WO2024082953A1 - 电池包散热装置、电池包和车辆 - Google Patents

电池包散热装置、电池包和车辆 Download PDF

Info

Publication number
WO2024082953A1
WO2024082953A1 PCT/CN2023/122613 CN2023122613W WO2024082953A1 WO 2024082953 A1 WO2024082953 A1 WO 2024082953A1 CN 2023122613 W CN2023122613 W CN 2023122613W WO 2024082953 A1 WO2024082953 A1 WO 2024082953A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
battery pack
flow channel
heat dissipation
dissipation device
Prior art date
Application number
PCT/CN2023/122613
Other languages
English (en)
French (fr)
Inventor
赵鹏飞
Original Assignee
北京车和家汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家汽车科技有限公司 filed Critical 北京车和家汽车科技有限公司
Publication of WO2024082953A1 publication Critical patent/WO2024082953A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of battery packs, and in particular to a battery pack heat dissipation device, a battery pack and a vehicle.
  • a battery pack refers to a battery pack that is formed by packaging, encapsulating and assembling multiple cells to form a certain shape.
  • a cold plate is set under the cell to cool the cell, but the cell only exchanges heat with the cold plate through its bottom surface to achieve the purpose of heat dissipation and cooling.
  • there are defects such as a small heat exchange area between the cold plate and the cell, and poor electrical performance and safety of the cell in extreme environments.
  • the embodiments of the present disclosure are intended to solve one of the technical problems in the related art at least to a certain extent.
  • an embodiment of the present disclosure proposes a battery pack heat dissipation device, which has the advantages of a large heat exchange area with the battery cell and high electrical performance and safety of the battery cell in extreme environments.
  • An embodiment of the present disclosure also provides a battery pack.
  • An embodiment of the present disclosure further provides a vehicle.
  • the battery pack heat dissipation device includes a bottom cold plate and a side cold plate, wherein the bottom cold plate abuts against the bottom surfaces of multiple rows of battery cells arranged in sequence along the column direction; the side cold plates are provided in plurality and are arranged on the bottom cold plate at intervals along the column direction, and a receiving groove is formed between any two adjacent side cold plates, and the number of the receiving grooves is equal to and corresponds to the number of rows of the battery cells, and each row of the battery cells is accommodated in the corresponding receiving grooves and abuts against the two side surfaces of the receiving grooves.
  • a plurality of side cold plates are provided to form accommodating slots having the same number of rows as the battery cells, and each accommodating slot is fitted with a row of battery cells.
  • any two adjacent rows of battery cells are separated by the side cold plates, and the two side surfaces of each row of battery cells are abutted against the side cold plates, and the bottom surface of each row of battery cells is abutted against the bottom cold plate.
  • the heat exchange area between the battery pack heat dissipation device and the battery cells is large, the heat dissipation efficiency of the battery cells is high, and the electrical performance and safety of the battery cells in extreme environments are high.
  • the battery pack heat dissipation device further includes a heat conductive layer, and the heat conductive layer is disposed on the side and/or bottom surface of each of the receiving grooves.
  • the relationship between the distribution area S1 of the heat conductive layer in each of the receiving grooves and the total area S2 of the side and bottom surfaces of the corresponding receiving groove is: 0.01 ⁇ S1/S2 ⁇ 1; and/or,
  • the relationship between the distribution area S1 of the heat-conducting layer in each of the receiving grooves and the total area S3 of the side surfaces and the bottom surface of each row of the battery cells is: 0.01 ⁇ S1/S3 ⁇ 3.
  • the relationship between the total volume D1 of the flow channels in the side cold plates and the total volume D2 of the flow channels in the bottom cold plate is: 0.01 ⁇ D1/D2 ⁇ 100.
  • the side cold plate includes a plate body having a receiving cavity, wherein a plurality of baffles arranged at intervals along the height direction of the plate body are provided in the receiving cavity, and the plurality of baffles divide the receiving cavity into a plurality of flow channels arranged at intervals along the height direction of the plate body.
  • a first opening connected to the accommodating cavity is provided at the first end of the plate body, and a second opening connected to the accommodating cavity is provided at the second end of the plate body.
  • the side cold plate also includes a first collector and a second collector. The first collector is connected to the first end of the plate body to close the first opening, and the second collector is connected to the second end of the plate body to close the second opening.
  • a first cavity connected to a plurality of the flow channels is formed between the first collector and the plate body, and a third opening connected to the first cavity is provided on the first collector.
  • a second cavity connected to a plurality of the flow channels is formed between the second collector and the plate body, and a fourth opening connected to the second cavity is provided on the second collector.
  • the first end of the plate body is provided with a first opening connected to the accommodating cavity
  • the second end of the plate body is provided with a second opening connected to the accommodating cavity
  • the plurality of flow channels are respectively a first flow channel, a second flow channel, a third flow channel, a fourth flow channel and a fifth flow channel arranged at intervals along the height direction of the plate body
  • the side cold plate also includes a first blocking plate, a second blocking plate and a flow channel blocking plate, the first blocking plate is connected to the first end of the plate body to close the first opening, the first blocking plate is connected to the first ends of the two baffles located in the middle, the first end surfaces of the two baffles located at the edge are spaced apart from the first blocking plate, and the second blocking plate is connected to the second end of the plate body to close the second opening;
  • the flow channel blocking plate is installed in the accommodating cavity, the two ends of the flow channel blocking plate are connected to the second ends of the two baffles located at the edge, the
  • the side cold plate further includes a first joint and a second joint, the first joint is connected to the plate body and communicates with the first end of the first flow channel, and the second joint is connected to the plate body and communicates with the sixth flow channel.
