WO2022062926A1 - 一种多节点服务器、机柜式服务器以及刀片式服务器 - Google Patents

一种多节点服务器、机柜式服务器以及刀片式服务器 Download PDF

Info

Publication number
WO2022062926A1
WO2022062926A1 PCT/CN2021/117848 CN2021117848W WO2022062926A1 WO 2022062926 A1 WO2022062926 A1 WO 2022062926A1 CN 2021117848 W CN2021117848 W CN 2021117848W WO 2022062926 A1 WO2022062926 A1 WO 2022062926A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
node
server
hard disk
nodes
Prior art date
Application number
PCT/CN2021/117848
Other languages
English (en)
French (fr)
Other versions
WO2022062926A8 (zh
Inventor
姚益民
樊义威
黄城
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21871297.4A priority Critical patent/EP4206862A4/en
Publication of WO2022062926A1 publication Critical patent/WO2022062926A1/zh
Publication of WO2022062926A8 publication Critical patent/WO2022062926A8/zh
Priority to US18/187,008 priority patent/US20230232564A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • G06F1/187Mounting of fixed and removable disk drives
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/189Power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/12Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
    • G11B33/125Disposition of constructional parts in the apparatus, e.g. of power supply, of modules the apparatus comprising a plurality of recording/reproducing devices, e.g. modular arrangements, arrays of disc drives
    • G11B33/126Arrangements for providing electrical connections, e.g. connectors, cables, switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1487Blade assemblies, e.g. blade cases or inner arrangements within a blade
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source

