WO2022063155A1 - 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔 - Google Patents

内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔 Download PDF

Info

Publication number
WO2022063155A1
WO2022063155A1 PCT/CN2021/119818 CN2021119818W WO2022063155A1 WO 2022063155 A1 WO2022063155 A1 WO 2022063155A1 CN 2021119818 W CN2021119818 W CN 2021119818W WO 2022063155 A1 WO2022063155 A1 WO 2022063155A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat exchange
finned tube
longitudinal
heat exchanger
Prior art date
Application number
PCT/CN2021/119818
Other languages
English (en)
French (fr)
Inventor
白本通
Original Assignee
深圳易信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳易信科技股份有限公司 filed Critical 深圳易信科技股份有限公司
Publication of WO2022063155A1 publication Critical patent/WO2022063155A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/14Direct-contact trickle coolers, e.g. cooling towers comprising also a non-direct contact heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally

Definitions

  • the present application relates to the field of indirect evaporative cooling heat exchangers and evaporative cooling, in particular to a longitudinal finned tube heat exchanger used in fluid cooling with internal heat exchange jackets and nozzles, and a closed cooling tower with the built-in heat exchanger.
  • the closed cooling tower has many advantages such as cleanliness, water saving, energy saving, and direct cooling to the end, but it also has disadvantages such as high cost, large volume, and cumbersomeness. These shortcomings are due to the low efficiency of the tubular heat exchanger used in the conventional closed cooling tower, the insufficient surface area, and the uneven water spraying, resulting in uneven distribution of the liquid film on the surface of the packing and the heat exchanger. The water evaporation efficiency of the tower on the surface of the packing and the heat exchanger is not high, and the heat exchange efficiency is also poor. In order to achieve the corresponding cooling effect, the equipment must be large.
  • This application adopts a longitudinal finned tube heat exchanger with internal heat exchange tubes.
  • each finned tube has an independent spray module.
  • the heat exchange sleeve cools the fluid to be cooled; the finned tubes are connected by plug-in connectors to distribute the spray water and connect the internal heat exchange tubes, and are fixed on the heat exchanger frame;
  • the water outlet adopts a multi-stage water distribution design to ensure the uniformity of water flow distribution, so that this longitudinal finned tube heat exchanger with internal replacement of thermal sleeves and nozzles has high evaporative heat exchange efficiency, small wind resistance, large ventilation volume and large fin surface area. And the surface has good film formation after hydrophilic treatment.
  • the closed cooling tower using it as evaporative cooling heat exchanger has the advantages of small volume and large cooling capacity.
  • It includes an array composed of several longitudinal finned tube heat exchange units, a flow divider, a spray water separator, and a liquid collector;
  • the longitudinal finned tube heat exchange unit is composed of an upper connecting component of the integrated nozzle, a longitudinal finned tube, a heat exchange tube, and a lower connecting piece;
  • the upper part of the heat exchange tube is connected to the spray head of the upper connecting assembly through the inner pipeline of the upper connecting component, and the lower part of the heat exchange tube is connected to the spray water through the inner pipeline of the lower connecting part.
  • the middle part of the heat exchange tube is arranged inside the longitudinal finned tube base tube of the longitudinal finned tube;
  • the upper end of the upper connecting assembly communicates with the flow divider, and the lower end of the upper connecting assembly communicates with the longitudinal finned tube base pipe and the heat exchange tube respectively; the spray heads of the upper connecting assembly are aligned The longitudinal fins are arranged, and the spray head is communicated with the heat exchange tube through the inner pipeline of the upper connecting assembly;
  • the lower connecting piece is arranged below the longitudinal finned tube base pipe, the upper end of the lower connecting piece is communicated with the heat exchange tube and the finned tube base pipe respectively, and the liquid collector passes through the The lower connecting piece is communicated with the finned tube base pipe, and the spray water heater is communicated with the heat exchange tube through the lower connecting piece;
  • the spray water enters the array formed by the finned tube heat exchange unit from the spray water water dispenser, and passes through the longitudinal finned tube heat exchange unit in turn.
  • the cooled fluid enters from the flow divider into the array formed by the finned tube heat exchange unit, and sequentially pass through the interior of the upper connecting assembly of the longitudinal finned tube heat exchange unit, between the longitudinal finned tube base tube and the heat exchange tube.
  • the clearance space, the inside of the lower connecting piece, the liquid collector, and finally flows out through the liquid collector; before spraying, the spray water and the cooled fluid conduct countercurrent heat exchange on the wall of the heat exchange tube .
  • the present application further optimizes the structure of the upper connecting assembly and the lower connecting piece, optimizes the number and depth of spray channels, and performs surface treatment on the longitudinal finned tube heat exchanger.
  • the vertical finned tube is provided with an upper connecting component that can be sprayed uniformly, which improves the uniformity of spray water and the surface film-forming performance, thereby improving the efficiency of indirect evaporation and improving the heat exchange of the entire heat exchanger. performance.
  • the present application further discloses a closed-circuit cooling tower based on the longitudinal finned tube heat exchanger, and improves the closed-circuit cooling tower from a series of angles.
  • FIG. 1 is a schematic cross-sectional structure diagram of a longitudinal fin-tube heat exchanger according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structural diagram of an upper connecting assembly according to an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram and a side schematic diagram of a nozzle according to an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of another solution of the upper connecting assembly according to the embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional structural diagram of the lower connector according to the first embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a shunt according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the working principle of Embodiment 1 of the present application.
  • FIG. 8 is a schematic structural diagram of the water distributor that is divided into two and divided into four in this embodiment.
  • FIG. 9 is a schematic diagram of the structure of the transition from the one-to-two water divider to the one-to-three water divider according to the present embodiment.
  • FIG. 10 is a schematic structural diagram of the transition from the one-to-three water divider to the one-to-three water divider according to the present embodiment.
  • FIG. 11 is a schematic structural diagram of the transition from a water divider divided into four to a water divider divided into three in this embodiment.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of the present application.
  • FIG. 13 is a schematic cross-sectional structure diagram of the lower connector according to the second embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of Embodiment 3 of the present application.
  • FIG. 15 is a schematic structural diagram of Embodiment 4 of the present application.
  • FIG. 16 is a schematic structural diagram of a second water collecting tank according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of Embodiment 5 of the present application.
  • the longitudinal finned tube heat exchanger of the embodiment of the present application is applied in the field of indirect evaporation, and is used for indirect evaporative cooling of the fluid to be cooled, especially in the closed cooling tower, where the closed cooling tower is used to indirectly exchange the fluid to be cooled. hot.
  • the fluid to be cooled can be a gaseous or liquid fluid.
  • the adaptability of the gap between the longitudinal finned tube base tube and the heat exchange tube increases; when the cooled fluid is a liquid fluid, the size of the gap between the longitudinal finned tube base tube and the heat exchange tube increases Reduced adaptability.
  • the liquid fluid is generally cooled, but is not limited to the case of protecting the liquid fluid for indirect evaporative cooling.
  • the longitudinal fin tube heat exchanger 40 of this embodiment is used for indirect evaporative cooling of the fluid to be cooled (gas, liquid), and is a cross-sectional view of the heat exchanger.
  • the longitudinal finned tube heat exchanger 40 includes an array 410 (referred to as a heat exchange array) with several longitudinal finned tube heat exchange units, a flow divider 420 , a spray water separator 430 , and a liquid collector 440 .
  • the heat exchange array 410 , the diverter 420 , and the spray water dispenser 430 ; the diverter 420 , the heat exchange array 410 , the spray water dispenser 430 , and the liquid collector 440 are connected in sequence from top to bottom.
  • the spray water dispenser 430 is arranged above the liquid collector 440 .
  • the longitudinal fin tube heat exchanger 40 further includes a heat exchanger frame, and the liquid collector 440 is fixed on the heat exchanger frame.
  • the heat exchange array 410 is a square array composed of m*n longitudinal finned tube heat exchange units, one side of the square array is m longitudinal finned tube heat exchange units, and the other side is n longitudinal finned tube heat exchange units.
  • the number of finned tube heat exchange units is adjusted according to the design flow rate and flow rate. m and n are natural numbers.
  • the heat exchange array 410 can also be designed as an elliptical array or a circular array according to the application environment of the longitudinal fin tube heat exchanger.
  • the longitudinal finned tube heat exchange unit is composed of an upper connecting assembly 411 integrated with a nozzle, a longitudinal finned tube 413 , a heat exchange tube 414 and a lower connecting piece 416 .
  • the upper part of the heat exchange tube 414 is connected to the sprinkler head of the upper connection assembly 411 through the inner pipeline of the upper connection component 411 , and the lower part of the heat exchange tube 414 is connected to the sprinkler 430 through the inner pipeline of the lower connection part 416 , and the middle part of the heat exchange tube 414 is arranged Inside the longitudinal finned tube base tube 4132 of the longitudinal finned tube 413; the heat exchange tube 414 is used to cool the fluid to be cooled inside the longitudinal finned tube base tube 4132 through the spray water flowing inside the heat exchange tube.
  • the upper end of the upper connecting assembly 411 is communicated with the flow divider 420, and the lower end of the upper connecting assembly 411 is communicated with the longitudinal finned tube base pipe 4132 and the heat exchange tube 414 respectively;
  • the spray head 4113 and the heat exchange tube 414 are communicated through the inner pipeline of the upper connecting assembly 411; the spray head 4113 is used to spray water on the longitudinal fins 4131, the gaps between the longitudinal fins 4131 are used for the flow of external air, and the longitudinal fins 4131 For the spray water to flow and evaporate on the longitudinal fins, and to cool the cooled fluid inside the longitudinal fin tube base tube 4132.
  • the lower connector 416 is arranged below the longitudinal finned tube base tube 4132, the upper end of the lower connector 416 is in communication with the heat exchange tube 414 and the finned tube base tube 4132, respectively, and the liquid collector 440 passes through the lower connector 416 and the finned tube.
  • the base pipe 4132 communicates with each other, and the spray water separator 430 communicates with the heat exchange pipe 414 through the lower connecting piece 416 .
  • the lower connector 416 is used to lead the cooled fluid from the gap between the longitudinal finned tube base tube 4132 and the heat exchange tube 414 from top to bottom to the liquid collector 440, and at the same time, the spray water from the spray water separator 430 is discharged.
  • the shower water is introduced from the heat exchange tube 413 .
  • the spray water enters the array composed of the finned tube heat exchange unit from the spray water dispenser, and passes through the inner part of the lower connecting piece of the longitudinal finned tube heat exchange unit, the heat exchange tube in turn.
  • the inner and upper connection components have internal pipelines and nozzles, and are finally sprayed on the longitudinal fins through the nozzles;
  • the cooled fluid enters the array of finned tube heat exchange units from the flow divider, and passes through the longitudinal finned tube heat exchange units in turn.
  • the spray water flows in the heat exchange tube, and the cooled fluid flows in the gap between the heat exchange tube and the longitudinal finned tube base tube, so that the spray water occurs before the spray water flows to the spray head.
  • the countercurrent heat exchange with the cooled fluid greatly improves the heat exchange efficiency and heat exchange of the heat exchanger in this embodiment.
  • the simulation shows that, under the same external environment, the heat exchange capacity of this heat exchanger with the same size is about doubled compared to the situation without counter-flow heat exchange.
