WO2022065356A1 - 内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法 - Google Patents

内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法 Download PDF

Info

Publication number
WO2022065356A1
WO2022065356A1 PCT/JP2021/034767 JP2021034767W WO2022065356A1 WO 2022065356 A1 WO2022065356 A1 WO 2022065356A1 JP 2021034767 W JP2021034767 W JP 2021034767W WO 2022065356 A1 WO2022065356 A1 WO 2022065356A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
internal combustion
combustion engine
exhaust pipe
engine system
Prior art date
Application number
PCT/JP2021/034767
Other languages
English (en)
French (fr)
Inventor
直人 村澤
広嗣 菅沼
嘉久 植田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022065356A1 publication Critical patent/WO2022065356A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to an internal combustion engine system, a white deposit monitoring device for an internal combustion engine system, and a white deposit monitoring method for an internal combustion engine system.
  • an SCR Selective Catalyst Reduction
  • an exhaust purification device that purifies NOx into a harmless component by selectively reducing NOx with an SCR catalyst using ammonia produced by hydrolysis.
  • urea water adhering to the exhaust pipe may evaporate and urea may precipitate.
  • the precipitated urea reduces the cross-sectional area of the exhaust pipe, which may increase the exhaust pressure (back pressure) and reduce fuel consumption.
  • Patent Document 1 discloses a technique for estimating the amount of urea precipitation based on the exhaust temperature and the amount of urea water.
  • the urea precipitate is referred to as "white deposit” and the urea precipitate amount is referred to as "white deposit”.
  • the water vapor in the exhaust is gradually cooled and condensed in the process of flowing through the exhaust pipe, and the condensed water collects in the exhaust pipe.
  • Condensed water that collects in the exhaust pipe affects the evaporation of urea water.
  • the influence of condensed water at low temperature is not taken into consideration, so that the calculated evaporation time of urea water may differ from the actual evaporation time.
  • an error occurs between the estimated white deposit amount and the actual white deposit amount, so that there is a problem that the estimation accuracy of the white deposit amount is lowered.
  • An object of the present disclosure is to provide an internal combustion engine system capable of improving the estimation accuracy of the white deposit amount, a white deposit amount management device of the internal combustion engine system, and a white deposit amount management method of the internal combustion engine system.
  • the internal combustion engine system in the present disclosure is An SCR catalyst that purifies nitrogen oxides in the exhaust using urea water that is placed in the exhaust pipe through which the exhaust of the internal combustion engine flows and is supplied to the exhaust pipe.
  • Condensed water amount calculation unit that calculates the condensed water amount in the exhaust pipe, Based on the calculated amount of condensed water, a white deposit amount estimation unit that estimates the amount of white deposits deposited in the exhaust pipe, and a white deposit amount estimation unit. To prepare for.
  • the white deposit monitoring device of the internal combustion engine system in the present disclosure is A white deposit monitoring device for an internal combustion engine system equipped with an SCR catalyst that is arranged in an exhaust pipe and purifies nitrogen oxides in the exhaust by urea water injected into the exhaust pipe.
  • Condensed water amount calculation unit that calculates the condensed water amount in the exhaust pipe, Based on the calculated amount of condensed water, a white deposit amount estimation unit that estimates the amount of white deposits deposited in the exhaust pipe, and a white deposit amount estimation unit. To prepare for.
  • the method for monitoring the amount of white deposits in an internal combustion engine system in the present disclosure is as follows.
  • the accuracy of estimating the amount of white deposit can be improved.
  • FIG. 1 is a diagram schematically showing a vehicle equipped with an internal combustion engine system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing an example of control by the ECU.
  • FIG. 1 is a schematic configuration diagram showing an example of an engine exhaust system according to an embodiment. It should be noted that the X-axis is drawn in FIG. In the following description, the left-right direction in FIG. 1 is referred to as the X direction or the exhaust direction, the right direction is the “+ X direction”, the “exhaust downstream direction” or the “exhaust downstream side”, and the left direction is the "-X direction", "exhaust”. It is called “upstream direction” or "exhaust upstream side”.
  • the internal combustion engine system 100 includes an exhaust purification device 1 and an exhaust pipe 10.
  • the exhaust pipe 10 is connected to the exhaust manifold 3 of the engine 2. Exhaust gas from the engine 2 flows into the exhaust pipe 10.
  • the exhaust gas purification device 1 includes an oxidation catalyst (Diesel Oxidation Catalyst: DOC) 11 and an SCR catalyst 12.
  • DOC Diesel Oxidation Catalyst
  • FIG. 1 briefly shows the exhaust pipe 10.
  • the DOC 11 is arranged in the exhaust pipe 10, and when fuel is supplied, it is oxidized to raise the temperature of the exhaust.
  • DOC11 oxidizes nitric oxide (NO) to NO 2 .
  • the SCR catalyst 12 is arranged in the exhaust pipe 10 on the downstream side (+ X direction) of the exhaust from the DOC11, and the nitrogen oxide (NOx) in the exhaust is converted into nitrogen (N 2 ) and water (H 2 O) by a reducing agent. To reduce NOx.
  • the water vapor in the exhaust is gradually cooled and condensed in the process of flowing through the exhaust pipe 10.
  • the condensed water tends to collect in the inlet portion 10f of the SCR catalyst 12.
  • the region between the injection position SP of urea water (described later) and the SCR catalyst 12 is defined as the inlet portion 10f of the SCR catalyst 12.
  • the temperature sensor 55 detects the wall surface temperature of the inlet portion 10f of the SCR catalyst 12.
  • the internal combustion engine system 100 includes a tank 20 and a reducing agent supply unit 30.
  • the tank 20 stores urea water as a reducing agent.
  • the reducing agent supply unit 30 has a transfer path 31, a pump 33, and a nozzle 34.
  • the transfer path 31 is a flow path through which urea water can flow.
  • the upstream end of the transfer path 31 is connected to the tank 20.
  • the pump 33 and the nozzle 34 are arranged in the transfer path 31 in order from the upstream side.
  • the pump 33 supplies urea water from the tank 20 to the nozzle 34.
  • the nozzle 34 is arranged at the position SP on the exhaust upstream side (-X direction) of the SCR catalyst 12 in the exhaust pipe 10.
  • the nozzle 34 injects urea water into the exhaust pipe 10.
  • the amount of white deposit is estimated based on the exhaust temperature and the amount of urea water.
  • the water vapor in the exhaust is gradually cooled and condensed in the process of flowing through the exhaust pipe 10.
  • the condensed water affects the evaporation of urea water.
  • the white deposit amount is not estimated based on the condensed water, an error may occur between the estimated white deposit amount and the actual white deposit amount. The estimation accuracy is reduced.
  • the inlet portion 10f of the SCR catalyst 12 will be described as an example as a place where urea water adheres and urea is easily deposited / deposited.
  • the internal combustion engine system 100 includes a control device 40.
  • the control device 40 is, for example, an ECU (Electronic control Unit) including a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like (not shown) and an input / output device.
  • a temperature sensor 55 is connected to the input circuit of the ECU 40.
  • the control device 40 controls the amount (ml / min) of urea water injected by the nozzle 34 and the injection timing.
  • the ECU 40 has the functions of the acquisition unit 41, the condensed water amount calculation unit 42, and the white deposit amount estimation unit 43.
  • the acquisition unit 41 acquires the wall surface temperature of the inlet portion 10f of the SCR catalyst 12. Further, the acquisition unit 41 acquires the urea water injection amount (g / s) per unit time. Further, the acquisition unit 41 acquires the exhaust flow rate (ml / min).
  • the condensed water amount calculation unit 42 generates per unit time from the start of the engine until the SCR catalyst 12 reaches a predetermined temperature based on the wall surface temperature of the inlet portion 10f, the amount of water generated by combustion, the saturated water vapor pressure, and the like. The amount of condensed water (g / s) is calculated.
  • the white deposit estimation unit 43 estimates the amount of white deposit to be deposited in the exhaust pipe 10 based on the amount of condensed water.
  • the white deposit amount estimation unit 43 has a urea water injection amount (g / s) per unit time, an exhaust flow rate (ml / min), a white deposit amount previous value (g), and a condensed water amount per unit time. Based on (g / s) and the wall surface temperature (° C.), the white deposition amount (g / s) per unit time is calculated from the following formula (1).
  • White deposit amount per unit time Urea water injection amount per unit time * f (wall surface temperature, exhaust flow rate) -White deposit amount Previous value * f (wall surface temperature, exhaust flow rate) * f (condensed water amount per unit time, wall surface temperature) ...
  • the previous value of the white deposit amount is a numerical value of the white deposit amount accumulated up to the time of the previous calculation.
  • the ECU 40 has a storage unit 44.
  • the storage unit 44 stores the amount of white deposits per unit time.
  • the ECU 40 estimates the white deposit amount based on the condensed water amount that affects the white deposit amount. This makes it possible to improve the estimation accuracy of the amount of white deposit.
  • FIG. 2 is a flowchart showing an example of control by the ECU 40. This flow is started, for example, by starting the engine and is repeated at a predetermined cycle.
  • the ECU 40 shall execute each function of the acquisition unit 41, the condensed water amount calculation unit 42, and the white deposit amount estimation unit 43.
  • step S100 the ECU 40 acquires the wall surface temperature of the inlet portion 10f of the SCR catalyst 12.
  • step S110 the ECU 40 calculates the amount of condensed water based on the acquired wall surface temperature of the inlet portion 10f.
  • step S120 the ECU 40 estimates the amount of white deposit based on the calculated amount of condensed water. After that, the flow shown in FIG. 2 ends.
  • the internal combustion engine system 100 is an SCR arranged in an exhaust pipe 10 through which the exhaust gas of the engine 2 flows, and purifies nitrogen oxides in the exhaust gas by using urea water supplied to the exhaust gas pipe 10.
  • the white deposit estimation unit 43 estimates the white deposit based on the amount of condensed water that affects the evaporation of urea water, so that the estimation accuracy of the white deposit can be improved.
  • the white deposit amount estimation unit 43 estimates the white deposit amount deposited in the exhaust pipe 10 based on the wall surface temperature of the exhaust pipe 10. Thereby, it can be accurately calculated that the water vapor in the exhaust gas is gradually cooled in the process of flowing through the exhaust pipe 10 to become condensed water in the exhaust pipe 10. As a result, it is possible to improve the estimation accuracy of the amount of white deposit.
  • the white deposit amount estimation unit 43 estimates the white deposit amount deposited in the inlet portion 10f based on the wall surface temperature of the inlet portion 10f of the SCR catalyst 12.
  • the urea water injected into the exhaust pipe 10 adheres to the inlet portion 10f, and a white deposit amount is likely to be deposited. Since the amount of condensed water is calculated based on the wall surface temperature of the inlet portion 10f, the amount of condensed water at the inlet portion 10f can be accurately calculated. As a result, it is possible to improve the estimation accuracy of the white deposit amount of the inlet portion 10f.
  • the inlet portion 10f of the SCR catalyst 12 is taken as an example as a place where urea water adheres and urea is easily deposited / deposited, and the amount of white deposit is estimated based on the wall surface temperature. Is not limited to this, and if there is a place where urea is likely to precipitate / deposit in addition to the inlet portion 10f, the amount of white deposit may be estimated based on the wall surface temperature of that place.
  • the wall surface temperature of the inlet portion 10f of the SCR catalyst 12 is detected by the temperature sensor 55, but the present disclosure is not limited to this.
  • the wall surface temperature of the inlet portion 10f is inside the inlet portion 10f. It may be calculated based on the exhaust temperature, the exhaust flow rate, the heat transfer rate of the wall portion of the inlet portion 10f, and the like.
  • the present disclosure is suitably used for a vehicle equipped with an internal combustion engine system that is required to improve the estimation accuracy of the amount of white deposit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

内燃機関システム、内燃機関システムの白色堆積量管理装置および内燃機関システムの白色堆積量管理方法は、白色堆積量の推定精度を上げることが可能である。内燃機関システムは、内燃機関の排気が流れる排気管内に配置され、排気管に供給される尿素水を用いて、排気中の窒素酸化物を浄化するSCR触媒と、排気管内の凝縮水量を算出する凝縮水量算出部と、算出された凝縮水量に基づいて、排気管内に堆積する白色堆積量を推定する白色堆積量推定部と、を備える。

Description

内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法
 本開示は、内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法に関する。
 例えば、内燃機関の排気に含まれる窒素酸化物(NOx)を浄化する装置として、内燃機関の排気管に配置されるSCR(Selective Catalytic Reduction)触媒と、SCR触媒の排気上流に、尿素水を噴射し、加水分解により生成されたアンモニアを用いて、SCR触媒でNOxを選択還元反応させて無害成分へ浄化する排気浄化装置が知られている。
 このような排気浄化装置を備える内燃機関システムでは、排気管に付着した尿素水が蒸発し、尿素が析出する場合がある。析出した尿素により、排気管の断面積が減少するため、排気圧力(背圧)が上昇し、燃費が低下するおそれがある。
 例えば、特許文献1には、排気温度および尿素水量に基づいて、尿素の析出量を推定する技術が開示されている。以下の説明において、尿素の析出物を「白色堆積物」、尿素の析出量を「白色堆積量」という。
日本国特開2011-220232号公報
 ところで、排気中の水蒸気が排気管を流れる過程で徐々に冷やされて凝縮し、その凝縮水が排気管内に溜まる。排気管内に溜まる凝縮水は、尿素水の蒸発に影響を与える。上記特許文献1に記載の技術においては、例えば、低温時などにおける凝縮水の影響を考慮していないため、尿素水の計算した蒸発時間と実際の蒸発時間とが異なる場合がある。これにより、推定された白色堆積量と実際の白色堆積量との間に誤差が生じるため、白色堆積量の推定精度が低下するという問題がある。
 本開示の目的は、白色堆積量の推定精度を上げることが可能な内燃機関システム、内燃機関システムの白色堆積量管理装置および内燃機関システムの白色堆積量管理方法を提供することである。
 上記の目的を達成するため、本開示における内燃機関システムは、
 内燃機関の排気が流れる排気管内に配置され、排気管に供給される尿素水を用いて、排気中の窒素酸化物を浄化するSCR触媒と、
 排気管内の凝縮水量を算出する凝縮水量算出部と、
 算出された前記凝縮水量に基づいて、排気管内に堆積する白色堆積量を推定する白色堆積量推定部と、
 を備える。
 本開示における内燃機関システムの白色堆積量監視装置は、
 排気管内に配置され、排気管内に噴射される尿素水により、排気中の窒素酸化物を浄化するSCR触媒を備える内燃機関システムの白色堆積量監視装置であって、
 排気管内の凝縮水量を算出する凝縮水量算出部と、
 算出された前記凝縮水量に基づいて、排気管内に堆積する白色堆積量を推定する白色堆積量推定部と、
 を備える。
 本開示における内燃機関システムの白色堆積量監視方法は、
 排気管内に配置され、排気管内に噴射される尿素水により、排気中の窒素酸化物を浄化するSCR触媒を備える内燃機関システムの白色堆積量監視方法であって、
 排気管内の凝縮水量を算出し、
 算出された前記凝縮水量に基づいて、排気管内に堆積する白色堆積量を推定する。 
 本開示によれば、白色堆積量の推定精度を上げることができる。
図1は、本開示の実施の形態における内燃機関システムが搭載される車両を概略的に示す図である。 図2は、ECUによる制御の一例を示すフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 本実施の形態は、自動車に搭載されたディーゼルエンジン(内燃機関)に本発明を適用した場合について説明する。
 まず、本実施の形態に係るディーゼルエンジン(以下、単にエンジンという)の概略構造について説明する。図1は、実施の形態に係るエンジンの排気系の一例を示す概略構成図である。なお、図1には、X軸が描かれている。以下の説明では、図1における左右方向をX方向又は排気方向といい、右方向を「+X方向」、「排気下流方向」又は「排気下流側」、左方向を「-X方向」、「排気上流方向」又は「排気上流側」という。
 本実施の形態に係る内燃機関システム100は、図1に示すように、排気浄化装置1および排気管10を備えている。排気管10は、エンジン2の排気マニホールド3に連結されている。排気管10にはエンジン2からの排気が流入する。排気浄化装置1は、酸化触媒(Diesel Oxidation Catalyst:DOC)11およびSCR触媒12を備えている。
 図1は、排気管10を簡略して示している。DOC11は、排気管10内に配置され、燃料が供給された場合、これを酸化して排気を昇温させる。DOC11は、排気中の炭化水素(HC)および一酸化炭素(CO)を酸化することに加え、一酸化窒素(NO)を酸化させNOにする。
 SCR触媒12は、排気管10内にDOC11よりも排気下流側(+X方向)に配置され、還元剤により、排気中の窒素酸化物(NOx)を窒素(N)と水(HO)に還元して、NOxを低減する。
 排気中の水蒸気は、排気管10を流れる過程で徐々に冷やされ凝縮する。その凝縮水は、SCR触媒12の入口部10fに溜まり易い。ここでは、排気管10において、例えば、尿素水の噴射位置SP(後述する)とSCR触媒12との間の領域をSCR触媒12の入口部10fとする。
 温度センサ55は、SCR触媒12の入口部10fの壁面温度を検出する。
 本実施形態に係る内燃機関システム100は、図1に示すように、タンク20および還元剤供給部30を備えている。
 タンク20は、還元剤としての尿素水を貯留する。
 還元剤供給部30は、図1に示すように、移送路31、ポンプ33、ノズル34を有している。
 移送路31は、尿素水が流通可能な流路である。移送路31の上流側端は、タンク20に接続されている。
 移送路31には、上流側から順に、ポンプ33およびノズル34が配置されている。
 ポンプ33は、タンク20からの尿素水をノズル34に供給する。
 ノズル34は、排気管10におけるSCR触媒12よりも排気上流側(-X方向)の位置SPに配置される。ノズル34は、排気管10内に尿素水を噴射する。
 噴射された尿素水のうち一部は、排気管10内の壁面に付着する。壁面に残った尿素水は蒸発して壁面に尿素が析出する。本開示と比較すべき比較例においては、排気温度および尿素水量に基づいて白色堆積量を推定する。しかしながら、排気中の水蒸気が排気管10を流れる過程で徐々に冷やされて凝縮する。その凝縮水は尿素水の蒸発に影響を与える。ところが、比較例においては、凝縮水に基づいては、白色堆積量を推定しないため、推定された白色堆積量と実際の白色堆積量との間に誤差が生じる場合があるため、白色堆積量の推定精度が低下する。
 本開示の実施の形態では、尿素水が付着し、尿素が析出/堆積し易い場所として、SCR触媒12の入口部10fを例に挙げて説明する。
 本実施の形態に係る内燃機関システム100は、制御装置40を備えている。制御装置40は、例えば、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等からなるマイクロコンピュータと入出力装置とを備えるECU(Electronic control Unit)である。ECU40の入力回路には、温度センサ55が接続されている。制御装置40は、ノズル34による尿素水の噴射水量(ml/min)および噴射時期を制御する。ECU40は、取得部41、凝縮水量算出部42および白色堆積量推定部43の各機能を有する。
 取得部41は、SCR触媒12の入口部10fの壁面温度を取得する。また、取得部41は、単位時間当たりの尿素水噴射量(g/s)を取得する。また、取得部41は、排気流量(ml/min)を取得する。
 凝縮水量算出部42は、入口部10fの壁面温度、燃焼により発生する水分量、飽和水蒸気圧等に基づいて、エンジンを始動してからSCR触媒12が所定温度に達するまでに発生する単位時間あたりの凝縮水量(g/s)を算出する。
 白色堆積量推定部43は、凝縮水量に基づいて、排気管10内に堆積する白色堆積量を推定する。
 具体的には、白色堆積量推定部43は、単位時間当たりの尿素水噴射量(g/s)、排気流量(ml/min)、白色堆積量前回値(g)、単位時間当たりの凝縮水量(g/s)、壁面温度(℃)に基づいて、以下の式(1)から、単位時間当たりの白色堆積量(g/s)を算出する。
 単位時間当たりの白色堆積量=単位時間当たりの尿素水噴射量*f(壁面温度,排気流量)
    -白色堆積量前回値*f(壁面温度,排気流量)*f(単位時間当たりの凝縮水量,壁面温度)…(1)
 なお、上記の白色堆積量前回値は、前回の算出時までに積算された白色堆積量の数値である。
 ECU40は、記憶部44を有する。記憶部44は、単位時間当たりの白色堆積量を記憶する
 以上のように、本開示の実施の形態においては、ECU40は、白色堆積量に影響を与える凝縮水量に基づいて、白色堆積量を推定する。これにより、白色堆積量の推定精度を上げることが可能となる。
 次に、ECU40による制御の一例について図2を参照して説明する。図2は、ECU40による制御の一例を示すフローチャートである。本フローは、例えば、エンジンの始動により開始され、所定の周期で繰り返される。ECU40は、取得部41、凝縮水量算出部42および白色堆積量推定部43の各機能を実行するものとする。
 ステップS100において、ECU40は、SCR触媒12の入口部10fの壁面温度を取得する。
 ステップS110において、ECU40は、取得した入口部10fの壁面温度に基づいて、凝縮水量を算出する。
 ステップS120において、ECU40は、算出した凝縮水量に基づいて、白色堆積量を推定する。その後、図2に示すフローは終了する。
 本開示の実施の形態における内燃機関システム100は、エンジン2の排気が流れる排気管10内に配置され、排気管10に供給される尿素水を用いて、排気中の窒素酸化物を浄化するSCR触媒12と、排気管10内の凝縮水量を算出する凝縮水量算出部42と、算出された凝縮水量に基づいて、排気管10内に堆積する白色堆積量を推定する白色堆積量推定部43とを備える。
 上記構成により、白色堆積量推定部43が、尿素水の蒸発に影響を与える凝縮水量に基づいて白色堆積量を推定するため、白色堆積量の推定精度を上げることが可能となる。
 また、本実施の形態における内燃機関システム100では、白色堆積量推定部43は、排気管10の壁面温度に基づいて、排気管10内に堆積する白色堆積量を推定する。これにより、排気中の水蒸気が排気管10を流れる過程で徐々に冷やされて排気管10内で凝縮水となることを正確に算出できる。その結果、白色堆積量の推定精度を上げることが可能となる。
 また、本実施の形態における内燃機関システム100では、白色堆積量推定部43は、SCR触媒12の入口部10fの壁面温度に基づいて、入口部10f内に堆積する白色堆積量を推定する。排気管10内に噴射された尿素水は、入口部10fに付着し、白色堆積量が堆積し易い。入口部10fの壁面温度に基づいて凝縮水量を算出するため、入口部10fにおける凝縮水量を正確に算出できる。その結果、入口部10fの白色堆積量の推定精度を上げることが可能となる。
 上記実施の形態では、尿素水が付着し、尿素が析出/堆積し易い場所として、SCR触媒12の入口部10fを一例に挙げ、その壁面温度に基づいて白色堆積量を推定したが、本開示はこれに限らず、入口部10fの他に尿素が析出/堆積し易い場所がある場合、その場所の壁面温度に基づいて、白色堆積量を推定してもよい。
 また、上記の実施の形態では、SCR触媒12の入口部10fの壁面温度を温度センサ55により検出したが、本開示はこれに限らず、例えば、入口部10fの壁面温度は、入口部10f内の排気温度、排気流量、入口部10fの壁部の熱伝達率等に基づいて、算出されてもよい。
 その他、上記実施の形態は、何れも本開示の実施をするにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本出願は、2020年9月28日付けで出願された日本国特許出願(特願2020-162375)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、白色堆積量の推定精度を上げることが要求される内燃機関システムを備えた車両に好適に利用される。
 1 排気浄化装置
 2 エンジン
 3 排気マニホールド
 10 排気管
 10f 入口部
 11 DOC
 12 SCR触媒
 20 タンク
 30 還元剤供給部
 31 移送路
 33 ポンプ
 34 ノズル
 40 ECU
 41 取得部
 42 凝縮水量算出部
 43 白色堆積量推定部
 44 記憶部
 55 温度センサ
 100 内燃機関システム

Claims (5)

  1.  内燃機関の排気が流れる排気管内に配置され、排気管に供給される尿素水を用いて、排気中の窒素酸化物を浄化するSCR触媒と、
     排気管内の凝縮水量を算出する凝縮水量算出部と、
     算出された前記凝縮水量に基づいて、排気管内に堆積する白色堆積量を推定する白色堆積量推定部と、
     を備える、
     内燃機関システム。
  2.  前記白色堆積量推定部は、前記排気管の壁面温度に基づいて、前記白色堆積量を推定する、
     請求項1に記載の内燃機関システム。
  3.  前記白色堆積量推定部は、前記SCR触媒の入口部の壁面温度に基づいて、前記白色堆積量を推定する、
     請求項2に記載の内燃機関システム。
  4.  排気管内に配置され、排気管内に噴射される尿素水により、排気中の窒素酸化物を浄化するSCR触媒を備える内燃機関システムの白色堆積量監視装置であって、
     排気管内の凝縮水量を算出する凝縮水量算出部と、
     算出された前記凝縮水量に基づいて、排気管内に堆積する白色堆積量を推定する白色堆積量推定部と、
     を備える、
     内燃機関システムの白色堆積量監視装置。
  5.  排気管内に配置され、排気管内に噴射される尿素水により、排気中の窒素酸化物を浄化するSCR触媒を備える内燃機関システムの白色堆積量監視方法であって、
     排気管内の凝縮水量を算出し、
     算出された前記凝縮水量に基づいて、排気管内に堆積する白色堆積量を推定する、
     内燃機関システムの白色堆積量監視方法。
PCT/JP2021/034767 2020-09-28 2021-09-22 内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法 WO2022065356A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020162375A JP7420035B2 (ja) 2020-09-28 2020-09-28 内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法
JP2020-162375 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065356A1 true WO2022065356A1 (ja) 2022-03-31

Family

ID=80846602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034767 WO2022065356A1 (ja) 2020-09-28 2021-09-22 内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法

Country Status (2)

Country Link
JP (1) JP7420035B2 (ja)
WO (1) WO2022065356A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059317A1 (en) * 2013-08-27 2015-03-05 GM Global Technology Operations LLC System and method for enhancing the performance of a selective catalytic reduction device
US20150128564A1 (en) * 2013-11-13 2015-05-14 Ford Global Technologies, Llc Method and system for reductant injector degradation
JP2019002363A (ja) * 2017-06-16 2019-01-10 いすゞ自動車株式会社 排気ガス浄化システムおよび堆積量推定方法
JP2020133421A (ja) * 2019-02-13 2020-08-31 株式会社Soken 内燃機関の排気浄化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716519B2 (ja) 2011-04-27 2015-05-13 トヨタ自動車株式会社 内燃機関の排気再循環システム
JP5587838B2 (ja) 2011-07-19 2014-09-10 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP6734221B2 (ja) 2017-04-28 2020-08-05 トヨタ自動車株式会社 内燃機関の制御装置
CN111396179B (zh) 2020-03-31 2021-05-18 潍柴动力股份有限公司 确定发动机中的尿素结晶量的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059317A1 (en) * 2013-08-27 2015-03-05 GM Global Technology Operations LLC System and method for enhancing the performance of a selective catalytic reduction device
US20150128564A1 (en) * 2013-11-13 2015-05-14 Ford Global Technologies, Llc Method and system for reductant injector degradation
JP2019002363A (ja) * 2017-06-16 2019-01-10 いすゞ自動車株式会社 排気ガス浄化システムおよび堆積量推定方法
JP2020133421A (ja) * 2019-02-13 2020-08-31 株式会社Soken 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2022055025A (ja) 2022-04-07
JP7420035B2 (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
JP4438828B2 (ja) 内燃機関の排気浄化装置
US20100290957A1 (en) Exhaust gas purifying system
JP6087580B2 (ja) 内燃機関の排気浄化装置およびその排気浄化方法
JP4978635B2 (ja) 排気浄化システムの制御装置
JP2017025830A (ja) エンジンの排気浄化装置
JP4986973B2 (ja) 排気浄化装置
JP5002040B2 (ja) 内燃機関の排気浄化装置
JP5398372B2 (ja) エンジンの排気浄化装置
JP2008157136A (ja) 内燃機関の排気浄化装置
WO2014129449A1 (ja) 内燃機関の排気浄化装置
JP2010053847A (ja) 内燃機関の排気浄化システム
JP5910759B2 (ja) 内燃機関の排気浄化システム
JP5107787B2 (ja) 排気浄化装置
JP5194590B2 (ja) エンジンの排気浄化装置
WO2006006441A1 (ja) 排気ガス浄化システム及び排気ガス浄化方法
JP2013122218A (ja) 内燃機関の排ガス浄化装置及び尿素の堆積検出方法
JP2011094572A (ja) 内燃機関のNOx浄化装置
US9464554B2 (en) Exhaust gas purification system for internal combustion engine
JP5610956B2 (ja) 排ガス浄化装置の制御方法および制御装置
WO2022065356A1 (ja) 内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法
JP6064528B2 (ja) 内燃機関の制御装置
JP5570188B2 (ja) エンジンの排気浄化装置
JP6120020B2 (ja) 内燃機関の排気浄化装置
JP2015086714A (ja) 内燃機関の排気浄化装置
WO2022065403A1 (ja) 内燃機関システム、内燃機関システムの窒素酸化物監視装置および内燃機関システムの窒素酸化物監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872485

Country of ref document: EP

Kind code of ref document: A1