WO2022063009A1 - 光学扫描装置及电子成像设备 - Google Patents

光学扫描装置及电子成像设备 Download PDF

Info

Publication number
WO2022063009A1
WO2022063009A1 PCT/CN2021/118604 CN2021118604W WO2022063009A1 WO 2022063009 A1 WO2022063009 A1 WO 2022063009A1 CN 2021118604 W CN2021118604 W CN 2021118604W WO 2022063009 A1 WO2022063009 A1 WO 2022063009A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
image height
light beam
optical unit
light source
Prior art date
Application number
PCT/CN2021/118604
Other languages
English (en)
French (fr)
Inventor
聂勇超
王超
Original Assignee
珠海奔图电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海奔图电子有限公司 filed Critical 珠海奔图电子有限公司
Priority to EP21871380.8A priority Critical patent/EP4202554A4/en
Publication of WO2022063009A1 publication Critical patent/WO2022063009A1/zh
Priority to US18/187,656 priority patent/US20230236523A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/0409Details of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • G03G15/0435Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure by introducing an optical element in the optical path, e.g. a filter

Definitions

  • the present application relates to the technical field of optical scanning, and in particular, to an optical scanning device and an electronic imaging device.
  • Optical scanning equipment is widely used in image forming fields such as printing and imaging, graphic copying, laser coding and medical imaging.
  • image forming fields such as printing and imaging, graphic copying, laser coding and medical imaging.
  • an electrostatic latent image is formed on the scanned target surface of a photosensitive drum using an optical scanning device, and is transferred to the paper surface after developing processing to achieve printing or copying.
  • home printers have become an indispensable and important office appliance for users to work from home.
  • users When choosing home printers, users not only have high printing performance requirements, but also pay great attention to the appearance of home printers and whether the printer will Taking up a lot of space, i.e. high performance and miniaturized laser printers dominate the market.
  • optical scanning units While laser printers are required to be designed to be more and more miniaturized, the optical scanning units used in matching laser printers also require corresponding design miniaturizations.
  • the miniaturized design of optical scanning units it is necessary to meet the configuration requirements of focal length and scanning angle, that is, the requirements
  • the focal length of the optical scanning unit is as short as possible and the scanning angle is required to be as large as possible, but in order to ensure high image accuracy, the design shape of the imaging optical lens becomes complicated and the manufacturing cost is high.
  • the present application provides a miniaturized optical scanning unit and an imaging optical lens manufactured at low cost.
  • an optical scanning device comprising:
  • a light source for emitting a light beam
  • a first optical unit for collimating the light beam emitted by the light source in the main scanning direction and focusing in the sub-scanning direction;
  • an optical deflector for deflecting the light beam emitted by the first optical unit
  • a second optical unit for guiding the light beam deflected by the optical deflector to the surface of the scanned target for imaging
  • the image height of the scanned target surface satisfies the following expression:
  • Y represents the image height of the scanned target surface
  • fc represents the imaging characteristic coefficient of the second optical unit
  • B represents the scanning coefficient of the second optical unit
  • represents the effective scanning angle of the optical scanning device
  • All or part of the area within the effective scanning range of the second optical unit satisfies the following conditions: 0.7 ⁇ B ⁇ 0.9.
  • all or part of the area within the effective scanning range of the second optical unit satisfies the following condition: 0.76 ⁇ B ⁇ 0.82.
  • it also includes:
  • the grating is arranged between the light source and the first optical unit, and is used for shaping the light beam emitted by the light source, and making the shaped light beam enter the first optical unit.
  • the first optical unit includes a collimating lens for collimating the light beam emitted by the light source in the main scanning direction, and focusing the light beam emitted by the light source in the sub scanning direction cylindrical lens.
  • the first optical unit includes an anamorphic lens for collimating the light beam emitted by the light source in the main scanning direction and focusing in the sub scanning direction.
  • the optical deflector comprises an optical polyhedron provided with a plurality of reflecting mirror surfaces, the optical polyhedron is used for deflecting the light beam exiting the first optical unit.
  • the second optical unit causes the deflection surface of the optical deflector to be in a conjugate relationship with the scanned target surface.
  • the image height of the scanned target surface can be corrected, and the expression of the image height correction is as follows:
  • Y 1 is the image height value after correction
  • Y 0 is the image height value before correction
  • ⁇ Y is the image height correction value.
  • the expression for the image high correction value is as follows:
  • ⁇ Y is the image height correction value
  • Y is the standard image height
  • a 0 to An are constants.
  • an electronic imaging device comprising:
  • optical scanning device The above-mentioned optical scanning device
  • the light beam emitted by the optical scanning device forms an electrostatic latent image on the photosensitive surface of the photosensitive drum
  • a developing device for developing the electrostatic latent image to form a toner image
  • a transfer device for transferring the toner image to the transfer medium
  • the fixing device is used for fixing the transferred toner image on the transfer medium.
  • the optical scanning device includes: a light source for emitting a light beam; a first optical unit for collimating the light beam emitted by the light source in the main scanning direction, and in the sub-scanning direction upper focusing; an optical deflector for deflecting the light beam emitted by the first optical unit; the second optical unit for guiding the light beam deflected by the optical deflector to the scanned target surface for imaging; the image height of the scanned target surface satisfies
  • the scanning coefficient B satisfies the condition: 0.7 ⁇ B ⁇ 0.9
  • the value of tan(B ⁇ ) will become smaller, in order to maintain the size of tan(B ⁇ ) to ensure The image height is fixed.
  • the effective scanning angle ⁇ of the optical scanning device needs to be increased.
  • the size of tan (B ⁇ ) may increase.
  • the imaging characteristic coefficient fc of the second optical unit can be reduced, so that the volume of the optical scanning device can be reduced by combining the two improvements, thereby achieving the purpose of reducing the volume of the printer and reducing the production cost.
  • FIG. 1 is a schematic plan view of an optical scanning device in an embodiment of the application.
  • FIG. 2 is a schematic side view of an optical scanning device in an embodiment of the application.
  • FIG. 3 is a schematic diagram of an image height distribution curve obtained based on the data in Table 2 in the embodiment of the application;
  • FIG. 4 is a schematic diagram of an image height error distribution curve obtained based on the data in Table 2 in the embodiment of the application;
  • FIG. 5 is a schematic diagram of an image height distribution curve obtained based on the data in Table 5 in the embodiment of the application;
  • FIG. 6 is a schematic diagram of an image height error distribution curve obtained based on the data in Table 5 in the embodiment of the application;
  • FIG. 7 is an example diagram of an optical scanning device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a common electrophotographic imaging device provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a color image forming apparatus according to an embodiment of the present application.
  • Main scanning direction refers to the direction perpendicular to the rotation axis of the optical deflector and the main optical axis of the second optical unit. It can also be understood as the direction in which the beam is scanned back and forth after the optical deflector deflects the beam emitted by the light source. .
  • Sub-scanning direction refers to the direction parallel to the rotation axis of the optical deflector, and can also be understood as the direction perpendicular to the main scanning direction.
  • Scanned target surface refers to the plane where the outgoing beam of the second optical unit scans back and forth.
  • the equipment size of the printer is related to the size of the optical scanning device used by the printer.
  • the larger the volume of the optical scanning device the larger the volume of the printer.
  • the parameters of the optical scanning device include focal length and scanning angle. By shortening the focal length and increasing the scanning angle, the volume of the optical scanning device can be effectively reduced, thereby reducing the volume of the printer.
  • optical scanning device and the electronic imaging device provided by the present application aim to solve the above technical problems in the prior art.
  • the optical scanning device includes: a light source for emitting a light beam; a first optical unit for collimating the light beam emitted by the light source in the main scanning direction, and in the sub-scanning direction upper focusing; an optical deflector for deflecting the light beam emitted by the first optical unit; the second optical unit for guiding the light beam deflected by the optical deflector to the scanned target surface for imaging; the image height of the scanned target surface satisfies