  • the upper connection assembly 411 in the embodiment of the present application is shown in FIG. 2 .
  • the upper connection assembly 411 is composed of an upper connection deflector 4111 , a T-shaped first inner sleeve 4112 , a spray head 4113 and a spray stopper 4114 .
  • the nozzle 4113 has a hollow structure with a wide upper part and a narrow lower part as a whole.
  • the spray head 4113 is composed of a first cylindrical member 4113a with a concave groove on the outer surface, a second cylindrical member 4113b, a third cylindrical member 4113c with a truncated outer surface, and a third cylindrical member 4113e with a number of limit bars 4113e inside.
  • the four cylindrical parts 4113d are integrally formed from top to bottom.
  • the lower part of the upper connecting guide 4111 is nested inside the upper part of the spray head 4113 for inserting the upper connecting guide 4111; the lower part of the spray head 4113 is nested inside the heat exchange tube for inserting the heat exchange tube 414, the spray head 4113
  • the outer part of the lower part is connected to the upper part of the finned tube base pipe 4132 by plugging, so as to be inserted into the finned tube base pipe 4132; the outer surface of the top of the spray head is provided with several concave grooves for spraying water. shower channel.
  • the first inner sleeve 4112 is composed of a horizontally distributed first branch unit, a horizontally distributed second branch unit and a vertically distributed third branch unit, and is a tubular structure.
  • the third branch unit and the first branch unit and the second branch unit are both. Communication is used to introduce the spray water of the heat exchange tube 414 from the third branch unit into the first branch unit and the second branch unit.
  • the upper end of the upper connecting flow guide 4111 is connected with the flow divider 420, and the lower part of the upper connecting flow guide 4111 is nested with a first inner sleeve 4112.
  • the lower part of the upper connecting deflector 4111 is wrapped by the upper part of the spray head 4113 and is arranged above the inner support surface of the spray head 4113 .
  • the spray stopper 4114 is arranged around the upper connecting deflector 4111 and the spray head 4113, and wraps the first inner sleeve 4112.
  • the first branch unit and the second branch unit of the first inner sleeve communicate with the spray stopper. , used to lead the spray water from the first branch unit and the second branch unit to the spray stopper and spray it on the longitudinal fins 4131 through the spray head 4113 .
  • the upper connecting assembly 411 is also provided with a cooling fluid inlet connector 4115, one end of which is provided with a slot and a thread to facilitate connection with the diverter 420, and the other end is provided with a thread to facilitate connection with the shunt 420.
  • the upper connection deflector 4111 of the upper connection assembly 411 is connected. The connection between the upper connecting guide and the flow divider is facilitated through the liquid inlet joint of the cooled fluid.
  • the upper connecting assembly 411 is further provided with a spring 4116, which is arranged above the spray stopper 4114 for adjusting the height of the spray stopper 4114 with the change of the spray water pressure, Thereby adjusting the size of the spray water.
  • the spray limiter of this embodiment realizes the elastic adjustment of the spray amount through the spring.
  • the spray stopper may not be provided with a spring, and only the spray stopper 4114 is retained, and the spray stopper 4114 is fixed on the upper connection deflector 4111 by screw connection or adhesive connection.
  • 20-60 spray channels are evenly arranged on the top of the spray head 4113, and the depth of the spray channels is between 0.1mm-0.2mm.
  • the number of spray channels of the spray head 4113 is more than twice the number of the longitudinal fins of the longitudinal fin tube, so that each longitudinal fin has at least two spray channels for corresponding spraying, so as to improve the spray rate. The uniformity of the shower.
  • the lower connection piece 416 includes a lower connection flow guide 4161 , a T-shaped second inner sleeve 4162 , and a lower connection joint 4163 .
  • the upper part of the lower connecting guide 4161 is connected with the lower connecting joint 4163
  • the middle part of the lower connecting guide 4161 is nested with a second inner sleeve 4162
  • the lower part of the lower connecting guide 4161 is connected with the liquid collector 440 .
  • the second inner sleeve 4162 is composed of a fourth branch unit distributed vertically, a fifth branch unit distributed horizontally, and a sixth branch unit distributed horizontally.
  • the fourth branch unit communicates with the fifth branch unit and the sixth branch unit, and is used for The spray water of the heat exchange tube 14 is introduced into the fourth branch unit from the fifth branch unit and the sixth branch unit.
  • the lower connecting joint 4163 consists of two supporting walls with different diameters, which are connected to the upper cylinder at the bottom, the lower cylinder is connected to the lower cylinder, the upper cylinder is connected to the lower cylinder, and the lower cylinder is connected to the lower cylinder; the heat exchange tube is placed inside the lower connection to the upper cylinder.
  • the lower end of the heat exchange tube 414 is connected to the fourth branch unit of the second inner sleeve 4162 by plugging, and the lower end is connected to the inner wall of the upper cylinder for inserting the heat exchange tube 414 into the fourth branch unit; the lower end is connected to the upper
  • the inner diameter of the cylinder is larger than the outer diameter of the heat exchange tube 414; the outer wall of the lower connection to the upper cylinder is connected to the longitudinal finned tube base tube 4132 by plugging, for inserting the longitudinal finned tube base tube 4132, and the lower connection to the upper cylinder
  • the outer wall of the fin tube is tightly fitted with the longitudinal finned tube base tube.
  • the lower connection joint 4163 lower cylinder is used to be inserted into the upper part of the lower connection deflector 4111.
  • the adjacent two longitudinal finned tube heat exchange units are connected to each other by means of a fifth branch unit and a sixth branch unit which are horizontally distributed corresponding to the second inner sleeve of the lower connector. to connect.
  • the water-spraying water dispenser 430 only needs to be arranged at both ends of the longitudinal finned tube heat exchanger to complete the spraying of water-water, the water-splitting stroke is short, and the resistance is small.
  • the two adjacent longitudinal fin tube heat exchange units are connected by plugging, which enhances the overall firmness of the longitudinal fin tube heat exchanger and makes it difficult to deform.
  • a threaded cooled fluid outlet joint 4164 is further provided at the lower part of the lower connection guide 4161 for the connection between the lower connection guide 4161 and the second cooled fluid flow equalizer of the liquid collector 40 performance.
  • the shunt in the embodiment of the present application is shown in FIG. 6 .
  • the diverter 420 is composed of the diverter liquid inlet port 421, the diverter and equalizer trunk part 422, the diverter and equalizer branch parts 423, and the diverter liquid distribution hole 424.
  • the liquid distribution hole 424 is connected to the upper part of the upper connecting assembly 411.
  • the upper part of the deflector 4111 (or the cooling fluid inlet joint) is communicated.
  • the liquid to be cooled enters the heat exchanger through the liquid inlet port 421, through the main part 422 of the equalizer, the branch part 423 of the equalizer, through the liquid distribution hole 424 arranged below it, and through the upper connecting component 411 of the longitudinal fin tube.
  • the diverter 420 distributes the water in a layer-by-layer, tubular, and hierarchical water distribution manner.
  • the water distributor consists of a liquid port and an M-level graded water distribution unit;
  • the N-th graded water distribution unit consists of an N-th grade water distributor and a water distribution pipe (as shown in Figure 8, the water flows out from the water distributor to the water distribution pipe, Enter from port A and flow out from port B);
  • the N-th water separator is a split water splitter, a split splitter or a split splitter or a split splitter (Figure 8 is a split split or split split is the schematic diagram of the four-division water distributor);
  • the N-th graded water distribution unit flows the water in the upper-stage graded water distribution unit to the water distribution pipe of the N-th graded water distribution unit through the N-th grade water distributor;
  • the N-1 graded water distribution unit is connected to the Nth water distributor of the Nth graded water distribution unit through the water distribution pipe of the
  • Figure 9, Figure 10, Figure 11 are the transition from a split-to-two water separator to a split-to-three splitter, from a split-to-three splitter to a split-to-three splitter, from one split to four splitters
  • the liquid collector 440 refers to the structural arrangement of the flow divider 420, and introduces the liquid to be cooled into the liquid collector through the liquid distribution hole.
  • the liquid inlet position of the spray water dispenser 430 is as shown in FIG. 1 .
  • the spray water separators 430 are arranged on both sides of the heat exchange array 410, and the second inner sleeves 4162 connected to the longitudinal finned tubes are connected in turn through the fifth branch unit and the sixth branch unit distributed horizontally.
  • the spraying water can be fed through successively flowing through different longitudinal finned tubes.
  • the liquid inlet position of the spray water dispenser 430 is shown in FIG. 6 , and the spray water is respectively led to the end of each longitudinal fin tube through the branch pipeline of the spray water dispenser.
  • the second inner sleeve 4162 passes through the fifth branch unit and the sixth branch unit distributed laterally.
  • the working principle of the longitudinal finned tube heat exchanger is shown in Figure 7.
  • the air passes through the liquid collector 440, the spray water separator 430, the heat exchange array 410, and the diverter 420 in sequence to realize the cooling of the heat exchange array 410;
  • the spray water passes through the spray water dispenser 430, the longitudinal finned tube heat exchange tube 414, the nozzle 4113 of the upper connecting assembly 411, and the longitudinal fins 142 in sequence, and the spray water flows through the heat exchange tube 414 first, and then passes through the upper connecting assembly.
  • the spray head 4113 of 411 performs spraying; the cooled fluid passes through the flow divider 420, the upper connecting assembly 411, the gap between the longitudinal finned tube base tube and the heat exchange tube, the lower connecting piece 416, and the liquid collector 440, and passes through the upper connecting assembly.
  • the structure containing the inner jacket will introduce the cooled fluid into the gap between the longitudinal finned tube base tube and the heat exchange tube.
  • the spray water flows in the heat exchange tubes, and the cooled fluid flows in the gap between the heat exchange tubes and the longitudinal fin tube base tubes, so that the spray water flows in the heat exchange tubes.
  • the countercurrent heat exchange between the spray water and the cooled fluid occurs before flowing to the spray head, and the heat exchange capacity and heat exchange efficiency are improved.
  • the constituent material of any one of the longitudinal fins, the longitudinal finned tube base tubes, and the heat exchange tubes is aluminum or an aluminum alloy, and the longitudinal fins and the longitudinal finned tube base tubes are integrally formed.
  • the weight of longitudinal fins, longitudinal finned tube base tubes, and heat exchange tubes is small when using aluminum or aluminum alloy materials, which reduces the overall weight of the heat exchanger.
  • Longitudinal fins and longitudinal finned tube base tubes are integrally formed for easy installation.
  • the longitudinal fins are radially distributed on the longitudinal finned tube base tube, the longitudinal fins in the direction close to the longitudinal finned tube base tube are thicker, and the longitudinal fins in the direction away from the longitudinal finned tube base tube are thinner.
  • This gradient longitudinal fin structure is beneficial to increase the heat exchange contact area while reducing the thermal resistance and improve the efficiency of the heat exchanger under the same volume of longitudinal fins.
  • the outer surface of the longitudinal finned tube is provided with a hydrophilic coating added with infrared radiation heat dissipation material.
  • the coating contains nano-silica or nano-alumina, and transition metal oxides such as cobalt, nickel, and manganese. The provision of such a coating can improve the heat exchange efficiency of the evaporative cooling heat exchanger, at the same time better absorb water droplets to form a water film, increase the evaporation efficiency of spray water, and improve the cooling capacity of the indirect evaporative fluid cooling device as a whole.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the difference between the second embodiment of the present application and the first embodiment is that the structure of the lower connecting member 416 is different, and the spray water water device 430 is arranged below the liquid collector 440, as shown in FIG. 12 .
  • the lower connection part 416 is composed of a cross-shaped lower connection guide 4161 , a lower connection joint 4163 , and a spray water inlet joint 4165 .