Definitions

  • the present application relates to the technical field of servers, and in particular, to a multi-node server, a cabinet server and a blade server.
  • each multi-node can operate as an independent server.
  • This type of server can also be called a multi-node server.
  • a multi-node server can deploy multiple nodes, its computing capability is relatively strong, and the power consumption is relatively large. Therefore, the multi-node server needs to have strong heat dissipation capacity.
  • the present application provides a server, a cabinet-type server and a blade-type server, which are used to improve the heat dissipation capability of the server.
  • an embodiment of the present application provides a multi-node server.
  • the multi-node server includes a plurality of nodes and a hard disk backplane; each node includes a power module, and the power module is built in the node.
  • the hard disk backplane is connected to a plurality of nodes through a first connector; each node can be connected to the first connector through a cable, and the hard disk backplane can also be connected to the first connector through a cable.
  • the power module of each node is connected to the power supply interfaces of other nodes through a second connector, wherein the first connector and the second connector are arranged at intervals, and the air flowing into the air inlet of the multi-node server passes through the first connector and the second connector. The space between the second connectors communicates.
  • the system backplane connection is no longer set in the multi-node server, but the system backplane is replaced by the first connector and the second connector with smaller volumes, so that the connection between the hard disk backplane and multiple nodes and between the nodes is ensured.
  • the power supply module and the power supply interface of other nodes can be connected, which can ensure the reliability of the node server, and also enable the multi-node server to have better air circulation, improve the ventilation volume of the multi-node server, and improve the multi-node server.
  • the cooling capacity of the server is no longer set in the multi-node server, but the system backplane is replaced by the first connector and the second connector with smaller volumes, so that the connection between the hard disk backplane and multiple nodes and between the nodes is ensured.
  • the power supply module and the power supply interface of other nodes can be connected, which can ensure the reliability of the node server, and also enable the multi-node server to have better air circulation, improve the ventilation volume of the multi-node
  • the built-in node of the power module can effectively reduce the volume occupied by the external power module in the multi-node server, reduce the obstruction to the multi-node server's stroke, and can also ensure the heat dissipation capability of the multi-node service.
  • the second connector and the first connector are located in the same plane, and the plane is located between the plurality of nodes and the hard disk backplane.
  • the first connector is located between multiple nodes and the hard disk backplane, so that the first connector can be better connected with multiple nodes and the hard disk backplane, and the second connector and the first connector are located in the same
  • the plane can improve the rationality of component arrangement in the multi-node server, and effectively utilize the space in the multi-node server.
  • the power module of each node is connected to the second connector through copper strips, and there is a gap between the power modules connecting the multiple nodes and the multiple copper strips of the second connector.
  • the power module and the second connector can be connected by a flat copper bar, which can reduce the occupied volume, so that more wind can circulate in the multi-node server.
  • there are multiple copper bars between The interval also ensures the circulation of the multi-node server stroke.
  • the first connector is disposed near the side of the multi-node server, for example, the first connector may be adjacent to the side of the multi-node server. In this way, the blocking of the wind flowing into the multi-node server can be reduced, and the heat dissipation capability of the multi-node server can be ensured.
  • the second connector is arranged at the position facing the power supply interface of the node, so that the second connector is connected with the power supply interface.
  • the second connector is also arranged in the middle of the multi-node server, away from the multi-node server. The side of the node server, so that the second connector can be close to the power supply interface of each node, so as to ensure the rationality of the deployment of the multi-node server component.
  • the power module and the power supply interface of the node are located on different sides of the node, and the copper bars connecting the power modules of multiple nodes can be bent along the side of the multi-node server to the plane where the second connector is located, connected to the second connector.
  • the copper strips along the side of the multi-node server can further reduce the wind resistance of the copper strips to the wind in the multi-node server, so as to ensure the heat dissipation capability of the multi-node server.
  • the copper bars of the power modules connecting multiple nodes are fixed on the side surface of the second connector through the first structure; Make sure that the copper bar can be connected to the second connector.
  • the copper strip is fixed at the junction of the side surface of the multi-node server and the plane where the second connector is located through the second structural member.
  • the second structural property can ensure that the copper strip can maintain a stable state at the interface.
  • the hard disk backplane is parallel to the direction of the air flowing in from the air inlet in a multi-node service or the direction of air flowing out of the air outlet in a multi-node server.
  • the hard disk backplane is parallel to the wind direction, which can reduce the obstruction to the wind and improve the heat dissipation capability of the multi-node server.
  • At least one hard disk is installed on the hard disk backplane, and the hard disk is installed on the hard disk backplane in a direction parallel to the direction of the air flowing in from the air inlet or the direction of the air flowing out of the air outlet.
  • the hard disk is installed on the hard disk backplane along the wind direction, so that the obstruction of the hard disk to the wind in the multi-node server can be greatly reduced, the ventilation volume is increased, and the heat dissipation capability of the multi-node server is ensured.
  • the hard disk backplane includes multiple layers of PCBs, each of which is arranged in parallel. That is, each layer of PCB is parallel to the wind direction flowing into or out of the server, and each layer of PCB is provided with a hard disk slot, and each hard disk slot can be installed with a hard disk in the server.
  • the backplane adopts a layered structure, and on the premise of ensuring the ventilation volume in the server, it can also ensure that a sufficient number of hard disks can be installed on the backplane.
  • the multi-node service further includes a fan located between the hard disk backplane and the first connector, or between the hard disk backplane and the plurality of nodes.
  • the fan can generate wind and cause the wind to flow.
  • the fan is located between the hard disk backplane and the first connector, so that the wind generated by the fan can quickly pass through the main components in the multi-node server, reducing the heat accumulated on these components.
  • the height of the multi-node server is 2U
  • the number of nodes is 4
  • the multi-node server includes N memory
  • N is a positive integer greater than 16.
  • the multi-node server omits the external power module and the system backplane, the usable volume is increased, so that more memory can be set in the multi-node server, which improves the performance of the multi-node server. Storage capacity of multi-node servers.
  • an embodiment of the present invention provides a rack-type server, where the rack-type server includes one or more of the first aspect and the server provided by any design of the first aspect.
  • an embodiment of the present invention provides a blade server, where the blade server includes one or more of the first aspect and the server provided by any design of the first aspect.
  • 1A is a schematic diagram of a server structure
  • 1B is a schematic structural diagram of a hard disk backplane
  • 1C is a schematic structural diagram of a system backplane
  • 2A is a schematic structural diagram of a multi-node server provided by the application.
  • 2B is a schematic diagram of the connection between a first connector, a hard disk backplane, and a node provided by the application;
  • 3A is a schematic diagram of a connection between a first connector, a hard disk backplane, and a node provided by the application;
  • 3B is a schematic structural diagram of a first connector provided by the application.
  • FIG. 4 is a schematic structural diagram of a node provided by the present application.
  • 5A is a schematic diagram of the connection between a second connector, a power supply interface, and a power supply module provided by the application;
  • 5B is a schematic diagram of the connection between a second connector, a power supply interface, and a power supply module provided by the application;
  • FIG. 6 is a schematic diagram of the connection between a second connector, a power supply interface, and a power supply module provided by the application;
  • FIG. 7A is a schematic structural diagram of a first connector and a second connector provided by the application.
  • FIG. 7B is a schematic structural diagram of a first connector and a second connector provided by the application.
  • FIG. 8 is a schematic structural diagram of a hard disk backplane provided by the application.
  • 9A is a schematic diagram of the arrangement of multilayer PCBs in a hard disk backplane provided by the application.
  • 9B is a schematic diagram of the arrangement of multilayer PCBs in a hard disk backplane provided by the application.
  • FIG. 10 is a schematic structural diagram of a server provided by this application.
  • FIG. 1A it is a schematic top view of a multi-node server.
  • the multi-node server includes a plurality of nodes, a hard disk backplane, a system backplane, a fan, and an external power supply module.
  • the power module is arranged on one side of the node, and is connected to multiple nodes of the multi-node server through the system backplane, so as to supply power to the multiple nodes.
  • the hard disk backplane can also be connected to multiple nodes of the multiple node servers through the system backplane, so that the multiple nodes can perform read and write operations on the hard disks installed on the hard disk backplane.
  • the fan is arranged between the hard disk backplane and the system backplane.
  • the fan is used to generate cold air to cool the components in the server.
  • the hard disk backplane can accommodate the hard disks in the server.
  • the backplane of the hard disk and the backplane of the system are perpendicular to the wind direction in the server, which hinders the airflow in the server to a certain extent.