  • the scanning coefficient B satisfies the condition: 0.7 ⁇ B ⁇ 0.9
  • the value of tan(B ⁇ ) will become smaller, in order to maintain the size of tan(B ⁇ ) to ensure The image height is fixed.
  • the effective scanning angle ⁇ of the optical scanning device needs to be increased.
  • the size of tan (B ⁇ ) may increase.
  • the imaging characteristic coefficient fc of the second optical unit can be reduced, so that the volume of the optical scanning device can be reduced by combining the two improvements, thereby achieving the purpose of reducing the volume of the printer and reducing the production cost.
  • an optical scanning device is provided.
  • FIG. 1 is a schematic plan view of an optical scanning device 100 in an embodiment of the application
  • FIG. 2 is a schematic side view of the optical scanning device 100 in an embodiment of the application.
  • the optical scanning device 100 includes: a light source 101 , The first optical unit 103 , the optical deflector 104 and the second optical unit 105 .
  • the light source 101 is used for emitting light beams.
  • the light source 101 may be a light-emitting diode (LED) or a laser diode (LD), and the light source 101 includes at least one light-emitting point for emitting a light beam.
  • the light source 101 can be at least one point light source 101 that can be modulated, so that the size of the light beam emitted by the light source 101 can be modulated.
  • the first optical unit 103 is used for collimating the light beam emitted by the light source 101 in the main scanning direction and focusing in the sub scanning direction.
  • collimation refers to maintaining a parallel relationship between different light beams
  • focusing refers to converging different light beams at the same point.
  • the main scanning direction in this embodiment is the X direction, that is, the first optical unit 103 is used to collimate the light beam emitted by the light source 101 in the X direction in FIG. 1 .
  • the sub-scanning direction in this embodiment is the Y direction, that is, the first optical unit 103 is used to focus the light beam emitted by the light source 101 in the Y direction in FIG. 2 .
  • the optical deflector 104 is used for deflecting the light beam emitted by the first optical unit 103 , specifically, deflecting and scanning the light beam along the main scanning direction to the scanned target surface S for imaging.
  • the second optical unit 105 is used to guide the light beam deflected by the optical deflector 104 to the scanned target surface S for imaging.
  • the second optical unit 105 can make the light beam deflected by the optical deflector 104 scan onto the scanned target surface S at a constant or varying linear velocity in the main scanning direction, and the second optical unit 105 includes the optical deflector 104 is an imaging optical lens for imaging the deflected light beam on the scanned target surface S, and the number of the imaging optical lens may be one or more.
  • Y represents the image height of the scanned target surface S
  • fc represents the imaging characteristic coefficient of the second optical unit 105
  • B represents the scanning coefficient of the second optical unit 105
  • represents the effective scanning angle of the optical scanning device 100; All or part of the area within the effective scanning range of the unit 105 satisfies the following conditions: 0.7 ⁇ B ⁇ 0.9.
  • the scanning coefficient B can be either a constant or a variable.
  • the focal length fc of the second optical unit 105 can also be reduced, which can reduce the optical Scan the volume of the device 100 .
  • the second optical unit 105 makes the deflection surface of the optical deflector 104 and the scanned target surface in a conjugate relationship, so that the imaging optical lens realizes the compensation of the tilt error of the optical surface.
  • This embodiment provides an optical scanning device.
  • the scanning coefficient B satisfies the condition: 0.7 ⁇ B ⁇ 0.9
  • the value of tan(B ⁇ ) will become smaller.
  • the effective scanning angle ⁇ of the optical scanning device needs to be increased.
  • the size of tan(B ⁇ ) may be changed.
  • the imaging characteristic coefficient fc of the second optical unit can also be reduced, so that the combination of the two improvements can reduce the volume of the optical scanning device, thereby achieving the purpose of reducing the size of the printer and reducing the production cost .
  • all or part of the area within the effective scanning range of the second optical unit 105 satisfies the following condition: 0.76 ⁇ B ⁇ 0.82.
  • the value range of the scan coefficient B of the second optical unit 105 can be further limited, that is, 0.76 ⁇ B ⁇ 0.82, the value of the scan coefficient B of the second optical unit 105 within this value range, the volume of the optical scanning device can be optimally miniaturized while ensuring the scanning quality.
  • the optical scanning device 100 further includes: a grating 102 .
  • the grating 102 is disposed between the light source 101 and the first optical unit 103 for shaping the light beam emitted by the light source 101 and making The shaped light beam is incident on the first optical unit 103 .
  • the grating 102 has an opening structure for shaping the light beam emitted by the light source 101, and the opening is, for example, a circle, an ellipse, a square, or other shapes, which are not limited in this embodiment.
  • the grating 102 is arranged between the light source 101 and the first optical unit 103 is only an exemplary illustration of the position of the grating 102, and the position of the grating 102 is not limited to this position.
  • the grating 102 may also be disposed between the optical deflector 104 and the second optical unit 105 . That is to say, in this embodiment, the setting position of the grating 102 is not strictly limited, and can be flexibly adjusted according to the actual situation.
  • the first optical unit 103 includes a collimating lens for collimating the light beam emitted by the light source 101 in the main scanning direction, and a cylindrical lens for focusing the light beam emitted by the light source 101 in the sub scanning direction
  • the first optical unit 103 includes an anamorphic lens for collimating the light beam emitted by the light source 101 in the main scanning direction and focusing in the sub scanning direction. That is, the first optical unit 103 may be composed of only one lens, or may be composed of two lenses.
  • the collimating lens can convert the light beam emitted by the light source 101 into parallel light beams in the main scanning direction, and the cylindrical lens can focus the parallel light beams on the deflection surface of the optical deflector 104 in the sub-scanning direction.
  • the anamorphic lens can simultaneously perform the functions of converting the light beam emitted from the light source 101 into a parallel light beam in the main scanning direction and condensing the parallel light beam on the deflection surface of the optical deflector 104 in the sub-scanning direction.
  • the above-mentioned lens can be made of plastic material or glass material, which is not limited herein.
  • the first optical unit 103 can play the role of collimating the light beam emitted by the light source 101 in the main scanning direction and focusing in the sub scanning direction.
  • the optical deflector 104 includes an optical polyhedron provided with a plurality of reflecting mirror surfaces, and the optical polyhedron is used to deflect the light beam exiting from the first optical unit 103 .
  • the optical deflector 104 deflects and scans the light beam along the main scanning direction onto the scanned target surface for imaging.
  • the optical deflector 104 includes an optical polyhedron for deflecting the light beam, and the optical polyhedron is a rotating optical body with multiple mirror surfaces. Polyhedron, the light beam emitted by the light source 101 is irradiated to the optical polyhedron in the optical deflector 104 via the first optical unit 103, so that the beam is deflected and reflected toward the scanned target surface along the main scanning direction.
  • the optical scanning device 100 is further connected to a driving circuit board corresponding to the optical scanning device 100; the driving circuit board is used to correct the image height of the scanned target surface.
  • the driving The circuit board corrects the image height of the scanned target surface to ensure that the corrected image height meets the accuracy requirements.
  • the driver circuit board performs image height correction by the following expression:
  • Y 1 is the image height value after correction
  • Y 0 is the image height value before correction
  • ⁇ Y is the image height correction value.
  • the driving circuit board obtains the high correction value by the following expression:
  • ⁇ Y is the image height correction value
  • Y is the standard image height
  • a 0 to An are constants.
  • the driving circuit board is connected to the light source 101 , and the driving circuit board performs image height correction by controlling the light-emitting frequency of the light source 101 based on the image height correction value.
  • the image height error is caused by the mismatch between the light-emitting frequency of the light source 101 and the scanning linear speed. For example, under the same linear speed, if the light-emitting frequency is too high, the image height will be lower than the standard image height, resulting in image Compression; if the light-emitting frequency is low, the image height will be higher than the standard image height, resulting in image stretching.
  • the driving circuit board controls the light-emitting frequency of the light source 101 to perform image height correction, so as to ensure that the image height is the normal image height.
  • Table 1 is the relevant optical parameters of the optical scanning device 100 in this embodiment:
  • FIG. 3 is a schematic diagram of an image height distribution curve obtained based on the data in Table 2 in the embodiment of the application