  • first blocking plate and the second blocking plate are connected to the plate body by brazing, and the flow channel blocking plate is connected to the plate body and the two blocking strips located at the edge by brazing.
  • the thickness of the first blocking plate and the second blocking plate is 0.1 mm-100 mm.
  • the bottom cold plate is provided with a water inlet and a water outlet
  • the battery pack heat dissipation device further includes a plurality of water pipes, wherein:
  • a plurality of the side cold plates are connected in parallel through some of the water pipes, and a plurality of the side cold plates are connected in series with the bottom cold plate through the remaining water pipes;
  • the bottom cold plate and the plurality of side cold plates are connected in series via a plurality of the water pipes.
  • the bottom cold plate has two serpentine flow channels extending in a row direction, the two serpentine flow channels are arranged along a length direction of the side cold plate, and the two serpentine flow channels are connected through at least two transition flow channels.
  • the battery pack according to the embodiments of the present disclosure includes a case body, an upper cover, battery cells and a battery pack heat dissipation device as described in any of the above embodiments, the battery cells have multiple rows and are respectively fitted in multiple accommodating slots formed by the battery pack heat dissipation device, the battery pack heat dissipation device is fitted in the case body, and the upper cover is connected to the case body and closes the upper end opening of the case body.
  • the technical advantages of the battery pack according to the embodiment of the present disclosure are the same as the technical advantages of the battery pack heat dissipation device in the above-mentioned embodiment, and will not be repeated here.
  • a vehicle according to an embodiment of the present disclosure includes a battery pack as described in the above-described embodiment.
  • FIG. 1 is an exploded view of a battery pack according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a heat dissipation device for a battery pack according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a side cold plate in a battery pack heat dissipation device according to an embodiment of the present disclosure.
  • FIG. 4 is an exploded view of a side cold plate in a battery pack heat dissipation device according to an embodiment of the present disclosure.
  • FIG. 5 is a perspective view of a side cold plate in a heat dissipation device for a battery pack according to an embodiment of the present disclosure.
  • FIG. 6 is a perspective view of a bottom cold plate in a battery pack heat dissipation device according to an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of a heat-conducting layer, a side cold plate, and a battery cell in a heat dissipation device for a battery pack according to an embodiment of the present disclosure.
  • the heat dissipation device of the battery pack includes a bottom cold plate 1 and a side cold plate 2.
  • the bottom cold plate 1 abuts against the bottom surface of multiple rows of battery cells 3 arranged in sequence along the column direction.
  • a receiving groove is formed between any two adjacent side cold plates 2.
  • the number of receiving grooves is equal to the number of rows of battery cells 3 and corresponds one to one. Each row of battery cells 3 is accommodated in the corresponding receiving groove and abuts against the two side surfaces of the receiving groove.
  • a plurality of side cold plates 2 are provided to form accommodating slots equal to the number of rows of battery cells 3, and each accommodating slot is equipped with a row of battery cells 3.
  • any two adjacent rows of battery cells 3 are separated by the side cold plates 2, and the two side surfaces of each row of battery cells 3 are in contact with the side cold plates 2, and the bottom surface of each row of battery cells 3 is in contact with the bottom cold plate 1.
  • the heat exchange area between the heat dissipation device of the battery pack and the battery cell 3 is large, the heat dissipation efficiency of the battery cell 3 is high, and the electrical performance and safety of the battery cell 3 in extreme environments are high.
  • the above-mentioned column direction is perpendicular to the arrangement direction of the multiple battery cells in each row of battery cells 3 , and the column direction is consistent with the thickness direction of the side cold plate 2 .
  • the battery pack heat dissipation device further includes a heat conductive layer 4 , and the heat conductive layer 4 is disposed on the side and/or bottom surface of each receiving slot.
  • the heat conducting layer 4 is used to fill the gap between the battery cell 3 and the bottom cold plate 1/side cold plate 2, so as to quickly conduct the heat generated by the battery cell 3 to the bottom cold plate 1 and the side cold plate 2, further improving the heat dissipation efficiency of the battery cell 3.
  • the provision of the heat conducting layer 4 also effectively ensures that the battery cell 3 is fixed in the receiving groove.
  • the heat-conducting layer 4 may be a glue with good heat-conducting effect, or may be a heat-exchange medium such as a heat-conducting agent with high thermal conductivity.
  • the relationship between the distribution area S1 of the thermal conductive layer 4 in each receiving groove and the total area S2 of the side and bottom of the corresponding receiving groove is: 0.01 ⁇ S1/S2 ⁇ 1, and/or, the relationship between the distribution area S1 of the thermal conductive layer 4 in each receiving groove and the total area S3 of the side and bottom of each row of battery cells 3 is: 0.01 ⁇ S1/S3 ⁇ 3.
  • the heat-conducting layer 4 within the above parameter range can effectively ensure the fixation and heat transfer of the battery core 3 .
  • the total area S3 of the side and bottom surfaces of the battery cell 3 is less than or equal to the total area S2 of the side and bottom surfaces of the receiving groove, that is, the height of the battery cell 3 is less than or equal to the depth of the receiving groove.
  • the distribution area S1 of the thermal conductive layer 4 can be equal to the total area S3 of the side and bottom surfaces of the battery cell 3, thereby achieving higher heat transfer efficiency for the battery cell 3.
  • the relationship between the total volume D1 of the flow channels in the plurality of side cold plates 2 and the total volume D2 of the flow channels in the bottom cold plate 1 is: 0.01 ⁇ D1/D2 ⁇ 100. Therefore, the flow channels in the side cold plates 2 are flexibly designed, and flow channels of different volumes can be designed to cooperate with the bottom cold plate 1 to achieve stable heat dissipation of the battery cells 3 in extreme environments.