  • FIG. 1B it is a schematic diagram of the structure of the hard disk backplane.
  • the hard disk backplane can be installed with hard disks in the server.
  • the hard disk backplane can also be provided with ventilation holes.
  • Some components need to be deployed on the backplane of the hard disk. There are limited positions for openings on the backplane of the hard disk. Only a few ventilation holes can be set on the backplane of the hard disk. Fewer ventilation holes cannot effectively improve the heat dissipation capacity of the server.
  • FIG. 1C it is a schematic diagram of the structure of the system backplane.
  • the system backplane can realize the connection between the power module and multiple nodes, and the connection between the hard disk backplane and multiple nodes.
  • the system backplane is a printed circuit board (printed circuit board). board, PCB), some components also need to be deployed on it. Similar to the hard disk backplane, only a few ventilation holes can be set on the system backplane.
  • the arrangement positions of components such as the system backplane, hard disk backplane, multiple nodes, and power modules in the multi-node server and the structure of the components reduce the air circulation of the server and affect the heat dissipation capacity of the multi-node server. .
  • FIG. 2A is a schematic structural diagram of the multi-node server. It includes a plurality of nodes 110 and a hard disk backplane 120 , and each node 110 includes a built-in power module 111 .
  • the plurality of nodes 110 may be connected to the hard disk backplane 120 through the first connector 130 .
  • the second connectors 140 are respectively connected to the power module 111 of each node 110 and the power supply interface 112 of each node 110 . That is, the power module of each node 110 can be connected to the power supply interface 112 of other nodes 110 through the second connector. The connection between the power supply interface 112 of the node 110 and the power supply modules 111 of other nodes 110 can be established through the second connector 140 .
  • FIG. 2A only part of the connections between the power module 111 and the power supply interface 112 of the node 110 and the second connector 140 are drawn.
  • the connection manner of the power module 111 and the power supply interface 110 of the other nodes 110 to the second connector 140 is similar to the connection manner shown in FIG. 2A .
  • the first connector 130 and the second connector 140 may be arranged at intervals, and the wind flowing into the air inlet of the multi-node server 100 can circulate through the interval between the first connector 130 and the second connector 140 .
  • the first connector 130 and the second connector 140 can realize the function of the system backplane, and the volumes of the first connector 130 and the second connector 140 are opposite to each other. Smaller, there is a gap between the first connector 130 and the second connector 140 , which can increase the ventilation volume in the multi-node server 100 and improve the heat dissipation capability of the multi-node server 100 .
  • the first connector and the second connector are described below:
  • FIG. 2B a schematic diagram of the connection between the first connector 130 , the plurality of nodes 110 , and the hard disk backplane 120 is provided in this embodiment of the present application.
  • the plurality of nodes 110 are connected to the hard disk backplane 120 through the first connector 130 .
  • the plurality of nodes 110 are connected to the first connector 130 through cables, and the hard disk backplane 120 is connected to the first connector 130 through cables.
  • a system backplane with a relatively large volume is no longer arranged between the multiple nodes 110 and the hard disk backplane 120 , but a connection with the hard disk backplane 120 is established by using the first connector 130 with a small volume.
  • the volume occupied by the first connector 130 is smaller, which can reduce the obstruction to the wind circulating in the multi-node server, and increase the ventilation volume in the server.
  • the cooling capacity of the node server is smaller.
  • FIG. 3A which is a schematic structural diagram of a first connector 130 provided in an embodiment of the present application
  • the first connector 130 is located between the plurality of nodes 110 and the hard disk backplane 120
  • the first connector 130 includes The first interface 131 and the second interface 132
  • the first interface 131 faces the plurality of nodes 110
  • the first interface 131 is connected to the plurality of nodes 110
  • the second interface 132 faces the hard disk backplane 120
  • the second interface 132 is connected to the hard disk
  • the backplane 120 is connected.
  • the shapes of the first interface 131 and the second interface 132 are matched with the size of the cable that requires the first interface 131 and the second interface 132 .
  • the multiple nodes 110 and the system backplane are connected to the interfaces corresponding to the first connectors 130 through cables, that is, the multiple nodes 110 are connected to the first interface 131 through cables, and the system backplane is connected to the first interface 131 through cables.
  • the cable is connected to the second interface 132 .
  • the cables can be integrated, for example, the cables connecting the plurality of nodes 110 and the first interface 131 are integrated into a bundle and connected to the first interface 131 .
  • the size of the first interface 131 can be matched with the cross-sectional area of the integrated cable, which can further reduce the size of the first connector 130 .
  • the size of the second interface 132 is also similar, and can match the cross-section of the integrated cable.
  • FIG. 3B which is a schematic diagram of the side where the first interface 131 is located in the first connector 130
  • the structure of the second interface 132 of the first connector 130 is similar to the structure of the side where the first interface 131 is located.
  • the first interface 131 on the first connector 130 can be designed to match the cross-section of the integrated cable, for example, the first interface
  • the area of 131 and the second interface 132 is the same as the area of the cross section of the integrated cable. In this way, the volume occupied by the first connector 130 is small, which can ensure that more wind can circulate in the server.
  • each node 110 in the multi-node server may be a built-in node 110 of the power module 111 , that is, each node 110 A power supply module 111 is provided inside, and the power supply module 111 provided inside each node 110 can supply power to the node where it is located. That is to say, an external power supply module 111 is no longer provided outside each node 110 of the multi-node server. In this way, it is no longer necessary to set a system backplane, and each node 110 is no longer connected to the external power supply module 111 through the system backplane.
  • a node with a built-in power supply module 111 can ensure the normal operation of the node.
  • the power supply module 111 of the other node can be used to supply power to the node. to ensure that the node can still work normally.
  • FIG. 5A a schematic diagram of connection between a second connector 140 and power supply interfaces 112 of multiple nodes 110 and power modules 111 of multiple nodes 110 provided by an embodiment of the present application, the second connector 140 is respectively It is connected to the power supply module 111 of each node 110 and the power supply interface 112 of each node 110 .
  • connection between the power supply interface 112 of the node 110 and the power supply modules 111 of other nodes can be established through the second connector 140, so that when the power supply module 111 of one node 110 fails, the power supply modules 111 of the other nodes 110 can be connected through the second connection
  • the device 140 is connected to the node to supply power to the node, so that the node can work normally.
  • the embodiment of the present application does not limit the shape and arrangement position of the second connector 140, and the arrangement position of the second connector 140 is related to the position of the power module 111 of each node 110 and the power supply interface 112 of each node 110,
  • the power supply module 111 of the node and the power supply interface 112 of the node are located on the same side of the node, and the second connector 140 may be located close to the power supply module 111 of the node and the power supply interface 112 of the node, as shown in FIG.
  • the power supply module 111 of the node and the power supply interface 112 of the node are located on different sides of the node, and the second connector 140 may be disposed near the power supply module 111 of each node 110 or the power supply interface 112 of each node 110 .
  • the power supply module 111 of the node and the power supply interface 112 of the node are located on different sides of the node, and the second connector 140 can be disposed near the power supply interface 112 of each node 110 , the second connector 140 It may be located between the plurality of nodes 110 and the hard disk backplane 120 , and the power module 111 of each node 110 is connected to the second connector 140 through a connecting wire.
  • connection wire used to connect the power module 111 of each node 110 to the second connector 140 .
  • the connection wire may be a copper bar, and the copper bar has strong conductivity, which can ensure The second connector 140 and the power module 111 of each node 110 can achieve a better connection effect.
  • the copper strip has strong plasticity and can better fit the arrangement of various components in the multi-node server. The flat form is used, the volume is small, and it will not cause a large wind resistance to the wind of the multi-node server.
  • the connecting wire can also be a connecting wire of other materials.
  • FIG. 6 it is a schematic structural diagram of a second connector 140 according to an embodiment of the present application.
  • the second connector 140 may be connected to the power module 111 of each node 110 through copper bars.
  • the second connector 140 is then connected to the power supply interface 112 of each node 110 .
  • the plurality of nodes 110 are set in a hierarchical manner.
  • the node 110A and the node 110B are located in the upper layer, and the node 110C and the node 110D are located in the lower layer.
  • the power supply module 111 of each node 110 and the power supply interface 112 of the node 110 are located on different sides, and the copper bar of the power supply module 111 connected to the node 110A extends along the side of the multi-node server 100 to the second connector The plane where 140 is located. If the second connector 140 is disposed near the side of the multi-node server 100 , the copper bar can be directly connected to the second connector 140 along the side of the multi-node server 100 . In FIG.
  • the second connector 140 is disposed at a side position away from the multi-node server 100, for example, in the middle position of the multi-node server 100 (that is, not close to either side of the multi-node server 100, away from the multi-node server 100).
  • the distance value on either side of the multi-node server 100 is greater than the preset value).
