WO2022064912A1 - 酸化物超電導線材 - Google Patents

酸化物超電導線材 Download PDF

Info

Publication number
WO2022064912A1
WO2022064912A1 PCT/JP2021/030470 JP2021030470W WO2022064912A1 WO 2022064912 A1 WO2022064912 A1 WO 2022064912A1 JP 2021030470 W JP2021030470 W JP 2021030470W WO 2022064912 A1 WO2022064912 A1 WO 2022064912A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superconducting
superconducting layer
axis oriented
ratio
Prior art date
Application number
PCT/JP2021/030470
Other languages
English (en)
French (fr)
Inventor
朋 吉田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP21872044.9A priority Critical patent/EP4219401A1/en
Priority to CN202180065300.6A priority patent/CN116194408A/zh
Priority to US18/246,333 priority patent/US20230395285A1/en
Publication of WO2022064912A1 publication Critical patent/WO2022064912A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to an oxide superconducting wire.
  • This application claims priority based on Japanese Patent Application No. 2020-16613 filed in Japan on September 25, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses an oxide superconducting wire having a structure in which an intermediate layer, a superconducting layer, and a protective layer are sequentially laminated on a base material.
  • a plurality of short superconducting wires are generally connected by soldering.
  • connection resistance at the connection portion becomes high and Joule heat is generated at the connection portion.
  • connection resistance caused by the solder connection is dominated by the interlayer resistance between the superconducting layer and the protective layer, and it is important to reduce the interlayer resistance in order to reduce Joule heat.
  • connection resistance becomes high there is a problem that it becomes difficult for the bypass current to flow from the superconducting layer to the protective layer when the current is bypassed at the time of quenching.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an oxide superconducting wire material in which the interlayer resistance between the superconducting layer and the protective layer is reduced.
  • the oxide superconducting wire includes a base material having a main surface, a superconducting layer provided above the base material and composed of a rare earth-based high-temperature superconductor. It is provided with a protective layer provided on the superconducting layer and in contact with the superconducting layer.
  • the superconducting layer contains a-axis oriented grains whose a-axis is oriented in a direction perpendicular to the main surface of the base material.
  • the a-axis oriented grain ratio which represents the ratio of the a-axis oriented grains to the entire crystal grains constituting the superconducting layer, is in the range of 4.1 to 11.9%.
  • the wording "superconducting layer provided above the base material” not only means that the superconducting layer is provided on the base material, but also an intermediate layer or the like between the base material and the superconducting layer. It also means that the superconducting layer base material is provided above the base material in the structure in which the layer film is arranged.
  • the c-axis of crystal grains is often oriented in the direction perpendicular to the main surface of the substrate. ing.
  • the a-axis oriented grains in which the a-axis is oriented in the direction perpendicular to the main surface of the base material become the interlayer resistance between the superconducting layer and the protective layer. Found to have an impact.
  • the present inventor formed a superconducting layer so as to have a-axis oriented grains at a ratio of 4.1 to 11.9% with respect to the whole crystal grains of the superconducting layer, thereby superconducting.
  • the effect of reducing the interlayer resistance between the layer and the protective layer can be obtained, and came up with the present invention.
  • an oxide superconducting wire material in which the interlayer resistance between the superconducting layer and the protective layer is reduced. If a plurality of these oxide superconducting wires are prepared and the oxide superconducting wires overlapping each other are solder-connected, a long superconducting wire with reduced connection resistance can be manufactured.
  • the a-axis oriented grain ratio may be 8.2% or less. According to this configuration, not only the interlayer resistance can be reduced, but also the critical current density in the longitudinal direction of the oxide superconducting wire can be ensured.
  • the oxide superconducting wire is a first superconducting layer composed of a base material having a main surface and a rare earth-based high-temperature superconductor provided above the base material.
  • a second superconducting layer provided on the first superconducting layer and composed of a rare earth-based high-temperature superconductor, and a protective layer provided on the second superconducting layer and in contact with the second superconducting layer are provided.
  • the second superconducting layer contains a-axis oriented grains whose a-axis is oriented in a direction perpendicular to the main surface of the base material.
  • the a-axis oriented grain ratio which represents the ratio of the a-axis oriented grains to the entire crystal grains constituting the second superconducting layer, is in the range of 4.1 to 11.9%.
  • an oxide superconducting wire material in which the interlayer resistance between the second superconducting layer and the protective layer is reduced. If a plurality of these oxide superconducting wires are prepared and the oxide superconducting wires overlapping each other are solder-connected, a long superconducting wire with reduced connection resistance can be manufactured.
  • the first superconducting layer is a first a-axis oriented grain having an a-axis oriented in the direction perpendicular to the main surface of the base material.
  • the second superconducting layer includes a second a-axis oriented grain which is an a-axis oriented grain whose a-axis is oriented in a direction perpendicular to the main surface of the base material.
  • the a-axis oriented grain ratio which represents the ratio of the first a-axis oriented grains to the entire crystal grains constituting the first superconducting layer, is defined as the first rate, and the said to the entire crystal grains constituting the second superconducting layer.
  • the a-axis oriented grain ratio representing the ratio of the second a-axis oriented grains is defined as the second ratio. In this case, the first rate may be smaller than the second rate.
  • the second superconducting layer can reduce the interlayer resistance between the superconducting layer and the protective layer, and the first superconducting layer secures the critical current density in the longitudinal direction of the oxide superconducting wire. be able to. That is, by providing the oxide superconducting wire with two superconducting layers having different a-axis oriented grain ratios, both the effects of reducing the interlayer resistance and ensuring the critical current density in the longitudinal direction of the oxide superconducting wire are obtained. Can be obtained.
  • the interlayer resistance between the superconducting layer and the protective layer can be reduced.
  • the oxide superconducting wire 1A according to the present embodiment is provided on the base material 10, the intermediate layer 11 provided on the base material 10, the superconducting layer 12 provided on the intermediate layer 11, and the superconducting layer 12.
  • the protective layer 13 and the stabilizing layer 14 provided on the protective layer 13 are provided.
  • the oxide superconducting wire 1A may include an insulating coating layer covering the base material 10, the intermediate layer 11, the superconducting layer 12, the protective layer 13, and the stabilizing layer 14.
  • the height of the oxide superconducting wire 1A that is, the length from the lower surface of the base material 10 to the upper surface of the protective layer 13 (the length in the vertical direction in FIG. 1) is, for example, 80 ⁇ m.
  • the width of the oxide superconducting wire 1A that is, the length from the left end to the right end of the oxide superconducting wire 1A (the length in the left-right direction in FIG. 1) is, for example, 12 mm.
  • the base material 10 is a tape-shaped metal substrate.
  • Specific examples of the metal constituting the metal substrate include nickel alloys typified by Hastelloy (registered trademark), stainless steel, and oriented NiW alloys in which a texture is introduced into a nickel alloy.
  • the intermediate layer 11 may have a multi-layer structure, and may have a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, and the like in the order from the base material 10 to the superconducting layer 12, for example.
  • the number of each layer is not limited to one. Some of the plurality of layers constituting the intermediate layer 11 may be omitted. Further, a structure in which two or more layers of the same type are repeatedly laminated may be adopted.
  • the intermediate layer 11 may be a metal oxide.
  • the superconducting layer 12 has a function of passing an electric current in the superconducting state.
  • the superconducting layer 12 is composed of a rare earth-based high-temperature superconductor and is provided so as to be in contact with the protective layer 13.
  • an oxide superconductor having a generally known composition can be widely applied, and for example, copper oxide superconductors such as Y-based superconductors and Bi-based superconductors can be widely applied.
  • the body etc. can be mentioned.
  • the composition of the Y-based superconductor for example, REBa 2 Cu 3 O 7-x (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd, and x represents an oxygen deficiency).
  • RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd, and x represents an oxygen deficiency.
  • Specific examples of the Y-based superconductor include Y123 (YBa 2 Cu 3 O 7-x ) and Gd123 (GdBa 2 Cu 3 O 7-x ).
  • the composition of the Bi-based superconductor include Bi 2 Sr 2 Can -1 Cu n O 4 + 2n + ⁇ (n represents the number of layers of CuO 2 and ⁇ represents excess oxygen).
  • the mother material of this oxide superconductor is an insulator, but when the oxide superconductor takes in oxygen by oxygen annealing treatment, it becomes an oxide superconductor with a well-organized crystal structure and has a property of exhibiting superconducting characteristics.
  • the superconducting layer 12 includes a-axis oriented grains which are crystal grains whose a-axis is oriented in the direction perpendicular to the main surface of the base material 10.
  • a-axis oriented grains the Cu—O surface on which current easily flows in the superconducting state exists perpendicular to the main surface of the base material.
  • the superconducting layer 12 containing the a-axis oriented grains has excellent quantum bonding properties between the a-axis oriented grains at the crystal grain boundaries, and there is almost no deterioration in the superconducting characteristics at the crystal grain boundaries. Therefore, in the superconducting layer 12, electricity easily flows in the a-axis direction.
  • the ratio of a-axis oriented grains (a-axis oriented grain ratio Xa) contained in the superconducting layer 12 is within the range of 4.1 to 11.9% with respect to the total (100%) of the crystal grains constituting the superconducting layer 12. It is in. Further, within this range, the a-axis oriented grain ratio Xa is more preferably 8.2% or less. By adjusting conditions such as the film formation temperature and the film formation rate (deposition rate) when forming the superconducting layer 12, the a-axis oriented grain ratio Xa can be controlled to a desired value within the above range. ..
  • the protective layer 13 is a current path that functions as a bypass path through which an overcurrent generated by some accident flows when the oxide superconducting wire 1A is energized.
  • the protective layer 13 is preferably formed of Ag or a material containing at least Ag. Further, the material forming the protective layer 13 may be a mixture or alloy containing a noble metal such as Au or Pt, and a plurality of these materials may be used.
  • Stabilizing layer 14 As the material of the stabilizing layer 14, a material such as copper, a copper alloy such as a Cu—Zn alloy (brass) or a Cu—Ni alloy, aluminum, an aluminum alloy, or stainless steel is selected.
  • the stabilizing layer 14 may be composed of a plurality of layers. Further, the stabilizing layer 14 may be formed by metal plating.
  • the stabilizing layer 14 may have a structure in which the entire laminate including the base material 10, the protective layer 13, and the layer located between the base material 10 and the protective layer 13 is covered with a plating layer. ..
  • the superconducting layer 12 in contact with the protective layer 13 contains a-axis oriented grains whose a-axis is oriented in the direction perpendicular to the main surface of the base material, and includes the a-axis oriented grains.
  • the Cu—O surface which is the current path for superconductivity, exists perpendicular to the main surface of the base material 10.
  • the critical current density in the longitudinal direction of the oxide superconducting wire is simply referred to as the critical current density.
  • the conventional oxide superconducting wire it is generally performed to form the superconducting layer so that the Cu—O surface exists in the direction parallel to the main surface of the base material.
  • the c-axis of the crystal grains is oriented in the direction perpendicular to the main surface of the base material, it is difficult for the current to flow in the direction perpendicular to the main surface of the base material.
  • the superconducting layer 12 is optimized by optimizing the ratio of a-axis oriented grains (a-axis oriented grain ratio Xa) in which the a-axis is oriented in the direction perpendicular to the main surface of the base material 10.
  • a-axis oriented grain ratio Xa the ratio of a-axis oriented grains in which the a-axis is oriented in the direction perpendicular to the main surface of the base material 10.
  • the amount of current paths flowing between the protective layer 13 and the protective layer 13 is increased, and the interlayer resistance can be reduced.
  • the oxide superconducting wire 1B according to the first embodiment described above is the oxide superconducting wire 1A according to the first embodiment in that the superconducting layer is composed of two layers (a first superconducting layer and a second superconducting layer). Is different.
  • the same members as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • the oxide superconducting wire 1B includes a base material 10, an intermediate layer 11 provided on the base material 10, a first superconducting layer 12A provided on the intermediate layer 11, and a first superconducting layer 12A. It includes a second superconducting layer 12B provided above, a protective layer 13 provided on the second superconducting layer 12B, and a stabilizing layer 14 provided on the protective layer 13.
  • the oxide superconducting wire 1B may include an insulating coating layer that covers the base material 10, the intermediate layer 11, the first superconducting layer 12A, the second superconducting layer 12B, the protective layer 13, and the stabilizing layer 14.
  • Each of the first superconducting layer 12A and the second superconducting layer 12B is composed of a rare earth-based high-temperature superconductor.
  • the first superconducting layer 12A is formed on the intermediate layer 11 and is not in contact with the protective layer 13.
  • the second superconducting layer 12B is formed on the first superconducting layer 12A and is in contact with the protective layer 13.
  • Ratio of a-axis oriented grains (second a-axis oriented grains) of the second superconducting layer 12B to all crystal grains constituting the second superconducting layer 12B Is in the range of 4.1 to 11.9%, similar to the superconducting layer 12 of the first embodiment described above.
  • the ratio of the a-axis oriented grains (first a-axis oriented grains) of the first superconducting layer 12A to the whole crystal grains constituting the first superconducting layer 12A is lower than the a-axis oriented grain ratio Xa2 of the second superconducting layer 12B.
  • the a-axis oriented grain ratio Xa2 of the second superconducting layer 12B is 4.1%
  • the a-axis oriented grain ratio Xa1 of the first superconducting layer 12A is preferably less than 4.1%.
  • the a-axis oriented grain ratio Xa2 of the second superconducting layer 12B is 11.9%
  • the a-axis oriented grain ratio Xa1 of the first superconducting layer 12A may be less than 11.9%.
  • the a-axis oriented grain ratio Xa1 of the first superconducting layer 12A is 8. It is preferably 2% or less.
  • the second superconducting layer 12B in contact with the protective layer 13 contains a-axis oriented grains whose a-axis is oriented in the direction perpendicular to the main surface of the base material, and by including the a-axis oriented grains, the current path of superconductivity can be obtained.
  • the Cu—O surface is perpendicular to the main surface of the base material.
  • the space between the second superconducting layer 12B and the protective layer 13 is set.
  • the effect of reducing the interlayer resistance can be obtained.
  • the value of the a-axis oriented grain ratio Xa1 of the first superconducting layer 12A is smaller than the value of the a-axis oriented grain ratio Xa2 of the second superconducting layer 12B, the a-axis or the a-axis in the longitudinal direction of the oxide superconducting wire 1B The proportion of crystal grains with the b-axis oriented is secured.
  • a high critical current density of the oxide superconducting wire 1B can be obtained.
  • a high critical current density can be obtained by setting the value of the a-axis oriented grain ratio Xa1 of the first superconducting layer 12A to 8.2% or less.
  • the number of layers constituting the superconducting layer was two, but the a-axis oriented grain ratio Xa of the superconducting layer in contact with the protective layer was in the range of 4.1 to 11.9%. If so, the superconducting layer may be composed of three or more layers.
  • connection structure formed by using the oxide superconducting wire according to the embodiment of the present invention described above will be described with reference to FIG.
  • the connection structure formed by using the oxide superconducting wire according to the embodiment of the present invention has a structure in which a plurality of oxide superconducting wires 1A according to the first embodiment are solder-connected.
  • FIG. 3 shows a connection portion in which two oxide superconducting wires are solder-connected.
  • the surface of the stabilizing layer 14 covering the protective layer 13 of one oxide superconducting wire (the oxide superconducting wire located above in FIG. 3) and the other oxide superconducting wire (FIG. 3).
  • the surface of the stabilizing layer 14 covering the protective layer 13 of the oxide superconducting wire material located below is opposed to the surface of the stabilizing layer 14.
  • "One oxide superconducting wire” may be referred to as a first oxide superconducting wire.
  • the “other oxide superconducting wire” may be referred to as a second oxide superconducting wire.
  • “One oxide superconducting wire” and “the other oxide superconducting wire” may be referred to as "oxide superconducting wires overlapping each other".
  • the fact that the oxide superconducting wires overlap each other means that the oxide superconducting wires overlap each other in the thickness direction of the oxide superconducting wires.
  • the stabilizing layer 14 located at the end of one oxide superconducting wire and the stabilizing layer 14 located at the end of the other oxide superconducting wire are electrically connected via the solder 15. Has been done.
  • another oxide superconducting wire is connected to each end of each of the two oxide superconducting wires via solder. Also in this connection structure, an electrical connection structure using the solder 15 shown in FIG. 3 is adopted. That is, a long oxide superconducting wire material in which a plurality of oxide superconducting wire materials are solder-connected along the extending direction of the oxide superconducting wire material can be obtained.
  • a long oxide superconducting wire having reduced connection resistance instead of the plurality of oxide superconducting wires 1A according to the first embodiment, a plurality of oxide superconducting wires 1B according to the second embodiment are prepared, and as shown in FIG. 3, the oxide superconducting wires 1B overlapping each other are prepared. They may be soldered together. Also in this case, it is possible to manufacture a long superconducting wire material in which the connection resistance is reduced and the critical current density is secured.
  • the structure in which the intermediate layer 11 is arranged between the base material 10 and the superconducting layer 12 (first embodiment) and the intermediate layer 11 between the base material 10 and the first superconducting layer 12A
  • the superconducting layer may be provided above the base material, the superconducting layer may be provided on the base material, or the superconducting layer may be in direct contact with the base material.
  • Table 1 shows the critical current density ratio and the interlayer resistance ratio (R ratio) in Experimental Examples 1 to 9 in which the a-axis oriented grain ratio Xa (%, the ratio of the a-axis oriented grains to the whole of the crystal grains constituting the superconducting layer) is different. ), And the evaluation result of the interlayer resistance R ratio are shown.
  • the measurement method and calculation method of the a-axis oriented grain ratio Xa, the critical current density ratio, and the interlayer resistivity (R ratio), and the evaluation criteria of the interlayer resistivity R ratio are as follows.
  • the interlayer resistance R was measured in a state of bridge connection in which the front surface and the back surface of the wire were not interchanged.
  • the connection length was 2 cm.
  • Sn—Pb eutectic solder was applied between the connection surfaces of the two wires, the connection surfaces were overlapped, and the heater was pressed against the overlapping portion of the connection surfaces to perform the measurement.
  • the "interlayer resistivity (R ratio)" indicates the ratio to the interlayer resistance of Experimental Example 1, that is, the ratio when the interlayer resistance of Experimental Example 1 is 1.
  • the reason why the interlayer resistance ratio increases when the a-axis oriented grain ratio Xa exceeds 11.9% is that the vertical direction (direction perpendicular to the main surface of the substrate) increases due to the increase in the a-axis oriented grain ratio Xa. Although a current path to) can be obtained, the arrangement of crystals in the superconducting layer is disturbed due to the excessive number of a-axis oriented particles, other particles that obstruct the current are generated, and the Cu—O planes are not aligned. It is thought that this is because the resistance increases.
  • the critical current density ratio was 0.95 or more. From this, in the structure including the first superconducting layer not in contact with the protective layer and the second superconducting layer in contact with the protective layer, the a-axis oriented grain ratio Xa2 of the second superconducting layer is in the range of 4.1 to 11.9%. It is clear that both effects such as reduction of interlayer resistance and securing of critical current density can be obtained by setting the a-axis oriented grain ratio Xa1 of the first superconducting layer to 4.1% or less. It became.
  • the a-axis oriented grain ratio Xa2 of the second superconducting layer is set in the range of 4.1 to 11.9%, and the first superconducting layer is provided. It is conceivable to set the a-axis oriented grain ratio Xa1 of 11.9% or less, but in order to obtain a high critical current density, set the a-axis oriented grain ratio Xa1 of the first superconducting layer to 8.2% or less. It became clear that it was preferable to do so.
  • 1A, 1B Oxide superconducting wire, 10 ... Base material, 11 ... Intermediate layer, 12 ... Superconducting layer, 12A ... First superconducting layer (superconducting layer), 12B ... Second superconducting layer (superconducting layer), 13 ... Protective layer , 14 ... Stabilizing layer, 15 ... Solder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明の酸化物超電導線材は、主面を有する基材と、前記基材の上方に設けられて希土類系高温超電導体によって構成された超電導層と、前記超電導層上に設けられて前記超電導層に接する保護層とを備える。前記超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒を含む。前記超電導層を構成する結晶粒の全体に対する前記a軸配向粒の割合を表すa軸配向粒率は、4.1~11.9%の範囲内にある。

Description

酸化物超電導線材
 本発明は、酸化物超電導線材に関する。
 本願は、2020年9月25日に日本に出願された特願2020-160613号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、基材上に、中間層、超電導層、及び保護層が順に積層された構造を有する酸化物超電導線材が開示されている。
 数kmにも及ぶ長尺の超電導線材を製造するには、一般的に、短尺の複数の超電導線材をはんだ接続により繋ぎ合わせている。
日本国特開2014-110125号公報
 しかしながら、はんだ接続により酸化物超電導線材を接続した場合、接続部における接続抵抗が高くなり、接続部においてジュール熱が発生するという問題がある。特に、はんだ接続に起因する接続抵抗は、超電導層と保護層との間の層間抵抗が支配的であり、ジュール熱を低減するには、層間抵抗を低減することが重要である。また、接続抵抗が高くなると、クエンチ時に電流をバイパスする際に、超電導層から保護層へバイパス電流が流れ難くなるという問題もある。
 本発明は、このような事情を考慮してなされ、超電導層と保護層との間の層間抵抗が低減された酸化物超電導線材を提供することを目的とする。
 上記課題を解決するため、本発明の一態様に係る酸化物超電導線材は、主面を有する基材と、前記基材の上方に設けられて希土類系高温超電導体によって構成された超電導層と、前記超電導層上に設けられて前記超電導層に接する保護層とを備える。前記超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒を含む。前記超電導層を構成する結晶粒の全体に対する前記a軸配向粒の割合を表すa軸配向粒率は、4.1~11.9%の範囲内にある。
 ここで、文言「基材の上方に設けられた超電導層」とは、基材上に超電導層が設けられていることを意味するだけでなく、基材と超電導層との間に中間層等の層膜が配置されている構造において基材の上方に超電導層基材が設けられていることも意味する。
 a軸、b軸、及びc軸に沿って結晶が配向する超電導層の結晶構造において、従来では、基材の主面に対する垂直方向に結晶粒のc軸が配向することが多いことが知られている。これに対し、本発明者は、超電導層を構成する結晶粒のうち、基材の主面に対する垂直方向にa軸が配向するa軸配向粒が超電導層と保護層との間の層間抵抗に影響を及ぼすことを見出した。さらに、鋭意検討の結果、本発明者は、超電導層の結晶粒の全体に対して4.1~11.9%の割合でa軸配向粒を有するように超電導層を形成することで、超電導層と保護層との間の層間抵抗が低減する効果が得られることを見出し、本発明に想到した。
 本発明の一態様によれば、超電導層と保護層との間の層間抵抗が低減された酸化物超電導線材を製造することができる。この酸化物超電導線材を複数用意し、互いに重なり合う酸化物超電導線材どうしをはんだ接続すれば、接続抵抗が低減された長尺の超電導線材を製造することができる。
 本発明の一態様に係る酸化物超電導線材においては、前記a軸配向粒率は、8.2%以下であってもよい。
 この構成によれば、層間抵抗の低減だけでなく、酸化物超電導線材の長手方向における臨界電流密度を確保することができる。
 上記課題を解決するため、本発明の一態様に係る酸化物超電導線材は、主面を有する基材と、前記基材の上方に設けられて希土類系高温超電導体によって構成された第1超電導層と、前記第1超電導層上に設けられて希土類系高温超電導体によって構成された第2超電導層と、前記第2超電導層上に設けられて前記第2超電導層に接する保護層とを備える。前記第2超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒を含む。前記第2超電導層を構成する結晶粒の全体に対する前記a軸配向粒の割合を表すa軸配向粒率は、4.1~11.9%の範囲内にある。
 本発明の一態様によれば、第2超電導層と保護層との間の層間抵抗が低減された酸化物超電導線材を製造することができる。この酸化物超電導線材を複数用意し、互いに重なり合う酸化物超電導線材どうしをはんだ接続すれば、接続抵抗が低減された長尺の超電導線材を製造することができる。
 本発明の一態様に係る酸化物超電導線材においては、前記第1超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒である第1a軸配向粒を含む。前記第2超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒である第2a軸配向粒を含む。前記第1超電導層を構成する結晶粒の全体に対する前記第1a軸配向粒の割合を表すa軸配向粒率を第1率と定義し、前記第2超電導層を構成する結晶粒の全体に対する前記第2a軸配向粒の割合を表すa軸配向粒率を第2率と定義する。この場合、前記第1率は、前記第2率よりも小さくてもよい。
 この構成によれば、第2超電導層によって、超電導層と保護層との間の層間抵抗を低減することができ、第1超電導層によって、酸化物超電導線材の長手方向における臨界電流密度を確保することができる。つまり、酸化物超電導線材が、互い異なるa軸配向粒率を有する2つの超電導層を備えることで、層間抵抗の低減と、酸化物超電導線材の長手方向における臨界電流密度の確保、という両方の効果を得ることができる。
 本発明の上記態様によれば、超電導層と保護層との間の層間抵抗を低減することができる。
本発明の第1実施形態に係る酸化物超電導線材を示す拡大断面図である。 本発明の第2実施形態に係る酸化物超電導線材を示す拡大断面図である。 本発明の実施形態に係る酸化物超電導線材を用いて形成された接続構造体を示す図であって、複数の酸化物超電導線材のうち2つの線材がはんだ接続された接続構造体を示す拡大断面図である。
 以下、本発明の実施形態に係る酸化物超電導線材について、図面を参照して詳細に説明する。説明で用いる図面は、本発明の特徴をわかりやすくするため、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
(第1実施形態)
 まず、第1実施形態に係る酸化物超電導線材について図1を参照して説明する。
 本実施形態に係る酸化物超電導線材1Aは、基材10と、基材10上に設けられた中間層11と、中間層11上に設けられた超電導層12と、超電導層12上に設けられた保護層13と、保護層13上に設けられた安定化層14とを備える。酸化物超電導線材1Aは、基材10、中間層11、超電導層12、保護層13、及び安定化層14を覆う絶縁被覆層を備えてもよい。
 酸化物超電導線材1Aの高さ、すなわち、基材10の下面から保護層13の上面までの長さ(図1の上下方向の長さ)は、例えば、80μmである。
 酸化物超電導線材1Aの幅、すなわち、酸化物超電導線材1Aの左端から右端までの長さ(図1の左右方向の長さ)は、例えば、12mmである。
(基材10)
 基材10は、テープ状の金属基板である。金属基板を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金、ステンレス鋼、ニッケル合金に集合組織を導入した配向Ni-W合金などが挙げられる。
(中間層11)
 中間層11は、多層構成でもよく、例えば基材10から超電導層12に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これら複数の層が中間層11に設けられている構造において、各層の数は、1つに限定されない。中間層11を構成するこれら複数の層のうちの一部の層が省略されてもよい。さらに、同種の層が2以上繰り返して積層された構造が採用されてもよい。中間層11は、金属酸化物であってもよい。配向性に優れた中間層11の上に超電導層12を成膜することにより、配向性に優れた超電導層12を得ることが容易になる。
(超電導層12)
 超電導層12は、超電導状態の時に電流を流す機能を有する。
 超電導層12は、希土類系高温超電導体によって構成され、保護層13と接するように設けられている。
 具体的に、超電導層12に用いられる材料としては、通常知られている組成の酸化物超電導体を広く適用することができ、例えば、Y系超電導体、Bi系超電導体などの銅酸化物超電導体などが挙げられる。
 Y系超電導体の組成としては、例えば、REBaCu7-x(REは、Y、La、Nd、Sm、Er、Gd等の希土類元素を表し、xは酸素欠損を表す。)が挙げられる。
 Y系超電導体の具体的な組成としては、Y123(YBaCu7-x)、Gd123(GdBaCu7-x)が挙げられる。
 Bi系超電導体の組成としては、例えば、BiSrCan-1Cu4+2n+δ(nはCuOの層数を表し、δは過剰酸素を表す。)が挙げられる。この酸化物超電導体の母物質は絶縁体であるが、酸素アニール処理により酸化物超電導体が酸素を取り込むことで結晶構造の整った酸化物超電導体となり、超電導特性を示す性質を持つ。
 さらに、超電導層12は、基材10の主面に対する垂直方向にa軸が配向している結晶粒であるa軸配向粒を含む。a軸配向粒においては、超電導状態において電流が流れやすいCu-O面が基材の主面と垂直に存在している。a軸配向粒を含む超電導層12は、a軸配向粒同士の結晶粒界における量子的結合性に優れており、結晶粒界での超電導特性の劣化が殆どない。そのため、超電導層12においては、a軸方向に電気が流れ易くなる。超電導層12に含まれるa軸配向粒の割合(a軸配向粒率Xa)は、超電導層12を構成する結晶粒の全体(100%)に対して4.1~11.9%の範囲内にある。また、この範囲内において、a軸配向粒率Xaは、8.2%以下であることがより好ましい。
 超電導層12を形成する際に、成膜温度、成膜レート(成膜速度)等の条件を調整することによって、a軸配向粒率Xaを上記範囲内における所望の値に制御することができる。
(保護層13)
 保護層13は、酸化物超電導線材1Aへの通電時において、何らかの事故により発生する過電流が流れるバイパス経路として機能する電流路となる。保護層13は、Agあるいは少なくともAgを含む材料から形成されることが好ましい。また、保護層13を形成する材料は、Au、Ptなどの貴金属を含む混合物もしくは合金であってもよく、これらの複数の材料が用いられてもよい。
(安定化層14)
 安定化層14の材料としては、銅、Cu-Zn合金(黄銅)、Cu-Ni合金等の銅合金、アルミニウム、アルミニウム合金、ステンレス等の材質が選択される。
 安定化層14は、複数の層から構成されてもよい。また、安定化層14は、金属めっきにより形成されてもよい。安定化層14は、基材10と、保護層13と、基材10と保護層13との間に位置する層を含む積層体の全体がめっき層で覆われた構造を有してもよい。
 次に、以上のように構成された酸化物超電導線材1Aの作用及び効果について説明する。
 保護層13に接する超電導層12が、基材の主面に対する垂直方向にa軸が配向しているa軸配向粒を含み、かつ、当該a軸配向粒を含む。これにより、超電導の電流パスとなるCu-O面が基材10の主面に対して垂直に存在することになる。基材10の主面に対する垂直方向にa軸が配向することで、基材の主面に対する垂直方向には低抵抗が得られ、電流が容易に流れる。特に、後述するように、a軸配向粒率Xaが4.1~11.9%の範囲内に設定されていることで、超電導層12と保護層13との間の層間抵抗を低減する効果が得られる。さらに、a軸配向粒率Xaを8.2%以下に設定することで、層間抵抗の低減だけでなく、酸化物超電導線材1Aの長手方向における臨界電流密度の低下を抑えることもできる。なお、以降の説明では、酸化物超電導線材の長手方向における臨界電流密度を、単に臨界電流密度と称する。
 一方、従来の酸化物超電導線材においては、基材の主面に対して平行方向にCu-O面が存在するように超電導層を形成することが一般的に行われている。このとき、基材の主面に対する垂直方向には結晶粒のc軸が配向するため、基材の主面に対する垂直方向には電流が流れにくい。
 これに対し、本実施形態によれば、基材10の主面に対する垂直方向にa軸が配向したa軸配向粒の割合(a軸配向粒率Xa)を最適化することで、超電導層12と保護層13との相互間に流れる電流パスの量が増加し、層間抵抗を低減することができる。
(第2実施形態)
 次に、第2実施形態に係る酸化物超電導線材について図2を参照して説明する。
 本実施形態に係る酸化物超電導線材1Bは、超電導層が2つの層(第1超電導層及び第2超電導層)で構成されている点で、上述した第1実施形態に係る酸化物超電導線材1Aとは異なる。
 図2において、第1実施形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
 本実施形態に係る酸化物超電導線材1Bは、基材10と、基材10上に設けられた中間層11と、中間層11上に設けられた第1超電導層12Aと、第1超電導層12A上に設けられた第2超電導層12Bと、第2超電導層12B上に設けられた保護層13と、保護層13上に設けられた安定化層14とを備える。酸化物超電導線材1Bは、基材10、中間層11、第1超電導層12A、第2超電導層12B、保護層13、及び安定化層14を覆う絶縁被覆層を備えてもよい。
 第1超電導層12A及び第2超電導層12Bの各々は、希土類系高温超電導体によって構成されている。第1超電導層12Aは、中間層11上に形成されており、保護層13とは接していない。第2超電導層12Bは、第1超電導層12A上に形成されており、保護層13と接している。
 第2超電導層12Bを構成する結晶粒の全体に対する第2超電導層12Bのa軸配向粒(第2a軸配向粒)の割合(第2超電導層12Bのa軸配向粒率Xa2、第2率)は、上述した第1実施形態の超電導層12と同様に4.1~11.9%の範囲内にある。
 一方、第1超電導層12Aを構成する結晶粒の全体に対する第1超電導層12Aのa軸配向粒(第1a軸配向粒)の割合(第1超電導層12Aのa軸配向粒率Xa1、第1率)は、第2超電導層12Bのa軸配向粒率Xa2よりも低い。
 例えば、第2超電導層12Bのa軸配向粒率Xa2が4.1%であれば、第1超電導層12Aのa軸配向粒率Xa1は、4.1%未満であることが好ましい。
 また、第2超電導層12Bのa軸配向粒率Xa2が11.9%であれば、第1超電導層12Aのa軸配向粒率Xa1は、11.9%未満であればよい。ただし、a軸配向粒率Xaを8.2%以下に設定することで高い臨界電流密度が得られることから、この場合には、第1超電導層12Aのa軸配向粒率Xa1は、8.2%以下であることが好ましい。
 次に、以上のように構成された酸化物超電導線材1Bの作用及び効果について説明する。
 保護層13に接する第2超電導層12Bが、基材の主面に対する垂直方向にa軸が配向しているa軸配向粒を含み、当該a軸配向粒を含むことにより、超電導の電流パスとなるCu-O面が基材の主面に対して垂直に存在することになる。基材10の主面に対する垂直方向にa軸が配向することで、基材の主面に対する垂直方向には低抵抗が得られ、電流が容易に流れる。後述するように、第2超電導層12Bのa軸配向粒率Xa2が4.1~11.9%の範囲内に設定されていることで、第2超電導層12Bと保護層13との間の層間抵抗を低減する効果が得られる。また、第1超電導層12Aのa軸配向粒率Xa1の値が第2超電導層12Bのa軸配向粒率Xa2よりも小さい値であることから、酸化物超電導線材1Bの長手方向にa軸またはb軸が配向した結晶粒の割合が確保される。このため、酸化物超電導線材1Bの高い臨界電流密度を得ることができる。特に、第1超電導層12Aのa軸配向粒率Xa1の値を8.2%以下に設定することで高い臨界電流密度を得ることができる。
 したがって、第2超電導層12Bと保護層13との相互間に流れる電流パスの量が増加することで層間抵抗を低減することができ、かつ、第1超電導層12Aの臨界電流密度を確保することができる。つまり、酸化物超電導線材1Bが互い異なるa軸配向粒率Xa1、Xa2をそれぞれ有する2つの超電導層を備えることで、層間抵抗の低減及び臨界電流密度の確保という両方の効果を得ることができる。
 上述した第2実施形態においては、超電導層を構成する層の数は、2層であったが、保護層に接する超電導層のa軸配向粒率Xaが4.1~11.9%の範囲であれば、3層以上の層で超電導層が構成されてもよい。
(接続構造体)
 次に、上述した本発明の実施形態に係る酸化物超電導線材を用いて形成した接続構造体について図3を参照して説明する。
 本発明の実施形態に係る酸化物超電導線材を用いて形成した接続構造体は、第1実施形態に係る複数の酸化物超電導線材1Aがはんだ接続された構造を有する。特に、図3は、2つの酸化物超電導線材がはんだ接続された接続部分を示している。
 図3に示すように、一方の酸化物超電導線材(図3において上方に位置する酸化物超電導線材)の保護層13を被覆する安定化層14の表面と、他方の酸化物超電導線材(図3において下方に位置する酸化物超電導線材)の保護層13を被覆する安定化層14の表面とが対向している。「一方の酸化物超電導線材」を第1酸化物超電導線材と称してもよい。「他方の酸化物超電導線材」を第2酸化物超電導線材と称してもよい。「一方の酸化物超電導線材」及び「他方の酸化物超電導線材」を「互いに重なり合う酸化物超電導線材」と称してもよい。また、酸化物超電導線材が互いに重なり合うとは、酸化物超電導線材の厚さ方向において、酸化物超電導線材が重なることを意味する。
 この状態で、一方の酸化物超電導線材の端部に位置する安定化層14と、他方の酸化物超電導線材の端部に位置する安定化層14とが、はんだ15を介して電気的に接続されている。
 なお、図3には示されていないが、2つの酸化物超電導線材の各々の端部には、はんだを介して別の酸化物超電導線材が接続されている。この接続構造においても、図3に示すはんだ15を用いた電気接続構造が採用されている。つまり、酸化物超電導線材の延在方向に沿って、複数の酸化物超電導線材がはんだ接続された長尺の酸化物超電導線材が得られる。
 この構成によれば、接続抵抗が低減された長尺の酸化物超電導線材を製造することができる。
 なお、第1実施形態に係る複数の酸化物超電導線材1Aに代えて、第2実施形態に係る複数の酸化物超電導線材1Bを用意し、図3に示すように、互いに重なり合う酸化物超電導線材1Bどうしをはんだ接続してもよい。この場合も、接続抵抗が低減され、かつ、臨界電流密度が確保された長尺の超電導線材を製造することができる。
 以上、本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、請求の範囲によって制限されている。
 上述した実施形態では、基材10と超電導層12との間に中間層11が配置されている構造(第1実施形態)と、基材10と第1超電導層12Aとの間に中間層11が配置されている構造(第2実施形態)とについて説明した。
 本発明においては、基材の上方に超電導層が設けられていればよく、基材上に超電導層が設けられてもよいし、基材上に超電導層が直接的に接触してもよい。
 次に、実施例を参照して、本発明を具体的に説明する。
 表1は、a軸配向粒率Xa(%、超電導層を構成する結晶粒の全体に対するa軸配向粒の割合)が異なる実験例1~9において、臨界電流密度比、層間抵抗比(R比)、及び層間抵抗R比の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 a軸配向粒率Xa、臨界電流密度比、及び層間抵抗比(R比)の測定方法及び算出方法、及び層間抵抗R比の評価基準は、次の通りである。
(a軸配向粒率Xa)
 酸素アニール前(アズデポ)のサンプルに対して、a軸配向粒率Xaの測定を行った。
 a軸配向粒率Xaは、XRDのθ-2θ法により測定した。(006)ピークのカウント値をxとし、(200)ピークのカウント値をyとしたとき、a軸配向粒率Xaは、関係式「(a軸配向粒率Xa(%))=(100×y)/(x+y)」により算出される。
(臨界電流密度比(Jc比))
 臨界電流密度Jc(77K、自己磁場中)の測定及び算出においては、まず、酸素アニール後のサンプルを用意し、四端子法により測定値を得た。その測定値を超電導層の厚さで除することによって、臨界電流密度Jcを得た。
 表1において、「臨界電流密度比(Jc比)」とは、実験例1の臨界電流密度Jcに対する比、すなわち、実験例1の臨界電流密度Jcを1とした場合の割合を示す。
(層間抵抗比(R比))
 線材の表面及び裏面が入れ替わらないブリッジ接続の状態で、層間抵抗Rを測定した。接続長は、2cmとした。ブリッジ接続において、2つの線材の接続面の間にSn-Pb共晶はんだを塗布し、接続面どうしを重ね、接続面が重なっている部分にヒータを押し当てることで測定を行った。
 表1において、「層間抵抗比(R比)」とは、実験例1の層間抵抗に対する比、すなわち、実験例1の層間抵抗を1とした場合の割合を示す。
(層間抵抗R比の評価)
 表1において、結果「良」は、層間抵抗R比が0.7以下であって、評価結果が良好であったことを意味する。結果「最良」は、層間抵抗R比が0.5以下であって、評価結果が優れていたことを意味する。一方、結果「不可」は、層間抵抗R比が0.7を超えており、評価結果が悪かったことを意味する。
 表1に示す実験結果から次の点が明らかとなった。
[1]a軸配向粒率Xaが4.1~11.9%の範囲内にある場合、層間抵抗R比の評価結果が良又は最良となった。このため、この範囲内に超電導層のa軸配向粒率Xaを設定することで、層間抵抗を低減することが明らかとなった。
[2]一方、a軸配向粒率Xaが4.1%未満である場合(3.3%、2.9%)、及び、a軸配向粒率Xaが11.9%を超える場合(27.1%、41.7%)では、層間抵抗比が増加しており、層間抵抗R比の評価結果が不可となった。この条件では、層間抵抗の低減を図れないことが明らかとなった。
 なお、a軸配向粒率Xaが11.9%を超えた場合に層間抵抗比が増加する理由は、a軸配向粒率Xaの増加により縦方向(基材の主面に対して垂直な方向)への電流パスが得られるものの、a軸配向粒が過多になることで超電導層の結晶の並びが乱れ、電流を阻害する他の粒子が生成されてしまい、Cu-O面が揃わなくなり、抵抗が大きくなってしまうため、と考えられる。
[3]a軸配向粒率Xaが4.1~11.9%の範囲内にある場合おいて、a軸配向粒率Xaが8.2%以下であれば、臨界電流密度比が0.85以上となった。このことから、層間抵抗の低減及び臨界電流密度の確保といった両方の効果が得られることが明らかとなった。
[4]a軸配向粒率Xaが4.1%以下の場合、臨界電流密度比が0.95以上となった。このことから、保護層に接しない第1超電導層と保護層に接する第2超電導層とを備える構造において、第2超電導層のa軸配向粒率Xa2を4.1~11.9%の範囲内に設定し、かつ、第1超電導層のa軸配向粒率Xa1を4.1%以下に設定することで、層間抵抗の低減及び臨界電流密度の確保といった両方の効果が得られることが明らかとなった。
 なお、第1超電導層及び第2超電導層を備える構造においては、第2超電導層のa軸配向粒率Xa2を4.1~11.9%の範囲内に設定し、かつ、第1超電導層のa軸配向粒率Xa1を11.9%以下に設定することが考えられるが、高い臨界電流密度を得るためには、第1超電導層のa軸配向粒率Xa1を8.2%以下にすることが好ましいことが明らかとなった。
 1A、1B…酸化物超電導線材、10…基材、11…中間層、12…超電導層、12A…第1超電導層(超電導層)、12B…第2超電導層(超電導層)、13…保護層、14…安定化層、15…はんだ

Claims (4)

  1.  主面を有する基材と、
     前記基材の上方に設けられ、希土類系高温超電導体によって構成された超電導層と、
     前記超電導層上に設けられ、前記超電導層に接する保護層と、
     を備え、
     前記超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒を含み、
     前記超電導層を構成する結晶粒の全体に対する前記a軸配向粒の割合を表すa軸配向粒率は、4.1~11.9%の範囲内にある、
     酸化物超電導線材。
  2.  前記a軸配向粒率は、8.2%以下である、
     請求項1に記載の酸化物超電導線材。
  3.  主面を有する基材と、
     前記基材の上方に設けられ、希土類系高温超電導体によって構成された第1超電導層と、
     前記第1超電導層上に設けられ、希土類系高温超電導体によって構成された第2超電導層と、
     前記第2超電導層上に設けられ、前記第2超電導層に接する保護層と、
     を備え、
     前記第2超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒を含み、
     前記第2超電導層を構成する結晶粒の全体に対する前記a軸配向粒の割合を表すa軸配向粒率は、4.1~11.9%の範囲内にある、
     酸化物超電導線材。
  4.  前記第1超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒である第1a軸配向粒を含み、
     前記第2超電導層は、前記基材の前記主面に対する垂直方向にa軸が配向しているa軸配向粒である第2a軸配向粒を含み、
     前記第1超電導層を構成する結晶粒の全体に対する前記第1a軸配向粒の割合を表すa軸配向粒率を第1率と定義し、
     前記第2超電導層を構成する結晶粒の全体に対する前記第2a軸配向粒の割合を表すa軸配向粒率を第2率と定義すると、
     前記第1率は、前記第2率よりも小さい、
     請求項3に記載の酸化物超電導線材。
PCT/JP2021/030470 2020-09-25 2021-08-19 酸化物超電導線材 WO2022064912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21872044.9A EP4219401A1 (en) 2020-09-25 2021-08-19 Oxide superconducting wire
CN202180065300.6A CN116194408A (zh) 2020-09-25 2021-08-19 氧化物超导电线材
US18/246,333 US20230395285A1 (en) 2020-09-25 2021-08-19 Oxide superconducting wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020160613A JP6919042B1 (ja) 2020-09-25 2020-09-25 酸化物超電導線材
JP2020-160613 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022064912A1 true WO2022064912A1 (ja) 2022-03-31

Family

ID=77172751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030470 WO2022064912A1 (ja) 2020-09-25 2021-08-19 酸化物超電導線材

Country Status (5)

Country Link
US (1) US20230395285A1 (ja)
EP (1) EP4219401A1 (ja)
JP (1) JP6919042B1 (ja)
CN (1) CN116194408A (ja)
WO (1) WO2022064912A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204189A (ja) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The 超電導線材の製造方法
JP2014110125A (ja) 2012-11-30 2014-06-12 Fujikura Ltd 酸化物超電導線材およびその製造方法
WO2020137490A1 (ja) * 2018-12-28 2020-07-02 株式会社フジクラ 酸化物超電導線材及びその製造方法
JP2020160613A (ja) 2019-03-25 2020-10-01 オムロンヘルスケア株式会社 服薬状況管理装置、方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204189A (ja) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The 超電導線材の製造方法
JP2014110125A (ja) 2012-11-30 2014-06-12 Fujikura Ltd 酸化物超電導線材およびその製造方法
WO2020137490A1 (ja) * 2018-12-28 2020-07-02 株式会社フジクラ 酸化物超電導線材及びその製造方法
JP2020160613A (ja) 2019-03-25 2020-10-01 オムロンヘルスケア株式会社 服薬状況管理装置、方法およびプログラム

Also Published As

Publication number Publication date
US20230395285A1 (en) 2023-12-07
CN116194408A (zh) 2023-05-30
EP4219401A1 (en) 2023-08-02
JP6919042B1 (ja) 2021-08-11
JP2022053796A (ja) 2022-04-06

Similar Documents

Publication Publication Date Title
KR101968074B1 (ko) 전기도금된 안정제 함량을 감소시키는 구조체
US7586717B2 (en) Electrical device for current conditioning
US8498680B2 (en) Electrode unit joining structure for superconducting wire, superconducting wire, and superconducting coil
PL178325B1 (pl) Ogranicznik prądu
JP6178779B2 (ja) 超電導線材の接続構造体および超電導線材の接続構造体の製造方法
US20190318849A1 (en) Oxide superconducting wire and method for manufacturing same
WO2022064912A1 (ja) 酸化物超電導線材
RU2597211C1 (ru) Провод из оксидного сверхпроводника
JP5701247B2 (ja) 酸化物超電導線材の接続構造体及び接続方法
JPH10136563A (ja) 酸化物超電導体を用いた限流素子およびその製造方法
JP6420346B2 (ja) 超伝導テープおよびそれを形成する方法
JP6002602B2 (ja) 酸化物超電導線材の接続構造体及びその製造方法
US5194420A (en) Oxide super conductors
JP2016531408A5 (ja)
JP6461776B2 (ja) 超電導線材および超電導線材の製造方法
WO2018083826A1 (ja) 超電導線材
JP7402120B2 (ja) 酸化物超電導線材および酸化物超電導線材の製造方法
JP2014107149A (ja) 酸化物超電導線材並びに当該酸化物超電導線材の接続構造体
JP3155558B2 (ja) 酸化物超電導線材
JP2023172285A (ja) 接続構造体
JP2022168627A (ja) 酸化物超電導線材
JP6404556B2 (ja) 酸化物超電導導体およびその製造方法
JP2020135988A (ja) 酸化物超電導線材及びその製造方法
JPH0945161A (ja) 超伝導配線
JP2014022228A (ja) 酸化物超電導導体および酸化物超電導導体の製造方法並びにそれを用いた超電導機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872044

Country of ref document: EP

Effective date: 20230425