WO2022062606A1 - 电池包 - Google Patents

电池包 Download PDF

Info

Publication number
WO2022062606A1
WO2022062606A1 PCT/CN2021/107066 CN2021107066W WO2022062606A1 WO 2022062606 A1 WO2022062606 A1 WO 2022062606A1 CN 2021107066 W CN2021107066 W CN 2021107066W WO 2022062606 A1 WO2022062606 A1 WO 2022062606A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
bottom plate
temperature
confluence
liquid
Prior art date
Application number
PCT/CN2021/107066
Other languages
English (en)
French (fr)
Inventor
王永南
曾毅
廖正远
赖福柱
郑卫鑫
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP21870984.8A priority Critical patent/EP4220828A4/en
Priority to KR1020237011538A priority patent/KR20230061523A/ko
Priority to JP2023519222A priority patent/JP2023542428A/ja
Publication of WO2022062606A1 publication Critical patent/WO2022062606A1/zh
Priority to US18/126,736 priority patent/US20230231227A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery pack.
  • the bottom plate of the battery pack in the related art usually adopts a serpentine flow channel, and the liquid inlet and outlet pipes are located at the head and tail ends of the serpentine flow channel.
  • the cooling effect of the bulk battery is better, and the temperature of the flow channel section near the end of the liquid outlet pipe is higher, and the cooling effect of the single battery at the corresponding position is not good, so that the overall cooling uniformity of the battery pack is not good.
  • the present application provides a battery pack, which has the advantage of good cooling consistency.
  • a battery pack includes: a battery assembly, the battery assembly includes at least one battery unit, the battery unit includes a plurality of single cells, and the length direction of each of the single cells is the first direction , and a plurality of the single cells are arranged along the second direction; a tray, the tray includes at least one temperature adjustment unit, and the temperature adjustment unit includes a bottom plate and a temperature adjustment flow channel and a bus flow channel formed on the bottom plate , the temperature-adjusting flow channel and the battery unit are arranged up and down opposite to each other to exchange heat with the single battery, and the confluence flow channel and the battery unit are staggered up and down so as not to exchange heat with the single battery, so Both the temperature adjustment flow channel and the confluence flow channel extend along the first direction, and the temperature adjustment flow channel and the confluence flow channel are arranged along the second direction, and in the first direction, all the One end of the temperature regulation flow channel is the outlet end, the end of the confluence flow channel close to the outlet end is the inlet end
  • the temperature adjustment unit further includes: a communication channel, a liquid inlet and a liquid outlet formed on the bottom plate, the liquid inlet communicates with the temperature adjustment channel, and the liquid outlet
  • the port communicates with the confluence flow channel
  • the communication flow channel is located on the same side of the temperature adjustment flow channel and the confluence flow channel in the first direction, and is adjacent to the outlet end of the temperature adjustment flow channel and the The inlet end of the confluence flow channel
  • the communication flow channel is connected to the outlet end of the temperature adjustment flow channel and the inlet end of the confluence flow channel
  • the liquid inlet and the liquid outlet are located in the temperature adjustment flow channel.
  • two ends of the bottom plate in the first direction are a first end and a second end, respectively, and both the liquid inlet and the liquid outlet are located at the first end , the communication channel is located at the second end.
  • the bottom plate includes a first bottom plate and a second bottom plate oppositely disposed along a thickness direction of the bottom plate, and the temperature-adjusting flow channel and the collecting flow channel are defined on the first bottom plate and the second bottom plate. Between the second bottom plates, the liquid inlet and the liquid outlet are formed through the first bottom plate.
  • At least one of the temperature adjustment units is a preset unit, and the preset unit includes a plurality of the temperature adjustment flow channels and one of the confluence flow channels, and an outlet of each of the temperature adjustment flow channels The ends are all communicated with the inlet end of the bus flow channel.
  • all the temperature adjustment flow channels in the preset unit are located on the same side of the bus flow channel in the second direction.
  • the tray includes two of the preset units, and the two preset units are arranged at intervals along the second direction.
  • the tray further includes a frame, the frame is connected to the bottom plate and defines a receiving cavity therebetween, the frame includes a support beam extending along the first direction, the The support beams are located above between the two preset units, and the confluence flow channels in each of the preset units are arranged opposite to the support beams up and down.
  • the temperature adjustment unit includes N of the temperature adjustment flow channels and M of the bus flow channels, the M is greater than or equal to 1 and is an integer, the N is greater than or equal to 1 and an integer, each The sum of the widths of the N temperature control flow channels in the temperature control units is greater than the sum of the widths of the M bus flow channels.
  • At least one of the temperature adjustment units includes: an adapter, wherein the adapter has a first flow channel and a second flow channel isolated from each other, the first flow channel and the temperature adjustment flow channel communication, the second flow channel is communicated with the confluence flow channel; an external pipe, the external pipe includes a liquid inlet pipe and a liquid outlet pipe, the liquid inlet pipe is connected with the adapter and connected to the A first flow channel, the liquid outlet pipe is connected with the adapter and connected to the second flow channel.
  • FIG. 1 is a perspective view of a battery pack according to an embodiment of the present application.
  • FIG. 2 is a cross-sectional view of a tray according to an embodiment of the present application.
  • FIG. 3 is an exploded view of a base plate according to an embodiment of the present application.
  • FIG. 4 is an exploded view of a tray according to an embodiment of the present application.
  • FIG. 5 is a partial schematic view of a tray according to an embodiment of the present application.
  • Fig. 6 is the partial enlarged view of A place in Fig. 4;
  • FIG. 7 is a cross-sectional view of a position of a tray according to an embodiment of the present application.
  • Fig. 8 is a partial enlarged view at B in Fig. 7;
  • FIG. 9 is a cross-sectional view of another position of the tray according to one embodiment of the present application.
  • Fig. 10 is a partial enlarged view at C in Fig. 9;
  • FIG. 11 is a schematic structural diagram of a base plate according to another embodiment of the present application.
  • battery assembly 100 battery cell 1a; unit cell 1;
  • the first bottom plate 21 the liquid inlet 211; the liquid outlet 212; the communication port 213;
  • adapter 4 adapter flow channel 40; first flow channel 401; second flow channel 402;
  • Top surface 431 Bottom surface 432; Inner side surface 433; Outer side surface 434;
  • the battery pack 1000 according to some embodiments of the present application is described below with reference to the accompanying drawings.
  • a battery pack 1000 includes a battery assembly 100 and a tray 200 .
  • the battery assembly 100 includes at least one battery unit 1 a , and the battery unit 1 a includes a plurality of single cells 1 , each of which includes a single cell 1 .
  • the length directions of 1 are in the first direction F1, and the plurality of single cells 1 are arranged along the second direction F2, and the second direction F2 and the first direction F1 intersect.
  • the thickness direction of the single cells 1 is the second direction F2.
  • the tray 200 includes at least one temperature adjustment unit 2a, and the temperature adjustment unit 2a is used to adjust the temperature of the battery unit 1a.
  • temperature regulation may include heating up and cooling down.
  • the present application is described below by taking cooling as an example.
  • the temperature regulation fluid is cooling liquid.
  • the number of temperature adjustment units 2a can be set according to the actual number of battery cells 1a to be cooled.
  • the number of temperature adjustment units 2a can be equal to the number of battery cells 1a, so as to One-to-one correspondence setting, of course, the present application is not limited to this, and in some other examples, the number of temperature adjustment units 2a may also be greater or less than the number of battery units 1a, which will not be repeated here.
  • the temperature regulation unit 2a includes a bottom plate 2, a temperature regulation flow channel 201 and a confluence channel 202 formed on the bottom plate 2, and the temperature regulation flow channel 201 is arranged opposite to the upper and lower sides of the battery unit 1a (up and down as shown in FIG. 1). That is, the temperature regulating channel 201 is located directly below the battery unit 1a) to exchange heat with the single battery 1, and the bus channel 202 and the battery unit 1a are staggered up and down (that is, the bus channel 202 is located in the battery unit 1a) diagonally below) so as not to exchange heat with the single battery 1.
  • both the temperature adjustment runners 201 and the confluence runners 202 extend along the first direction F1, and the temperature adjustment runners 201 and the confluence runners 202 are arranged along the second direction F2.
  • One end of the temperature flow channel 201 is the outlet end 2010
  • one end of the confluence flow channel 202 close to the outlet end 2010 is the inlet end 2020
  • the outlet end 2010 of the temperature regulating flow channel 201 communicates with the inlet end 2020 of the confluence flow channel 202 .
  • the cooling liquid can flow into the temperature adjustment flow channel 201 , flow through the temperature adjustment flow channel 201 along the positive direction of the first direction F1 , flow to the outlet end 2010 of the temperature adjustment flow channel 201 , and then flow from the outlet end of the temperature adjustment flow channel 201 .
  • 2010 flows toward the inlet end 2020 of the bus flow channel 202 , and then flows through the bus flow channel 202 in the reverse direction of the first direction F1 and flows out of the bus flow channel 202 .
  • the cooling liquid flows through the temperature-adjusting flow channel 201, it can cool down the single cells 1 that are opposite to the temperature-adjusting flow channel 201 up and down. 1.
  • Heat exchange is performed, the temperature of the coolant after the exchange is high, and the coolant with higher temperature flows out from the temperature-adjusting flow channel 201 to the confluence flow channel 202, and flows through the confluence flow channel 202.
  • the body cells 1 are arranged staggered up and down, so that the single cells 1 will not be heated, so as to ensure a reliable cooling effect on the single cells 1 .
  • the bus flow channel 202 and the battery unit 1a are staggered up and down, there is no single cell 1 disposed on the bus flow channel 202.
  • the temperature of the cooling liquid is lower before the heat exchange, and the temperature The cooling liquid with low temperature flows into the temperature-adjusting flow channel 201, the cooling liquid has a higher temperature after heat exchange, and the cooling liquid with a higher temperature flows into the confluence flow channel 202. Therefore, only the temperature-adjusting flow channel 201 cools the single cell 1, and The bus flow channel 202 is only used to lead the cooling liquid out of the temperature adjusting unit 2 a, and not to exchange heat with the single battery 1 , so as to ensure the cooling effect on the single battery 1 .
  • the outlet end 2010 of the temperature-adjusting flow channel 201 and the inlet end 2020 of the confluence flow channel 202 are located at the same end and communicate with each other, so that the cooling liquid can enter the temperature-adjusting flow in the positive direction of the first direction F1 201, and then flow out of the confluence flow channel 202 in the reverse direction of the first direction F1, so that the inlet end of the temperature adjustment flow channel 201 and the outlet end of the confluence flow channel 202 can be located at the same end, so that the liquid inlet of the temperature adjustment unit 2a can be
  • the cooling liquid is located at the same end as the liquid outlet, so that the cooling liquid inlet and outlet are located at the same end of the temperature adjustment unit 2a, which can reduce each adjustment
  • the size of the temperature unit 2a in the first direction F1 can reduce the size of the bottom plate 2 in the first direction F1, and thus the size of the tray 200 in the first direction F1 can be reduced. Also, connection with external devices can be facilitated.
  • any temperature regulation flow channel 201 exchanges heat with at least one single cell 1 arranged along the second direction F2.
  • it may be: one single cell 1 arranged along the second direction F2 only uses one temperature-adjusting flow channel 201 arranged along the second direction F2 to cool down; it may also be: two or more temperature-adjusting channels 201 arranged along the second direction F2
