is the mapping relationship between downlink data and the first RLC channel.
  • the mapping relationship between the downlink data and the first RLC channel may refer to the address of the IAB3 node, the service attribute information of the downlink data, the address of the IAB3 node, and the first RLC channel corresponding to the service attribute information.
  • the donor-DU2 will send the downlink data 1 to the IAB4-MT through the first RLC channel between the donor-DU2 and the IAB4-MT.
  • the downlink bearer mapping on donor-DU2 is determined by donor-CU1.
  • donor-CU1 determines the RLC channel used for downlink data transmission between donor-DU2 and IAB4 nodes, so that donor-DU2 receives data from donor-CU1. After the downlink data is received, the downlink data is mapped to the corresponding RLC channel and sent to the IAB4 node.
  • the IAB4 node there are two implementations of downlink bearer mapping on the IAB4 node:
  • donor-CU2 determines the bearer mapping on the IAB4 node.
  • the downlink transmission is taken as an example to illustrate.
  • Donor-CU2 determines the downlink bearer mapping on the IAB4 node, that is, donor-CU2 determines the mapping relationship between the ingress RLC channel and the egress RLC channel on the IAB4 node, and sends the mapping relationship to the IAB4 node.
  • the ingress RLC channel refers to the RLC channel between donor-DU2 and IAB4-MT
  • the egress RLC channel refers to the RLC channel between IAB4-DU and IAB2-MT. That is to say, donor-CU2 maps the downlink data to the ingress RLC channel and sends it to IAB4-MT.
  • IAB4-MT After IAB4-MT extracts the downlink data from the ingress RLC channel, it sends it to IAB4-DU through the internal interface. - The DU maps the downlink data to the corresponding egress RLC channel and sends it to the IAB2-MT.
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the information of the ingress RLC channel and the information of the egress RLC channel.
  • donor-CU1 decides the bearer mapping on the IAB4 node.
  • the following line transmission is used as an example to illustrate.
  • Donor-CU1 determines the downlink bearer mapping on the IAB4 node, that is, donor-CU1 determines the mapping relationship between the ingress RLC channel and the egress RLC channel on the IAB4 node, and passes the mapping relationship through the donor-CU1.
  • CU2 is sent to the IAB4 node.
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the information of the ingress RLC channel and the information of the egress RLC channel.
  • the donor-CU1 sends the first mapping to the donor-CU2, where the first mapping further includes: the information of the ingress RLC channel and the information of the corresponding egress RLC channel.
  • the information of the RLC channel includes: the identifier of the RLC channel, and the identifiers of nodes at both ends of the RLC channel (for example, the BAP addresses of the nodes).
  • the IAB4 node maps the downlink data to the corresponding egress RLC channel from the donor-DU2 and sends the downlink data to the IAB2 node.
  • the IAB2 node there are two implementations of downlink bearer mapping on the IAB2 node:
  • donor-CU1 decides the bearer mapping on the IAB2 node.
  • the downlink transmission is taken as an example to illustrate.
  • Donor-CU1 determines the downlink bearer mapping on the IAB2 node, that is, donor-CU1 determines the mapping relationship between the ingress RLC channel and the egress RLC channel on the IAB2 node, and sends the mapping relationship to the IAB2 node.
  • the ingress RLC channel refers to the RLC channel between IAB4-DU and IAB2-MT
  • the egress RLC channel refers to the RLC channel between IAB2-DU and IAB3-MT. That is to say, the IAB4-DU maps the downlink data to the ingress RLC channel and sends it to the IAB2-MT.
  • the IAB2-MT After the IAB2-MT extracts the downlink data from the ingress RLC channel, it sends it to the IAB2-DU through the internal interface.
  • the IAB2-DU maps the downlink data to the corresponding egress RLC channel and sends it to the IAB3-MT.
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the information of the ingress RLC channel and the information of the egress RLC channel.
  • donor-CU2 determines the bearer mapping on the IAB2 node.
  • the downlink transmission is taken as an example to illustrate.
  • Donor-CU2 determines the downlink bearer mapping on the IAB2 node, that is, donor-CU2 determines the mapping relationship between the ingress RLC channel and the egress RLC channel on the IAB2 node, and passes the mapping relationship through the donor-CU2.
  • CU1 is sent to the IAB2 node.
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the information of the ingress RLC channel and the information of the egress RLC channel.
  • donor-CU2 sends a mapping relationship to donor-CU1, where the mapping relationship includes: information of the ingress RLC channel and information of the corresponding egress RLC channel.
  • the information of the RLC channel includes: the identifier of the RLC channel, and the identifiers of nodes at both ends of the RLC channel (for example, the BAP addresses of the nodes).
  • the first CU sends the first mapping to the second CU.
  • the second CU receives the first mapping from the first CU.
  • the first CU sends the route map to the second CU, that is, the first CU sends the following three parameters to the second CU: the target address of the downlink data, the service attribute information of the downlink data, the target address and the corresponding service attribute information.
  • the first routing identifier The target address and service attribute information of the downlink data may be used to determine the corresponding first routing identifier.
  • the first CU sends the bearer map to the second CU, that is, the first CU sends the following three parameters to the second CU: the target address of the downlink data, the service attribute information of the downlink data, the target address and the corresponding service attribute information.
  • Information of the first RLC channel may be used to determine the information of the corresponding first RLC channel.
  • An Xn interface is established between the first CU and the second CU, and the first CU transmits an XnAP message to the second CU through the interface, where the XnAP message carries the first mapping.
  • donor-CU1 sends the following parameters to donor-CU2: the target address of the downlink data (the address of the IAB3 node), the service attribute information of the downlink data, the target address and the first corresponding to the service attribute information. a routing identifier.
  • the donor-CU1 sends the following parameters to the donor-CU2: the target address of the downlink data (the address of the IAB3 node), the service attribute information of the downlink data, and the information of the RLC channel between the donor-DU2 and the IAB4 node.
  • the target address and the service attribute information are associated with the information of the RLC channel between the donor-DU2 and the IAB4 node, which means that the donor-DU2 can determine the transmission according to the two parameters of the target address and the service attribute information.
  • RLC channel to be used for downlink data the target address of the downlink data (the address of the IAB3 node)
  • the service attribute information of the downlink data the information of the RLC channel between the donor-DU2 and the IAB4 node.
  • the donor-CU1 sends the following parameters to the donor-CU2: the information of the ingress RLC channel and the information of the egress RLC channel.
  • the information of the ingress RLC channel is associated with the information of the egress RLC channel, so that the donor-CU2 further sends the mapping relationship to the IAB4 node. It means that the IAB4 node can determine the egress RLC channel to be used for sending downlink data according to the information of the ingress RLC channel.
  • the fact that the second CU receives the first mapping from the first CU means that the routing mapping and/or bearer mapping of the node controlled by the second CU may change. Therefore, the second CU can manage the node controlled by the second CU to the second CU.
  • the first map is sent in order to update the route map and/or bearer map of the node it manages.
  • donor-CU2 after donor-CU2 receives the first mapping from donor-CU1, it can send the first mapping to donor-DU2 and IAB4 nodes, so that each node can perform routing mapping on downlink data according to the first mapping and/or bearer mapping.
  • the first CU sends downlink data to the second DU.
  • the second DU receives downlink data from the first CU.
  • Figure 7-1 is still taken as an example to describe the specific flow of the first CU sending downlink data to the second DU.
  • donor-CU1 encapsulates the downlink data sent to the terminal at the GTP-U layer, UDP layer, and IP layer to generate IP data packets.
  • the IP layer encapsulation processing includes: marking the downlink data of the terminal with corresponding service attribute information (such as DSCP/flow label), carrying the service attribute information in the IP header field, and adding the IP data in the IP header field
  • the destination IP address of the packet that is, the IP address of IAB3).
  • the donor-CU1 Before the handover of the IAB2 node, the donor-CU1 sends the downlink data to the UE through the source path, and the source path includes: the donor-DU1, the IAB1 node, the IAB2 node, and the IAB3 node.
  • the source path includes: the donor-DU1, the IAB1 node, the IAB2 node, and the IAB3 node.
  • all nodes and terminals on the source path are managed/controlled by donor-CU1, so donor-CU1 knows the network topology related to these nodes, and also knows the access IAB node of the terminal, that is, the target node is the IAB3 node.
  • the donor-CU1 sends the downlink data to the UE through the target path, and the target path includes: the donor-DU2, the IAB4 node, the IAB2 node, and the IAB3 node.
  • different nodes on the target path are managed/controlled by different donor-CUs, for example: donor-DU2, IAB2-MT and IAB4 nodes (including IAB4-MT and IAB4-DU) are managed/controlled by donor-CU2, IAB2-DU , IAB3 nodes (including IAB3-MT and IAB3-DU) and terminals are managed/controlled by donor-CU1.
  • donor-DU2 In order to route the downlink data on the target path, before the IAB3 node switches, donor-DU2 needs to assign an IP address to the IAB3 node in advance, and sends the newly assigned IP address to the IAB3 node through donor-CU2 and donor-CU1 in turn. If the donor-CU1 decides to send the downlink data to the UE through the target path, the target IP address added by the donor-CU1 in the IP header field is updated to the IP address allocated by the donor-DU2 for the IAB3 node. Because the IP address assigned by donor-DU2 to the IAB3 node has the same network prefix as the IP address of donor-DU2, donor-CU1 can correctly route the generated IP packet to donor-DU2.
  • donor-DU2 After donor-DU2 receives the IP data packet from donor-CU1, it extracts the target IP address (that is, the IP address of the IAB3 node) and service attribute information (such as DSCP or flow label) from the IP data packet, and according to the previous data from the donor - The first mapping received by CU2 performs routing and/or bearer selection on the IP packet.
  • target IP address that is, the IP address of the IAB3 node
  • service attribute information such as DSCP or flow label
  • donor-DU2 receives the following three parameters according to the route mapping received from donor-CU2: target IP address, service attribute information, the target IP address and the routing identifier corresponding to the service attribute information, and IP data
  • the destination IP address and service attribute information carried in the packet can determine the routing identifier corresponding to the IP data packet.
  • the destination IP address carried in the IP data packet received by donor-DU2 from donor-CU1 is 192.168.6.2
  • the service attribute information is DSCP 000111.
  • the route map received by the donor-DU2 from the donor-CU2 is shown in Table 1 (Table 1 is only an example). Then, the donor-DU2 knows that the route identifier corresponding to the IP data packet is 1 according to the lookup table 1, and performs route selection on the IP data packet according to the route identifier.
  • destination IP address business attribute information route ID 192.168.6.2 DSCP is 000111 1 192.168.6.3 DSCP is 001111 2
  • donor-DU2 After determining the routing identifier of the downlink IP data packet, donor-DU2 determines which IP data packet needs to be routed to according to the routing table received from donor-CU2, namely: routing identifier and the address of the next hop node corresponding to the routing identifier. next hop node.
  • the address of the next hop node may be the BAP address of the next hop node.
  • the donor-DU2 knows that the IP data packet received from the donor-CU1 needs to be sent to the IAB4 node.
  • the donor-DU2 carries the determined routing identifier in the BAP layer and sends the IP packet to the next hop node, that is, the IAB4 node.
  • donor-DU2 is based on the bearer mapping received from donor-CU2, such as the target IP address, service attribute information, and the identifier of the RLC channel corresponding to the target IP address and the service attribute information, and according to the bearer mapping received from donor-CU1.
  • the bearer mapping received from donor-CU2 For an IP data packet, it can be determined which RLC channel the IP data packet needs to be mapped to for transmission.
  • the donor-DU2 determines that the IP data packet needs to be mapped to the RLC channel 1 shown in FIG. 5 , and sends the IP data packet to the next hop node of the donor-DU2 through the RLC channel 1.
  • the subsequent nodes of donor-CU2 can route the downlink data received from the previous node according to the route map, bearer map, and routing table received from the corresponding host node. and bearer options.
  • the IAB4 node after receiving the IP data packet from the ingress RLC channel, the IAB4 node performs BAP layer processing to extract the routing identifier, and according to the first mapping obtained from donor-CU2 (the The first mapping may be carried in the F1AP message, optionally, an F1 interface is established between the IAB4-DU and the donor-CU2 to transmit the F1AP message) to perform routing and bearer selection on the IP data packet.
  • the IAB4 node looks up the routing table according to the routing identifier extracted from the BAP layer (the routing table is obtained from the donor-CU2), that is: based on the routing identifier and the BAP address of the next hop node corresponding to the routing identifier , and determine which next-hop node the IP data packet needs to be routed to (for example, routed to the IAB2 node).
  • the IAB4 node determines which egress RLC channel the IP data packet is mapped to according to the bearer mapping obtained from the donor-CU2, that is, the identifier of the ingress RLC channel, and the identifier of the egress RLC channel corresponding to the ingress RLC channel.
  • the IAB2 node and the IAB3 node perform routing and bearer selection according to the first mapping obtained from the donor-CU1.
  • the first CU of the first host node configures the route map and/or bearer map corresponding to the downlink transmission path for the downlink data of the terminal, and Send the route map and/or bearer map to the second CU of the second donor node, so that the second CU further forwards the received route map and/or bearer map to the second DU of the second donor node.
  • the second DU of the second host node after the second DU of the second host node receives the downlink data from the first CU of the first host node, it can send the downlink data according to the route map and/or the bearer map, that is, the downlink data can pass through the second
  • the host node reaches the terminal to prevent the service continuity of the terminal from being affected.
  • the above method may further include the following step S104:
  • the second CU sends one or more second routing identifiers allocated by the second CU to the first CU.
  • the first CU receives one or more second routing identifiers allocated by the second CU from the second CU.
  • the first routing identification and the one or more second routing identifications are different.
  • the second CU in order to avoid a conflict between the routing identifier allocated by the first CU and the routing identifier allocated by the second CU, before the first CU determines the first mapping (that is, routing mapping), the second CU needs to assign the routing identifier that has been allocated to the second CU.
  • One or more routing identifiers (that is, second routing identifiers) are sent to the first CU.
  • the second CU may send all routing identifiers that it has allocated to the first CU, so as to ensure the routes allocated by the first CU Both the identifier and the routing identifier allocated by the second CU may uniquely identify the transmission path.
  • the above method may further include step S105:
  • the second CU sends the information of one or more RLC channels between the second DU and the first node, and the QoS information corresponding to the one or more RLC channels to the first CU.
  • the first CU receives information of one or more RLC channels between the second DU and the first node and QoS information corresponding to the one or more RLC channels from the second CU.
  • the one or more RLC channels include the first RLC channel.
  • the information of the RLC channel between the second DU and the first node is configured by the second DU and sent to the first node through the RRC message of the second CU.
  • the first CU cannot learn the information of the RLC channel between the second DU and the first node.
  • the first CU needs to be able to know the QoS information corresponding to the RLC channel between the second DU and the first node, so that the first CU can determine that the downlink data is mapped to Which RLC channel between the second DU and the first node is transmitted on.
  • the donor-CU1 determines the downlink bearer mapping on the donor-DU2, which means that the donor-CU1 needs to determine the target address of the downlink data, the service attribute information of the downlink data, the target address and Information of the RLC channel (that is, the RLC channel between the donor-DU2 and the IAB4-MT) corresponding to the service attribute information.
  • donor-CU1 only knows the corresponding RLC channel information of the IAB nodes it manages or controls (such as the RLC channel information between IAB2-DU and IAB3-MT), and does not know the donor-DU2 and IAB4- RLC channel information between MTs. Therefore, in order for donor-CU1 to determine the above bearer mapping, donor-CU2 needs to send the QoS information of the RLC channel established between donor-DU2 and IAB4-MT to donor-CU1.
  • donor-CU2 sends the following parameters to donor-CU1: identifier of donor-DU2, identifier of IAB4 node, identifier of RLC channel established between donor-DU2 and IAB4-MT (such as RLC channel 1-RLC channel 3), and the QoS information corresponding to each RLC channel (the QoS information corresponding to RLC channel 1 to RLC channel 3).
  • the identifier of the node may be the BAP address information of the node or others.
  • the identifier of the IAB4 node may be the BAP address of the IAB4 node
  • the identifier of the donor-DU2 may be the BAP address of the donor-DU2.
  • the QoS information includes at least one of the following information: QoS flow identifier, 5QI, PDU session identifier, guaranteed bit rate.
  • the first CU can The QoS information corresponding to the multiple RLC channels determines the RLC channel to be used by the second DU to send downlink data.
  • the service attribute information of the downlink data is determined by the first CU. That is, before the first CU determines the first mapping, the above method may further include the following step S106:
  • the first CU determines service attribute information.
  • Figure 7-1 is used as an example to illustrate an exemplary method for the first CU to determine service attributes.
  • the donor-CU1 receives the downlink data of the terminal from the core network device (such as the UPF), and the donor-CU1 can determine the downlink data according to the QoS of the terminal. information, and determine the service attribute information (such as DSCP/flow label) of the downlink data.
  • the donor-CU1 determines the service attribute information of the downlink data according to the QoS information of the downlink data, and maps the downlink data to the corresponding GTP tunnel and sends the downlink data to the target node (for example, : IAB3 node).
  • the target node for example, : IAB3 node
  • the donor-CU1 can determine the correspondence between the tunnel information of the downlink data and the service attribute information.
  • the tunnel information may be, for example, but not limited to, GTP-FTEID.
  • GTP-FTEID includes tunnel identification (general packet radio service tunneling protocol tunnel endpoint ID, GTP-TEID for short) and IP address.
  • the donor-CU1 determines the corresponding relationship between the tunnel information of the downlink data and the service attribute information, which may be the corresponding relationship between the GTP-FTEID and the DSCP/flow label allocated by the donor-CU1 on the F1 interface, or the corresponding relationship between the IAB3-DU and the DSCP/flow label.
  • the first CU determines the service attribute information of the downlink data (step S106 ), and then determines the service attribute information of the downlink data according to the above steps S104 and S105. From the information received from the second CU, the first mapping is determined (step S101).
  • the first mapping is determined by the first CU.
  • the service attribute of the downlink data in the first embodiment is determined by the first CU
  • the service attribute information of the downlink data is determined by the second CU.
  • the communication method of the second embodiment further includes:
  • the first CU sends the information of the GTP tunnel of the downlink data and the QoS information corresponding to the GTP tunnel to the second CU.
  • donor-CU1 in order to assist donor-CU2 in determining the service attribute information of the terminal's downlink data, donor-CU1 needs to send the QoS information corresponding to the GTP tunnel of the terminal's downlink data to donor-CU2. Since the donor-CU1 maps the downlink data of the terminal to the target node in the corresponding GTP tunnel to send the downlink data, the downlink data can be identified by the information of the GTP tunnel. For the introduction of the information of the GTP tunnel, reference may be made to the above, and details are not repeated here.
  • the donor-CU2 ie, the second CU
  • the donor-CU2 can determine the service attribute information of the downlink data of the terminal according to the information received from the donor-CU1.
  • the first CU receives the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel from the second CU.
  • the donor-CU2 in order for the donor-CU1 (ie the first CU) to determine the first mapping, the donor-CU2 (the second CU) needs to send the service attribute information of the terminal downlink data determined by the donor-CU2 to the donor-CU1.
  • the donor-CU2 sends the information of the GTP tunnel of the terminal downlink data and the service attribute information corresponding to the GTP tunnel to the donor-CU1.
  • the service attribute information may be used by the donor-CU1 to determine the first mapping (including route mapping and/or bearer mapping) of the terminal downlink data. It can also be used for donor-CU1 to add service attribute information to IP data packets.
  • the first CU determines the first mapping.
  • step S203 S104 and S105 may also be included.
  • the first CU determines the first mapping according to the information received from the second CU in steps S104-S105.
  • the first CU sends the first mapping to the second CU.
  • the second CU receives the first mapping from the first CU.
  • the first CU sends downlink data to the second DU.
  • the second DU receives downlink data from the first CU.
  • steps S203-S205 For the specific implementation of steps S203-S205, reference may be made to the above-mentioned steps S101-S103.
  • the present application further provides a communication method, which is different from Embodiment 1 and Embodiment 2 in that, in Embodiment 1 and Embodiment 2, the first mapping is determined by the first CU, and in Embodiment 3, the first mapping is determined by the first CU.
  • the second CU is determined.
  • the method includes:
  • the first CU determines service attribute information of downlink data.
  • the first CU sends the service attribute information of the downlink data and the QoS information corresponding to the service attribute information to the second CU.
  • the second CU receives the service attribute information of the downlink data and the QoS information corresponding to the service attribute information from the first CU.
  • the service attribute information of the downlink data and the introduction of the QoS information corresponding to the service attribute information may refer to Embodiment 1 and Embodiment 2.
  • the first CU sends one or more fourth routing identifiers allocated by the first CU to the second CU.
  • the second CU receives one or more fourth routing identifiers assigned by the first CU from the first CU.
  • the third routing identifier is different from one or more fourth routing identifiers. In this way, it can be ensured that the routing identifier allocated by the second CU for the downlink transmission path of the downlink data does not conflict with the routing identifier allocated by the first CU.
  • the second CU receives information of one or more RLC channels and QoS information corresponding to the one or more RLC channels from the first CU.
  • the one or more RLC channels include the following second RLC channel.
  • the one or more RLC channels are RLC channels managed and controlled by the first CU, and the one or more RLC channels are not managed and controlled by the second CU. 7-1, the one or more RLC channels may be RLC channels between IAB2-DU and IAB3-MT.
  • the information of the RLC channel received by the donor-CU2 from the donor-CU1 includes: the identifier of the IAB2 node, the identifier of the IAB3 node, and the identifier of the RLC channel established between the IAB2-DU and the IAB3-MT (for example, RLC channel 1-RLC channel 3) , and the QoS information corresponding to each RLC channel (the QoS information corresponding to RLC channel 1 to RLC channel 3).
  • the identifier of the node may be the BAP address information of the node or others.
  • the identifier of the IAB2 node may be the BAP address of the IAB2 node
  • the identifier of the IAB3 node may be the BAP address of the IAB3 node.
  • steps S301 and S302 and steps S303 and S304 is not limited.
  • the second CU determines the first mapping.
  • the first mapping includes route mapping and/or bearer mapping; route mapping is the mapping relationship between downlink data and downlink transmission paths; bearer mapping is the mapping relationship between downlink data and downlink transmission bearers; the downlink transmission path includes the first host node The first CU passes through the transmission path between the second distributed unit DU of the second host node and the target node of the downlink data; the downlink transmission bearer includes the radio link control RLC channel between the second DU and the first node; the first One node is the next hop node of the second DU.
  • the mapping relationship between the downlink data and the downlink transmission path includes: the target address of the downlink data, the service attribute information of the downlink data, the target address and the third routing identifier corresponding to the service attribute information.
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the target address of the downlink data, the service attribute information of the downlink data, the target address, and the information of the second RLC channel corresponding to the service attribute information.
  • the second CU determines the first mapping according to the information received from the first CU in steps S302-S304. Specifically, the second CU determines the route mapping according to the service attribute information and the QoS information corresponding to the service attribute information, that is, determines the target address, the service attribute information, and the routing identifier corresponding to the target address and the service attribute information. It can be understood that the routing identifier is different from the routing identifier allocated by the first CU. The second CU determines the bearer mapping according to the service attribute information and the corresponding QoS information, that is, determines the target address, the service attribute information, and the information of the RLC channel corresponding to the two.
  • the first CU sends downlink data to the second DU.
  • the second DU receives downlink data from the first CU.
  • the second DU After receiving the downlink data from the first CU, the second DU performs routing selection and bearer selection of the downlink data according to the first mapping received from the second CU.
  • donor-CU2 determines the RLC channel used for downlink data transmission between donor-DU2 and IAB4 nodes, so that donor-DU2 receives data from donor-CU1. After the downlink data is received, the downlink data is mapped to the corresponding RLC channel and sent to the IAB4 node.
  • the downlink data is sent to the IAB2 node.
  • the ingress RLC channel refers to the RLC channel between donor-DU2 and IAB4-MT
  • the egress RLC channel refers to the RLC channel between IAB4-DU and IAB2-MT.
  • donor-CU1 decides the bearer mapping on the IAB2 node.
  • the downlink transmission is taken as an example to illustrate.
  • Donor-CU1 determines the downlink bearer mapping on the IAB2 node, that is, donor-CU1 determines the mapping relationship between the ingress RLC channel and the egress RLC channel on the IAB2 node, and sends the mapping relationship to the IAB2 node.
  • the ingress RLC channel refers to the RLC channel between IAB4-DU and IAB2-MT
  • the egress RLC channel refers to the RLC channel between IAB2-DU and IAB3-MT. That is to say, the IAB4-DU maps the downlink data to the ingress RLC channel and sends it to the IAB2-MT.
  • the IAB2-MT After the IAB2-MT extracts the downlink data from the ingress RLC channel, it sends it to the IAB2-DU through the internal interface.
  • the IAB2-DU maps the downlink data to the corresponding egress RLC channel and sends it to the IAB3-MT.
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the information of the ingress RLC channel and the information of the egress RLC channel.
  • the donor-CU1 does not know the information of the ingress RLC channel on the IAB2 node.
  • the donor-CU1 needs to receive the information of the ingress RLC channel on the IAB2 node from the donor-CU2.
  • the information of the RLC channel includes: the identifier of the IAB4 node, the identifier of the IAB2 node, the identifier of the RLC channel established between the IAB4-DU and the IAB2-MT (such as RLC channel 1-RLC channel 3), and each RLC channel corresponds to QoS information (the QoS information corresponding to RLC channel 1-RLC channel 3).
  • the identifier of the node may be the BAP address information of the node or others.
  • the identifier of the IAB4 node may be the BAP address of the IAB4 node
  • the identifier of the IAB2 node may be the BAP address of the IAB2 node.
  • donor-CU2 determines the bearer mapping on the IAB2 node.
  • the downlink transmission is taken as an example to illustrate.
  • Donor-CU2 determines the downlink bearer mapping on the IAB2 node, that is, donor-CU2 determines the mapping relationship between the ingress RLC channel and the egress RLC channel on the IAB2 node, and passes the mapping relationship through the donor-CU2.
  • CU1 is sent to the IAB2 node.
  • the mapping relationship between the downlink data and the downlink transmission bearer includes: the information of the ingress RLC channel and the information of the egress RLC channel.
  • the donor-CU2 does not know the information of the egress RLC channel on the IAB2 node. In order for the donor-CU2 to decide the bearer mapping, the donor-CU2 needs to receive the information of the egress RLC channel on the IAB2 node from the donor-CU1. .
  • the information of the RLC channel reference may be made to the description in step S304, which will not be repeated here.
  • the downlink bearer mapping scheme on the IAB3 node is the same as the mapping scheme for the IAB2 node 2, which will not be repeated here.
  • the present application also provides a communication method, which is the same as the third embodiment in that the first mapping is determined by the second CU.
  • the difference from the third embodiment is that in the fourth embodiment, the service attribute information is determined by the second CU.
  • the method further includes:
  • the first CU sends the information of the GTP tunnel of the downlink data and the QoS information corresponding to the GTP tunnel to the second CU.
  • the second CU receives the information of the GTP tunnel of the downlink data and the QoS information corresponding to the GTP tunnel from the first CU.
  • the second CU determines service attribute information corresponding to the GTP tunnel of the downlink data.
  • the second CU determines service attribute information corresponding to the GTP tunnel of the downlink data according to the information of the GTP tunnel of the downlink data and the QoS information corresponding to the GTP tunnel.
  • the second CU sends the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel to the first CU.
  • the first CU receives the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel from the second CU.
  • the first CU sends one or more fourth routing identifiers allocated by the first CU to the second CU.
  • the second CU receives one or more fourth routing identifiers assigned by the first CU from the first CU.
  • the third routing identification is different from the one or more fourth routing identifications.
  • step S404 reference may be made to the above-mentioned step S303.
  • the first CU sends the information of one or more RLC channels and the QoS information corresponding to the one or more RLC channels to the second CU.
  • the second CU receives information of one or more RLC channels and QoS information corresponding to the one or more RLC channels from the first CU.
  • step S405 reference may be made to the above-mentioned step S304.
  • the second CU determines the first mapping.
  • the first mapping includes route mapping and/or bearer mapping; route mapping is a mapping relationship between downlink data and a first routing identifier of a downlink transmission path; bearer mapping is a first backhaul wireless link between downlink data and a downlink transmission bearer