  • FIG. 4 is a schematic diagram of an image height error distribution curve obtained based on the data in Table 2 in the embodiment of the application, according to FIG. 3 and FIG. 4 It can be seen that the image height curve obviously deviates from the standard image height, and the image height error also exceeds the error standard.
  • this embodiment corrects the image height as follows:
  • the corrected image height error is less than ⁇ 1%, which meets the relevant error standard and meets the accuracy requirements of the portrait.
  • Table 4 is the relevant optical parameters of the optical scanning device 100 in this embodiment:
  • FIG. 5 is a schematic diagram of an image height distribution curve obtained based on the data in Table 5 in the embodiment of the application
  • FIG. 6 is a schematic diagram of an image height error distribution curve obtained based on the data in Table 5 in the embodiment of the application, according to FIG. 5 and FIG. 6 It can be seen that the image height curve obviously deviates from the standard image height, and the image height error also exceeds the error standard.
  • this embodiment corrects the image height as follows:
  • the corrected image height error is less than ⁇ 1%, which meets the relevant error standard and meets the accuracy requirements of the portrait.
  • FIG. 7 is an example diagram of an optical scanning device 100 provided by an embodiment of the present application.
  • the optical scanning device 100 includes a light source 101 , a grating 102 , a first optical unit 103 , an optical deflector 104 , and a second optical unit 105 , the third optical unit 106 , the light source driving circuit board 107 , the fixing member 108 and the light scanning unit frame 109 .
  • the light source 101 is fixed on the light scanning unit frame 109 and is electrically connected to the light source driving circuit board 107 .
  • the grating 102 is mounted on the light scanning unit frame 109 , and the grating 102 can also be integrally formed with the light scanning unit frame 109 .
  • the first optical unit 103 is disposed between the light source 101 and the optical deflector 104 and is fixed on the light scanning unit frame 109 ; the second optical unit 105 is fixedly installed on the light scanning unit frame 109 through two fixing parts 108 .
  • the third optical unit 106 is used to focus the light beam deflected and reflected by the optical deflector 104, so that the light beam is focused on the photoelectric sensor (not shown in the figure) on the light source driving circuit board 107, so that the photoelectric sensor outputs a line synchronization signal to This ensures that the beginning of the image on the scanned target surface is aligned, and the third optical unit 106 is fixed on the light scanning unit frame 109; the light source driving circuit board 107 can control the luminous frequency of the light source 101 and the output of the line synchronization signal, and the light source driving circuit board 107 is fixed to the light scanning unit frame 109.
  • an electronic image forming apparatus including: an optical scanning device, a photosensitive drum, a developing device, a transfer device, and a fixing device of the above-mentioned embodiments.
  • the photosensitive drum has an image carrier for scanning the target surface, the photosensitive drum cooperates with the optical scanning device, and the light beam emitted by the optical scanning device forms an electrostatic latent image on the photosensitive surface of the photosensitive drum; the developing device is used to convert the corrected electrostatic latent image.
  • the image is developed to form a toner image; the transfer device is used to transfer the toner image to the transfer medium; the fixing device is used to fix the transferred toner image on the transfer medium.
  • the electronic imaging device in this embodiment can effectively reduce the volume of the electronic imaging device and reduce the production cost of the device by using the optical scanning device of each embodiment of the present application.
  • a general electrophotographic imaging apparatus is provided.
  • FIG. 8 is a schematic structural diagram of an ordinary electrophotographic imaging device provided by an embodiment of the application.
  • the ordinary electrophotographic imaging device includes: the optical scanning device 100 of the above-mentioned embodiments, a paper feeding unit 200 , and a conveying unit 300 , an image processing unit 400 , a transfer unit 500 , a fixing unit 600 , a paper discharge tray 700 , a paper cassette 800 and a frame 900 .
  • the control system of an ordinary electrophotographic image forming apparatus controls the optical scanning device 100 to emit a light beam K and scan it onto the surface of the photosensitive drum 401 in the image processing unit 400.
  • the photosensitive drum 401 is a photoreceptor, including a cylindrical metal tube with an outer circumference and a predetermined A thick photosensitive layer is formed on the outer circumference.
  • the charging roller 403 in the image processing unit 400 rotates and comes into contact with the photosensitive drum 401, and charges the surface of the photosensitive drum 401.
  • the optical scanning device 100 scans the light beam K adjusted according to the image information, thereby forming an electrostatic latent image on the imaging surface of the surface of the photosensitive drum 401 after being charged by the charging roller 403 .
  • the optical scanning device 100 is synchronized with the horizontal synchronization signal to scan the light beam onto the imaging surface in the main scanning direction, and therefore, the electrostatic latent image It is formed on the image forming surface of the surface of the photosensitive drum 401 .
  • the developing roller 404 contacts the photosensitive drum 401 and transfers the toner to the surface of the photosensitive drum 401, thereby forming a toner image, a process called development.
  • the recording medium P is stacked in the paper cassette 800, and the paper feeding unit 200 rotates according to the instruction of the printer to sequentially send the recording medium P to the conveying unit 300, and the conveying unit sends the recording medium P to the image processing unit 400 and the conveying unit. between the printing units 500 and in contact with the surface of the photosensitive drum 401 .
  • the toner image on the surface of the photosensitive drum 401 is transferred to the recording medium P under the action of the transfer unit 500. This process is called transfer.
  • the transfer unit 500 has a certain voltage.
  • the toner image on the surface of the photosensitive drum 401 can be more easily attracted to the recording medium P.
  • the residual toner on the surface of the photosensitive drum 401 after the transfer is cleaned and removed by the cleaning unit 402 .
  • the toner image transferred onto the recording medium P is heated by the heating roller 601 of the fixing unit 600 to be melted and fixed to the recording medium P under the pressure of the pressing roller 602, a process called fixing.
  • the fixed recording medium P is conveyed by the pair of discharge rollers 603 and discharged to the paper discharge tray 700 outside the printer, thereby completing the entire printing process.
  • the general electrophotographic image forming apparatus in this embodiment can effectively reduce the volume of the common electrophotographic image forming apparatus by using the optical scanning device 100 of each embodiment of the present application.
  • a color image forming apparatus is provided.
  • FIG. 9 is a schematic structural diagram of a color image forming apparatus provided by an embodiment of the application.
  • the color image forming apparatus includes: photosensitive drums 201Y-K (Y, M, C, K), charging rollers 202Y-K , developing roller 203Y-K, powder bin 204Y-K, transfer belt 205, secondary transfer roller 206, entering paper cassette 207, manual feeding tray 208, feeding roller 209, conveying roller 210, optical scanning device 100, A heat roller 212 , a pressing roller 213 , a discharge roller 214 and a discharge paper cassette 215 .
  • the optical scanning device 100 is specifically in the form of a single LSU (Laser scanning unit, laser scanning unit), including four beam paths.
  • the four charging rollers 202Y-K are used to charge the surfaces of the four photosensitive drums 201Y-K respectively, the four optical paths of the LSU 100 respectively emit laser beams to form electrostatic latent images on the surfaces of the photosensitive drums 201Y-K, and the four developing rollers 203Y-K It is used to develop and form a color toner image on the surface of the photosensitive drums 201Y-K respectively.
  • the color image forming apparatus adopts the method of secondary transfer, that is, the four photosensitive drums 201Y-K transfer the toner image to the transfer image in sequence.
  • the color toner image formed on the transfer belt 205 is then secondarily transferred to the paper by the second transfer roller 206 .
  • the incoming paper cassette 207 is used to store paper, and the paper feed roller 209 is used to convey the stored paper to the conveying path.
  • the conveying roller 210 is used to convey the sheet to the secondary transfer roller 206 .
  • the secondary transfer roller 206 transports the imaged paper to the nip between the heat roller 212 and the pressure roller 213.
  • the heat roller 212 and the pressure roller 213 are used to fix the toner image on the paper.
  • the heat roller 212 can be made of ceramic
  • the heat roller 212 and the pressing roller 213 convey the fixed sheets to the discharge roller 214, and the discharge roller 214 discharges the sheets to the discharge paper cassette 215 and stacks them.
  • the color image forming apparatus in this embodiment can effectively reduce the volume of the color image forming apparatus by using the optical scanning device 100 of each embodiment of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