  • the copper strip can be bent to the plane where the second connector 140 is located along the side surface of the multi-node server 100 , and is connected to the second connector 140 .
  • the two copper bars are parallel to the wind direction in the server, and there is a gap between the two copper bars, so that the wind in the multi-node server can circulate through the gap.
  • one or more structural members may be added to fix the copper bar.
  • two structural members are exemplarily drawn, namely the structural member 210 and the The structural member 220, the structural member 210 is located at the junction of the side of the multi-node server 100 and the plane where the second connector 140 is located, and the structural member 210 can fix the copper strip at the junction to ensure the stability of the copper strip .
  • the number of copper bars and the number of structural members 210 are not limited here.
  • One structural member 210 may fix one copper bar at the junction, or may fix multiple copper bars at the junction.
  • the structural member 220 is located on the side of the second connector 140 , and the structural member 220 can fix the copper bar on the side of the second connector 140 to ensure that the copper bar can be connected to the second connector 140 , and also ensures that the copper bar can be connected to the second connector 140 .
  • the stability of the copper bars is also not limited here.
  • One structural member 220 may fix one copper bar on the side surface of the second connector 140 , or may fix multiple copper bars on the side surface of the second connector 140 .
  • the first connector 130 and the second connector 140 may be deployed in the same plane, and the plane may be located between the hard disk backplane 120 and the plurality of nodes 110 , as shown in FIG. 7A , which is the first connector 130 and the second connector 140 are schematic diagrams, the first connector 130 can realize the connection between multiple nodes 110 and the hard disk backplane 120, and the second connector 140 can realize the connection between the built-in power module 111 of each node 110 and other nodes. That is, the first connector 130 and the second connector 140 can realize the function of the system backplane in the multi-node server shown in FIG. 1 , but compared with the system backplane in FIG. 1C , the first connector 130 is connected to the second The volume occupied by the connector 140 is small, and the second connector 140 is connected by connecting wires (such as copper bars) when connecting the power modules 111 of each node. the flow of wind.
  • wires such as copper bars
  • the first connector 130 is disposed at a position close to the side of the multi-node server 100 , for example, it may be next to the multi-node server 100 . side.
  • the second connector 140 is arranged in a middle position, away from the side of the multi-node server 100 .
  • there are more gaps between the first connector 130 and the second connector 140 so that the wind in the multi-node server can be better circulated, and the multi-node server can be improved.
  • the cooling capacity of the server is a schematic plan view of the first connector 130 and the second connector 140 .
  • the system backplane in the multi-node server is replaced by the first connector 130 and the second connector 140.
  • the hard disk backplane 120 in the multi-node server a design that can improve the heat dissipation capability of the multi-node server can also be adopted.
  • a kind of hard disk backplane 120 provided in the embodiment will be described.
  • FIG. 8 which is a schematic diagram of a hard disk backplane 120 of a multi-node server provided by an embodiment of the present application
  • the hard disk backplane 120 is parallel to the wind direction of the air inlet in the multi-node service, and may also be parallel to the multi-node service. The direction of the wind flowing out of the air outlet in the server.
  • the wind direction of the inflow of the air inlet and the wind direction of the outflow from the air outlet are taken as an example for illustration.
  • the hard disk backplane 120 and the air inflow from the air inlet are not the same. Either the wind direction is flat or the wind direction flowing out of the air outlet is parallel.
  • the hard disk backplane 120 can be abstracted as a space plane (the space plane can be called the space plane corresponding to the hard disk backplane 120 ),
  • the wind direction of the inflow from the air inlet (or the wind direction of the outflow from the air outlet) can be abstracted as a set of spatial straight lines (the set of spatial straight lines can be referred to as the spatial straight line corresponding to the inflowing wind direction of the air inlet or the spatial straight line corresponding to the outflow direction of the air outlet).
  • the fact that the hard disk backplane 120 is parallel to the wind direction flowing into the air inlet means that the space plane corresponding to the hard disk backplane 120 is parallel to the space corresponding to the wind direction flowing into the air inlet.
  • the space plane corresponding to 120 is parallel to the space line corresponding to the wind direction flowing out of the air outlet.
  • the hard disk backplane 120 is arranged along the width direction of the multi-node server (the width direction refers to the direction between the left and right sides of the multi-node server), that is, the hard disk backplane Both ends of the 120 can be respectively fixed on the left and right sides of the multi-node server.
  • the hard disk backplane 120 is parallel to the air flow direction of the air inlet.
  • the hard disk backplane 120 is arranged in a direction parallel to the wind direction (such as the inflow direction of the air inlet and the wind direction of the air outlet).
  • the ventilation volume of the server can be effectively increased, thereby improving the cooling capacity of the multi-node server.
  • the hard disk When the hard disk is installed on the hard disk backplane 120 , the hard disk can be installed on the hard disk backplane 120 along a direction parallel to the hard disk backplane 120 , so that the hard disk is also parallel to the wind direction flowing into the air inlet.
  • the hard disks installed on the hard disk backplane 120 will not greatly hinder the wind entering the multi-node server, and further ensure the ventilation volume of the multi-node server.
  • the structure of the hard disk backplane 120 will be described below:
  • the hard disk backplane 120 may include one or more layers of PCBs 121 , and one or more hard disk slots may be provided on one layer of the PCB 121 , and the hard disk slots can be inserted into the hard disks.
  • the installation direction of the hard disk please refer to the above description, which will not be repeated here.
  • the multi-layer PCB 121 is arranged in parallel, and there are various ways for the multi-layer PCB 121 to be arranged in parallel.
  • the multi-layer PCB 121 may be located in the same plane, or may be located in a plurality of different parallel planes respectively. Here are a few of them:
  • the hard disk backplane 120 includes a multi-layer PCB 121 , and the multi-layer PCB 121 is located in the same plane, and the plane and the wind direction flowing into the air inlet parallel.
  • the multilayer PCBs 121 in the hard disk backplane 120 are arranged side by side along a direction parallel to the wind direction flowing into the air inlet.
  • the multi-layer PCBs 121 may be spaced and arranged in a relatively loose manner; or there may be no space, and the multi-layer PCBs 121 may be closely arranged.
  • the multi-layer PCB 121 is located in the same plane, and the wind entering the multi-node server is greatly reduced by the obstruction of the hard disk backplane 120, which increases the air volume circulating in the entire multi-node server and improves the heat dissipation capacity of the multi-node server. .
  • the hard disk backplane 120 includes a multi-layer PCB 121 , the multi-layer PCB 121 is located in a plurality of different parallel planes, and the plurality of parallel The plane is parallel to the direction of the wind flowing into the air inlet. That is, there are PCBs 121 located in different planes in the multilayer PCB 121 .
  • the number of the plurality of planes is not limited here, and the number of the plurality of parallel planes may be the same as the number of layers of the multilayer PCB 121 , that is, one layer of the PCB 121 is located in one plane.
  • the multilayer PCB 121 intersects with the same straight line, which is perpendicular to the straight line, and the straight line is perpendicular to the direction of the wind flowing into the air inlet. That is to say, the multilayer PCBs 121 are aligned in the direction perpendicular to the wind direction of the air inlet, and the projections of the multilayer PCBs 121 on the plane perpendicular to the wind direction of the air inlet are coincident.
  • the multi-layer PCBs 121 are centrally arranged in the multi-node server, occupying less space, and because the multi-layer PCB 121 is parallel to the wind flowing into the air inlet, the obstruction to the wind can be reduced, and the multi-node server can be guaranteed heat dissipation.
  • the multi-node server includes a plurality of nodes 110 built in power modules 111 , a first connector 130 , a hard disk backplane 120 and a second connection device 140.
  • the first connector 130 and the second connector 140 may be located between the hard disk backplane 120 and the plurality of nodes 110, the first connector 130 is used for connecting the plurality of nodes 110, and the second connector 140 is used for connecting the plurality of nodes 110
  • the built-in power supply module 111 of the node 110 and the power supply interfaces 112 of the plurality of nodes 110 may be located between the hard disk backplane 120 and the plurality of nodes 110, the first connector 130 is used for connecting the plurality of nodes 110, and the second connector 140 is used for connecting the plurality of nodes 110
  • the built-in power supply module 111 of the node 110 and the power supply interfaces 112 of the plurality of nodes 110 may be located between the hard disk backplane 120 and the plurality of nodes 110, the first connector 130 is used for connecting the plurality of nodes 110, and the second connector 140 is used for connecting the plurality of nodes 110
  • the memory 150 can be connected to the plurality of nodes 110, and the connection mode between the memory 150 and the plurality of nodes 110 is not limited here.
  • a connection can be established through an additional connector, or a connection can be established through the second connector 140. That is, the second connector 140 can not only realize the connection between the power module 111 of the node 110 and the power supply interface 112 of other nodes 110 , but also realize the connection between the memory 150 and the plurality of nodes 110 .
  • the multi-node server is a 2U4 server. If the 2U4 server adopts the structure shown in Figure 1A, the number of memory 150 in the multi-node server is as follows: 16, but if the structure shown in FIG. 10 is adopted, it may include more than 16 memories 150 .
  • the multi-node server may further include a fan 160, the fan is located between the hard disk backplane 120 and the first connector 130, and generates a circulating wind in the multi-node server.