  • the warm runner 201 cools down the same single cell 1 arranged along the second direction F2; it can also be: two or more single cells 1 arranged along the second direction F2 adopt the same tunable cell 1 arranged along the second direction F2.
  • the warm runner 201 cools down.
  • any temperature regulation flow channel 201 exchanges heat with at most one single cell 1 arranged along the first direction F1.
  • it may be: one single cell 1 arranged along the first direction F1 only uses one temperature-adjusting flow channel 201 arranged along the first direction F1 to cool down; it may also be: two or more temperature-adjusting channels 201 arranged along the first direction F1
  • the warm runner 201 cools the same single cell 1 arranged along the first direction F1; however, two or more single cells 1 arranged along the first direction F1 cannot use the same temperature regulation that is arranged along the first direction F1
  • the flow channel 201 cools down.
  • the upstream cooling liquid temperature is low, and the cooling effect is good, and the downstream cooling liquid temperature is high, and the cooling effect is poor. Therefore, by setting any temperature regulating flow channel 201 The heat exchange with at most one single cell 1 arranged along the first direction F1 can prevent the cooling liquid after heat exchange with one single cell 1 from flowing to the next single cell 1 for heat exchange, avoiding the inconsistency of the temperature of the cooling liquid before and after. , resulting in the problem that the heat dissipation effects of the front and rear single cells 1 are inconsistent, so that the heat dissipation consistency of each single cell 1 can be better.
  • the tray bottom plate in the related art usually adopts a serpentine flow channel.
  • the inlet and outlet of the cooling liquid are located at the head and tail ends of the serpentine flow channel.
  • the cooling effect of the single battery is better, the temperature of the flow channel section near the end of the liquid outlet is higher, and the cooling effect of the single battery at the corresponding position is not good, so that the overall cooling uniformity of the battery pack is not good.
  • the flow resistance is large.
  • the inlet and outlet of the cooling liquid of the tray bottom plate are respectively located at both ends of the length of the bottom plate, resulting in a larger size of the tray bottom plate in the length direction.
  • the bus flow channels 202 and the battery cells 1a are staggered up and down, they do not exchange heat with the single cells 1 , and only the temperature-adjusting flow channels 201 in which the cooling liquid of lower temperature flows to the cells.
  • the battery 1 is cooled, and the confluence flow channel 202 in which the higher temperature cooling liquid flows is used to lead the cooling liquid out of the temperature adjustment unit 2a, and the single battery 1 is not cooled, and any temperature adjustment flow channel 201 is connected to the first direction F1.
  • the inlet end of the temperature adjustment flow channel 201 and the outlet end of the confluence flow channel 202 can be located at the same end of the temperature adjustment unit 2a in the first direction, so that the liquid inlet and the liquid outlet of the temperature adjustment unit 2a are located at the same end, even if The inlet and outlet of the cooling liquid are located at the same end of the temperature adjustment unit 2a, thereby reducing the size of the temperature adjustment unit 2a in the first direction F1.
  • the temperature adjustment unit 2 a further includes: a communication channel 203 , a liquid inlet 211 and a liquid outlet 212 formed on the bottom plate 2 , and the liquid inlet 211 is connected to the temperature adjustment flow
  • the channel 201 is communicated
  • the liquid outlet 212 is communicated with the confluence channel 202
  • the communication channel 203 is located on the same side of the temperature regulation channel 201 and the confluence channel 202 in the first direction F1, and is adjacent to the outlet end 2010 of the temperature regulation channel 201 and the inlet end 2020 of the confluence flow channel 202, and communicate with the outlet end 2010 of the temperature adjustment flow channel 201 and the inlet end 2020 of the confluence flow channel 202
  • the liquid inlet 211 and the liquid outlet 212 are located in the temperature adjustment flow channel 201 and the confluence flow
  • the cooling liquid can flow into the temperature-adjusting flow channel 201 from the liquid inlet 211, and flow out of the confluence flow channel 202 from the liquid outlet 212, and the cooling liquid flowing out from the outlet end 2010 of the temperature-adjusting flow channel 201 can communicate with
  • the runner 203 enters the inlet end 2020 of the bus runner 202 .
  • the inflow and outflow of the cooling liquid and the circulation between the temperature adjustment flow channel 201 and the confluence flow channel 202 can be realized simply and effectively. Moreover, it can be reliably ensured that the liquid inlet and the liquid outlet of the temperature adjustment unit 2a are located at the same end, thereby reducing the size of the temperature adjustment unit 2a in the first direction F1.
  • the two ends of the bottom plate 2 in the first direction F1 are the first end 23 and the second end 24 , the liquid inlet 211 and the liquid outlet 212 respectively. Both are located at the first end portion 23 , and the communication channels 203 are located at the second end portion 24 . Therefore, the cooling liquid can enter the bottom plate 2 from the liquid inlet 211, flow through the entire bottom plate 2 in the forward direction of the first direction F1, flow into the communication channel 203, and flow through the communication channel 203 in the reverse direction of the first direction F1.
  • the confluence flow channel 202 then flows out from the liquid outlet 212 .
  • the flow path of the cooling liquid can make full use of the bottom plate 2 , and can flow through the area where the single cells 1 are placed as much as possible, thereby better cooling the single cells 1 , which is beneficial to the consistency of the cooling of the single cells 1 .
  • the tray 200 includes only one temperature adjustment unit 2a
  • the liquid inlet 211 and the liquid outlet 212 are located at the same end of the tray 200 in the first direction F1
  • the communication channel 203 is located in the tray 200 in the first direction F1 the other end of the .
  • the present application is not limited to this.
  • the liquid inlet 211 , the liquid outlet 212 and the communication channel 203 may not be located at both ends of the bottom plate 2 , for example, they may also be provided on the bottom plate 2 the middle and so on.
  • the bottom plates 2 of two adjacent temperature adjustment units 2a may be of an integrated structure (that is, they may be different parts of one bottom plate), or they may be divided into two parts. Body structure (that is, two independent bottom plates respectively).
  • the bottom plate 2 includes a first bottom plate 21 and a second bottom plate 22 that are oppositely disposed along the thickness direction F3 of the bottom plate 2 , and the temperature-adjusting flow channels 201 and the confluence flow channels 202 are defined on the first bottom plate 21 Between it and the second bottom plate 22 , the liquid inlet 211 and the liquid outlet 212 are formed through the first bottom plate 21 . Therefore, the bottom plate 2 is set to include the first bottom plate 21 and the second bottom plate 22 , so as to facilitate the construction of the temperature regulation flow channel 201 and the confluence flow channel 202 .
  • the liquid inlet 211 is formed through the first bottom plate 21 to facilitate the inflow of the cooling liquid, and the diameter of the liquid inlet 211 is not affected by the thickness of the bottom plate 2, that is, the diameter of the liquid inlet 211 can be larger than the thickness of the bottom plate 2, so that the Reduce the flow resistance;
  • the liquid outlet 212 is formed through the first bottom plate 21 to facilitate the outflow of the cooling liquid, and the diameter of the liquid outlet 212 is not affected by the thickness of the bottom plate 2, that is, the diameter of the liquid outlet 212 can be larger than that of the bottom plate 2 thickness to reduce flow resistance.
  • the first bottom plate 21 and the second bottom plate 22 may be formed separately or integrally. When forming separately, the first bottom plate 21 and the second bottom plate 22 are separately produced. When integrally formed, the temperature-adjusting flow channel 201 and the confluence flow channel 202 can be extruded.
  • At least one temperature adjustment unit 2a is a preset unit 2b
  • the preset unit 2b includes a plurality of temperature adjustment flow channels 201 and a confluence flow channel 202, each The outlet ends 2010 of the temperature-adjusting flow channels 201 are all communicated with the inlet ends 2020 of the confluence flow channels 202 .
  • the plurality of temperature-adjusting flow channels 201 can increase the area and flow of the cooling liquid, thereby cooling the single cells 1 faster and better. .
  • a bus flow channel 202 is provided to flow the heat-exchanged cooling liquid out of the temperature adjustment unit 2a, thereby reducing the occupied space of the bus flow channel 202, increasing the cooling area as much as possible, and further improving the efficiency of the single cell 1 cooling efficiency.
  • each temperature adjustment flow channel 201 and the confluence flow channels 202 all extend along the first direction F1
  • the length of each temperature adjustment flow channel 201 is shorter than that of the serpentine flow channel, so that each temperature adjustment flow channel 201 has a shorter length.
  • the temperature difference between the inlet and outlet ends of the temperature-adjusting flow channels 201 is small, so that the overall temperature of each temperature-adjusting flow channel 201 is relatively uniform and low, thereby improving the consistency of the cooling of the plurality of single cells 1, and can Reducing the flow resistance of the coolant can save energy.
  • all the temperature adjustment flow channels 201 in the preset unit 2 b are located on the same side of the confluence flow channel 202 in the second direction F2 . Since the temperature regulating flow channel 201 is used for cooling the single cell 1, the confluence flow channel 202 is not used for cooling the single cell 1, and the plurality of temperature regulating flow channels 201 are all located on the same side of the bus flow channel 202 in the second direction F2 The arrangement of the plurality of single cells 1 is convenient, and the temperature of the plurality of single cells 1 can be better cooled.
  • the tray 200 includes two preset units 2b, and the two preset units 2b are arranged at intervals along the second direction F2. Further, the two preset units 2b may be axially symmetrically distributed, so that the axisymmetric arrangement of the two preset units 2b can facilitate the arrangement of the preset units 2b, make the structure of the bottom plate 2 more compact, and make the two preset units 2b more compact.
  • the tray 200 further includes a frame 3 , the frame 3 is connected to the bottom plate 2 and defines a holding cavity 30 therebetween, and the frame 3 includes a frame extending along the first direction F1
  • the support beam 31 is located above the two preset units 2b, and the confluence flow channel 202 in each preset unit 2b is arranged opposite to the support beam 31 up and down. Therefore, the support beams 31 can strengthen the structural strength of the frame 3, and the support beams 31 are arranged directly above the confluence channels 202, which can more effectively ensure that the confluence channels 202 and the battery cells 1 are staggered up and down to avoid confluence.
  • the flow channels 202 exchange heat with the battery cells 1 .
  • the bus flow channel 202 in each preset unit 2b is located close to the other preset unit 2b of the plurality of temperature adjustment flow channels 201 in the corresponding preset unit 2b side.
  • the placement of the single cells 1 can be facilitated and conform to the structural layout of the frame 3.
  • a support beam 31 can be arranged in the center of the frame 3, and the support beam 31 is just in line with the frame 3.
  • the bus flow channels 202 of the two preset units 2b are opposite to each other, so that the cooling of the single battery 1 is not affected, and the structural reliability of the frame 3 is ensured.
  • the temperature adjustment unit 2a includes N temperature adjustment channels 201 and M bus channels 202 , where M is greater than or equal to 1 and is an integer, and N is greater than or equal to 1 and is Integer, the sum of the widths of the N temperature adjustment channels 201 in each temperature adjustment unit 2a is greater than the sum of the widths of the M bus channels 202 . Therefore, the area in which the cooling liquid flows in the temperature-adjusting flow channel 201 is larger, and the temperature of the single cell 1 can be cooled more efficiently.
  • the width of the temperature-adjusting flow channel 201 refers to its average width in the second direction F2, wherein the temperature-adjusting flow channel 201 may be an equal-width flow channel or an unequal width
  • the width of the flow channel 202 refers to its average width in the second direction F2, wherein the flow channel 202 may be an equal-width flow channel or an unequal-width flow channel.
  • At least one temperature adjustment unit 2 a includes: an adapter 4 and an external nozzle 5 , and the adapter 4 has a first flow channel 401 and a second flow channel 402 isolated from each other in the adapter 4 , the first flow channel 401 is communicated with the temperature regulating flow channel 201, the second flow channel 402 is communicated with the confluence flow channel 202, the external pipe 5 includes a liquid inlet pipe 51 and a liquid outlet pipe 52, and the liquid inlet pipe 51 is connected with the adapter 4 and Connected to the first flow channel 401 , the liquid outlet pipe 52 is connected to the adapter 4 and connected to the second flow channel 402 .
  • the cooling liquid can enter the first flow channel 401 from the liquid inlet pipe 51, and flow to the temperature-adjusting flow channel 201 through the first flow channel 401.
  • the flow of 201 can cool the single battery 1.
  • the hot single battery 1 and the cooling liquid exchange heat, so that the temperature adjustment channel 201 is far away in the first direction F1.
  • the temperature of the cooling liquid at the end of the adapter 4 is relatively high, and the cooling liquid with the higher temperature flows to the second flow channel 402 through the confluence flow channel 202 , and the cooling liquid flowing through the second flow channel 402 does not exchange heat with the single cell 1 . , and can flow out from the liquid outlet pipe 52 through the second flow channel 402 .
  • the adapter 4 when the number of the temperature-adjusting flow channels 201 and/or the confluence flow channels 202 is greater than 1, only one set of liquid inlet pipes 51 and liquid outlet pipes 52 can be matched, which reduces the amount of liquid inlet.
  • the usage of the pipe 51 and the liquid outlet pipe 52 simplifies the structural complexity.
  • the present application is not limited to this, and multiple groups of liquid inlet pipes 51 and liquid outlet pipes 52 may also be provided.
  • the tray bottom plate of the battery pack usually adopts a serpentine flow channel, and the liquid inlet and outlet pipes are located at the head and tail ends of the serpentine flow channel, and are located on both sides of the tray bottom plate in the length direction, resulting in the size of the tray bottom plate in the length direction.
  • the liquid inlet and outlet pipes are directly inserted into the head and tail ends of the serpentine flow channel along the direction parallel to the bottom plate.
  • the liquid inlet pipe 51 is connected to the temperature adjustment channel 201 through the adapter 4
  • the liquid outlet pipe 52 is connected to the confluence channel 202 through the adapter 4, so that the liquid inlet pipe 51 and the outlet
  • the liquid pipe 52 may be located on the same side of the temperature adjustment unit 2a in the first direction F1, so that the size of the tray 200 in the first direction F1 is smaller.
  • the pipe diameters of the liquid inlet pipe 51 and the liquid outlet pipe 52 are not affected by the thickness of the bottom plate 2, and the thickness of the bottom plate 2 is relatively thin. Under certain circumstances, the liquid inlet pipe 51 and the liquid outlet pipe 52 with larger pipe diameters can also be selected to reduce the resistance of the cooling liquid flow.
  • the adapter 4 may be an integral piece, and the adapter 4 has a baffle groove 44 , and a baffle or the like can be placed in the baffle groove 44 to facilitate the adapter
  • the member 4 defines a first flow channel 401 and a second flow channel 402 which are isolated from each other.
  • the interior of the adapter 4 can also be directly made of a partition structure, or the adapter 4 can also be formed by splicing a plurality of separate parts, At least one of the split pieces defines a first flow channel 401, at least one of the split pieces defines a second flow channel 402, and so on.
  • the number of adapters 4 may be one or multiple.
  • the tray 200 includes a plurality of temperature adjustment units 2a (for example, as shown in FIG. 2 and FIG. 6 )
  • the adapters of two adjacent temperature adjustment units 2a 4 can be spliced into separate parts, and the adapter 4 of two adjacent temperature adjustment units 2a can also be an integral structure.
  • the two temperature adjustment units 2a can also share one adapter 4 and one second flow channel 402, of course.
  • the tray 200 may include a bottom plate 2 , a frame 3 , an external socket 5 and an adapter 4 .
  • the frame 3 is connected to the bottom plate 2 and defines a holding cavity 30 between the bottom plate 2 and the bottom plate 2.
  • the holding cavity 30 is used for arranging the battery assembly 100.
  • the frame 3 includes a first side beam 32. Referring to FIG. 5 and FIG.
  • the inner end 501 penetrates into the interior of the first side beam 32, the first side beam 32 is formed with a first accommodating groove 321, the adapter 4 is arranged on one side of the bottom plate 2 in the thickness direction, and the adapter 4 is accommodated in the first accommodating groove 321.
  • the first accommodating groove 321 can provide an installation space for the adapter 4 , and the first side beam 32 can protect the adapter 4 and reduce the damage of the adapter 4 by dust, corrosion and the like.
  • the setting position of the first side beam 32 is not limited.
  • the first side beam 32 may extend along the length direction of the tray 200 and be disposed close to the side edge of the tray 200 in the width direction, or may be arranged along the width direction of the tray 200 . It extends in the width direction and is disposed close to the sides of the tray 200 in the length direction, and so on.
  • the bottom plate 2 has a bottom plate runner 20
  • the adapter 4 has an adapter runner 40 .
  • the adapter 4 includes a first connecting portion 41 and a second connecting portion 42 .
  • a connecting portion 41 is connected to the bottom plate 2 so that the transfer channel 40 communicates with the bottom plate channel 20
  • the second connecting portion 42 is connected to the inner end 501 of the external nozzle 5 so that the transfer channel 40 communicates with the external nozzle 5
  • the first connecting portion 41 and the second connecting portion 42 are both hidden in the first side beam 32 .
  • the first side beam 32 can protect the first connecting part 41 and the second connecting part 42 , that is, the connecting position of the adapter 4 and the bottom plate 2 and the connecting position of the adapter 4 and the external connecting pipe 5 , thereby improving the The installation reliability of the adapter 4 reduces the risk of coolant leakage at the connection.
  • the cooling liquid can flow into the adapter flow channel 40 from the external nozzle 5 and flow to the bottom plate channel 20 through the adapter channel 40 .
  • the battery assembly 100 can be disposed above the bottom plate flow channel 20 , and the cooling liquid can cool the battery assembly 100 when the bottom plate flow channel 20 flows.
  • the external nozzle 5 may include a liquid inlet pipe 51 and a liquid outlet pipe 52
  • the adapter flow channel 40 includes a first flow channel 401 and a second flow channel 402 isolated from each other, and the bottom plate flow channel 20 It includes a temperature-adjusting flow channel 201 and a confluence flow channel 202
  • the liquid inlet pipe 51 communicates with the first flow channel 401
  • the liquid outlet pipe 52 communicates with the second flow channel 402
  • the first flow channel 401 communicates with the warm flow channel 201
  • the second flow channel 402 is communicated with the confluence flow channel 202
  • the cooling liquid flows into the first flow channel 401 from the liquid inlet pipe 51, and flows from the first flow channel 401 to the temperature adjustment flow channel 201.
  • the confluence flow channel 202 flows to the second flow channel 402 and then flows out from the liquid outlet pipe 52 .
  • the battery assembly 100 may be located above the temperature adjustment flow channel 201 , or may be located above the temperature adjustment flow channel 201 and the bus flow channel 202 .
  • the adapter 4 is connected with the external pipe 5, so that the external pipe 5 is arranged on the same side of the bottom plate 2, so that the size of the tray 200 is small. Moreover, by arranging the adapter 4 on one side of the base plate 2 in the thickness direction, and connecting the external nozzle 5 to the adapter 4, the pipe diameter of the external nozzle 5 is not affected by the thickness of the bottom plate 2. In the case of thinness, the outer pipe 5 with a larger diameter can also be selected to reduce the resistance of the coolant flow. For example, the pipe diameters of the liquid inlet pipe 51 and the liquid outlet pipe 52 are not affected by the thickness of the bottom plate 2. When the thickness of the bottom plate 2 is relatively thin, the liquid inlet pipe 51 and the liquid outlet pipe 52 with larger pipe diameters can be selected. to reduce the resistance to coolant flow.
  • the adapter 4 and the groove wall of the first accommodating groove 321 may be clearance fit. That is to say, the adapter 4 may not be in contact with the groove wall of the first accommodating groove 321 , so as to avoid problems such as pressure caused by the first side beam 32 on the adapter 4 , and further protect the adapter 4 .
  • the first connection portion 41 is connected to the base plate 2 by welding. Since the welding connection is a relatively stable connection method, the first connection portion 41 and the base plate 2 can be connected to the base plate 2 simply and reliably. At the same time, the risk of detachment between the first connecting portion 41 and the bottom plate 2 is reduced, and the risk of cooling liquid leakage from the first connecting portion 41 is reduced.
  • the second connecting portion 42 is connected to the inner end 501 of the external nozzle 5 by welding. Since the welding connection is a relatively stable connection, the second connecting portion 42 is connected to the external nozzle 5 by welding. They can be connected together simply and reliably, reducing the risk of disengagement between the second connecting portion 42 and the external nozzle 5 and reducing the risk of cooling fluid leaking from the second connecting portion 42 .
  • one of the two side surfaces of the bottom plate 2 in the thickness direction facing the adapter 4 has a communication port 213 .
  • the first connection The part 41 is configured as a bottom plate interface 410
  • the tray 200 further includes a welding pipe 6, one end of the welding pipe 6 is fitted and welded with the communication port 213, and the other end of the welded pipe 6 is fitted and welded with the bottom plate interface 410, so that the first The connecting portion 41 is connected to the base plate 2 by welding.
  • the welding nozzle 6 can be easily connected, so as to connect the bottom plate flow channel 20 and the adapter channel 40 through the welding nozzle 6, so as to utilize the welding nozzle 6 to guide the cooling liquid As a result, the cooling liquid smoothly flows from the adapter flow channel 40 to the bottom plate flow channel 20 . Therefore, the difficulty and complexity of the connection between the adapter 4 and the bottom plate 2 are reduced, the structure is simplified, and the first connection portion 41 is also advantageously connected to the bottom plate 2 by welding.
  • the pipe diameter of the welded pipe 6 can be manufactured according to the diameter of the communication port 213 and the bottom plate interface 410. Since the communication port 213 is located on the side surface of the bottom plate 2 in the thickness direction of the adapter 4, the communication liquid The diameter of the port 213 is not limited by the thickness of the bottom plate 2, so the communication port 213 can be larger. It can also be larger, and then the welded pipe 6 with a larger diameter can be selected, so that the flow resistance of the cooling liquid can be further reduced, and energy consumption can be saved.
  • the second connection portion 42 is configured as a take-over interface 420 , and the inner end 501 of the external take-over 5 is mated and welded with the take-over interface 420 , so that the second connection portion 42 is connected to the external take-over interface 420 .
  • 5 are connected by welding, so that the nozzle interface 420 can provide an installation environment for the external nozzle 5, and the inner end 501 of the external nozzle 5 is mated and welded with the nozzle interface 420, so that the second connection portion 42 and the external nozzle 5 can be reliably connected to each other.
  • the risk of disengagement of the second connection portion 42 from the outer nozzle 5 is reduced.
  • the outer end 502 of the outer nozzle 5 is exposed on the side of the first side beam 32 away from the storage cavity 30 , thereby facilitating the connection between the outer nozzle 5 and other external storage chambers.
  • a device for placing the cooling liquid is connected to introduce the cooling liquid into the tray 200 and to discharge the cooling liquid out of the tray 200 .
  • the second connecting portion 42 is located on the side of the adapter 4 away from the holding cavity 30 , so that the second connecting portion 42 can be easily connected to the external pipe 5 .
  • the adapter 4 may include a bottom surface 432 , a top surface 431 , an inner side surface 433 and an outer side surface 434 , and the bottom surface 432 is disposed opposite to the top surface 431 .
  • the top surface 431 is spaced apart from the bottom surface 432, and the top surface 431 is located on the side of the bottom surface 432 away from the bottom plate 2, the inner side surface 433 and the outer side surface 434 are connected between the top surface 431 and the bottom surface 432, and the inner side surface 433 is opposite to the bottom surface 432.
  • the outer side surface 434 is disposed close to the center point of the bottom plate 2 .
  • the take-over interface 420 is formed on the outer side surface 434 of the adapter 4 . It can be understood that, the bottom surface 432 , the top surface 431 , the inner side surface 433 and the outer side surface 434 can be surrounded by the adapter flow channel 40 , and the take-over interface 420 is formed on the outer side surface 434 of the adapter piece 4 to be located on the side of the adapter piece 4 .
  • the central axis L2 of the outer nozzle 5 is perpendicular to the length direction F4 of the adapter 4 and perpendicular to the thickness direction F3 of the base plate 2 .
  • the length direction F4 of the adapter 4 is the second direction F2
  • the extension direction of the central axis L2 of the outer nozzle 5 is the first direction F1 .
  • the external nozzle 5 may include a liquid inlet pipe 51 and a liquid outlet pipe 52 , thereby facilitating the positioning and installation of the liquid inlet pipe 51 and the liquid outlet pipe 52 , and as shown in FIG. 2 As shown, it is convenient to set a plurality of bottom plate interfaces 410 on the adapter 4.
  • the bottom plate interface 410 may include a first interface 4101 and a second interface 4102, and the communication port 213 may include a liquid inlet 211 and a liquid outlet 212.
  • the liquid inlet 211 is connected with the first interface 4101 in a one-to-one correspondence
  • the liquid outlet 212 is connected with the second interface 4102 in a one-to-one correspondence.
  • the side surface of the two side surfaces in the thickness direction of the bottom plate 2 facing the adapter 4 has a liquid inlet 211 and a liquid outlet 212 , and the liquid inlet 211 It communicates with the temperature regulating channel 201 , the liquid outlet 212 communicates with the confluence channel 202 , and the side surface of the adapter 4 facing the bottom plate 2 has a first interface 4101 and a second interface 4102 , and the first interface 4101 is connected to the liquid inlet.
  • the port 211 is in communication, and the second interface 4102 is in communication with the liquid outlet 212 .
  • the welding nozzle 6 may include a first nozzle 61 and a second nozzle 62 , one end of the first nozzle 61 is inserted into the liquid inlet 211 , and the other end of the first nozzle 61 is inserted into the first interface 4101 Match up.
  • One end of the second pipe 62 is plug-fitted with the liquid outlet 212 , and the other end of the second pipe 62 is plug-fitted with the second interface 4102 .
  • the first pipe 61 can be easily installed, so as to connect the temperature-adjusting flow channel 201 and the first flow channel 401 through the first pipe 61, so as to utilize the first pipe 61 for cooling
  • the diversion effect of the liquid makes the cooling liquid flow smoothly from the first flow channel 401 to the temperature adjustment flow channel 201 .
  • the second nozzle 62 can be easily installed, so as to connect the confluence flow channel 202 and the second flow channel 402 through the second nozzle 62, so as to utilize the second nozzle 62 for cooling
  • the diversion effect of the liquid makes the cooling liquid flow smoothly from the confluence flow channel 202 to the second flow channel 402 . Therefore, the difficulty and complexity of the connection between the adapter 4 and the bottom plate 2 are reduced, and the structure is simplified.
  • the pipe diameter of the first connecting pipe 61 can be manufactured according to the diameters of the liquid inlet 211 and the first interface 4101 , since the liquid inlet 211 is located on the side surface of the two side surfaces in the thickness direction of the bottom plate 2 facing the adapter 4 . , the diameter of the liquid inlet 211 is not limited by the thickness of the bottom plate 2, so the liquid inlet 211 can be larger.
  • the thickness limit of 4 can also be larger; in the same way, the diameter of the second nozzle 62 can be manufactured according to the diameter of the liquid outlet 212 and the second interface 4102, because the liquid outlet 212 is located on the bottom plate 2 towards the thickness of the adapter 4
  • the diameter of the liquid outlet 212 is not limited by the thickness of the bottom plate 2, so the liquid outlet 212 can be larger, and the second interface 4102 is provided on the side surface of the adapter 4 facing the bottom plate 2, It can also be larger without being limited by the thickness of the adapter 4, and then the first pipe 61 and the second pipe 62 with larger diameters can be selected, so that the flow resistance of the cooling liquid can be further reduced, and energy consumption can be saved.
  • a side surface of the adapter 4 away from the holding cavity 30 has a nozzle port 420 , and the nozzle port 420 includes a liquid inlet port 4201 and a liquid outlet port 4202 .
  • the liquid port 4201 is communicated with the first flow channel 401
  • the liquid outlet port 4202 is communicated with the second flow channel 402
  • the outlet end of the liquid inlet pipe 51 is connected to the liquid inlet port 4201 to introduce the cooling liquid into the first flow channel 401
  • the liquid outlet pipe 52 The inlet end is connected to the liquid outlet port 4202 to lead out the cooling liquid in the second flow channel 402 .
  • the liquid inlet port 4201 can be easily connected to the liquid inlet pipe 51, the liquid inlet pipe 51 can be communicated with the first flow channel 401, the liquid outlet port 4202 can be easily connected to the liquid outlet pipe 52, and the liquid outlet pipe 52 can be connected to the second flow channel 401.
  • the channel 402 communicates with each other, and facilitates the connection of the liquid inlet pipe 51 and the liquid outlet pipe 52 to the external cooling liquid system.
  • a sinker 311 is further formed on the first side beam 32 , the sinker 311 communicates with the first accommodating slot 321 , and a bottom wall of the sinker 311 is also formed with a sinker 311 .
  • the first nozzle accommodating groove 312 communicated with the groove 311, the frame 3 further includes a mounting seat 33, the mounting seat 33 is embedded in the sinking groove 311 and a second nozzle receiving groove 331 is formed on the mounting seat 33, and the inner end 501 of the external nozzle 5 receives in the space jointly defined by the first nipple accommodating groove 312 and the second nipple accommodating groove 331 .
  • the mounting seat 33 by arranging the mounting seat 33 , the space jointly defined by the first nipple accommodating groove 312 and the second nipple accommodating groove 331 can provide an installation environment for the outer nipple 5 and can protect the outer nipple 5 .
  • the mounting seat 33 by arranging the sinking groove 311 , the mounting seat 33 can also be effectively accommodated, and the compactness of the structure of the battery pack 1000 can be improved.
  • the first accommodating groove 312 may include a second accommodating groove 3121 and a third accommodating groove 3122
  • the second accommodating groove 331 may include a fourth accommodating groove 3311 and a fifth accommodating groove 3312
  • the liquid inlet pipe 51 The inner end 501 of the liquid inlet pipe 51 is accommodated in the space defined by the second accommodating groove 3121 and the fourth accommodating groove 3311 and is connected to the adapter 4.
  • the outer end 502 of the liquid inlet pipe 51 is exposed to the far side of the first side beam 32.
  • the inner end 501 of the liquid outlet pipe 52 is accommodated in the space jointly defined by the third accommodating groove 3122 and the fifth accommodating groove 3312 and is connected to the adapter 4, and the outer end 502 of the liquid outlet pipe 52 is exposed on the side of the first side beam 32 away from the receiving cavity 30 .
  • the inner end 501 of the liquid inlet pipe 51 is easily connected to the adapter 4 and can be protected by the first side beam 32 , and the outer end 502 of the liquid inlet pipe 51 exposed to the first side beam 32 can facilitate the connection between the liquid inlet pipe 51 and the first side beam 32 .
  • External coolant system connection; the inner end 501 of the liquid outlet pipe 52 is easy to connect with the adapter 4 and can be protected by the first side beam 32, and the outer end 502 of the liquid outlet pipe 52 exposed to the first side beam 32 can facilitate the liquid outlet Tube 52 is connected to the external coolant system.
  • the bottom plate flow channel 20 includes a temperature adjustment flow channel 201 and a confluence flow channel 202 , and the temperature adjustment flow channel 201 and the confluence flow channel 202 both extend along the first direction F1, and the temperature adjustment
  • the flow channel 201 and the confluence flow channel 202 are arranged along the second direction F2, and the second direction F2 and the first direction F1 intersect; It includes a first flow channel 401 and a second flow channel 402 that are isolated from each other.
  • the first flow channel 401 communicates with the temperature adjustment flow channel 201
  • the second flow channel 402 communicates with the confluence flow channel 202.
  • the temperature adjustment flow channel 201 is in the first direction F1.
  • the end far from the adapter 4 is the outlet end 2010
  • the end of the confluence flow channel 202 in the first direction F1 away from the adapter 4 is the inlet end 2020
  • the outlet end 2010 of the temperature adjustment flow channel 201 is connected to the confluence flow channel 202
  • the inlet end 2020 is connected;
  • the external nozzle 5 includes a liquid inlet pipe 51 and a liquid outlet pipe 52 , the liquid inlet pipe 51 is connected to the first flow channel 401 , and the liquid outlet pipe 52 is connected to the second flow channel 402 .
  • the cooling liquid can enter the first flow channel 401 from the liquid inlet pipe 51 , and flow to the temperature-adjusting flow channel 201 through the first flow channel 401 .
  • Flowing through the temperature-adjusting flow channel 201 can cool the battery assembly 100 .
  • the hot battery assembly 100 and the cooling liquid exchange heat, so that the temperature-adjusting flow channel 201 is in the first direction F1
  • the temperature of the cooling liquid at the end far from the adapter 4 is higher, and the higher temperature cooling liquid flows to the second flow channel 402 through the confluence flow channel 202, and the cooling liquid in the second flow channel 402 can flow out of the tray through the liquid outlet pipe 52 200.
  • the liquid inlet pipe 51 is connected to the temperature adjustment channel 201 through the adapter 4, and the liquid outlet pipe 52 is connected to the confluence channel 202 through the adapter 4, the liquid inlet pipe 51 and the liquid outlet pipe 52 can be located on the bottom plate 2 in the first The same side in one direction F1, so that the size of the tray 200 in the first direction F1 is smaller. Furthermore, by arranging the adapter 4 on one side of the bottom plate 2 in the thickness direction, and connecting both the liquid inlet pipe 51 and the liquid outlet pipe 52 to the adapter 4, the pipes of the liquid inlet pipe 51 and the liquid outlet pipe 52 are formed. The diameter is not affected by the thickness of the bottom plate 2. When the thickness of the bottom plate 2 is relatively thin, the liquid inlet pipe 51 and the liquid outlet pipe 52 with larger diameters can also be selected to reduce the resistance of the cooling liquid flow.
  • the temperature of the flow channel section at the head end of the liquid inlet pipe is relatively low, and the cooling effect of the battery assembly at the corresponding position is better.
  • the higher the temperature the poorer the cooling effect on the battery assembly at the corresponding position, so that the overall cooling uniformity of the battery pack is not good.
  • the bus runner 202 can be set to be staggered from the top and bottom of the battery assembly 100 , that is, the top and bottom are not directly opposite to each other, so that the exchange of the bus runner 202 with the battery assembly 100 can be avoided. heat to ensure the cooling effect on the battery assembly 100 . That is to say, when the bus flow channel 202 is arranged at a position avoiding the battery assembly 100 , the heat dissipation effect on the battery assembly 100 can be effectively ensured.
  • each temperature-adjusting flow channel 201 is arranged and arranged along the second direction F2
  • the length of each temperature-adjusting flow channel 201 is relatively short, and the temperature difference between the liquid inlet and outlet ends of each temperature-adjusting flow channel 201 is relatively high Therefore, the overall temperature of each temperature-adjusting flow channel 201 is relatively uniform and the temperature is relatively low, thereby improving the consistency of the cooling of the battery pack 1000 .
  • the first direction F1 is the length direction of the base plate 2
  • the second direction F2 is the width direction of the base plate 2
  • the adapter 4 is arranged on the base plate 2 in the first direction The end on the F1. Therefore, disposing the adapter 4 at the end of the bottom plate 2 can facilitate the installation and fixation of the adapter 4, and can simply and effectively ensure that the bottom plate 2 can have a cooling effect in the entire length direction, thereby ensuring that the bottom plate 2 has a cooling effect. 2, the cooling effect on the battery assembly 100, the structure of the bottom plate 2 can be simplified, and the influence of the adapter 4 on the placement of the battery assembly 100 can be reduced.
  • the adapter 4 may also be arranged in the middle of the bottom plate 2 or at other positions, which will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池包(1000),包括电池组件(100)和托盘(200),电池组件(100)包括至少一个电池单元(1a),电池单元(1a)包括多个单体电池(1),每个单体电池(1)的长度方向均为第一方向(F1),且多个单体电池(1)沿第二方向(F2)排布,托盘(200)包括至少一个调温单元(2a),调温单元(2a)包括调温流道(201)和汇流流道(202),任一调温流道(201)与沿第二方向(F2)排列的最少一个单体电池(1)换热、且与沿第一方向(F1)排列的最多一个单体电池(1)换热。

Description

电池包
相关申请的交叉引用
本申请基于申请号为202011032009.2、申请日为2020-09-27的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池技术领域,尤其是涉及一种电池包。
背景技术
相关技术中的电池包的底板,通常采用蛇形流道,进出液管位于蛇形流道的首尾两端,靠近进液管的首端流道段的温度较低,对于对应位置处的单体电池的冷却效果较好,靠近出液管的尾端流道段的温度较高,对于对应位置处的单体电池的冷却效果欠佳,从而使得电池包整体的降温均匀性不好。
发明内容
本申请提供一种电池包,所述电池包具有冷却一致性好的优点。
根据本申请实施例的电池包,包括:电池组件,所述电池组件包括至少一个电池单元,所述电池单元包括多个单体电池,每个所述单体电池的长度方向均为第一方向,且多个所述单体电池沿第二方向排布;托盘,所述托盘包括至少一个调温单元,所述调温单元包括底板和形成于所述底板的调温流道和汇流流道,所述调温流道与所述电池单元上下相对设置以与所述单体电池换热,所述汇流流道与所述电池单元上下错开设置以不与所述单体电池换热,所述调温流道和所述汇流流道均沿所述第一方向延伸,且所述调温流道和所述汇流流道沿所述第二方向排列,在所述第一方向上,所述调温流道的一端为出口端,所述汇流流道的靠近所述出口端的一端为入口端,所述调温流道的出口端与所述汇流流道的入口端连通,所述第二方向和所述第一方向相交,任一所述调温流道与沿所述第二方向排列的最少一个所述单体电池换热、且与沿所述第一方向排列的最多一个所述单体电池换热。根据本申请的电池包,具有冷却一致性好的优点。
在一些实施例中,所述调温单元还包括:形成于所述底板的连通流道、进液口和出液口,所述进液口与所述调温流道连通,所述出液口与所述汇流流道连通,所述连通流道位于所述调温流道和所述汇流流道在所述第一方向的同一侧,且邻近所述调温流道的出口端和所 述汇流流道的入口端,所述连通流道连通所述调温流道的出口端和所述汇流流道的入口端,所述进液口和所述出液口均位于所述调温流道和所述汇流流道在所述第一方向上的远离所述连通流道的一侧。
在一些实施例中,所述底板在所述第一方向上的两端分别为第一端部和第二端部,所述进液口和所述出液口均位于所述第一端部,所述连通流道位于所述第二端部。
在一些实施例中,所述底板包括沿所述底板的厚度方向相对设置的第一底板和第二底板,所述调温流道和所述汇流流道限定在所述第一底板和所述第二底板之间,所述进液口和所述出液口均贯穿形成在所述第一底板上。
在一些实施例中,至少一个所述调温单元为预设单元,所述预设单元包括多个所述调温流道和一个所述汇流流道,每个所述调温流道的出口端均与所述汇流流道的入口端连通。
在一些实施例中,所述预设单元中的全部所述调温流道均位于所述汇流流道在所述第二方向上的同侧。
在一些实施例中,所述托盘包括两个所述预设单元,两个所述预设单元沿所述第二方向间隔排布。
在一些实施例中,所述托盘还包括框架,所述框架与所述底板相连且与所述底板之间限定出盛放腔,所述框架包括沿所述第一方向延伸的支撑梁,所述支撑梁位于两个所述预设单元之间的上方,每个所述预设单元中的所述汇流流道均与所述支撑梁上下相对设置。
在一些实施例中,所述调温单元包括N个所述调温流道和M个所述汇流流道,所述M大于等于1且为整数,所述N大于等于1且为整数,每个所述调温单元中的所述N个所述调温流道的宽度之和大于所述M个所述汇流流道的宽度之和。
在一些实施例中,至少一个所述调温单元包括:转接件,所述转接件内具有相互隔离的第一流道和第二流道,所述第一流道与所述调温流道连通,所述第二流道与所述汇流流道连通;外部接管,所述外部接管包括进液管和出液管,所述进液管与所述转接件相连且接通至所述第一流道,所述出液管与所述转接件相连且接通至所述第二流道。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的电池包的立体图;
图2是根据本申请一个实施例的托盘的剖视图;
图3是根据本申请一个实施例的底板的爆炸图;
图4是根据本申请一个实施例的托盘的爆炸图;
图5是根据本申请一个实施例的托盘的局部示意图;
图6是图4中A处的局部放大图;
图7是根据本申请一个实施例的托盘的一个位置的剖视图;
图8是图7中B处的局部放大图;
图9是根据本申请一个实施例的托盘的另一个位置的剖视图;
图10是图9中C处的局部放大图;
图11是根据本申请另一个实施例的底板的结构示意图。
附图标记:
电池包1000;
电池组件100;电池单元1a;单体电池1;
托盘200;调温单元2a;预设单元2b;
底板2;底板流道20;
调温流道201;出口端2010;
汇流流道202;入口端2020;
连通流道203;
第一底板21;进液口211;出液口212;连通液口213;
第二底板22;
第一端部23;第二端部24;
框架3;盛放腔30;
支撑梁31;沉槽311;第一接管容纳槽312;
第二容纳槽3121;第三容纳槽3122;
第一边梁32;第一容纳槽321;
安装座33;第二接管容纳槽331;
第四容纳槽3311;第五容纳槽3312;
转接件4;转接流道40;第一流道401;第二流道402;
第一连接部41;底板接口410;第一接口4101;第二接口4102;
第二连接部42;接管接口420;进液接口4201;出液接口4202;
顶面431;底面432;内侧面433;外侧面434;
隔板槽44;
外部接管5;内端501;外端502;进液管51;出液管52;
焊接接管6;第一接管61;第二接管62。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面参考附图描述根据本申请一些实施例的电池包1000。
如图1所示,根据本申请实施例的电池包1000,包括电池组件100和托盘200,电池组件100包括至少一个电池单元1a,电池单元1a包括多个单体电池1,每个单体电池1的长度方向均为第一方向F1,且多个单体电池1沿第二方向F2排布,第二方向F2和第一方向F1相交,在一些实施例中,单体电池1的厚度方向为第二方向F2。结合图2,托盘200包括至少一个调温单元2a,调温单元2a用于对电池单元1a调温。
需要说明的是,本文所述的“调温”可以包括升温和降温,为简化描述,下面仅以降温为例对本申请进行描述,此时,调温流体为冷却液。此外,需要说明的是,调温单元2a的数量可以根据实际需要冷却的电池单元1a的数量进行设置,例如在一些具体示例中,调温单元2a的数量可以与电池单元1a的数量相等,以一一对应设置,当然,本申请不限于此,在其他一些示例中,调温单元2a的数量还可以大于或小于电池单元1a的数量,这里不作赘述。
参考图2,调温单元2a包括底板2和形成于底板2的调温流道201和汇流流道202,调温流道201与电池单元1a上下(如图1所示的上下)相对设置(即调温流道201位于电池单元1a的正下方)以与单体电池1换热,汇流流道202与电池单元1a上下错开设置(即非上下相对设置,即汇流流道202位于电池单元1a的斜下方)以不与单体电池1换热。
如图2所示,调温流道201和汇流流道202均沿第一方向F1延伸,且调温流道201 和汇流流道202沿第二方向F2排列,在第一方向F1上,调温流道201在的一端为出口端2010,汇流流道202的靠近出口端2010的一端为入口端2020,调温流道201的出口端2010与汇流流道202的入口端2020连通。
由此,冷却液可以流入调温流道201,沿第一方向F1的正向流经调温流道201,流向调温流道201的出口端2010,再从调温流道201的出口端2010流向汇流流道202的入口端2020,之后沿第一方向F1的反向流经汇流流道202,流出汇流流道202。其中,冷却液在流经调温流道201时,可以对与调温流道201上下相对的单体电池1降温,在对单体电池1降温的过程中,冷却液和热的单体电池1进行热交换,交换后的冷却液温度较高,温度较高的冷却液从调温流道201流出到汇流流道202,流经汇流流道202的过程中,由于汇流流道202与单体电池1上下错开设置,从而不会对单体电池1加热,以保证对单体电池1的降温效果可靠。
简言之,由于汇流流道202与电池单元1a上下错开设置,从而不存在单体电池1设置在汇流流道202的上面,可以理解的是,冷却液在换热前温度较低,温度较低的冷却液流入调温流道201,冷却液换热后温度较高,温度较高的冷却液流入汇流流道202,由此,只有调温流道201对单体电池1进行冷却,而汇流流道202仅用于将冷却液导出调温单元2a,而不与单体电池1换热,从而保证对单体电池1的冷却效果。
而且,由于在第一方向F1上,调温流道201的出口端2010与汇流流道202的入口端2020位于同一端且连通,使得冷却液可以沿第一方向F1的正向进入调温流道201,再沿第一方向F1的反向流出汇流流道202,从而使得调温流道201的入口端与汇流流道202的出口端可以位于同一端,以使得调温单元2a的进液和出液位于同一端,这样与进液和出液分别设在调温单元2a的不同端相比,冷却液的进液和出液位于调温单元2a的同一端,可以减小每个调温单元2a在第一方向F1上的尺寸,从而可以减小底板2在第一方向F1上的尺寸,进而可以减小托盘200在第一方向F1上的尺寸。而且,还可便于与外部设备的连接。
其中,任一调温流道201与沿第二方向F2排列的最少一个单体电池1换热。例如,可以是:沿第二方向F2排列的一个单体电池1仅采用沿第二方向F2排列的一个调温流道201降温;还可以是:沿第二方向F2排列的两个或以上调温流道201为沿第二方向F2排列的同一个单体电池1降温;还可以是:沿第二方向F2排列的两个或以上单体电池1采用沿第二方向F2排列的同一个调温流道201降温。
其中,任一调温流道201与沿第一方向F1排列的最多一个单体电池1换热。例如,可以是:沿第一方向F1排列的一个单体电池1仅采用沿第一方向F1排列的一个调温 流道201降温;还可以是:沿第一方向F1排列的两个或以上调温流道201为沿第一方向F1排列的同一个单体电池1降温;但是,沿第一方向F1排列的两个或以上单体电池1不能采用沿第一方向F1排列的同一个调温流道201降温。
需要说明的是,由于在冷却液流动的方向上,上游的冷却液温度低,冷却效果好,下游的冷却液温度较高,冷却效果较差,由此,通过设置任一调温流道201与沿第一方向F1排列的最多一个单体电池1换热,可以避免与一个单体电池1换热后的冷却液再流向下一个单体电池1去换热,避免由于冷却液前后温度不一致,导致前后两个单体电池1的散热效果不一致的问题,从而可以使得每一个单体电池1的散热一致性较好。
相关技术中的托盘底板,通常采用蛇形流道,冷却液的进液和出液位于蛇形流道的首尾两端,靠近进液的首端流道段的温度较低,对于对应位置处的单体电池的冷却效果较好,靠近出液的尾端流道段的温度较高,对于对应位置处的单体电池的冷却效果欠佳,从而使得电池包整体的降温均匀性不好,且流动阻力较大。此外,此种托盘底板的冷却液的进液和出液还分别位于底板的长度两端,从而导致托盘底板在长度方向上的尺寸较大。
而根据本申请实施例的电池包1000,由于汇流流道202与电池单元1a上下错开设置,不与单体电池1换热,只有流动有较低温度冷却液的调温流道201对单体电池1进行冷却,流动有较高温度冷却液的汇流流道202用于将冷却液导出调温单元2a,不对单体电池1进行冷却,且任一调温流道201与沿第一方向F1排列的最多一个单体电池1换热,从而对多个单体电池1冷却温度的一致性较好,整体散热降温效果较好。
此外,调温流道201的入口端与汇流流道202的出口端可以位于调温单元2a在第一方向上的同一端,从而使得调温单元2a的进液和出液位于同一端,即使得冷却液的进液和出液位于调温单元2a的同一端,进而可以减小调温单元2a在第一方向F1上的尺寸。
在本申请的一些实施例中,如图2所示,调温单元2a还包括:形成于底板2的连通流道203、进液口211和出液口212,进液口211与调温流道201连通,出液口212与汇流流道202连通,连通流道203位于调温流道201和汇流流道202在第一方向F1的同一侧,且邻近调温流道201的出口端2010和汇流流道202的入口端2020,且连通调温流道201的出口端2010和汇流流道202的入口端2020,进液口211和出液口212均位于调温流道201和汇流流道202在第一方向F1上的远离连通流道203的一侧。也就是说,冷却液可以从进液口211流入调温流道201,并从出液口212流出汇流流道202,并且从调温流道201的出口端2010流出的冷却液,可以通过连通流道203进入汇流流 道202的入口端2020。
由此,可以简单且有效地实现冷却液的进出和在调温流道201与汇流流道202之间的流通。且能够可靠地保证调温单元2a的进液和出液位于同一端,进而可以减小调温单元2a在第一方向F1上的尺寸。
在本申请的一些实施例中,参考图2-图3,底板2在第一方向F1上的两端分别为第一端部23和第二端部24,进液口211和出液口212均位于第一端部23,连通流道203均位于第二端部24。由此,冷却液可以从进液口211进入底板2,沿第一方向F1的正向流过整个底板2,流入连通流道203,由连通流道203沿第一方向F1的反向流经汇流流道202,然后从出液口212流出。
由此,冷却液的流动路径可以充分利用底板2,可以尽可能大地流经单体电池1放置的区域,从而更好地给单体电池1降温,有利于单体电池1降温的一致性。例如,当托盘200仅包括一个调温单元2a时,进液口211和出液口212均位于托盘200在第一方向F1上的同一端,连通流道203位于托盘200在第一方向F1上的另一端。
当然,本申请不限于此,在本申请的其他实施例中,进液口211、出液口212和连通流道203也可以不位于底板2的两个端部,例如还可以设置在底板2的中部等等。此外,需要说明的是,当托盘200包括多个调温单元2a时,相邻两个调温单元2a的底板2可以为一体式结构(即可以为一个底板的不同部分),也可以为分体式结构(即分别为两个相互独立的底板)。
参考图,根据本申请的一些实施例,底板2包括沿底板2的厚度方向F3相对设置的第一底板21和第二底板22,调温流道201和汇流流道202限定在第一底板21和第二底板22之间,进液口211和出液口212均贯穿形成在第一底板21上。由此,将底板2设置成包括第一底板21和第二底板22,从而便于构造出调温流道201和汇流流道202。进液口211贯穿形成在第一底板21上可以便于冷却液的流入,且使得进液口211的口径不受底板2的厚度影响,即进液口211的口径可以大于底板2的厚度,以降低流动阻力;出液口212贯穿形成在第一底板21上可以便于冷却液的流出,且使得出液口212的口径不受底板2的厚度影响,即出液口212的口径可以大于底板2的厚度,以降低流动阻力。
在一些实施例中,第一底板21和第二底板22可以分体成型,也可以一体成型。分体成型时,分别单独制作第一底板21和第二底板22。一体成型时,调温流道201和汇流流道202可以挤压成型。
在本申请的一些实施例中,如图2-图3所示,至少一个调温单元2a为预设单元2b, 预设单元2b包括多个调温流道201和一个汇流流道202,每个调温流道201的出口端2010均与汇流流道202的入口端2020连通。由此,由于调温流道201用以给单体电池1降温,多个调温流道201可以增大冷却液流动的面积和流量,从而更快、更好地对单体电池1进行降温。另外,设置一个汇流流道202将换热后的冷却液流出调温单元2a,从而可以减小汇流流道202的占用空间,可以尽可能地让冷却面积增大,进一步提高对单体电池1的降温效率。
而且,由于多个调温流道201和汇流流道202均沿第一方向F1延伸,从而相比于蛇形流道来说,每个调温流道201的长度均较短,从而每个调温流道201的进出液端的温差较小,以使得每个调温流道201的整体温度较为均匀且温度较低,进而可以提高对于多个单体电池1降温的一致性,而且,可以降低冷却液的流动阻力,可以节约能耗。
参考图2-图3,根据本申请的一些实施例,预设单元2b中的全部调温流道201均位于汇流流道202在第二方向F2上的同侧。由于调温流道201用于给单体电池1降温,汇流流道202不用于给单体电池1降温,多个调温流道201均位于汇流流道202在第二方向F2上的同侧便于多个单体电池1的布置,可以更好地对多个单体电池1降温。
在本申请的一些实施例中,结合图2-图3,托盘200包括两个预设单元2b,两个预设单元2b沿第二方向F2间隔排布。进一步,两个预设单元2b可呈轴对称分布,由此,将两个预设单元2b轴对称设置可以便于预设单元2b的布置,使得底板2的结构更加紧凑,而且可以使得两个预设单元2b中的两个汇流流道202靠近,或者使得两个预设单元2b中的全部调温流道201靠近,从而有利于多个单体电池1的摆放,也降低一个预设单元2b中的汇流流道202与另一个预设单元2b中的调温流道201传热的问题。
参考图2-图4,根据本申请的一些实施例,托盘200还包括框架3,框架3与底板2相连且与底板2之间限定出盛放腔30,框架3包括沿第一方向F1延伸的支撑梁31,支撑梁31位于两个预设单元2b之间的上方,每个预设单元2b中的汇流流道202均与支撑梁31上下相对设置。由此,支撑梁31可以加强框架3的结构强度,而且,将支撑梁31设于汇流流道202的正上方,可以更加有效地保证汇流流道202与电池单体1上下错开设置,避免汇流流道202与电池单体1换热。
在图2-图4所示的具体示例中,每个预设单元2b中的汇流流道202均位于相应的预设单元2b中的多个调温流道201的靠近另一个预设单元2b的一侧。由此,可以便于单体电池1的放置,且符合框架3的结构布局,例如,一般情况下,为了保证框架3的可靠性,可以在框架3的中央设置支撑梁31,支撑梁31恰好与两个预设单元2b的汇流流道202相对,从而既不影响对单体电池1的降温,又能保证框架3的结构可靠性。
在本申请的一些实施例中,参考图2-图3,调温单元2a包括N个调温流道201和M个汇流流道202,M大于等于1且为整数,N大于等于1且为整数,每个调温单元2a中的N个调温流道201的宽度之和大于M个汇流流道202的宽度之和。由此,调温流道201内流过冷却液的面积较大,可以更高效地给单体电池1降温。
在如图2所示的一个具体示例中,调温流道201的宽度指的是其在第二方向F2上的平均宽度,其中,调温流道201可以为等宽流道或者不等宽流道,同理,汇流流道202的宽度指的是其在第二方向F2上的平均宽度,其中,汇流流道202可以为等宽流道或者不等宽流道。
如图2所示,根据本申请的一些实施例,至少一个调温单元2a包括:转接件4和外部接管5,转接件4内具有相互隔离的第一流道401和第二流道402,第一流道401与调温流道201连通,第二流道402与汇流流道202连通,外部接管5包括进液管51和出液管52,进液管51与转接件4相连且接通至第一流道401,出液管52与转接件4相连且接通至第二流道402。
这样,冷却液可以从进液管51进入到第一流道401,经过第一流道401流向调温流道201,单体电池1可以与调温流道201相对设置,冷却液从调温流道201流过可以给单体电池1降温,给单体电池1降温的过程中,热的单体电池1和冷却液发生热交换,由此,调温流道201在第一方向F1上的远离转接件4的端部的冷却液温度较高,温度较高的冷却液经过汇流流道202流向第二流道402,流经第二流道402的冷却液不与单体电池1换热,并可以通过第二流道402从出液管52流出。
由此,通过设置转接件4,当调温流道201和/或汇流流道202的数量大于1时,也仅配合一组进液管51和出液管52即可,减少了进液管51和出液管52的使用量,简化了结构复杂度。当然,本申请不限于此,也可以设置多组进液管51和出液管52。
相关技术中,电池包的托盘底板通常采用蛇形流道,进出液管位于蛇形流道的首尾两端,且位于托盘底板长度方向上的两侧,从而导致托盘底板在长度方向上的尺寸较大,而且,进出液管沿着平行于底板的方向直接插入蛇形流道的首尾两端,在托盘底板厚度一定的情况下,进出液管的管径受托盘底板厚度限制,需要选择管径小于托盘底板厚度的进出液管,从而导致冷却液的流动阻力较大。
而根据本申请的电池包1000,由于进液管51通过转接件4与调温流道201相连,出液管52通过转接件4与汇流流道202相连,从而进液管51和出液管52可以位于调温单元2a在第一方向F1上的同侧,从而使得托盘200在第一方向F1上的尺寸较小。而且,通过将进液管51和出液管52均连接至转接件4,从而使得进液管51和出液管 52的管径不受底板2的厚度影响,在底板2厚度较薄的情况下,也可以选择管径较大的进液管51和出液管52,以减小冷却液流动的阻力。
如图6所示,在本申请的一些实施例中,转接件4可以为一体件且转接件4上具有隔板槽44,隔板槽44处可以放入隔板等以在转接件4内限定出相互隔离的第一流道401和第二流道402。当然,本申请不限于此,在本申请的其他实施例中,转接件4的内部还可以直接制作出隔板结构,或者,转接件4也可以由多个分体件拼接而成,其中至少一个分体件限定出第一流道401,至少一个分体件限定出第二流道402,等等。
此外,转接件4可以为一个,也可以为多个,当托盘200包括多个调温单元2a时(例如图2和图6所示),相邻两个调温单元2a的转接件4可以分体拼接而成,相邻两个调温单元2a的转接件4也可以为一体结构件,例如,一体结构的转接件4可以由隔板等结构将其分割成多个流道,分别为对应的调温单元2a工作,当然,两个调温单元2a也可以共用一个转接件4且共用一个第二流道402。
下面参考附图描述根据本申请一些实施例的用于电池包1000的托盘200。
如图4所示,托盘200可以包括底板2、框架3、外部接管5和转接件4。框架3与底板2相连且与底板2之间限定出盛放腔30,盛放腔30用于设置电池组件100,框架3包括第一边梁32,结合图5和图6,外部接管5的内端501穿入第一边梁32内部,第一边梁32上形成有第一容纳槽321,转接件4设于底板2的厚度方向一侧,转接件4收纳于第一容纳槽321内。由此,第一容纳槽321可以为转接件4提供安装空间,第一边梁32可以保护转接件4,减少转接件4受到灰尘、腐蚀等损害。这里,需要说明的是,第一边梁32的设置位置不限,例如第一边梁32可以沿托盘200的长度方向延伸且靠近托盘200宽度方向上的侧边设置,也可以沿托盘200的宽度方向延伸且靠近托盘200长度方向上的侧边设置,等等。
结合图2,底板2内具有底板流道20,转接件4内具有转接流道40,结合图6和图8,转接件4包括第一连接部41和第二连接部42,第一连接部41与底板2相连,以使转接流道40与底板流道20连通,第二连接部42与外部接管5的内端501相连,以使转接流道40与外部接管5连通,第一连接部41和第二连接部42均隐藏于第一边梁32内。由此,第一边梁32可以保护第一连接部41和第二连接部42,即保护转接件4与底板2的连接位置,以及转接件4与外部接管5的连接位置,从而提高转接件4的安装可靠性,降低连接处发生冷却液泄漏的风险。
需要说明的是,冷却液可以从外部接管5流入转接流道40,通过转接流道40流向底板流道20,冷却液在底板流道20流动后通过转接流道40从外部接管5流出,电池 组件100可以设于底板流道20的上方,冷却液在底板流道20流动时可以给电池组件100降温。
在一个具体的示例中,结合图6,外部接管5可以包括进液管51和出液管52,转接流道40包括相互隔离的第一流道401和第二流道402,底板流道20包括调温流道201和汇流流道202,进液管51与第一流道401连通,出液管52与第二流道402连通,第一流道401与温流道201连通,第二流道402与汇流流道202连通,冷却液从进液管51流入第一流道401,从第一流道401流向调温流道201,在调温流道201流动后,流到汇流流道202,从汇流流道202流到第二流道402,然后从出液管52流出。在本实施例中,电池组件100可以位于调温流道201的上方,也可以位于调温流道201和汇流流道202的上方。
其中,将转接件4与外部接管5相连,使得外部接管5设在底板2的同侧,从而使得托盘200的尺寸较小。而且,通过将转接件4设于底板2的厚度方向一侧,并将外部接管5连接至转接件4,从而使得外部接管5的管径不受底板2的厚度影响,在底板2厚度较薄的情况下,也可以选择管径较大的外部接管5,以减小冷却液流动的阻力。例如,使得进液管51和出液管52的管径不受底板2厚度的影响,在底板2厚度较薄的情况下,可以选择管径较大的进液管51和出液管52,以减小冷却液流动的阻力。
在本申请的一些实施例中,如图5所示,转接件4与第一容纳槽321的槽壁可以为间隙配合。也就是说,转接件4与第一容纳槽321的槽壁可以不接触,从而避免第一边梁32对转接件4造成压力等问题,进一步保护转接件4。
在本申请的一些实施例中,第一连接部41与底板2焊接相连,由于焊接连接为一种比较稳固地连接方式,由此,第一连接部41与底板2可以简单且可靠地连接在一起,降低第一连接部41与底板2之间脱开的风险,降低冷却液从第一连接部41处泄漏的风险。
在本申请的一些实施例中,第二连接部42与外部接管5的内端501焊接相连,由于焊接连接为一种比较稳固地连接方式,由此,使得第二连接部42与外部接管5可以简单且可靠地连接在一起,降低第二连接部42与外部接管5之间脱开的风险,降低冷却液从第二连接部42处泄漏的风险。
根据本申请的一些实施例,如图2和图3所示,底板2的厚度方向两侧表面中的朝向转接件4的一侧表面上具有连通液口213,结合图8,第一连接部41构造为底板接口410,托盘200还包括焊接接管6,焊接接管6的一端与连通液口213插配且焊接,焊接接管6的另一端与底板接口410插配且焊接,以使第一连接部41与底板2焊接相连。
由此,通过设置连通液口213和底板接口410,可以便于连接焊接接管6,以通过焊接接管6将底板流道20与转接流道40连通,从而利用焊接接管6对冷却液的导流作用,使冷却液顺利地从转接流道40流向底板流道20。由此,降低了转接件4与底板2的连通难度和复杂度,简化了结构,并且还有利于第一连接部41与底板2焊接相连。
而且,参考图8,焊接接管6的管径可以根据连通液口213和底板接口410的口径制造,由于连通液口213位于底板2的朝向转接件4的厚度方向一侧表面上,连通液口213的口径不受底板2厚度的限制,由此连通液口213可以较大,底板接口410设在转接件4的朝向底板2的一侧表面上,不受转接件4的厚度限制也可以较大,进而可以选取较大管径的焊接接管6,从而可以进一步减小冷却液的流动阻力,可以节约能耗。
参考图6,在本申请的一些实施例中,第二连接部42构造为接管接口420,外部接管5的内端501与接管接口420插配且焊接,以使第二连接部42与外部接管5焊接相连,由此,接管接口420可以为外部接管5提供安装环境,外部接管5的内端501与接管接口420插配且焊接,使得第二连接部42与外部接管5可以可靠地连接在一起,降低第二连接部42与外部接管5脱开的风险。
根据本申请的一些实施例,如图5所示,外部接管5的外端502外露于第一边梁32的远离盛放腔30的一侧,由此,可以便于外部接管5与其他外部盛放冷却液的装置连接,以将冷却液导入托盘200和将冷却液导出托盘200。且第二连接部42位于转接件4的远离盛放腔30的一侧,由此,可以便于第二连接部42与外部接管5连接。
例如在图8所示的具体示例中,转接件4可以包括底面432、顶面431、内侧面433和外侧面434,底面432与顶面431相对设置,在底板2的厚度方向F3上,顶面431与底面432间隔开设置,且顶面431位于底面432的远离底板2的一侧,内侧面433和外侧面434均连接在顶面431和底面432之间,且内侧面433相对于外侧面434靠近底板2的中心点设置。
结合图6,接管接口420形成在转接件4的外侧面434上。可以理解的是,底面432、顶面431、内侧面433和外侧面434可以围设成转接流道40,接管接口420形成在转接件4的外侧面434上以位于转接件4的远离盛放腔30的一侧,从而可以将外部接管5从外向内插接到外侧面434上,使得外部接管5可以与转接流道40连通,并使得外部接管5的外端502可以外露于第一边梁32的远离盛放腔30的一侧。
如图5所示,在本申请的一些实施例中,外部接管5的中心轴线L2垂直于转接件4的长度方向F4、且垂直于底板2的厚度方向F3。结合图2,转接件4的长度方向F4为第二方向F2,外部接管5的中心轴线L2的延伸方向均为第一方向F1。由此,便于 外部接管5的定位安装和布置。
作为一种可实现的方式,参考图6,外部接管5可以包括进液管51和出液管52,由此,可以便于进液管51和出液管52的定位安装,而且如图2所示,便于在转接件4上设置多个底板接口410,底板接口410可以包括第一接口4101和第二接口4102,连通液口213可以包括进液口211和出液口212,进液口211与第一接口4101一一对应连接,出液口212与第二接口4102一一对应连接。
根据本申请的一些实施例,结合图2-图3,底板2的厚度方向两侧表面中的朝向转接件4的一侧表面上具有进液口211和出液口212,进液口211与调温流道201连通,出液口212与汇流流道202连通,转接件4的朝向底板2的一侧表面上具有第一接口4101和第二接口4102,第一接口4101与进液口211连通,第二接口4102与出液口212连通。结合图8和图10,焊接接管6可以包括第一接管61和第二接管62,第一接管61的一端与进液口211插接配合,第一接管61的另一端与第一接口4101插接配合。第二接管62的一端与出液口212插接配合,第二接管62的另一端与第二接口4102插接配合。
这样,通过如上设置进液口211和第一接口4101,可以便于安装第一接管61,以通过第一接管61将调温流道201和第一流道401连通,从而利用第一接管61对冷却液的导流作用,使冷却液顺利地从第一流道401流向调温流道201。同样,通过如上设置出液口212和第二接口4102,可以便于安装第二接管62,以通过第二接管62将汇流流道202和第二流道402连通,从而利用第二接管62对冷却液的导流作用,使冷却液顺利地从汇流流道202流向第二流道402。由此,降低了转接件4与底板2的连通难度和复杂度,简化了结构。
而且,第一接管61的管径可以根据进液口211和第一接口4101的口径制造,由于进液口211位于底板2的厚度方向两侧表面中的朝向转接件4的一侧表面上,进液口211的口径不受底板2厚度的限制,由此进液口211可以较大,第一接口4101设在转接件4的朝向底板2的一侧表面上,不受转接件4的厚度限制也可以较大;同理,第二接管62的管径可以根据出液口212和第二接口4102的口径制造,由于出液口212位于底板2的朝向转接件4的厚度方向一侧表面上,出液口212的口径不受底板2厚度的限制,由此出液口212可以较大,第二接口4102设在转接件4的朝向底板2的一侧表面上,不受转接件4的厚度限制也可以较大,进而可以选取较大管径的第一接管61和第二接管62,从而可以进一步减小冷却液的流动阻力,可以节约能耗。
如图6所示,在本申请的一些实施例中,转接件4的远离盛放腔30的一侧表面上 具有接管接口420,接管接口420包括进液接口4201和出液接口4202,进液接口4201与第一流道401连通,出液接口4202与第二流道402连通,进液管51的出口端连接至进液接口4201,以将冷却液导入第一流道401,出液管52的进口端连接至出液接口4202,以将第二流道402内的冷却液导出。由此,进液接口4201可以便于连接进液管51,可以将进液管51与第一流道401连通,出液接口4202可以便于连接出液管52,可以将出液管52与第二流道402连通,而且便于进液管51与出液管52与外部冷却液系统的连接。
根据本申请的一些实施例,如图6所示,第一边梁32上还形成有沉槽311,沉槽311与第一容纳槽321连通,沉槽311的底壁上还形成有与沉槽311连通的第一接管容纳槽312,框架3还包括安装座33,安装座33嵌设于沉槽311且安装座33上形成有第二接管容纳槽331,外部接管5的内端501收纳于第一接管容纳槽312和第二接管容纳槽331共同限定出的空间内。
由此,通过设置安装座33,使得第一接管容纳槽312和第二接管容纳槽331共同限定出的空间可以为外部接管5提供安装环境,并且可以保护外部接管5。并且通过设置沉槽311,还可以有效地收纳安装座33,提高电池包1000的结构紧凑性。
例如图6所示,第一接管容纳槽312可以包括第二容纳槽3121和第三容纳槽3122,第二接管容纳槽331可以包括第四容纳槽3311和第五容纳槽3312,进液管51的内端501收纳于第二容纳槽3121和第四容纳槽3311共同限定出的空间内且与转接件4相连,进液管51的外端502外露于第一边梁32的远离盛放腔30的一侧,出液管52的内端501收纳于第三容纳槽3122和第五容纳槽3312共同限定出的空间内且与转接件4相连,出液管52的外端502外露于第一边梁32的远离盛放腔30的一侧。
由此,进液管51的内端501便于与转接件4相连且能够被第一边梁32保护,进液管51的外端502外露于第一边梁32可以便于进液管51与外部冷却液系统连接;出液管52的内端501便于与转接件4相连且能够被第一边梁32保护,出液管52的外端502外露于第一边梁32可以便于出液管52与外部冷却液系统连接。
参考图2,在本申请的一些实施例中,底板流道20包括调温流道201和汇流流道202,调温流道201和汇流流道202均沿第一方向F1延伸,且调温流道201和汇流流道202沿第二方向F2排列,第二方向F2和第一方向F1相交;转接件4位于底板流道20在第一方向F1上的一侧,转接流道40包括相互隔离的第一流道401和第二流道402,第一流道401与调温流道201连通,第二流道402与汇流流道202连通,调温流道201在第一方向F1上的远离转接件4的一端为出口端2010,汇流流道202在第一方向F1 上的远离转接件4的一端为入口端2020,调温流道201的出口端2010与汇流流道202的入口端2020连通;外部接管5包括进液管51和出液管52,进液管51接通至第一流道401,出液管52接通至第二流道402。
具体而言,结合图2,冷却液可以从进液管51进入到第一流道401,经过第一流道401流向调温流道201,电池组件100可以与调温流道201相对设置,冷却液从调温流道201流过可以给电池组件100降温,给电池组件100降温的过程中,热的电池组件100和冷却液发生热交换,由此,调温流道201在第一方向F1上的远离转接件4的端部的冷却液温度较高,温度较高的冷却液经过汇流流道202流向第二流道402,第二流道402的冷却液可以通过出液管52流出托盘200。
由于进液管51通过转接件4与调温流道201相连,出液管52通过转接件4与汇流流道202相连,从而进液管51和出液管52可以位于底板2在第一方向F1上的同侧,从而使得托盘200在第一方向F1上的尺寸较小。而且,通过将转接件4设于底板2的厚度方向一侧,并将进液管51和出液管52均连接至转接件4,从而使得进液管51和出液管52的管径不受底板2的厚度影响,在底板2厚度较薄的情况下,也可以选择管径较大的进液管51和出液管52,以减小冷却液流动的阻力。
此外,相关技术中的蛇形流道,靠近进液管的首端流道段的温度较低,对于对应位置处的电池组件的冷却效果较好,靠近出液管的尾端流道段的温度较高,对于对应位置处的电池组件的冷却效果欠佳,从而使得电池包整体的降温均匀性不好。
而根据本申请实施例的托盘200,在一些实施例中,可以将汇流流道202设置为与电池组件100上下错开、即上下非正对设置,从而可以避免汇流流道202与电池组件100换热,保证对电池组件100的降温效果。也就是说,当将汇流流道202设置在避开电池组件100的位置,就可以有效地保证对电池组件100的散热效果。并且,当将调温流道201设置为多个且沿第二方向F2排列时,由于每个调温流道201的长度均较短,且每个调温流道201的进出液端的温差较小,从而使得每个调温流道201的整体温度较为均匀且温度较低,进而可以提高对于电池包1000降温的一致性。
参考图1-图2,在本申请的一些实施例中,第一方向F1为底板2的长度方向,第二方向F2为底板2的宽度方向,转接件4设于底板2在第一方向F1上的端部。由此,将转接件4设于底板2的端部,可以便于转接件4的安装和固定,并且可以简单且有效地保证底板2在整个长度方向上都可以具有冷却效果,从而保证底板2对电池组件100的冷却效果,并且可以简化底板2的结构,降低转接件4对于电池组件100的摆放造成影响。当然,本申请不限于此,在本申请的其他实施例中,也可以将转接件4设于底板 2的中部或者其他位置,这里不赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种电池包(1000),其中,包括:
    电池组件(100),所述电池组件(100)包括至少一个电池单元(1a),所述电池单元(1a)包括多个单体电池(1),每个所述单体电池(1)的长度方向均为第一方向(F1),且多个所述单体电池(1)沿第二方向(F2)排布;
    托盘(200),所述托盘(200)包括至少一个调温单元(2a),所述调温单元(2a)包括底板(2)和形成于所述底板(2)的调温流道(201)和汇流流道(202),所述调温流道(201)与所述电池单元(1a)上下相对设置以与所述单体电池(1)换热,所述汇流流道(202)与所述电池单元(1a)上下错开设置以不与所述单体电池(1)换热,所述调温流道(201)和所述汇流流道(202)均沿所述第一方向(F1)延伸,且所述调温流道(201)和所述汇流流道(202)沿所述第二方向(F2)排列,在所述第一方向(F1)上,所述调温流道(201)的一端为出口端(2010),所述汇流流道(202)的靠近所述出口端(2010)的一端为入口端(2020),所述调温流道(201)的出口端(2010)与所述汇流流道(202)的入口端(2020)连通,所述第二方向(F2)和所述第一方向(F1)相交,任一所述调温流道(201)与沿所述第二方向(F1)排列的最少一个所述单体电池(1)换热、且与沿所述第一方向(F1)排列的最多一个所述单体电池(1)换热。
  2. 根据权利要求1所述的电池包(1000),其中,所述调温单元(2a)还包括:形成于所述底板(2)的连通流道(203)、进液口(211)和出液口(212),所述进液口(211)与所述调温流道(201)连通,所述出液口(212)与所述汇流流道(202)连通,所述连通流道(203)位于所述调温流道(201)和所述汇流流道(202)在所述第一方向(F1)的同一侧,且邻近所述调温流道(201)的出口端(2010)和所述汇流流道(202)的入口端(2020),所述连通流道(203)连通所述调温流道(201)的出口端(2010)和所述汇流流道(202)的入口端(2020),所述进液口(211)和所述出液口(212)均位于所述调温流道(201)和所述汇流流道(202)在所述第一方向(F1)上的远离所述连通流道(203)的一侧。
  3. 根据权利要求2所述的电池包(1000),其中,所述底板(2)在所述第一方向(F1)上的两端分别为第一端部(23)和第二端部(24),所述进液口(211)和所述出液口(212)均位于所述第一端部(23),所述连通流道(203)位于所述第二端部(24)。
  4. 根据权利要求2或3所述的电池包(1000),其中,所述底板(2)包括沿所述底板(2)的厚度方向(F3)相对设置的第一底板(21)和第二底板(22),所述调温流道(201)和所述汇流流道(202)限定在所述第一底板(21)和所述第二底板(22)之间,所述进液口(211)和所述出液口(212)均贯穿形成在所述第一底板(21)上。
  5. 根据权利要求1-4中任一项所述的电池包(1000),其中,至少一个所述调温单元(2a)为预设单元(2b),所述预设单元(2b)包括多个所述调温流道(201)和一个所述汇流流道(202),每个所述调温流道(201)的出口端(2010)均与所述汇流流道(202)的入口端(2020)连通。
  6. 根据权利要求5所述的电池包(1000),其中,所述预设单元(2b)中的全部所述调温流道(201)均位于所述汇流流道(202)在所述第二方向(F2)上的同侧。
  7. 根据权利要求6所述的电池包(1000),其中,所述托盘(200)包括两个所述预设单元(2b),两个所述预设单元(2b)沿所述第二方向(F2)间隔排布。
  8. 根据权利要求7所述的电池包(1000),其中,所述托盘(200)还包括框架(3),所述框架(3)与所述底板(2)相连且与所述底板(2)之间限定出盛放腔(30),所述框架(3)包括沿所述第一方向(F1)延伸的支撑梁(31),所述支撑梁(31)位于两个所述预设单元(2b)之间的上方,每个所述预设单元(2b)中的所述汇流流道(202)均与所述支撑梁(31)上下相对设置。
  9. 根据权利要求1-8中任一项所述的电池包(1000),其中,所述调温单元(2a)包括N个所述调温流道(201)和M个所述汇流流道(202),所述M大于等于1且为整数,所述N大于等于1且为整数,每个所述调温单元(2a)中的所述N个所述调温流道(201)的宽度之和大于所述M个所述汇流流道(202)的宽度之和。
  10. 根据权利要求1-9中任一项所述的电池包(1000),其中,至少一个所述调温单元(2a)包括:
    转接件(4),所述转接件(4)内具有相互隔离的第一流道(401)和第二流道(402),所述第一流道(401)与所述调温流道(201)连通,所述第二流道(402)与所述汇流流道(202)连通;
    外部接管(5),所述外部接管(5)包括进液管(51)和出液管(52),所述进液管(51)与所述转接件(4)相连且接通至所述第一流道(401),所述出液管(52)与所述转接件(4)相连且接通至所述第二流道(402)。
PCT/CN2021/107066 2020-09-27 2021-07-19 电池包 WO2022062606A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21870984.8A EP4220828A4 (en) 2020-09-27 2021-07-19 BATTERY PACK
KR1020237011538A KR20230061523A (ko) 2020-09-27 2021-07-19 배터리 팩
JP2023519222A JP2023542428A (ja) 2020-09-27 2021-07-19 電池パック
US18/126,736 US20230231227A1 (en) 2020-09-27 2023-03-27 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011032009.2A CN114361675B (zh) 2020-09-27 2020-09-27 电池包
CN202011032009.2 2020-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/126,736 Continuation US20230231227A1 (en) 2020-09-27 2023-03-27 Battery pack

Publications (1)

Publication Number Publication Date
WO2022062606A1 true WO2022062606A1 (zh) 2022-03-31

Family

ID=80844883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107066 WO2022062606A1 (zh) 2020-09-27 2021-07-19 电池包

Country Status (6)

Country Link
US (1) US20230231227A1 (zh)
EP (1) EP4220828A4 (zh)
JP (1) JP2023542428A (zh)
KR (1) KR20230061523A (zh)
CN (1) CN114361675B (zh)
WO (1) WO2022062606A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476484A2 (de) * 1990-09-21 1992-03-25 Aabh Patent Holdings S.A. Hochenergiebatterie
CN103178311A (zh) * 2011-12-22 2013-06-26 三星Sdi株式会社 电池模块
CN108091803A (zh) * 2018-01-18 2018-05-29 杭州捷能科技有限公司 一种集成式冷却保温电池系统及其控制方法
CN108172927A (zh) * 2017-12-05 2018-06-15 上海华普汽车有限公司 电池组换热系统和电动汽车
CN110199430A (zh) * 2017-01-19 2019-09-03 达纳加拿大公司 带有成直线的配件的逆流式换热器
CN110277606A (zh) * 2019-06-21 2019-09-24 比亚迪股份有限公司 动力电池包和具有其的车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058810A1 (de) * 2009-12-18 2011-06-22 Valeo Klimasysteme GmbH, 96476 Vorrichtung zum Heizen und Kühlen einer Batterie und Fahrzeugantriebsbatteriebaugruppe
EP3098896A1 (en) * 2015-05-28 2016-11-30 Mahle International GmbH Temperature control device for temperature controlling a battery, in particular of a motor vehicle
CN111129645B (zh) * 2018-10-31 2021-12-24 浙江三花汽车零部件有限公司 一种换热装置
CN209544560U (zh) * 2019-03-29 2019-10-25 中航锂电(洛阳)有限公司 电池模块换热装置及使用该装置的电池箱
CN210092152U (zh) * 2019-04-24 2020-02-18 北京新能源汽车股份有限公司 电池包壳体、动力电池包和具有其的车辆
CN209860110U (zh) * 2019-06-21 2019-12-27 比亚迪股份有限公司 换热板组件、动力电池包和车辆
CN209747613U (zh) * 2019-06-28 2019-12-06 江苏时代新能源科技有限公司 电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476484A2 (de) * 1990-09-21 1992-03-25 Aabh Patent Holdings S.A. Hochenergiebatterie
CN103178311A (zh) * 2011-12-22 2013-06-26 三星Sdi株式会社 电池模块
CN110199430A (zh) * 2017-01-19 2019-09-03 达纳加拿大公司 带有成直线的配件的逆流式换热器
CN108172927A (zh) * 2017-12-05 2018-06-15 上海华普汽车有限公司 电池组换热系统和电动汽车
CN108091803A (zh) * 2018-01-18 2018-05-29 杭州捷能科技有限公司 一种集成式冷却保温电池系统及其控制方法
CN110277606A (zh) * 2019-06-21 2019-09-24 比亚迪股份有限公司 动力电池包和具有其的车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220828A4 *

Also Published As

Publication number Publication date
CN114361675B (zh) 2023-07-14
EP4220828A1 (en) 2023-08-02
US20230231227A1 (en) 2023-07-20
KR20230061523A (ko) 2023-05-08
CN114361675A (zh) 2022-04-15
EP4220828A4 (en) 2024-03-27
JP2023542428A (ja) 2023-10-06

Similar Documents

Publication Publication Date Title
JP7027641B2 (ja) 電池セルの表面を冷却するための不均一流路を備えたクーリングジャケット及びそれを含むバッテリーモジュール
CN211929664U (zh) 液冷板及液冷装置
US11835303B2 (en) Heat transfer device for tempering batteries and components of the power electronics
WO2022062605A1 (zh) 托盘和具有其的电池包
CN212209705U (zh) 冷却板组件及车辆
US20240030513A1 (en) Battery cooling plate, and battery system
WO2024082953A1 (zh) 电池包散热装置、电池包和车辆
WO2022062606A1 (zh) 电池包
CN209880767U (zh) 动力电池水冷装置及动力电池
CN218827450U (zh) 电池装置、电池包以及车辆
CN107910614B (zh) 一种动力电池液冷装置
CN115810831A (zh) 电池冷却装置、新能源车
CN116053647A (zh) 电池箱体组件、电池包和电池系统
CN115117514A (zh) 一种交错逆流式一体化冷却系统及电动车
CN214898571U (zh) 一种动力电池包及其冷却机构
CN110277606B (zh) 动力电池包和具有其的车辆
CN217691328U (zh) 电池包
CN219917291U (zh) 电池包
WO2023179147A1 (zh) 电池包
CN219106310U (zh) 电池包
CN218215502U (zh) 三面液冷装置及电池包
CN218101421U (zh) 电池液冷板和电池系统
CN217740636U (zh) 电池包和储能装置
CN217509345U (zh) 功率模块装置和车辆
CN219435958U (zh) 一种电池组液冷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519222

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237011538

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021870984

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021870984

Country of ref document: EP

Effective date: 20230428