  • the upper part of the lower connecting guide 4161 is connected with the lower connecting joint 4163, and the left and right branches of the middle part of the lower connecting guide 4161 are respectively connected with the liquid collector 440 or with the lower connecting guide of the adjacent longitudinal fin tube.
  • the left and right branches in the middle of the 4161 are connected, and the lower part of the lower connection deflector 4161 is connected with the upper end of the spray water inlet joint 4165 through threads, and the lower end of the spray water inlet joint 4165 is connected with the spray water dispenser 430;
  • the lower connecting joint 4163 is composed of two supporting walls with different diameters, which are connected to the upper cylinder at the lower end, the lower cylinder is connected to the lower cylinder, and the upper cylinder is connected to the lower cylinder and the lower cylinder is connected to the lower cylinder.
  • the inner diameter of the lower connection to the upper cylinder is larger than the outer diameter of the heat exchange pipe 414; the outer wall of the lower connection to the upper cylinder is used to insert the longitudinal fin tube base pipe 413, and the lower connection to the upper
  • the outer wall of the cylinder is connected in a tight fit with the longitudinal finned tube base tube.
  • the second embodiment realizes the countercurrent heat exchange between the spray water and the cooled fluid before the spray water flows to the spray head in the longitudinal fin-tube heat exchanger of the second embodiment through the lower connecting piece different from that of the first embodiment.
  • the heat capacity and heat exchange efficiency are improved, and the lower connecting piece has no inner casing structure, so the structure is simple and the processing is convenient.
  • this embodiment includes a casing (not shown in the figure), an air outlet 10 , a fan 20 , a water collecting module 30 , a longitudinal fin tube heat exchanger 40 (specific structure) that replaces the thermal sleeve inside and the nozzle head. See the descriptions of the first and second embodiments above for the working principle), the first wet film 50 , the air inlet 60 , the spray water pump 70 , and the first water collecting tank 80 .
  • the first water collecting tank 80 includes a tank body, a first water replenishing valve 801 , and a first automatic sewage discharge device 802 .
  • the first water replenishment valve 801 is arranged in the upper middle part of the box body of the first water collecting tank 80 and is an automatic floating ball valve for automatic water replenishment.
  • the first automatic sewage device 802 is arranged at the bottom of the first water collection tank, and is composed of a sewage pipe, a solenoid valve and a controller. It can periodically open the electromagnetic valve according to the control program to perform regular automatic sewage discharge through the sewage pipe to discharge the bottom of the first water collection tank. Precipitate.
  • the fan 20 is used to make the air enter the first wet film 50 from the air inlet 60, the longitudinal finned tube heat exchanger 40 of the inner displacement thermowell and the nozzle, the water collection module 30, and the air outlet 10 successively by sucking air;
  • the fan is an EC fan, which can ensure the lowest cooling power consumption of the cooling tower by means of the air volume of the fan according to the cooling demand of the cooling tower.
  • the blower 20, the water collecting module 30, the longitudinal finned tube heat exchanger 40 of the inner displacement thermowell and the nozzle, and the first wet film 50 are arranged in sequence along the air outlet direction;
  • the first wet film 50 is used for humidifying, cooling and cooling the air, and simultaneously cooling the spray water sprayed on the first wet film 50 .
  • the first wet film 50 is disposed obliquely between the longitudinal fin tube heat exchanger 40 of the inner displacement thermowell and the showerhead and the first header tank 80 .
  • the inclined setting of the wet film By the inclined setting of the wet film, the windward area and surface area are increased, and the evaporative cooling efficiency of the wet film is improved.
  • the first wet film is a paper or polymer synthetic material wet film with a certain thickness, so that when the fluid cooling device is in use, the relative humidity of the air humidified by the wet film is not lower than 95% (generally the relative humidity is 95%-97%), the evaporation and cooling process mainly occurs on the wet film, so that the air temperature and water temperature after the wet film are both close to the wet bulb temperature of the air entering the wet film.
  • the indirect evaporation occurs on the longitudinal fin-tube heat exchanger and countercurrent heat exchange occurs, thereby increasing the same volume.
  • the cooling capacity of the cooling tower because in this embodiment, the same spray water flow process actually achieves the dual effects of countercurrent heat exchange and indirect evaporative heat exchange, which improves the heat exchange capacity under the same spray water power and reduces cooling.
  • the cooling tower of this embodiment has the advantages of small volume and large cooling capacity.
  • the air enters the indirect evaporative heat exchanger before the air enters the indirect evaporative heat exchanger, it will first pass through the first wet film for cooling, and the first wet film also cools the spray water passing through the wet film at the same time. Spray water at wet bulb temperature.
  • the spray water is sent to the indirect evaporative heat exchanger for countercurrent heat exchange and indirect evaporative heat exchange, the countercurrent heat exchange performance is further improved, the indirect evaporative heat exchange performance is slightly decreased, and the overall heat exchange performance of the indirect evaporative heat exchanger promote.
  • the lower temperature air from the wet film is used to enter the indirect evaporative heat exchanger, which improves the cooling capacity of the outdoor air to treat the cooling liquid and improves the cooling capacity of the cooling tower.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the difference between the fourth embodiment and the third embodiment is that a second wet film 51 for washing the air entering the wet film is added before the first wet film, as shown in FIG. 15 .
  • both the first wet film 50 and the second wet film 51 are arranged below the longitudinal fin-tube heat exchanger 40 and are arranged at different horizontal inclination angles, so that the wind energy passing through the second wet film is completely circulated to the first wet film. membrane.
  • a water distributor 511 is arranged on the top of the second wet film, the water in the sump is pumped to the second wet film 51 by the second spray pump 71, and the air entering the first wet film is washed by the second wet film 51 , plays the role of purifying air and cooling air, so that the temperature entering the longitudinal finned tube heat exchanger is lower, which improves the cooling capacity of the cooling tower and the cleanliness of the evaporative cooling unit of the cooling tower.
  • the closed cooling tower is also provided with a second water collection tank 81 , and the second spray water pump pumps water from the second water collection tank.
  • the second spray water pump pumps water from the first water collecting tank.
  • the second water collecting tank 81 is composed of a water tank box, a second water replenishing valve 811 , a second automatic sewage device 812 , a partition plate 813 , a filter screen 814 and a baffle plate 815 , and is divided into A and B , C three areas.
  • the location setting and model selection of the second water replenishment valve 811 and the second automatic sewage device 812 are consistent with the first water replenishment valve 801 and the first automatic sewage device 802 .
  • the second water replenishment valve 811 is arranged in the upper part of the C area, the water outlet of the second spray water pump 71 is arranged in the lower part of the C area, the sewage inlet of the second automatic sewage device 802 is arranged at the bottom of the B area, and the second automatic sewage device 802
  • the second sump can be drained regularly.
  • the clapboard 813 is inclined, one end is close to the left bottom of the second water collection tank, and the other end is set in the middle of the top edge of the second water collection tank. Spray water from the wet film.
  • the partition plate 813 is a porous plate, which blocks and settles the dust and impurities carried in the water flowing down from the second wet film 51;
  • the filter screen 814 is preferably an 80-mesh stainless steel wire mesh, which is located between the second and third areas of the second water collecting tank, and further filters the spray water entering the third area.
  • the baffle 815 is used to block the sediment at the bottom of the B area from entering the C area, so that the spray water will undergo gravity sedimentation in the B area, and only the water that has not passed the baffle 815 can enter the C area.
  • One end of the filter screen 814 is arranged in the middle of the top edge of the second water collecting tank, and the other end is arranged on the baffle plate 815 .
  • the second water collection tank can be divided into three areas, and the spray water left by the wet film must pass through the partitions 813, filters 814 And the baffle 815 can enter the third area C, and be pumped away by the second spray water pump.
  • the water pumped out by the second spray water pump is relatively clean through the blocking by the partition plate 813, the gravitational sedimentation in the B area, the secondary blocking by the baffle 815, and the filtering by the filter screen 814.
  • a second water collecting tank with an automatic sewage discharge device, a partition, a filter screen, and a baffle is further arranged under the second wet film, and the sediment in the second water collecting tank is regularly discharged through the automatic sewage discharge device, and the sedimentation is blocked by blocking the settling.
  • Gravity sedimentation and filtration ensure the purification degree of the water extracted by the second spray water, so that the second wet film is not easy to be blocked, and the number of manual cleaning of the second wet film is reduced.
  • the first water collection tank may also be configured as a second water collection tank, and the filtration ensures the purification degree of the water extracted from the second spray water, ensures the cleanliness of the cooling water system, and reduces the number of maintenance.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the difference between the fifth embodiment and the fourth embodiment is that an air pre-cooling surface cooler 90 for pre-cooling the air entering the wet film is added before the second wet film, as shown in FIG. 17 .
  • the air precooling surface cooler 90 may be a coil or radial fin and tube type heat exchanger; preferably, the air precooling surface cooler is a radial fin tube type heat exchanger.
  • the temperature of the outside air flowing through the air pre-cooling surface cooler is reduced by 2-10°C (annual operating conditions), and the temperature of the outside air flowing through the air pre-cooling surface cooler is reduced by 2-10°C
  • the temperature of the spray water is increased by 1-5 °C (annual operating conditions).
  • the radial fin tube heat exchanger is composed of coils and fins.
  • the fins on the radial fin tube heat exchanger are evenly arranged, completely covering and evenly dividing the fin tube heat exchanger.
  • the air circulation space inside the heat exchanger is corrugated or staggered along the airflow direction; the flow direction of the spray water is arranged in a countercurrent arrangement relative to the airflow direction between the layers of the radial fin tube heat exchanger.
  • Radial finned tube heat exchanger setups provide the best cooling to air.
  • the air pre-cooling surface cooler 90 in this embodiment may be arranged in the air inlet direction outside the cooling tower as shown in FIG. 17 , or may be arranged in the air inlet direction inside the cooling tower.
  • air guide louvers are arranged in front of the air pre-cooling surface cooler to guide the air and stabilize the flow.
  • the external air can be significantly cooled, which is beneficial for the subsequent air temperature after passing through the wet film to be close to the dew point temperature of the external air, and the spray water can be significantly heated up. It is beneficial to increase the evaporation amount of the water sprayed on the second wet film subsequently, improve the evaporative cooling capacity of the second wet film, and make the water temperature of the second water collecting tank close to the dew point temperature.
  • the air temperature passing through the second wet film is close to the dew point temperature
  • the air temperature passing through the first wet film and the spray water passing through the first wet film are also close to the dew point temperature, so the spray water entering the longitudinal fin tube heat exchanger
  • the lower temperature results in a lower temperature of the air entering the longitudinal finned tube heat exchanger, thereby increasing the cooling capacity of the present embodiment as a whole.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Embodiment 6 Compared with other embodiments, the difference is that the water collecting module is preferably a radial fin tube surface cooler, and the cooled fluid first flows into the radial fin tube surface cooler, and then flows into the longitudinal fin tube heat exchanger .
  • the water collection module as a radial finned tube surface cooler
  • the residual cooling in the air is fully utilized to cool the fluid to be cooled
  • the utilization rate of the residual cooling air in the cooling tower is improved
  • the cooling capacity of the closed cooling tower is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

内置换热套管和喷头的纵向翅片管换热器及其冷却塔,包含带若干纵向翅片管换热单元的换热阵列(410)、分流器(420)、喷淋水分水器(430)、集液器(440)。通过在纵向翅片管(413)内部设置用于逆流热交换的换热管(414),大幅度提高了换热器的换热效率、在纵向翅片管(413)上设置可均匀喷淋的上连接组件(411)提高了喷淋水的均匀性和表面成膜性,从而极大地提高了换热器在间接蒸发过程中的综合换热性能。利用该纵向翅片管换热器制备的闭式冷却塔,具有体积小、制冷量大等优点。

Description

内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔 技术领域
本申请涉及间接蒸发冷却换热器和蒸发冷却领域,尤其涉及应用于流体冷却的内置换热套管和喷头的纵向翅片管换热器及内置该换热器的闭式冷却塔。
背景技术
闭式冷却塔具有清洁、省水、节能、可向末端直接供冷等诸多优点,但同时也具有成本高、体积大、笨重等缺点。这些缺点是因为常规闭式冷却塔所用列管式换热器效率偏低,表面积不够大,水喷淋粗放不均匀,造成液膜在填料和换热器表面分布不均,因而常规闭式冷却塔在填料和换热器表面的水蒸发效率不高,换热效率也差,为了达到相应的冷却效果设备必须做的很大。
技术问题
闭式冷却塔的研发集中在提升水流、气流分配效率,及水蒸发、传热效率等方面。纵向翅片管换热器用在闭式冷却塔上具有逆流热交换行程长、传热效率高、风阻小、风速高等优点,但是需要解决翅片管加工成本高、换热器内部水流分配复杂、水喷淋的均匀性等一系列难题。
技术解决方案
本申请采用内置换热管的纵向翅片管换热器,每个翅片管除了内置一个换热管,还有独立的喷淋模块,利用高效湿膜制取的冷喷淋水通过内置的换热套管对被冷却流体进行冷却;翅片管之间采用插接式连接件连接起来,进行喷淋水的分配和内部换热管的连接,并固定在换热器框架上;进出或出水采用多级布水设计保证水流分配的均匀性,使得这种内置换热套管和喷头的纵向翅片管换热器蒸发换热效率高、风阻小、通风量大、翅片表面积大,且表面做了亲水处理后成膜性好,采用它做蒸发冷却换热器的闭式冷却塔具有体积小、制冷量大等优点。
本申请实施案例的技术方案如下:
内置换热套管和喷头的纵向翅片管换热器,
包含由若干纵向翅片管换热单元组成的阵列、分流器、喷淋水分水器、集液器;
所述纵向翅片管换热单元由集成喷头的上连接组件、纵向翅片管、换热管、下连接件组成;
所述换热管上部通过所述上连接组件的内部管路连接所述上连接组件的所述喷头,所述换热管下部通过所述下连接件的内部管路连接所述喷淋水分水器,所述换热管中部设置在所述纵向翅片管的纵向翅片管基管内部;
所述上连接组件的上端与所述分流器连通,所述上连接组件的下端与所述纵向翅片管基管和所述换热管分别连通;所述上连接组件的所述喷头对准所述纵向翅片进行设置,所述喷头与所述换热管通过所述上连接组件的内部管路连通;
所述下连接件设置在所述纵向翅片管基管的下方,所述下连接件的上端与所述换热管和所述翅片管基管分别连通,所述集液器通过所述下连接件和所述翅片管基管连通,所述喷淋水分水器通过所述下连接件和所述换热管连通;
所述纵向翅片管换热器工作时,喷淋水从所述喷淋水分水器进入到所述翅片管换热单元组成的阵列中,依次通过所述纵向翅片管换热单元的所述下连接件内部、所述换热管内部、所述上连接组件内部管路、所述喷头,最后经所述喷头喷淋在所述纵向翅片上;被冷却流体从所述分流器进入到所述翅片管换热单元组成的阵列中,依次通过所述纵向翅片管换热单元的所述上连接组件内部、所述纵向翅片管基管和所述换热管之间的间隙空间、所述下连接件内部、所述集液器,最后经所述集液器流出;喷淋水在喷淋之前,和被冷却流体在所述换热管管壁上进行逆流热交换。
本申请还进一步优化了上连接组件、下连接件的结构,优化了喷淋槽道的数量、深度,并对纵向翅片管换热器进行了表面处理。
有益效果
总体上,本申请纵向翅片管换热器的具体技术效果如下:
(1)本申请相对常规的间接蒸发换热器,在进行间接蒸发的同时还发生了逆流热交换,换热效率大幅度提升。
(2)本申请在纵向翅片管上设置可均匀喷淋的上连接组件提高了喷淋水的均匀性和表面成膜性能,从而提高了间接蒸发的效率,提高整个换热器的换热性能。
(3)相对于用于间接蒸发的传统横向翅片管换热器,风阻小,易清洗。
本申请还进一步公布了基于该纵向翅片管换热器的闭式冷却塔,并从一系列角度对闭式冷却塔进行了改进。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本申请的实施例纵向翅片管换热器的剖面结构示意图。
图2为本申请实施例的上连接组件的剖面结构示意图。
图3为本申请实施例的喷头的剖面结构示意图和侧面示意图。
图4为本申请实施例的上连接组件另一方案的剖面结构示意图。
图5为本申请实施例一的下连接件的剖面结构示意图。
图6为本申请实施例的分流器的结构示意图。
图7为本申请实施例一的工作原理示意图。
图8为本实施例一分为二和一分为四布水器结构示意图。
图9为本实施例一分为二分水器过渡到一分为三分水器的结构示意图。
图10为本实施例一分为三分水器过渡到一分为三分水器的结构示意图。
图11为本实施例一分为四分水器过渡到一分为三分水器的结构示意图。
图12为本申请实施例二的结构示意图。
图13为本申请实施例二的下连接件的剖面结构示意图。
图14为本申请的实施例三的结构示意图。
图15为本申请的实施例四的结构示意图。
图16为本申请实施例的第二集水箱的结构示意图。
图17为本申请的实施例五的结构示意图。
10出风口、20风机、30收水模块、40内置换热套管和喷头的纵向翅片管换热器、410换热阵列、411上连接组件、4111上连接导流器、4112第一内套管、4113喷头、4114喷淋限位器、4115被冷却流体进液接头、4116弹簧、413纵向翅片管、4131纵向翅片,4132纵向翅片管基管、414换热管、416下连接件、4161下连接导流器、4162第二内套管、4163下连接接头、4164被冷却流体出液接头、4165喷淋水进水接头、420分流器、421分流器进液端口、422分流器均流器主干部件、423分流器均流器枝干部件、424分流器布液孔、430喷淋水分水器、440集液器、50第一湿膜、51第二湿膜,511布水器、 60进风口、70第一喷淋水泵、71第二喷淋水泵、80第一集水箱、801第一补水阀、802第一自动排污装置、81第二集水箱、811第二补水阀、812第二自动排污装置、813隔板、814滤网、815挡板、90空气预冷表冷器。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请实施例的纵向翅片管换热器应用于间接蒸发领域,用于对被冷却流体进行间接蒸发冷却,特别应用于闭式冷却塔中,利用闭式冷却塔对被冷却流体进行间接换热。被冷却流体可以为气态或液态流体。当被冷却流体为气态流体时,纵向翅片管基管与换热管的间隙大小适应性的增大;当被冷却流体为液态流体时,纵向翅片管基管与换热管的间隙大小适应性的减小。本申请实施例中一般地主要对液态流体进行冷却,但不限于保护液态流体进行间接蒸发冷却的情形。
第一实施例:
如图1所示,本实施例的纵向翅片管换热器40用于对被冷却流体(气体、液体)进行间接蒸发冷却,为该换热器的剖面图。该纵向翅片管换热器40包含带若干纵向翅片管换热单元的阵列410(称为换热阵列)、分流器420、喷淋水分水器430、集液器440。换热阵列410、分流器420、喷淋水分水器430;分流器420、换热阵列410、喷淋水分水器430、集液器440从上至下依次相连接。喷淋水分水器430设置在集液器440的上方。
优选的,纵向翅片管换热器40还包含换热器框体,集液器440固定在换热器框体上。
换热阵列410为方形阵列,由m*n个纵向翅片管换热单元组成,方形阵列的一边为m个纵向翅片管换热单元,另一边为n个纵向翅片管换热单元。翅片管换热单元的个数根据设计流量、流速来调整。m、n为自然数。
换热阵列410也可以根据纵向翅片管换热器的应用环境设计成椭圆形阵列或圆形阵列。
其中纵向翅片管换热单元由集成喷头的上连接组件411、纵向翅片管413、换热管414、下连接件416组成。
换热管414上部通过上连接组件411的内部管路连接上连接组件411的喷头,换热管414下部通过下连接件416的内部管路连接喷淋水分水器430,换热管414中部设置在纵向翅片管413的纵向翅片管基管4132内部;换热管414用于通过换热管内部流动的喷淋水对纵向翅片管基管4132内部的被冷却流体进行冷却。
上连接组件411的上端与分流器420连通,上连接组件411的下端与纵向翅片管基管4132和换热管414分别连通;上连接组件411的喷头4113对准纵向翅片4131进行设置,喷头4113与换热管414通过上连接组件411的内部管路连通;喷头4113用于向纵向翅片4131上喷水,纵向翅片4131之间的空隙用于外部空气的流动,纵向翅片4131用于喷淋水在纵向翅片上流动、蒸发,并用于对纵向翅片管基管4132内部的被冷却流体进行冷却。
下连接件416设置在纵向翅片管基管4132的下方,下连接件416的上端与换热管414和翅片管基管4132分别连通,集液器440通过下连接件416和翅片管基管4132连通,喷淋水分水器430通过下连接件416和换热管414连通。下连接件416用于将来自纵向翅片管基管4132和换热管414之间的间隙的被冷却流体从上而下引出至集液器440,同时将来自喷淋水分水器430的喷淋水从引入换热管413。
纵向翅片管换热器工作时,喷淋水从喷淋水分水器进入到翅片管换热单元组成的阵列中,依次通过纵向翅片管换热单元的下连接件内部、换热管内部、上连接组件内部管路、喷头,最后经喷头喷淋在纵向翅片上;被冷却流体从分流器进入到翅片管换热单元组成的阵列中,依次通过纵向翅片管换热单元的上连接组件内部、纵向翅片管基管和换热管之间的间隙空间、下连接件内部、集液器,最后经集液器流出;喷淋水在喷淋之前,和被冷却流体在换热管管壁上进行逆流热交换。
本申请实施例通过喷淋水在换热管进行流动、被冷却流体在换热管和纵向翅片管基管之间的间隙进行流动,实现在喷淋水在流动到喷头之前发生喷淋水和被冷却流体的逆流热交换,极大地提高了本实施例换热器的换热效率和换热量。仿真模拟证明,相同的外部环境下,同样大小这种换热器相对于不进行逆流热交换的情形,换热能力提高一倍左右。
优选地,本申请实施例的上连接组件411如图2所示。上连接组件411,由上连接导流器4111、T字形第一内套管4112、喷头4113、喷淋限位器4114组成。
如图3所示,为喷头4113的剖视图和侧视图。喷头4113整体呈上宽下窄的中空结构。具体地,喷头4113由外表面带凹形槽的第一筒状件4113a、第二筒状件4113b、外表面呈圆台形的第三筒状件4113c、内部设置若干个限位条4113e的第四筒状件4113d从上到下一体化成型组成。喷头4113上部的内部嵌套设置上连接导流器4111的下部,用于插入上连接导流器4111;喷头4113的下部的内部嵌套设置换热管,用于插入换热管414,喷头4113的下部的外部通过插接的方式连接翅片管基管4132中的上部,用于插套到翅片管基管4132中;喷头顶部的外表面设置若干凹形槽用于作为喷淋水喷淋通道。
第一内套管4112由横向分布第一分支单元、横向分布第二分支单元和竖向分布的第三分支单元组成,为管状结构,第三分支单元与第一分支单元和第二分支单元均连通,用于将换热管414的喷淋水从第三分支单元引入到第一分支单元和第二分支单元中。
上连接导流器4111的上端和分流器420相连接,上连接导流器4111的下部内嵌套第一内套管4112。上连接导流器4111的下部被喷头4113的上部包裹并设置在喷头4113内部支撑面的上方。
喷淋限位器4114环绕上连接导流器4111和喷头4113设置,且包裹第一内套管4112,第一内套管的第一分支单元和第二分支单元和喷淋限位器内部连通,用于将喷淋水从第一分支单元和第二分支单元中引出到喷淋限位器中并通过喷头4113喷淋在纵向翅片4131上。
优选地,如图2所示,上连接组件411还设置有被冷却流体进液接头4115,其一头设置卡槽和螺纹,使之方便与分流器420连接,另一头设置螺纹,使之方便与上连接组件411的上连接导流器4111连接。通过被冷却流体进液接头,方便了上连接导流器与分流器的连接。
优选地,如图4所示,上连接组件411还设置有弹簧4116,其设置在在喷淋限位器4114上方,用于随喷淋水压力变化,调节喷淋限位器4114的高度,从而调节喷淋水的大小。本实施例的喷淋限位器,通过弹簧实现了喷淋量的弹性调节,当喷淋水水压大的时候喷淋量大、喷淋出的水滴颗粒大,当喷淋水压小的时候喷淋量小、喷淋出的水滴颗粒小。在其他实施例中,喷淋限位器可以不设置弹簧,只保留喷淋限位器4114,喷淋限位器4114通过螺纹连接或胶粘连接方式固定在上连接导流器4111上。
优选地,在喷头4113顶部上均匀地设置20-60个喷淋槽道,喷淋槽道的深度在0.1mm-0.2mm之间。优选地,喷头4113的喷淋槽道的个数为该纵向翅片管的纵向翅片书的2倍以上,使得每个纵向翅片至少有2个喷淋槽道对应进行喷淋,提高喷淋的均匀性。
如图5所示,下连接件416包含下连接导流器4161、T字形第二内套管4162、下连接接头4163。下连接导流器4161的上部与下连接接头4163连接,下连接导流器4161的中部嵌套第二内套管4162,下连接导流器4161的下部与集液器440相连接。
第二内套管4162由竖向分布的第四分支单元、横向分布第五分支单元、横向分布第六分支单元组成,第四分支单元与第五分支单元和第六分支单元均连通,用于将换热管14的喷淋水从第五分支单元和第六分支单元中引入到第四分支单元中。
下连接接头4163由两个不同直径的下连接上圆筒、下连接下圆筒、连接下连接上圆筒和下连接下圆筒的支持壁组成;下连接上圆筒的内部放置换热管414,换热管414的下端通过插接的方式连接第二内套管4162的第四分支单元,下连接上圆筒的内壁用于插入换热管414至第四分支单元中;下连接上圆筒的内径大于换热管414的外径;下连接上圆筒的外壁通过插接的方式连接纵向翅片管基管4132,用于插入纵向翅片管基管4132,下连接上圆筒的外壁与纵向翅片管基管呈紧配合连接。下连接接头4163下圆筒用于插入到下连接导流器4111的上部。
优选地,如图1所示,相邻的两个纵向翅片管换热单元通过对应下连接件的第二内套管的横向分布的第五分支单元和第六分支单元相互插接的方式进行连接。这样喷淋水分水器430仅需要布置在纵向翅片管换热器的两端就可以完成喷淋水分水,分水行程短,阻力小。另外相邻的两个纵向翅片管换热单元通过插接的方式连接,增强了纵向翅片管换热器整体的牢固性,使得其不易变形。
优选地,在下连接导流器4161的下部进一步设置螺纹连接的被冷却流体出液接头4164,用于下连接导流器4161与集液器40的第二被冷却流体均流器之间的连接性能。
优选地,本申请实施例的分流器如图6所示。分流器420由分流器进液端口421、分流器均流器主干部件422、分流器均流器枝干部件423、分流器布液孔424组成,布液孔424与上连接组件411的上连接导流器4111(或被冷却流体进水接头)的上部连通。待冷却液体通过进液端口421,经过均流器主干部件422、均流器枝干部件423通过设置在其下方的布液孔424通过纵向翅片管的上连接组件411进入换热器内部。
优选地,在本申请其他实施例中,分流器420采用逐层管状分级布水的方式进行布水。布水器由液体端口、M级分级布水单元组成;第N级分级布水单元由第N级分水器和分水管组成(如图8所示,水从分水器流出到分水管,从A口进入从B口流出);第N级分水器为一分为二分水器或一分为三分水器或一分为四分水器(图8为一分为二或一分为四分分水器的示意图);第N级分级布水单元通过第N级分水器将上一级分级布水单元中的水分流到第N级分级布水器的分水管中;第N-1级分级布水单元通过第N-1级分级布水单元的分水管连接第N级分级布水单元的第N级分水器;第M级分级布水单元通过第M级分级布水单元的分水器连接翅片管换热单元对应的液体接头。图9、图10、图11为从一分为二分水器过渡到一分为三分水器、从一分为三分水器过渡到一分为三分水器、从一分为四分水器过渡到一分为三分水器的结构示意图,通过这样的布水,可以通过对称的方式将每层的水通过一分为二(或一分为三或一分四)均匀分布到下一层,每层布水都是均匀对称布水,使得每层入水口和出水口的路径和阻力完全一致,实现了均匀性布水,保证了分液和集液的均匀性。(1≤N≤M,N和M为自然数)
优先地,集液器440参考分流器420的结构设置,通过布液孔导入待冷却液体到集液器中。
优选地,喷淋水分水器430设置的进液位置如图1所示。喷淋水分水器430设置在换热阵列410的两边,相连纵向翅片管的第二内套管4162通过横向分布的第五分支单元和第六分支单元依次相连接,喷淋水分水器430通过纵向翅片管的第二内套管4162先后流经不同的纵向翅片管的,实现喷淋水进水。
优选地,在其他实施方式中,喷淋水分水器430设置的进液位置如图6所示,通过喷淋水分水器的分支管路将喷淋水分别引至每根纵向翅片管的第二内套管4162通过横向分布的第五分支单元和第六分支单元。
纵向翅片管换热器的工作原理如图7所示,空气依次通过集液器440、喷淋水分水器430、换热阵列410、分流器420,实现对换热阵列410的冷却;喷淋水依次通过喷淋水分水器430、纵向翅片管换热管414、上连接组件411的喷头4113、纵向翅片142,先通过换热管414进行喷淋水流动,再通过上连接组件411的喷头4113进行喷淋;被冷却流体依次通过分流器420、上连接组件411、纵向翅片管基管和换热管的间隙、下连接件416、集液器440,通过上连接组件内含内套管的结构将被冷却流体引入到纵向翅片管基管和换热管的间隙中。
本实施例的纵向翅片管换热器,通过喷淋水在换热管进行流动、被冷却流体在换热管和纵向翅片管基管之间的间隙进行流动,实现在喷淋水在流动到喷头之前发生喷淋水和被冷却流体的逆流热交换,换热能力和换热效率提升。
优选地,纵向翅片、纵向翅片管基管、换热管三者中任一结构的组成材料为铝或铝合金,纵向翅片和纵向翅片管基管一体化成型。采用铝或铝合金材料相对于采用钢材、铜等材料,纵向翅片、纵向翅片管基管、换热管重量小,减少了换热器的整体重量。纵向翅片和纵向翅片管基管一体化成型,方便安装。
优选地,纵向翅片呈辐射状分布在纵向翅片管基管上,靠近纵向翅片管基管方向的纵向翅片厚度大,远离纵向翅片管基管方向的纵向翅片厚度小。这种渐变式的纵向翅片结构,有利于在相同体积纵向翅片下,增大换热接触面积同时降低热阻,提高换热器效率。
优选地,纵向翅片管外表面设置有添加红外辐射散热材料的亲水涂层。本实施例中,这种涂层含有纳米二氧化硅或者纳米氧化铝,并含有钴、镍、锰等过渡金属氧化物。设置这样的涂层能够提高蒸发冷却换热器的热交换效率,同时更好吸附水滴形成水膜,增加喷淋水蒸发效率,整体上提高间接蒸发流体冷却装置的冷却能力。
实施例二:
本申请实施例二与实施一的区别点在于所采用的下连接件416的结构不同,同时喷淋水分水器430设置在集液器440的下方,如图12所示。
具体的,如图13所示,下连接部件416由十字形的下连接导流器4161、下连接接头4163、喷淋水进水接头4165组成。下连接导流器4161的上部与下连接接头4163连接,下连接导流器4161中部的左右两个分支分别与集液器440相连接或与相邻的纵向翅片管的下连接导流器4161中部的左右分支相连接,下连接导流器4161的下部与喷淋水进水接头4165的上端通过螺纹进行连接,喷淋水进水接头4165的下端与喷淋水分水器430连接;
下连接接头4163由两个不同直径的下连接上圆筒、下连接下圆筒、连接下连接上圆筒和下连接下圆筒的支持壁组成;下连接上圆筒的内壁用于插入换热管414至喷淋水进水接头4165中,下连接上圆筒的内径大于换热管414的外径;下连接上圆筒的外壁用于插入纵向翅片管基管413,下连接上圆筒的外壁与纵向翅片管基管呈紧配合连接。
本实施例二通过与实施例一不同的下连接件,实现了实施例二纵向翅片管换热器在喷淋水在流动到喷头之前发生喷淋水和被冷却流体的逆流热交换,换热能力和换热效率提升,且下连接件无内套管结构,结构简单,方便加工。
实施例三:
如图14所示,本实施例包含外壳(图中未标出)、出风口10、风机20、收水模块30、内置换热套管和喷头的纵向翅片管换热器40(具体结构和工作原理参见上文实施例一和实施例二的描述)、第一湿膜50、进风口60、喷淋水泵70、第一集水箱80。
第一集水箱80包含箱体、第一补水阀801、第一自动排污装置802。第一补水阀801设置在第一集水箱80的箱体的中上部,为自动浮球阀,用于自动补水。第一自动排污装置802设置在第一集水箱底部,由排污管、电磁阀、控制器组成,能够根据控制程序定期的打开电磁阀通过排污管进行定期自动排污,用于排出第一集水箱底部沉淀物。
风机20用于通过抽吸空气的方式使得空气从进风口60先后进入第一湿膜50、内置换热套管和喷头的纵向翅片管换热器40、收水模块30、出风口10;优选地,风机采用EC风机,可根据冷却塔冷却需求通过风机的风量的方式确保冷却塔的冷却功耗最低。
风机20、收水模块30、内置换热套管和喷头的纵向翅片管换热器40、第一湿膜50依次沿着出风方向进行设置;
第一湿膜50用于对空气进行加湿降温冷却,同时对喷淋在第一湿膜50上的喷淋水进行降温。
优选地,第一湿膜50倾斜地设置在内置换热套管和喷头的纵向翅片管换热器40和第一集水箱80之间。通过湿膜倾斜设置,增加迎风面积和表面积,提高了湿膜的蒸发冷却效率。
优选地,第一湿膜为一定厚度的纸质或者高分子合成材料湿膜,使得流体冷却装置在使用时,经湿膜加湿后的空气的相对湿度不低于95%(一般地相对湿度在95%-97%),在湿膜上主要发生蒸发降温过程,这样使得出湿膜后的空气温度和出水温度均接近于进入该湿膜空气的湿球温度。
本实施例通过在闭式冷却塔中设置内置换热套管和喷头的纵向翅片管换热器,在纵向翅片管换热器上发生间接蒸发的同时发生逆流热交换,提高了相同体积冷塔的冷却能力;因在本实施例中,同一喷淋水流动过程实际达到了逆流热交换和间接蒸发换热双重效果,提高了相同喷淋水功率下的换热能力,减小了冷却塔的能耗比。本实施例的冷却塔具有体积小、制冷量大等优点。
本实施例在空气进入间接蒸发换热器之间会先经过第一湿膜进行冷却,第一湿膜也同时对通过湿膜的喷淋水进行冷却,可以得到靠近湿球温度的空气和靠近湿球温度的喷淋水。利用这一的喷淋水送至间接蒸发换热器发生逆流热交换和间接蒸发换热,逆流热交换性能进一步提高,间接蒸发换热性能略有下降,整体间接蒸换热器的换热性能提升。利用这一经湿膜出来的温度更低的空气进入到间接蒸发换热器中,提高了室外空气对待冷却液体的冷却能力,提高了冷却塔的冷却能力。
实施例四:
实施例四与实施三的区别在于在第一湿膜之前增加了用于对进入湿膜的空气进行过洗涤的第二湿膜51,如图15所示。
优选地,第一湿膜50和第二湿膜51均设置在纵向翅片管换热器40的下方,且呈不同的水平倾角设置,使得通过第二湿膜的风能完全流通至第一湿膜。在第二湿膜的顶部设置有布水器511,通过第二喷淋水泵71将集水池的水抽至第二湿膜51,通过第二湿膜51对进入第一湿膜的空气进行洗涤,起到净化空气和降温空气的作用,这样进入纵向翅片管换热器温度更低,提高了冷却塔的冷却能力和冷却塔蒸发冷却单元的洁净度。
优选地,如图15所示,闭式冷却塔在设置第一集水箱80外,还设置有第二集水箱81,第二喷淋水泵从第二集水箱中抽水。在未设置第二集水箱的情况下,第二喷淋水泵从第一集水箱中抽水。
优选地,如图16所示,第二集水箱81由水箱箱体、第二补水阀811、第二自动排污装置812、隔板813、滤网814、挡板815组成,被分成A、B、C三个区域。第二补水阀811和第二自动排污装置812的位置设置和型号选择与第一补水阀801和第一自动排污装置802一致。第二补水阀811设置在C区中上部,第二喷淋水泵71的抽水口设在C区域的下部,第二自动排污装置802的排污入口设置在B区域的底部,第二自动排污装置802能定期对第二集水池进行排污。
隔板813倾斜设置,一端靠近第二集水箱的左底部,另一端设置第二集水箱顶部边缘的中部,第二集水箱的左侧和隔板构成第一区域A区域,用于初步过来经湿膜流出的喷淋水。隔板813为多孔板,对自第二湿膜51上流下的水中携带的灰尘及杂质进行阻挡沉降;
滤网814优选为为80目不锈钢丝网,位于第二集水箱第二、第三区域之间,对进入第三区域的喷淋水进一步过滤。
挡板815用于阻挡B区域底部的沉淀物进入到C区域中,使得喷淋水在B区域中发生重力沉降,只有没过挡板815的水才能进入到C区域中。
滤网814一端设置在第二集水箱顶部边缘的中部,另一端设置在挡板815上。
通过在第二集水箱内设置隔板813、滤网814、挡板815,能够将第二集水箱分割成3个区域,经湿膜留出的喷淋水必须通过隔板813、滤网814和挡板815才能进入到第三区域C区中,被第二喷淋水泵抽走。通过隔板813的阻挡、B区域中的重力沉降、挡板815的二次阻挡、滤网814的过滤,使得被第二喷淋水泵抽出的水较为干净。
本实施例,通过在第二湿膜下方进一步设置带自动排污装置、隔板、滤网、挡板的第二集水箱,通过自动排污装置定期排出第二集水箱内的沉淀物,通过阻挡沉降、重力沉降、过滤保证了第二喷淋水抽出的水的净化度,使得第二湿膜不易堵塞,减少人工清洗第二湿膜的次数。
在其他实施例情况下,第一集水池也可以设置如第二集水池的结构,过滤保证了第二喷淋水抽出的水的净化度,确保了冷却水系统的洁净性,减少维护次数。
实施例五:
实施例五与实施四的区别在于在第二湿膜之前增加了用于对进入湿膜的空气进行预冷的空气预冷表冷器90,如图17所示。
空气预冷表冷器90可以是盘管或径向翅片管型换热器;优选地,空气预冷表冷器为径向翅片管型换热器。优选地,通过选择径向翅片管的参数,使得本实施中,流经空气预冷表冷器的外部空气温度降低2-10℃(全年工况),流经空气预冷表冷器的喷淋水温度升高1-5℃(全年工况)。
优选地,径向翅片管换热器如图17所示,由盘管和翅片组成,径向翅片管换热器上的翅片均匀排布,完整覆盖并均匀分割翅片管换热器内部的空气流通空间,并且在沿气流方向呈波纹状或者沿气流方向呈交错排列;喷淋水的流动方向在径向翅片管换热器层间相对气流方向呈逆流排列,这样的径向翅片管换热器设置对空气的冷却效果最好。
本实施例的空气预冷表冷器90可以如图17所示,设置在冷却塔外部进风方向上,也可设置在冷却塔内部进风方向上。优选地,在空气预冷表冷器前面设置导风百叶,起导风稳流作用。
本实施例,通过优选空气预冷表冷器,实现了对外部空气明显的降温,有利于后续通过湿膜后的空气温度接近于外部空气露点温度,实现了对喷淋水明显的升温,有利于提高后续在第二湿膜上喷淋水的蒸发量,提高第二湿膜的蒸发冷却能力,使得第二集水箱的水温接近露点温度。因通过第二湿膜的空气温度接近露点温度,通过第一湿膜的空气温度和通过第一湿膜的喷淋水也接近于露点温度,这样进入纵向翅片管换热器的喷淋水温度更低,进入纵向翅片管换热器的空气温度更低,从而整体上提高本实施例的冷却能力。
实施例六:
实施六与其他实施例相比,区别特征在于收水模块优选为径向翅片管表冷器,被冷却流体先流入径向翅片管表冷器,再流入到纵向翅片管换热器。
通过将收水模块设置为径向翅片管表冷器,充分利用空气中的余冷对被冷却流体进行冷却,提高冷却塔空气余冷利用率,提高闭式冷却塔的冷却能力。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (20)

  1. 内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    包含由若干纵向翅片管换热单元组成的阵列、分流器、喷淋水分水器、集液器;
    所述纵向翅片管换热单元由集成喷头的上连接组件、纵向翅片管、换热管、下连接件组成;
    所述换热管上部通过所述上连接组件的内部管路连接所述上连接组件的所述喷头,所述换热管下部通过所述下连接件的内部管路连接所述喷淋水分水器,所述换热管中部设置在所述纵向翅片管的纵向翅片管基管内部;
    所述上连接组件的上端与所述分流器连通,所述上连接组件的下端与所述纵向翅片管基管和所述换热管分别连通;所述上连接组件的所述喷头对准所述纵向翅片进行设置,所述喷头与所述换热管通过所述上连接组件的内部管路连通;
    所述下连接件设置在所述纵向翅片管基管的下方,所述下连接件的上端与所述换热管和所述翅片管基管分别连通,所述集液器通过所述下连接件和所述翅片管基管连通,所述喷淋水分水器通过所述下连接件和所述换热管连通;
    所述纵向翅片管换热器工作时,喷淋水从所述喷淋水分水器进入到所述翅片管换热单元组成的阵列中,依次通过所述纵向翅片管换热单元的所述下连接件内部、所述换热管内部、所述上连接组件内部管路、所述喷头,最后经所述喷头喷淋在所述纵向翅片上;被冷却流体从所述分流器进入到所述翅片管换热单元组成的阵列中,依次通过所述纵向翅片管换热单元的所述上连接组件内部、所述纵向翅片管基管和所述换热管之间的间隙空间、所述下连接件内部、所述集液器,最后经所述集液器流出;喷淋水在喷淋之前,和被冷却流体在所述换热管管壁上进行逆流热交换。
  2. 根据权利要求1所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述上连接组件包含上连接导流器和喷头;
    所述喷头整体呈上宽下窄的中空结构,所述喷头上部的内部嵌套设置所述上连接导流器的下部,所述喷头的下部的内部嵌套设置所述换热管,所述喷头的下部的外部通过插接的方式连接所述翅片管基管的上部;所述喷头顶部的外表面设置若干凹形槽用于作为喷淋水喷淋通道。
  3. 根据权利要求2所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述上连接组件还包含T字形的第一内套管和喷淋限位器;
    所述上连接导流器的上端和所述分流器相连接,所述上连接导流器的下部内嵌套所述第一内套管;所述上连接导流器的下部被所述喷头的上部包裹并设置在所述喷头内部支撑面的上方。
  4. 根据权利要求3所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述第一内套管由横向分布第一分支单元、横向分布第二分支单元和竖向分布的第三分支单元组成,所述第三分支单元与所述第一分支单元和所述第二分支单元均连通;
    所述喷淋限位器环绕所述上连接导流器和所述喷头设置,且包裹所述第一内套管,所述第一内套管的所述第一分支单元和所述第二分支单元和所述喷淋限位器内部连通。
  5. 根据权利要求1所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述喷头的顶部均匀设置20-60个喷淋槽道,所述喷淋槽道的深度在0.1mm-0.2mm之间。
  6. 根据权利要求1所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述喷淋水分水器设置在所述集液器上方;
    所述下连接件包含下连接导流器、T字形的第二内套管、下连接接头;
    所述下连接导流器的上部与所述下连接接头的下部连接,所述下连接导流器的中部嵌套所述第二内套管,所述下连接导流器的下部与所述集液器相连接。
  7. 根据权利要求6所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述第二内套管由竖向分布的第四分支单元、横向分布第五分支单元、横向分布第六分支单元组成,所述第四分支单元与所述第五分支单元和所述第六分支单元均连通;
    所述下连接接头由下连接上圆筒、下连接下圆筒、连接所述下连接上圆筒和所述下连接下圆筒的支持壁组成;所述下连接上圆筒的内部设置所述换热管,所述换热管下端通过插接的方式连接所述四分支单元;所述下连接上圆筒的外壁通过插接的方式连接所述纵向翅片管基管;所述下连接接头下圆筒通过插接的方式连接所述下连接导流器的上部。
  8. 根据权利要求7所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    相邻的两个所述纵向翅片管换热单元通过对应的所述下连接件的所述第二内套管的横向分布的所述第五分支单元和所述第六分支单元相互插接的方式进行连接。
  9. 根据权利要求1所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述喷淋水分水器设置在所述集液器下方;
    所述下连接件包含十字形的下连接导流器、下连接接头、喷淋水进水接头;
    所述下连接导流器的上部与所述下连接接头的下部连接,所述下连接导流器中部的左右两个分支分别与集液器相连接或与相邻的所述纵向翅片管的所述下连接导流器中部的左右分支相连接,所述下连接导流器的下部与所述喷淋水进水接头的上端通过螺纹进行连接,所述喷淋水进水接头的下端与所述喷淋水分水器连接。
  10. 根据权利要求9所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述下连接接头由下连接上圆筒、下连接下圆筒、连接所述下连接上圆筒和所述下连接下圆筒的支持壁组成;所述下连接上圆筒的内壁用于插入所述换热管至所述喷淋水进水接头中,所述下连接上圆筒的内径大于所述换热管的外径;所述下连接上圆筒的外壁用于插入所述纵向翅片管基管,所述下连接上圆筒的外壁与所述纵向翅片管基管呈紧配合连接;所述下连接下圆筒用于插入到所述下连接导流器的上部。
  11. 根据权利要求10所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    相邻的两个所述纵向翅片管换热单元通过对应的所述下连接导流器的横向左右分支相互插接的方式进行连接。
  12. 根据权利要求1所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述纵向翅片管的外表面设置有添加红外辐射散热材料的亲水涂层。
  13. 根据权利要求1所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述分流器或所述喷淋水分水器或所述集液器由液体端口、M级分级布水单元组成;第N级分级布水单元由第N级分水器和分水管组成;所述第N级分水器为一分为二分水器或一分为三分水器或一分为四分水器;所述第N级分级布水单元通过所述第N级分水器将上一级分级布水单元中的水分流到所述第N级分级布水器的分水管中;第N-1级分级布水单元通过所述第N-1级分级布水单元的分水管连接所述第N级分级布水单元的第N级分水器;第M级分级布水单元通过所述第M级分级布水单元的分水器连接所述翅片管换热单元对应的液体接头。
  14. 根据权利要求1所述的内置换热套管和喷头的纵向翅片管换热器,其特征在于:
    所述纵向翅片管换热器还包含换热器框体,所述集液器固定在所述换热器框体上。
  15. 一种闭式冷却塔,其特征在于:
    所述闭式冷却塔包含如权利要求1所述的内置换热套管和喷头的纵向翅片管换热器,所述纵向翅片管换热器用于所述冷却塔工作时,喷淋水对被冷却流体进行逆流热交换和间接蒸发换热。
  16. 根据权利要求15所述的闭式冷却塔,其特征在于:
    所述闭式冷却塔还包含出风口、风机、收水模块、第一湿膜、进风口、第一喷淋水泵、第一集水箱;
    所述风机设置在所述闭式冷却塔的顶部,通过抽吸空气的方式使得空气从进风口先后进入第一湿膜、所述纵向翅片管换热器、收水模块、出风口;
    所述风机、所述收水模块、所述纵向翅片管换热器、所述第一湿膜依次沿着出风方向进行设置;
    所述第一湿膜对空气进行加湿降温冷却,同时对喷淋在所述第一湿膜上的喷淋水进行降温。
  17. 根据权利要求16所述的闭式冷却塔,其特征在于:
    所述闭式冷却塔还包含第二湿膜,第二湿膜设置在第一湿膜的迎风面上;
    所述第二湿膜对进入所述第一湿膜的空气进行过滤和洗涤。
  18. 根据权利要求17所述的闭式冷却塔,其特征在于:
    所述闭式冷却塔还包含第二集水箱;
    所述第二集水箱包含第二补水阀、第二自动排污装置、隔板、滤网、挡板,用于对喷淋水进行沉降排污。
  19. 根据权利要求18所述的闭式冷却塔,其特征在于:
    所述闭式冷却塔还包括空气预冷表冷器;
    所述空气预冷表冷器设置所述第二湿膜的迎风面上;在所述闭式冷却塔工作时,所述空气预冷表冷器对进入所述第二湿膜的空气进行预冷。
  20. 根据权利要求19所述的闭式冷却塔,其特征在于:
    所述收水模块为径向翅片管表冷器。
PCT/CN2021/119818 2020-09-23 2021-09-23 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔 WO2022063155A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011006610 2020-09-23
CN202011006610.4 2020-09-23
CN202011055338.9A CN112161495A (zh) 2020-09-23 2020-09-30 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔
CN202011055338.9 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022063155A1 true WO2022063155A1 (zh) 2022-03-31