Abstract

一种多节点服务器、机柜式服务器以及刀片式服务器,本申请中,多节点服务器包括多个节点、硬盘背板;每个节点包括电源模块,电源模块内置在节点内。硬盘背板与多个节点通过第一连接器连接;每个所述节点的电源模块通过第二连接器与其他节点的供电接口连接,其中,第一连接器和第二连接器间隔设置,多节点服务器的入风口流入的风通过第一连接器和第二连接器之间的间隔流通。多节点服务器中不再设置系统背板连接,而是通过体积较小的第一连接器和第二连接器取代系统背板,在保证该节点服务器的可靠性的同时,还能够使得该多节点服务器中风能够较好的流通,提高了多节点服务器的通风量,提升多节点服务器的散热能力。

Description

一种多节点服务器、机柜式服务器以及刀片式服务器
本申请要求于2020年9月24日提交中国专利局、申请号为202011019515.8、发明名称为“一种多节点服务器、机柜式服务器以及刀片式服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器技术领域,尤其涉及一种多节点服务器、机柜式服务器以及刀片式服务器。
背景技术
随着对服务器运算能力的需求提升,密集型服务器随之产生,密集型服务器上可以部署多个节点,每个多节点可以作为独立的服务器进行运算,这类服务器也可以称为多节点服务器。
目前,多节点服务器由于能够部署多个节点,其运算能力较强,功耗较大,由此需要多节点服务器具备较强的散热能力。多节点服务器内各个组件的排布上存在一定的局限性,以硬盘背板和系统背板为例,硬盘背板和系统背板与服务器进入口的风向垂直,一定程度上阻碍了服务器内的风的流通,不利于服务器的散热。除了硬盘背板和系统背板之外,多节点内节点以及节点外置的电源模块等组件设置位置,也会对服务器内的风的流通造成阻碍,导致该类多节点服务器的散热能力较差。
发明内容
本申请提供一种服务器、机柜式服务器以及刀片式服务器,用以提升服务器的散热能力。
第一方面,本申请实施例提供了一多节点服务器,多节点服务器包括多个节点、硬盘背板;每个节点包括电源模块,电源模块内置在节点内。
硬盘背板与多个节点通过第一连接器连接;每个节点可以通过线缆连接到第一连接器上,硬盘背板也可以通过线缆连接到第一连接器上。
每个所述节点的电源模块通过第二连接器与其他节点的供电接口连接,其中,第一连接器和第二连接器间隔设置,多节点服务器的入风口流入的风通过第一连接器和第二连接器之间的间隔流通。
通过上述服务器,多节点服务器中不再设置系统背板连接,而是通过体积较小的第一连接器和第二连接器取代系统背板,使得硬盘背板与多个节点之间、节点的供电模块以及其他节点的供电接口之间可以连接,在保证该节点服务器的可靠性的同时,还能够使得该多节点服务器中风能够较好的流通,提高了多节点服务器的通风量,提升多节点服务器的散热能力。另外,电源模块内置的节点能够有效减少外置电源模块在多节点服务器中占有的体积,减少对多节点服务器中风的阻碍,也可以保证该多节点服务的散热能力。
在一种可能的设计中,第二连接器与第一连接器位于同一平面内,平面位于多个节点与硬盘背板之间。
通过上述服务器,第一连接器位于多个节点与硬盘背板之间,使得第一连接器能够较好的与多个节点和硬盘背板建立连接,第二连接器与第一连接器位于同一平面,可以提高该多节点服务器中组件排布的合理性,有效利用多节点服务器内的空间。
在一种可能的设计中,每个节点的电源模块通过铜条连接到第二连接器,连接多个节点的电源模块和第二连接器的多个铜条之间存在间隔。
通过上述服务器,电源模块和第二连接器之间可以采用扁平的铜条连接,能够减少占用的体积,使得更多的风能够流通在该多节点服务器中,另外,多个铜条之间存在间隔,也保证了该多节点服务器中风的流通。
在一种可能的设计中,第一连接器设置在靠近多节点服务器侧面的位置,如该第一连接器可以紧挨着该多节点服务器的侧面。这样,可以减少对流入该多节点服务器的风的阻挡,保证该多节点服务器的散热能力。
在一种可能的设计中,第二连接器设置在节点供电接口朝向的位置,以便第二连接器与该供电接口连接,另外,该第二连接器还设置在多节点服务器的中部,远离多节点服务器的侧面,这样可以使得该第二连接器能够靠近各个节点的供电接口,保证该多节点服务器组件部署的合理性。
在一种可能的设计中,节点的电源模块与供电接口位于节点的不同侧面,连接多个节点的电源模块的铜条可以沿着多节点服务器的侧面折弯到第二连接器所在的平面、连接到第二连接器。铜条沿该多节点服务器的侧面,能够进一步减少铜条对该多节点服务器内风的风阻,以保证该多节点服务器的散热能力。
在一种可能的设计中,连接多个节点的电源模块的铜条通过第一结构件固定在第二连接器的侧面;通过第一结构件进行固定,能够保证该铜条的稳定性,以确保该铜条可以连接到该第二连接器上。
在一种可能的设计中,铜条通过第二结构件固定在多节点服务器的侧面和第二连接器所在的平面的交界处。通过第二结构性能够保证铜条在交界处能够保持稳定状态。
在一种可能的设计中,硬盘背板平行于多节点服务中入风口流入的风向或多节点服务器中出风口流出的风向。
通过上述服务器,硬盘背板与风向平行,能够减少对风的阻碍,提升该多节点服务器的散热能力。
在一种可能的设计中,硬盘背板上安插至少一个硬盘,硬盘沿与入风口流入的风向或出风口流出的风向平行的方向,安插在硬盘背板上。
通过上述服务器,硬盘沿着风向安插在硬盘背板上,这样硬盘对多节点服务器中的风的阻碍能够大大减少,增加了通风量,确保了该多节点服务器的散热能力。
在一种可能的设计中,硬盘背板包括多层PCB,每层PCB平行设置。也即每层PCB均与流入或流出服务器的风向平行,每层PCB上设置有硬盘插槽,每个硬盘插槽上可以安插服务器中的硬盘。
通过上述服务器,背板采用分层的结构,在保证服务器中通风量的前提下,还能保证该背板上能够安插足够数量的硬盘。
在一种可能的设计中,该多层PCB中相邻PCB之间在垂直于入风口流入的风向或出风口流出的风向上存在间隔。
通过上述服务器,相邻PCB之间存在间隔,进入服务器的风能够在通过该间隔进行流通,可以带走多节点服务器组件上集聚的热量,达到较佳的散热效果。
在一种可能的设计中,多节点服务还包括风扇,风扇位于硬盘背板与第一连接器之间,或位于硬盘背板与多个节点之间。该风扇可以产生风,促使风进行流动。
通过上述服务器,位于风扇位于硬盘背板与第一连接器之间,能够使得风扇产生的风快速的经过该多节点服务器内的主要组件,减少这些组件上集聚的热量。
在一种可能的设计中,多节点服务器的高度为2U,节点数目为4,多节点服务器包括N个内存,N大于16的正整数。
通过上述服务器,相较于其他2U4服务器,由于该多节点服务器省略了外置电源模块以及系统背板,增加了可利用的体积,使得该多节点服务器中可以设置较多的内存,提升了该多节点服务器的存储能力。
第二方面,本发明实施例提供了一种机柜式服务器,所述机柜式服务器包括一个或多个第一方面以及第一方面任意一种设计提供的服务器。
第三方面,本发明实施例提供了一种刀片式服务器,所述刀片式服务器包括一个或多个第一方面以及第一方面任意一种设计提供的服务器。
附图说明
图1A为服务器结构示意图;
图1B为硬盘背板的结构示意图;
图1C为系统背板的结构示意图;
图2A为本申请提供的一种多节点服务器的结构示意图;
图2B为本申请提供的一种第一连接器与硬盘背板、节点之间的连接示意图;
图3A为本申请提供的一种第一连接器与硬盘背板、节点之间的连接示意图;
图3B为本申请提供的一种第一连接器的结构示意图;
图4为本申请提供的一种节点的结构示意图;
图5A为本申请提供的一种第二连接器与供电接口、电源模块之间的连接示意图;
图5B为本申请提供的一种第二连接器与供电接口、电源模块之间的连接示意图;
图6为本申请提供的一种第二连接器与供电接口、电源模块之间的连接示意图;
图7A为本申请提供的一种第一连接器与第二连接器的结构示意图;
图7B为本申请提供的一种第一连接器与第二连接器的结构示意图;
图8为本申请提供的一种硬盘背板的结构示意图;
图9A为本申请提供的一种硬盘背板中多层PCB的排布示意图;
图9B为本申请提供的一种硬盘背板中多层PCB的排布示意图;
图10为本申请提供的一种服务器的结构示意图。
具体实施方式
如图1A所示,为一种多节点服务器的俯视示意图,该多节点服务器中包括多个节点、硬盘背板、系统背板、风扇以及外置的电源模块。
电源模块设置在节点的一侧,通过系统背板连接到该多节点服务器的多个节点上,用以为该多个节点供电。硬盘背板也可以通过系统背板连接到该多个节点服务器的多个节点上,这样,多个节点能够对安插到硬盘背板上的硬盘进行读写操作。
风扇设置在硬盘背板和系统背板之间,风扇用于产生冷风,以对该服务器内的组件进行 降温,硬盘背板能够安插该服务器中的硬盘。硬盘背板以及系统背板垂直于该服务器中的风向,对服务器内流通的风存在一定的阻碍。
如图1B所示,为硬盘背板的结构示意图,硬盘背板上可以安插服务器中的硬盘,硬盘背板上除了设置有用于安插硬盘的硬盘插槽之外,还可以设置通风孔,但由于硬盘背板上还需要部署一些元器件,硬盘背板上可以开孔的位置有限,硬盘背板只能设置少量的通风孔,较少的通风孔并不能有效的提升服务器的散热能力。
如图1C所示,为系统背板的结构示意图,系统背板能够实现电源模块以及多个节点的连接,以及硬盘背板与多个节点的连接,系统背板为印制电路板(printed circuit board,PCB),上面也需要部署一些元器件,与硬盘背板类似,系统背板也只能设置少量的通风孔。
由上可知,多节点服务器中系统背板、硬盘背板、多个节点以及电源模块等组件的设置位置以及组件的结构,降低了该服务器中风的流通性,影响了该多节点服务器的散热能力。
为了改善该多节点服务器的散热,提高该多节点服务器中的通风量,本申请实施例提供了一种多节点服务器,如图2A所示,为该多节点服务器的结构示意图,该多节点服务器包括多个节点110、硬盘背板120,每个节点110包括内置的电源模块111。
该多个节点110可以通过第一连接器130与该硬盘背板120连接。