一种光学扫描装置(100)及电子成像设备,对于光学扫描装置(100),在被扫描目标表面(S)的像高表达式中,由于扫描系数B满足条件:0.7≤B≤0.9,会使得tan(B×θ)的值变小,为了维持tan(B×θ)的大小以保证像高一定,一方面,需要增加光学扫描装置(100)的有效扫描角度θ,另一方面,在有效扫描角度θ增加后,tan(B×θ)的大小可能会增大,为了保证像高一定,也可以减小第二光学单元(105)的成像特性系数fc,从而,结合两方面的改进可以减小光学扫描装置(100)的体积,进而达到缩小打印机体积、降低生产成本的目的。

Description

光学扫描装置及电子成像设备
本申请要求于2020年09月22日提交中国专利局、申请号为202011002996.1、申请名称为“光学扫描装置及电子成像设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学扫描技术领域,尤其涉及一种光学扫描装置及电子成像设备。
背景技术
光学扫描设备广泛应用于打印成像、图文复印、激光打码及医学影像等图像形成领域中。例如在记录介质上形成图像的打印机或复印机产品中,使用光学扫描设备在感光鼓的被扫描目标表面上扫描形成静电潜像,在进行显像处理后转印至纸面实现打印或复印。
随着居家办公模式的推广,家用打印机成为用户居家办公过程中不可缺少的重要办公用具,用户在选用家用打印机时除了在打印性能有较高的要求,还十分关注家用打印机的外观和打印机是否会占用大量的空间,即高性能和小型化的激光打印机在市场占主导地位。
在激光打印机要求设计得越来越小型化的同时匹配激光打印机使用的光学扫描单元也相应要求设计小型化,然而,在光学扫描单元小型化设计时要满足焦距以及扫描角度的配置需求,即要求光学扫描单元的焦距尽可能缩短并且扫描角度要求尽可能增大,但是为了保证像高的精度,成像光学透镜的设计形状变得复杂并且制造成本较高。
发明内容
针对现有技术存在的问题,本申请提供一种小型化的光学扫描单元及低成本制造的成像光学透镜。
一方面,本申请提供一种光学扫描装置,包括:
光源,用于发射光束;
第一光学单元,用于使所述光源发射的光束在主扫描方向上准直,以及 在副扫描方向上聚焦;
光学偏转器,用于偏转所述第一光学单元出射的光束;
第二光学单元,用于将所述光学偏转器偏转的光束引导至被扫描目标表面上进行成像;
所述被扫描目标表面的像高满足以下表达式:
Y=fc×tan(B×θ)
其中,Y表示所述被扫描目标表面的像高;
fc表示所述第二光学单元的成像特性系数;
B表示所述第二光学单元的扫描系数;
θ表示所述光学扫描装置的有效扫描角度;
所述第二光学单元的有效扫描范围内的全部或者部分区域满足以下条件:0.7≤B≤0.9。
在一些实施例中,所述第二光学单元的有效扫描范围内的全部或者部分区域满足以下条件:0.76≤B≤0.82。
在一些实施例中,还包括:
光栅,设置于所述光源以及所述第一光学单元之间,用于使所述光源发射的光束成形,并使得成形后的光束入射至所述第一光学单元。
在一些实施例中,所述第一光学单元包括用于使所述光源发射的光束在主扫描方向上准直的准直透镜,以及用于使所述光源发射的光束在副扫描方向上聚焦的圆柱透镜。
在一些实施例中,所述第一光学单元包括用于使所述光源发射的光束在主扫描方向上准直以及在副扫描方向上聚焦的变形透镜。
在一些实施例中,所述光学偏转器包括设置有多个反射镜面的光学多面体,所述光学多面体用于偏转所述第一光学单元出射的光束。
在一些实施例中,所述第二光学单元使得所述光学偏转器的偏转面与所述被扫描目标表面处于共轭关系。
在一些实施例中,所述被扫描目标表面的像高可进行修正,像高修正的表达式如下:
Y 1=Y 0+ΔY
其中,Y 1为修正后的像高值,Y 0为修正前的像高值,ΔY为像高修正 值。
在一些实施例中,所述像高修正值的表达式如下:
ΔY=A n×Y n+A n-1×Y n-1+A n-2×Y n-2+…+A 1×Y+A 0
其中,ΔY为像高修正值,Y为标准像高,A 0~A n为常数。
另一方面,本申请提供一种电子成像设备,包括:
上述的光学扫描装置;
与所述光学扫描装置配合的感光鼓,所述光学扫描装置出射的光束在所述感光鼓的光感受面上形成静电潜像;
显影装置,用于将所述静电潜像显影形成碳粉图像;
转印装置,用来将所述碳粉图像转印到转印介质上;
定影装置,用来对转印介质上的被转印的碳粉图像定影。
本申请提供的光学扫描装置及电子成像设备,该光学扫描装置包括:光源,用于发射光束;第一光学单元,用于使光源发射的光束在主扫描方向上准直,以及在副扫描方向上聚焦;光学偏转器,用于偏转第一光学单元出射的光束;第二光学单元,用于将光学偏转器偏转的光束引导至被扫描目标表面上进行成像;被扫描目标表面的像高满足以下表达式:Y=fc×tan(B×θ),其中,Y表示被扫描目标表面的像高,fc表示第二光学单元的成像特性系数,B表示第二光学单元的扫描系数,θ表示光学扫描装置的有效扫描角度;第二光学单元的有效扫描范围内全部或者部分区域满足条件:0.7≤B≤0.9。在被扫描目标表面的像高表达式中,由于扫描系数B满足条件:0.7≤B≤0.9,会使得tan(B×θ)的值变小,为了维持tan(B×θ)的大小以保证像高一定,一方面,需要增加光学扫描装置的有效扫描角度θ,另一方面,在有效扫描角度θ增加后,tan(B×θ)的大小可能会增大,为了保证像高一定,也可以减小第二光学单元的成像特性系数fc,从而,结合两方面的改进可以减小光学扫描装置的体积,进而达到缩小打印机体积以及降低生产成本的目的。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本申请实施例中光学扫描装置的平面示意图;
图2为本申请实施例中光学扫描装置的侧面示意图;
图3为本申请实施例中基于表2的数据得到的像高分布曲线的示意图;
图4为本申请实施例中基于表2的数据得到的像高误差分布曲线的示意图;
图5为本申请实施例中基于表5的数据得到的像高分布曲线的示意图;
图6为本申请实施例中基于表5的数据得到的像高误差分布曲线的示意图;
图7为本申请实施例提供的光学扫描装置的实例图;
图8为本申请实施例提供的普通电子照相成像设备的结构示意图;
图9为本申请实施例提供的彩色图像形成设备的结构示意图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先对本申请涉及的专业名词进行解释说明:
1、主扫描方向:是指与光学偏转器的转动轴和第二光学单元的主光轴都垂直的方向,也可以理解为是光学偏转器偏转光源发射的光束后,使光束来回扫描的方向。
2、副扫描方向:是指与光学偏转器的转动轴平行的方向,也可以理解为与主扫描方向垂直的方向。
3、被扫描目标表面:是指第二光学单元的出射光束来回扫描所在的平面。
打印机的设备大小与打印机使用的光学扫描装置的大小相关,通常来说,光学扫描装置的体积越大,打印机的体积也越大。为了达到缩小打印机的体 积的目的,需要减小光学扫描装置的体积。光学扫描装置具备的参数包括焦距以及扫描角度等,通过缩短焦距以及增大扫描角度等方式,可以有效减小光学扫描装置的体积,从而减小打印机的体积。
然而,一方面,由于光学扫描装置具备焦距以及扫描角度的配置要求,导致光学扫描装置的体积难以减小。另一方面,为了保证像高的精度(即放大倍率),如果使用具有f-θ特性的光学扫描透镜,为了达到缩短焦距以及增大扫描角度的目的,会导致光学扫描透镜的设计形状过于复杂,且难于制造成型。
本申请提供的光学扫描装置以及电子成像设备,旨在解决现有技术的如上技术问题。
本申请提供的光学扫描装置及电子成像设备,该光学扫描装置包括:光源,用于发射光束;第一光学单元,用于使光源发射的光束在主扫描方向上准直,以及在副扫描方向上聚焦;光学偏转器,用于偏转第一光学单元出射的光束;第二光学单元,用于将光学偏转器偏转的光束引导至被扫描目标表面上进行成像;被扫描目标表面的像高满足以下表达式:Y=fc×tan(B×θ),其中,Y表示被扫描目标表面的像高,fc表示第二光学单元的成像特性系数,B表示第二光学单元的扫描系数,θ表示光学扫描装置的有效扫描角度;第二光学单元的有效扫描范围内全部或者部分区域满足条件:0.7≤B≤0.9。在被扫描目标表面的像高表达式中,由于扫描系数B满足条件:0.7≤B≤0.9,会使得tan(B×θ)的值变小,为了维持tan(B×θ)的大小以保证像高一定,一方面,需要增加光学扫描装置的有效扫描角度θ,另一方面,在有效扫描角度θ增加后,tan(B×θ)的大小可能会增大,为了保证像高一定,也可以减小第二光学单元的成像特性系数fc,从而,结合两方面的改进可以减小光学扫描装置的体积,进而达到缩小打印机体积以及降低生产成本的目的。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
在一些实施例中,提供一种光学扫描装置。
图1为本申请实施例中光学扫描装置100的平面示意图,图2为本申请实施例中光学扫描装置100的侧面示意图,如图1及图2所示,光学扫描装置100包括:光源101、第一光学单元103、光学偏转器104以及第二光学单元105。
其中,光源101用于发射光束。光源101可以是发光二极管(light-emitting diode,LED)或者激光二极管(Laser diode,LD),光源101中包括至少一个用于发射光束的发光点。光源101可以是至少一个可调制的点光源101,从而可以对光源101发出光束的尺寸进行调制。
第一光学单元103用于使光源101发射的光束在主扫描方向上准直,以及在副扫描方向上聚焦。其中,准直是指保持不同的光束之间为平行关系,聚焦是指将不同的光束会聚于同一点。
具体的,参考图1,本实施例中的主扫描方向为X方向,即第一光学单元103用于使光源101发射的光束在图1中的X方向上准直。
另外,参考图2,本实施例中的副扫描方向为Y方向,即第一光学单元103用于使光源101发射的光束在图2中的Y方向上聚焦。
光学偏转器104用于偏转第一光学单元103出射的光束,具体是沿主扫描方向将光束偏转扫描至被扫描目标表面S上进行成像。
第二光学单元105用于将光学偏转器104偏转的光束引导至被扫描目标表面S上进行成像。
具体的,第二光学单元105可以使得被光学偏转器104偏转的光束在主扫描方向上以恒定或者变化的线速度扫描到被扫描目标表面S上,第二光学单元105包括使得被光学偏转器104偏转的光束在被扫描目标表面S上进行成像的成像光学透镜,该成像光学透镜的数量可以是一个或者多个。
该成像光学透镜被配置为具有以下扫描特性被扫描目标表面S的像高满足以下表达式:
Y=fc×tan(B×θ)
其中,Y表示被扫描目标表面S的像高,fc表示第二光学单元105的成像特性系数,B表示第二光学单元105的扫描系数,θ表示光学扫描装置100的有效扫描角度;第二光学单元105的有效扫描范围内的全部或者部分区域满足以下条件:0.7≤B≤0.9。
对于上述表达式,一方面,由于扫描系数B的取值范围为0.7≤B≤0.9,也即,B×θ的值必定小于θ本身,从而,根据tan函数的函数曲线特性,有tan(B×θ)<tanθ,从而,为了维持tan(B×θ)的大小,可以相应的增大有效扫描角度θ。此外,通过设置0.7≤B≤0.9,在满足扫描要求的前提下,也可以降低装置的设计复杂度,从而更有利于制造成型。可以理解,在上述数值范围内,扫描系数B既可以是常量也可以是变量。
另一方面,在有效扫描角度θ增加后,tan(B×θ)的大小可能会增大,为了保证像高Y一定,也可以减小第二光学单元105的焦距fc,可实现减小光学扫描装置100的体积。
此外,第二光学单元105使得光学偏转器104的偏转面及被扫描目标表面处于共轭关系,从而使得成像光学透镜实现光学面倾斜误差补偿。
本实施例提供一种光学扫描装置,在被扫描目标表面的像高表达式中,由于扫描系数B满足条件:0.7≤B≤0.9,会使得tan(B×θ)的值变小,为了维持tan(B×θ)的大小以保证像高一定,一方面,需要增加光学扫描装置的有效扫描角度θ,另一方面,在有效扫描角度θ增加后,tan(B×θ)的大小可能会增大,为了保证像高一定,也可以减小第二光学单元的成像特性系数fc,从而,结合两方面的改进可以减小光学扫描装置的体积,进而达到缩小打印机体积以及降低生产成本的目的。
在一些实施例中,第二光学单元105的有效扫描范围内的全部或者部分区域满足以下条件:0.76≤B≤0.82。
具体的,在0.7≤B≤0.9的前提上,可以进一步限定第二光学单元105的扫描系数B的取值范围,即0.76≤B≤0.82,在第二光学单元105的扫描系数B的取值在该取值范围内时,可以在保证扫描质量的同时,保证光学扫描装置的体积为最佳小型化。
在一些实施例中,参考图1以及图2,光学扫描装置100还包括:光栅102,光栅102设置于光源101以及第一光学单元103之间,用于使光源101发射的光束成形,并使得成形后的光束入射至第一光学单元103。
具体的,光栅102具备开口结构,用于使光源101发射的光束成形,该 开口例如是圆形、椭圆形或者方形,或者是其他形状,本实施例对此不做限定。
在本申请图1和图2所示的结构中,光栅102设置在光源101和第一光学单元103之间仅为光栅102设置位置的示例性说明,光栅102的位置并不仅仅局限于该位置,例如,光栅102还可以是设置在光学偏转器104和第二光学单元105之间。也就是说,本实施例中,并不严格限定光栅102的设置位置,具体可以根据实际情况进行灵活调整。
在一些实施例中,第一光学单元103包括用于使光源101发射的光束在主扫描方向上准直的准直透镜,以及用于使光源101发射的光束在副扫描方向上聚焦的圆柱透镜;或者,第一光学单元103包括用于使光源101发射的光束在主扫描方向上准直以及在副扫描方向上聚焦的变形透镜。也就是说,第一光学单元103可以是仅由一个透镜构成,也可以是由两个透镜构成。
其中,准直透镜可以将光源101发射的光束在主扫描方向上变换成平行光束,圆柱透镜可以将平行光束在副扫描方向上会聚到光学偏转器104的偏转表面上。
变形透镜可以同时执行将光源101发射的光束在主扫描方向上变换成平行光束,以及将平行光束在副扫描方向上会聚到光学偏转器104的偏转表面上的功能。
可以理解,上述透镜可以由塑料材料制成,也可以由玻璃材料制成,在此不做限定。
从而,通过上述透镜设置,第一光学单元103可以起到使光源101发射的光束在主扫描方向上准直,以及在副扫描方向上聚焦的作用。
在一些实施例中,光学偏转器104包括设置有多个反射镜面的光学多面体,光学多面体用于偏转第一光学单元103出射的光束。
具体的,光学偏转器104沿主扫描方向将光束偏转扫描至被扫描目标表面上进行成像,光学偏转器104包括用于进行光束偏转的光学多面体,该光学多面体为具有多个反射镜面的旋转光学多面体,光源101发出的光束经由第一光学单元103照射至光学偏转器104中的光学多面体,从而发生光束偏 转并沿着主扫描方向朝向被扫描目标表面进行反射。
在一些实施例中,光学扫描装置100还与光学扫描装置100对应的驱动电路板连接;驱动电路板用于对被扫描目标表面的像高进行修正。
具体的,在增加光学扫描装置100的有效扫描角度θ以及减小第二光学单元105的焦距fc后,会导致像高误差增大,无法满足相应的精度要求,因此,本实施例进一步通过驱动电路板对被扫描目标表面的像高进行修正,从而保证修正后的像高满足精度要求。
在一些实施例中,驱动电路板通过以下表达式进行像高修正:
Y 1=Y 0+ΔY
其中,Y 1为修正后的像高值,Y 0为修正前的像高值,ΔY为像高修正值。
在一些实施例中,驱动电路板通过以下表达式得到像高修正值:
ΔY=A n×Y n+A n-1×Y n-1+A n-2×Y n-2+…+A 1×Y+A 0
其中,ΔY为像高修正值,Y为标准像高,A 0~A n为常数。
在一些实施例中,驱动电路板与光源101连接,驱动电路板基于像高修正值,通过控制光源101的发光频率以进行像高修正。
具体的,像高误差是由于光源101发光频率与扫描的线速度不适配引起的,例如,在线速度相同的情况下,若发光频率偏高,则会导致像高低于标准像高,造成图像压缩的情况;若发光频率偏低,则会导致像高高于标准像高,造成图像拉伸的情况。
本实施例中,驱动电路板基于像高修正值,通过控制光源101的发光频率以进行像高修正,以保证像高为正常像高。
在一些实施例中,提供进行像高修正的具体实例。
表1为本实施例中光学扫描装置100的相关光学参数:
Figure PCTCN2021118604-appb-000001
Figure PCTCN2021118604-appb-000002
表1
根据表1中的参数,基于表达式Y=fc×tan(B×θ),计算得到修正前的像高及像高误差,具体如表2所示:
Figure PCTCN2021118604-appb-000003
表2
根据表2中的数据,可以看出,修正前的像高误差无法满足相关的误差标准(在±2%以下)。
图3为本申请实施例中基于表2的数据得到的像高分布曲线的示意图,图4为本申请实施例中基于表2的数据得到的像高误差分布曲线的示意图,根据图3以及图4可以看出,像高曲线明显偏离标准像高,且像高误差也超出误差标准。
基于以上数据,本实施例对像高进行如下修正:
(1)当Y≥0时,
ΔY=-0.0000000009Y 5+0.0000001Y 4-0.00002Y 3+0.0005Y 2+0.1755Y
+0.0474
(2)当Y<0时,
ΔY=-(-0.0000000009|Y| 5+0.0000001|Y| 4-0.00002|Y| 3+0.0005|Y| 2
+0.1755|Y|+0.0474)
修正后的像高数据以及像高误差数据如表3所示:
Figure PCTCN2021118604-appb-000004
表3
基于表3中的数据可以看出,校正后的像高误差在±1%以下,满足相关 的误差标准,满足画像的精度要求。
另外,参考图3以及图4,通过修正前、后的像高曲线及像高误差的比较,进一步揭示经过多项式对画像像高的校正,像高误差明显变小并且满足画像精度要求。
在一些实施例中,提供进行像高修正的另一具体实例。
表4为本实施例中光学扫描装置100的相关光学参数:
Figure PCTCN2021118604-appb-000005
表4
根据表4中的参数,基于表达式Y=fc×tan(B×θ),计算得到修正前的像高及像高误差,具体如表5所示:
Figure PCTCN2021118604-appb-000006
表5
根据表5中的数据,可以看出,修正前的像高误差无法满足相关的误差标准(在±2%以下)
图5为本申请实施例中基于表5的数据得到的像高分布曲线的示意图,图6为本申请实施例中基于表5的数据得到的像高误差分布曲线的示意图,根据图5以及图6可以看出,像高曲线明显偏离标准像高,且像高误差也超出误差标准。
基于以上数据,本实施例对像高进行如下修正:
(1)当Y≥0时,
ΔY=
-0.000000002Y 5+0.0000004Y 4-0.00005Y 3+0.0014Y 2+0.212Y+0.1411
(2)当Y<0时,
ΔY=
