WO2020029074A1 - 无线通信方法、通信设备、芯片和通信系统 - Google Patents

无线通信方法、通信设备、芯片和通信系统 Download PDF

Info

Publication number
WO2020029074A1
WO2020029074A1 PCT/CN2018/099194 CN2018099194W WO2020029074A1 WO 2020029074 A1 WO2020029074 A1 WO 2020029074A1 CN 2018099194 W CN2018099194 W CN 2018099194W WO 2020029074 A1 WO2020029074 A1 WO 2020029074A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcp
communication device
data
entity
pdu
Prior art date
Application number
PCT/CN2018/099194
Other languages
English (en)
French (fr)
Inventor
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/099194 priority Critical patent/WO2020029074A1/zh
Priority to PCT/CN2018/109200 priority patent/WO2020029414A1/zh
Priority to JP2021505842A priority patent/JP2022510071A/ja
Priority to EP18929409.3A priority patent/EP3813399B1/en
Priority to PCT/CN2018/113727 priority patent/WO2020029445A1/zh
Priority to CN202110374219.8A priority patent/CN113115360B/zh
Priority to CN201880095682.5A priority patent/CN112425193A/zh
Priority to KR1020217003053A priority patent/KR20210040058A/ko
Priority to AU2018436002A priority patent/AU2018436002A1/en
Publication of WO2020029074A1 publication Critical patent/WO2020029074A1/zh
Priority to US17/154,877 priority patent/US20210144801A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to a wireless communication method, a communication device, a chip, and a communication system.
  • NR data replication transmission based on PDCP duplication method has been simultaneously improved to improve the reliability of data transmission.
  • NR currently defines two protocol architectures to support data replication transmission. They are data replication transmission of carrier aggregation (CA) and data replication transmission of dual connectivity (DC).
  • CA carrier aggregation
  • DC dual connectivity
  • the above two protocol architectures are based on data replication and transmission performed by a single PDCP entity. Therefore, when a user equipment (UE) moves from a first access network device to a second access network device, it needs to undergo changes in the security key, and a PDCP entity can only use one security key at a time. That is to say, in a network handover for data replication transmission, a change in the security key causes the UE to perform a PDCP re-establishment operation to reconfigure the security key, and will cause a service interruption of the PDCP entity.
  • UE user equipment
  • a wireless communication method for example, a Wi-Fi Protected Access (WPA) protocol, a Wi-Fi Protected Access (WPA) protocol, and a Wi-Fi protocol.
  • a communication device for example, a Wi-Fi Protected Access (WPA) protocol
  • a chip for example, a Wi-Fi Protected Access (WPA) protocol
  • a communication system which can avoid service interruption of a PDCP entity, thereby improving data transmission efficiency.
  • a wireless communication method applied to a communication device the communication device having at least two packet data convergence protocol PDCP entities, the at least two PDCP entities serving the same upper layer data, the method include:
  • the communication device receives data or / or sends data through the at least two PDCP entities.
  • the upper-layer data includes data in one or more quality of service QoS flows.
  • the upper-layer data includes data in one or more evolved packet system EPS bearers.
  • each of the at least two PDCP entities has a respective key.
  • a PDCP entity in the at least two PDCP entities has a data replication function.
  • a PDCP entity in the at least two PDCP entities has a redundancy detection function.
  • the communication device further has at least one service data adaptation protocol SDAP entity;
  • the receiving, or transmitting data by the communication device through the at least two PDCP entities includes:
  • the communication device receives data or / or sends data through the at least two PDCP entities and at least one SDAP entity corresponding to the at least two PDCP entities.
  • an SDAP entity in the at least one SDAP entity has a data replication function.
  • an SDAP entity in the at least one SDAP entity has a redundancy detection function.
  • the SDAP PDU generated by the SDAP entity in the at least one SDAP entity includes a serial number SN of the SDAP PDU.
  • the at least one SDAP entity and the at least two PDCP entities correspond one-to-one.
  • the at least one SDAP entity includes only one SDAP entity.
  • any one of the at least two PDCP entities includes a sending entity and a receiving entity.
  • the method further includes:
  • the communication device exchanges PDCP protocol data unit PDU transmission conditions between the sending entities of the at least two PDCP entities.
  • the PDCP PDU sending situation includes a sequence number SN and / or a super frame number HFN and / or a count value COUNT of the PDCP PDU that has been sent.
  • the PDCP PDU sending situation further includes a maximum SN and / or a maximum HFN and / or a maximum count value COUNT of the PDCP PDU that has been sent.
  • the method further includes:
  • the communication device exchanges PDCP protocol data unit PDU receiving conditions between receiving entities of the at least two PDCP entities.
  • the PDCP PDU reception situation includes a sequence number SN and / or a super frame number HFN and / or a count value COUNT of the received PDCP PDU.
  • the PDCP PDU receiving situation includes the data forwarding situation of the decrypted data packet.
  • the PDCP PDU reception situation further includes a count value indicating the next PDCP service data unit SDU to be received, a count value indicating the first PDCP SDU waiting to be delivered to the upper layer, and The count value of the PDCP data PDU that triggers the reordering timer is incremented by one.
  • a communication device for performing the method described in the first aspect and the method in any one of the foregoing possible implementation manners.
  • the communication device includes:
  • a communication device including:
  • a processor configured to call and run a computer program from the memory, where the computer program is configured to execute the method described in the first aspect above and the method in any of the foregoing possible implementation manners.
  • the communication device further includes:
  • a memory for storing the computer program.
  • a chip is provided for executing the method described in the first aspect and the method in any one of the foregoing possible implementation manners.
  • the chip includes:
  • a processor configured to call and run a computer program from the memory, where the computer program is configured to execute the method described in the first aspect above and the method in any of the foregoing possible implementation manners.
  • the chip further includes:
  • a memory for storing the computer program.
  • a computer-readable storage medium is provided, where the storage medium is used to store a computer program, and the computer program is used to execute the method described in the first aspect above and the method in any one of the foregoing possible implementation manners .
  • a computer program product including computer program instructions, where the computer program is configured to execute the method described in the first aspect above and the method in any one of the foregoing possible implementation manners.
  • a computer program product that, when run on a computer, causes the computer to execute the method described in the first aspect and the method in any one of the possible implementation manners described above.
  • a communication system including the communication device according to the second aspect.
  • the communication device serves the same upper-layer data through at least two PDCP entities, which can interrupt the service of the DCP entity, thereby improving the transmission efficiency of data packets.
  • FIG. 1 is an example of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for transmitting replicated data in a CA scenario according to an embodiment of the present application.
  • FIG. 3 is an example of a protocol architecture for downlink transmission in a DC scenario according to an embodiment of the present application.
  • FIG. 4 is an example of a protocol architecture for uplink transmission in a DC scenario according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a protocol architecture of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 1 shows a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a base station 110 and at least one terminal device 120 located within a coverage area of the base station 110.
  • the base station 110 may be a device that communicates with a terminal device.
  • the base station 110 may provide communication coverage for a specific geographic area, and may communicate with a terminal device (such as a UE) located within the coverage area.
  • the base station 110 may be a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a relay station, an access point , Vehicle-mounted equipment, wearable equipment, or network equipment in a public land mobile network (PLMN) that will evolve in the future.
  • gNB base station
  • CRAN Cloud Radio Access Network
  • PLMN public land mobile network
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • the wireless communication system 100 further includes a core network device 130 that communicates with a base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an Access and Mobility Management Function.
  • AMF for example, Authentication Server Function (AUSF), for example, User Plane Function (UPF), and for example, Session Management Function (SMF).
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, Session Management Function + Core Network Data Gateway (Session Management Function + Core Packet + Gateway, SMF + PGW- C) Equipment.
  • EPC Evolved Packet Core
  • each functional unit in the communication system 100 may establish a connection through a next generation network (NG) interface to implement communication.
  • NG next generation network
  • a terminal device establishes an air interface connection with an access network device through an NR interface for transmitting user plane data and control plane signaling; a terminal device may establish a control plane signaling connection with the AMF through an NG interface 1 (referred to as N1); access Network equipment, such as the next-generation wireless access base station (gNB), can establish a user plane data connection with the UPF through NG interface 3 (referred to as N3); the access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) Connection; UPF can establish control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with data network through NG interface 6 (N6 for short); AMF can communicate with data network through NG interface 11 (N11 for short) The SMF establishes a control plane signaling connection; the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (referred to as N7).
  • NG interface 1 referred to as N1
  • access Network equipment such
  • the part shown in FIG. 2 is only an exemplary architecture diagram.
  • the network architecture may also include other functional units or functional entities, such as: core network equipment may also Contains other functional units such as unified data management (UDM), which are not specifically limited in the embodiments of the present application.
  • UDM unified data management
  • FIG. 1 exemplarily shows a base station, a core network device, and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals in its coverage area.
  • Equipment this embodiment of the present application does not limit this.
  • FIG. 2 is a schematic flowchart of a data transmission method at a PDCP layer according to an embodiment of the present application.
  • the data generated by the PDCP layer (PDU and PDU replication data) are transmitted to two different RLC entities (RLC entity a and RLC entity b). These two different RLC entities intervene through the same media.
  • a control (Media, Access, Control, MAC) layer entity (MAC entity) is mapped to different physical layer carriers (a first physical layer carrier and a second physical layer carrier).
  • data generated by the PDCP layer (PDU and PDU replication data) are respectively mapped to different physical layer carriers through two different RLC entities, which can achieve the purpose of frequency diversity gain, and further Can improve the reliability of data transmission.
  • each sub-layer can send data to a specified layer on the receiving end according to the data of the protocol data unit.
  • the unprocessed data that enters each sub-layer is called a service data unit (SDU), and the data that forms a specific format after being processed by the sub-layer is called a protocol data unit (PDU).