第二连接器140分别与每个节点110的电源模块111以及每个节点110的供电接口112连接。也就是说,每个节点110的电源模块可以通过第二连接器与其他节点110的供电接口112连接。通过第二连接器140能够建立节点110的供电接口112与其他节点110的电源模块111之间的连接。图2A中仅绘制出来部分节点110的电源模块111和供电接口112与第二连接器140的连接。其他节点110的电源模块111和供电接口110与第二连接器的140的连接方式与图2A中所示的连接方式类似。
其中,第一连接器130和第二连接器140可以间隔设置,多节点服务器100的入风口流入的风能够通过第一连接器130和第二连接器140之间的间隔流通。
在该多节点服务器110中不需要再设置系统背板,通过第一连接器130和第二连接器140能够实现系统背板的作用,且第一连接器130和第二连接器140的体积相对较小,第一连接器130和第二连接器140之间存在间隔,能增大该多节点服务器100中的通风量,提升多节点服务器100的散热能力。
下面分别对第一连接器以及第二连接器进行说明:
如图2B所示,为本申请实施例提供的第一连接器130与多个节点110、以及硬盘背板120的连接示意图。该多个节点110通过第一连接器130与该硬盘背板120连接。其中,该多个节点110通过线缆连接该第一连接器130,该硬盘背板120通过线缆连接该第一连接器130。
也就是说,在多个节点110以及硬盘背板120之间不再设置体积较大的系统背板,而是利用体积较小的第一连接器130与硬盘背板120建立连接。
相较于系统背板,第一连接器130所占用的体积更小,能够减少对该多节点服务器中流通的风的阻碍,增大了服务器中的通风量,在一定程度上,可以提升多节点服务器的散热能力。
如图3A所示,为本申请实施例提供的一种第一连接器130的结构示意图,该第一连接器130位于该多个节点110与硬盘背板120之间,第一连接器130包括第一接口131和第二接口132,第一接口131朝向该多个节点110,该第一接口131与多个节点110连接,第二接口132朝向该硬盘背板120,第二接口132与硬盘背板120连接。第一接口131和第二接口132的形状与需要该第一接口131和第二接口132线缆的尺寸匹配。
该多个节点110、以及系统背板均是通过线缆连接到第一连接器130对应的接口上,也就是说,该多个节点110通过线缆连接到第一接口131,系统背板通过线缆连接到第二接口132。通常线缆可以进行整合,如将该多个节点110与第一接口131连接的线缆整合为一束,连接到第一接口131上。该第一接口131的大小可以与该整合后的线缆的横截面的面积匹配,能够进一步减少该第一连接器130的。第二接口132的大小也类似,可以与该整合后的线缆的横截面匹配。
如图3B所示,为第一连接器130中第一接口131所在一侧的示意图,第一连接器130的第二接口132所在一些的结构与第一接口131所在一侧的结构类似,具体可以参见图3B,图3B所示的第一连接器130可知,该第一连接器130上第一接口131可以设计为与整合后的线缆的横截面匹配的形状,例如,该第一接口131和第二接口132的面积与该整合后的线缆的横截面的面积相同。这样,第一连接器130占用的体积较小,能够保证服务器内可以流通较多的风。
如图4所示,为了能够进一步提高该多节点服务器内各个组件的排布的合理性,该多节点服务器中的每个节点110可以为电源模块111内置的节点110,也即每个节点110内设置有电源模块111,每个节点110内部设置的电源模块111可以为所在的节点供电。也就是说,该多节点服务器的每个节点110之外不再设置外置的电源模块111。这样也就不再需要设置系统背板,每个节点110不再通过系统背板与外置的电源模块111建立连接。
内置有电源模块111的节点能够保证该节点的正常运行,另外为了保证该多节点服务器的可靠性,当其中一个节点的电源模块111故障时,可以利用其它节点的电源模块111为该节点供电,以保证该节点仍能够正常工作。如图5A所示,为本申请实施例提供的一种第二连接器140与多个节点110的供电接口112、以及多个节点110的电源模块111的连接示意图,该第二连接器140分别与每个节点110的电源模块111以及每个节点110的供电接口112连接。
通过第二连接器140能够建立节点110的供电接口112与其他节点的电源模块111之间的连接,保证其中一个节点110的电源模块111故障时,其他节点110的电源模块111可以通过第二连接器140连接到该节点,为该节点供电,使得该节点能够正常工作。
本申请实施例并不限定该第二连接器140的形状以及设置位置,该第二连接器140的设置位置与每个节点110的电源模块111以及每个节点110的供电接口112的位置有关,例如,节点的电源模块111以及节点的供电接口112位于该节点的同一侧,该第二连接器140可以在靠近节点的电源模块111以及节点的供电接口112的位置,如图5A所示;若节点的电源模块111以及节点的供电接口112位于该节点的不同侧,该第二连接器140可以设置在靠近每个节点110的电源模块111或每个节点110的供电接口112的位置。
如图5B所示,节点的电源模块111以及节点的供电接口112位于该节点的不同侧,第二连接器140可以设置在靠近每个节点110的供电接口112的位置,该第二连接器140可以位于该多个节点110与硬盘背板120之间,每个节点110的电源模块111通过连接线与该第二连接器140连接。
本申请实施例并不限定每个节点110的电源模块111与该第二连接器140连接所采用的连接线的材质,例如该连接线可以为铜条,铜条的导电性较强,能够保证该第二连接器140与每个节点110的电源模块111能够实现较佳的连接效果,另外铜条的可塑性强,能够更好的贴合多节点服务器内各个组件的排布,且铜条可以采用扁平的形态,体积较少,也不会对多节点服务器的风造成较大的风阻。该连接线也可以为其他材质的连接线。
如图6所示,为本申请实施例提供的一种第二连接器140的结构示意图。该第二连接器140可以通过铜条与每个节点110的电源模块111连接。第二连接器140再连接到每个节点110的供电接口112上。在图6中,该多个节点110采用分层方式设置,这里以存在四个节点110为例,为区分该四个节点110分别为节点110A、节点110B、节点110C以及节点110D。节点110A以及节点110B位于上层,节点110C以及节点110D位于下层。
从图6中仅绘制出来节点110A的电源模块111和节点110C的电源模块111与第二连接器140连接的方式,节点110B以及节点110D也可以采用类似的方式与第二连接器140连接,节点110A的电源模块111通过铜条连接到第二连接器140,节点110C的电源模块111通过另一个铜条连接到第二连接器140。在图6中,各个节点110的电源模块111与节点的110的供电接口112位于不同侧,连接在节点110A的电源模块111铜条沿着该多节点服务器100的侧面延伸到该第二连接器140所在的平面。若该第二连接器140设置在靠近该多节点服务器100的侧面的位置,该铜条可以沿着该多节点服务器100的侧面直接接入到该第二连接器140。在图6中,该第二连接器140设置在远离该多节点服务器100的侧面位置,例如位于该多节点服务器100的中间位置(也即不靠近该多节点服务器100的任一侧面,距离该多节点服务器100任一侧面的距离值大于预设值)。该铜条沿着该多节点服务器100的侧面,可以折弯到该第二连接器140所在的平面,连接到该第二连接器140。
这两个铜条与服务器内的风向平行,该两个铜条之间存在间隔,使得该多节点服务器内的风可以通过该间隔流通。
在图6中,为了增加该铜条的稳定性,可以增设一个或多个结构件,以固定该铜条,在图6中示例性的绘制出了两个结构件,分别为结构件210和结构件220,结构件210位于多节点服务器100的侧面和第二连接器140所在的所述平面的交界处,结构件210可以将该铜条固定在该交界处,保证该铜条的稳定性。这里并不限定铜条的数量以及结构件210的数量,一个结构件210可以将一个铜条固定在该交界处,也可以将多个铜条固定在该交界处。
结构件220位于第二连接器140的侧面,该结构件220可以将铜条固定在该第二连接器140的侧面,以保证该铜条能够连接到该第二连接器140,同时也能确保该铜条的稳定性。这里也不限定结构件220的数量,一个结构件220可以将一个铜条固定在第二连接器140的侧面,也可以将多个铜条固定在第二连接器140的侧面。
在实际应用中,第一连接器130和第二连接器140可以部署在同一平面内,该平面可以位于硬盘背板120与多个节点110之间,如图7A所示,为第一连接器130和第二连接器140示意图,第一连接器130能够实现多个节点110与硬盘背板120的连接,第二连接器140能够实现每个节点110内置的电源模块111与其他节点的连接。也即第一连接器130和第二连接器140能够实现图1所示的多节点服务器中系统背板的作用,但与图1C中系统背板相比,第一连接器130与第二连接器140占用的体积较少,且第二连接器140在连接各个节点的电源模块111时是通过连接线(如铜条)连接的,连接线之间是间隔的,能够保证该多节点服务器内风的流通。
如图7B所示,为第一连接器130和第二连接器140的平面示意图,第一连接器130设置在靠近多节点服务器100的侧面的位置,例如可以紧挨着该多节点服务器100的侧面。第二连接器140设置在中间位置,远离该多节点服务器100的侧面。与图1C所示的系统背板,该第一连接器130和第二连接器140之间存在较多的空隙,使得该多节点服务器内的风可以更好的进行流通,能够提升该多节点服务器的散热能力。
通过第一连接器130和第二连接器140取代了多节点服务器中的系统背板,针对多节点服务器中的硬盘背板120,也可以采用能够提升多节点服务器散热能力的设计,下面对本申请实施例提供的一种硬盘背板120进行说明。
如图8所述,为本申请实施例提供的一种多节点服务器的硬盘背板120的示意图,该硬盘背板120平行于该多节点服务中入风口流入的风向,也可以平行于多节点服务器中出风口流出的风向。