Family

ID=73861471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119818 WO2022063155A1 (zh) 2020-09-23 2021-09-23 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔

Country Status (2)

Country Link
CN (1) CN112161495A (zh)
WO (1) WO2022063155A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835182A (zh) * 2022-05-11 2022-08-02 国能宁夏鸳鸯湖第一发电有限公司 一种脱硫废水处理装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161495A (zh) * 2020-09-23 2021-01-01 深圳易信科技股份有限公司 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔
CN113483349A (zh) * 2021-06-21 2021-10-08 威海金宏科技有限公司 基于水冷与空冷结合的烟气脱白与水分回收工艺及系统
CN113405372A (zh) * 2021-06-21 2021-09-17 威海金宏科技有限公司 一种基于微界面亲水填料的闭式空冷却塔工艺及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869355A (en) * 1958-05-16 1961-05-31 Giovanni Hilgers A method of heat exchange between two gases
CN104406421A (zh) * 2014-11-25 2015-03-11 李金鹏 套管式复合冷凝系统设备
CN106861475A (zh) * 2017-01-22 2017-06-20 杭州中泰深冷技术股份有限公司 新型气液混合注液结构及其方法
CN206832076U (zh) * 2017-05-08 2018-01-02 单双磊 一种新型湿膜式空冷器
CN207622572U (zh) * 2017-12-13 2018-07-17 深圳易信科技股份有限公司 液体冷却装置
CN209230338U (zh) * 2018-11-06 2019-08-09 江阴市中迪空冷设备有限公司 集合管水雾式高效空气冷却器
CN111023374A (zh) * 2020-01-09 2020-04-17 深圳博健科技有限公司 一种间接蒸发流体冷却装置
CN112161495A (zh) * 2020-09-23 2021-01-01 深圳易信科技股份有限公司 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔
CN214333451U (zh) * 2020-11-19 2021-10-01 深圳博健科技有限公司 一种内置换热套管的纵向翅片管换热器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869355A (en) * 1958-05-16 1961-05-31 Giovanni Hilgers A method of heat exchange between two gases
CN104406421A (zh) * 2014-11-25 2015-03-11 李金鹏 套管式复合冷凝系统设备
CN106861475A (zh) * 2017-01-22 2017-06-20 杭州中泰深冷技术股份有限公司 新型气液混合注液结构及其方法
CN206832076U (zh) * 2017-05-08 2018-01-02 单双磊 一种新型湿膜式空冷器
CN207622572U (zh) * 2017-12-13 2018-07-17 深圳易信科技股份有限公司 液体冷却装置
CN209230338U (zh) * 2018-11-06 2019-08-09 江阴市中迪空冷设备有限公司 集合管水雾式高效空气冷却器
CN111023374A (zh) * 2020-01-09 2020-04-17 深圳博健科技有限公司 一种间接蒸发流体冷却装置
CN112161495A (zh) * 2020-09-23 2021-01-01 深圳易信科技股份有限公司 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔
CN214333451U (zh) * 2020-11-19 2021-10-01 深圳博健科技有限公司 一种内置换热套管的纵向翅片管换热器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835182A (zh) * 2022-05-11 2022-08-02 国能宁夏鸳鸯湖第一发电有限公司 一种脱硫废水处理装置

Also Published As

Publication number Publication date
CN112161495A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
WO2022063155A1 (zh) 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔
CN211668307U (zh) 一种带有预冷装置的冷却塔
JP2017516061A (ja) 組み合わせ式コンベクタ
CN104534604B (zh) 外置分流结构的逆流板式露点间接蒸发冷却器及通道隔板
CN214333451U (zh) 一种内置换热套管的纵向翅片管换热器
CN107796239B (zh) 混合式流体冷却方法和装置
CN104613576A (zh) 多级直接蒸发冷却机组
CN108592663A (zh) 一种气液热交换装置
CN103245017A (zh) 闭式叉流板翅露点间接蒸发冷却的室外机
WO2021228101A1 (zh) 一种复叠式蒸发冷凝换热器
CN111023374A (zh) 一种间接蒸发流体冷却装置
CN105972728B (zh) 立管间接-抽拉式填料分层喷雾复合的蒸发冷却空调机组
CN214010061U (zh) 内置换热套管和喷头的纵向翅片管换热器及其闭式冷却塔
CN106152614A (zh) 一种制冷系统及其换热器
CN206449940U (zh) 降膜式换热器
CN113670090A (zh) 一种内置换热器的间接蒸发流体冷却装置
CN2658688Y (zh) 具有翅片冷却管组的蒸发式冷凝器
CN208795040U (zh) 一种环翅式环管气液换热器
CN207622572U (zh) 液体冷却装置
CN211400162U (zh) 一种间接蒸发流体冷却装置
CN212320479U (zh) 一种内置换热器的间接蒸发流体冷却装置
CN207350627U (zh) 一种干燥炎热地区用板管式间接-直接蒸发冷却冷水机组
CN217877194U (zh) 一种横流间接蒸发开式冷却塔
CN104596005A (zh) 节水型填料裹管式蒸发冷却空调系统
CN110454895A (zh) 一种基于环形布水的间接-直接蒸发式冷气机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871524

Country of ref document: EP

Kind code of ref document: A1