  • SDU is an information unit transmitted from a higher-level protocol to a lower-level protocol.
  • the original data of the SDU is the PDU of the upper layer of the protocol. In other words, the PDU formed by this layer is the SDU of the next layer.
  • each logical channel of each terminal device has an RLC entity (RLC entity).
  • RLC entity The data that the RLC entity receives from the PDCP layer or the data sent to the PDCP layer can be called RLC SDU (or PDCP PDU).
  • RLC PDU The data received by the RLC entity from the MAC layer or the data sent to the MAC layer can be called RLC PDU (or MAC SDU).
  • the RLC layer is located between the PDCP layer and the MAC layer.
  • the RLC layer can communicate with the PDCP layer through a Service Access Point (SAP) and communicate with the MAC layer through a logical channel.
  • SAP Service Access Point
  • the embodiments of the present application are not limited to this.
  • the PDCP layer PDU (that is, the PDCP PDU) and the replicated data of the PDCP PDU will be mapped on different physical layer carriers through different RLC entities, which can effectively improve Reliability of data transmission.
  • FIG. 3 is an example of a protocol architecture for downlink transmission in a dual connection (DC) scenario according to an embodiment of the present application
  • FIG. 4 is an example of an protocol architecture for uplink transmission in a DC scenario according to an embodiment of the present application. .
  • CG Cell Groups
  • CG may be equivalent to a communication device or a network device.
  • the protocol architecture of the replication data transmission method can be shown in Figures 1 and 2.
  • the replication data transmission method in the DC scenario uses a split bearer protocol architecture.
  • the Packet Data Convergence Protocol is located in a certain CG (Master CG (MCG) or Secondary CG (SCG)), and the CG is an "anchor" CG (anchor CG).
  • MCG Master CG
  • SCG Secondary CG
  • PDCP replicates PDCP protocol data units (Protocol Data Units, PDUs) into the same two, such as one PDCP PDU and one duplicated PDCP PDU.
  • the two PDCP PDUs are controlled by radio links of different CGs (Radio Link Control (RLC) layer and Media Access Control (MAC) layer. After reaching the corresponding MAC and RLC layers of the terminal (downlink) or base station (uplink) through the air interface, they finally converge to PDCP, and the PDCP layer detects two Each PDCP is the same duplicated version, that is, one of them is discarded and the other is submitted to a higher layer.
  • RLC Radio Link Control
  • MAC Media Access Control
  • the two bearers respectively connected to the RLC and the MAC under the PDCP are referred to as split bearers. If the PDCP is located at the MCG, it is MCG Split Bearer. If the PDCP is located at the SCG, it is SCG Split. Bearer.
  • two PDCP PDUs are transmitted through different CGs, which can achieve the purpose of frequency diversity gain, and further improve the reliability of data transmission.
  • the architectures shown in Figures 2 to 4 are based on data replication and transmission performed by a single PDCP entity.
  • the above two protocol architectures are based on data replication and transmission performed by a single PDCP entity. Therefore, when a user equipment (UE) moves from a first access network device to a second access network device, it needs to undergo changes in the security key, and a PDCP entity can only use one security key at a time. That is to say, in a network handover for data replication transmission, a change in the security key causes the UE to perform a PDCP re-establishment operation to reconfigure the security key, and will cause a service interruption of the PDCP entity.
  • UE user equipment
  • the invention proposes a protocol architecture, which can avoid service interruption of the PDCP entity, thereby improving data transmission efficiency.
  • FIG. 5 shows a schematic block diagram of a protocol architecture of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 5 may be the communication device 120 shown in FIG. 1, the terminal device 120 shown in FIG. 1, or the access network device 110 shown in FIG. 1. It is the core network device 130 described in FIG. 1.
  • the first device or the second device shown in FIG. 5 may be the terminal device 120 shown in FIG. 1, or the access network device 110 shown in FIG. 1, or may be shown in FIG. 1. Core network equipment 130.
  • the communication device shown in FIG. 5 including the first PDCP entity and the second PDCP entity is merely an example. In other alternative embodiments, the communication device may include more than two PDCP entities. For ease of description, the embodiment of the present application is described below by taking the communication device including a first PDCP entity and a second PDCP entity as shown in FIG. 5 as an example.
  • the communication device includes a first PDCP entity, a first RLC entity, a first MAC entity, a second PDCP entity, a second RLC entity, and a second MAC entity.
  • the first device includes a third PDCP entity, a third RLC entity, and a third MAC entity.
  • the second device may include a fourth PDCP entity, a fourth RLC entity, and a fourth MAC entity.
  • the first PDCP entity of the communication device reaches the third MAC entity, the third RLC entity, and the third PDCP entity of the first device through the first RLC entity, the first MAC entity, and then the air interface.
  • the second PDCP entity of the communication device passes through the second RLC entity, the second MAC entity, and then the air interface to the fourth MAC entity, the fourth RLC entity, and the fourth PDCP entity of the second device.
  • the PDCP PDU generated by the first PDCP entity and the PDCP PDU generated by the second PDCP entity are different data.
  • the first PDCP PDU and the second PDCP PDU are completely different.
  • the PDCP PDU generated by the first PDCP entity is the same as the PDCP PDU generated by the second PDCP entity.
  • the PDCP PDU generated by the first PDCP entity is duplicated data of the PDCP PDU generated by the second PDCP entity.
  • the PDCP PDU generated by the second PDCP entity is duplicated data of the PDCP PDU generated by the first PDCP entity.
  • the first PDCP entity and the second PDCP entity are used to serve the same upper layer data.
  • the communication device may transmit the same upper layer data through the first PDCP entity and the second PDCP entity.
  • the upper layer data includes data in one or more Quality of Service (QoS) flows.
  • QoS Quality of Service
  • the upper layer data includes data in one or more evolved packet system (EPS) bearers.
  • EPS evolved packet system
  • the upper-layer data in the embodiment of the present application is not the same as the data received by the PDCP entity.
  • the first PDCP entity and the second PDCP entity are used to transmit the same QoS flow; however, specific data packets on the first PDCP entity and the second PDCP entity are different data packets.
  • the first PDCP entity has a private key
  • the second PDCP entity may also have a private key
  • the first PDCP entity has a data replication function
  • the second PDCP entity has a data replication function
  • the communication device may generate PDCP PDUs and replicated data of the PDCP PDUs through the first PDCP entity; the communication device may pass the first PDCP entity A PDCP entity sends duplicate data of the PDCP PDU to the second PDCP entity, and sends the PDCP PDU to the first RLC.
  • the first PDCP entity has a redundancy detection function
  • the second PDCP entity has a redundancy detection function
  • the communication device may receive, through the first PDCP entity, a data unit sent by an SDAP entity or data sent by a first RLC entity shown in FIG. 5 Unit; performing redundancy detection on the received data unit.
  • the communication device may further have at least one Service Data Adaptation Protocol (SDAP) entity. That is, the communication device may receive data and / or send data through the at least two PDCP entities and at least one SDAP entity corresponding to the at least two PDCP entities.
  • SDAP Service Data Adaptation Protocol
  • an SDAP entity in the at least one SDAP entity has a data replication function.
  • the communication device may generate an SDAP PDU and a copy of the SDAP PDU through an SDAP entity in the at least one SDAP entity; the communication device may provide the first A PDCP entity sends the SDAP PDU, and sends a copy of the SDAP PDU to the second PDCP entity.
  • the SDAP PDU generated by the SDAP entity and the replicated data of the SDAP PDU include the SN of the SDAP PDU, respectively.
  • an SDAP entity in the at least one SDAP entity has a redundancy detection function.
  • the communication device may receive the PDCP PDU and the second PDCP entity sent by the first PDCP entity through an SDAP entity in the at least one SDAP entity. Copy data of the PDCP PDU sent. Then, the communication device may redundantly detect the PDCP PDU and the duplicated data of the PDCP PDU through an SDAP entity in the at least one SDAP entity. Further, the SDAP PDU generated by the SDAP entity may include an SN of the SDAP PDU.
  • the at least one SDAP entity includes a first SDAP entity and a second SDAP entity, where the first SDAP entity corresponds to the first PDCP entity, and the The second SDAP entity corresponds to the second PDCP entity.
  • the at least one SDAP entity includes only one SDAP entity.
  • the one SDAP entity corresponds to the first PDCP entity and the second PDCP entity.
  • the first PDCP entity includes a sending entity and a receiving entity
  • the second PDCP entity includes a sending entity and a receiving entity
  • the sending entity of the first PDCP entity and the sending entity of the second PDCP entity exchange PDCP PDU sending conditions.
  • the PDCP PDU sending situation includes a sequence number SN and / or a super frame number HFN and / or a count value COUNT of the PDCP PDU that has been sent.
  • the PDCP PDU sending situation further includes a maximum SN and / or a maximum HFN and / or a maximum count value COUNT of the PDCP PDU that has been sent.
  • the method shown in FIG. 6 may further include:
  • the receiving entity of the first PDCP entity and the receiving entity of the second PDCP entity exchange PDCP protocol data unit PDU receiving conditions.
  • the PDCP PDU reception situation includes a sequence number SN and / or a super frame number HFN and / or a count value COUNT of the received PDCP PDU.
  • the PDCP PDU receiving condition includes a data forwarding condition of a decrypted data packet.
  • the PDCP PDU reception situation further includes a count value indicating the next PDCP service data unit SDU to be received, and a first PDCP SDU waiting to be delivered to the upper layer. Plus the count value of the PDCP data PDU used to trigger the reordering timer plus one.
  • the protocol architecture of the embodiment of the present application is described above with reference to FIG. 5, and the wireless communication method of the embodiment of the present application is described below with reference to FIG. 6. It should be understood that the method 200 shown in FIG. 6 may be performed by the communication device shown in FIG. 5, the communication device having at least two PDCP entities.
  • the method 200 may include:
  • the communication device serves the same upper-layer data through at least two PDCP entities, and the service of the DCP entity can be interrupted, thereby improving data packet transmission efficiency.
  • the at least two PDCP entities pass through different RLC layers and MAC layers, and reach the corresponding MAC layer, RLC layer, and PDCP of at least two peers through an air interface, so that each of the at least two peers Each peer submits the generated data (PDCP and SDU) to the upper layer.
  • the upper layer data includes data in one or more Quality of Service (QoS) flows.
  • QoS Quality of Service
  • the upper layer data includes data in one or more evolved packet system (EPS) bearers.
  • EPS evolved packet system
  • each of the at least two PDCP entities has a respective key.
  • a PDCP entity of the at least two PDCP entities has a data replication function. Specifically, the PDCP entity of the at least two PDCP entities is used to generate a PDCP PDU and duplicate data of the PDCP PDU.
  • a PDCP entity of the at least two PDCP entities has a redundancy detection function.
  • the PDCP entity of the at least two PDCP entities is configured to receive a data unit sent by an RLC entity or an SDAP entity, and perform redundancy detection on the received data unit.
  • the at least two PDCP entities correspond to at least one SDAP entity.
  • the at least one SDAP entity and the at least two PDCP entities correspond one-to-one.
  • the at least one SDAP entity includes only one SDAP entity.
  • an SDAP entity in the at least one SDAP entity has a data replication function. Specifically, the SDAP entity in the at least one SDAP entity is used to generate an SDAP PDU and the replicated data of the SDAP PDU.
  • the SDAP PDU and the replication data of the SDAP PDU generated by the SDAP entity in the at least one SDAP entity each include an SDAP PDU sequence number (SN).
  • an SDAP entity in the at least one SDAP entity has a redundancy detection function.
  • the SDAP entity in the at least one SDAP entity is configured to receive PDCP PDUs sent by the at least two PDCP entities, and redundantly detect the at least two PDCPs through the SDAP entity in the at least one SDAP entity. PDCP PDU sent by the entity.
  • the SDAP PDU generated by the SDAP entity in the at least one SDAP entity includes a serial number (SN) of the SDAP PDU.
  • any one of the at least two PDCP entities includes a sending entity and a receiving entity.
  • the method shown in FIG. 6 may further include:
  • the PDCP PDU sending situation includes a sequence number SN and / or a super frame number HFN and / or a count value COUNT of the PDCP PDU that has been sent.
  • the PDCP PDU sending situation further includes a maximum SN and / or a maximum HFN and / or a maximum count value COUNT of the PDCP PDU that has been sent.
  • the method shown in FIG. 6 may further include:
  • the PDCP PDU reception situation includes a sequence number SN and / or a super frame number HFN and / or a count value COUNT of the received PDCP PDU.
  • the PDCP PDU receiving situation includes a data forwarding situation of a decrypted data packet.
  • the PDCP PDU reception situation further includes a count value indicating the next PDCP service data unit SDU to be received, and a first PDCP SDU waiting to be delivered to the upper layer. Plus the count value of the PDCP data PDU used to trigger the reordering timer plus one.
  • the PDCP PDU reception situation may include the first state parameter RX_NEXT, which is used to indicate the count value of the next PDCP SDU to be received (This state variable variable the counter value of the PDCP next SDU expected to be received).
  • the PDCP PDU reception situation may further include a second state parameter RX_DELIV, which is used to indicate a count value of the first PDCP SDU waiting to be delivered to the upper layer. This state variable variable indicates the value of the first PDCP. SDU not delivered to the upper layers, but still waited for).
  • the PDCP PDU reception condition may also include a third state parameter RX_REORD, which counts the PDCP data PDU count value that triggers the reordering timer plus one (This state variable variable indicates the counter value following the counter counter value value associated with the PDCP Data PDU which is triggered t-Reordering).
  • an initial value of the first state parameter RX_NEXT, the second state parameter RX_DELIV, and the third state parameter RX_REORD is set to zero.
  • FIG. 7 is a schematic block diagram of a communication device 300 according to an embodiment of the present application. It should be understood that the communication device 300 has at least two packet data convergence protocol PDCP entities, and the at least two PDCP entities are used to serve the same upper layer data.
  • PDCP packet data convergence protocol
  • the communication device 300 may include:
  • the communication module 310 is configured to receive data or / or send data through the at least two PDCP entities.
  • the upper layer data includes data in one or more quality of service QoS flows.
  • the upper-layer data includes data in one or more Evolved Packet System EPS bearers.
  • each of the at least two PDCP entities has a respective key.
  • a PDCP entity of the at least two PDCP entities has a data replication function.
  • a PDCP entity of the at least two PDCP entities has a redundancy detection function.
  • the communication device further has at least one service data adaptation protocol SDAP entity; the communication module 310 is specifically configured to:
  • an SDAP entity in the at least one SDAP entity has a data replication function.
  • an SDAP entity in the at least one SDAP entity has a redundancy detection function.
  • the SDAP PDU generated by the SDAP entity in the at least one SDAP entity includes a serial number SN of the SDAP PDU.
  • the at least one SDAP entity and the at least two PDCP entities correspond one-to-one.
  • the at least one SDAP entity includes only one SDAP entity.
  • any one of the at least two PDCP entities includes a sending entity and a receiving entity.
  • the communication device further includes:
  • the interaction module 320 is configured to exchange a PDCP protocol data unit PDU transmission situation between the sending entities of the at least two PDCP entities.
  • the PDCP PDU sending situation includes a sequence number SN and / or a super frame number HFN and / or a count value COUNT of the PDCP PDU that has been sent.
  • the PDCP PDU sending situation further includes a maximum SN and / or a maximum HFN and / or a maximum count value COUNT of the PDCP PDU that has been sent.
  • the communication device further includes:
  • the interaction module 320 is configured to exchange PDCP protocol data unit PDU reception conditions between the receiving entities of the at least two PDCP entities.
  • the PDCP PDU reception situation includes a sequence number SN and / or a super frame number HFN and / or a count value COUNT of the received PDCP PDU.
  • the PDCP PDU receiving situation includes the data forwarding situation of the decrypted data packet.
  • the PDCP PDU reception situation further includes a count value indicating the next PDCP service data unit SDU to be received, and a first PDCP SDU waiting to be delivered to the upper layer. Plus the count value of the PDCP data PDU used to trigger the reordering timer plus one.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the communication device 400 shown in FIG. 7 may correspond to a corresponding subject in performing the method 200 in the embodiment of the present application, and the foregoing and other operations and / or functions of each unit in the communication device 400 are implemented in order to implement FIG. 6.
  • the corresponding processes in each method are not repeated here.
  • the communication device is described above with reference to FIG. 7 from the perspective of a functional module.
  • the functional module may be implemented by hardware, or by instructions in software, or by a combination of hardware and software modules.
  • each step of the method embodiments in the embodiments of the present application may be completed by hardware integrated logic circuits and / or software instructions in the processor, and the steps of the method disclosed in the embodiments of the present application may be directly embodied as hardware.
  • the execution of the decoding processor is completed, or a combination of hardware and software modules in the decoding processor is used for execution.
  • the software module may be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps in the foregoing method embodiment in combination with its hardware.
  • the communication module 310 shown in FIG. 7 may be implemented by a processor, and the interaction module 320 shown in FIG. 7 may be implemented by a transceiver.
  • FIG. 8 is a schematic structural diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 shown in FIG. 8 includes a processor 410, and the processor 410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 400 may further include a memory 420.
  • the memory 420 may be used to store instruction information, and may also be used to store code, instructions, and the like executed by the processor 410.
  • the processor 410 may call and run a computer program from the memory 420 to implement the method in the embodiment of the present application.
  • the memory 420 may be a separate device independent of the processor 410, or may be integrated in the processor 410.
  • the communication device 400 may further include a transceiver 430, and the processor 410 may control the transceiver 430 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other information. Information or data sent by the device.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include antennas, and the number of antennas may be one or more.
  • the communication device 400 may be a first node in the embodiment of the present application, and the communication device 400 may implement a corresponding process implemented by the first node in each method in the embodiments of the present application. That is, the communication device 400 in the embodiment of the present application may correspond to the communication device 400 in the embodiment of the present application, and may correspond to the corresponding subjects in the method 200 and the method 300 according to the embodiment of the present application. This will not be repeated here.
  • bus system includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • a chip is provided in the embodiment of the present application.
  • the chip may be an integrated circuit chip with signal processing capabilities, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 500 shown in FIG. 9 includes a processor 510, and the processor 510 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be used to store instruction information, and may also be used to store code, instructions, and the like executed by the processor 510.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the chip 500 may further include an input interface 530.
  • the processor 510 may control the input interface 530 to communicate with other devices or chips. Specifically, the processor 510 may obtain information or data sent by other devices or chips.
  • the chip 500 may further include an output interface 540.
  • the processor 510 may control the output interface 540 to communicate with other devices or chips. Specifically, the processor 510 may output information or data to the other devices or chips.
  • the chip can be applied to the communication device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the communication device in the method 200 of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the communication device in the method 200 of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip. It should also be understood that various components in the chip 500 are connected through a bus system, where the bus system includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • the processor mentioned in the embodiment of the present application may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a ready-made programmable gate array (field programmable gate array). , FPGA) or other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on.
  • static random access memory static random access memory
  • SRAM static random access memory
  • dynamic RAM dynamic random access memory
  • SDRAM Synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM enhanced synchronous dynamic random access memory
  • synchronous connection Dynamic random access memory switch link DRAM, SLDRAM
  • Direct RAMbus RAM Direct RAMbus RAM, DR RAM
  • a computer-readable storage medium is also provided in the embodiment of the present application for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • a computer program product is also provided in the embodiments of the present application, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • An embodiment of the present application further provides a communication system.
  • the communication system may include a communication device as shown in FIG. 5, and may further include a first device and a second device as shown in FIG. 5.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • the technical solution of the embodiments of the present application is essentially a part that contributes to the existing technology or a part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium. , Including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • the division of units or modules or components in the device embodiments described above is only a logical function division. In actual implementation, there may be another division manner. For example, multiple units or modules or components may be combined or integrated. To another system, or some units or modules or components can be ignored or not implemented.
  • the above-mentioned units / modules / components described as separate / display components may or may not be physically separated, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units / modules / components can be selected according to actual needs to achieve the objectives of the embodiments of the present application.

Abstract

提供了一种无线通信方法、通信设备、芯片和通信系统。所述方法应用于通信设备,所述通信设备具有至少两个分组数据汇聚协议PDCP实体,所述至少两个PDCP实体用于服务相同的上层数据,所述方法包括:所述通信设备通过所述至少两个PDCP实体接收数据或/或发送数据。本申请实施例中,所述通信设备通过至少两个PDCP实体服务相同的上层数据,能够DCP实体的服务发生中断,进而提高数据包的传输效率。

Description

无线通信方法、通信设备、芯片和通信系统 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及无线通信方法、通信设备、芯片和通信系统。
背景技术
目前,在NR的讨论中,已经同时基于PDCP duplication方式进行数据复制传输提高数据传输可靠性。NR目前定义了两种协议架构支持数据复制传输。分别为载波聚合(carrier aggregation,CA)的数据复制传输和双链接(dual connectivity,DC)的数据复制传输。
但是,上述两种协议架构都是基于一个唯一的PDCP实体进行的数据复制传输。因此,当用户设备(UE)从第一接入网设备移动到第二接入网设备,需要经历安全密钥的变化,而一个PDCP实体同一时间只能使用一个安全密钥。也就是说,针对数据复制传输的网络切换中,安全密钥的变化导致UE需要进行PDCP重建的操作进行安全密钥的重配置,而会导致PDCP实体的服务发生中断。
因此,针对数据复制传输的网络切换中,如何避免PDCP实体的服务发生中断,进而提高数据传输效率是本领域急需解决的问题。
发明内容
提供了一种无线通信方法、通信设备、芯片和通信系统,能够避免PDCP实体的服务发生中断,进而提高数据传输效率。
第一方面,提供了一种无线通信方法,应用于通信设备,所述通信设备具有至少两个分组数据汇聚协议PDCP实体,所述至少两个PDCP实体用于服务相同的上层数据,所述方法包括:
所述通信设备通过所述至少两个PDCP实体接收数据或/或发送数据。
在一些可能的实现方式中,所述上层数据包括一个或多个服务质量QoS流中的数据。
在一些可能的实现方式中,所述上层数据包括一个或多个演进分组系统EPS承载中的数据。
在一些可能的实现方式中,所述至少两个PDCP实体中的每个PDCP实体具有各自的密钥。
在一些可能的实现方式中,所述至少两个PDCP实体中的PDCP实体具有数据复制功能。
在一些可能的实现方式中,所述至少两个PDCP实体中的PDCP实体具有冗余检测功能。
在一些可能的实现方式中,所述通信设备还具有至少一个服务数据适应协议SDAP实体;
其中,所述通信设备通过所述至少两个PDCP实体接收数据或/或发送数据,包括:
所述通信设备通过所述至少两个PDCP实体和与所述至少两个PDCP实体对应的至少一个SDAP实体接收数据或/或发送数据。
在一些可能的实现方式中,所述至少一个SDAP实体中的SDAP实体具有数据复制功能。
在一些可能的实现方式中,所述至少一个SDAP实体中的SDAP实体具有冗余检测功能。
在一些可能的实现方式中,所述至少一个SDAP实体中的SDAP实体生成的SDAP PDU包括SDAP PDU的序列号SN。
在一些可能的实现方式中,所述至少一个SDAP实体和所述至少两个PDCP实体一一对应。
在一些可能的实现方式中,所述至少一个SDAP实体仅包括一个SDAP实体。
在一些可能的实现方式中,所述至少两个PDCP实体中的任一PDCP实体包括发送实体和接收实体。
在一些可能的实现方式中,所述方法还包括:
所述通信设备在所述至少两个PDCP实体的发送实体之间交互PDCP协议数据单元PDU发送情况。
在一些可能的实现方式中,所述PDCP PDU发送情况包括已发送的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
在一些可能的实现方式中,所述PDCP PDU发送情况还包括已发送的PDCP PDU的最大SN和/或最大HFN和/或最大计数值COUNT。
在一些可能的实现方式中,所述方法还包括:
所述通信设备在所述至少两个PDCP实体的接收实体之间交互PDCP协议数据单元PDU接收情况。
在一些可能的实现方式中,所述PDCP PDU接收情况包括已接收的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
所述PDCP PDU接收情况包括已解密数据包的数据转发情况。
在一些可能的实现方式中,所述PDCP PDU接收情况还包括用于表示下一个待接收PDCP服务数据单元SDU的计数值、用于表示等待递交给上层的第一个PDCP SDU的计数值、用于触发重新排序定时器的PDCP数据PDU的计数值加一。
第二方面,提供了一种通信设备,用于执行上述第一方面所述的方法以及上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述通信设备包括:
用于执行上述第一方面所述的方法以及上述任一可能的实现方式中的方法的功能模块。
第三方面,提供了一种通信设备,包括:
处理器,用于从存储器中调用并运行计算机程序,所述计算机程序用于执行上述第一方面所述的方法以及上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述通信设备还包括:
存储器,所述存储器用于存储所述计算机程序。
第四方面,提供了一种芯片,用于执行上述第一方面所述的方法以及上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述芯片包括:
处理器,用于从存储器中调用并运行计算机程序,所述计算机程序用于执行上述第一方面所述的方法以及上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述芯片还包括:
存储器,所述存储器用于存储所述计算机程序。
第五方面,提供了一种计算机可读存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于执行上述第一方面所述的方法以及上述任一可能的实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序用于执行上述第一方面所述的方法以及上述任一可能的实现方式中的方法。
第七方面,提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法以及上述任一可能的实现方式中的方法。
第八方面,提供了一种通信系统,包括第二方面所述的通信设备。
基于以上方案,通信设备通过至少两个PDCP实体服务相同的上层数据,能够DCP实体的服务发生中断,进而提高数据包的传输效率。
附图说明
图1是本申请实施例的无线通信系统的示例。
图2是本申请实施例的CA场景下的复制数据的传输方法的示意性流程图。
图3是本申请实施例的DC场景下的用于下行传输的协议架构的示例。
图4是本申请实施例的DC场景下的用于上行传输的协议架构的示例。
图5是本申请实施例的通信设备协议架构的示意图。
图6是本申请实施例的无线通信方法的示意性流程图。
图7是本申请实施例的通信设备的示意性框图。
图8是本申请实施例的通信设备的另一示意性框图。
图9是本申请实施例的芯片的示意性框图。
具体实施方式
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括基站110和位于基站110覆盖范围内的至少一个终端设备120。
基站110可以是与终端设备通信的设备。基站110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该基站110可以是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
无线通信系统100还包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。
可选地,通信系统100中的各功能单元之间可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。需要说明的是,图2所示的部分仅为示例性架构图,除过图1所示的功能单元之外,该网络架构还可以包括其他功能单元或功能实体,如:核心网设备还可以包含统一数据管理功能(unified data management,UDM)等其他功能单元,本申请实施例不进行具体限定。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
下面结合图2对本申请实施例中CA场景下的复制数据的传输方法进行简单介绍。
图2是本申请实施例的PDCP层的数据的传输方法的示意性流程图。
如图2所示,PDCP层生成的数据(PDU和PDU的复制数据)分别传输到两个不同的RLC实体(RLC实体a和RLC实体b),这两个不同的RLC实体通过相同的媒体介入控制(Media Access Control,MAC)层实体(MAC实体)映射到不同的物理层载波(第一物理层载波和第二物理层载波)。
可以理解,在本申请实施例中,PDCP层所生成的数据(PDU和PDU的复制数据)分别通过两个不同的RLC实体映射到不同的物理层载波上,能够达到频率分集增益的目的,进而能够提高数据传输的可靠性。
在实际工作中,每一子层可以根据协议数据单元的数据的不同,发送数据到接收端的指定层。进入每个子层未被处理的数据称为服务数据单元(service data unit,SDU),经过子层处理后形成特定格式的数据被称为协议数据单元(Protocol Data Unit,PDU)。SDU是从高层协议传送到低层协议的信息单元。SDU的原数据是协议上层的PDU。也就是说,本层形成的PDU即为下一层的SDU。
例如,每个终端设备的每个逻辑信道都有一个RLC实体(RLC entity),RLC实体从PDCP层接收到的数据,或发往PDCP层的数据可以称为RLC SDU(或PDCP PDU)。RLC实体从MAC层接收到的数据,或发往MAC层的数据可以称为RLC PDU(或MAC SDU)。
应理解,本申请实施例中,RLC层位于PDCP层和MAC层之间,RLC层可以通过服务接入点(Service Access Point,SAP)与PDCP层进行通信,并通过逻辑信道与MAC层进行通信。但本申请实施例不限于此。
本申请实施例中,当PDCP层的数据复制处于激活态时,PDCP层的PDU(即PDCP PDU)和PDCP PDU的复制数据会通过不同的RLC实体映射在不同的物理层载波上,能够有效提高数据传输的可靠性。
图3是本申请实施例的双连接(Dual Connection,DC)场景下的用于下行传输的协议架构的示例,图4是本申请实施例的DC场景下的用于上行传输的协议架构的示例。
应理解,在双连接(Dual Connection,DC)场景下,多个通信设备(小区组(Cell Group,CG))可以为终端设备服务,小区组和终端设备之间可以进行复制数据的传输。可选地,在本申请的一些实施例中,CG可以等同于通信设备或网络设备等。
在DC场景下,复制数据传输方式的协议架构可以如图1和图2所示。
如图1和图2所示,DC场景下复制数据传输方式采用的是分叉承载(split bearer)的协议架构。
对于上下行来说,分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)位于某一个CG(主CG(Master CG,MCG)或者辅CG(Secondary CG,SCG)),所述CG为“锚点”CG(anchor CG)。
PDCP将PDCP协议数据单元(Protocol Data Unit,PDU)复制为相同的两个,比如一个是PDCP PDU,一个是复制(Duplicated)PDCP PDU,两个PDCP PDU经过不同CG的无线链路控制(Radio Link Control,RLC)层以及媒体接入控制(Media Access Control,MAC)层,在经过空口到达终端(下行)或者基站(上行)相应的MAC以及RLC层,最后再汇聚到PDCP,PDCP层监测到两个PDCP为相同的复制版本,即丢弃其中一个,将另外一个递交到高层。
此外,本申请实施例中将PDCP下面分别连接RLC和MAC的这两个承载称为分叉承载(split bearer),如果PDCP位于MCG,则为MCG Split Bearer,如果PDCP位于SCG,则为SCG Split Bearer。
在本申请实施例中,两个PDCP PDU经过不同CG进行传输,能够达到频率分集增益的目的,进而能够提高数据传输的可靠性。
可以发现,图2至如4所示的架构都是基于一个唯一的PDCP实体进行的数据复制传输。但是,上述两种协议架构都是基于一个唯一的PDCP实体进行的数据复制传输。因此,当用户设备(UE)从第一接入网设备移动到第二接入网设备,需要经历安全密钥的变化,而一个PDCP实体同一时间只能使用一个安全密钥。也就是说,针对数据复制传输的网络切换中,安全密钥的变化导致UE需要进行PDCP重建的操作进行安全密钥的重配置,而会导致PDCP实体的服务发生中断。
本发明提出了一种协议架构,能够避免PDCP实体的服务发生中断,进而提高数据传输效率。
图5示出了根据本申请实施例的通信设备的协议架构的示意性框图。
应理解,图5所示的通信设备可以是如图1所示的通信设备120可以是如图1所示的终端设备120,也可以是如图1所述的接入网设备110,还可以是如图1所述的核心网设备130。相应的,图5所示的第一设备或第二设备可以是如图1所示的终端设备120,也可以是如图1所述的接入网设备110,还可以是如图1所述的核心网设备130。
还应理解,图5所示的通信设备包括第一PDCP实体和第二PDCP实体仅为示例,在其他可替代实施例中,所述通信设备可以包括大于两个的PDCP实体。为了便于描述,下面以所述通信设备包括如图5所示的第一PDCP实体和第二PDCP实体为例对本申请实施例进行说明。
如图5所示,通信设备包括第一PDCP实体、第一RLC实体、第一MAC实体、第二PDCP实体、第二RLC实体以及第二MAC实体。第一设备包括第三PDCP实体、第三RLC实体以及第三MAC实体。第二设备可以包括第四PDCP实体、第四RLC实体以及第四MAC实体。
具体地,所述通信设备的第一PDCP实体经过第一RLC实体、第一MAC 实体,再经过空口到达第一设备的第三MAC实体、第三RLC实体以及第三PDCP实体。所述通信设备的第二PDCP实体经过第二RLC实体、第二MAC实体,再经过空口到达第二设备的第四MAC实体、第四RLC实体以及第四PDCP实体。
可选地,在本申请的一些实施例中,所述第一PDCP实体生成的PDCP PDU和第二PDCP实体生成的PDCP PDU为不同的数据。例如,所述第一PDCP PDU和所述第二PDCP PDU完全不同。
可选地,在本申请的一些实施例中,所述第一PDCP实体生成的PDCP PDU和第二PDCP实体生成的PDCP PDU部分相同。例如,所述第一PDCP实体生成的PDCP PDU为所述第二PDCP实体生成的PDCP PDU的复制数据。又例如,所述第二PDCP实体生成的PDCP PDU为所述第一PDCP实体生成的PDCP PDU的复制数据。
可选地,在本申请的一些实施例中,所述第一PDCP实体和所述第二PDCP实体用于服务相同的上层数据。
即,所述通信设备可以通过所述第一PDCP实体和所述第二PDCP实体进行传输相同的上层数据。
可选地,在本申请的一些实施例中,所述上层数据包括一个或多个服务质量(Quality of service,QoS)流(flow)中的数据。
可选地,在本申请的一些实施例中,所述上层数据包括一个或多个演进分组系统(EPS)承载中的数据。
需要注意的是,本申请实施例的所述上层数据并不等同于PDCP实体接收的数据。例如,所述第一PDCP实体和所述第二PDCP实体用于传输同一QoS流,但是,所述第一PDCP实体和所述第二PDCP实体上的具体数据包为不同的数据包。
可选地,在图5所示的协议架构中,所述第一PDCP实体具有专用密钥,所述第二PDCP实体也可以具有专用密钥。
可选地,在图5所示的协议架构中,所述第一PDCP实体具有数据复制功能,和/或,所述第二PDCP实体具有数据复制功能。
例如,以所述第一PDCP实体具有数据复制功能为例,所述通信设备可以通过所述第一PDCP实体,生成PDCP PDU和所述PDCP PDU的复制数据;所述通信设备可以通过所述第一PDCP实体向所述第二PDCP实体发送所述PDCP PDU的复制数据,并向所述第一RLC发送所述PDCP PDU。
可选地,在图5所示的协议架构中,所述第一PDCP实体具有冗余检测功能,和/或,所述第二PDCP实体具有冗余检测功能。
例如,以所述第一PDCP实体具有冗余检测功能为例,所述通信设备可以通过所述第一PDCP实体,接收SDAP实体发送的数据单元或者图5所示的第一RLC实体发送的数据单元;并对接收到的数据单元进行冗余检测。
可选地,在图5所示的协议架构中,所述通信设备还可以具有至少一个服务数据适应协议(Service Data Adaptation Protocol,SDAP)实体。即,所 述通信设备可以通过所述至少两个PDCP实体和与所述至少两个PDCP实体对应的至少一个SDAP实体接收数据或/或发送数据。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体具有数据复制功能。
例如,在图5所示的协议架构中,所述通信设备可以通过所述至少一个SDAP实体中的SDAP实体,生成SDAP PDU和所述SDAP PDU的复制数据;所述通信设备可以向所述第一PDCP实体发送所述SDAP PDU,并向所述第二PDCP实体发送所述SDAP PDU的复制数据。进一步地,所述SDAP实体生成的SDAP PDU和所述SDAP PDU的复制数据分别包括所述SDAP PDU的SN。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体具有冗余检测功能。
例如,在图5所示的协议架构中,所述通信设备可以通过所述至少一个SDAP实体中的SDAP实体,接收所述第一PDCP实体发送的所述PDCP PDU,以及所述第二PDCP实体发送的所述PDCP PDU的复制数据。然后,所述通信设备可以通过所述至少一个SDAP实体中的SDAP实体,冗余检测所述PDCP PDU和所述PDCP PDU的复制数据。进一步地,所述SDAP实体生成的SDAP PDU可以包括所述SDAP PDU的SN。
可选地,在图5所示的协议架构中,所述至少一个SDAP实体包括第一SDAP实体和第二SDAP实体,其中,所述第一SDAP实体和所述第一PDCP实体对应,所述第二SDAP实体和所述第二PDCP实体对应。
可选地,在图5所示的协议架构中,所述至少一个SDAP实体仅包括一个SDAP实体。所述一个SDAP实体对应所述第一PDCP实体和所述第二PDCP实体。
可选地,在图5所示的协议架构中,所述第一PDCP实体包括发送实体和接收实体,和/或,所述第二PDCP实体包括发送实体和接收实体。
可选地,在图5所示的协议架构中,所述第一PDCP实体的发送实体和所述第二PDCP实体的发送实体之间交互PDCP PDU发送情况。
可选地,在本申请的一些实施例中,所述PDCP PDU发送情况包括已发送的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
可选地,在本申请的一些实施例中,所述PDCP PDU发送情况还包括已发送的PDCP PDU的最大SN和/或最大HFN和/或最大计数值COUNT。
可选地,在本申请的一些实施例中,图6所示的方法还可以包括:
可选地,在图5所示的协议架构中,所述第一PDCP实体的接收实体和所述第二PDCP实体的接收实体之间交互PDCP协议数据单元PDU接收情况。
可选地,在本申请的一些实施例中,所述PDCP PDU接收情况包括已接收的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
可选地,在本申请的一些实施例中,所述PDCP PDU接收情况包括已解 密数据包的数据转发情况。
可选地,在本申请的一些实施例中,所述PDCP PDU接收情况还包括用于表示下一个待接收PDCP服务数据单元SDU的计数值、用于表示等待递交给上层的第一个PDCP SDU的计数值、用于触发重新排序定时器的PDCP数据PDU的计数值加一。
上文结合图5对本申请实施例的协议构架进行了说明,下面结合图6对本申请实施例的无线通信方法进行说明。应理解,图6所示的方法200可以由图5所示的通信设备执行,所述通信设备具有至少两个PDCP实体。
如图6所示,所述方法200可以包括:
210,通过至少两个PDCP实体服务相同的上层数据。
本申请实施例中,通信设备通过至少两个PDCP实体服务相同的上层数据,能够DCP实体的服务发生中断,进而提高数据包的传输效率。
更具体地,所述至少两个PDCP实体经过不同的RLC层、MAC层,在经过空口到达至少两个对端相应的MAC层、RLC层以及PDCP,以便所述至少两个对端中的每个对端将生成的数据(PDCP SDU)递交到高层。
可选地,在本申请的一些实施例中,所述上层数据包括一个或多个服务质量(Quality of service,QoS)流(flow)中的数据。
可选地,在本申请的一些实施例中,所述上层数据包括一个或多个演进分组系统(EPS)承载中的数据。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体中的每个PDCP实体具有各自的密钥。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体中的PDCP实体具有数据复制功能。具体地,所述至少两个PDCP实体中的PDCP实体用于生成PDCP PDU和所述PDCP PDU的复制数据。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体中的PDCP实体具有冗余检测功能。具体地,所述至少两个PDCP实体中的PDCP实体用于接收RLC实体或者SDAP实体发送的数据单元,并对接收到的数据单元进行冗余检测。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体与至少一个SDAP实体对应。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体和所述至少两个PDCP实体一一对应。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体仅包括一个SDAP实体。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体具有数据复制功能。具体地,所述至少一个SDAP实体中的SDAP实体用于生成SDAP PDU和所述SDAP PDU的复制数据。
进一步地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体生成的所述SDAP PDU和所述SDAP PDU的复制数据分别包括 SDAP PDU的序列号(SN)。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体具有冗余检测功能。具体地,所述至少一个SDAP实体中的SDAP实体用于接收所述至少两个PDCP实体发送的PDCP PDU;并通过所述至少一个SDAP实体中的SDAP实体,冗余检测所述至少两个PDCP实体发送的PDCP PDU。
进一步地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体生成的SDAP PDU包括SDAP PDU的序列号(SN)。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体中的任一PDCP实体包括发送实体和接收实体。
可选地,在本申请的一些实施例中,图6所示的方法还可以包括:
220,在所述至少两个PDCP实体的发送实体之间交互PDCP协议数据单元PDU发送情况。
可选地,在本申请的一些实施例中,所述PDCP PDU发送情况包括已发送的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
可选地,在本申请的一些实施例中,所述PDCP PDU发送情况还包括已发送的PDCP PDU的最大SN和/或最大HFN和/或最大计数值COUNT。
可选地,在本申请的一些实施例中,图6所示的方法还可以包括:
230,在所述至少两个PDCP实体的接收实体之间交互PDCP协议数据单元PDU接收情况。
可选地,在本申请的一些实施例中,所述PDCP PDU接收情况包括已接收的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
可选地,在本申请的一些实施例中,所述PDCP PDU接收情况包括已解密数据包的数据转发情况。
可选地,在本申请的一些实施例中,所述PDCP PDU接收情况还包括用于表示下一个待接收PDCP服务数据单元SDU的计数值、用于表示等待递交给上层的第一个PDCP SDU的计数值、用于触发重新排序定时器的PDCP数据PDU的计数值加一。
换句话说,所述PDCP PDU接收情况可以包括第一状态参数RX_NEXT,所述第一状态参数RX_NEXT用于表示下一个待接收PDCP SDU的计数值(This state variable indicates the COUNT value of the next PDCP SDU expected to be received)。所述PDCP PDU接收情况还可以包括第二状态参数RX_DELIV,所述第二状态参数RX_DELIV用于表示等待递交给上层的第一个PDCP SDU的计数值(This state variable indicates the COUNT value of the first PDCP SDU not delivered to the upper layers,but still waited for)。所述PDCP PDU接收情况还可以包括第三状态参数RX_REORD,所述第三状态参数RX_REORD触发重新排序定时器的PDCP数据PDU的计数值加一(This state variable indicates the COUNT value following the COUNT value associated with the PDCP Data PDU which triggered t-Reordering)。
可选地,在本申请的一些实施例中,上述第一状态参数RX_NEXT,所述第二状态参数RX_DELIV,所述第三状态参数RX_REORD的初始值设置为0。
图7是本申请实施例的通信设备300的示意性框图。应理解,所述通信设备300具有至少两个分组数据汇聚协议PDCP实体,所述至少两个PDCP实体用于服务相同的上层数据。
如图7所示,所述通信设备300可以包括:
通信模块310,用于通过所述至少两个PDCP实体接收数据或/或发送数据。
可选地,在本申请的一些实施例中,所述上层数据包括一个或多个服务质量QoS流中的数据。
可选地,在本申请的一些实施例中,所述上层数据包括一个或多个演进分组系统EPS承载中的数据。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体中的每个PDCP实体具有各自的密钥。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体中的PDCP实体具有数据复制功能。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体中的PDCP实体具有冗余检测功能。
可选地,在本申请的一些实施例中,所述通信设备还具有至少一个服务数据适应协议SDAP实体;所述通信模块310具体用于:
通过所述至少两个PDCP实体和与所述至少两个PDCP实体对应的至少一个SDAP实体接收数据或/或发送数据。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体具有数据复制功能。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体具有冗余检测功能。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体中的SDAP实体生成的SDAP PDU包括SDAP PDU的序列号SN。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体和所述至少两个PDCP实体一一对应。
可选地,在本申请的一些实施例中,所述至少一个SDAP实体仅包括一个SDAP实体。
可选地,在本申请的一些实施例中,所述至少两个PDCP实体中的任一PDCP实体包括发送实体和接收实体。
可选地,在本申请的一些实施例中,所述通信设备还包括:
交互模块320,用于在所述至少两个PDCP实体的发送实体之间交互PDCP协议数据单元PDU发送情况。
可选地,在本申请的一些实施例中,所述PDCP PDU发送情况包括已发 送的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
可选地,在本申请的一些实施例中,所述PDCP PDU发送情况还包括已发送的PDCP PDU的最大SN和/或最大HFN和/或最大计数值COUNT。
可选地,在本申请的一些实施例中,所述通信设备还包括:
交互模块320,用于在所述至少两个PDCP实体的接收实体之间交互PDCP协议数据单元PDU接收情况。
可选地,在本申请的一些实施例中,所述PDCP PDU接收情况包括已接收的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
所述PDCP PDU接收情况包括已解密数据包的数据转发情况。
可选地,在本申请的一些实施例中,所述PDCP PDU接收情况还包括用于表示下一个待接收PDCP服务数据单元SDU的计数值、用于表示等待递交给上层的第一个PDCP SDU的计数值、用于触发重新排序定时器的PDCP数据PDU的计数值加一。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图7所示的通信设备400可以对应于执行本申请实施例的方法200中的相应主体,并且通信设备400中的各个单元的前述和其它操作和/或功能分别为了实现图6中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合图7从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,本申请实施例中,图7所示的通信模块310可以通过处理器实现,图7所示的交互模块320可由收发器实现。
图8是本申请实施例的通信设备400示意性结构图。图8所示的通信设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备400还可以包括存储器420。该存储器420可以用于存储指示信息,还可以用于存储处理器410执行的代码、指令等。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以 集成在处理器410中。
可选地,如图8所示,通信设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备400可为本申请实施例的第一节点,并且该通信设备400可以实现本申请实施例的各个方法中由第一节点实现的相应流程。也就是说,本申请实施例的通信设备400可对应于本申请实施例中的通信设备400,并可以对应于执行根据本申请实施例的方法200和方法300中的相应主体,为了简洁,在此不再赘述。
应当理解,该通信设备400中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
此外,本申请实施例中还提供了一种芯片,该芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图9是根据本申请实施例的芯片的示意性结构图。
图9所示的芯片500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,该芯片500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的通信设备,并且该芯片可以实现本申请实施例的方法200中由通信设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。还应理解,所述芯片500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制 总线和状态信号总线。
本申请实施例中提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等等。此外,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
此外,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网 络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括如图5所示的通信设备,还可以包括如图5所示的第一设备和第二设备。
需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (44)

  1. 一种无线通信方法,其特征在于,应用于通信设备,所述通信设备具有至少两个分组数据汇聚协议PDCP实体,所述至少两个PDCP实体用于服务相同的上层数据,所述方法包括:
    所述通信设备通过所述至少两个PDCP实体接收数据或/或发送数据。
  2. 根据权利要求1所述的方法,其特征在于,所述上层数据包括一个或多个服务质量QoS流中的数据。
  3. 根据权利要求1所述的方法,其特征在于,所述上层数据包括一个或多个演进分组系统EPS承载中的数据。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述至少两个PDCP实体中的每个PDCP实体具有各自的密钥。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述至少两个PDCP实体中的PDCP实体具有数据复制功能。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述至少两个PDCP实体中的PDCP实体具有冗余检测功能。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述通信设备还具有至少一个服务数据适应协议SDAP实体;
    其中,所述通信设备通过所述至少两个PDCP实体接收数据或/或发送数据,包括:
    所述通信设备通过所述至少两个PDCP实体和与所述至少两个PDCP实体对应的至少一个SDAP实体接收数据或/或发送数据。
  8. 根据权利要求7所述的方法,其特征在于,所述至少一个SDAP实体中的SDAP实体具有数据复制功能。
  9. 根据权利要求7所述的方法,其特征在于,所述至少一个SDAP实体中的SDAP实体具有冗余检测功能。
  10. 根据权利要求8或9所述的方法,其特征在于,所述至少一个SDAP实体中的SDAP实体生成的SDAP PDU包括SDAP PDU的序列号SN。
  11. 根据权利要求7所述的方法,其特征在于,所述至少一个SDAP实体和所述至少两个PDCP实体一一对应。
  12. 根据权利要求7所述的方法,其特征在于,所述至少一个SDAP实体仅包括一个SDAP实体。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述至少两个PDCP实体中的任一PDCP实体包括发送实体和接收实体。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述通信设备在所述至少两个PDCP实体的发送实体之间交互PDCP协议数据单元PDU发送情况。
  15. 根据权利要求14所述的方法,其特征在于,所述PDCP PDU发送情况包括已发送的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值 COUNT。
  16. 根据权利要求15所述的方法,其特征在于,所述PDCP PDU发送情况还包括已发送的PDCP PDU的最大SN和/或最大HFN和/或最大计数值COUNT。
  17. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述通信设备在所述至少两个PDCP实体的接收实体之间交互PDCP协议数据单元PDU接收情况。
  18. 根据权利要求17所述的方法,其特征在于,所述PDCP PDU接收情况包括已接收的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
  19. 根据权利要求17所述的方法,所述PDCP PDU接收情况包括已解密数据包的数据转发情况。
  20. 根据权利要求18或19所述的方法,其特征在于,所述PDCP PDU接收情况还包括用于表示下一个待接收PDCP服务数据单元SDU的计数值、用于表示等待递交给上层的第一个PDCP SDU的计数值、用于触发重新排序定时器的PDCP数据PDU的计数值加一。
  21. 一种通信设备,其特征在于,所述通信设备具有至少两个分组数据汇聚协议PDCP实体,所述至少两个PDCP实体用于服务相同的上层数据,所述通信设备包括:
    通信模块,用于通过所述至少两个PDCP实体接收数据或/或发送数据。
  22. 根据权利要求21所述的通信设备,其特征在于,所述上层数据包括一个或多个服务质量QoS流中的数据。
  23. 根据权利要求21所述的通信设备,其特征在于,所述上层数据包括一个或多个演进分组系统EPS承载中的数据。
  24. 根据权利要求21至23中任一项所述的通信设备,其特征在于,所述至少两个PDCP实体中的每个PDCP实体具有各自的密钥。
  25. 根据权利要求21至24中任一项所述的通信设备,其特征在于,所述至少两个PDCP实体中的PDCP实体具有数据复制功能。
  26. 根据权利要求21至24中任一项所述的通信设备,其特征在于,所述至少两个PDCP实体中的PDCP实体具有冗余检测功能。
  27. 根据权利要求21至24中任一项所述的通信设备,其特征在于,所述通信设备还具有至少一个服务数据适应协议SDAP实体;
    所述通信模块具体用于:
    通过所述至少两个PDCP实体和与所述至少两个PDCP实体对应的至少一个SDAP实体接收数据或/或发送数据。
  28. 根据权利要求27所述的通信设备,其特征在于,所述至少一个SDAP实体中的SDAP实体具有数据复制功能。
  29. 根据权利要求27所述的通信设备,其特征在于,所述至少一个SDAP实体中的SDAP实体具有冗余检测功能。
  30. 根据权利要求28或29所述的通信设备,其特征在于,所述至少一个SDAP实体中的SDAP实体生成的SDAP PDU包括SDAP PDU的序列号SN。
  31. 根据权利要求27所述的通信设备,其特征在于,所述至少一个SDAP实体和所述至少两个PDCP实体一一对应。
  32. 根据权利要求27所述的通信设备,其特征在于,所述至少一个SDAP实体仅包括一个SDAP实体。
  33. 根据权利要求21至32中任一项所述的通信设备,其特征在于,所述至少两个PDCP实体中的任一PDCP实体包括发送实体和接收实体。
  34. 根据权利要求33所述的通信设备,其特征在于,所述通信设备还包括:
    所述通信设备在所述至少两个PDCP实体的发送实体之间交互PDCP协议数据单元PDU发送情况。
  35. 根据权利要求34所述的通信设备,其特征在于,所述PDCP PDU发送情况包括已发送的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
  36. 根据权利要求35所述的通信设备,其特征在于,所述PDCP PDU发送情况还包括已发送的PDCP PDU的最大SN和/或最大HFN和/或最大计数值COUNT。
  37. 根据权利要求33所述的通信设备,其特征在于,所述通信设备还包括:
    所述通信设备在所述至少两个PDCP实体的接收实体之间交互PDCP协议数据单元PDU接收情况。
  38. 根据权利要求37所述的通信设备,其特征在于,所述PDCP PDU接收情况包括已接收的PDCP PDU的序列号SN和/或超帧号HFN和/或计数值COUNT。
  39. 根据权利要求37所述的通信设备,所述PDCP PDU接收情况包括已解密数据包的数据转发情况。
  40. 根据权利要求38或39所述的通信设备,其特征在于,所述PDCPPDU接收情况还包括用于表示下一个待接收PDCP服务数据单元SDU的计数值、用于表示等待递交给上层的第一个PDCP SDU的计数值、用于触发重新排序定时器的PDCP数据PDU的计数值加一。
  41. 一种通信设备,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求1至20中任一项所述的方法的指令。
  42. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求1至20中任一项所述的方法的指令。
  43. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序, 所述计算机程序包括:用于执行权利要求1至20中任一项所述的方法的指令。
  44. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行权利要求1至20中任一项所述的方法。
PCT/CN2018/099194 2018-08-07 2018-08-07 无线通信方法、通信设备、芯片和通信系统 WO2020029074A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/CN2018/099194 WO2020029074A1 (zh) 2018-08-07 2018-08-07 无线通信方法、通信设备、芯片和通信系统
PCT/CN2018/109200 WO2020029414A1 (zh) 2018-08-07 2018-09-30 无线通信方法、通信设备、芯片和通信系统
JP2021505842A JP2022510071A (ja) 2018-08-07 2018-11-02 無線通信方法、通信デバイス、チップ及び通信システム
EP18929409.3A EP3813399B1 (en) 2018-08-07 2018-11-02 Method, apparatus, chip, storage medium and computer program product for a communication device with at least two packet data convergence protocol (pdcp) entities
PCT/CN2018/113727 WO2020029445A1 (zh) 2018-08-07 2018-11-02 无线通信方法、通信设备、芯片和通信系统
CN202110374219.8A CN113115360B (zh) 2018-08-07 2018-11-02 无线通信方法、通信设备、芯片和通信系统
CN201880095682.5A CN112425193A (zh) 2018-08-07 2018-11-02 无线通信方法、通信设备、芯片和通信系统
KR1020217003053A KR20210040058A (ko) 2018-08-07 2018-11-02 무선 통신 방법, 통신 디바이스, 칩 및 통신 시스템
AU2018436002A AU2018436002A1 (en) 2018-08-07 2018-11-02 Wireless communication method, communication device, chip, and communication system
US17/154,877 US20210144801A1 (en) 2018-08-07 2021-01-21 Wireless communication method, communication device, chip, and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099194 WO2020029074A1 (zh) 2018-08-07 2018-08-07 无线通信方法、通信设备、芯片和通信系统

Publications (1)

Publication Number Publication Date
WO2020029074A1 true WO2020029074A1 (zh) 2020-02-13

Family

ID=69413703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099194 WO2020029074A1 (zh) 2018-08-07 2018-08-07 无线通信方法、通信设备、芯片和通信系统

Country Status (1)

Country Link
WO (1) WO2020029074A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110810A1 (zh) * 2013-01-18 2014-07-24 华为技术有限公司 传输数据的方法、基站和用户设备
CN105230073A (zh) * 2013-05-21 2016-01-06 阿尔卡特朗讯 电信方法、电信系统、主节点、辅节点和用户设备
WO2018121643A1 (zh) * 2016-12-30 2018-07-05 华为技术有限公司 一种数据传输方法、装置及系统
CN108347727A (zh) * 2017-01-24 2018-07-31 中兴通讯股份有限公司 一种数据传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110810A1 (zh) * 2013-01-18 2014-07-24 华为技术有限公司 传输数据的方法、基站和用户设备
CN105230073A (zh) * 2013-05-21 2016-01-06 阿尔卡特朗讯 电信方法、电信系统、主节点、辅节点和用户设备
WO2018121643A1 (zh) * 2016-12-30 2018-07-05 华为技术有限公司 一种数据传输方法、装置及系统
CN108347727A (zh) * 2017-01-24 2018-07-31 中兴通讯股份有限公司 一种数据传输方法及装置

Similar Documents

Publication Publication Date Title
CN110574426A (zh) 分组复制操作模式之间的切换
WO2019242749A1 (zh) 一种切换方法及装置
WO2019019133A1 (zh) 命令指示方法及装置、信息交互方法及装置
EP3687239B1 (en) Path switching method, computer readable medium and terminal device
WO2022036555A1 (zh) 中继传输的方法、中继终端和远端终端
US20230085168A1 (en) Data flow transmission method, terminal and network-side device
WO2014166053A1 (zh) 一种通讯方法和终端
WO2018127985A1 (ja) 無線通信装置、無線通信システム、および無線通信方法
US20210144801A1 (en) Wireless communication method, communication device, chip, and communication system
WO2019019150A1 (zh) 数据传输的方法、终端设备和网络设备
US11894974B2 (en) Network switching method, network node, chip and communication system
WO2019237315A1 (zh) 一种控制安全功能的方法及装置、网络设备、终端设备
WO2021169732A1 (zh) 一种切换方法及通信装置
WO2020029074A1 (zh) 无线通信方法、通信设备、芯片和通信系统
WO2021127943A1 (zh) 无线通信方法和终端设备
WO2020034125A1 (zh) 一种恢复rrc连接的方法及装置、终端
WO2018228545A1 (zh) 信息处理方法以及相关装置
WO2023279296A1 (zh) 无线通信方法、第一终端和通信设备
WO2024011462A1 (zh) 一种通信方法及装置、通信设备、接入网架构
WO2023102907A1 (zh) 无线通信方法、第一终端以及网络设备
WO2022032672A1 (zh) 无线通信方法和终端
WO2022067719A1 (zh) 一种控制scg状态的方法及装置、网络设备
WO2023000176A1 (zh) 一种控制scg状态的方法及装置、终端设备、网络设备
WO2022068094A1 (zh) 一种通信方法及相关设备
CN112153689B (zh) 一种数据发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929267

Country of ref document: EP

Kind code of ref document: A1