在本申请实施例中以入风口流入的风向与出风口流出的风向一致为例进行说明,对于入风口流入的风向与出风口流出的风向不一致的情况,该硬盘背板120与入风口流入的风向平以及出风口流出的风向中任一风向平行即可。
关于硬盘背板120与入风口流入的风向、出风口流出的风向之间的关系,可以将硬盘背板120抽象为一个空间平面(该空间平面可以称为硬盘背板120对应的空间平面),入风口流入的风向(或出风口流出的风向)可以为抽象为一组空间直线(该组空间直线可以称为入风口流入的风向对应的空间直线或出风口流出的风向对应的空间直线)。
该硬盘背板120与入风口流入的风向平行是指硬盘背板120对应的空间平面与入风口流入的风向对应的空间直线平行,硬盘背板120与出风口流出的风向平行是指硬盘背板120对应的空间平面与出风口流出的风向对应的空间直线平行。
在图8所示的多节点服务器中,硬盘背板120沿着多节点服务器的宽度方向(该宽度方向是指该多节点服务器左右侧之间边的方向)设置,也就是说,硬盘背板120的两端可以分别固定在多节点服务器的左右两侧。硬盘背板120与入风口流入的风向平行。
硬盘背板120用与风向(如入风口流入的风向、风口流出的风向)平行的方向的设置方式,硬盘背板120能够较大程度的减少对进入多节点服务器的风的阻碍,使得多节点服务器的通风量能够有效提高,进而提高多节点服务器散热能力。
硬盘安插在硬盘背板120上时,硬盘可以沿着平行于硬盘背板120的方向安插在该硬盘背板120上,这样硬盘也与入风口流入的风向平行。安插在硬盘背板120上的硬盘也不会对进入多节点服务器的风产生较大的阻碍,进一步保证多节点服务器的通风量。
下面对硬盘背板120的结构进行说明:
硬盘背板120可以包括一层或多层PCB121,一层PCB121上可以设置一个或多个硬盘插槽,该硬盘插槽能够插入硬盘。硬盘的安插方向可参见前述说明,此处不再赘述。
当硬盘背板120包括多层PCB121时,多层PCB121平行设置,多层PCB121平行设置的方式有多种,例如,该多层PCB121可以位于同一平面内,也可以分别位于多个不同的平行平面内,下面列举其中几种:
如图9A所示,为本申请实施例提供的一种多节点服务器的结构示意图,该硬盘背板120中包括多层PCB121,多层PCB121位于同一个平面内,该平面与入风口流入的风向平行。
从图9A中,可以看出硬盘背板120中的多层PCB121沿着与入风口流入的风向平行的方向、并排设置。
该多层PCB121之间可以存在间隔,采用较为稀松的方式排布;也可以不存在间隔,多层PCB121紧密排布。
这种方式中,多层PCB121位于同一个平面内,进入多节点服务器的风受到硬盘背板120的阻碍会大大减少,使得整个多节点服务器内流通的风量增大,提升多节点服务器的散热能力。
如图9B所示,为本申请实施例提供的一种多节点服务器的结构示意图,该硬盘背板120 中包括多层PCB121,该多层PCB121位于多个不同的平行平面内,该多个平行平面与入风口流入的风向平行。也就是说,多层PCB121中存在位于不同平面内的PCB121。
这里并不限定该多个平面的数量,该多个平行平面的数量可以与多层PCB121的层数相同,也就是说,一层PCB121位于一个平面内。
该多层PCB121与同一直线相交,均于该直线垂直,该直线与入风口流入的风向垂直。也就是说,该多层PCB121在垂直于入风口流入的风向的方向上是对齐的,该多层PCB121在垂直于入风口流入的风向的平面上的投影是重合的。
为了进一步提升多节点服务器的散热能力,多层PCB121板中相邻PC之间在垂直于入风口流入的风向的方向上存在间隔,这样进入多节点服务器中的风可以从这些间隔中流通,使得多节点服务器的通风率得以提升。
这种方式中,多层PCB121集中的设置在多节点服务器中,占用的空间较少,且由于该多层PCB121与入风口流入的风平行,能够减少对风的阻碍,保证了多节点服务器的散热。
如图10所示,为本申请实施例中一个多节点服务器的俯视示意图,该多节点服务器中包括多个电源模块111内置的节点110、第一连接器130、硬盘背板120以及第二连接器140。
第一连接器130和第二连接器140可以位于硬盘背板120与多个节点110之间,第一连接器130用于连接该多个节点110,第二连接器140用于连接该多个节点110内置的电源模块111以及该多个节点110的供电接口112。
由于节点采用了电源模块111内置的方式,使得该多节点服务器中各个组件的布局更加紧凑,还存在一些空闲的部署空间,在这些空闲的部署空间中,还可以设置内存150,以增加该多节点服务器中内存的数量。内存150可以与该多个节点110连接,这里并不限定内存150与该多个节点110之间的连接方式,例如可以通过额外的连接器建立连接,也可以通过第二连接器140建立连接,也即第二连接器140既能够实现节点110的电源模块111与其他节点110的供电接口112的连接,还能实现内存150与该多个节点110的连接。
通常当该多节点服务器的高度为2U,节点数目为4时,也即该多节点服务器为2U4服务器,2U4服务器若采用如图1A所示的结构,该多节点服务器中内存150的数目以便为16,但若采用如图10所示的结构,可以包括数量超过16的内存150。
该多节点服务器中还可以包括风扇160,该风扇位于硬盘背板120与第一连接器130之间,产生该多节点服务器中的流通的风。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种多节点服务器,其特征在于,所述多节点服务器包括多个节点、硬盘背板,每个节点中包括内置的电源模块;
    所述硬盘背板和所述多个节点通过第一连接器连接;
    每个所述节点的所述电源模块通过第二连接器与其他所述节点的供电接口连接,其中,所述第一连接器和所述第二连接器间隔设置,所述多节点服务器的入风口流入的风通过所述第一连接器和所述第二连接器之间的间隔流通。
  2. 如权利要求1所述的服务器,其特征在于,所述第一连接器和所述第二连接器位于同一平面内,所述平面位于所述多个节点与所述硬盘背板之间。
  3. 如权利要求1或2所述的服务器,其特征在于,每个所述节点的所述电源模块通过铜条连接到所述第二连接器,连接所述多个节点的所述电源模块和所述第二连接器的多个铜条之间存在间隔。
  4. 如权利要求1~3任一所述的服务器,其特征在于,所述第一连接器设置在靠近所述多节点服务器侧面的位置。
  5. 如权利要求3或4所述的服务器,其特征在于,所述第二连接器设置在所述节点供电接口朝向的位置,所述第二连接器设置在所述多节点服务器的中部,远离所述多节点服务器的侧面。
  6. 如权利要求5所述的服务器,其特征在于,所述节点所述电源模块与所述供电接口位于所述节点的不同侧面,连接所述多个节点的所述电源模块的铜条沿着所述多节点服务器的侧面折弯到所述第二连接器所在的所述平面、连接到所述第二连接器。
  7. 如权利要求6所述的服务器,其特征在于,连接所述多个节点的所述电源模块的铜条通过第一结构件固定在所述第二连接器的侧面。
  8. 如权利要求6所述的服务器,其特征在于,所述铜条通过第二结构件固定在所述多节点服务器的侧面和所述第二连接器所在的所述平面的交界处。
  9. 如权利要求1~8任一所述的服务器,其特征在于,所述硬盘背板平行于所述多节点服务中入风口流入的风向或所述多节点服务器中出风口流出的风向。
  10. 如权利要求1~9任一所述的服务器,其特征在于,所述硬盘背板上安插至少一个硬盘,所述硬盘沿与所述入风口流入的风向或所述出风口流出的风向平行的方向,安插在所述硬盘背板上。
  11. 如权利要求1~10任一所述的服务器,其特征在于,所述硬盘背板包括多层印刷电路板PCB,每层PCB平行设置。
  12. 如权利要求11所述的服务器,其特征在于,所述多层PCB在与所述入风口流入的风向或所述出风口流出的风向垂直的方向上存在间隔。
  13. 如权利要求1~12任一所述的服务器,其特征在于,所述多节点服务还包括风扇,所述风扇位于所述硬盘背板与所述多个节点之间。
  14. 如权利要求1~13任一所述的服务器,其特征在于,所述多节点服务器的高度为2U,节点数目为4,所述多节点服务器包括N个内存,N大于16的正整数。
  15. 一种机柜式服务器,其特征在于,所述机柜式服务器包括一个或多个如权利要1~14任一所述的服务器。
  16. 一种刀片式服务器,其特征在于,所述刀片式服务器包括一个或多个如权利要1~14任一所述的服务器。
PCT/CN2021/117848 2020-09-24 2021-09-11 一种多节点服务器、机柜式服务器以及刀片式服务器 WO2022062926A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871297.4A EP4206862A4 (en) 2020-09-24 2021-09-11 MULTINODE SERVERS, CABINET SERVERS AND BLADE SERVERS
US18/187,008 US20230232564A1 (en) 2020-09-24 2023-03-21 Multi-Node Server, Cabinet Server, and Blade Server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011019515.8A CN114253363B (zh) 2020-09-24 2020-09-24 一种多节点服务器、机柜式服务器以及刀片式服务器
CN202011019515.8 2020-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/187,008 Continuation US20230232564A1 (en) 2020-09-24 2023-03-21 Multi-Node Server, Cabinet Server, and Blade Server