  • the mapping relationship between the RLC channel and the downlink data is controlled; the downlink transmission path includes the transmission path between the first CU of the first host node and the target node of the downlink data through the second distributed unit DU of the second host node; the downlink transmission carries the first
  • An RLC channel includes a radio link control RLC channel between the second DU and the first node; the first node is the next hop node of the second DU;
  • step S406 reference may be made to the above-mentioned step S305.
  • the first CU sends downlink data to the second DU.
  • the second DU receives downlink data from the first CU.
  • step S407 reference may be made to the above-mentioned step S306.
  • the top-down handover of the IAB2 node means that the IAB2-MT precedes the IAB2-DU Perform the switch, or complete the switch first.
  • the first host node is the source host node
  • the second host node is the target host node.
  • the technical solutions of the embodiments of the present application are also applicable to bottom-up switching.
  • IAB2-DU precedes IAB2 -MT performs the handover or completes the handover first.
  • the first host node is the target host node
  • the second host node is the source host node.
  • donor-CU2 after donor-CU2 receives downlink data from the core network device, it can add service attribute information to the downlink data, and send the downlink data carrying the service attribute information to donor-DU1.
  • the correspondence between the downlink data and the service attribute information may be generated by the donor-CU2 itself, or may be generated by the donor-CU1, and then sent by the donor-CU1 to the donor-CU2.
  • the donor-DU1 receives the downlink data from the donor-CU2, and performs routing on the downlink data according to the routing map, and performs bearer selection on the downlink data according to the bearer mapping.
  • the route mapping required by the donor-DU1 may be determined by the donor-CU1 and sent to the donor-DU1.
  • the route map can also be determined by donor-CU2, sent to donor-CU1, and then sent to donor-DU1 by donor-CU1.
  • the bearer mapping may be determined by donor-CU1 and sent to donor-DU1.
  • the bearer mapping can also be determined by donor-CU2, sent to donor-CU1, and then sent to donor-DU1 by donor-CU1.
  • the embodiments of the present application mainly use the first CU and the second CU to determine the first mapping of downlink data as an example to describe the solution of how to normally transmit downlink data of a terminal in a switching scenario between host nodes.
  • the mapping configuration of the terminal uplink data is mainly the mapping configuration on the terminal's access IAB node (in this embodiment, the terminal's access IAB node is the IAB3 node).
  • the route/bearer mapping on the IAB3 node may be The donor-CU1 determines and sends it to the IAB3 node, or it can be determined by the donor-CU2 and sends it to the donor-CU1, and then the donor-CU1 sends it to the IAB3 node.
  • the scheme of how to make the uplink data transmission normally will not be introduced in detail here. .
  • Embodiments 1 to 4 of the present application are not only applicable to a bottom-up or top-down switching scenario between host nodes, but also to a dual-connection scenario such as those shown in FIGS. 7-4 .
  • the embodiment of the present application further provides a communication method, and the method is applied in a dual connection scenario.
  • Figures 7-5 and 7-6 show two scenarios (Scenarios) of F1-C message and F1-U data transmission.
  • the transmission path between the IAB node and the primary base station can be called the master cell group (master cell group, MCG) path (or other names), and the path between the IAB node and the secondary base station It is called the secondary cell group (SCG) path.
  • MCG master cell group
  • SCG secondary cell group
  • one or more other IAB nodes may exist between the secondary base station S-donor and IAB2, that is, there are multi-hop nodes.
  • This SCG path can be used to transmit F1-U data.
  • the MCG path there is no other IAB node between the master base station M-gNB and IAB2, and the MCG path can be used to transmit F1-C messages.
  • the MCG path there can be one or more other IAB nodes between M-donor and IAB-node2. In the figure, there is one other IAB node as an example Be explained.
  • This MCG path can be used to transmit F1-U data.
  • the SCG path of the single-hop air interface shown in (a) of Figure 7-5 can be used to transmit F1-C messages.
  • the S-donor in the above Scenario 1 or Scenario 2 may be a CU-DU separation architecture, or may be a complete entity.
  • IAB1 and IAB2 may be MT-DU architecture.
  • Figure 7-5 (b) and Figure 7-6 (b) are drawn by taking the donor as the DU-CU architecture and the IAB as the MT-CU architecture as examples.
  • F1-C messages can be transmitted through a single-hop MCG path or SCG path
  • F1-U data can be transmitted through a single-hop or multi-hop SCG path or MCG path.
  • the method includes the following steps:
  • the primary network device determines first indication information.
  • the first indication information is used to request/instruct the secondary network device to transmit the first signaling to the first node through the first signaling radio bearer (SRB).
  • the first signaling radio bearer is the signaling radio bearer on the SCG path.
  • the first signaling radio bearer includes SRB3 or split SRB.
  • the first signaling includes an F1-C message.
  • the F1-C message includes an F1AP message, or the F1-C message includes SCTP/IPsec related signaling.
  • the primary network device determines whether the secondary network device needs to establish the first signaling radio bearer to transmit the first signaling, and requests or instructs the secondary network device to establish the first signaling radio bearer to transmit the first signaling. make.
  • the primary network device is the M-donor
  • the secondary network device is the S-gNB
  • the first node is the IAB2
  • the M-donor sends the first indication information to the S-gNB, In order to request/instruct the S-gNB to transmit the F1-C message to the IAB2 via eg SRB3 (or split SRB).
  • the primary network device sends first indication information to the secondary network device.
  • the secondary network device may also perform step S503, establish SRB3, and use SRB3 transmits the first signaling, such as the F1-C message.
  • the secondary network device sends indication information to the primary network device, which is used to indicate that the first signaling radio bearer has been established.
  • the secondary network device may also perform the following steps S504:
  • the secondary network device sends the second indication information to the primary network device.
  • the primary network device receives the second indication information from the secondary network device.
  • the second indication information is used to indicate that the establishment of the first signaling radio bearer fails, or the first signaling cannot be transmitted through the first signaling radio bearer.
  • the second indication information carries the cause value of the failure to establish the first signaling radio bearer.
  • the primary network device can clearly know the establishment of the first signaling radio bearer according to the second indication information received from the secondary network device, so as to determine the manner of transmitting the first signaling.
  • Mode 1 The F1-C message is transmitted through the SRB3 on the SCG.
  • the M-donor-CU in this mode, the M-donor-CU generates an F1-C message, that is, an F1AP message (including UE-associated F1AP message, non-UE associated F1AP message), and encapsulates the generated F1-C message in the In the XnAP message, the XnAP message is sent to the S-gNB through the Xn interface with the S-gNB.
  • the S-gNB extracts the F1-C message from the received XnAP message, encapsulates the F1-C message in the NR RRC message of the Uu interface, and then maps it to SRB3 and sends it to IAB-MT2.
  • the IAB-MT2 extracts the F1-C message from the RRC message and sends it to the IAB-DU2 through the internal interface for parsing.
  • the M-donor-CU generates an F1-C message, processes the SCTP layer, encapsulates the generated F1-C message in an IP packet, carries the IP packet in the XnAP message, and sends the XnAP message through the Xn interface to S-gNB.
  • the SgNB extracts the IP packet from the received XnAP message, encapsulates the IP packet in the NR RRC message of the Uu interface, maps the RRC message to SRB3, and sends the RRC message to IAB-MT2 through SRB3.
  • IAB-MT2 extracts the IP packet from the RRC message, and sends it to IAB-DU2 through the internal interface, where it is parsed by IAB-DU2.
  • Mode 2 Transmit the F1-C message through the split SRB on the SCG.
  • the M-donor-CU encapsulates the generated F1-C message in an NR RRC message, then encapsulates the RRC message in an XnAP message, and sends the XnAP message to the S- gNB.
  • the S-gNB extracts the RRC message from the received XnAP message, maps it to the split SRB (for example: split SRB1 or split SRB2), and sends the RRC message to the IAB-MT2 through the split SRB.
  • the IAB-MT2 extracts the F1-C message from the RRC message and sends it to the IAB-DU2 through the internal interface for parsing.
  • the M-donor-CU generates an F1-C message, and the generated F1-C message is processed by the SCTP layer and the IP layer, and then encapsulated in the NR RRC message, and then the RRC message is processed by the PDCP layer to obtain PDCP PDU, encapsulate the PDCP PDU in an XnAP message, and send the XnAP message to the S-gNB through the Xn interface.
  • the S-gNB extracts the PDCP PDU from the received XnAP message and maps it to the split SRB for sending to IAB-MT2.
  • the IAB-MT2 extracts the IP packet from the received content and sends the IP packet to the IAB-DU2 through the internal interface for parsing.
  • the embodiment of the present application further provides a communication method, and the method is applied in a dual connection scenario.
  • the method Different from the signaling radio bearer (SRB3 or split SRB) used by the primary network device to transmit the first signaling on the SCG path in the fifth embodiment, in the sixth embodiment, the secondary network device determines that the first signaling is on the SCG path.
  • the signaling radio bearer used for uplink transmission includes:
  • the secondary network device sends fifth indication information to the primary network device.
  • the primary network device receives fifth indication information from the secondary network device.
  • the fifth indication information is used to instruct the first signaling to transmit the corresponding first signaling radio bearer on the SCG path, that is, to instruct the first signaling to be transmitted through the first signaling radio bearer.
  • the first signaling includes an F1-C message.
  • the F1-C message includes an F1AP message, or the F1-C message includes SCTP/IPsec related signaling.
  • the first signaling radio bearer includes SRB3 or split SRB.
  • the secondary network device determines that the first signaling needs to be transmitted through the SCG path, it sends fifth indication information to the primary network device, so as to instruct the first signaling to transmit the corresponding first signaling wireless signal on the SCG path. bear.
  • the primary network device may also trigger the secondary network device to send the fifth indication information.
  • the primary network device may perform step S602 to send sixth indication information to the secondary network device, where the sixth indication information is used to request the secondary network device to transmit the first signaling.
  • the secondary network device determines whether to transmit the first signaling through the SCG path, and if so, sends the fifth indication information to the primary network device.
  • the primary network device sends the first signaling to the secondary network device according to the fifth indication information.
  • the primary network device may process the first signaling differently.
  • the two processing methods are described as follows:
  • the primary network device sends the first signaling to the secondary network device. It is equivalent to the primary network device directly transparently transmitting the first signaling. Subsequently, the secondary network device encapsulates the first signaling in an RRC message, and sends the RRC message to the first node through SRB3.
  • the specific process can be found in the first method in step S504 in the fifth embodiment, and details are not repeated here.
  • the primary network device first encapsulates the first signaling in an RRC message, and sends the RRC message to the secondary network device. Subsequently, the secondary network device sends an RRC message to the first node through the split SRB.
  • the secondary network device sends an RRC message to the first node through the split SRB.
  • the present application also provides a communication method for the network device to indicate to the first node an uplink transmission path (SCG path or MCG path) for transmitting the first signaling, see FIG. 17 , the method includes:
  • the network device determines third indication information.
  • the third indication information is used to indicate information of an uplink transmission path used for transmitting the first signaling, and the uplink transmission path includes an MCG path or an SCG path.
  • the third indication information may be of an enumeration type, that is, the third indication information includes the identifier of the MCG path or the identifier of the SCG path.
  • the third indication information may include the identity of the cell group.
  • include a preset logo For example, set 1 bit to indicate the MCG path or the SCG path, 0 to indicate the MCG path, and 1 to indicate the SCG path.
  • a network device can be a primary network device or a secondary network device. That is, the primary network device or the secondary network device may determine whether the uplink transmission path of the first signaling is the SCG path or the MCG path.
  • the network device sends third indication information to the first node.
  • the master network device directly sends the third indication information to the first node, so as to indicate that the uplink transmission path used by the first node to transmit the first signaling is the SCG path or the MCG path.
  • the network device if the network device is the secondary network device, it sends the third indication information to the first node through the primary network device.
  • the primary network device is the M-donor
  • the secondary network device is the S-gNB
  • the first node is the IAB2.
  • the M-donor determines the third indication information (that is, determine the uplink transmission path for transmitting the first signaling (such as the F1-C message)
  • the M-donor carries the third indication information through the RRC message, and sends the RRC message to the Sent to IAB2-MT.
  • the IAB2 can know that the F1-C message needs to be transmitted to the M-donor through, for example, the S-gNB on the SCG path.
  • the S-gNB determines the third indication information, it sends the third indication information to the IAB2 through the M-donor. For example, the S-gNB carries the third indication information through the RRC message, and sends the RRC message to the M-donor, and the M-donor further sends the RRC message to the IAB2-MT.
  • the network device may also perform step S703 to send fourth indication information to the first node.
  • the fourth indication information is used to indicate the information of the radio bearer used for transmitting the first signaling on the uplink transmission path.
  • the corresponding signaling radio bearer may be SRB1 or SRB2. If the uplink transmission path is the SCG path, the corresponding signaling radio bearer may be SRB3 or split SRB.
  • the fourth indication information is used to indicate information of a logical channel used for transmitting the first signaling on the uplink transmission path.
  • the first node can know the first signaling radio bearer (such as SRB3 of the SCG path) used to transmit the first signaling (such as the F1-C message).
  • the first signaling radio bearer such as SRB3 of the SCG path
  • the present application also provides a communication method for a network device to indicate an uplink transmission path for transmitting first data to a first node.
  • the method includes:
  • the network device determines seventh indication information.
  • the seventh indication information is used to indicate information of an uplink transmission path for transmitting the first data, and the uplink transmission path includes an MCG path or an SCG path.
  • the first data may be F1-U data.
  • the F1-U data refers to the data transmitted in the GTP tunnel established between the donor-CU and the DU of the access IAB node, and the access IAB node is the IAB node accessed by the terminal.
  • the data transmitted in the GTP tunnel between donor-CU1 and IAB3-DU can be called F1-U data.
  • the seventh indication information may be of an enumeration type, that is, the seventh indication information includes the identifier of the MCG path or the identifier of the SCG path.
  • the seventh indication information may include the identity of the cell group.
  • include a preset logo For example, set 1 bit to indicate the MCG path or the SCG path, 0 to indicate the MCG path, and 1 to indicate the SCG path.
  • a network device can be a primary network device or a secondary network device. That is, the primary network device or the secondary network device may determine whether the uplink transmission path of the first data is the SCG path or the MCG path.
  • the network device sends seventh indication information to the first node.
  • the master network device directly sends seventh indication information to the first node, so as to indicate that the uplink transmission path used by the first node to transmit the first data is the SCG path or the MCG path.
  • the seventh indication information is carried in the RRC message generated by the primary network device.
  • the network device if the network device is the secondary network device, it sends the seventh indication information to the first node through the primary network device.
  • the seventh indication information is carried in the RRC message generated by the secondary network device.
  • the secondary network device can only deliver one seventh indication information to the first node, and the first node can transmit all F1-U data on the UL path indicated by the seventh indication information.
  • the secondary network device may also send the GTP-TEID to the first node through the primary network device.
  • the GTP-TEID and the seventh indication information have a corresponding relationship.
  • the seventh indication information and the GTP-TEID are carried in the F1AP message generated by the secondary network device.
  • the secondary network device can configure the transmission of the UL F1-U data of the first node per GTP-U. That is, the secondary network device separately indicates the UL transmission path of each type of F1-U data.
  • This indication mode is relatively flexible, and different types of F1-U data can be transmitted on different UL transmission paths, which is beneficial to load balancing.
  • the network device may also perform step S803 to send eighth indication information to the first node.
  • the eighth indication information is used to indicate the information of the data radio bearer used for transmitting the first data on the uplink transmission path.
  • the eighth indication information is used to indicate information of a logical channel used to transmit the first data on the uplink transmission path.
  • the eighth indication information may be carried in an RRC message generated by the network device, and the network device sends the RRC message to the first node.
  • the eighth indication information may be carried in the F1AP message generated by the network device, and the network device sends the RRC message to the first node.
  • the first node can know the first data radio bearer for transmitting the first data (eg, the F1-U message).
  • the solutions in the embodiments of the present application are mainly described by taking a dual-connection scenario where CP/UP transmission is separated as an example. It can be understood that the solutions in the embodiments of the present application are also applicable to other dual-connection scenarios, such as scenarios where CP/UP are not separated. .
  • Embodiments 5 to 8 above are applicable to scenarios such as the dual-connection scenario shown in FIG. 7-5 or FIG. 7-6 or other similar scenarios.
  • the embodiment of the present application also provides a communication method, which is used to obtain the network topology of the required network in the scenario of switching between host nodes.
  • This method is suitable for switching between host nodes, or a dual-connection scenario (or other dual-connection scenarios) such as those shown in Figure 7-4.
  • the method includes:
  • the second CU sends the first topology information of the network to the first CU.
  • the first CU receives the first topology information of the network from the second CU.
  • the first topology information of the network is used to characterize the nodes in the network and the connection relationship between the nodes.
  • the second CU sends the topology information of the node managed and controlled by the second CU.
  • donor-CU2 may send topology information corresponding to donor-DU2 and IAB4 to donor-CU1.
  • the first CU may be the CU of the source host node, and the second CU may be the CU of the target host node.
  • the first CU may be the CU of the target host node, and the second CU may be the CU of the source host node.
  • the first CU may also send the topology information of the nodes managed by the first CU to the second CU. Still referring to FIG. 7-1, taking the example that the first CU is donor-CU1 and the second CU is donor-CU2, donor-CU1 may send topology information of donor-DU1, IAB1, IAB2, and IAB3 to donor-CU2.
  • the first CU determines a routing table or a bearer map according to the first topology information.
  • the first CU sends the routing table or the bearer map to the second CU.
  • the method in this embodiment means that the first CU can determine the routing table of each node on the target path.
  • the target path includes: a first CU, a second DU, an IAB4 node, an IAB2 node, and an IAB3 node.
  • the first CU sends the determined routing table to the second CU, and the second CU sends the determined routing table to the corresponding node.
  • the routing table includes a routing identifier and an identifier of the next hop node corresponding to the routing identifier.
  • donor-CU1 determines the routing table on donor-DU2, for example: the corresponding relationship between routing ID 1 and the ID of the IAB4 node, donor-CU1 sends the corresponding relationship to donor-CU2, by Donor-CU2 sends to donor-DU2 for donor-DU2 to route according to this correspondence.
  • the ninth embodiment can be applied to the above-mentioned scenarios of switching between host nodes such as FIG. 7-1 and FIG. 7-2, as well as to the dual-connection scenarios such as FIG. 7-4.
  • the network node includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the network node may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit 1701 .
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and other division methods may be used in actual implementation.
  • This embodiment of the present application further provides a network node (referred to as a network node 170 ).
  • the network node 170 includes a processing unit 1701 and a transceiver unit 1702 .
  • the processing unit 1701 is configured to determine a first mapping, where the first mapping includes route mapping and/or bearer mapping; route mapping is a mapping relationship between downlink data and downlink transmission paths; bearer mapping is a mapping relationship between downlink data and downlink transmission bearers. Mapping relationship; the downlink transmission path includes the transmission path between the first CU passing through the second DU of the second host node and the target node of the downlink data; the downlink transmission bearer includes the wireless link between the second DU and the first node Controlling the RLC channel; the first node is the next hop node of the second DU;
  • Transceiver unit 1702 configured to send the first mapping to the second CU of the second donor node; and send downlink data to the second DU.
  • the transceiver unit 1702 is further configured to receive, from the second CU, one or more second routing identifiers allocated by the second CU; the first routing identifier and the one or more second routing identifiers are different.
  • the transceiver unit 1702 is further configured to receive, from the second CU, information about one or more RLC channels between the second DU and the first node and the quality of service QoS corresponding to the one or more RLC channels information; the one or more RLC channels include the first RLC channel.
  • the transceiver unit 1702 is further configured to send to the second CU the information of the General Packet Radio Service Tunneling Protocol GTP tunnel of the downlink data and the QoS information corresponding to the GTP tunnel.
  • the transceiver unit 1702 is further configured to receive, from the second CU, the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel.
  • the processing unit 1701 is configured to determine a first mapping, where the first mapping includes route mapping and/or bearer mapping; route mapping is a mapping relationship between downlink data and downlink transmission paths; bearer mapping is a mapping relationship between downlink data and downlink transmission bearers. a mapping relationship; the downlink transmission path includes the transmission path between the first CU passing through the second DU of the second host node and the target node of the downlink data; the downlink transmission bearer includes the RLC channel between the second DU and the first node; the first node is the next hop node of the second DU;
  • a transceiver unit 1702 configured to receive downlink data from the first CU.
  • the transceiver unit 1702 is further configured to receive, from the first CU, service attribute information of the downlink data and QoS information corresponding to the service attribute information.
  • the transceiver unit 1702 is further configured to receive, from the first CU, one or more fourth routing identifiers allocated by the first CU.
  • the third routing identification is different from the one or more fourth routing identifications.
  • the transceiver unit 1702 is further configured to receive information of one or more RLC channels and QoS information corresponding to the one or more RLC channels from the first CU.
  • the transceiver unit 1702 is further configured to receive, from the first CU, information about a General Packet Radio Service Tunneling Protocol GTP tunnel of downlink data and QoS information corresponding to the GTP tunnel.
  • the transceiver unit 1702 is further configured to send the information of the GTP tunnel of the downlink data and the service attribute information corresponding to the GTP tunnel to the first CU.
  • mapping relationship between the downlink data and the downlink transmission path and the mapping relationship between the downlink data and the downlink transmission bearer can refer to the method embodiment.
  • the first host node is a source host node, and the second host node is a target host node; or, the first host node is a target host node, and the second host node is a source host node.
  • the first host node is the primary host node, and the second host node is the secondary host node; or, the first host node is the secondary host node, and the second host node is the primary host node.
  • the network node 170 may further include a storage unit 1703 for storing data and the like required by the network node 170 .
  • the above-mentioned network node 170 may be a device, or may be a chip or other components in the device.
  • the units in FIG. 20 may also be referred to as modules, for example, the processing unit 1701 may be referred to as a processing module.
  • the names of the units may not be the names shown in the figure, depending on the way of dividing the modules.
  • Each unit in FIG. 20 can be stored in a computer-readable storage medium if it is implemented in the form of a software function module and sold or used as an independent product.
  • the medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods of the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory (ROM for short), random access memory (RAM for short), magnetic disk or optical disk, etc. medium of program code.
  • An embodiment of the present application also provides a schematic diagram of the hardware structure of a network node (referred to as a network node 200 ).
  • the network node 200 includes a processor 2001 , and optionally, also includes a connection with the processor 2001 memory 2002.
  • the processor 2001 can be a general-purpose central processing unit (central processing unit, CPU for short), a microprocessor, an application-specific integrated circuit (ASIC for short), or one or more programs for controlling the solution of the present application implemented integrated circuits.
  • the processor 2001 may also include a plurality of CPUs, and the processor 2001 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 2002 can be a ROM or other types of static storage devices that can store static information and instructions, a RAM or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory.
  • read-only memory referred to as EEPROM
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic storage devices or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, which is not limited by the embodiments of the present application.
  • the memory 2002 may exist independently, or may be integrated with the processor 2001 . Wherein, the memory 2002 may contain computer program code.
  • the processor 2001 is configured to execute the computer program code stored in the memory 2002, thereby implementing the method provided by the embodiments of the present application.
  • the network node 200 further includes a transceiver 2003 .
  • the processor 2001, the memory 2002 and the transceiver 2003 are connected by a bus.
  • the transceiver 2003 is used to communicate with other communication devices or other protocol layers in the network node.
  • the transceiver 2003 may include a transmitter and a receiver.
  • a device in the transceiver 2003 for implementing a receiving function (for example, receiving a data packet delivered by an upper protocol layer) may be regarded as a receiver, and the receiver is configured to perform the receiving steps in the embodiments of the present application.
  • a device in the transceiver 2003 for implementing a sending function (for example, delivering data packets to other protocol layers) may be regarded as a transmitter, and the transmitter is used to perform the sending or delivering steps in the embodiments of the present application.
  • the schematic structural diagram shown in FIG. 21 may be used to illustrate the structure of the network node involved in the foregoing embodiment.
  • the processor 2001 is used to control and manage the actions of the network node.
  • the processor 2001 is used to support the network node to perform the steps in the foregoing method embodiments (such as FIG. 8 to FIG. 14 ), and/or the steps in the embodiments of this application. Actions performed by network nodes in other processes described.
  • the processor 2001 can communicate with other communication devices or other protocol layers in the network node through the transceiver 2003 .
  • the memory 2002 is used to store program codes and data of the terminal.
  • the processor 2001 includes a logic circuit and an input interface and/or an output interface.
  • the output interface is used to perform the action of sending or submitting in the corresponding method
  • the input interface is used to perform the action of receiving in the corresponding method.
  • FIG. 22 The schematic structural diagram shown in FIG. 22 may be used to illustrate the structure of the network node involved in the foregoing embodiment.
  • the processor 2001 is used to control and manage the actions of the network node.
  • the processor 2001 is used to support the network node to perform the steps in FIG. 8 to FIG. 14 , and/or the network in other processes described in the embodiments of this application.
  • the processor 2001 may communicate with other communication devices or other protocol layers in the network node through the input interface and/or the output interface.
  • the memory 2002 is used to store program codes and data of the terminal.
  • the "module" or unit in the network node 170 may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other A device that can provide the above functions.
  • the network node 170 may take the form shown in FIG. 21 or FIG. 22 .
  • the processor 2001 shown in FIG. 21 or FIG. 22 can execute the instructions by calling the computer stored in the memory 2002, so that the network node executes the communication method in the above method embodiment.
  • the functions/implementation process of the transceiver unit 1702 and the processing unit 1701 in FIG. 20 may be implemented by the processor 2001 shown in FIG. 21 or FIG. 22 calling the computer execution instructions stored in the memory 2002 .
  • the function/implementation process of the processing unit 1701 in FIG. 20 may be implemented by the processor 2001 shown in FIG. 21 or FIG. 22 calling the computer-executed instructions stored in the memory 2002, and the function/implementation of the transceiver unit 1702 in FIG. 20
  • the process can be implemented by the transceiver 2003 shown in FIG. 21 .
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute any of the foregoing methods.
  • Embodiments of the present application also provide a computer program product containing instructions, which, when run on a computer, enables the computer to execute any of the above methods.
  • An embodiment of the present application further provides a system chip, where the system chip is applied in a network node, and the system chip includes: at least one processor, and the involved program instructions are executed in the at least one processor, so as to execute the code provided by the above embodiments. any of the methods.
  • Embodiments of the present application further provide a communication system, including: one or more network nodes among the network nodes provided in the foregoing embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL) or wireless means to transmit to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or data storage devices including one or more servers, data centers, etc., that can be integrated with the media.
  • Useful media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), and the like.

Abstract

本申请提供了一种通信方法及通信装置。可以在宿主节点间切换场景下提升终端的业务连续性。第一宿主节点的第一集中式单元CU确定第一映射,向第二宿主节点的第二CU发送第一映射;并向第二宿主节点的第二分布式单元DU发送下行数据。第一映射包括路由映射和/或承载映射;路由映射为下行数据和下行传输路径之间的映射关系;承载映射为下行数据和下行传输承载之间的映射关系;下行传输路径包括所述第一CU通过所述第二DU与下行数据的目标节点之间的传输路径;下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;所述第一节点为所述第二DU的下一跳节点。

Description

一种通信方法及通信装置
本申请要求于2021年01月22日提交国家知识产权局、申请号为202110091250.0、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
在第三代合作伙伴计划(3rd generation partnership project,简称3GPP)的版本(Rel)15中,引入了接入回传一体化(integrated access and backhaul,IAB)节点(node)和IAB宿主节点(donor node)。IAB节点可以为终端提供无线接入服务,并通过无线回传链路连接到宿主节点。其中,一个宿主节点可以连接一个或多个IAB节点。在包含IAB节点的网络中,IAB节点可以进行切换。在当前的通信标准讨论中,提出了IAB节点进行宿主节点内(Intra-donor-CU)切换的场景以及解决方案。然而,目前的通信标准中并没有定义IAB节点进行宿主节点间(Inter-donor-CU)切换场景的流程,即,目前并没有在Inter-donor-CU切换场景中保证终端业务连续性的解决方案。
发明内容
本申请实施例提供了一种通信方法及通信装置,用于提升在Inter-donor-CU切换场景中保证终端业务连续性。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种通信方法,包括:第一宿主节点的第一集中式单元CU确定第一映射,并向所述第二宿主节点的第二CU发送所述第一映射;以及所述第一CU向所述第二宿主节点的第二DU发送所述下行数据。
所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;所述第一节点为所述第二DU的下一跳节点。
本申请实施例提供的通信方法,在IAB节点进行宿主节点间切换的场景中,由第一宿主节点的第一CU为终端的下行数据配置第一映射,并向第二宿主节点的第二CU发送该第一映射。如此,在第二宿主节点在接收到来自第一宿主节点的下行数据之后,可以按照该第一映射对该下行数据进行路由选择以及承载选择,也就是在IAB节点进行宿主节点间切换的场景中,下行数据能够通过第二宿主节点到达终端,避免终端的业务连续性受到影响。
在一种可能的设计中,下行数据和下行传输路径之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、以及所述目标地址和所述业务属性 信息对应的第一路由标识;所述下行数据和下行传输承载之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、以及所述目标地址和所述业务属性信息对应的第一无线链路控制RLC信道的信息;所述下行数据包括所述业务属性信息。
可选的,业务属性信息包括差分服务代码点(differentiated services code point,简称DSCP)或流标签(flow label)。业务属性信息可以区分不同业务以便进行业务的(quality of service,QoS)保障。如此,可以将携带不同业务属性信息的数据通过不同传输路径进行传输。
在一种可能的设计中,在所述第一CU向所述第二CU发送所述第一映射之前,所述方法还包括:
所述第一CU从所述第二CU接收所述第二CU分配的一个或多个第二路由标识;所述第一路由标识和所述一个或多个第二路由标识不同。这样一来,第一CU能够获知由第二CU分配的路由标识,因此,第一CU在重新分配路由标识时,可以与第二CU分配不同的路由标识,以便保证第一CU分配的路由标识和第二CU分配的路由标识不重复,即两者分配的路由标识均可以唯一标识传输路径。
在一种可能的设计中,在所述第一CU向所述第二CU发送所述第一映射之前,所述方法还包括:
所述第一CU从所述第二CU接收所述第二DU与所述第一节点之间的一个或多个RLC信道的信息以及所述一个或多个RLC信道对应的服务质量QoS信息;所述一个或多个RLC信道包括所述第一RLC信道。
通常,第一CU只知道其管理或控制的IAB节点的相应RLC信道信息,并不知道其他CU(比如的)管控的节点的相应RLC信道信息,第二CU需要将其管控的节点的相应RLC信道信息发送到第一CU,以便于第一CU根据这些信息确定上述承载映射。
可选的,所述第一CU确定下行数据的业务属性信息。
或者,可选的,所述第二CU确定下行数据的业务属性信息。
在所述第二CU确定下行数据的业务属性信息的方式中,在一种可能的设计中,所述方法还包括:
所述第一CU向所述第二CU发送所述下行数据的通用分组无线服务隧道协议GTP隧道的信息以及所述GTP隧道对应的QoS信息。
如此,第二CU根据从第一CU接收的这些信息确定下行数据的业务属性信息。
在所述第二CU确定下行数据的业务属性信息的方式中,在一种可能的设计中,所述方法还包括:
所述第一CU从所述第二CU接收所述下行数据的GTP隧道的信息以及所述GTP隧道对应的业务属性信息。如此,第一CU能够从第二CU接收由第二CU确定的下行数据的业务属性信息,以便于第一CU据此为下行数据在IP头上携带对应的业务属性信息。
在一种可能的设计中,所述第一宿主节点为源宿主节点,所述第二宿主节点为目标宿主节点;或者,所述第一宿主节点为目标宿主节点,所述第二宿主节点为源宿主 节点。
在一种可能的设计中,所述第一宿主节点为主宿主节点,所述第二宿主节点为辅宿主节点;或者,所述第一宿主节点为辅宿主节点,所述第二宿主节点为主宿主节点。
第二方面,本申请提供一种通信方法,包括:
所述第二宿主节点的第二CU从第一宿主节点的第一集中式单元CU接收所述第一映射;第二宿主节点的第二DU从所述第一CU接收下行数据。
所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;所述第一节点为所述第二DU的下一跳节点。
在一种可能的设计中,下行数据和下行传输路径之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息,所述目标地址以及所述业务属性信息对应的第一路由标识;所述下行数据和下行传输承载之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、所述目标地址以及所述业务属性信息对应的第一无线链路控制RLC信道的信息;所述下行数据包括所述业务属性信息。
在一种可能的设计中,所述下行数据包括所述业务属性信息。
在一种可能的设计中,所述方法还包括:
所述第二CU向所述第一CU发送所述第二CU分配的一个或多个第二路由标识;所述第一路由标识和所述一个或多个第二路由标识不同。
在一种可能的设计中,所述方法还包括:
所述第二CU向所述第一CU发送所述第二DU与所述第一节点之间的一个或多个RLC信道的信息以及所述一个或多个RLC信道对应的服务质量QoS信息;所述一个或多个RLC信道包括所述第一RLC信道。
可选的,所述第二CU确定下行数据的业务属性信息。
在所述第二CU确定下行数据的业务属性信息的方式中,在一种可能的设计中,所述方法还包括:
所述第二CU从所述第一CU接收所述下行数据的通用分组无线服务隧道协议GTP隧道的信息以及所述GTP隧道对应的QoS信息。
在所述第二CU确定下行数据的业务属性信息的方式中,在一种可能的设计中,所述方法还包括:
所述第二CU向所述第一CU发送所述下行数据的GTP隧道的信息以及所述GTP隧道对应的业务属性信息。
在一种可能的设计中,所述第一宿主节点为源宿主节点,所述第二宿主节点为目标宿主节点;或者,所述第一宿主节点为目标宿主节点,所述第二宿主节点为源宿主节点。
在一种可能的设计中,所述第一宿主节点为主宿主节点,所述第二宿主节点为辅 宿主节点;或者,所述第一宿主节点为辅宿主节点,所述第二宿主节点为主宿主节点。
第三方面,本申请提供一种通信方法,包括:
第二宿主节点的第二集中式单元CU确定第一映射,所述第二宿主节点的第二DU从第一宿主节点的第一CU接收所述下行数据。
所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的RLC信道;所述第一节点为所述第二DU的下一跳节点。
该方法中,第二宿主节点能够确定第一映射,因此,在接收到下行数据时,第二宿主节点能够根据第一映射对接收的下行数据进行路由选择以及承载选择,如此,在IAB节点进行宿主节点间切换的场景中,下行数据能够通过该第二宿主节点到达终端,进而提升终端的业务连续性。
在一种可能的设计中,所述下行数据和所述下行传输路径之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息,所述目标地址以及所述业务属性信息对应的第三路由标识;所述下行数据和所述下行传输承载之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、所述目标地址以及所述业务属性信息对应的第二无线链路控制RLC信道的信息。
在一种可能的设计中,所述方法还包括:
所述第二CU从所述第一CU接收所述下行数据的业务属性信息以及所述业务属性信息对应的服务质量QoS信息。
在一种可能的设计中,在所述第二CU确定第一映射之前,所述方法还包括:
所述第二CU从所述第一CU接收所述第一CU分配的一个或多个第四路由标识。所述第三路由标识和所述一个或多个第四路由标识不同。
在一种可能的设计中,在所述第二CU确定第一映射之前,所述方法还包括:
所述第二CU从所述第一CU接收一个或多个RLC信道的信息,以及所述一个或多个RLC信道对应的QoS信息。所述一个或多个RLC信道包括所述第二RLC信道。
在一种可能的设计中,所述方法还包括:
所述第二CU从所述第一CU接收所述下行数据的通用分组无线服务隧道协议GTP隧道的信息以及所述GTP隧道对应的QoS信息。
在一种可能的设计中,所述方法还包括:
所述第二CU向所述第一CU发送所述下行数据的GTP隧道的信息以及所述GTP隧道对应的业务属性信息。
第四方面,本申请提供一种通信方法,由第一宿主节点的第一CU确定下行数据的业务属性信息,该方法包括:
第一宿主节点的第一CU确定下行数据的业务属性信息,并向第二宿主节点的第二CU发送该业务属性信息。
在一种可能的设计中,所述方法还包括:
所述第一CU向所述第二CU发送所述下行数据的业务属性信息以及所述业务属性信息对应的服务质量QoS信息。
在一种可能的设计中,所述方法还包括:
所述第一CU向所述第二CU发送所述第一CU分配的一个或多个第四路由标识。
在一种可能的设计中,所述方法还包括:
所述第一CU向所述第二CU发送一个或多个RLC信道的信息,以及所述一个或多个RLC信道对应的QoS信息。
第五方面,本申请提供一种通信方法,第一宿主节点的第一CU向第二宿主节点的第二CU发送一些信息,以便第二CU根据这些信息确定下行数据的业务属性信息,该方法包括:
所述第一宿主节点的第一CU确定下行数据的通用分组无线服务隧道协议GTP隧道的信息以及所述GTP隧道对应的QoS信息。
所述第一CU向所述第二宿主节点的第二CU发送该GTP隧道的信息以及该GTP隧道对应的QoS信息。
在一种可能的设计中,所述方法还包括:
所述第一CU从所述第二CU接收所述下行数据的GTP隧道的信息以及所述GTP隧道对应的业务属性信息。
在一种可能的设计中,所述方法还包括:
所述第一CU向所述第二CU发送所述第一CU分配的一个或多个第四路由标识。
在一种可能的设计中,所述方法还包括:
所述第一CU向所述第二CU发送一个或多个RLC信道的信息,以及所述一个或多个RLC信道对应的QoS信息。
第六方面,本申请提供一种通信方法,包括:
第一宿主节点的第一CU确定下行数据的业务属性信息,以及第一映射,并向第二宿主节点的第二CU发送该第一映射;以及所述第一CU向第二宿主节点的第二DU发送所述下行数据。
所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;所述第一节点为所述第二DU的下一跳节点。
在一种可能的设计中,下行数据和下行传输路径之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息,所述目标地址以及所述业务属性信息对应的第一路由标识;所述下行数据和下行传输承载之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、所述目标地址以及所述业务属性信息对应的第一无线链路控制RLC信道的信息;所述下行数据包括所述业务属性信 息。
在一种可能的设计中,所述方法还包括:
所述第一CU从所述第二CU接收所述第二CU分配的一个或多个第二路由标识;所述第一路由标识和所述一个或多个第二路由标识不同。
在一种可能的设计中,所述方法还包括:
所述第一CU从所述第二CU接收所述第二DU与所述第一节点之间的一个或多个RLC信道的信息以及所述一个或多个RLC信道对应的服务质量QoS信息。
在一种可能的设计中,所述第一宿主节点为源宿主节点,所述第二宿主节点为目标宿主节点;或者,所述第一宿主节点为目标宿主节点,所述第二宿主节点为源宿主节点。
在一种可能的设计中,所述第一宿主节点为主宿主节点,所述第二宿主节点为辅宿主节点;或者,所述第一宿主节点为辅宿主节点,所述第二宿主节点为主宿主节点。
第七方面,本申请提供一种通信方法,包括:
第一宿主节点的第一CU确定下行数据的业务属性信息;
第二宿主节点的第二CU确定第一映射;
所述第一CU向第二宿主节点的第二DU发送所述下行数据。
所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;所述第一节点为所述第二DU的下一跳节点。
在一种可能的设计中,在所述第二CU确定第一映射之前,所述方法还包括:
所述第一CU向所述第二CU发送该业务属性信息,以及该业务属性信息对应的服务质量QoS信息。
在一种可能的设计中,所述方法还包括:
所述第一CU向所述第二CU发送所述第一CU分配的一个或多个第四路由标识。
在一种可能的设计中,所述方法还包括:
所述第一CU向所述第二CU发送一个或多个RLC信道的信息,以及所述一个或多个RLC信道对应的QoS信息。
第八方面,本申请提供一种通信方法,包括:
第二宿主节点的第二CU确定下行数据的业务属性信息,以及第一映射;
第一宿主节点的第一CU向第二宿主节点的第二DU发送所述下行数据。
所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的RLC信道;所述第一节点为所述第二DU的下一跳节点。
在一种可能的设计中,所述第一CU向所述第二CU发送下行数据的GTP隧道的信息以及该GTP隧道对应的QoS信息。
在一种可能的设计中,所述第一CU从所述第二CU接收下行数据的GTP隧道的信息以及该GTP隧道对应的业务属性信息。
第九方面,本申请提供一种通信方法,包括:
第二宿主节点的第二CU确定下行数据的业务属性信息;
第一宿主节点的第一CU确定第一映射,并向所述第二CU发送该第一映射;
所述第一CU向所述第二宿主节点的第二DU发送所述下行数据。
所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的RLC信道;所述第一节点为所述第二DU的下一跳节点。
在一种可能的设计中,所述第一CU向所述第二CU发送下行数据的GTP隧道的信息以及该GTP隧道对应的QoS信息。
在一种可能的设计中,所述第一CU从所述第二CU接收下行数据的GTP隧道的信息以及该GTP隧道对应的业务属性信息。
第十方面,本申请提供一种通信方法,包括:
主网络设备确定第一指示信息,并向所述辅网络设备发送所述第一指示信息。
所述第一指示信息用于请求/指示辅网络设备通过第一信令无线承载向第一节点传输第一信令;
在一种可能的设计中,所述方法还包括:所述主网络设备从所述辅网络设备接收第二指示信息,所述第二指示信息用于指示所述第一信令无线承载建立失败,或者,无法通过所述第一信令无线承载传输所述第一信令。
在一种可能的设计中,所述方法还包括:
所述主网络设备向第一节点发送第三指示信息,所述第三指示信息用于指示用于传输所述第一信令的上行传输路径的信息,所述上行传输路径包括MCG路径或SCG路径。
在一种可能的设计中,所述方法还包括:
所述主网络设备向所述第一节点发送第四指示信息,所述第四指示信息用于指示所述上行传输路径上传输所述第一信令的承载的信息。
在一种可能的设计中,所述第一信令包括F1-C消息。
在一种可能的设计中,所述第一信令无线承载包括SRB3或split SRB。
在一种可能的设计中,若第一信令无线承载为SRB3,所述方法包括:
所述主网络设备向所述辅网络设备发送所述第一信令。所述辅网络设备将所述第一信令封装在RRC消息中通过SRB3发送到所述第一节点。
在一种可能的设计中,若第一信令无线承载为split SRB,所述方法包括:
所述主网络设备将所述第一信令封装在RRC消息,并向所述辅网络设备发送所述RRC消息。所述辅网络设备将所述RRC消息通过split SRB发送到所述第一节 点。
通过该方法,可以实现F1-C消息在SCG路径上的传输,能够提升传输F1-C消息的可靠性。
第十一方面,本申请提供一种通信方法,包括:
主网络设备从辅网络设备接收第五指示信息,并根据所述第五指示信息向所述辅网络设备发送所述第一信令。
所述第五指示信息用于指示第一信令在SCG路径上传输对应的承载信息。
在一种可能的设计中,在所述主网络设备从所述辅网络设备接收所述第五指示信息之前,所述方法还包括:
所述主网络设备向所述辅网络设备发送第六指示信息,所述第六指示信息用于请求所述辅网络设备传输所述第一信令。
在一种可能的设计中,所述方法还包括:
所述主网络设备向第一节点发送第三指示信息,所述第三指示信息用于指示用于传输所述第一信令的上行传输路径的信息,所述上行传输路径包括MCG或SCG。
在一种可能的设计中,所述方法还包括:
所述主网络设备向所述第一节点发送第四指示信息,所述第四指示信息用于指示所述上行传输路径上传输所述第一信令的承载的信息。
在一种可能的设计中,所述第一信令包括F1-C消息。
在一种可能的设计中,所述第一信令无线承载包括SRB3或split SRB。
在一种可能的设计中,若第一信令无线承载为SRB3,所述方法包括:
所述主网络设备向所述辅网络设备发送所述第一信令。所述辅网络设备将所述第一信令封装在RRC消息中通过SRB3发送到所述第一节点。
在一种可能的设计中,若第一信令无线承载为split SRB,所述方法包括:
所述主网络设备将所述第一信令封装在RRC消息,并向所述辅网络设备发送所述RRC消息。所述辅网络设备将所述RRC消息通过split SRB发送到所述第一节点。
第十二方面,本申请提供一种通信装置,该装置包括:用于执行前述第一方面、第一方面的任意可能的实现方式的模块。
第十三方面,本申请提供一种通信装置,该装置包括:用于执行前述第二方面、第二方面的任意可能的实现方式的模块。
第十四方面,本申请提供一种通信装置,该装置包括:用于执行前述第三方面、第三方面的任意可能的实现方式的模块。
第十五方面,本申请提供一种通信装置,该装置包括:用于执行前述第四方面、第四方面的任意可能的实现方式的模块。
第十六方面,本申请提供一种通信装置,该装置包括:用于执行前述第五方面、第五方面的任意可能的实现方式的模块。
第十七方面,本申请提供一种通信装置,该装置包括:用于执行前述第六方面、第六方面的任意可能的实现方式的模块。
第十八方面,本申请提供一种通信装置,该装置包括:用于执行前述第七方面、 第七方面的任意可能的实现方式的模块。
第十九方面,本申请提供一种通信装置,该装置包括:用于执行前述第八方面、第八方面的任意可能的实现方式的模块。
第二十方面,本申请提供一种通信装置,该装置包括:用于执行前述第九方面、第九方面的任意可能的实现方式的模块。
第二十一方面,本申请提供一种通信装置,该装置包括:用于执行前述第十方面、第十方面的任意可能的实现方式的模块。
第二十二方面,本申请提供一种通信装置,该装置包括:用于执行前述第十一方面、第十一方面的任意可能的实现方式的模块。
第二十三方面,提供了一种网络节点,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现上述任一方面中提供的任意方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于网络节点内,也可以位于网络节点外。
在一种可能的实现方式中,处理器包括逻辑电路以及输入接口和/或输出接口。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,网络节点还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,网络节点以芯片的产品形态存在。
第二十四方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行上述任一方面中提供的任意方法。
第二十五方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行上述任一方面中提供的任意方法。
第二十六方面,提供了一种系统芯片,该系统芯片应用在网络节点中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以执行上述任一方面中提供的任意方法。
第二十七方面,提供了一种通信系统,包括:上述第十二方面至第二十二方面中提供的网络节点中的一个或多个网络节点。
其中,需要说明的是,上述各个方面中的任意一个方面的各种可能的实现方式,在方案不矛盾的前提下,均可以进行组合。
附图说明
图1为本申请实施例提供的一种IAB组网场景示意图;
图2为本申请实施例提供的传输路径中的节点的示意图;
图3、图4分别为本申请实施例提供的一种协议栈架构示意图;
图5为本申请实施例提供的RLC信道、RLC承载、逻辑信道的示意图;
图6为宿主节点内切换场景的示意图;
图7-1至图7-3分别为本申请实施例提供的宿主节点间切换的场景示意图;
图7-4至图7-6分别为本申请实施例提供的双连接场景的示意图;
图8至图14为本申请实施例提供的通信方法的流程图;
图15-1为本申请实施例提供的通信方法的流程图;
图15-2为本申请实施例提供的SRB3传输的相关协议栈处理的示意图;
图15-3为本申请实施例提供的split SRB传输的相关协议栈处理的示意图;
图16至图19为本申请实施例提供的通信方法的流程图;
图20至图22分别为本申请实施例提供的一种网络节点的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,简称OFDMA)、单载波频分多址(single carrier frequency-division multiple access,简称SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved universal terrestrial radio access,简称E-UTRA)、超级移动宽带(ultra mobile broadband,简称UMB)等无线技术。E-UTRA是通用移动通信系统(universal mobile telecommunications system,简称UMTS)演进版本。3GPP在长期演进(long term evolution,简称LTE)和基于LTE演进的各种版本是使用E-UTRA的新版本。采用新空口(new radio,简称NR)的第五代(5th-generation,简称5G)通信系统是正在研究当中的下一代通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
本申请涉及的设备包括终端和无线回传节点。
本申请实施例中的终端还可以称为用户设备(user equipment,简称UE)、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端还可以是无线局域网(wireless local area networks,简称WLAN)中的站点(station,简称ST),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,简称SIP)电话、无线本地环路(wireless local loop,简称WLL)站、个人数字处理(personal digital assistant,简称PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端还可以为下一代通信系统中的终端,例如,5G中的终端或者未来演进的公共陆地移动网络(public land mobile network,简称PLMN)中的终端。
无线回传节点用于为无线接入该无线回传节点的节点(例如,终端)提供无线回传服务。其中,无线回传服务是指通过无线回传链路提供的数据和/或信令回传服务。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。本申请实施例中以提供的方法应用于NR系统或5G网络中为例进行说明。但是需要说明的是,本申请实施例提供的方法也可以应用于其他网络中,比如,可以应用在演进分组系统(evolved packet system,简称EPS)网络(即通常所说的第四代(4th generation,简称4G)网络)中。相应的,当本申请实施例提供的方法应用在EPS网络中时,执行本申请实施例提供的方法的网络节点替换为EPS网络中的网络节点即可。例如,当本申请实施例提供的方法应用在5G网络或NR系统中时,下文中的无线回传节点可以为5G网络中的无线回传节点,示例性的,5G网络中的无线回传节点可以称为IAB节点,或者可以有其他名称,本申请实施例对此不作具体限定。当本申请实施例提供的方法应用在EPS网络中时,下文中的无线回传节点可以为EPS网络中的无线回传节点,示例性的,EPS网络中的无线回传节点可以称为中继节点(relay node,简称RN)。
随着虚拟现实(virtual reality,简称VR)、增强现实(augmented reality,简称AR)以及物联网等技术的发展,未来网络中将会有越来越多的终端,网络数据的使用量也会不断攀升。为了配合越来越多的终端以及市场极速增长的网络数据使用量,目前对5G网络的容量提出了更高的要求。在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而在热点区域需要大量密集部署小站。这些小站可以为IAB节点。
为了设计灵活便利的接入和回传方案,IAB场景中的接入链路(access link,简称AL)和回传链路(backhaul link,简称BL)均可采用无线传输方案。
在包含IAB节点的网络(以下简称IAB网络)中,IAB节点可以为终端提供无线接入服务,并通过无线回传链路连接到宿主节点(donor node)传输用户的业务数据。示例性的,宿主节点可以为宿主基站。宿主节点在5G网络中可以简称为IAB宿主(IAB donor)或DgNB(即donor gNodeB)。宿主节点可以是一个完整的实体,还可以是集中式单元(centralized unit,简称CU)(本文中简称为donor-CU,也可以简称为CU)和分布式单元(distributed unit,简称DU)(本文中简称为donor-DU)分离的形态,即宿主节点由donor-CU和donor-DU组成。本申请实施例中以及附图中主要以宿主节点由donor-CU和donor-DU组成为例对本申请实施例提供的方法作示例性说明。
其中,donor-CU还可以是用户面(User plane,简称UP)(本文中简称为CU-UP)和控制面(Control plane,简称CP)(本文中简称为CU-CP)分离的形态,即donor-CU由CU-CP和CU-UP组成。
IAB节点经宿主节点通过有线链路连接到核心网。例如,在独立组网的5G架构下,IAB节点经宿主节点通过有线链路连接到5G网络的核心网(5G core,简称5GC)。在非独立组网的5G架构下,IAB节点在控制面经演进型基站(evolved NodeB,简称eNB)连接到演进分组核心网(evolved packet core,简称EPC),在用 户面经宿主节点以及eNB连接到EPC。
为了保证业务传输的可靠性,IAB网络支持多跳IAB节点和多连接IAB节点组网。因此,在终端和宿主节点之间可能存在多条传输路径。在一条路径上,IAB节点之间,以及IAB节点和为IAB节点服务的宿主节点有确定的层级关系,每个IAB节点将为其提供回传服务的节点视为父节点。相应地,每个IAB节点可视为其父节点的子节点。
示例性的,参见图1,IAB节点1的父节点为宿主节点,IAB节点1又为IAB节点2和IAB节点3的父节点,IAB节点2和IAB节点3均为IAB节点4的父节点,IAB节点5的父节点为IAB节点2。终端的上行数据包可以经一个或多个IAB节点传输至宿主节点后,再由宿主节点发送至移动网关设备(例如5G网络中的用户面功能(user plane function,简称UPF)网元),传输上行数据包的路径称为上行传输路径。下行数据包将由宿主节点从移动网关设备处接收后,再经一个或多个IAB节点发送至终端。传输下行数据包的路径称为下行传输路径。示例性的,图1中,终端1和宿主节点之间数据包的传输有两条可用的路径,分别为:终端1→IAB节点4→IAB节点3→IAB节点1→宿主节点,终端1→IAB节点4→IAB节点2→IAB节点1→宿主节点。终端2和宿主节点之间数据包的传输有三条可用的路径,分别为:终端2→IAB节点4→IAB节点3→IAB节点1→宿主节点,终端2→IAB节点4→IAB节点2→IAB节点1→宿主节点,终端2→IAB节点5→IAB节点2→IAB节点1→宿主节点。
可以理解的是,在IAB网络中,终端和宿主节点之间的一条传输路径上,可以包含一个或多个IAB节点。每个IAB节点需要维护面向父节点的无线回传链路,还需要维护和子节点的无线链路。若一个IAB节点是终端接入的节点,该IAB节点和子节点(即终端)之间是无线接入链路。若一个IAB节点是为其他IAB节点提供回传服务的节点,该IAB节点和子节点(即其他IAB节点)之间是无线回传链路。示例性的,参见图1,在路径“终端1→IAB节点4→IAB节点3→IAB节点1→宿主节点”中。终端1通过无线接入链路接入IAB节点4,IAB节点4通过无线回传链路接入IAB节点3,IAB节点3通过无线回传链路接入IAB节点1,IAB节点1通过无线回传链路接入宿主节点。
在又一些实施例中,示例性的,IAB节点可以是用户驻地设备(customer premises equipment,简称CPE)、家庭网关(residential gateway,简称RG)等设备。该情况下,本申请实施例提供的方法还可以应用于家庭连接(home access)的场景中。
上述IAB组网场景仅仅是示例性的,在多跳和多连接结合的IAB场景中,IAB组网场景还有更多其他的可能性,例如,宿主节点和另一宿主节点下的IAB节点组成双连接为终端服务等,此处不再一一列举。
为了使得本申请实施例更加的清楚,以下对与本申请实施例相关的部分内容以及概念在此处作统一介绍。
1、链路、节点的上一跳节点、节点的下一跳节点、节点的入口链路(ingress link)、节点的出口链路(egress link)
链路:是指一条路径中的两个相邻节点之间的路径。
节点的上一跳节点:是指在包含该节点的路径中的、在该节点之前最后一个接收到数据包的节点。节点的上一跳节点也可以称为数据包的上一跳节点。示例性的,仍参见图1,对于下行传输,IAB节点3可称为IAB节点4的上一跳节点。对于上行传输,IAB节点4可称为IAB节点3的上一跳节点。
节点的下一跳节点:是指在包含该节点的路径中的、在该节点之后第一个接收到数据包的节点。节点的下一跳节点也可以称为数据包的下一跳节点。
节点的入口(ingress)链路:是指该节点与该节点的上一跳节点之间的链路,也可以称为节点的上一跳链路。
节点的出口(egress)链路:是指该节点与该节点的下一跳节点之间的链路,也可以称为节点的下一跳链路。
入口(ingress)RLC无线链路控制信道:是指该节点与该节点的上一跳节点之间的回传无线链路控制信道。
出口(egress)RLC无线链路控制信道:是指该节点与该节点的下一跳节点之间的回传无线链路控制信道。
2、接入IAB节点、中间IAB节点
本申请实施例中的接入IAB节点是指终端接入的IAB节点,中间IAB节点是指为其他IAB节点(例如,接入IAB节点或其他中间IAB节点)提供无线回传服务的IAB节点。
示例性的,参见图1,在路径“终端1→IAB节点4→IAB节点3→IAB节点1→宿主节点”中,IAB节点4为接入IAB节点,IAB节点3和IAB节点1为中间IAB节点。IAB节点3为IAB节点4提供回传服务,IAB节点1为IAB节点3提供回传服务。
需要说明的是,一个IAB节点针对接入该IAB节点的终端而言,是接入IAB节点。接入IAB节点和宿主节点之间路径上的所有其他IAB节点,是中间IAB节点。因此,一个IAB节点具体是接入IAB节点还是中间IAB节点,并不是固定的,需要根据具体的应用场景确定。比如,仍参见图1,IAB节点4可称为UE1的接入IAB节点,IAB节点3可称为中间IAB节点。
3、IAB节点的组成
IAB节点可以具有MT的角色以及DU的角色。当IAB节点面向其父节点时,可以被看做是终端。此时,IAB节点扮演MT的角色。当IAB节点面向其子节点(子节点可能是终端或另一IAB节点的终端部分)时,可以被看做是网络设备。此时,IAB节点扮演DU的角色。因此,可以认为IAB节点由MT部分和DU部分组成。一个IAB节点可以通过MT部分与该IAB节点的至少一个父节点之间建立回传连接。一个IAB节点的DU部分可以为终端或其他IAB节点的MT部分提供接入服务。
示例性的,参见图2,终端依次通过IAB节点2和IAB节点1连接到宿主节点。其中,IAB节点1和IAB节点2均包括DU部分和MT部分。IAB节点2的DU部分为终端提供接入服务。IAB节点1的DU部分为IAB节点2的MT部分提供接入服务。donor-DU为IAB节点1的MT部分提供接入服务。donor-DU和donor-CU之间可以通过F1接口连接。donor-CU可以通过NG接口和核心网连接。
本申请实施例中,IAB节点的MT部分可简称为IAB-MT(或者称为IAB-UE),IAB节点的DU部分可简称为IAB-DU。
4、中间IAB节点、接入IAB节点、donor-DU、donor-CU以及终端的协议栈架构
中间IAB节点在用户面协议栈(如图3的(a)所示)和控制面的协议栈(如图3的(b)所示)相同。
接入IAB节点在用户面和控制面的协议栈不同,可分别参见图3中的(c)和图3中的(d)。
示例性的,基于图3所示的示例,各个节点的用户面协议栈架构可参见图4中的(a),各个节点的控制面协议栈架构可参见图4中的(b)。
其中,图3、图4中各个协议层的含义为:分组数据汇聚协议(packet data convergence protocol,简称PDCP)层、通用分组无线服务隧道协议用户面(general packet radio service tunneling protocol user plane,简称GTP-U)层、用户数据报协议(user datagram protocol,简称UDP)层、网络互连协议(internet protocol,简称IP)层、L2层(layer 2)、L1层(layer1)、无线链路控制(radio link control,简称RLC)层、媒介接入控制(medium access control,简称MAC)层、物理(physical,简称PHY)层、无线资源控制(radio resource control,简称RRC)层、F1应用协议(F1application protocol,简称F1AP)层、流控制传输协议(stream control transmission protocol,简称SCTP)层。其中,L2层为链路层,示例性的,L2层可以为开放式通信系统互联(open systems interconnection,简称OSI)参考模型中的数据链路层。L1层可以为物理层,示例性的,L1层可以为OSI参考模型中的物理层。
需要说明的是,图4中均以宿主节点由donor-DU和donor-CU组成为例进行绘制。因此,图4中示出了donor-DU和donor-CU的协议层。若宿主节点是功能完整的实体,则宿主节点保留donor-DU和donor-CU对外部节点接口的协议栈即可,无需donor-DU和donor-CU之间内部接口上的协议层。
另外,需要说明的是,不论是控制面的协议栈架构还是用户面的协议栈架构,在donor-DU为donor-CU和IAB节点之间的F1接口的代理节点时,donor-DU中面向IAB节点的协议栈架构中,在IP层之上,还包括与接入的IAB节点中的DU部分的协议栈架构中的UDP层和GTP-U层分别对等的UDP层和GTP-U层(并未在图4中示出)。
5、F1接口的协议层、无线回传接口的协议层
F1接口可以是指IAB节点(例如IAB-DU)和宿主节点(例如donor-CU)之间的逻辑接口,F1接口也可以有其他名称,支持用户面以及控制面。F1接口的协议层是指在F1接口上的通信协议层。
在另一些实施例中,F1接口还可以是指donor-CU和donor-DU之间的有线接口。
示例性的,F1接口的用户面协议层可以包括IP层、UDP层和GTP-U层中的一个或多个。可选的,F1接口的用户面协议层还包括PDCP层和/或IP安全(IP Security,简称IPsec)层。
示例性的,F1接口的控制面协议层可以包括IP层、F1AP层和SCTP层中的一个或多个。可选的,F1接口的控制面协议层还包括PDCP层、IPsec层和数据报文传输层安全(datagram transport layer security,简称DTLS)层中的一个或多个。
无线回传接口是指IAB节点之间或IAB节点与宿主节点(或donor-DU)之间的逻辑接口。无线回传接口的协议层是指在无线回传接口上的通信协议层。无线回传接口的协议层包括以下协议层中的一个或多个:(Backhaul Adaptation Protocol,BAP)层、RLC层、MAC层和PHY层。
示例性的,IAB节点在F1接口的用户面协议层包括GTP-U层、UDP层和IP层。在一种情 况下,参见图4中的(a),IAB节点的GTP-U层和UDP层与donor-CU对等,IP层与donor-DU对等。另一种情况下,donor-DU为donor-CU和IAB节点之间的F1接口的代理(proxy)节点,IAB节点的GTP-U层、UDP层和IP层与donor-DU中协议层分别对等。需要说明的是,若考虑对F1接口进行安全保护,则F1接口的用户面协议层还可以包含IPsec层和/或PDCP层。在一种可能的实现方式中,IPsec层或PDCP层位于IP层之上GTP-U层之下。
示例性的,IAB节点在F1接口的控制面协议层包括F1AP层、SCTP层和IP层。在一种情况下,参见图4中的(b),IAB节点的F1AP层和SCTP层与donor-CU对等,IP层与donor-DU对等。另一种情况下,donor-DU为donor-CU和IAB节点之间的F1接口的代理节点,IAB节点的F1AP层、SCTP层和IP层与donor-DU对等。需要说明的是,若考虑对F1接口进行安全保护,则F1接口的控制面协议层还可以包含IPsec层、PDCP层和DTLS层中的一个或多个。在一种可能的实现方式中,IPsec层、PDCP层或DTLS层位于IP层之上F1AP层之下。
可以理解的是,当在F1接口的协议层中引入安全保护的协议层,则图3、图4中的部分节点的协议栈架构会发生变化,具体可参考文字进行理解。本申请实施例图3、图4中所示的IAB网络中的各个节点的协议栈架构仅仅是一种示例,本申请实施例提供的方法并不依赖于该示例,而是通过该示例使得本申请实施例提供的方法更加的容易理解。
6、发送侧协议栈、接收侧协议栈
本申请实施例中的一个节点的发送侧协议栈是指该节点中的面向下一跳节点的协议栈,一个节点的接收侧协议栈是指该节点中的面向上一跳节点的协议栈。
示例性的,在图4所示的协议栈架构中,针对上行传输,接入IAB节点(IAB节点2)的DU部分中的面向终端的协议栈为接收侧协议栈,面向宿主节点或donor-CU的协议栈为发送侧协议栈,接入IAB节点的MT部分的协议栈为发送侧协议栈,中间IAB节点的DU部分的协议栈为接收侧协议栈,中间IAB节点的MT部分的协议栈为发送侧协议栈,donor-DU中的面向IAB节点的协议栈为接收侧协议栈,donor-DU中的面向donor-CU的协议栈为发送侧协议栈。针对下行传输,接入IAB节点的DU部分中的面向终端的协议栈为发送侧协议栈,面向宿主节点或donor-CU的协议栈为接收侧协议栈,接入IAB节点的MT部分的协议栈为接收侧协议栈,中间IAB节点的DU部分的协议栈为发送侧协议栈,中间IAB节点的MT部分的协议栈为接收侧协议栈,donor-DU中的面向IAB节点的协议栈为发送侧协议栈,donor-DU中的面向donor-CU的协议栈为接收侧协议栈。
以下将发送侧协议栈简称为发送侧,将接收侧协议栈简称为接收侧。
7、上层协议层、下层协议层
本申请实施例中,将协议层的上下关系定义为:在一个节点发送数据的过程中,先对数据包进行处理的协议层在后对数据包进行处理的协议层之上,即先对数据包进行处理的协议层可以认为是后对数据包进行处理的协议层的上层协议层;或者,在一个节点接收数据的过程中,先对数据包进行处理的协议层在后对数据包进行处理的协议层之下,即先对数据包进行处理的协议层可以认为是后对数据包进行处理的协议层的下层协议层。
示例性的,参见图3,在中间IAB节点的协议栈中,BAP层为RLC层、MAC层和PHY层的上层协议层,RLC层、MAC层和PHY层为BAP层的下层协议层。另外,需要说明的是,在本申请实施例中,针对一个节点,发送侧协议栈认为是接收侧协议栈的下层协议栈。例如,针对中间IAB节点的上行数据包,MT部分(即发送侧协议栈)的BAP层为DU部分(即 接收侧协议栈)的BAP层的下层协议层。
需要说明的是,针对接入IAB节点的下行数据包,由于接入IAB节点的MT部分的协议层和DU部分中的面向宿主节点或donor-CU的协议栈均为接收侧协议栈,因此,MT部分的BAP层为DU部分的IP层的下层协议层。针对接入IAB节点的上行数据包,由于接入IAB节点的MT部分的协议层和DU部分中的面向宿主节点或donor-CU的协议栈均为发送侧协议栈,因此,MT部分的BAP层为DU部分的IP层的下层协议层。
8、RLC信道(RLC channel,简称RLC CH)、逻辑信道(logical channel,简称LCH)
RLC信道是指RLC层和上层协议层(例如,Adapt层)之间的信道。逻辑信道是指RLC层和下层协议层(例如,MAC层)之间的信道。逻辑信道也可以称为MAC逻辑信道。RLC承载是指RLC层实体和MAC逻辑信道。
目前,终端的无线承载(radio bearer,简称RB)的配置对应有高层(例如,PDCP层)部分和低层(例如,RLC层和MAC层)部分的配置,RLC承载的配置是指RB对应的低层部分的配置,具体包括RLC层实体和MAC逻辑信道的配置。本文中,IAB节点在无线回传链路上的RLC承载包括RLC层和MAC逻辑信道部分,在无线回传链路上的RLC信道可以是指RLC层和PDCP层之间的信道,也可以是指RLC层和Adapt层之间的信道,具体视RLC层的上层协议层而定。下文中以RLC信道为RLC层和Adapt层之间的信道为例进行说明。IAB节点在无线回传链路上的RLC信道与RLC层实体一一对应,RLC信道也与RLC承载一一对应,具体可参见图5进行理解。
其中,终端的RB可以为数据无线承载(data radio bearer,简称DRB),也可以为信令无线承载(signalling radio bearer,简称SRB)。
为了方便描述,下文中将RLC信道、RLC承载和逻辑信道统称为业务区分通道。也就是说,下文中的业务区分通道可以替换为RLC信道、RLC承载和逻辑信道中的任意一个。
9、路由选择、承载选择
本申请实施例中的路由选择用于为数据包选择确定路由标识(Routing ID)。
本申请实施例中的承载选择也可以称为QoS选择。承载选择用于选择发送数据包的RLC承载或RLC信道或逻辑信道。
10、路由表
对于某一节点来说,路由表包括一个或多个路由标识,以及该一个或多个路由标识对应的该节点的下一跳节点的标识。同一路由标识对应的不同节点具有不同的路由表。比如,对于由路由标识1标识的传输路径,该传输路径包括的3个节点依次为节点1-节点2-节点3。节点1的路由表包括路由标识1,以及节点2的标识,路由标识1与节点2的标识有对应关系。节点2的路由表包括路由标识1,以及节点3的标识。
作为一种可能的实现方式,donor-CU向其管理/控制的每一IAB节点下发对应的路由表。donor-CU还向其同站的donor-DU发送该donor-DU对应的路由表。
目前的通信标准,比如R16中提到IAB节点进行宿主节点内(Intra-donor-CU)切换的场景,如图6所示,IAB节点从源父节点donor-DU1切换到目标父节点donor-DU2,其中,源父节点和目标父节点连接到同一个donor-CU。该场景下,发生切换的IAB节点可以称为切换IAB节点。切换IAB节点的IAB-MT和IAB-DU只受同一个donor-CU的管理/控制。在场景下,IAB节点切换过程中,终端的业务数据可以连续不中断。但是,目 前标准中并未提出宿主节点间(Inter-donor-CU)切换场景下,如何避免终端数据中断。并且,与Intra-donor-CU切换方案中切换IAB节点的MT、DU部分均连接到同一宿主节点不同,在Inter-donor-CU切换时,IAB节点的MT部分和DU部分可以连接到不同的宿主节点,因此,现有的Intra-donor-CU切换方案并不能适用于Inter-donor-CU切换场景。
为了在Inter-donor-CU切换场景下,提升终端业务数据的连续性,本申请实施例提供了如下实施例所示的通信方法。本申请的实施例应用于Inter-donor-CU切换场景。如图7-1所示,为本申请实施例适用的Inter-donor-CU切换场景的示例。
其中,以IAB2节点执行切换为例,即IAB2-MT从源父节点IAB1-DU切换到目标父节点IAB4-DU。IAB1-DU和IAB4-DU由不同donor-CU管理/控制。具体的,IAB1-DU由donor-CU1管理/控制,IAB4-DU由donor-CU2管理/控制。donor-CU1称为本次切换的源donor-CU,donor-CU2称为本次切换的目标donor-CU。
IAB2执行切换之前,各个IAB节点的宿主节点以及IAB节点与宿主节点之间的连接关系如下:
IAB1节点、IAB2节点、IAB3节点、以及终端的宿主节点均是donor-CU1,即IAB1节点、IAB2节点、IAB3节点、以及终端均由donor-CU1管理/控制。IAB1-MT与donor-CU1建立RRC连接,IAB1-DU与donor-CU1建立F1连接。IAB2-MT与donor-CU1建立RRC连接,IAB2-DU(如图7-1中两个IAB-DU中左边的IAB-DU)与donor-CU1建立F1连接。IAB3-MT与donor-CU1建立RRC连接,IAB3-DU(如图7-1中两个IAB3-DU中左边的IAB3-DU)与donor-CU1建立F1连接。UE与donor-CU1建立RRC连接;
IAB4节点由donor-CU2管理/控制,即:IAB4-MT与donor-CU2建立RRC连接,IAB4-DU与donor-CU2建立F1连接。
图7-1中,黑色的节点或节点部分由donor-CU2管控,白色的节点或节点部分由donor-CU1管控。后续图7-2或图7-3等附图中的黑色、白色表示含义与图7-1中类似。
在某些情况下,对于IAB2来说,IAB2-MT先执行切换,或称先切换完成,即,IAB2-MT先切换至donor-CU2,IAB2-DU还未切换至donor-CU2(即IAB2-DU还未与donor-CU2建立F1连接)。此种情况下,在IAB2-MT执行切换后,各个IAB节点的宿主节点以及与宿主节点之间的连接关系如下:
IAB1节点、IAB3节点、终端还由donor-CU1管理/控制,IAB4节点还由donor-CU2管理/控制。即:IAB1-MT维持与donor-CU1之间的RRC连接,IAB1-DU维持与donor-CU1之间的F1连接。IAB3-MT维持与donor-CU1之间的RRC连接,IAB3-DU(如图7-1中两个IAB3-DU中左边的IAB3-DU)维持与donor-CU1之间的F1连接。终端维持与donor-CU1之间的RRC连接。IAB4-MT维持与donor-CU2之间的RRC连接,IAB4-DU维持与donor-CU2之间的F1连接。
IAB2节点的管理/控制改变,即:IAB2-MT与donor-CU2建立RRC连接,但IAB2-DU(如图7-1中两个IAB2-DU中左边的IAB2-DU)维持与donor-CU1之间的F1连接。也就是说,同站的DU和MT分别连接在不同的donor-CU上。
在本申请实施例中,对于切换IAB节点来说,当切换IAB节点的IAB-MT先于IAB-DU切换至目标父节点,则称这种切换情况为自上向下切换(或者可以有其他名称)。比如,上文已提及,图7-1所示的切换情况中,IAB2-MT先于IAB2-DU切换至目标父节点,即IAB4节点,则这种切换情况即自上向下切换。
在又一些情况下,参见图7-2对于切换节点IAB2来说,还可以是IAB2-DU先于IAB2-MT执行切换,或IAB2-DU先于IAB2-MT完成切换(IAB2-DU切换指的是IAB2-DU的F1接口发生切换,切换之前IAB2-DU与donor-CU1建立F1连接,切换之后IAB2-DU与donor-CU2建立F1连接),即,在IAB2-DU、IAB3、终端已切换至donor-CU2的情况下,IAB2-MT还未切换至donor-CU2。此种情况下,在IAB2-DU执行切换后且IAB2-MT切换完成之前,各个IAB节点的宿主节点以及与宿主节点之间的连接关系如下:
相比于切换之前,IAB1节点、IAB4节点的宿主节点不变。具体的,IAB1-MT维持与donor-CU1之间的RRC连接,IAB1-DU维持与donor-CU1之间的F1连接。IAB4-MT维持与donor-CU2之间的RRC连接,IAB4-DU维持与donor-CU2之间的F1连接。
相比于切换之前,切换之后的终端、IAB3、IAB2的管控有所变化。具体的,IAB3-MT建立与donor-CU2之间的RRC连接,IAB3-DU(如图7-2中黑色IAB3-DU)建立与donor-CU2之间的F1连接。终端建立与donor-CU2之间的RRC连接。IAB2-MT维持与donor-CU1之间的RRC连接,但IAB2-DU(如图7-1中黑色IAB2-DU)建立与donor-CU2之间的F1连接。
在另一些实施例中,本申请的技术方案还可以适用于双连接(dual-connectivity,DC)场景。参见图7-4,仍以IAB2节点为例,IAB2-MT工作在双连接模式,指的是同时存在两个父节点IAB1-DU和IAB4-DU。作为一种可能的实现方式,M-donor作为IAB2-MT的主基站,S-donor作为IAB2-MT的辅基站。
其中,图7-4中,各IAB节点或终端与宿主节点之间的连接关系如下:
·IAB1节点由M-donor-CU1管理/控制,即:IAB1-MT与M-donor-CU1建立RRC连接,IAB1-DU与M-donor-CU1建立F1连接;
·IAB2-MT与M-donor-CU1建立RRC连接,IAB2-DU(如图7-4中白色部分)与M-donor-CU1建立F1连接。
·IAB3节点由M-donor-CU1管理/控制,即:IAB3-MT与M-donor-CU1建立RRC连接,IAB3-DU(如图7-4中右边白色部分)与M-donor-CU1建立F1连接;
·终端由M-donor-CU1管理/控制,即:终端与M-donor-CU1建立RRC连接;
·IAB4节点由S-donor-CU2管理/控制,即:IAB4-MT与S-donor-CU2建立RRC连接,IAB4-DU与S-donor-CU2建立F1连接。
在本申请实施例中,对于切换IAB节点来说,当切换IAB节点的IAB-DU先于IAB-MT切换至目标父节点,则称这种切换情况为自下向上切换(或者可以有其他名称)。比如,图7-2所示的切换情况中,IAB2-DU先于IAB2-MT切换至目标父节点,即IAB4节点,则这种切换情况即自下向上切换。
图7-1仅仅是本申请实施例所适用的通信系统的一种举例。具体实现时,通信系统还可以包括更多或更少的设备。通信系统的拓扑(比如具体的连接数、跳数)可以是其他类型。
比如,针对IAB2节点与donor-CU之间的链路,IAB2节点可以直接连接到donor-CU节点,即:不存在IAB1节点或IAB4节点,或者,IAB2节点与donor-CU之间存在至少2个中间IAB节点。即:除IAB1节点或IAB4节点之外,IAB2节点与donor-CU之间还存在至少一个其他IAB节点。
再比如,针对IAB2节点与终端之间链路,终端可直接连接IAB2节点,即:不存在IAB3节点,或者,终端和IAB2节点之间存在至少2个中间节点,即:除IAB3节点之外,终端和IAB2节点之间还存在至少一个其他IAB节点。
以下分别对各实施例进行描述。
实施例一
本申请实施例提供了一种通信方法,如图8所示,该方法包括:
S101、第一CU确定第一映射。
为方便描述,本申请实施例中提及的“第一宿主节点的CU”可称为第一CU,“第二宿主节点的CU”可称为第二CU,“第一宿主节点的DU”可称为第一DU,“第二宿主节点的DU”可称为第二DU。
在本申请的一些实施例中,第一宿主节点为源宿主节点,第二宿主节点为目标宿主节点;或者,第一宿主节点为目标宿主节点,第二宿主节点为源宿主节点。
源宿主节点即IAB节点切换之前,管控该IAB节点的宿主节点,目标宿主节点即IAB节点切换之后,管控该IAB节点的宿主节点。
在又一些实施例中,第一宿主节点为主宿主节点,第二宿主节点为辅宿主节点;或者,第一宿主节点为辅宿主节点,第二宿主节点为主宿主节点。
第一映射包括路由映射和/或承载映射。路由映射为下行数据和下行传输路径的之间的映射关系。下行传输路径包括第一CU通过第二DU与下行数据的目标节点之间的传输路径。换言之,下行传输路径包括第一CU通过第二DU与下行数据的目标节点之间的传输路径。比如,图7-1示出了下行传输路径的一种示例。
可选的,下行数据和下行传输路径之间的映射关系包括:下行数据的目标地址、下行数据的业务属性信息、以及目标地址和业务属性信息对应的第一路由标识(Routing ID)。其中,路由标识可以用于唯一标识一条传输路径。不同传输路径对应不同路由标识。
可选的,下行数据包括业务属性信息。
可选的,目标地址包括目标IP地址。可选的,业务属性信息包括差分服务代码点(differentiated services code point,简称DSCP)或流标签(flow label)。业务属性信息可以区分不同业务以便进行业务的(quality of service,QoS)保障。如此,可以将携带不同业务属性信息的数据通过不同传输路径进行传输。
以第一宿主节点为源宿主节点,第二宿主节点为目标宿主节点为例,在图7-1所示场景中,第一CU是donor-CU1,第二CU是donor-CU2。下行数据是发送给终端的,终端的接入IAB节点是IAB3节点,因此,下行数据的目标节点是IAB3节点, 下行数据的目标地址即IAB3节点的地址,下行传输路径是donor-CU1通过donor-DU2与IAB3节点之间的传输路径1。该下行传输路径1对应一个路由标识1。路由映射即下行数据与该路由标识1之间的映射关系。可选的,该下行数据与该路由标识1之间的映射关系,可以指IAB3节点的地址、该下行数据的业务属性信息,该IAB3节点的地址以及该业务属性信息对应的路由标识1。这就意味着,对于具有相应业务属性(比如DSCP为000111)且发往IAB3节点的下行数据(比如下行数据1),donor-DU2通过相应路由标识对应的下行传输路径(比如传输路径1)传输该下行数据1。
承载映射为下行数据和下行传输承载之间的映射关系;下行传输承载包括第二DU与第一节点之间的第一RLC信道;第一节点为第二DU的下一跳节点。其中,无线链路控制RLC信道又可称为回传RLC信道。
可选的,下行数据和下行传输承载之间的映射关系包括:下行数据的目标地址、下行数据的业务属性信息、目标地址以及业务属性信息对应的第一RLC信道的信息。
可选的,RLC信道的信息包括RLC信道的标识,以及该RLC信道的两端的节点标识(例如:节点的BAP地址)。关于RLC信道的信息的解释可适用于本申请的全部实施例中。
仍参见图7-1,下行传输承载包括donor-DU2与IAB4-MT的之间的第一RLC信道。承载映射即下行数据与该第一RLC信道之间的映射关系。可选的,该下行数据与该第一RLC信道之间的映射关系,可以指IAB3节点的地址、该下行数据的业务属性信息,该IAB3节点的地址以及该业务属性信息对应的第一RLC信道。这就意味着,对于具有相应业务属性且发往IAB3节点的下行数据(比如下行数据1),donor-DU2将通过与IAB4-MT之间的第一RLC信道向IAB4-MT发送该下行数据1。也就是说,donor-DU2上的下行承载映射由donor-CU1决定。
仍以图7-1为例,在一些实施例中,根据上文方案,donor-CU1确定donor-DU2与IAB4节点之间传输下行数据所使用的RLC信道,以便donor-DU2从donor-CU1收到该下行数据后,将该下行数据映射到对应的RLC信道上发送给IAB4节点。对IAB4节点而言,IAB4节点上的下行承载映射存在两种实现方式:
作为一种可能的实现方式,donor-CU2决定IAB4节点上的承载映射。以下行传输为例进行说明,donor-CU2决定IAB4节点上的下行承载映射,即:donor-CU2确定IAB4节点上的入口RLC信道和出口RLC信道之间的映射关系,并将该映射关系发送到IAB4节点。其中,入口RLC信道指的是donor-DU2和IAB4-MT之间的RLC信道,出口RLC信道指的是IAB4-DU和IAB2-MT之间的RLC信道。也就是说,donor-CU2将下行数据映射到该入口RLC信道上发送给IAB4-MT,IAB4-MT从该入口RLC信道上提取出该下行数据后,通过内部接口发送到IAB4-DU,由IAB4-DU将该下行数据映射到对应的出口RLC信道上发送给IAB2-MT。本实现方式中,下行数据和下行传输承载之间的映射关系包括:入口RLC信道的信息和出口RLC信道的信息。
作为另一种可能的实现方式,donor-CU1决定IAB4节点上的承载映射。以下行 传输为例进行说明,donor-CU1决定IAB4节点上的下行承载映射,即:donor-CU1确定IAB4节点上的入口RLC信道和出口RLC信道之间的映射关系,并将映射关系通过donor-CU2发送到IAB4节点。本实现方式中,下行数据和下行传输承载之间的映射关系包括:入口RLC信道的信息和出口RLC信道的信息。即:donor-CU1向donor-CU2发送第一映射,所述第一映射还包括:入口RLC信道的信息、对应的出口RLC信道的信息。其中,RLC信道的信息包括:RLC信道的标识,以及该RLC信道的两端的节点标识(例如:节点的BAP地址)。
仍以图7-1为例,在一些实施例中,根据上文方案,IAB4节点从donor-DU2该下行数据后,将该下行数据映射到对应的出口RLC信道上发送给IAB2节点。对IAB2节点而言,IAB2节点上的下行承载映射存在两种实现方式:
作为一种可能的实现方式,donor-CU1决定IAB2节点上的承载映射。以下行传输为例进行说明,donor-CU1决定IAB2节点上的下行承载映射,即:donor-CU1确定IAB2节点上的入口RLC信道和出口RLC信道之间的映射关系,并将该映射关系发送到IAB2节点。其中,入口RLC信道指的是IAB4-DU和IAB2-MT之间的RLC信道,出口RLC信道指的是IAB2-DU和IAB3-MT之间的RLC信道。也就是说,IAB4-DU将该下行数据映射到该入口RLC信道上发送给IAB2-MT,IAB2-MT从该入口RLC信道上提取出该下行数据后,通过内部接口发送到IAB2-DU,由IAB2-DU将该下行数据映射到对应的出口RLC信道上发送给IAB3-MT。本实现方式中,下行数据和下行传输承载之间的映射关系包括:入口RLC信道的信息和出口RLC信道的信息。
作为另一种可能的实现方式,donor-CU2决定IAB2节点上的承载映射。以下行传输为例进行说明,donor-CU2决定IAB2节点上的下行承载映射,即:donor-CU2确定IAB2节点上的入口RLC信道和出口RLC信道之间的映射关系,并将映射关系通过donor-CU1发送到IAB2节点。本实现方式中,下行数据和下行传输承载之间的映射关系包括:入口RLC信道的信息和出口RLC信道的信息。即:donor-CU2向donor-CU1发送映射关系,所述映射关系包括:入口RLC信道的信息、对应的出口RLC信道的信息。其中,RLC信道的信息包括:RLC信道的标识,以及该RLC信道的两端的节点标识(例如:节点的BAP地址)。
S102、第一CU向第二CU发送第一映射。
相应的,第二CU从第一CU接收第一映射。
可选的,第一CU向第二CU发送路由映射,即第一CU向第二CU发送如下三个参数:下行数据的目标地址、下行数据的业务属性信息,目标地址以及业务属性信息对应的第一路由标识。其中,下行数据的目标地址和业务属性信息,可以用于确定对应的第一路由标识。
可选的,第一CU向第二CU发送承载映射,即第一CU向第二CU发送如下三个参数:下行数据的目标地址、下行数据的业务属性信息,目标地址以及业务属性信息对应的第一RLC信道的信息。其中,下行数据的目标地址和业务属性信息,可以用于确定对应的第一RLC信道的信息。
第一CU与第二CU之间建立Xn接口,第一CU通过该接口向第二CU传递 XnAP消息,该XnAP消息中携带第一映射。
示例性的,仍参见图7-1,donor-CU1向donor-CU2发送如下参数:下行数据的目标地址(IAB3节点的地址)、下行数据的业务属性信息,目标地址以及业务属性信息对应的第一路由标识。
再比如,donor-CU1向donor-CU2发送如下参数:下行数据的目标地址(IAB3节点的地址)、下行数据的业务属性信息、donor-DU2与IAB4节点之间的RLC信道的信息。其中,该目标地址与业务属性信息这两者,与donor-DU2与IAB4节点之间的RLC信道的信息关联,意味着,donor-DU2可以根据目标地址和业务属性信息这两个参数,确定发送下行数据需使用的RLC信道。
再比如,donor-CU1向donor-CU2发送如下参数:入口RLC信道的信息、出口RLC信道的信息。其中,该入口RLC信道的信息和出口RLC信道的信息关联,以便donor-CU2将映射关系进一步发送到IAB4节点。意味着,IAB4节点可以根据入口RLC信道的信息,确定发送下行数据需使用的出口RLC信道。
可以理解,第二CU从第一CU接收第一映射,意味着,第二CU管控的节点的路由映射和/或承载映射可能发生变化,因此,第二CU可向第二CU管理控制的节点发送该第一映射,以便更新其管控的节点的路由映射和/或承载映射。比如,仍以图7-1为例,donor-CU2从donor-CU1接收第一映射后,可以向donor-DU2、IAB4节点发送第一映射,以便各节点根据第一映射对下行数据进行路由映射和/或承载映射。
S103、第一CU向第二DU发送下行数据。
相应的,第二DU从第一CU接收下行数据。
仍以图7-1为例来说明第一CU向第二DU发送下行数据的具体流程。在图7-1中,donor-CU1将发往终端的下行数据进行GTP-U层、UDP层、IP层的封装处理,生成IP数据包。其中,IP层封装处理包括:将终端的下行数据打上对应的业务属性信息(比如DSCP/流标签),并将该业务属性信息携带在IP头字段中,以及在IP头字段中添加该IP数据包的目标IP地址(即IAB3的IP地址)。
由于IAB2节点切换之前,donor-CU1通过源路径将下行数据发送到UE,源路径包括:donor-DU1、IAB1节点、IAB2节点、IAB3节点。其中,源路径上的所有节点和终端均由donor-CU1管理/控制,因此donor-CU1知道这些节点有关的网络拓扑,也就知道终端的接入IAB节点,即目标节点是IAB3节点。
一旦IAB2-MT发生切换,donor-CU1通过目标路径将下行数据发送到UE,目标路径包括:donor-DU2、IAB4节点、IAB2节点、IAB3节点。其中,目标路径上的不同节点受不同donor-CU管理/控制,例如:donor-DU2、IAB2-MT和IAB4节点(包括IAB4-MT和IAB4-DU)由donor-CU2管理/控制,IAB2-DU、IAB3节点(包括IAB3-MT和IAB3-DU)和终端均由donor-CU1管理/控制。为了下行数据在目标路径上的路由,在IAB3节点切换之前,donor-DU2需要预先为IAB3节点分配IP地址,并依次通过donor-CU2和donor-CU1将新分配的IP地址发送到IAB3节点。若donor-CU1决定通过目标路径将下行数据发送到UE,则donor-CU1在IP头字段中添加的目标IP地址更新为donor-DU2为IAB3节点分配的IP地址。由于donor-DU2为IAB3节点分配的IP地址与donor-DU2的IP地址具有相同网络前缀,因此,donor- CU1可以将生成的IP包正确路由到donor-DU2上。
donor-DU2从donor-CU1收到IP数据包后,从该IP数据包中提取出目标IP地址(即IAB3节点的IP地址)、业务属性信息(比如DSCP或流标签),并根据之前从donor-CU2接收到的第一映射对该IP数据包执行路由选择和/或承载选择。
具体的,donor-DU2根据从donor-CU2接收到的路由映射,比如接收的如下三个参数:目标IP地址、业务属性信息、该目标IP地址以及该业务属性信息对应的路由标识,以及IP数据包携带的目标IP地址、业务属性信息,可以确定该IP数据包对应的路由标识。比如,donor-DU2从donor-CU1接收的IP数据包携带的目标IP地址是192.168.6.2,业务属性信息是DSCP为000111。且,donor-DU2从donor-CU2接收到的路由映射如表1(表1仅是一个示例)所示。那么,donor-DU2根据查询表1可知该IP数据包对应的路由标识为1,并按照该路由标识对该IP数据包进行路由选择。
表1 路由映射
目标IP地址 业务属性信息 路由标识
192.168.6.2 DSCP为000111 1
192.168.6.3 DSCP为001111 2
在确定下行IP数据包的路由标识之后,donor-DU2再根据从donor-CU2接收到的路由表,即:路由标识,路由标识对应的下一跳节点地址,确定该IP数据包需要路由到哪个下一跳节点。其中,下一跳节点地址可以是该下一跳节点的BAP地址。示例性的,若该路由表中指示路由标识1对应的下一跳节点地址是IAB4节点的BAP地址,那么,donor-DU2就知道需将从donor-CU1接收的IP数据包发往IAB4节点。
donor-DU2将确定的路由标识携带在BAP层中随IP包一起发送到下一跳节点,即IAB4节点。
类似的,donor-DU2根据从donor-CU2接收的承载映射,比如目标IP地址、业务属性信息,以及该目标IP地址与该业务属性信息对应的RLC信道的标识,以及根据从donor-CU1接收的IP数据包,可以确定需将该IP数据包映射到哪个RLC信道上发送。比如,donor-DU2确定需将该IP数据包映射到图5所示的RLC信道1,并通过RLC信道1向donor-DU2的下一跳节点发送该IP数据包。
类似的,donor-CU2的后续节点,比如图7-1所示IAB4、IAB2、IAB3可以根据从相应宿主节点接收的路由映射、承载映射、路由表,对从前一节点接收的下行数据进行路由选择以及承载选择。比如,参见图7-6的(b),IAB4节点从入口RLC信道上收到IP数据包后,进行BAP层处理,提取出路由标识,并根据从donor-CU2获取到的第一映射(该第一映射可以携带在F1AP消息中,可选的,IAB4-DU与donor-CU2之间建立F1接口来传递F1AP消息)对该IP数据包执行路由选择和承载选择。
路由选择:IAB4节点根据从BAP层提取出的路由标识查找路由表(该路由表是从donor-CU2获取到的),即:根据路由标识,以及该路由标识对应的下一跳节点的BAP地址,确定该IP数据包需要路由到哪个下一跳节点(比如路由到IAB2节点)。
承载选择:IAB4节点根据从donor-CU2获取到的承载映射,即入口RLC信道的 标识,以及该入口RLC信道对应的出口RLC信道的标识,确定该IP数据包映射到哪个出口RLC信道。
类似的,IAB2节点、IAB3节点根据从donor-CU1获取到的第一映射执行路由选择和承载选择。
仍以图7-1为例,可以看出,在IAB2节点进行宿主节点间切换的场景中,该IAB2节点的MT、DU可能分别连接不同宿主节点,此种情况下,下行数据仍能够通过donor-CU1->donor-DU2->IAB4->IAB2->IAB3这条下行传输路径到达终端,因此,尽可能提升终端业务的连续性。
本申请实施例提供的通信方法,在IAB节点进行宿主节点间切换的场景中,由第一宿主节点的第一CU为终端的下行数据配置下行传输路径对应的路由映射和/或承载映射,并向第二宿主节点的第二CU发送该路由映射和/或承载映射,以便于第二CU将收到的该路由映射和/或承载映射进一步转发到第二宿主节点的第二DU。如此,第二宿主节点的第二DU在接收到来自第一宿主节点的第一CU的下行数据之后,可以按照该路由映射和/或承载映射发送该下行数据,也就是下行数据能够通过第二宿主节点到达终端,避免终端的业务连续性受到影响。
可选的,在第一CU确定第一映射之前,参见图9,上述方法还可以包括如下步骤S104:
S104、第二CU向第一CU发送第二CU分配的一个或多个第二路由标识。
相应的,第一CU从第二CU接收第二CU分配的一个或多个第二路由标识。
第一路由标识和一个或多个第二路由标识均不同。
本申请实施例中,为了避免第一CU分配的路由标识与第二CU分配的路由标识发生冲突,在第一CU确定上述第一映射之前(即路由映射),第二CU需要将其已经分配的一个或多个路由标识(即第二路由标识)发送到第一CU,示例性的,第二CU可以将其已经分配的所有路由标识发送到第一CU,以保证第一CU分配的路由标识和第二CU分配的路由标识均可以唯一标识传输路径。
可选的,在第一CU确定第一映射之前,参见图9,上述方法还可以包括步骤S105:
S105、第二CU向第一CU发送第二DU与第一节点之间的一个或多个RLC信道的信息,以及该一个或多个RLC信道对应的QoS信息。
相应的,第一CU从第二CU接收第二DU与第一节点之间的一个或多个RLC信道的信息以及一个或多个RLC信道对应的QoS信息。
其中,一个或多个RLC信道包括第一RLC信道。
本实施例中,第二DU与第一节点之间的RLC信道的信息是由第二DU进行配置,并通过第二CU的RRC消息发送到第一节点。第一CU无法获知第二DU与第一节点之间的RLC信道的信息。为了第一CU确定第一映射(即承载映射),则需要让第一CU能够获知第二DU与第一节点之间的RLC信道对应的QoS信息,从而使得第一CU能够确定下行数据映射到第二DU与第一节点之间的哪个RLC信道上传输。
示例性的,仍以图7-1为例,donor-CU1确定donor-DU2上的下行承载映射,则 意味着donor-CU1需确定下行数据的目标地址、下行数据的业务属性信息、目标地址以及业务属性信息对应的RLC信道(即donor-DU2和IAB4-MT之间的RLC信道)的信息。
但是,donor-CU1只知道其管理或控制的IAB节点的相应RLC信道信息(比如IAB2-DU与IAB3-MT之间的RLC信道信息),并不知道donor-CU2管控的donor-DU2与IAB4-MT之间的RLC信道信息,因此,为了让donor-CU1确定上述承载映射,donor-CU2需要将donor-DU2与IAB4-MT之间建立的RLC信道的QoS信息发送到donor-CU1。比如,donor-CU2向donor-CU1发送以下参数:donor-DU2的标识、IAB4节点的标识、donor-DU2与IAB4-MT之间建立的RLC信道的标识(比如RLC信道1-RLC信道3),以及每一个RLC信道对应的QoS信息(RLC信道1-RLC信道3各自对应的QoS信息)。
可选的,节点的标识可以是该节点的BAP地址信息或其他。比如,IAB4节点的标识可以为IAB4节点的BAP地址,donor-DU2的标识可以为donor-DU2的BAP地址。QoS信息包括以下至少一种信息:QoS流标识、5QI、PDU会话标识、保证比特率。
如此,第一CU在从第二CU接收到第二DU与第一节点之间的一个或多个RLC信道的信息,以及该一个或多个RLC信道对应的QoS信息之后,可以根据该一个或多个RLC信道对应的QoS信息,确定第二DU发送下行数据需使用的RLC信道。
在一些实施例中,下行数据的业务属性信息由第一CU确定。也就是,第一CU确定第一映射之前,上述方法还可以包括如下步骤S106:
S106、第一CU确定业务属性信息。
以图7-1为例说明第一CU确定业务属性的一种示例性方法,donor-CU1从核心网设备(比如UPF)接收终端的下行数据,donor-CU1能够根据终端的该下行数据的QoS信息,确定该下行数据的业务属性信息(比如DSCP/流标签)。donor-CU1收到终端的下行数据后,根据该下行数据的QoS信息,确定该下行数据的业务属性信息,并将该下行数据映射到对应的GTP隧道中发送到该下行数据的目标节点(例如:IAB3节点)。因此,donor-CU1可以确定该下行数据的隧道信息与业务属性信息的对应关系。其中,隧道信息可以比如但不限于是GTP-FTEID。GTP-FTEID包括隧道标识(general packet radio service tunneling protocol tunnel endpoint ID,简称GTP-TEID)和IP地址。示例性的,donor-CU1确定该下行数据的隧道信息与业务属性信息的对应关系,可以是donor-CU1在F1接口分配的GTP-FTEID和DSCP/flow label的对应关系,或者是IAB3-DU在F1接口分配的GTP-FTEID和DSCP/flow label的对应关系,或者是donor-CU1在F1接口分配的GTP-FTEID和IAB3-DU在F1接口分配的GTP-TEID与DSCP/flow label的对应关系。由此可见,本实施例中,第一CU从核心网设备(例如:UPF)接收终端的下行数据后,确定该下行数据的业务属性信息(步骤S106),然后再根据上述步骤S104、S105中从第二CU接收的信息,确定第一映射(步骤S101)。
实施例二
与实施例一相同的是,第一映射均由第一CU确定。其中,第一CU确定第一映 射的方案可参见实施例一中的步骤S101至步骤S105,这里不再赘述。与实施例一不同的是,实施例一中下行数据的业务属性由第一CU确定,在实施例二中,下行数据的业务属性信息由第二CU确定。具体的,参见图10,该实施例二的通信方法还包括:
S201、第一CU向第二CU发送下行数据的GTP隧道的信息以及该GTP隧道对应的QoS信息。
仍以图7-1为例,为了辅助donor-CU2确定终端下行数据的业务属性信息,donor-CU1需要将终端下行数据的GTP隧道对应的QoS信息发送给donor-CU2。由于donor-CU1将终端的下行数据映射到对应的GTP隧道中发送到该下行数据的目标节点,因此,可以通过该GTP隧道的信息来标识该下行数据。GTP隧道的信息的介绍可参见上文,不再赘述。
如此,donor-CU2(即第二CU)可根据从donor-CU1接收的信息,确定终端下行数据的业务属性信息。
S202、第一CU从第二CU接收下行数据的GTP隧道的信息以及该GTP隧道对应的业务属性信息。
仍以图7-1为例,为了让donor-CU1(即第一CU)确定第一映射,则donor-CU2(第二CU)需要将donor-CU2确定的终端下行数据的业务属性信息发送到donor-CU1。比如,donor-CU2向donor-CU1发送终端下行数据的GTP隧道的信息,以及该GTP隧道对应的业务属性信息。该业务属性信息可以用于donor-CU1确定终端下行数据的第一映射(包括路由映射和/或承载映射)。还可以用于用于donor-CU1为IP数据包打上业务属性信息。
S203、第一CU确定第一映射。
可选的,步骤S203之前,还可以包括S104和S105。作为一种可能的实现方式,第一CU根据步骤S104-S105中从第二CU接收的信息,确定第一映射。
S204、第一CU向第二CU发送第一映射。
相应的,第二CU从第一CU接收第一映射。
S205、第一CU向第二DU发送下行数据。
相应的,第二DU从第一CU接收下行数据。
步骤S203-S205的具体实现可参见上述步骤S101-S103。
实施例三
本申请还提供一种通信方法,与实施例一和实施例二不同的是,实施例一和实施例二中,第一映射是由第一CU确定,实施例三中,第一映射是由第二CU确定。具体的,参见图11,该方法包括:
S301、第一CU确定下行数据的业务属性信息。
S302、第一CU向第二CU发送下行数据的业务属性信息,以及该业务属性信息对应的QoS信息。
相应的,第二CU从第一CU接收下行数据的业务属性信息,以及业务属性信息对应的QoS信息。
其中,下行数据的业务属性信息,该业务属性信息对应的QoS信息的介绍可参 见实施例一、实施例二。
S303、第一CU向第二CU发送第一CU分配的一个或多个第四路由标识。
第二CU从第一CU接收第一CU分配的一个或多个第四路由标识。
其中,第三路由标识与一个或多个第四路由标识不同。如此,能够保证第二CU为下行数据的下行传输路径分配的路由标识与第一CU分配的路由标识不冲突。
S304、第二CU从第一CU接收一个或多个RLC信道的信息,以及一个或多个RLC信道对应的QoS信息。
可选的,一个或多个RLC信道包括下述第二RLC信道。或者说,该一个或多个RLC信道是第一CU管理控制的RLC信道,且该一个或多个RLC信道不受第二CU管理控制。示例性的,仍参见图7-1,该一个或多个RLC信道可以是IAB2-DU与IAB3-MT之间的RLC信道。donor-CU2从donor-CU1接收的RLC信道的信息包括:IAB2节点的标识、IAB3节点的标识、IAB2-DU与IAB3-MT之间建立的RLC信道的标识(比如RLC信道1-RLC信道3),以及每一个RLC信道对应的QoS信息(RLC信道1-RLC信道3各自对应的QoS信息)。
可选的,节点的标识可以是该节点的BAP地址信息或其他。比如,IAB2节点的标识可以为IAB2节点的BAP地址,IAB3节点的标识可以为IAB3节点的BAP地址。
本实施例中,步骤S301和S302,与步骤S303和S304的先后顺序不限定。
S305、第二CU确定第一映射。
第一映射包括路由映射和/或承载映射;路由映射为下行数据和下行传输路径之间的映射关系;承载映射为下行数据和下行传输承载之间的映射关系;下行传输路径包括第一宿主节点的第一CU通过第二宿主节点的第二分布式单元DU与下行数据的目标节点之间的传输路径;下行传输承载包括第二DU与第一节点之间的无线链路控制RLC信道;第一节点为第二DU的下一跳节点。
可选的,下行数据和下行传输路径之间的映射关系包括:下行数据的目标地址、下行数据的业务属性信息,目标地址以及业务属性信息对应的第三路由标识。
可选的,下行数据和下行传输承载之间的映射关系包括:下行数据的目标地址、下行数据的业务属性信息、目标地址以及业务属性信息对应的第二RLC信道的信息。
可选的,第二CU根据步骤S302-S304中从第一CU接收的信息,确定第一映射。具体的,第二CU根据业务属性信息、以及业务属性信息对应的QoS信息,确定路由映射,即确定目标地址、业务属性信息,以及目标地址与业务属性信息对应的路由标识。可以理解,该路由标识与第一CU分配的路由标识不同。第二CU根据业务属性信息以及对应的QoS信息,确定承载映射,即确定目标地址、业务属性信息,以及这两者对应的RLC信道的信息。
S306、第一CU向第二DU发送下行数据。
相应的,第二DU从第一CU接收下行数据。
第二DU从第一CU接收下行数据后,根据从第二CU收到的第一映射,执行下行数据的路由选择和承载选择。
仍以图7-1为例,在一些实施例中,根据上文方案,donor-CU2确定donor-DU2与IAB4节点之间传输下行数据所使用的RLC信道,以便donor-DU2从donor-CU1收到该下行数据后,将该下行数据映射到对应的RLC信道上发送给IAB4节点。
对IAB4节点而言,根据donor-CU2确定的入口RLC信道和出口RLC信道之间的映射关系,将该下行数据发送到IAB2节点。其中,入口RLC信道指的是donor-DU2和IAB4-MT之间的RLC信道,出口RLC信道指的是IAB4-DU和IAB2-MT之间的RLC信道。
对IAB2节点而言,IAB2节点上的下行承载映射存在两种实现方式:
作为一种可能的实现方式,donor-CU1决定IAB2节点上的承载映射。以下行传输为例进行说明,donor-CU1决定IAB2节点上的下行承载映射,即:donor-CU1确定IAB2节点上的入口RLC信道和出口RLC信道之间的映射关系,并将该映射关系发送到IAB2节点。其中,入口RLC信道指的是IAB4-DU和IAB2-MT之间的RLC信道,出口RLC信道指的是IAB2-DU和IAB3-MT之间的RLC信道。也就是说,IAB4-DU将该下行数据映射到该入口RLC信道上发送给IAB2-MT,IAB2-MT从该入口RLC信道上提取出该下行数据后,通过内部接口发送到IAB2-DU,由IAB2-DU将该下行数据映射到对应的出口RLC信道上发送给IAB3-MT。本实现方式中,下行数据和下行传输承载之间的映射关系包括:入口RLC信道的信息和出口RLC信道的信息。
在该实现方式中,donor-CU1并不知道IAB2节点上的入口RLC信道的信息,为了让donor-CU1决定承载映射,则donor-CU1需要从donor-CU2接收IAB2节点上的入口RLC信道的信息。其中,RLC信道的信息包括:IAB4节点的标识、IAB2节点的标识、IAB4-DU与IAB2-MT之间建立的RLC信道的标识(比如RLC信道1-RLC信道3),以及每一个RLC信道对应的QoS信息(RLC信道1-RLC信道3各自对应的QoS信息)。
可选的,节点的标识可以是该节点的BAP地址信息或其他。比如,IAB4节点的标识可以为IAB4节点的BAP地址,IAB2节点的标识可以为IAB2节点的BAP地址。
作为另一种可能的实现方式,donor-CU2决定IAB2节点上的承载映射。以下行传输为例进行说明,donor-CU2决定IAB2节点上的下行承载映射,即:donor-CU2确定IAB2节点上的入口RLC信道和出口RLC信道之间的映射关系,并将映射关系通过donor-CU1发送到IAB2节点。本实现方式中,下行数据和下行传输承载之间的映射关系包括:入口RLC信道的信息和出口RLC信道的信息。
在该实现方式中,donor-CU2并不知道IAB2节点上的出口RLC信道的信息,为了让donor-CU2决定承载映射,则donor-CU2需要从donor-CU1接收IAB2节点上的出口RLC信道的信息。其中,RLC信道的信息可参见步骤S304中的描述,这里不再赘述。
对IAB3节点而言,类似于IAB2节点,IAB3节点上的下行承载映射方案同IAB2节点2的映射方案相同,这里就不再赘述。
实施例四
本申请还提供一种通信方法,与实施例三相同的是,均由第二CU确定第一映射,与实施例三不同的是,实施例四中,业务属性信息由第二CU确定。具体的,参见图12,该方法还包括:
S401、第一CU向第二CU发送下行数据的GTP隧道的信息以及GTP隧道对应的QoS信息。
相应的,第二CU从第一CU接收下行数据的GTP隧道的信息以及GTP隧道对应的QoS信息。
S402、第二CU确定下行数据的GTP隧道对应的业务属性信息。
第二CU根据下行数据的GTP隧道的信息以及GTP隧道对应的QoS信息,确定下行数据的GTP隧道对应的业务属性信息。
S403、第二CU向第一CU发送下行数据的GTP隧道的信息以及该GTP隧道对应的业务属性信息。
第一CU从第二CU接收下行数据的GTP隧道的信息以及该GTP隧道对应的业务属性信息。
S404、第一CU向第二CU发送第一CU分配的一个或多个第四路由标识。
第二CU从第一CU接收第一CU分配的一个或多个第四路由标识。第三路由标识和一个或多个第四路由标识不同。
步骤S404可参见上述步骤S303。
S405、第一CU向第二CU发送一个或多个RLC信道的信息,以及一个或多个RLC信道对应的QoS信息。
第二CU从第一CU接收一个或多个RLC信道的信息,以及一个或多个RLC信道对应的QoS信息。
步骤S405可参见上述步骤S304。
S406、第二CU确定第一映射。
第一映射包括路由映射和/或承载映射;路由映射为下行数据和下行传输路径的第一路由标识之间的映射关系;承载映射为下行数据和下行传输承载之间第一回传无线链路控制RLC信道和下行数据的映射关系;下行传输路径包括第一宿主节点的第一CU通过第二宿主节点的第二分布式单元DU与下行数据的目标节点之间的传输路径;下行传输承载第一RLC信道包括第二DU与第一节点之间的无线链路控制RLC信道;第一节点为第二DU的下一跳节点;
步骤S406可参见上述步骤S305。
S407、第一CU向第二DU发送下行数据。
相应的,第二DU从第一CU接收下行数据。
步骤S407可参见上述步骤S306。
上述实施例均以自上向下切换为例对本申请实施例的技术方案进行说明,以图7-1的场景为例,IAB2节点自上向下切换指的是IAB2-MT先于IAB2-DU执行切换,或先完成切换。此种场景下,第一宿主节点是源宿主节点,第二宿主节点是目标宿主节点。
本申请实施例的技术方案(比如上述实施例一至实施例四的技术方案)还适用于 自下向上切换,比如,图7-2所示的自下向上切换场景中,IAB2-DU先于IAB2-MT执行切换或先完成切换。此种场景下,第一宿主节点是目标宿主节点,第二宿主节点是源宿主节点。以图7-2为例,donor-CU2从核心网设备接收下行数据后,可以为该下行数据打上业务属性信息,并将携带业务属性信息的下行数据发送给donor-DU1。
其中,下行数据与业务属性信息的对应关系,可以由donor-CU2自己生成,也可以由donor-CU1生成,再由donor-CU1发给donor-CU2。
donor-DU1接收来自donor-CU2的下行数据,并根据路由映射对该下行数据执行路由选择,以及根据承载映射对该下行数据执行承载选择。
其中,donor-DU1所需的路由映射可以是donor-CU1确定并发送给donor-DU1的。路由映射也可以是donor-CU2确定,并发送给donor-CU1,再由donor-CU1发给donor-DU1的。类似的,承载映射可以是donor-CU1确定并发送给donor-DU1的。承载映射也可以是donor-CU2确定,并发送给donor-CU1,再由donor-CU1发给donor-DU1的。
需要说明的是,本申请实施例主要以第一CU、第二CU确定下行数据的第一映射为例讲述宿主节点间切换场景下,终端下行数据如何正常传输的方案。终端上行数据的映射配置可参见配置下行数据的第一映射的方法,以便使得终端能够进行上行数据传输。其中,终端上行数据的映射配置,主要是对终端的接入IAB节点上的映射配置(本实施例中终端的接入IAB节点为IAB3节点),如上,IAB3节点上的路由/承载映射可以是donor-CU1确定并发送给IAB3节点,也可以是donor-CU2确定,并发送给donor-CU1,再由donor-CU1发送给IAB3节点,这里不再对如何使得上行数据正常传输的方案进行具体介绍。
本申请实施例一至实施例四的方案除了适用于自下向上或自上向下的宿主节点间切换场景,还适用于诸如图7-4所示的双连接场景。
实施例五
本申请实施例还提供一种通信方法,该方法应用在双连接场景下。
在RAN3#110次会议,标准提到R17eIAB需在双连接场景下支持CP-UP传输分离的情况,也就是说,支持F1-C消息和F1-U数据使用不同路径传输,具体的,F1-C消息通过单跳空口传输,而F1-U数据可以通过多跳空口传输。
如图7-5和图7-6示出了F1-C消息和F1-U数据传输的两种场景(Scenario)。其中,双连接场景下,可以将IAB节点和主基站之间的传输路径称为主小区组(master cell group,MCG)路径(或者可以为其他名称),将IAB节点和辅基站之间的路径称为辅小区组(secondary cell group,SCG)路径。
如图7-5的(a)所示,Scenario1中,在SCG路径上,辅基站S-donor与IAB2之间可以存在1个或者多个其他IAB节点,即存在多跳节点。该SCG路径可用于传输F1-U数据。在MCG路径上,主基站M-gNB和IAB2之间没有其他IAB节点,该MCG路径可用于传输F1-C消息。如图7-6的(a)所示,Scenario2中,在MCG路径上,M-donor和IAB-node2之间可以存在1个或者多个其他IAB节点,图中以存在一个其他IAB节点为例进行说明。该MCG路径可用于传输F1-U数据。如图7-5的(a)所示的单跳空口的SCG路径可用于传输F1-C消息。
上述Scenario 1或Scenario 2中的S-donor可以是CU-DU分离架构,也可以是一个完整实体。IAB1和IAB2可以是MT-DU架构。图7-5的(b)和图7-6的(b)是以donor为DU-CU架构,IAB为MT-CU架构为例进行绘制。
可以看出,F1-C消息可以通过单跳的MCG路径或SCG路径进行传输,F1-U数据可通过单跳或多跳的SCG路径或MCG路径传输。
本实施例主要针对上述双连接场景,参见图13,该方法包括如下步骤:
S501、主网络设备确定第一指示信息。
第一指示信息用于请求/指示辅网络设备通过第一信令无线承载(SRB)向第一节点传输第一信令。第一信令无线承载是SCG路径上的信令无线承载。可选的,第一信令无线承载包括SRB3或split SRB。可选的,第一信令包括F1-C消息。示例性的,F1-C消息包括F1AP消息,或者,F1-C消息包括SCTP/IPsec相关的信令。
也就是说,该方法中,主网络设备判断是否需要辅网络设备建立第一信令无线承载来传输第一信令,并请求或指示辅网络设备建立第一信令无线承载来传输第一信令。
以图7-6的(b)的场景2为例,主网络设备为M-donor,辅网络设备为S-gNB,第一节点是IAB2,M-donor向S-gNB发送第一指示信息,以便请求/指示S-gNB通过比如SRB3(或split SRB)向IAB2传输F1-C消息。
S502、主网络设备向辅网络设备发送第一指示信息。
作为一种可能的实现方式,辅网络设备从主网络设备接收第一指示信息后,若满足建立第一SRB的条件,则参见图14,辅网络设备还可以执行步骤S503、建立SRB3,并使用SRB3传输第一信令,比如F1-C消息。
可选的,辅网络设备向主网络设备发送指示信息,用于指示第一信令无线承载已建立。
或者,作为另一种可能的实现方式,若辅网络设备不满足建立第一SRB的条件,比如,无法建立SRB3,没有足够资源等,则参见图15-1,辅网络设备还可以执行如下步骤S504:
S504、辅网络设备向主网络设备发送第二指示信息。
主网络设备从辅网络设备接收第二指示信息。
第二指示信息用于指示第一信令无线承载建立失败,或者,无法通过第一信令无线承载传输第一信令。可选的,第二指示信息携带第一信令无线承载建立失败的原因值。
如此,主网络设备能够根据从辅网络设备接收的第二指示信息,明确知道第一信令无线承载的建立情况,以便确定传输第一信令的方式。
如下,结合附图介绍通过SCG路径F1-C消息的具体实现方式。
方式一:通过SCG上的SRB3传输F1-C消息。
结合图15-2,该方式中,M-donor-CU生成F1-C消息,即F1AP消息(包括UE-associated F1AP消息、non-UE associated F1AP消息),并将生成的F1-C消息封装在XnAP消息中,通过与S-gNB之间的Xn接口将XnAP消息发送到S-gNB。S-gNB从收到的XnAP消息中提取出F1-C消息,将F1-C消息封装在Uu接口的NR RRC消息 中,再映射到SRB3上发送到IAB-MT2。IAB-MT2从RRC消息中提取出F1-C消息,并通过内部接口发送到IAB-DU2进行解析。
或者,M-donor-CU生成F1-C消息,并经过SCTP层处理,将生成的F1-C消息封装在IP包中,再将该IP包携带在XnAP消息中,通过Xn接口将XnAP消息发送到S-gNB。SgNB从收到的XnAP消息中提取出该IP包,并将IP包封装在Uu接口的NR RRC消息中,再将RRC消息映射到SRB3上,通过SRB3将RRC消息发送到IAB-MT2。IAB-MT2从RRC消息中提取出该IP包,并通过内部接口发送到IAB-DU2,由IAB-DU2进行解析。
方式二:通过SCG上的split SRB传输F1-C消息。
结合图15-3,该方式中,M-donor-CU将生成的F1-C消息封装在NR RRC消息中,然后将该RRC消息封装在XnAP消息中,通过Xn接口将XnAP消息发送到S-gNB。S-gNB从收到的XnAP消息中提取出该RRC消息,再映射到split SRB(例如:split SRB1或者split SRB2)上,并通过该split SRB将该RRC消息发送到IAB-MT2。IAB-MT2从RRC消息中提取出F1-C消息,并通过内部接口发送到IAB-DU2,以便进行解析。
或者,M-donor-CU生成F1-C消息,并将生成的F1-C消息经过SCTP层和IP层处理后,再封装在NR RRC消息中,然后将该RRC消息经过PDCP层处理后得到PDCP PDU,将该PDCP PDU封装在XnAP消息中,通过Xn接口将XnAP消息发送到S-gNB。S-gNB从收到的XnAP消息中提取出该PDCP PDU,再映射到split SRB上,以便发送到IAB-MT2。IAB-MT2从接收的内容中提取出IP包,并通过内部接口将该IP包发送到IAB-DU2,以便进行解析。
实施例六
本申请实施例还提供一种通信方法,该方法应用在双连接场景。与实施例五中由主网络设备确定第一信令在SCG路径上传输使用的信令无线承载(SRB3或split SRB)不同,实施例六中,由辅网络设备确定第一信令在SCG路径上传输使用的信令无线承载。参见图16,该方法包括:
S601、辅网络设备向主网络设备发送第五指示信息。
相应的,主网络设备从辅网络设备接收第五指示信息。
第五指示信息用于指示第一信令在SCG路径上传输对应的第一信令无线承载,即指示通过第一信令无线承载传输第一信令。可选的,第一信令包括F1-C消息。示例性的,F1-C消息包括F1AP消息,或者,F1-C消息包括SCTP/IPsec相关的信令。
可选的,第一信令无线承载包括SRB3或split SRB。
在一些实施例中,若辅网络设备确定需通过SCG路径传输第一信令,则向主网络设备发送第五指示信息,以便指示第一信令在SCG路径上传输对应的第一信令无线承载。
在另一些实施例中,还可以由主网络设备触发辅网络设备发送第五指示信息。作为一种可能的实现方式,步骤S601之前,主网络设备可以执行步骤S602、向辅网络设备发送第六指示信息,第六指示信息用于请求辅网络设备传输第一信令。响应于该第六指示信息,辅网络设备判断是否通过SCG路径传输第一信令,若是,则向主网 络设备发送第五指示信息。
S603、主网络设备根据第五指示信息向辅网络设备发送第一信令。
当辅网络设备使用不同第一信令无线承载传输第一信令时,主网络设备对第一信令的处理可以不同。如下分别介绍两种处理方式:
第一种处理方式,若第五指示信息指示的第一信令无线承载为SRB3,主网络设备向辅网络设备发送第一信令。相当于主网络设备直接透传了第一信令。后续,辅网络设备将第一信令封装在RRC消息中,并通过SRB3向第一节点发送该RRC消息。具体过程参加实施例五中步骤S504中的方式一,这里就不再赘述。
第二种处理方式,若第五指示信息指示的第一信令无线承载为split SRB,主网络设备先将第一信令封装在RRC消息,并向辅网络设备发送RRC消息。后续,辅网络设备通过split SRB向第一节点发送RRC消息。具体过程参加实施例五中步骤S504中的方式二,这里就不再赘述。
实施例七
本申请还提供一种通信方法,用于网络设备为第一节点指示用于传输第一信令的上行传输路径(SCG路径或MCG路径),参见图17,方法包括:
S701、网络设备确定第三指示信息。
第三指示信息用于指示用于传输第一信令的上行传输路径的信息,上行传输路径包括MCG路径或SCG路径。
可选的,第三指示信息可以为枚举类型,即第三指示信息包括MCG路径的标识或者SCG路径的标识。或者,第三指示信息可以包括小区组的标识。或者,包括预设标识。比如,设置1比特用于指示MCG路径或SCG路径,0用于指示MCG路径,1用于指示SCG路径。
网络设备可以是主网络设备或辅网络设备。也就是说,可以由主网络设备或辅网络设备确定确定第一信令的上行传输路径是SCG路径或MCG路径。
S702、网络设备向第一节点发送第三指示信息。
若网络设备为主网络设备,则主网络设备直接向第一节点发送第三指示信息,以便指示第一节点用于传输第一信令的上行传输路径是SCG路径或MCG路径。
或者,若网络设备为辅网络设备,则其通过主网络设备向第一节点发送第三指示信息。
仍以图7-6的(b)的场景2为例,主网络设备为M-donor,辅网络设备为S-gNB,第一节点是IAB2,若由M-donor确定第三指示信息(即确定用于传输第一信令(比如F1-C消息)的上行传输路径),则其直接向IAB2发送第三指示信息,例如:M-donor通过RRC消息携带第三指示信息,并将RRC消息发送到IAB2-MT。如此,IAB2能够获知需通过比如SCG路径上的S-gNB向M-donor传输F1-C消息。再比如,若由S-gNB确定第三指示信息,则其通过M-donor向IAB2发送第三指示信息。例如:S-gNB通过RRC消息携带第三指示信息,并将RRC消息发送到M-donor,由M-donor将该RRC消息进一步发送到IAB2-MT。
可选的,网络设备还可以执行步骤S703、向第一节点发送第四指示信息。
其中,第四指示信息用于指示上行传输路径上用于传输第一信令的无线承载的信 息。可选的,若上行传输路径为MCG路径,则对应的信令无线承载可以是SRB1或者SRB2。若上行传输路径为SCG路径,则对应的信令无线承载可以是SRB3或者split SRB。
或者,可选的,第四指示信息用于指示上行传输路径上用于传输第一信令的逻辑信道的信息。
如此,第一节点能够获知用于传输第一信令(比如F1-C消息)的第一信令无线承载(比如SCG路径的SRB3)。
实施例八
本申请还提供一种通信方法,用于网络设备为第一节点指示用于传输第一数据的上行传输路径,参见图18,方法包括:
S801、网络设备确定第七指示信息。
第七指示信息用于指示用于传输第一数据的上行传输路径的信息,上行传输路径包括MCG路径或SCG路径。可选的,第一数据可以为F1-U数据。示例性的,F1-U数据指的是donor-CU和接入IAB节点的DU之间建立的GTP隧道中传输的数据,接入IAB节点为终端接入的IAB节点。比如,仍以图7-1为例,donor-CU1与IAB3-DU之间的GTP隧道中传输的数据,可以称为F1-U数据。
可选的,第七指示信息可以为枚举类型,即第七指示信息包括MCG路径的标识或者SCG路径的标识。或者,第七指示信息可以包括小区组的标识。或者,包括预设标识。比如,设置1比特用于指示MCG路径或SCG路径,0用于指示MCG路径,1用于指示SCG路径。
网络设备可以是主网络设备或辅网络设备。也就是说,可以由主网络设备或辅网络设备确定确定第一数据的上行传输路径是SCG路径或MCG路径。
S802、网络设备向第一节点发送第七指示信息。
若网络设备为主网络设备,则主网络设备直接向第一节点发送第七指示信息,以便指示第一节点用于传输第一数据的上行传输路径是SCG路径或MCG路径。可选的,第七指示信息携带在主网络设备生成的RRC消息中。
或者,若网络设备为辅网络设备,则其通过主网络设备向第一节点发送第七指示信息。第七指示信息携带在辅网络设备生成的RRC消息中。这样一来,辅网络设备可以只向第一节点下发一个第七指示信息,第一节点可以将所有F1-U数据在第七指示信息指示的UL路径上传输。
在另一些实施例中,若网络设备为辅网络设备,辅网络设备还可以通过主网络设备向第一节点发送GTP-TEID。其中,GTP-TEID和第七指示信息具有对应关系。可选的,第七指示信息和GTP-TEID携带在辅网络设备生成的F1AP消息中。如此,辅网络设备可以per GTP-U配置第一节点的UL F1-U数据的传输。也就是说,辅网络设备分别指示每种类型F1-U数据的UL传输路径。此种指示方式比较灵活,可以将不同类型F1-U数据在不同的UL传输路径上传输,有利于负载均衡。
可选的,网络设备还可以执行步骤S803、向第一节点发送第八指示信息。
其中,第八指示信息用于指示上行传输路径上用于传输第一数据的数据无线承载的信息。
或者,可选的,第八指示信息用于指示上行传输路径上用于传输第一数据的逻辑信道的信息。
可选的,第八指示信息可以携带在网络设备生成的RRC消息中,并由网络设备将RRC消息发送到第一节点。
或者,可选的,第八指示信息可以被携带在网络设备生成的F1AP消息中,并由网络设备将RRC消息发送到第一节点。
如此,第一节点能够获知用于传输第一数据(比如F1-U消息)的第一数据无线承载。
本申请实施例的方案主要以CP/UP传输分离的双连接场景为例进行说明,可以理解的是,本申请实施例的方案同样适用于双连接的其他场景,比如CP/UP不分离的场景。
上述实施例五至实施例八可适用于诸如图7-5或图7-6所示双连接场景或其他类似场景。
实施例九
本申请实施例还提供一种通信方法,用于在宿主节点间切换场景下获取所需网络的网络拓扑。该方法适用于宿主节点间切换的场景,或诸如图7-4所示的双连接场景(或其他双连接场景)。参见图19,该方法包括:
S901、第二CU向第一CU发送网络的第一拓扑信息。
相应的,第一CU从第二CU接收网络的第一拓扑信息。
网络的第一拓扑信息用于表征该网络中节点以及节点之间的连接关系。可选的,第二CU向发送自己管控的节点的拓扑信息。示例性的,参见图7-1,donor-CU2可以向donor-CU1发送donor-DU2、IAB4对应的拓扑信息。
第一CU可以是源宿主节点的CU,第二CU是目标宿主节点的CU。或,第一CU可以是目标宿主节点的CU,第二CU是源宿主节点的CU。
在另一些实施例中,第一CU也可以向第二CU发送其管控的节点的拓扑信息。仍参见图7-1,以第一CU是donor-CU1,第二CU是donor-CU2为例,donor-CU1可以向donor-CU2发送donor-DU1、IAB1、IAB2、IAB3的拓扑信息。
S902、第一CU根据第一拓扑信息确定路由表或者承载映射。
S903、第一CU向第二CU发送路由表或承载映射。
以确定路由表为例进行说明,本实施例的方法,意味着,第一CU可以确定目标路径上各节点的路由表。参见图7-1,目标路径包括:第一CU、第二DU、IAB4节点、IAB2节点和IAB3节点。第一CU将确定的路由表发送到第二CU,由第二CU发送到对应的节点。其中,路由表包括路由标识以及该路由标识对应的下一跳节点的标识。示例性的,参见图7-1,donor-CU1确定donor-DU2上的路由表,例如:路由标识1和IAB4节点的标识的对应关系,donor-CU1将该对应关系发送到donor-CU2,由donor-CU2发送到donor-DU2,以便donor-DU2根据该对应关系进行路由。
实施例九可适用于上述图7-1、图7-2等宿主节点间切换的场景中,以及适用于图7-4等双连接场景中。
上述主要从方法角度对本申请实施例的方案进行了介绍。可以理解的是,网络节 点为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络节点进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元1701中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请实施例还提供了一种网络节点(记为网络节点170),如图20所示,网络节点170包括处理单元1701、收发单元1702。
以网络节点170是第一宿主节点为例,作为一种可能的实现方式:
处理单元1701,用于确定第一映射,第一映射包括路由映射和/或承载映射;路由映射为下行数据和下行传输路径之间的映射关系;承载映射为下行数据和下行传输承载之间的映射关系;下行传输路径包括第一CU通过第二宿主节点的第二DU与下行数据的目标节点之间的传输路径;下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;第一节点为所述第二DU的下一跳节点;
收发单元1702,用于向第二宿主节点的第二CU发送第一映射;以及向所述第二DU发送下行数据。
可选的,收发单元1702,还用于从所述第二CU接收所述第二CU分配的一个或多个第二路由标识;第一路由标识和一个或多个第二路由标识不同。
可选的,收发单元1702,还用于从所述第二CU接收所述第二DU与第一节点之间的一个或多个RLC信道的信息以及一个或多个RLC信道对应的服务质量QoS信息;一个或多个RLC信道包括第一RLC信道。
可选的,收发单元1702,还用于向所述第二CU发送下行数据的通用分组无线服务隧道协议GTP隧道的信息以及GTP隧道对应的QoS信息。
可选的,收发单元1702,还用于从所述第二CU接收下行数据的GTP隧道的信息以及GTP隧道对应的业务属性信息。
以网络节点170是第二宿主节点为例,作为一种可能的实现方式:
处理单元1701,用于确定第一映射,第一映射包括路由映射和/或承载映射;路由映射为下行数据和下行传输路径之间的映射关系;承载映射为下行数据和下行传输承载之间的映射关系;下行传输路径包括第一CU通过第二宿主节点的第二DU与下行数据的目标节点之间的传输路径;下行传输承载包括所述第二DU与第一节点之间的RLC信道;第一节点为所述第二DU的下一跳节点;
收发单元1702,用于从所述第一CU接收下行数据。
可选的,收发单元1702,还用于从所述第一CU接收下行数据的业务属性信息以及业务属性信息对应的服务质量QoS信息。
可选的,收发单元1702,还用于从所述第一CU接收所述第一CU分配的一个或多个第四路由标识。第三路由标识和一个或多个第四路由标识不同。
可选的,收发单元1702,还用于从所述第一CU接收一个或多个RLC信道的信息,以及一个或多个RLC信道对应的QoS信息。
可选的,收发单元1702,还用于从所述第一CU接收下行数据的通用分组无线服务隧道协议GTP隧道的信息以及GTP隧道对应的QoS信息。
可选的,收发单元1702,还用于向所述第一CU发送下行数据的GTP隧道的信息以及GTP隧道对应的业务属性信息。
其中,下行数据和下行传输路径之间的映射关系,下行数据和下行传输承载之间的映射关系的具体解释可参见方法实施例。
可选的,第一宿主节点为源宿主节点,第二宿主节点为目标宿主节点;或者,第一宿主节点为目标宿主节点,第二宿主节点为源宿主节点。
可选的,第一宿主节点为主宿主节点,第二宿主节点为辅宿主节点;或者,第一宿主节点为辅宿主节点,第二宿主节点为主宿主节点。
可选的,网络节点170还可以包括存储单元1703,用于存储网络节点170所需数据等。
上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
上述网络节点170可以为设备,也可以为设备内的芯片或其他组件。
图20中的单元也可以称为模块,例如,处理单元1701可以称为处理模块。另外,在图20所示的实施例中,各个单元的名称也可以不是图中所示的名称,具体取决于模块的划分方式。
图20中的各个单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,简称ROM)、随机存取存储器(random access memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供了一种网络节点(记为网络节点200)的硬件结构示意图,参见图21或图22,该网络节点200包括处理器2001,可选的,还包括与处理器2001连接的存储器2002。
处理器2001可以是一个通用中央处理器(central processing unit,简称CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,简称ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器2001也可以包括多个CPU,并且处理器2001可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据 (例如计算机程序指令)的处理核。
存储器2002可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,简称EEPROM)、只读光盘(compact disc read-only memory,简称CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器2002可以是独立存在,也可以和处理器2001集成在一起。其中,存储器2002中可以包含计算机程序代码。处理器2001用于执行存储器2002中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图21,网络节点200还包括收发器2003。处理器2001、存储器2002和收发器2003通过总线相连接。收发器2003用于与其他通信设备或网络节点中的其他协议层通信。可选的,收发器2003可以包括发射机和接收机。收发器2003中用于实现接收功能(例如,接收上层协议层递交的数据包)的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器2003中用于实现发送功能(例如,向其他协议层递交数据包)的器件可以视为发射机,发射机用于执行本申请实施例中的发送或递交的步骤。
基于第一种可能的实现方式,图21所示的结构示意图可以用于示意上述实施例中所涉及的网络节点的结构。处理器2001用于对网络节点的动作进行控制管理,例如,处理器2001用于支持网络节点执行上述方法实施例(比如图8至图14)中的步骤,和/或本申请实施例中所描述的其他过程中的网络节点执行的动作。处理器2001可以通过收发器2003与其他通信设备或网络节点中的其他协议层通信。存储器2002用于存储终端的程序代码和数据。
在第二种可能的实现方式中,处理器2001包括逻辑电路以及输入接口和/或输出接口。其中,输出接口用于执行相应方法中的发送或递交的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图22,图22所示的结构示意图可以用于示意上述实施例中所涉及的网络节点的结构。处理器2001用于对网络节点的动作进行控制管理,例如,处理器2001用于支持网络节点执行图8至图14中的步骤,和/或本申请实施例中所描述的其他过程中的网络节点执行的动作。处理器2001可以通过输入接口和/或输出接口与其他通信设备或网络节点中的其他协议层通信。存储器2002用于存储终端的程序代码和数据。
其中,作为一种可能的实现方式,网络节点170中的“模块”或单元可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络节点170可以采用图21或图22所示的形式。
比如,图21或图22所示的处理器2001可以通过调用存储器2002中存储的计算机执行指令,使得网络节点执行上述方法实施例中的通信方法。
具体的,图20中的收发单元1702和处理单元1701的功能/实现过程可以通过图21或图22所示的处理器2001调用存储器2002中存储的计算机执行指令来实现。或者,图20中的处理单元1701的功能/实现过程可以通过图21或图22所示的处理器2001调用存储器2002中存储的计算机执行指令来实现,图20中的收发单元1702的功能/实现过程可以通过图21中所示的收发器2003来实现。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种系统芯片,该系统芯片应用在网络节点中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以执行上述实施例提供的任意一种方法。
本申请实施例还提供了一种通信系统,包括:上述实施例提供的网络节点中的一个或多个网络节点。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在 内。

Claims (67)

  1. 一种通信方法,其特征在于,包括:
    第一宿主节点的第一集中式单元CU确定第一映射,所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过第二宿主节点的第二分布式单元DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;所述第一节点为所述第二DU的下一跳节点;
    所述第一CU向所述第二宿主节点的第二CU发送所述第一映射;
    所述第一CU向所述第二DU发送所述下行数据。
  2. 根据权利要求1所述的通信方法,其特征在于,下行数据和下行传输路径之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、以及所述目标地址和所述业务属性信息对应的第一路由标识;
    所述下行数据和下行传输承载之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、以及所述目标地址和所述业务属性信息对应的第一无线链路控制RLC信道的信息;
    所述下行数据包括所述业务属性信息。
  3. 根据权利要求2所述的通信方法,其特征在于,在所述第一CU向所述第二CU发送所述第一映射之前,所述方法还包括:
    所述第一CU从所述第二CU接收所述第二CU分配的一个或多个第二路由标识;所述第一路由标识和所述一个或多个第二路由标识不同。
  4. 根据权利要求2或3所述的通信方法,其特征在于,在所述第一CU向所述第二CU发送所述第一映射之前,所述方法还包括:
    所述第一CU从所述第二CU接收所述第二DU与所述第一节点之间的一个或多个RLC信道的信息以及所述一个或多个RLC信道对应的服务质量QoS信息;所述一个或多个RLC信道包括所述第一RLC信道。
  5. 根据权利要求1-4中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一CU向所述第二CU发送所述下行数据的通用分组无线服务隧道协议GTP隧道的信息以及所述GTP隧道对应的QoS信息。
  6. 根据权利要求5所述的通信方法,其特征在于,所述方法还包括:
    所述第一CU从所述第二CU接收所述下行数据的GTP隧道的信息以及所述GTP隧道对应的业务属性信息。
  7. 根据权利要求1-6中任一项所述的通信方法,其特征在于,所述第一宿主节点为源宿主节点,所述第二宿主节点为目标宿主节点;或者,所述第一宿主节点为目标宿主节点,所述第二宿主节点为源宿主节点。
  8. 根据权利要求1-6中任一项所述的通信方法,其特征在于,所述第一宿主节点为主宿主节点,所述第二宿主节点为辅宿主节点;或者,所述第一宿主节点为辅宿主节点,所述第二宿主节点为主宿主节点。
  9. 一种通信方法,其特征在于,包括:
    第二宿主节点的第二集中式单元CU确定第一映射,所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括第一宿主节点的第一CU通过第二宿主节点的第二分布式单元DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的RLC信道;所述第一节点为所述第二DU的下一跳节点;
    所述第二DU从所述第一CU接收所述下行数据。
  10. 根据权利要求9所述的通信方法,其特征在于,所述下行数据和所述下行传输路径之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、所述目标地址以及所述业务属性信息对应的第三路由标识;
    所述下行数据和所述下行传输承载之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、所述目标地址以及所述业务属性信息对应的第二无线链路控制RLC信道的信息;
    所述下行数据包括所述业务属性信息。
  11. 根据权利要求10所述的通信方法,其特征在于,在所述第二CU确定第一映射之前,所述方法还包括:
    所述第二CU从所述第一CU接收所述第一CU分配的一个或多个第四路由标识;所述第三路由标识和所述一个或多个第四路由标识不同。
  12. 根据权利要求10或11所述的通信方法,其特征在于,在所述第二CU确定第一映射之前,所述方法还包括:
    所述第二CU从所述第一CU接收一个或多个RLC信道的信息,以及所述一个或多个RLC信道对应的QoS信息;所述一个或多个RLC信道包括所述第二RLC信道。
  13. 根据权利要求9-12中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第二CU从所述第一CU接收所述下行数据的业务属性信息以及所述业务属性信息对应的服务质量QoS信息。
  14. 根据权利要求9-13中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第二CU从所述第一CU接收所述下行数据的通用分组无线服务隧道协议GTP隧道的信息以及所述GTP隧道对应的QoS信息。
  15. 根据权利要求14所述的通信方法,其特征在于,所述方法还包括:
    所述第二CU向所述第一CU发送所述下行数据的GTP隧道的信息以及所述GTP隧道对应的业务属性信息。
  16. 一种通信方法,包括:
    第二宿主节点的第二集中式单元CU确定第一映射,所述第二宿主节点的第二DU从第一宿主节点的第一CU接收所述下行数据;
    所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关 系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的RLC信道;所述第一节点为所述第二DU的下一跳节点。
  17. 根据权利要求16所述的通信方法,其特征在于,所述下行数据和所述下行传输路径之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息,所述目标地址以及所述业务属性信息对应的第三路由标识;所述下行数据和所述下行传输承载之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、所述目标地址以及所述业务属性信息对应的第二无线链路控制RLC信道的信息。
  18. 根据权利要求16或17所述的通信方法,其特征在于,所述方法还包括:
    所述第二CU从所述第一CU接收所述下行数据的业务属性信息以及所述业务属性信息对应的服务质量QoS信息。
  19. 根据权利要求16-18任一所述的通信方法,其特征在于,在所述第二CU确定第一映射之前,所述方法还包括:
    所述第二CU从所述第一CU接收所述第一CU分配的一个或多个第四路由标识,所述第三路由标识和所述一个或多个第四路由标识不同。
  20. 根据权利要求16-18任一所述的通信方法,其特征在于,在所述第二CU确定第一映射之前,所述方法还包括:
    所述第二CU从所述第一CU接收一个或多个RLC信道的信息,以及所述一个或多个RLC信道对应的QoS信息,所述一个或多个RLC信道包括所述第二RLC信道。
  21. 根据权利要求16-20任一所述的通信方法,其特征在于,所述方法还包括:
    所述第二CU从所述第一CU接收所述下行数据的通用分组无线服务隧道协议GTP隧道的信息以及所述GTP隧道对应的QoS信息。
  22. 根据权利要求16-20任一所述的通信方法,其特征在于,所述方法还包括:
    所述第二CU向所述第一CU发送所述下行数据的GTP隧道的信息以及所述GTP隧道对应的业务属性信息。
  23. 一种通信方法,由第一宿主节点的第一CU确定下行数据的业务属性信息,所述方法包括:
    第一宿主节点的第一CU确定下行数据的业务属性信息,并向第二宿主节点的第二CU发送该业务属性信息。
  24. 根据权利要求24所述的通信方法,其特征在于,所述方法还包括:
    所述第一CU向所述第二CU发送所述下行数据的业务属性信息以及所述业务属性信息对应的服务质量QoS信息。
  25. 根据权利要求24所述的通信方法,其特征在于,所述方法还包括:
    所述第一CU向所述第二CU发送所述第一CU分配的一个或多个第四路由标识。
  26. 根据权利要求24所述的通信方法,其特征在于,所述方法还包括:
    所述第一CU向所述第二CU发送一个或多个RLC信道的信息,以及所述一个 或多个RLC信道对应的QoS信息。
  27. 一种通信方法,其特征在于,所述方法包括:
    所述第一宿主节点的第一CU确定下行数据的通用分组无线服务隧道协议GTP隧道的信息以及所述GTP隧道对应的QoS信息。
  28. 根据权利要求27所述的通信方法,其特征在于,所述方法还包括:所述第一CU向所述第二宿主节点的第二CU发送该GTP隧道的信息以及该GTP隧道对应的QoS信息。
  29. 根据权利要求27或28所述的通信方法,其特征在于,所述方法还包括:
    所述第一CU从所述第二CU接收所述下行数据的GTP隧道的信息以及所述GTP隧道对应的业务属性信息。
  30. 根据权利要求27-29任一所述的通信方法,其特征在于,所述方法还包括:
    所述第一CU向所述第二CU发送所述第一CU分配的一个或多个第四路由标识。
  31. 根据权利要求27-29任一所述的通信方法,其特征在于,所述方法还包括:
    所述第一CU向所述第二CU发送一个或多个RLC信道的信息,以及所述一个或多个RLC信道对应的QoS信息。
  32. 一种通信方法,其特征在于,包括:
    第一宿主节点的第一CU确定下行数据的业务属性信息,以及第一映射,并向第二宿主节点的第二CU发送该第一映射;以及所述第一CU向第二宿主节点的第二DU发送所述下行数据;
    所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;所述第一节点为所述第二DU的下一跳节点。
  33. 根据权利要求32所述的方法,其特征在于,下行数据和下行传输路径之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息,所述目标地址以及所述业务属性信息对应的第一路由标识;所述下行数据和下行传输承载之间的映射关系包括:所述下行数据的目标地址、所述下行数据的业务属性信息、所述目标地址以及所述业务属性信息对应的第一无线链路控制RLC信道的信息;所述下行数据包括所述业务属性信息。
  34. 根据权利要求32或33所述的方法,其特征在于,所述方法还包括:
    所述第一CU从所述第二CU接收所述第二CU分配的一个或多个第二路由标识;所述第一路由标识和所述一个或多个第二路由标识不同。
  35. 根据权利要求32或33所述的方法,其特征在于,所述方法还包括:
    所述第一CU从所述第二CU接收所述第二DU与所述第一节点之间的一个或多个RLC信道的信息以及所述一个或多个RLC信道对应的服务质量QoS信息。
  36. 根据权利要求32-35任一所述的方法,其特征在于,所述第一宿主节点为主宿主节点,所述第二宿主节点为辅宿主节点;或者,所述第一宿主节点为辅宿主节 点,所述第二宿主节点为主宿主节点。
  37. 一种通信方法,其特征在于,包括:
    第一宿主节点的第一CU确定下行数据的业务属性信息;
    第二宿主节点的第二CU确定第一映射;
    所述第一CU向第二宿主节点的第二DU发送所述下行数据;
    所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的无线链路控制RLC信道;所述第一节点为所述第二DU的下一跳节点。
  38. 根据权利要求37所述的方法,其特征在于,在所述第二CU确定第一映射之前,所述方法还包括:
    所述第一CU向所述第二CU发送该业务属性信息,以及该业务属性信息对应的服务质量QoS信息。
  39. 根据权利要求37所述的方法,其特征在于,所述方法还包括:
    所述第一CU向所述第二CU发送所述第一CU分配的一个或多个第四路由标识。
  40. 根据权利要求37所述的方法,其特征在于,所述方法还包括:
    所述第一CU向所述第二CU发送一个或多个RLC信道的信息,以及所述一个或多个RLC信道对应的QoS信息。
  41. 一种通信方法,其特征在于,包括:
    第二宿主节点的第二CU确定下行数据的业务属性信息,以及第一映射;
    第一宿主节点的第一CU向第二宿主节点的第二DU发送所述下行数据;
    所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的RLC信道;所述第一节点为所述第二DU的下一跳节点。
  42. 根据权利要求41所述的方法,其特征在于,所述第一CU向所述第二CU发送下行数据的GTP隧道的信息以及该GTP隧道对应的QoS信息。
  43. 根据权利要求41所述的方法,其特征在于,所述第一CU从所述第二CU接收下行数据的GTP隧道的信息以及该GTP隧道对应的业务属性信息。
  44. 一种通信方法,包括:
    第二宿主节点的第二CU确定下行数据的业务属性信息;
    第一宿主节点的第一CU确定第一映射,并向所述第二CU发送该第一映射;
    所述第一CU向所述第二宿主节点的第二DU发送所述下行数据;
    所述第一映射包括路由映射和/或承载映射;所述路由映射为下行数据和下行传输路径之间的映射关系;所述承载映射为所述下行数据和下行传输承载之间的映射关系;所述下行传输路径包括所述第一CU通过所述第二DU与所述下行数据的目标节 点之间的传输路径;所述下行传输承载包括所述第二DU与第一节点之间的RLC信道;所述第一节点为所述第二DU的下一跳节点。
  45. 根据权利要求44所述的方法,其特征在于,所述第一CU向所述第二CU发送下行数据的GTP隧道的信息以及该GTP隧道对应的QoS信息。
  46. 根据权利要求44或45所述的方法,其特征在于,所述第一CU从所述第二CU接收下行数据的GTP隧道的信息以及该GTP隧道对应的业务属性信息。
  47. 一种通信方法,其特征在于,包括:
    主网络设备确定第一指示信息,并向所述辅网络设备发送所述第一指示信息;
    所述第一指示信息用于请求/指示辅网络设备通过第一信令无线承载向第一节点传输第一信令。
  48. 根据权利要求47所述的方法,其特征在于,所述方法还包括:所述主网络设备从所述辅网络设备接收第二指示信息,所述第二指示信息用于指示所述第一信令无线承载建立失败,或者,无法通过所述第一信令无线承载传输所述第一信令。
  49. 根据权利要求47或48所述的方法,其特征在于,所述方法还包括:
    所述主网络设备向第一节点发送第三指示信息,所述第三指示信息用于指示用于传输所述第一信令的上行传输路径的信息,所述上行传输路径包括MCG路径或SCG路径。
  50. 根据权利要求47-49任一所述的方法,其特征在于,所述方法还包括:
    所述主网络设备向所述第一节点发送第四指示信息,所述第四指示信息用于指示所述上行传输路径上传输所述第一信令的承载的信息。
  51. 根据权利要求47-49任一所述的方法,其特征在于,所述第一信令包括F1-C消息。
  52. 根据权利要求47-49任一所述的方法,其特征在于,所述第一信令无线承载包括SRB3或split SRB。
  53. 根据权利要求52任一所述的方法,其特征在于,若第一信令无线承载为SRB3,所述方法包括:
    所述主网络设备向所述辅网络设备发送所述第一信令;所述辅网络设备将所述第一信令封装在RRC消息中通过SRB3发送到所述第一节点。
  54. 根据权利要求52所述的方法,其特征在于,若第一信令无线承载为split SRB,所述方法包括:
    所述主网络设备将所述第一信令封装在RRC消息,并向所述辅网络设备发送所述RRC消息;所述辅网络设备将所述RRC消息通过split SRB发送到所述第一节点。
  55. 一种通信方法,包括:
    主网络设备从辅网络设备接收第五指示信息,并根据所述第五指示信息向所述辅网络设备发送所述第一信令;
    所述第五指示信息用于指示第一信令在SCG路径上传输对应的承载信息。
  56. 根据权利要求55所述的方法,其特征在于,在所述主网络设备从所述辅网络设备接收所述第五指示信息之前,所述方法还包括:
    所述主网络设备向所述辅网络设备发送第六指示信息,所述第六指示信息用于请求所述辅网络设备传输所述第一信令。
  57. 根据权利要求55或56所述的方法,其特征在于,所述方法还包括:
    所述主网络设备向第一节点发送第三指示信息,所述第三指示信息用于指示用于传输所述第一信令的上行传输路径的信息,所述上行传输路径包括MCG或SCG。
  58. 根据权利要求55或56所述的方法,其特征在于,所述方法还包括:
    所述主网络设备向所述第一节点发送第四指示信息,所述第四指示信息用于指示所述上行传输路径上传输所述第一信令的承载的信息。
  59. 根据权利要求55-58任一所述的方法,其特征在于,所述第一信令包括F1-C消息。
  60. 根据权利要求55-58任一所述的方法,其特征在于,所述第一信令无线承载包括SRB3或split SRB。
  61. 根据权利要求60所述的方法,其特征在于,若第一信令无线承载为SRB3,所述方法包括:
    所述主网络设备向所述辅网络设备发送所述第一信令;所述辅网络设备将所述第一信令封装在RRC消息中通过SRB3发送到所述第一节点。
  62. 根据权利要求60所述的方法,其特征在于,若第一信令无线承载为split SRB,所述方法包括:
    所述主网络设备将所述第一信令封装在RRC消息,并向所述辅网络设备发送所述RRC消息;所述辅网络设备将所述RRC消息通过split SRB发送到所述第一节点。
  63. 一种通信装置,其特征在于,包括:处理器;
    所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如权利要求1-62中的任一项所述的方法。
  64. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-62中的任一项所述的方法。
  65. 一种芯片,其特征在于,所述芯片应用在网络节点中,所述芯片包括:
    至少一个处理器,涉及的程序指令在所述至少一个处理器中执行,以执行如权利要求1-62中的任一项所述的方法。
  66. 一种通信系统,其特征在于,包括:用于执行如权利要求1-8中任一项所述的宿主节点,以及用于执行如权利要求9-15中任一项所述的宿主节点。
  67. 一种通信装置,其特征在于,包括:用于执行如1-62中的任一项所述的方法的单元或模块。
PCT/CN2022/073305 2021-01-22 2022-01-21 一种通信方法及通信装置 WO2022156785A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22742264.9A EP4266754A1 (en) 2021-01-22 2022-01-21 Communication method and communication apparatus
US18/355,406 US20230370943A1 (en) 2021-01-22 2023-07-19 Communication method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110091250.0 2021-01-22
CN202110091250.0A CN114828133A (zh) 2021-01-22 2021-01-22 一种通信方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/355,406 Continuation US20230370943A1 (en) 2021-01-22 2023-07-19 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022156785A1 true WO2022156785A1 (zh) 2022-07-28

Family

ID=82523968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073305 WO2022156785A1 (zh) 2021-01-22 2022-01-21 一种通信方法及通信装置

Country Status (4)

Country Link
US (1) US20230370943A1 (zh)
EP (1) EP4266754A1 (zh)
CN (1) CN114828133A (zh)
WO (1) WO2022156785A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170303145A1 (en) * 2014-10-03 2017-10-19 Telefonaktlebolaget LM Ericsson (pupl A network node, a mobility management node and methods therein for handling gtp tunnel failures in a radio communications network
CN110708720A (zh) * 2018-07-10 2020-01-17 中国移动通信有限公司研究院 切换方法、分布单元、终端、集中单元及计算机存储介质
US20200145967A1 (en) * 2018-11-01 2020-05-07 Comcast Cable Communications, Llc Radio Resource Allocation for Access Link
WO2020164596A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种数据传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170303145A1 (en) * 2014-10-03 2017-10-19 Telefonaktlebolaget LM Ericsson (pupl A network node, a mobility management node and methods therein for handling gtp tunnel failures in a radio communications network
CN110708720A (zh) * 2018-07-10 2020-01-17 中国移动通信有限公司研究院 切换方法、分布单元、终端、集中单元及计算机存储介质
US20200145967A1 (en) * 2018-11-01 2020-05-07 Comcast Cable Communications, Llc Radio Resource Allocation for Access Link
WO2020164596A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Consideration of topology adaptation enhancement for R17 IAB", 3GPP DRAFT; R2-2101071, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974076 *

Also Published As

Publication number Publication date
US20230370943A1 (en) 2023-11-16
CN114828133A (zh) 2022-07-29
EP4266754A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
EP3764736B1 (en) Data transmission method and device
JP7116193B2 (ja) 情報伝送方法および装置
JP7378433B2 (ja) データパケットの送信方法、受信方法及び装置ならびにデータパケットの伝送システム
US11647561B2 (en) Node and communication method
CN113556794B (zh) 通信方法、装置及系统
US20220225129A1 (en) Methods and devices for routing and bearer mapping configuration
WO2020164175A1 (zh) 标识管理的方法和装置
WO2022082601A1 (en) Method and apparatus for inter-donor mobility
US20210377840A1 (en) Communication Method And Related Apparatus
US20230370898A1 (en) Communication method and apparatus
WO2018228311A1 (zh) 数据分流方法和装置
KR20230012521A (ko) 이중 연결 하에서의 사이드링크 릴레이 통신을 위한 방법
CN117643163A (zh) 用于无线网络中的中继配置的方法、设备和系统
CN114365540B (zh) 通信方法、设备及系统
CN110876171B (zh) 一种多跳数据传输方法及装置
WO2022156785A1 (zh) 一种通信方法及通信装置
WO2021087924A1 (zh) 一种通信方法及装置
RU2803196C1 (ru) Способ передачи пакета данных и устройство
WO2022206317A1 (zh) 一种通信方法以及通信设备
JP2024516255A (ja) ワイヤレス通信のための方法および装置
CN117320084A (zh) 一种通信方法及相关设备
CN116456352A (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022742264

Country of ref document: EP

Effective date: 20230720

NENP Non-entry into the national phase

Ref country code: DE