-(-0.000000002|Y| 5+0.0000004|Y| 4-0.00005|Y| 3+0.0014|Y| 2
+0.212|Y|+0.1411)
修正后的像高数据以及像高误差数据如表6所示:
Figure PCTCN2021118604-appb-000007
表6
基于表6中的数据可以看出,校正后的像高误差在±1%以下,满足相关的误差标准,满足画像的精度要求。
另外,参考图5以及图6,通过修正前、后的像高曲线及像高误差的比较,进一步揭示经过多项式对画像像高的校正,像高误差明显变小并且满足画像精度要求。
图7为本申请实施例提供的光学扫描装置100的实例图,如图7所示,光学扫描装置100包括光源101、光栅102、第一光学单元103、光学偏转器 104、第二光学单元105、第三光学单元106、光源驱动电路板107、固定部件108以及光扫描单元框架109。
参考图7,光源101固定在光扫描单元框架109上,并与光源驱动电路板107电连接。光栅102安装于光扫描单元框架109上,光栅102也可以与光扫描单元框架109一体成型。第一光学单元103设置在光源101与光学偏转器104之间,并固定在光扫描单元框架109上;第二光学单元105通过两个固定部件108固定安装在光扫描单元框架109上。第三光学单元106用于聚焦经光学偏转器104偏转反射的光束,使光束聚焦在光源驱动电路板107上的光电感应器(图中未示出),使光电感应器输出行同步信号,以此保证被扫描目标表面上的图像的开始端对齐,第三光学单元106固定在光扫描单元框架109上;光源驱动电路板107可控制光源101的发光频率及行同步信号输出,光源驱动电路板107固定在光扫描单元框架109上。
在一些实施例中,提供一种电子成像设备,包括:上述各实施例的光学扫描装置、感光鼓、显影装置、转印装置以及定影装置。
其中,感光鼓具有扫描目标表面的图像载体,感光鼓与光学扫描装置配合工作,光学扫描装置出射的光束在感光鼓的光感受面上形成静电潜像;显影装置用于将修正后的静电潜像显影形成碳粉图像;转印装置用来将碳粉图像转印到转印介质上;定影装置用来对转印介质上的被转印的碳粉图像定影。
本实施例中的电子成像设备,通过使用本申请各实施例的光学扫描装置,从而可以有效缩小电子成像设备的体积,降低设备的生产成本。
在一些实施例中,提供一种普通电子照相成像设备。
图8为本申请实施例提供的普通电子照相成像设备的结构示意图,如图8所示,该普通电子照相成像设备包括:上述各实施例的光学扫描装置100、给纸单元200、搬送单元300、图像处理单元400、转印单元500、定影单元600、排纸托盘700、纸盒800以及框架900。
普通电子照相成像设备的控制系统控制光学扫描装置100发出光束K并扫描到图像处理单元400内的感光鼓401表面上,感光鼓401为光感受器,包括具有外圆周的圆柱形金属管且有预定厚度的光敏层形成在外圆周上。图 像处理单元400内的充电辊403旋转并与感光鼓401接触,并且使感光鼓401表面充电。光学扫描装置100扫描根据图像信息调节的光束K,从而在经过充电辊403充电后的感光鼓401表面的成像面上形成静电潜像。在此情况下,随着感光鼓401的旋转,成像面在副扫描方向上移动,光学扫描装置100与水平同步信号同步以在主扫描方向上将光束扫描到成像面上,因此,静电潜像形成在感光鼓401表面的成像面上。显影辊404与感光鼓401接触并将调色剂转移至感光鼓401的表面,从而形成调色剂图像,此过程称为显影。
另一方面,记录介质P叠放在纸盒800中,给纸单元200根据打印机的指令转动将记录介质P依次送至搬送单元300,搬送单元再将记录介质P送至图像处理单元400与转印单元500之间并与感光鼓401表面接触。随着感光鼓401的旋转,感光鼓401表面的调色剂图像在转印单元500的作用下被转印至记录介质P上,此过程称为转印,转印单元500具有一定的电压,能使感光鼓401表面上的调色剂图像更容易地被吸附到记录介质P上。另外,在转印之后感光鼓401表面上的残留的调色剂会被清洁单元402清洁去除。
转移至记录介质P上的调色剂图像经过定影单元600的加热辊601加热而熔化并在加压辊602的压力作用下被固定至记录介质P上,此过程称为定影。
经过定影后的记录介质P,在排出辊对603搬运下排出至打印机外部的排纸托盘700上,由此完成整个打印过程。
本实施例中的普通电子照相成像设备,通过使用本申请各实施例的光学扫描装置100,从而可以有效缩小普通电子照相成像设备的体积。
在一些实施例中,提供一种彩色图像形成设备。
图9为本申请实施例提供的彩色图像形成设备的结构示意图,如图9所示,该彩色图像形成设备包括:感光鼓201Y-K(Y、M、C、K)、充电辊202Y-K、显影辊203Y-K、粉仓204Y-K、转印带205、二次转印辊206、进入纸盒207、手动送纸盘208、进纸辊209、搬送辊210、光学扫描装置100、热辊212、压辊213、排出辊214和排出纸盒215。
光学扫描装置100具体为单个LSU(Laser scanning unit,激光扫描单元)的形式,包括四束光路。四个充电辊202Y-K用于分别给四个感光鼓201Y-K 表面充电,LSU 100的四束光路分别发出激光束在感光鼓201Y-K表面形成静电潜像,四个显影辊203Y-K用于分别在感光鼓201Y-K表面上显影形成一个颜色的碳粉图像,彩色图像形成设备采用二次转印的方式,即四个感光鼓201Y-K依次将碳粉图像转印到转印带205上,然后转印带205上形成的彩色碳粉图像经二次转印辊206二次转印到纸张上。进入纸盒207用于存放纸张,进纸辊209用于将存放纸张搬送至搬送路径。搬送辊210用于将纸张搬送到二次转印辊206处。
二次转印辊206把成像后的纸张搬送到热辊212和压辊213的夹持区,热辊212和压辊213用于对纸张上的碳粉图像进行定影,热辊212可以采用陶瓷加热方式,热辊212和压辊213将定影后的纸张搬送到排出辊214,排出辊214将纸张排出到排出纸盒215并堆叠起来。
本实施例中的彩色图像形成设备,通过使用本申请各实施例的光学扫描装置100,从而可以有效缩小彩色图像形成设备的体积。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求书指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求书来限制。

Claims (10)

  1. 一种光学扫描装置,包括:
    光源,用于发射光束;
    第一光学单元,用于使所述光源发射的光束在主扫描方向上准直,以及在副扫描方向上聚焦;
    光学偏转器,用于偏转所述第一光学单元出射的光束;
    第二光学单元,用于将所述光学偏转器偏转的光束引导至被扫描目标表面上进行成像;
    其特征在于,所述被扫描目标表面的像高满足以下表达式:
    Y=fc×tan(B×θ)
    其中,
    Y表示所述被扫描目标表面的像高;
    fc表示所述第二光学单元的成像特性系数;
    B表示所述第二光学单元的扫描系数;
    θ表示所述光学扫描装置的有效扫描角度;
    所述第二光学单元的有效扫描范围内的全部或者部分区域满足以下条件:0.7≤B≤0.9。
  2. 根据权利要求1所述的装置,其特征在于,所述第二光学单元的有效扫描范围内的全部或者部分区域满足以下条件:0.76≤B≤0.82。
  3. 根据权利要求1所述的装置,其特征在于,还包括:
    光栅,设置于所述光源以及所述光学偏转器之间,用于使所述光源发射的光束成形,并使得成形后的光束入射至所述第一光学单元。
  4. 根据权利要求1所述的装置,其特征在于,所述第一光学单元包括用于使所述光源发射的光束在主扫描方向上准直的准直透镜,以及用于使所述光源发射的光束在副扫描方向上聚焦的圆柱透镜。
  5. 根据权利要求1所述的装置,其特征在于,所述第一光学单元包括用于使所述光源发射的光束在主扫描方向上准直以及在副扫描方向上聚焦的变形透镜。
  6. 根据权利要求1所述的装置,其特征在于,所述光学偏转器包括设置有多个反射镜面的光学多面体,所述光学多面体用于偏转所述第一光学单元 出射的光束。
  7. 根据权利要求1所述的装置,其特征在于,所述第二光学单元使得所述光学偏转器的偏转面与所述被扫描目标表面处于共轭关系。
  8. 根据权利要求1-7任一项所述的装置,其特征在于,所述被扫描目标表面的像高可进行修正,像高修正的表达式如下:
    Y 1=Y 0+ΔY
    其中,Y 1为修正后的像高值,Y 0为修正前的像高值,ΔY为像高修正值。
  9. 根据权利要求8所述的装置,其特征在于,所述像高修正值的表达式如下:
    ΔY=A n×Y n+A n-1×Y n-1+A n-2×Y n-2+…+A 1×Y+A 0
    其中,ΔY为像高修正值,Y为标准像高,A 0~A n为常数。
  10. 一种电子成像设备,其特征在于,包括:
    权利要求1至9任一项所述的光学扫描装置;
    与所述光学扫描装置配合的感光鼓,所述光学扫描装置出射的光束在所述感光鼓的光感受面上形成静电潜像;
    显影装置,用于将所述静电潜像显影形成碳粉图像;
    转印装置,用来将所述碳粉图像转印到转印介质上;
    定影装置,用来对转印介质上的被转印的碳粉图像定影。
PCT/CN2021/118604 2020-09-22 2021-09-15 光学扫描装置及电子成像设备 WO2022063009A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871380.8A EP4202554A4 (en) 2020-09-22 2021-09-15 OPTICAL SCANNING DEVICE AND ELECTRONIC IMAGING DEVICE
US18/187,656 US20230236523A1 (en) 2020-09-22 2023-03-21 Optical scanning apparatus and electronic image-forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011002996.1 2020-09-22
CN202011002996.1A CN112034692A (zh) 2020-09-22 2020-09-22 光学扫描装置及电子成像设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/187,656 Continuation US20230236523A1 (en) 2020-09-22 2023-03-21 Optical scanning apparatus and electronic image-forming apparatus

Publications (1)

Publication Number Publication Date
WO2022063009A1 true WO2022063009A1 (zh) 2022-03-31

Family

ID=73574977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118604 WO2022063009A1 (zh) 2020-09-22 2021-09-15 光学扫描装置及电子成像设备

Country Status (4)

Country Link
US (1) US20230236523A1 (zh)
EP (1) EP4202554A4 (zh)
CN (1) CN112034692A (zh)
WO (1) WO2022063009A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034692A (zh) * 2020-09-22 2020-12-04 珠海奔图电子有限公司 光学扫描装置及电子成像设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980348A (ja) * 1995-09-11 1997-03-28 Brother Ind Ltd 光走査装置
CN1932579A (zh) * 2005-09-12 2007-03-21 三星电子株式会社 光扫描单元
US7800806B1 (en) * 2009-03-31 2010-09-21 E-Pin Optical Industry Co., Ltd. Two-element Fθ lens with short focal distance for laser scanning unit
CN104345451A (zh) * 2013-08-02 2015-02-11 佳能株式会社 光扫描设备及使用该光扫描设备的图像形成设备
CN109975976A (zh) * 2019-05-17 2019-07-05 珠海奔图电子有限公司 光学扫描单元及电子照相成像装置
CN112034692A (zh) * 2020-09-22 2020-12-04 珠海奔图电子有限公司 光学扫描装置及电子成像设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476955B1 (en) * 1999-09-13 2002-11-05 Canon Kabushiki Kaisha Multi-beam scanning optical system and image forming apparatus using it
US8558926B2 (en) * 2005-12-05 2013-10-15 Nikon Corporation Distortion correction method, distortion correction program, image processing apparatus, interchangeable lens, camera, and camera system
JP5264116B2 (ja) * 2007-07-26 2013-08-14 キヤノン株式会社 結像特性変動予測方法、露光装置、並びにデバイス製造方法
JP5528158B2 (ja) * 2010-03-01 2014-06-25 株式会社日立国際電気 色ずれ補正装置
JP6562650B2 (ja) * 2015-02-17 2019-08-21 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法および画像処理プログラム
JP6188899B2 (ja) * 2016-09-20 2017-08-30 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
JP6984314B2 (ja) * 2017-10-27 2021-12-17 京セラドキュメントソリューションズ株式会社 光走査装置及び該光走査装置を備えた画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980348A (ja) * 1995-09-11 1997-03-28 Brother Ind Ltd 光走査装置
CN1932579A (zh) * 2005-09-12 2007-03-21 三星电子株式会社 光扫描单元
US7800806B1 (en) * 2009-03-31 2010-09-21 E-Pin Optical Industry Co., Ltd. Two-element Fθ lens with short focal distance for laser scanning unit
CN104345451A (zh) * 2013-08-02 2015-02-11 佳能株式会社 光扫描设备及使用该光扫描设备的图像形成设备
CN109975976A (zh) * 2019-05-17 2019-07-05 珠海奔图电子有限公司 光学扫描单元及电子照相成像装置
CN112034692A (zh) * 2020-09-22 2020-12-04 珠海奔图电子有限公司 光学扫描装置及电子成像设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4202554A4

Also Published As

Publication number Publication date
EP4202554A1 (en) 2023-06-28
CN112034692A (zh) 2020-12-04
US20230236523A1 (en) 2023-07-27
EP4202554A4 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
US7050209B2 (en) Scanning optical apparatus and image forming apparatus using the same
JP2001021824A (ja) 光走査装置および画像形成装置
JP6045455B2 (ja) 光走査装置及びそれを用いた画像形成装置
KR20030017433A (ko) 주사형 광학장치와 이를 이용한 화상형성장치
US9019333B2 (en) Optical scanning apparatus and image forming apparatus utilizing a rotational polygon mirror
US11803050B2 (en) Optical scanning device and electronic imaging apparatus
JP2009271353A (ja) 光走査装置及びそれを用いた画像形成装置
US20230236523A1 (en) Optical scanning apparatus and electronic image-forming apparatus
JP5309234B2 (ja) 光走査装置及びこれを用いた画像形成装置
JP4378081B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2013054113A (ja) 光走査装置及びそれを用いた画像形成装置
JP2004070109A (ja) 光走査装置及びそれを用いた画像形成装置
US10012830B2 (en) Optical scanning device and image forming apparatus
WO2020134718A1 (zh) 光学扫描设备和图像形成设备
JP2010169782A (ja) 光走査装置の照射位置調整方法
CN113009797A (zh) 光学扫描装置及电子成像设备
CN112612192B (zh) 一种光学扫描单元及图像形成装置
JP6188899B2 (ja) 光走査装置及びそれを用いた画像形成装置
JPH0843753A (ja) 光走査装置
JP2019095647A (ja) 光走査装置及びそれを備える画像形成装置
JP2013174789A (ja) 光走査装置及びこれを用いた画像形成装置
US20060017995A1 (en) Optical scanning device and color imaging apparatus
JP2004317790A (ja) 光走査装置
JP6429944B1 (ja) 光走査装置及びそれを備える画像形成装置
JP2002372678A (ja) 走査光学装置及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871380

Country of ref document: EP

Effective date: 20230320

NENP Non-entry into the national phase

Ref country code: DE