Publications (2)

Publication Number Publication Date
WO2022062926A1 true WO2022062926A1 (zh) 2022-03-31
WO2022062926A8 WO2022062926A8 (zh) 2022-05-12

Family

ID=80790150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117848 WO2022062926A1 (zh) 2020-09-24 2021-09-11 一种多节点服务器、机柜式服务器以及刀片式服务器

Country Status (4)

Country Link
US (1) US20230232564A1 (zh)
EP (1) EP4206862A4 (zh)
CN (1) CN114253363B (zh)
WO (1) WO2022062926A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150156117A1 (en) * 2013-11-29 2015-06-04 Inventec (Pudong) Technology Corporation High density server system
CN108280042A (zh) * 2018-02-09 2018-07-13 深圳市杰和科技发展有限公司 一种用于边缘计算的多节点服务器
CN108388497A (zh) * 2018-02-09 2018-08-10 深圳市杰和科技发展有限公司 多节点高密度服务器的监控及管理系统和方法
CN109324678A (zh) * 2018-09-21 2019-02-12 郑州云海信息技术有限公司 一种多节点服务器的节点供电方法及装置
CN109597471A (zh) * 2018-12-21 2019-04-09 郑州云海信息技术有限公司 一种多节点高密度服务器供电结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257763A1 (en) * 2003-06-17 2004-12-23 International Business Machines Corporation Internal hard disc drive scalability using mezzanine backplane technology
CN102625608A (zh) * 2012-02-22 2012-08-01 浪潮电子信息产业股份有限公司 一种大规模多节点服务器机柜的设计方法
KR20150049572A (ko) * 2013-10-30 2015-05-08 한국전자통신연구원 랙 마운트 서버의 전원을 공유하기 위한 시스템 및 그 운영 방법
CN107656588B (zh) * 2017-10-09 2020-01-03 苏州浪潮智能科技有限公司 一种优化散热的服务器系统及安装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150156117A1 (en) * 2013-11-29 2015-06-04 Inventec (Pudong) Technology Corporation High density server system
CN108280042A (zh) * 2018-02-09 2018-07-13 深圳市杰和科技发展有限公司 一种用于边缘计算的多节点服务器
CN108388497A (zh) * 2018-02-09 2018-08-10 深圳市杰和科技发展有限公司 多节点高密度服务器的监控及管理系统和方法
CN109324678A (zh) * 2018-09-21 2019-02-12 郑州云海信息技术有限公司 一种多节点服务器的节点供电方法及装置
CN109597471A (zh) * 2018-12-21 2019-04-09 郑州云海信息技术有限公司 一种多节点高密度服务器供电结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206862A4

Also Published As

Publication number Publication date
CN114253363A (zh) 2022-03-29
US20230232564A1 (en) 2023-07-20
EP4206862A4 (en) 2024-01-31
CN114253363B (zh) 2024-04-09
EP4206862A1 (en) 2023-07-05
WO2022062926A8 (zh) 2022-05-12

Similar Documents

Publication Publication Date Title
US7722359B1 (en) Connection assembly having midplane with enhanced connection and airflow features
KR100608958B1 (ko) 냉각 장치 및 이를 내장한 전자 기기
US10021806B2 (en) System and method for flexible storage and networking provisioning in large scalable processor installations
US9414525B2 (en) Coolant-cooled heat sink configured for accelerating coolant flow
US8051897B2 (en) Redundant assembly for a liquid and air cooled module
US8385069B2 (en) Liquid coolant conduit secured in an unused socket for memory module cooling
US7764511B2 (en) Multidirectional configurable architecture for multi-processor system
US8027162B2 (en) Liquid-cooled electronics apparatus and methods of fabrication
US8659897B2 (en) Liquid-cooled memory system having one cooling pipe per pair of DIMMs
US20130135812A1 (en) Liquid-cooling memory modules with liquid flow pipes between memory module sockets
JP6155988B2 (ja) 情報処理装置
US9468093B2 (en) Flexible midplane and architecture for a multi-processor computer system
US7643286B2 (en) Symmetric multiprocessing computer and star interconnection architecture and cooling system thereof
US20080043405A1 (en) Chassis partition architecture for multi-processor system
TW201419994A (zh) 電子設備及安裝於該電子設備中的冷卻模組
JP2015532759A (ja) 軸方向に整列した電子機器用筐体
JP5471644B2 (ja) 情報機器
CN110099533B (zh) 计算装置及应用其的机架服务器
US20130288502A1 (en) Memory module connector with air deflection system
US20070288813A1 (en) Cell board interconnection architecture with serviceable switch board
WO2022062926A1 (zh) 一种多节点服务器、机柜式服务器以及刀片式服务器
CN115568153B (zh) 服务器
CN115525112A (zh) 服务器
TW202139816A (zh) 電子機器及堆疊連接器
WO2022022010A1 (zh) 一种服务器、机柜式服务器以及刀片式服务器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871297

Country of ref document: EP

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE