WO2022067719A1 - 一种控制scg状态的方法及装置、网络设备 - Google Patents

一种控制scg状态的方法及装置、网络设备 Download PDF

Info

Publication number
WO2022067719A1
WO2022067719A1 PCT/CN2020/119529 CN2020119529W WO2022067719A1 WO 2022067719 A1 WO2022067719 A1 WO 2022067719A1 CN 2020119529 W CN2020119529 W CN 2020119529W WO 2022067719 A1 WO2022067719 A1 WO 2022067719A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearer
initial
scg
resources
condition
Prior art date
Application number
PCT/CN2020/119529
Other languages
English (en)
French (fr)
Inventor
王淑坤
付喆
刘洋
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/119529 priority Critical patent/WO2022067719A1/zh
Priority to CN202080105062.2A priority patent/CN116097897A/zh
Publication of WO2022067719A1 publication Critical patent/WO2022067719A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method and apparatus for controlling the state of a secondary cell group (Secondary Cell Group, SCG), a terminal device, and a network device.
  • SCG Secondary Cell Group
  • terminal device a terminal device
  • network device a network device
  • Dormancy SCG means that all cells in the SCG are in the dormancy state. How to support dormancy SCG is an issue that needs to be clarified.
  • Embodiments of the present application provide a method and apparatus for controlling an SCG state, and a network device.
  • the MN When the master node (Master Node, MN) determines that the first condition is satisfied, the MN triggers the SCG to enter the deactivated state, and the first condition is used to indicate that the resources on the SCG side are not occupied.
  • the method further includes:
  • the MN When the MN determines that the second condition is met, the MN triggers the SCG to enter an active state, and the second condition is used to indicate that the resources on the SCG side are occupied.
  • the apparatus for controlling the state of the SCG provided by the embodiment of the present application is applied to the MN, and the apparatus includes:
  • a triggering unit configured to trigger the secondary cell group SCG to enter a deactivated state when a first condition is satisfied, where the first condition is used to indicate that the resources on the SCG side are not occupied.
  • the triggering unit is further configured to trigger the SCG to enter an active state when it is determined that a second condition is satisfied, and the second condition is used to indicate that the resources on the SCG side are occupied.
  • the network device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for controlling the state of the SCG.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for controlling the state of the SCG.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for controlling the state of the SCG.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned method for controlling an SCG state.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned method for controlling an SCG state.
  • the computer program provided by the embodiments of the present application when running on a computer, causes the computer to execute the above-mentioned method for controlling the state of an SCG.
  • the MN triggers the SCG to enter the deactivated state when the first condition (ie, the deactivation condition) is satisfied, and the SCG entering the deactivated state means that the SCG is a dormancy SCG.
  • the MN triggers the SCG to enter the active state when the second condition (ie, the activation condition) is satisfied, and the SCG entering the active state means that the SCG is restored from the dormancy SCG to the active SCG. In this way, it can be ensured that the SCG can be effectively deactivated or activated, so as to achieve the purpose of saving power of the terminal device.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a bearer type provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of replication transmission of multiple RLC transmission links provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of RLC activation/deactivation of MAC CE provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for controlling an SCG state provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a device for controlling an SCG state provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • E-UTRA-NR Dual Connectivity E-UTRA-NR Dual Connectivity
  • EN-DC E-UTRA-NR Dual Connectivity
  • an LTE base station eNB acts as a master node (Master Node, MN)
  • an NR base station gNB or en-gNB
  • SN secondary node
  • the MN is mainly responsible for the RRC control function and the control plane leading to the core network; the SN can configure auxiliary signaling, such as SRB3, which mainly provides the data transmission function.
  • NR and E-UTRA Dual Connectivity NR and E-UTRA Dual Connectivity (NE-DC)
  • NE-DC Evolved Packet Core network
  • 5GC-EN-DC 5G Core Network
  • MN terminated MCG Bearer MN initial MCG bearer
  • MN initial SCG bearer MN terminated SCG Bearer
  • MN initial split bearer MN terminated split Bearer
  • SN initial MCG bearer SN terminated MCG Bearer
  • SN terminated SCG Bearer SN terminated SCG Bearer
  • SN terminated split Bearer SN terminated split Bearer
  • MCG bearer means that the RLC/MAC/PHY resources used by the bearer are located on the MN side
  • SCG bearer means that the RLC/MAC/PHY resources used by the bearer are located on the SN side
  • offload bearer means that the bearer uses RLC/MAC/PHY resources are located on the MN and SN sides.
  • the terminal device In order to meet the more stringent data transmission reliability requirements of industrial Ethernet, the terminal device is allowed to use more than two RLC transmission links (referred to as paths or legs) when the copy transmission function of the PDCP layer is active.
  • Duplicate transmission of up to 4 RLC transmission links can be supported in Carrier Aggregation (CA) and Carrier Aggregation + Dual Connectivity (CA+DC) scenarios.
  • CA Carrier Aggregation
  • CA+DC Dual Connectivity
  • Figure 3 shows four situations in which replication transmission of four RLC transmission links is supported in the CA scenario, wherein different RLC transmission links in the four RLC transmission links correspond to different RLC entities, such as RLC1, RLC2, RLC3 and RLC4 Corresponding to path 1 (ie CC1), path 2 (ie CC2), path 3 (ie CC3) and path 4 (ie CC4).
  • the path is also the RLC transmission link, and the path corresponds to a component carrier (Component Carrier, CC), so that the CA function can be implemented.
  • Component Carrier Component Carrier
  • the replication transmission in the CA+DC scenario is similar to the CA, the difference is that the PDCP entity that activates the replication transmission function can be located on the MN side or the SN side, and can also support replication transmission of up to 4 RLC transmission links, 4 RLC transmission chains Different RLC transmission links in the road correspond to different RLC entities, and the four RLC entities can be distributed on the MN and SN sides, or all can be distributed on the MN side, or all can be distributed on the SN side. Different distribution conditions lead to different bearer types corresponding to the RLC transmission link. For details, please refer to the foregoing description related to FIG. 2 .
  • the network can configure an RLC transmission link related to a data radio bearer (DRB) for the terminal device through RRC signaling.
  • DRB data radio bearer
  • the DRB can also be referred to as a bearer for short, and the bearer type can refer to the above-mentioned related Figure 2 description of.
  • a bearer can be associated with multiple RLC transmission links, that is, bearer identifiers corresponding to multiple RLC entities are the same.
  • the primary leg and the secondary leg for replication transmission can be configured through RRC signaling.
  • multiple RLC transmission links may also be referred to as multiple legs or multiple paths for short, and RRC signaling can configure which leg of the multiple legs is the primary leg, and the other legs are secondary legs.
  • the network configures the PDCP-duplication IE in the corresponding PDCP-config IE of the bearer, it can be considered that the network has configured the transmission duplication function for the terminal device. As for whether the status of the transmission replication function is activated, it needs to be further determined through the duplicationState IE in moreThanTwoRLC-r16.
  • the network can dynamically change the currently activated RLC transmission link for the terminal device according to the detection of the channel condition by the network or according to the channel condition fed back by the terminal device (specifically, changing the RCL transmission link for the terminal device). ID and/or number of transport links).
  • one RLC activation/deactivation MAC CE is used to dynamically change the currently activated RLC transmission link.
  • the payload format of the RLC activation/deactivation MAC CE is composed of the DRB ID and the relevant RLC activation status identification bit.
  • the DRB ID in the RLC activation/deactivation MAC CE is used to identify the target bearer corresponding to the MAC CE issued by the network.
  • the subsequent bits are set to 0/1 to instruct the terminal equipment to deactivate/activate the corresponding RLC transmission link.
  • the logical channel identifiers corresponding to the RLC transmission links with indexes 0 to 2 are arranged in ascending order, and follow the principle of MN first and then SN.
  • the network can quickly instruct the terminal device which several configured RLC transmission links are used for the duplicate transmission of a given bearer. It should be noted that, whether to use replication transmission, that is, whether to enable the secondary leg, may depend on whether the carried traffic is greater than a certain threshold (eg, ul-DataSplitThreshold).
  • a certain threshold eg, ul-DataSplitThreshold
  • Dormancy SCG means that all cells in the SCG are in the dormancy state.
  • the cells in the dormancy state do not monitor the physical downlink control channel (PDCCH) and do not execute Transmission and reception of data, but performs RRM, CSI measurement, and beam management, etc. So how to support dormancy SCG is a problem that needs to be clarified. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • MCG side in the embodiments of the present application may also be referred to as the "MN side”
  • SCG side may also be referred to as the "SN side”.
  • the primary path in the embodiment of the present application may also be referred to as the primary leg or the primary RLC transmission link
  • the secondary path in the embodiment of the present application may also be referred to as the secondary leg or the secondary RLC transmission link.
  • different paths correspond to different RLC entities.
  • the main path is always in an active state, so the RLC resources (that is, the RLC entity) corresponding to the main path are occupied.
  • the RLC resource that is, the RLC entity
  • the RLC resource that is, the RLC entity
  • the path is on the MCG side in this embodiment of the present application can also be understood as “the RLC resource corresponding to the path is on the MCG side”.
  • the path is on the SCG side in the embodiment of the present application may also be understood as “the RLC resource corresponding to the path is on the SCG side”.
  • the number of paths that can be associated with it is not limited to 4, and may also be other numbers.
  • one path is the primary path, and the other paths are secondary paths.
  • the type of the bearer may be determined according to the distribution of RLC resources corresponding to the multiple paths, and for details, please refer to the description related to FIG. 2 .
  • FIG. 5 is a schematic flowchart of a method for controlling an SCG state provided by an embodiment of the present application. As shown in FIG. 5 , the method for controlling an SCG state includes the following steps:
  • Step 501 When the MN determines that a first condition is met, the MN triggers the secondary cell group SCG to enter a deactivated state, and the first condition is used to indicate that the resources on the SCG side are not occupied.
  • the method further includes: Step 502: when the MN determines that a second condition is satisfied, the MN triggers the SCG to enter an active state, and the second condition is used to indicate that the resources on the SCG side are occupied.
  • step 501 may be performed independently, or step 502 may be performed independently.
  • the master node in the DC is the MN
  • the secondary node in the DC is the SN
  • the cell group on the MN side is called MCG
  • the cell group on the SN side is called SCG.
  • This embodiment of the present application does not limit the type of DC, for example, it may be MR-DC, EN-DC, NE-DC, NR-DC, and so on.
  • a condition for deactivating the SCG that is, a first condition
  • the first condition is used to indicate that the resources on the SCG side are not occupied.
  • a condition for activating the SCG that is, a second condition
  • the second condition is used to indicate that the resources on the SCG side are occupied.
  • the first condition includes at least one of the following:
  • the DC-based PDCP replication function is in a deactivated state, and the main path of the bearer is on the MCG side;
  • the bearer When the PDCP replication function is in the deactivated state and the main path of the bearer is on the MCG side, the bearer has only one main path and no secondary path, and the main path is on the MCG side.
  • the DC-based PDCP replication function is in an active state, and all paths configured on the SCG side for the PDCP replication function are in a deactivated state;
  • the primary path and at least one secondary path are carried, and all the paths distributed on the SCG side are in the deactivated state.
  • the offload bearer has no data transmission and/or reception at the SCG side.
  • the main path of the initial offload bearer of the SN is on the MCG side, and the traffic corresponding to the initial offload bearer of the SN is less than a certain threshold;
  • the primary path of the initial offload bearer of the SN is on the MCG side, and when the traffic volume corresponding to the initial offload bearer of the SN is less than a certain threshold, it is not necessary to activate or add a secondary path, and the primary path is on the MCG side.
  • the main path of the initial offload bearer of the MN is on the MCG side, and the traffic corresponding to the initial offload bearer of the MN is less than a certain threshold.
  • the primary path of the MN's initial offload bearer is on the MCG side, and when the traffic volume corresponding to the MN's initial offload bearer is less than a certain threshold, it is not necessary to activate or add a secondary path, and the primary path is on the MCG side.
  • the threshold in the above solution may be the same as or different from the UL-DataSplitThreshold.
  • the first condition includes at least one of the following:
  • the DC-based PDCP replication function is in a deactivated state, and the main path of the bearer is on the MCG side;
  • the bearer When the PDCP replication function is in the deactivated state and the main path of the bearer is on the MCG side, the bearer has only one main path and no secondary path, and the main path is on the MCG side.
  • the DC-based PDCP replication function is in an active state, and all paths configured on the SCG side for the PDCP replication function are in a deactivated state;
  • the primary path and at least one secondary path are carried, and all the paths distributed on the SCG side are in the deactivated state.
  • the offload bearer has no data transmission and/or reception at the SCG side.
  • the main path of the initial offload bearer of the SN is on the MCG side, and the traffic corresponding to the initial offload bearer of the SN is less than a certain threshold;
  • the primary path of the initial offload bearer of the SN is on the MCG side, and when the traffic volume corresponding to the initial offload bearer of the SN is less than a certain threshold, it is not necessary to activate or add a secondary path, and the primary path is on the MCG side.
  • the main path of the initial offload bearer of the MN is on the MCG side, and the traffic corresponding to the initial offload bearer of the MN is less than a certain threshold.
  • the primary path of the MN's initial offload bearer is on the MCG side, and when the traffic volume corresponding to the MN's initial offload bearer is less than a certain threshold, it is not necessary to activate or add a secondary path, and the primary path is on the MCG side.
  • the threshold in the above solution may be the same as or different from the UL-DataSplitThreshold.
  • the SN initial bearer has no data to send and/or receive, wherein the SN initial bearer includes at least one of the following: SN initial SCG bearer, SN initial MCG bearer, and SN initial offload bearer.
  • the PDCP resource ie, the PDCP entity
  • the PDCP entity with the PDCP replication function is located on the MN side.
  • the second condition includes at least one of the following:
  • the DC-based PDCP replication function is in an active state, and the main path of the bearer is on the MCG side, and at least one auxiliary path on the SCG side is in an active state;
  • the DC-based PDCP replication function is in a deactivated state or an activated state, and the main path of the bearer is on the SCG side;
  • the offload bearer has data transmission and/or reception on the SCG side.
  • the SCG bearer carries data transmission and/or reception at the SCG side.
  • the main path of the initial offload bearer of the SN is on the MCG side, and the traffic corresponding to the initial offload bearer of the SN is greater than or equal to a certain threshold;
  • the primary path of the initial offload bearer of the SN is on the MCG side, and if the traffic corresponding to the initial offload bearer of the SN is greater than or equal to a certain threshold, a secondary path may be activated or added on the SCG side.
  • the threshold in the above solution may be the same as or different from the UL-DataSplitThreshold.
  • the primary path of the initial offload bearer of the MN is on the MCG side, and the traffic corresponding to the initial offload bearer of the MN is greater than or equal to a certain threshold.
  • the primary path of the MN's initial offload bearer is on the MCG side, and the traffic corresponding to the MN's initial offload bearer is greater than or equal to a certain threshold, and a secondary path may be activated or added on the SCG side.
  • the threshold in the above solution may be the same as or different from the UL-DataSplitThreshold.
  • the second condition includes at least one of the following:
  • the DC-based PDCP replication function is in an active state, and the main path of the bearer is on the MCG side, and at least one auxiliary path on the SCG side is in an active state;
  • the DC-based PDCP replication function is in a deactivated state or an activated state, and the main path of the bearer is on the SCG side;
  • the offload bearer has data transmission and/or reception on the SCG side.
  • the SCG bearer carries data transmission and/or reception at the SCG side.
  • the main path of the initial offload bearer of the SN is on the MCG side, and the traffic corresponding to the initial offload bearer of the SN is greater than or equal to a certain threshold;
  • the primary path of the initial offload bearer of the SN is on the MCG side, and when the traffic corresponding to the initial offload bearer of the SN is greater than or equal to a certain threshold, the secondary path may be activated or added on the SCG side.
  • the threshold in the above solution may be the same as or different from the UL-DataSplitThreshold.
  • the main path of the initial offload bearer of the MN is on the MCG side, and the traffic corresponding to the initial offload bearer of the MN is greater than or equal to a certain threshold.
  • the primary path of the MN's initial offload bearer is on the MCG side, and the traffic corresponding to the MN's initial offload bearer is greater than or equal to a certain threshold, and a secondary path may be activated or added on the SCG side.
  • the threshold in the above solution may be the same as or different from the UL-DataSplitThreshold.
  • SN initial bearer carries data transmission and/or reception, wherein the SN initial bearer includes at least one of the following: SN initial SCG bearer, SN initial MCG bearer, and SN initial offload bearer.
  • the resources on the SCG side are not used; wherein, the resources on the SCG side include at least one of the following: radio link control RLC layer resources, media access Control MAC layer resources and physical layer resources; or, the resources on the SCG side include at least one of the following: PDCP layer resources, RLC layer resources, MAC layer resources, and physical layer resources.
  • FIG. 6 is a schematic structural composition diagram of an apparatus for controlling an SCG state provided by an embodiment of the present application, which is applied to an MN. As shown in FIG. 6 , the apparatus for controlling an SCG state includes:
  • the triggering unit 601 is configured to trigger the secondary cell group SCG to enter a deactivated state when it is determined that a first condition is satisfied, where the first condition is used to indicate that the resources on the SCG side are not occupied.
  • the triggering unit 601 is further configured to trigger the SCG to enter an active state when it is determined that a second condition is satisfied, and the second condition is used to indicate that the resources on the SCG side are occupied.
  • the first condition includes at least one of the following:
  • the DC-based PDCP replication function is in the deactivated state, and the main path of the bearer is on the MCG side;
  • the DC-based PDCP replication function is in an active state, and all paths configured on the SCG side for the PDCP replication function are in a deactivated state;
  • the SN initial offload bearer and the MN initial offload bearer have no data transmission and/or reception;
  • SN-initial SCG bearer and MN-initial SCG bearer have no data transmission and/or reception;
  • the main path of the initial offload bearer of the SN is on the MCG side, and the traffic corresponding to the initial offload bearer of the SN is less than a certain threshold;
  • the main path of the initial offload bearer of the MN is on the MCG side, and the traffic corresponding to the initial offload bearer of the MN is less than a certain threshold.
  • the first condition further includes:
  • the SN initial bearer has no data to send and/or receive, wherein the SN initial bearer includes at least one of the following: SN initial SCG bearer, SN initial MCG bearer, and SN initial offload bearer.
  • the PDCP entity with the PDCP replication function is located on the MN side.
  • the second condition includes at least one of the following:
  • the DC-based PDCP replication function is in an active state, and the main path of the bearer is on the MCG side, and at least one auxiliary path on the SCG side is in an active state;
  • the DC-based PDCP replication function is in the deactivated state or activated state, and the main path of the bearer is on the SCG side;
  • the SN initial offload bearer and the MN initial offload bearer carry data transmission and/or reception;
  • SN initial SCG bearer and MN initial SCG bearer carry data transmission and/or reception;
  • the main path of the initial offload bearer of the SN is on the MCG side, and the traffic corresponding to the initial offload bearer of the SN is greater than or equal to a certain threshold;
  • the main path of the initial offload bearer of the MN is on the MCG side, and the traffic corresponding to the initial offload bearer of the MN is greater than or equal to a certain threshold.
  • the second condition further includes:
  • the SN initial bearer carries data transmission and/or reception, wherein the SN initial bearer includes at least one of the following: SN initial SCG bearer, SN initial MCG bearer, and SN initial offload bearer.
  • the resources on the SCG side are not used;
  • the resources on the SCG side include at least one of the following: RLC layer resources, MAC layer resources, and physical layer resources; or,
  • the resources on the SCG side include at least one of the following: PDCP layer resources, RLC layer resources, MAC layer resources, and physical layer resources.
  • the SCG refers to a cell group on the SN side of the secondary node, and the MN and the SN are two nodes of the DC.
  • FIG. 7 is a schematic structural diagram of a communication device 700 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the communication device 700 may further include a transceiver 730, and the processor 710 may control the transceiver 730 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the processor 710 may control the transceiver 730 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 700 may specifically be the network device in this embodiment of the present application, and the communication device 700 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 700 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 700 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from a memory, so as to implement the methods in the embodiments of the present application.
  • the chip 800 may further include a memory 820 .
  • the processor 810 may call and run a computer program from the memory 820 to implement the methods in the embodiments of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated in the processor 810 .
  • the chip 800 may further include an input interface 830 .
  • the processor 810 may control the input interface 830 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 800 may further include an output interface 840 .
  • the processor 810 may control the output interface 840 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 9 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 9 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种控制SCG状态的方法及装置、网络设备,该方法包括:主节点MN确定满足第一条件的情况下,所述MN触发辅小区组SCG进入去激活状态,所述第一条件用于表征所述SCG侧的资源不被占用;所述MN确定满足第二条件的情况下,所述MN触发SCG进入激活状态,所述第二条件用于表征所述SCG侧的资源被占用。

Description

一种控制SCG状态的方法及装置、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种控制辅小区组(Secondary Cell Group,SCG)状态的方法及装置、终端设备、网络设备。
背景技术
为了支持终端设备节能以及快速建立SCG,标准上同意支持休眠(dormancy)SCG的概念,dormancy SCG意味着SCG中的所有小区处于dormancy状态。如何支持dormancy SCG是需要明确的问题。
发明内容
本申请实施例提供一种控制SCG状态的方法及装置、网络设备。
本申请实施例提供的控制SCG状态的方法,包括:
主节点(Master Node,MN)确定满足第一条件的情况下,所述MN触发SCG进入去激活状态,所述第一条件用于表征所述SCG侧的资源不被占用。
在一可选方式中,所述方法还包括:
所述MN确定满足第二条件的情况下,所述MN触发SCG进入激活状态,所述第二条件用于表征所述SCG侧的资源被占用。
本申请实施例提供的控制SCG状态的装置,应用于MN,所述装置包括:
触发单元,用于确定满足第一条件的情况下,触发辅小区组SCG进入去激活状态,所述第一条件用于表征所述SCG侧的资源不被占用。
在一可选方式中,所述触发单元,还用于确定满足第二条件的情况下,触发SCG进入激活状态,所述第二条件用于表征所述SCG侧的资源被占用。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的控制SCG状态的方法。
本申请实施例提供的芯片,用于实现上述的控制SCG状态的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的控制SCG状态的方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序, 该计算机程序使得计算机执行上述的控制SCG状态的方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的控制SCG状态的方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的控制SCG状态的方法。
通过上述技术方案,MN在满足第一条件(即去激活条件)的情况下,触发SCG进入去激活状态,SCG进入去激活状态意味着该SCG为dormancy SCG。MN在满足第二条件(即激活条件)的情况下,触发SCG进入激活状态,SCG进入激活状态意味着该SCG由dormancy SCG恢复成激活SCG。如此,可以保证有效去激活SCG或者激活SCG,达到终端设备省电的目的。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的承载类型的示意图;
图3是本申请实施例提供的多条RLC传输链路的复制传输的示意图;
图4是本申请实施例提供的RLC激活/去激活MAC CE的示意图;
图5是本申请实施例提供的控制SCG状态的方法的流程示意图;
图6是本申请实施例提供的控制SCG状态的装置的结构组成示意图;
图7是本申请实施例提供的一种通信设备示意性结构图;
图8是本申请实施例的芯片的示意性结构图;
图9是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通 信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密合作(tight interworking)的工作模式。
为了能够尽快实现5G网络部署和商业应用,3GPP在2017年12底前首先完成第一个5G版本,即E-UTRA和NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)。在EN-DC中,LTE基站(eNB)作为主节点(Master Node,MN),NR基站(gNB或en-gNB)作为辅节点(Secondary Node,SN)。其中MN主要负责RRC控制功能以及通向核心网的控制面;SN可以配置辅助的信令,例如SRB3,主要提供数据传输功能。
在R15后期,将支持其他双连接(Dual Connectivity,DC)模式,即NR和E-UTRA双连接(NR-E-UTRA Dual Connectivity,NE-DC),5GC-EN-DC,NR DC。对于EN-DC,接入网络连接的核心网是演进型分组核心网(Evolved Packet Core network,EPC),而其他DC模式连接的核心网是5G核心网(5G Core Network,5GC)。
在多RAT双连接(Multi-RAT Dual Connectivity,MR-DC)中,参照图2,承载类型分为MN初始的MCG承载(MN terminated MCG Bearer)、MN初始的SCG承载(MN terminated SCG Bearer)、MN初始的分流承载(MN terminated split Bearer)、SN初始的MCG承载(SN terminated MCG Bearer)、SN初始的SCG承载(SN terminated SCG Bearer)、SN初始的分流承载(SN terminated split Bearer)。其中,“MN初始的(MN terminated)”的意思是承载对应的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)资源(即PDCP实体)位于MN侧,“SN初始的(SN terminated)”的意思是承载使用的PDCP资源位于SN侧。“MCG承载”的意思是承载使用的RLC/MAC/PHY资源位于MN侧,“SCG承载”的意思是承载使用的RLC/MAC/PHY资源位于SN侧,“分流承载”的意思是承载使用的RLC/MAC/PHY资源位于MN和SN侧。
为了满足工业以太网更严苛的数据传输可靠性要求,允许终端设备在PDCP层的复制传输功能处于激活态下,使用多于两条RLC传输链路(简称为路径或者腿(leg))进行数据包冗余传输的需求。允许网络为终端设备配置最多4条RLC传输链路用于同时传输复制的数据包。可以在载波聚合(CA)和载波聚合+双连接(CA+DC)场景下支持最多4条RLC传输链路的复制传输。
图3为CA场景下支持4条RLC传输链路的复制传输的4种情况,其中,4条RLC传输链路中的不同RLC传输链路对应不同的RLC实体,例如RLC1、RLC2、RLC3和RLC4分别对应路径1(即CC1)、路径2(即CC2)、路径3(即CC3)和路径4(即CC4)。这里,路径也即RLC传输链路,路径与成员载波(Component Carrier,CC)对应,从而可以实现CA功能。
CA+DC场景下的复制传输情况与CA类似,区别在于,激活复制传输功能的PDCP实体可以位于MN侧或者SN侧,也可以支持最多4条RLC传输链路的复制传输,4条RLC传输链路中的不同RLC传输链路对应不同的RLC实体,4个RLC实体可以分布在MN和SN侧,或者也可以全部分布在MN侧,或者也可以全部分布在SN侧。分布情况不同,RLC传输链路对应的承载类型就不同,具体可以参照前述图2相关的描述。
在具体实施中,网络可以通过RRC信令为终端设备配置与数据无线承载(Data Radio Bearer,DRB)相关的RLC传输链路,这里,DRB也可以简称为承载,承载类型可以参照前述图2相关的描述。对于承载进行复制 传输时,一个承载可以关联多条RLC传输链路,即有多个RLC实体对应的承载标识为同一个。此外,通过RRC信令可以配置主leg和用于复制传输的辅leg。需要说明的是,多条RLC传输链路也可以简称为多条leg或者多条路径,RRC信令可以配置这多条leg中哪一个leg为主leg,而其他leg均为辅leg。
当网络在承载对应的PDCP-config IE中配置了PDCP-duplication IE,则可视为网络已为终端设备配置了传输复制功能。至于传输复制功能的状态是否为激活的,需要进一步通过moreThanTwoRLC-r16中的duplicationState IE来确定。
在通过RRC信令对传输复制功能配置完成后,根据网络对信道情况的侦测或者根据终端设备反馈的信道情况,网络可以动态地为终端设备变换当前激活的RLC传输链路(具体为变换RCL传输链路的ID和/或数目)。针对网络最多为终端设备配置4条RLC传输链路进行数据包复制传输的需求,通过一个RLC激活/去激活MAC CE,用于动态地变换当前激活的RLC传输链路。参照图4,RLC激活/去激活MAC CE的净荷格式由DRB ID和相关的RLC激活状态标识位组成,由于4条RLC传输链路中只有3条辅leg,主leg始终保持在激活状态,因而只需要对这3条辅leg进行激活去激活指示。其中,RLC激活/去激活MAC CE中的DRB ID用于标识网络下发此MAC CE对应的目标承载。后续的比特位设置为0/1用于指示终端设备去激活/激活对应的RLC传输链路。需要说明的是,索引为0到2的RLC传输链路对应逻辑信道标识按升序排列,并遵从先MN再SN的原则。通过RLC激活/去激活MAC CE,网络可以快速指示终端设备用哪几个已配置的RLC传输链路用于给定承载的复制传输。需要说明的是,是否要使用复制传输,即是否要启用辅leg,可以取决于承载的业务量是否大于一定门限(如ul-DataSplitThreshold)。
为了支持终端设备的节能以及快速建立SCG,标准上同意支持dormancy SCG的概念,dormancy SCG意味着SCG中的所有小区处于dormancy状态,处于dormancy状态的小区不监听物理下行控制信道(PDCCH),不执行数据的发送和接收,但是执行RRM,CSI测量以及波束管理等。所以如何支持dormancy SCG是个需要明确的问题。为此,提出了本申请实施例的以下技术方案。
需要说明的是,本申请实施例中对于“MCG侧”的描述也可以称为“MN侧”,对于“SCG侧”的描述也可以称为“SN侧”。
需要说明的是,本申请实施例中的主路径也可以称为主leg或者主RLC传输链路,本申请实施例中的辅路径也可以称为辅leg或者辅RLC传输链路。其中,不同的路径对应不同的RLC实体。主路径始终处于激活状态,因而主路径对应的RLC资源(也即RLC实体)被占用。辅路径处于激活状态时,该辅路径对应的RLC资源(也即RLC实体)被占用;辅路径处于去 激活状态时,该辅路径对应的RLC资源(也即RLC实体)不被占用。
需要说明的是,本申请实施例中的“路径在MCG侧”也可以理解为“路径对应的RLC资源位于MCG侧”。本申请实施例中的“路径在SCG侧”也可以理解为“路径对应的RLC资源位于SCG侧”。
需要说明的是,对于一个承载来说,其可以关联的路径的个数不限于4个,也可以是其他数目。承载关联的多条路径中有一条路径为主路径,而其他路径均为辅路径。承载的类型,可以根据多条路径对应的RLC资源的分布来确定,具体可以参照图2相关的描述。
图5是本申请实施例提供的控制SCG状态的方法的流程示意图,如图5所示,所述控制SCG状态的方法包括以下步骤:
步骤501:MN确定满足第一条件的情况下,所述MN触发辅小区组SCG进入去激活状态,所述第一条件用于表征所述SCG侧的资源不被占用。
可选地,还包括:步骤502:所述MN确定满足第二条件的情况下,所述MN触发SCG进入激活状态,所述第二条件用于表征所述SCG侧的资源被占用。
需要说明的是,本申请实施例对步骤501和步骤502的执行顺序不做限制。本申请实施例可以单独执行步骤501,也可以单独执行步骤502。
本申请实施例的技术方案应用于DC架构,DC中的主节点即为MN,DC中的辅节点即为SN,即MN和SN为DC的两个节点。MN侧的小区组称为MCG,SN侧的小区组称为SCG。本申请实施例对DC的类型不做限制,例如可以是MR-DC、EN-DC、NE-DC、NR-DC等等。
本申请实施例中,一方面,定义了去激活SCG的条件,即第一条件,所述第一条件用于表征所述SCG侧的资源不被占用。另一方面,定义了激活SCG的条件,即第二条件,所述第二条件用于表征所述SCG侧的资源被占用。MN确定满足第一条件的情况下,触发辅SCG进入去激活状态(也即suspend状态);MN确定满足第二条件的情况下,触发SCG进入激活状态。以下对第一条件和第二条件进行说明。
●第一条件
1)方式一
所述第一条件包括以下至少之一:
I)基于DC的PDCP复制功能处于去激活状态,且承载的主路径在MCG侧;
PDCP复制功能处于去激活状态,且承载的主路径在MCG侧的情况下,该承载只有一个主路径,没有辅路径,且主路径在MCG侧。
II)基于DC的PDCP复制功能处于激活状态,且针对该PDCP复制功能配置在SCG侧的全部路径处于去激活状态;
PDCP复制功能处于激活状态,且针对该PDCP复制功能配置在SCG侧的全部路径处于去激活状态的情况下,承载有主路径和至少一条辅路 径,分布在SCG侧的全部路径都处于去激活状态。
III)SN初始的分流承载和MN初始的分流承载没有数据发送和/或接收;
这里,SN初始的分流承载和MN初始的分流承载没有数据发送和/或接收的情况下,分流承载在SCG侧没有数据发送和/或接收。
IV)SN初始的SCG承载和MN初始的SCG承载没有数据发送和/或接收;
这里,SN初始的SCG承载和MN初始的SCG承载没有数据发送和/或接收的情况下,SCG承载在SCG侧没有数据发送和/或接收。
V)SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量小于一定门限;
这里,SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量小于一定门限的情况下,不需要激活或者说添加辅路径,并且主路径是在MCG侧。
VI)MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量小于一定门限。
这里,MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量小于一定门限的情况下,不需要激活或者说添加辅路径,并且主路径是在MCG侧。
需要说明的是,上述方案中的门限可以和UL-DataSplitThreshold相同或者不同。
2)方式二
所述第一条件包括以下至少之一:
I)基于DC的PDCP复制功能处于去激活状态,且承载的主路径在MCG侧;
PDCP复制功能处于去激活状态,且承载的主路径在MCG侧的情况下,该承载只有一个主路径,没有辅路径,且主路径在MCG侧。
II)基于DC的PDCP复制功能处于激活状态,且针对该PDCP复制功能配置在SCG侧的全部路径处于去激活状态;
PDCP复制功能处于激活状态,且针对该PDCP复制功能配置在SCG侧的全部路径处于去激活状态的情况下,承载有主路径和至少一条辅路径,分布在SCG侧的全部路径都处于去激活状态。
III)SN初始的分流承载和MN初始的分流承载没有数据发送和/或接收;
这里,SN初始的分流承载和MN初始的分流承载没有数据发送和/或接收的情况下,分流承载在SCG侧没有数据发送和/或接收。
IV)SN初始的SCG承载和MN初始的SCG承载没有数据发送和/或接收;
这里,SN初始的SCG承载和MN初始的SCG承载没有数据发送和/或接收的情况下,SCG承载在SCG侧没有数据发送和/或接收。
V)SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量小于一定门限;
这里,SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量小于一定门限的情况下,不需要激活或者说添加辅路径,并且主路径是在MCG侧。
VI)MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量小于一定门限。
这里,MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量小于一定门限的情况下,不需要激活或者说添加辅路径,并且主路径是在MCG侧。
需要说明的是,上述方案中的门限可以和UL-DataSplitThreshold相同或者不同。
VII)SN初始的承载没有数据发送和/或接收,其中,所述SN初始的承载包括以下至少之一:SN初始的SCG承载、SN初始的MCG承载、SN初始的分流承载。
这里,SN初始的承载没有数据发送和/或接收,说明不需要占用SN侧的PDCP资源(即PDCP实体)。进一步,可选地,具有PDCP复制功能的PDCP实体位于MN侧。
●第二条件
1)方式一
所述第二条件包括以下至少之一:
I)基于DC的PDCP复制功能处于激活状态,且承载的主路径在MCG侧,且SCG侧的至少一个辅路径处于激活状态;
这里,SCG侧的至少一个辅路径处于激活状态的情况下,需要占用SCG侧的资源。
II)基于DC的PDCP复制功能处于去激活状态或者激活状态,承载的主路径在SCG侧;
这里,承载的主路径在SCG侧的情况下,由于主路径始终处于激活状态,因而需要占用SCG侧的资源。
III)SN初始的分流承载和MN初始的分流承载有数据发送和/或接收;
这里,SN初始的分流承载和MN初始的分流承载有数据发送和/或接收的情况下,分流承载在SCG侧有数据发送和/或接收。
IV)SN初始的SCG承载和MN初始的SCG承载有数据发送和/或接收;
这里,SN初始的SCG承载和MN初始的SCG承载有数据发送和/ 或接收的情况下,SCG承载在SCG侧有数据发送和/或接收。
V)SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量大于等于一定门限;
这里,SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量大于等于一定门限的情况下,可能会在SCG侧激活或者说添加辅路径。
需要说明的是,上述方案中的门限可以和UL-DataSplitThreshold相同或者不同。
VI)MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量大于等于一定门限。
这里,MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量大于等于一定门限,可能会在SCG侧激活或者说添加辅路径。
需要说明的是,上述方案中的门限可以和UL-DataSplitThreshold相同或者不同。
2)方式二
所述第二条件包括以下至少之一:
I)基于DC的PDCP复制功能处于激活状态,且承载的主路径在MCG侧,且SCG侧的至少一个辅路径处于激活状态;
这里,SCG侧的至少一个辅路径处于激活状态的情况下,需要占用SCG侧的资源。
II)基于DC的PDCP复制功能处于去激活状态或者激活状态,承载的主路径在SCG侧;
这里,承载的主路径在SCG侧的情况下,由于主路径始终处于激活状态,因而需要占用SCG侧的资源。
III)SN初始的分流承载和MN初始的分流承载有数据发送和/或接收;
这里,SN初始的分流承载和MN初始的分流承载有数据发送和/或接收的情况下,分流承载在SCG侧有数据发送和/或接收。
IV)SN初始的SCG承载和MN初始的SCG承载有数据发送和/或接收;
这里,SN初始的SCG承载和MN初始的SCG承载有数据发送和/或接收的情况下,SCG承载在SCG侧有数据发送和/或接收。
V)SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量大于等于一定门限;
这里,SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量大于等于一定门限的情况下,可能会在SCG侧激活或者说添加辅路径。
需要说明的是,上述方案中的门限可以和UL-DataSplitThreshold相同或者不同。
VI)MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量大于等于一定门限。
这里,MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量大于等于一定门限,可能会在SCG侧激活或者说添加辅路径。
需要说明的是,上述方案中的门限可以和UL-DataSplitThreshold相同或者不同。
VII)SN初始的承载有数据发送和/或接收,其中,所述SN初始的承载包括以下至少之一:SN初始的SCG承载、SN初始的MCG承载、SN初始的分流承载。
本申请实施例中,所述SCG进入去激活状态后,所述SCG侧的资源不被使用;其中,所述SCG侧的资源包括以下至少之一:无线链路控制RLC层资源、媒体接入控制MAC层资源、物理层资源;或者,所述SCG侧的资源包括以下至少之一:PDCP层资源、RLC层资源、MAC层资源、物理层资源。
图6是本申请实施例提供的控制SCG状态的装置的结构组成示意图,应用于MN,如图6所示,所述控制SCG状态的装置包括:
触发单元601,用于确定满足第一条件的情况下,触发辅小区组SCG进入去激活状态,所述第一条件用于表征所述SCG侧的资源不被占用。
在一可选方式中,所述触发单元601,还用于确定满足第二条件的情况下,触发SCG进入激活状态,所述第二条件用于表征所述SCG侧的资源被占用。
在一可选方式中,所述第一条件包括以下至少之一:
基于DC的PDCP复制功能处于去激活状态,且承载的主路径在MCG侧;
基于DC的PDCP复制功能处于激活状态,且针对该PDCP复制功能配置在SCG侧的全部路径处于去激活状态;
SN初始的分流承载和MN初始的分流承载没有数据发送和/或接收;
SN初始的SCG承载和MN初始的SCG承载没有数据发送和/或接收;
SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量小于一定门限;
MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量小于一定门限。
在一可选方式中,所述第一条件还包括:
SN初始的承载没有数据发送和/或接收,其中,所述SN初始的承载 包括以下至少之一:SN初始的SCG承载、SN初始的MCG承载、SN初始的分流承载。
在一可选方式中,具有PDCP复制功能的PDCP实体位于MN侧。
在一可选方式中,所述第二条件包括以下至少之一:
基于DC的PDCP复制功能处于激活状态,且承载的主路径在MCG侧,且SCG侧的至少一个辅路径处于激活状态;
基于DC的PDCP复制功能处于去激活状态或者激活状态,承载的主路径在SCG侧;
SN初始的分流承载和MN初始的分流承载有数据发送和/或接收;
SN初始的SCG承载和MN初始的SCG承载有数据发送和/或接收;
SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量大于等于一定门限;
MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量大于等于一定门限。
在一可选方式中,所述第二条件还包括:
SN初始的承载有数据发送和/或接收,其中,所述SN初始的承载包括以下至少之一:SN初始的SCG承载、SN初始的MCG承载、SN初始的分流承载。
在一可选方式中,所述SCG进入去激活状态后,所述SCG侧的资源不被使用;
所述SCG侧的资源包括以下至少之一:RLC层资源、MAC层资源、物理层资源;或者,
所述SCG侧的资源包括以下至少之一:PDCP层资源、RLC层资源、MAC层资源、物理层资源。
在一可选方式中,所述SCG指辅节点SN侧的小区组,所述MN和所述SN为DC的两个节点。
本领域技术人员应当理解,本申请实施例的上述控制SCG状态的装置的相关描述可以参照本申请实施例的控制SCG状态的方法的相关描述进行理解。
图7是本申请实施例提供的一种通信设备700示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图7所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图7所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备700具体可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备700具体可为本申请实施例的移动终端/终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的芯片的示意性结构图。图8所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图9是本申请实施例提供的一种通信系统900的示意性框图。如图9所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种控制辅小区组SCG状态的方法,所述方法包括:
    主节点MN确定满足第一条件的情况下,所述MN触发辅小区组SCG进入去激活状态,所述第一条件用于表征所述SCG侧的资源不被占用。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述MN确定满足第二条件的情况下,所述MN触发SCG进入激活状态,所述第二条件用于表征所述SCG侧的资源被占用。
  3. 根据权利要求1或2所述的方法,其中,所述第一条件包括以下至少之一:
    基于双连接DC的分组数据汇聚协议PDCP复制功能处于去激活状态,且承载的主路径在主小区组MCG侧;
    基于DC的PDCP复制功能处于激活状态,且针对该PDCP复制功能配置在SCG侧的全部路径处于去激活状态;
    SN初始的分流承载和MN初始的分流承载没有数据发送和/或接收;
    SN初始的SCG承载和MN初始的SCG承载没有数据发送和/或接收;
    SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量小于一定门限;
    MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量小于一定门限。
  4. 根据权利要求3所述的方法,其中,所述第一条件还包括:
    SN初始的承载没有数据发送和/或接收,其中,所述SN初始的承载包括以下至少之一:SN初始的SCG承载、SN初始的MCG承载、SN初始的分流承载。
  5. 根据权利要求4所述的方法,其中,具有PDCP复制功能的PDCP实体位于MN侧。
  6. 根据权利要求2所述的方法,其中,所述第二条件包括以下至少之一:
    基于DC的PDCP复制功能处于激活状态,且承载的主路径在MCG侧,且SCG侧的至少一个辅路径处于激活状态;
    基于DC的PDCP复制功能处于去激活状态或者激活状态,承载的主路径在SCG侧;
    SN初始的分流承载和MN初始的分流承载有数据发送和/或接收;
    SN初始的SCG承载和MN初始的SCG承载有数据发送和/或接收;
    SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量大于等于一定门限;
    MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量大于等于一定门限。
  7. 根据权利要求6所述的方法,其中,所述第二条件还包括:
    SN初始的承载有数据发送和/或接收,其中,所述SN初始的承载包括以下至少之一:SN初始的SCG承载、SN初始的MCG承载、SN初始的分流承载。
  8. 根据权利要求1至7中任一项所述方法,其中,所述SCG进入去激活状态后,所述SCG侧的资源不被使用;
    所述SCG侧的资源包括以下至少之一:无线链路控制RLC层资源、媒体接入控制MAC层资源、物理层资源;或者,
    所述SCG侧的资源包括以下至少之一:PDCP层资源、RLC层资源、MAC层资源、物理层资源。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述SCG指辅节点SN侧的小区组,所述MN和所述SN为DC的两个节点。
  10. 一种控制SCG状态的装置,应用于MN,所述装置包括:
    触发单元,用于确定满足第一条件的情况下,触发辅小区组SCG进入去激活状态,所述第一条件用于表征所述SCG侧的资源不被占用。
  11. 根据权利要求10所述的装置,其中,所述触发单元,还用于确定满足第二条件的情况下,触发SCG进入激活状态,所述第二条件用于表征所述SCG侧的资源被占用。
  12. 根据权利要求10或11所述的装置,其中,所述第一条件包括以下至少之一:
    基于DC的PDCP复制功能处于去激活状态,且承载的主路径在MCG侧;
    基于DC的PDCP复制功能处于激活状态,且针对该PDCP复制功能配置在SCG侧的全部路径处于去激活状态;
    SN初始的分流承载和MN初始的分流承载没有数据发送和/或接收;
    SN初始的SCG承载和MN初始的SCG承载没有数据发送和/或接收;
    SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量小于一定门限;
    MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量小于一定门限。
  13. 根据权利要求12所述的装置,其中,所述第一条件还包括:
    SN初始的承载没有数据发送和/或接收,其中,所述SN初始的承载包括以下至少之一:SN初始的SCG承载、SN初始的MCG承载、SN初始的分流承载。
  14. 根据权利要求13所述的装置,其中,具有PDCP复制功能的PDCP 实体位于MN侧。
  15. 根据权利要求11所述的装置,其中,所述第二条件包括以下至少之一:
    基于DC的PDCP复制功能处于激活状态,且承载的主路径在MCG侧,且SCG侧的至少一个辅路径处于激活状态;
    基于DC的PDCP复制功能处于去激活状态或者激活状态,承载的主路径在SCG侧;
    SN初始的分流承载和MN初始的分流承载有数据发送和/或接收;
    SN初始的SCG承载和MN初始的SCG承载有数据发送和/或接收;
    SN初始的分流承载的主路径在MCG侧,且所述SN初始的分流承载对应的业务量大于等于一定门限;
    MN初始的分流承载的主路径在MCG侧,且所述MN初始的分流承载对应的业务量大于等于一定门限。
  16. 根据权利要求15所述的装置,其中,所述第二条件还包括:
    SN初始的承载有数据发送和/或接收,其中,所述SN初始的承载包括以下至少之一:SN初始的SCG承载、SN初始的MCG承载、SN初始的分流承载。
  17. 根据权利要求10至16中任一项所述的装置,其中,所述SCG进入去激活状态后,所述SCG侧的资源不被使用;
    所述SCG侧的资源包括以下至少之一:RLC层资源、MAC层资源、物理层资源;或者,
    所述SCG侧的资源包括以下至少之一:PDCP层资源、RLC层资源、MAC层资源、物理层资源。
  18. 根据权利要求10至17中任一项所述的装置,其中,所述SCG指辅节点SN侧的小区组,所述MN和所述SN为DC的两个节点。
  19. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至9中任一项所述的方法。
  20. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至9中任一项所述的方法。
  21. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法。
  22. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至9中任一项所述的方法。
  23. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法。
PCT/CN2020/119529 2020-09-30 2020-09-30 一种控制scg状态的方法及装置、网络设备 WO2022067719A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/119529 WO2022067719A1 (zh) 2020-09-30 2020-09-30 一种控制scg状态的方法及装置、网络设备
CN202080105062.2A CN116097897A (zh) 2020-09-30 2020-09-30 一种控制scg状态的方法及装置、网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119529 WO2022067719A1 (zh) 2020-09-30 2020-09-30 一种控制scg状态的方法及装置、网络设备

Publications (1)

Publication Number Publication Date
WO2022067719A1 true WO2022067719A1 (zh) 2022-04-07

Family

ID=80951044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119529 WO2022067719A1 (zh) 2020-09-30 2020-09-30 一种控制scg状态的方法及装置、网络设备

Country Status (2)

Country Link
CN (1) CN116097897A (zh)
WO (1) WO2022067719A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182231A1 (en) * 2017-04-01 2018-10-04 Lg Electronics Inc. Method for performing mcg recovery in dual connectivity in wireless communication system and a device therefor
CN111182584A (zh) * 2020-01-07 2020-05-19 展讯通信(上海)有限公司 激活scg的方法、装置、设备以及存储介质
CN111225396A (zh) * 2020-01-07 2020-06-02 展讯通信(上海)有限公司 去激活和激活辅小区组的方法、通信装置和相关产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182231A1 (en) * 2017-04-01 2018-10-04 Lg Electronics Inc. Method for performing mcg recovery in dual connectivity in wireless communication system and a device therefor
CN111182584A (zh) * 2020-01-07 2020-05-19 展讯通信(上海)有限公司 激活scg的方法、装置、设备以及存储介质
CN111225396A (zh) * 2020-01-07 2020-06-02 展讯通信(上海)有限公司 去激活和激活辅小区组的方法、通信装置和相关产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "Framework of SCG deactivation and activation", 3GPP DRAFT; R2-2006900, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911775 *

Also Published As

Publication number Publication date
CN116097897A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US20220264393A1 (en) Cell configuration method and apparatus, terminal device, and network device
US11317464B2 (en) Cell state management method and apparatus, terminal device, and network device
CN114222331B (zh) 一种传输数据的方法和终端设备
WO2020147053A1 (zh) 数据传输的方法和通信设备
US11805563B2 (en) Wireless communication method and base station
WO2020029109A1 (zh) 一种信息配置方法及装置、终端、网络设备
WO2022061872A1 (zh) 一种小数据传输方法及装置、终端设备
WO2019237315A1 (zh) 一种控制安全功能的方法及装置、网络设备、终端设备
WO2021114206A1 (zh) 一种cli测量的方法及装置、终端设备、网络设备
WO2020227860A1 (zh) 一种终端能力确定方法及装置、终端
WO2020147054A1 (zh) 一种数据复制传输的指示方法、终端设备及网络设备
WO2020056587A1 (zh) 一种切换处理方法、终端设备及网络设备
WO2020000174A1 (zh) 一种核心网选择方法及装置、终端设备、网络设备
WO2022021413A1 (zh) 一种密钥生成方法及装置、终端设备、网络设备
WO2022109955A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2022236835A1 (zh) 确定终端设备行为的方法及装置、终端设备、网络设备
US20210250810A1 (en) Data replication transmission configuration method, apparatus, chip, and computer program
WO2022067719A1 (zh) 一种控制scg状态的方法及装置、网络设备
WO2021016790A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021092755A1 (zh) 一种上报辅助信息的方法及装置、终端设备、网络设备
WO2020164019A1 (zh) 一种承载配置方法及装置、网络设备
WO2020034125A1 (zh) 一种恢复rrc连接的方法及装置、终端
TW202010299A (zh) 一種訊息指示方法及裝置、終端
WO2020061943A1 (zh) 一种数据传输方法、终端设备及网络设备
EP4030819B1 (en) Wireless communication method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955744

Country of ref document: EP

Kind code of ref document: A1