  • the total volume D1 of the flow channels in the plurality of side cold plates 2 is greater than or equal to the total volume D2 of the flow channels in the bottom cold plate 1 .
  • the side cold plate 2 includes a plate body 21, the plate body 21 has a receiving cavity, and a plurality of baffles 27 arranged at intervals along the height direction of the plate body 21 are provided in the receiving cavity, and the plurality of baffles 27 divide the receiving cavity into a plurality of flow channels arranged at intervals along the height direction of the plate body 21.
  • the coolant flows in the plurality of flow channels to achieve heat dissipation of the battery cell 3.
  • the coolant is evenly distributed in the side cold plate 2, with a large distribution area, and the heat dissipation effect on the battery cell 3 is better.
  • the first end of the plate body 21 is provided with a first opening connected to the accommodating cavity
  • the second end of the plate body 21 is provided with a second opening connected to the accommodating cavity
  • the side cold plate 2 further includes a first collector and a second collector.
  • the first collector is connected to the first end of the plate body 21 to close the first opening
  • the second collector is connected to the second end of the plate body 21 to close the second opening.
  • a first cavity connected to a plurality of flow channels is formed between the first collector and the plate body, and a third opening connected to the first cavity is provided on the first collector.
  • a second cavity connected to a plurality of flow channels is formed between the second collector and the plate body 21, and a fourth opening connected to the second cavity is provided on the second collector.
  • the coolant can enter the first cavity through the third opening, and then enter all the flow channels, finally converge into the second cavity and be discharged through the fourth opening, thereby achieving directional flow of the coolant in all the internal flow channels and ensuring the cooling effect of the side cold plate 2 on the battery cell 3.
  • the third opening and the fourth opening may be connected to interfaces to facilitate the series/parallel connection of the side cold plate 2 and the bottom cold plate 1 or other side cold plates 2 .
  • the first end of the plate body 21 is provided with a first opening connected to the accommodating cavity
  • the second end of the plate body 21 is provided with a second opening connected to the accommodating cavity
  • there are four baffles 27, and the multiple flow channels are respectively the first flow channel 211, the second flow channel 212, the third flow channel 213, the fourth flow channel 214 and the fifth flow channel 215 arranged at intervals along the height direction of the plate body 21.
  • the side cold plate 2 also includes a first blocking plate 22, a second blocking plate 23 and a flow channel blocking plate 24.
  • the first blocking plate 22 is connected to the first end of the plate body 21 to close the first opening, the first blocking plate 22 is connected to the first ends of the two baffles 27 located in the middle, and the first end faces of the two baffles 27 located at the edge are spaced apart from the first blocking plate 22, thereby achieving the connection between the first flow channel 211 and the second flow channel 212, and achieving the connection between the fourth flow channel 214 and the fifth flow channel 215.
  • the second blocking plate 23 is connected to the second end of the plate body 21 to close the second opening.
  • the flow channel blocking plate 24 is installed in the accommodating cavity.
  • the two ends of the flow channel blocking plate 24 are connected to the second ends of the two baffles 27 located at the edge.
  • the flow channel blocking plate 24 is separated from the second blocking plate 23.
  • the flow channel blocking plate 24 and the second blocking plate 23 form a sixth flow channel 216 connecting the first flow channel 211 and the fifth flow channel 215.
  • the second end faces of the two baffles 27 located in the middle are separated from the flow channel blocking plate 24, thereby realizing the connection between the second flow channel 212 and the fourth flow channel 214 and the third flow channel 213.
  • the side cold plate 2 only needs to be provided with one water inlet and one water outlet to realize the directional flow of the coolant in the five internal flow channels.
  • the side cold plate 2 further includes a first joint 25 and a second joint 26 , wherein the first joint 25 is connected to the plate body 21 and communicates with the first end of the first flow channel 211 , and the second joint 26 is connected to the plate body 21 and communicates with the sixth flow channel 216 .
  • the coolant enters the sixth flow channel 216 from the second joint 26, and flows from both ends of the sixth flow channel 216 to the first flow channel 211 and the fifth flow channel 215 respectively, and then flows from the first flow channel 211 and the fifth flow channel 215 to the second flow channel 212 and the fourth flow channel 214 respectively, and finally flows to the third flow channel 213 together and flows out from the first joint 25. That is, the coolant flows into and out of the side cold plate 2 through two parallel S-shaped flow channels, the flow rate of the coolant in the side cold plate 2 is larger, and the side cold plate 2 has a better cooling effect on the battery cell 3.
  • first joint 25 and the second joint 26 are respectively arranged at both ends of the side cold plate 2 in the length direction.
  • the first flow channel 211 and the fifth flow channel 215 are symmetrically arranged relative to the center line of the third flow channel 213, and the second flow channel 212 and the fourth flow channel 214 are symmetrically arranged relative to the center line of the third flow channel 213, so that the first flow channel 211 to the fifth flow channel 215 are more evenly distributed in the side cold plate 2, and the distribution area is larger, so that the heat exchange area is larger, and the heat dissipation effect on the battery cell 3 is better.
  • the first blocking plate 22 and the second blocking plate 23 are connected to the plate body 21 by brazing, and the flow channel blocking plate 24 is connected to the plate body 21 and two blocking strips 27 located at the edge by brazing.
  • the assembly strength of the side cold plate 2 is high, and the independent sealing performance of the first flow channel 211 to the sixth flow channel 216 is better.
  • the thickness of the first blocking plate 22 and the second blocking plate 23 is 0.1 mm-100 mm.
  • first blocking plate 22 and the second blocking plate 23 will not affect the sealing strength of the first opening and the second opening due to being too thin, and will not increase the size of the side cold plate 2 in the length direction due to being too thick, thereby effectively realizing the lightweight design of the battery pack heat dissipation device.
  • the thickness of the first blocking plate 22 and the second blocking plate 23 are equal, and can be 0.1mm, 1mm, 10mm and 100mm. Moreover, as shown in FIG3 and FIG4 , the thickness direction of the first blocking plate 22 and the second blocking plate 23 is consistent with the length direction of the plate body 21.
  • a water inlet 11 and a water outlet 12 are provided on the bottom cold plate 1, and the battery pack heat dissipation device also includes a plurality of water pipes 7, a plurality of side cold plates 2 are connected in parallel through some of the water pipes 7, and a plurality of side cold plates 2 are connected in series with the bottom cold plate 1 through the remaining water pipes 7.
  • the bottom cold plate 1 and the multiple side cold plates 2 together constitute a circulation system, and the parallel arrangement of the multiple side cold plates 2 can ensure the circulation of the coolant in the circulation system in a short time even if one of the side cold plates 2 is blocked, thereby further ensuring the heat dissipation reliability of the battery cells 3.
  • a side cold plate 2 located at the edge is provided with a first joint 25 and a second joint 26 facing the adjacent side cold plate 2 , and both sides of the remaining side cold plates 2 are provided with a first joint 25 and a second joint 26 , any two adjacent side cold plates 2 are connected in parallel through two water pipes 7 , and the other side cold plate 2 located at the edge is connected in series with the bottom cold plate 1 through two water pipes 7 .
  • a water inlet 11 and a water outlet 12 are provided on the bottom cold plate 1
  • the battery pack heat dissipation device further includes a plurality of water pipes 7
  • the bottom cold plate 1 and the plurality of side cold plates 2 are connected in series through the plurality of water pipes 7 .
  • the bottom cold plate 1 can also form a circulation system together with multiple side cold plates 2, and at this time, the number of water pipes 7 used is smaller, and the total weight of the battery pack heat dissipation device is smaller, meeting the lightweight requirements of the vehicle.
  • the bottom cold plate 1 has two serpentine flow channels 13 extending in the column direction, the two serpentine flow channels 13 are arranged along the length direction of the side cold plate 2 , and the two serpentine flow channels 13 are connected through at least two transition flow channels 14 .
  • the water inlet 11 is adjacent to the water outlet 12 , and the water inlet 11 and the water outlet 12 are arranged in a column direction with the multiple rows of battery cells 3 .
  • the battery pack according to the embodiment of the present disclosure includes a case 5, an upper cover 6, battery cells 3 and a battery pack heat dissipation device as in any of the above-mentioned embodiments, the battery cells 3 have multiple rows and are respectively fitted in multiple accommodating slots formed by the battery pack heat dissipation device, the battery pack heat dissipation device is fitted in the case 5, and the upper cover 6 is connected to the case 5 and closes the upper end opening of the case 5.
  • the technical advantages of the battery pack according to the embodiment of the present disclosure are the same as the technical advantages of the battery pack heat dissipation device in the above-mentioned embodiment, and will not be repeated here.
  • a vehicle according to an embodiment of the present disclosure includes a battery pack as described in the above-described embodiment.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • a feature defined as “first” or “second” may explicitly or implicitly include at least one of the features.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral one; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly limited.
  • installed installed, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral one; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly limited.
  • the specific meanings of the above terms in the embodiments of the present disclosure can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or that the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • the terms “one embodiment”, “some embodiments”, “examples”, “specific examples”, or “some examples” etc. mean that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present disclosure.
  • the schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, unless they are contradictory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

提供了一种电池包散热装置、电池包和车辆。电池包散热装置包括底冷板(1)和侧冷板(2),底冷板(1)与沿列向依次排列的多排电芯(3)的底面抵接,侧冷板(2)有多个并沿列向间隔布置在底冷板(1)上,任意相邻两个侧冷板(2)之间构成容纳槽,容纳槽的数量与电芯(3)的排数相等并一一对应,每排电芯(3)容置于相应容纳槽并与容纳槽的两侧面抵接。

Description

电池包散热装置、电池包和车辆
相关申请的交叉引用
本公开要求在2022年10月19日在中国提交的中国专利申请号202222758228X的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及电池包技术领域,具体涉及一种电池包散热装置、电池包和车辆。
背景技术
电池包是指将多个电芯包装、封装和装配,以组成某一特定形状的组合电池。相关技术中的电池包通过在电芯下设置冷板,以实现对电芯的冷却,但电芯仅通过其底面与冷板发生换热,以实现散热、冷却目的,进而存在冷板与电芯的换热面积小,电芯在极端环境下的电性能和安全性差的缺陷。
发明内容
本公开实施例旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的实施例提出一种电池包散热装置,该电池包散热装置具有与电芯的换热面积大,电芯在极端环境下的电性能和安全性高的优点。
本公开的实施例还提出一种电池包。
本公开的实施例又提出一种车辆。
根据本公开实施例的电池包散热装置包括底冷板和侧冷板,所述底冷板与沿列向依次排列的多排电芯的底面抵接;所述侧冷板有多个并沿列向间隔布置在所述底冷板上,任意相邻两个所述侧冷板之间构成容纳槽,所述容纳槽的数量与所述电芯的排数相等并一一对应,每排所述电芯容置于相应所述容纳槽并与所述容纳槽的两侧面抵接。
根据本公开实施例的电池包散热装置,通过设置多个侧冷板构成与电芯的排数相等的容纳槽,每个容纳槽内配合一排电芯,此时,任意相邻两排电芯均由侧冷板分隔开,且每排电芯的两侧面均与侧冷板抵接,每排电芯的底面与底冷板抵接,由此电池包散热装置与电芯之间的换热面积大,电芯的散热效率高,电芯在极端环境下的电性能和安全性高。
在一些实施例中,所述电池包散热装置还包括导热层,所述导热层设置于每个所述容纳槽的侧面和/或底面。
在一些实施例中,所述导热层在每个所述容纳槽内的分布面积S1与相应所述容纳槽的所述侧面和所述底面的总面积S2的关系为:0.01<S1/S2≤1;和/或,
所述导热层在每个所述容纳槽内的所述分布面积S1与每排所述电芯的所述侧面和所述底面的总面积S3的关系为:0.01<S1/S3<3。
在一些实施例中,多个所述侧冷板内流道的总体积D1与所述底冷板内流道的总体积D2的关系为:0.01<D1/D2<100。
在一些实施例中,所述侧冷板包括板体,所述板体具有容纳腔,所述容纳腔内设有沿所述板体的高度方向间隔布置的多个挡条,多个所述挡条将所述容纳腔分隔为沿所述板体的高度方向间隔布置的多个流道。
在一些实施例中,所述板体的第一端设有连通所述容纳腔的第一开口,所述板体的第二端设有连通所述容纳腔的第二开口,所述侧冷板还包括第一集流器和第二集流器,所述第一集流器与所述板体的所述第一端相连以封闭所述第一开口,所述第二集流器与所述板体的所述第二端相连以封闭所述第二开口,所述第一集流器与所述板体之间构成与多个所述流道连通的第一腔,所述第一集流器上设有与所述第一腔连通的第三开口,所述第二集流器与所述板体之间构成与多个所述流道连通的第二腔,所述第二集流器上设有与所述第二腔连通的第四开口。
在一些实施例中,所述板体的第一端设有连通所述容纳腔的第一开口,所述板体的第二端设有连通所述容纳腔的第二开口,所述挡条有四个,多个所述流道分别为沿所述板体的高度方向间隔布置的第一流道、第二流道、第三流道、第四流道和第五流道,所述侧冷板还包括第一堵板、第二堵板和流道堵板,所述第一堵板与所述板体的所述第一端相连以封闭所述第一开口,所述第一堵板与位于中部的两个所述挡条的第一端相连,位于边缘的两个所述挡条的第一端面与所述第一堵板间隔开,所述第二堵板与所述板体的所述第二端相连以封闭所述第二开口;所述流道堵板安装于所述容纳腔内,所述流道堵板的两端与位于边缘的两个所述挡条的第二端相连,所述流道堵板与所述第二堵板间隔开,所述流道堵板和所述第二堵板之间构成连通所述第一流道和所述第五流道的第六流道,位于中部的两个所述挡条的第二端面与所述流道堵板间隔开。
在一些实施例中,所述侧冷板还包括第一接头和第二接头,所述第一接头与所述板体相连并与所述第一流道的第一端连通,所述第二接头与所述板体相连并与所述第六流道连通。
在一些实施例中,所述第一堵板和所述第二堵板通过钎焊与所述板体相连,所述流道堵板通过钎焊与所述板体和位于边缘的两个所述挡条相连。
在一些实施例中,所述第一堵板和所述第二堵板的厚度为0.1mm-100mm。
在一些实施例中,所述底冷板上设有进水口和出水口,所述电池包散热装置还包括多个水管,其中,
多个所述侧冷板通过部分所述水管并联,多个所述侧冷板通过其余所述水管与所述底冷板串联;
或者,所述底冷板和多个所述侧冷板通过多个所述水管串联。
在一些实施例中,所述底冷板具有沿列向延伸的两个蛇形流道,两个所述蛇形流道沿所述侧冷板的长度方向排列,两个所述蛇形流道通过至少两个过渡流道连通。
根据本公开实施例的电池包包括箱体、上盖、电芯和如上述任一实施例所述的电池包散热装置,所述电芯有多排并分别配合在所述电池包散热装置构成的多个容纳槽内,所述电池包散热装置配合在所述箱体内,所述上盖与所述箱体相连并封闭所述箱体的上端开口。
根据本公开实施例的电池包的技术优势与上述实施例的电池包散热装置的技术优势相同,此处不再赘述。
根据本公开实施例的车辆包括如上述实施例的电池包。
根据本公开实施例的车辆的技术优势与上述实施例的电池包的技术优势相同,此处不再赘述。
附图说明
图1是根据本公开实施例的电池包的爆炸图。
图2是根据本公开实施例的电池包散热装置的示意图。
图3是根据本公开实施例的电池包散热装置中侧冷板的示意图。
图4是根据本公开实施例的电池包散热装置中侧冷板的爆炸图。
图5是根据本公开实施例的电池包散热装置中侧冷板的透视图。
图6是根据本公开实施例的电池包散热装置中底冷板的透视图。
图7是根据本公开实施例的电池包散热装置中导热层、侧冷板和电芯的示意图。
附图标记:
1、底冷板;11、进水口;12、出水口;13、蛇形流道;14、过渡流道;2、侧冷板;
21、板体;211、第一流道;212、第二流道;213、第三流道;214、第四流道;215、第五流道;216、第六流道;22、第一堵板;23、第二堵板;24、流道堵板;25、第一接头;26、第二接头;27、挡条;3、电芯;4、导热层;5、箱体;6、上盖;7、水管。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开实施例,而不能理解为对本公开实施例的限制。
下面结合图1-图7描述根据本公开实施例的电池包散热装置。
根据本公开实施例的电池包散热装置包括底冷板1和侧冷板2。底冷板1与沿列向依次排列的多排电芯3的底面抵接。侧冷板2有多个并沿列向间隔布置在底冷板1上,任意相邻两个侧冷板2之间构成容纳槽,容纳槽的数量与电芯3的排数相等并一一对应,每排电芯3容置于相应容纳槽并与容纳槽的两侧面抵接。
根据本公开实施例的电池包散热装置,通过设置多个侧冷板2构成与电芯3的排数相等的容纳槽,每个容纳槽内配合一排电芯3,此时,任意相邻两排电芯3均由侧冷板2分隔开,且每排电芯3的两侧面均与侧冷板2抵接,每排电芯3的底面与底冷板1抵接,由 此电池包散热装置与电芯3之间的换热面积大,电芯3的散热效率高,电芯3在极端环境下的电性能和安全性高。
需要说明地,上述提到的列向与每排电芯3中多个电芯的排列方向垂直,且列向与侧冷板2的厚度方向一致。
在一些实施例中,如图7所示,电池包散热装置还包括导热层4,导热层4设置于每个容纳槽的侧面和/或底面。
导热层4用于填充电芯3与底冷板1/侧冷板2之间的缝隙,以便于将电芯3产生的热量快速传导至底冷板1和侧冷板2,进一步提高电芯3的散热效率。此外,导热层4的设置也有效保证电芯3在容纳槽内的固定。
在一些具体实施例中,导热层4可以为导热效果好的粘胶,也可以为单纯的具有高导热性的导热剂等换热介质。
在一些实施例中,导热层4在每个容纳槽内的分布面积S1与相应容纳槽的侧面和底面的总面积S2的关系为:0.01<S1/S2≤1,和/或,导热层4在每个容纳槽内的分布面积S1与每排电芯3的侧面和底面的总面积S3的关系为:0.01<S1/S3<3。
导热层4的分布面积S1越大,则对电芯3产生的热量的传导效率更高,上述参数范围内的导热层4均有效保证对电芯3的固定和传热。
在一些具体实施例中,电芯3的侧面和底面的总面积S3小于等于容纳槽的侧面和底面的总面积S2,即电芯3的高度小于等于容纳槽的深度,此时导热层4的分布面积S1可以等与电芯3的侧面和底面的总面积S3,由此实现对电芯3的更高传热效率。
在一些实施例中,多个侧冷板2内流道的总体积D1与底冷板1内流道的总体积D2的关系为:0.01<D1/D2<100。由此,侧冷板2中的流道设计灵活,可以设计不同体积的流道,以配合底冷板1实现对电芯3在极端环境下的稳定散热。
在一些实施例中,多个侧冷板2内流道的总体积D1大于等于底冷板1内流道的总体积D2。
在一些实施例中,如图3-图5所示,侧冷板2包括板体21,板体21具有容纳腔,容纳腔内设有沿板体21的高度方向间隔布置的多个挡条27,多个挡条27将容纳腔分隔为沿板体21的高度方向间隔布置的多个流道。由此,冷却液在多个流道内流动,以实现对电芯3的散热。且此时冷却液在侧冷板2内的分布均匀,分布面积大,对电芯3的散热效果更好。
在一些实施例中,板体21的第一端设有连通容纳腔的第一开口,板体21的第二端设有连通容纳腔的第二开口,侧冷板2还包括第一集流器和第二集流器。第一集流器与板体21的第一端相连以封闭第一开口,第二集流器与板体21的第二端相连以封闭第二开口。第一集流器与板体之间构成与多个流道连通的第一腔,第一集流器上设有与第一腔连通的第三开口。第二集流器与板体21之间构成与多个流道连通的第二腔,第二集流器上设有与第二腔连通的第四开口。
由此,冷却液可由第三开口进入第一腔,并随之进入所有流道,最终汇入第二腔并由第四开口排出,实现冷却液在内部所有流道中的定向流动,保证侧冷板2对电芯3的冷却效果。
其中,第三开口和第四开口处可连接接口,以便于侧冷板2与底冷板1或其余侧冷板2的串/并联。
在一些实施例中,板体21的第一端设有连通容纳腔的第一开口,板体21的第二端设有连通容纳腔的第二开口,挡条27有四个,多个流道分别为沿板体21的高度方向间隔布置的第一流道211、第二流道212、第三流道213、第四流道214和第五流道215。侧冷板2还包括第一堵板22、第二堵板23和流道堵板24。第一堵板22与板体21的第一端相连以封闭第一开口,第一堵板22与位于中部的两个挡条27的第一端相连,位于边缘的两个挡条27的第一端面与第一堵板22间隔开,由此实现第一流道211和第二流道212的连通,实现第四流道214和第五流道215的连通。
第二堵板23与板体21的第二端相连以封闭第二开口流道堵板24安装于容纳腔内,流道堵板24的两端与位于边缘的两个挡条27的第二端相连,流道堵板24与第二堵板23间隔开,流道堵板24和第二堵板23之间构成连通第一流道211和第五流道215的第六流道216。位于中部的两个挡条27的第二端面与流道堵板24间隔开,由此实现第二流道212和第四流道214与第三流道213的连通。此时,侧冷板2只需设置一个进水孔和一个出水孔,即可实现冷却液在内部五个流道的定向流动。
在一些具体实施例中,侧冷板2还包括第一接头25和第二接头26,第一接头25与板体21相连并与第一流道211的第一端连通,第二接头26与板体21相连并与第六流道216连通。
以第一接头25成型出水孔和第二接头26成型进水孔为例,冷却液由第二接头26进入第六流道216,并由第六流道216的两端分别流至第一流道211和第五流道215,随后由第一流道211和第五流道215分别流至第二流道212和第四流道214,最后共同流至第三流道213并由第一接头25流出。即冷却液经两个并联的S形流道流入和流出侧冷板2,冷却液在侧冷板2内的流量更大,侧冷板2对电芯3的冷却效果更好。
在一些具体实施例中,此时第一接头25和第二接头26分设于侧冷板2在长度方向的两端。第一流道211和第五流道215相对第三流道213的中心线对称设置,第二流道212和第四流道214相对第三流道213的中心线对称设置,由此第一流道211至第五流道215在侧冷板2内的分布更加均匀,分布面积更大,由此换热面积更大,对电芯3的散热效果更好。
在一些实施例中,第一堵板22和第二堵板23通过钎焊与板体21相连,流道堵板24通过钎焊与板体21和位于边缘的两个挡条27相连。由此侧冷板2的组装强度高,其中构成的第一流道211至第六流道216的独立密封性更好。
在一些实施例中,第一堵板22和第二堵板23的厚度为0.1mm-100mm。
由此,既保证第一堵板22和第二堵板23不会因过薄而影响对第一开口和第二开口的封闭强度,也不会因过厚而增加侧冷板2在长度方向的尺寸,有效实现电池包散热装置的轻量化设计。
在一些具体实施例中,第一堵板22和第二堵板23的厚度相等,并可以为0.1mm、1mm、10mm和100mm。而且,如图3和图4所示,第一堵板22和第二堵板23的厚度方向与板体21的长度方向一致。
在一些实施例中,如图2和图6所示,底冷板1上设有进水口11和出水口12,电池包散热装置还包括多个水管7,多个侧冷板2通过部分水管7并联,多个侧冷板2通过其余水管7与底冷板1串联。
由此,底冷板1和多个侧冷板2共同构成一个循环系统,且多个侧冷板2的并联设置,即便有某个侧冷板2出现封堵时,也能够在短时间内保证循环系统中冷却液的循环流通,进一步保证对电芯3的散热可靠性。
在一些具体实施例中,如图2所示,位于边缘的一个侧冷板2设有朝向相邻侧冷板2的一个第一接头25和一个第二接头26,其余侧冷板2的两侧均设有第一接头25和第二接头26,任意相邻两个侧冷板2通过两个水管7并联,位于边缘的另一个侧冷板2通过两个水管7与底冷板1串联。
在一些实施例中,底冷板1上设有进水口11和出水口12,电池包散热装置还包括多个水管7,底冷板1和多个侧冷板2通过多个水管7串联。
由此底冷板1同样可以与多个侧冷板2共同构成一个循环系统,且此时水管7所用数量更少,电池包散热装置的总重量更小,满足车辆的轻量化需求。
在一些实施例中,如图6所示,底冷板1具有沿列向延伸的两个蛇形流道13,两个蛇形流道13沿侧冷板2的长度方向排列,两个蛇形流道13通过至少两个过渡流道14连通。
由此有效保证底冷板1内的蛇形流道13和过渡流道14基本能够均布在底冷板1的所有区域,进而使得底冷板1内的流道分布面积更大,对电芯3的散热效果更好。
在一些具体实施例中,如图2所示,进水口11邻近出水口12,且进水口11和出水口12与多排电芯3在电芯3的列向排列。
如图1所示,根据本公开实施例的电池包包括箱体5、上盖6、电芯3和如上述任一实施例的电池包散热装置,电芯3有多排并分别配合在电池包散热装置构成的多个容纳槽内,电池包散热装置配合在箱体5内,上盖6与箱体5相连并封闭箱体5的上端开口。
根据本公开实施例的电池包的技术优势与上述实施例的电池包散热装置的技术优势相同,此处不再赘述。
根据本公开实施例的车辆包括如上述实施例的电池包。
根据本公开实施例的车辆的技术优势与上述实施例的电池包的技术优势相同,此处不再赘述。
在本公开实施例的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开实施例的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
在本公开实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本公开实施例中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种电池包散热装置,其特征在于,包括:
    底冷板,所述底冷板与沿列向依次排列的多排电芯的底面抵接;和
    侧冷板,所述侧冷板有多个并沿列向间隔布置在所述底冷板上,任意相邻两个所述侧冷板之间构成容纳槽,所述容纳槽的数量与所述电芯的排数相等并一一对应,每排所述电芯容置于相应所述容纳槽并与所述容纳槽的两侧面抵接。
  2. 根据权利要求1所述的电池包散热装置,其特征在于,所述电池包散热装置还包括导热层,所述导热层设置于每个所述容纳槽的侧面和/或底面。
  3. 根据权利要求2所述的电池包散热装置,其特征在于,所述导热层在每个所述容纳槽内的分布面积S1与相应所述容纳槽的所述侧面和所述底面的总面积S2的关系为:0.01<S1/S2≤1;和/或,
    所述导热层在每个所述容纳槽内的所述分布面积S1与每排所述电芯的所述侧面和所述底面的总面积S3的关系为:0.01<S1/S3<3。
  4. 根据权利要求1至3中任一项所述的电池包散热装置,其特征在于,多个所述侧冷板内流道的总体积D1与所述底冷板内流道的总体积D2的关系为:0.01<D1/D2<100。
  5. 根据权利要求1至4中任一项所述的电池包散热装置,其特征在于,所述侧冷板包括:
    板体,所述板体具有容纳腔,所述容纳腔内设有沿所述板体的高度方向间隔布置的多个挡条,多个所述挡条将所述容纳腔分隔为沿所述板体的高度方向间隔布置的多个流道。
  6. 根据权利要求5所述的电池包散热装置,其特征在于,所述板体的第一端设有连通所述容纳腔的第一开口,所述板体的第二端设有连通所述容纳腔的第二开口,所述侧冷板还包括第一集流器和第二集流器,所述第一集流器与所述板体的所述第一端相连以封闭所述第一开口,所述第二集流器与所述板体的所述第二端相连以封闭所述第二开口,所述第一集流器与所述板体之间构成与多个所述流道连通的第一腔,所述第一集流器上设有与所述第一腔连通的第三开口,所述第二集流器与所述板体之间构成与多个所述流道连通的第二腔,所述第二集流器上设有与所述第二腔连通的第四开口。
  7. 根据权利要求5所述的电池包散热装置,其特征在于,所述板体的第一端设有连通所述容纳腔的第一开口,所述板体的第二端设有连通所述容纳腔的第二开口,所述挡条有四个,多个所述流道分别为沿所述板体的高度方向间隔布置的第一流道、第二流道、第三流道、第四流道和第五流道,所述侧冷板还包括:
    第一堵板,所述第一堵板与所述板体的所述第一端相连以封闭所述第一开口,所述第一堵板与位于中部的两个所述挡条的第一端相连,位于边缘的两个所述挡条的第一端面与所述第一堵板间隔开;
    第二堵板,所述第二堵板与所述板体的所述第二端相连以封闭所述第二开口;和
    流道堵板,所述流道堵板安装于所述容纳腔内,所述流道堵板的两端与位于边缘的两个所述挡条的第二端相连,所述流道堵板与所述第二堵板间隔开,所述流道堵板和所述第二堵板之间构成连通所述第一流道和所述第五流道的第六流道(216),位于中部的两个所述挡条的第二端面与所述流道堵板间隔开。
  8. 根据权利要求7所述的电池包散热装置,其特征在于,所述侧冷板还包括第一接头和第二接头,所述第一接头与所述板体相连并与所述第一流道的第一端连通,所述第二接头与所述板体相连并与所述第六流道(216)连通。
  9. 根据权利要求7或8所述的电池包散热装置,其特征在于,所述第一堵板和所述第二堵板通过钎焊与所述板体相连,所述流道堵板通过钎焊与所述板体和位于边缘的两个所述挡条相连。
  10. 根据权利要求7至9中任一项所述的电池包散热装置,其特征在于,所述第一堵板和所述第二堵板的厚度为0.1mm-100mm。
  11. 根据权利要求5至10中任一项所述的电池包散热装置,其特征在于,所述底冷板上设有进水口和出水口,所述电池包散热装置还包括多个水管,其中,
    多个所述侧冷板通过部分所述水管并联,多个所述侧冷板通过其余所述水管与所述底冷板串联;
    或者,所述底冷板和多个所述侧冷板通过多个所述水管串联。
  12. 根据权利要求1至11中任一项所述的电池包散热装置,其特征在于,所述底冷板具有沿列向延伸的两个蛇形流道,两个所述蛇形流道沿所述侧冷板的长度方向排列,两个所述蛇形流道通过至少两个过渡流道连通。
  13. 一种电池包,其特征在于,包括箱体、上盖、电芯和如权利要求1至12中任一项所述的电池包散热装置,所述电芯有多排并分别配合在所述电池包散热装置构成的多个容纳槽内,所述电池包散热装置配合在所述箱体内,所述上盖与所述箱体相连并封闭所述箱体的上端开口。
  14. 一种车辆,其特征在于,包括如权利要求13所述的电池包。
PCT/CN2023/122613 2022-10-19 2023-09-28 电池包散热装置、电池包和车辆 WO2024082953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222758228.X 2022-10-19
CN202222758228.XU CN218602547U (zh) 2022-10-19 2022-10-19 电池包散热装置、电池包和车辆

Publications (1)

Publication Number Publication Date
WO2024082953A1 true WO2024082953A1 (zh) 2024-04-25

Family

ID=85402169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122613 WO2024082953A1 (zh) 2022-10-19 2023-09-28 电池包散热装置、电池包和车辆

Country Status (2)

Country Link
CN (1) CN218602547U (zh)
WO (1) WO2024082953A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218602547U (zh) * 2022-10-19 2023-03-10 北京车和家汽车科技有限公司 电池包散热装置、电池包和车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019166241A1 (en) * 2018-02-27 2019-09-06 Gränges Aluminium (Shanghai) Co., Ltd Watercold plate for battery module
CN111769221A (zh) * 2020-06-02 2020-10-13 北京新能源汽车股份有限公司蓝谷动力系统分公司 用于车辆的电池模组和车辆
CN112736324A (zh) * 2021-01-18 2021-04-30 福建易动力电子科技股份有限公司 一种带液冷的软包电池系统
WO2021135189A1 (zh) * 2019-12-30 2021-07-08 合肥国轩高科动力能源有限公司 一种锂电池模组的液冷箱体
CN216145679U (zh) * 2021-06-29 2022-03-29 深圳市南海高新科技有限公司 一种热安全管理系统及电池
CN216288649U (zh) * 2021-09-22 2022-04-12 广州智光电气股份有限公司 一种液冷储能电池包
CN218602547U (zh) * 2022-10-19 2023-03-10 北京车和家汽车科技有限公司 电池包散热装置、电池包和车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019166241A1 (en) * 2018-02-27 2019-09-06 Gränges Aluminium (Shanghai) Co., Ltd Watercold plate for battery module
WO2021135189A1 (zh) * 2019-12-30 2021-07-08 合肥国轩高科动力能源有限公司 一种锂电池模组的液冷箱体
CN111769221A (zh) * 2020-06-02 2020-10-13 北京新能源汽车股份有限公司蓝谷动力系统分公司 用于车辆的电池模组和车辆
CN112736324A (zh) * 2021-01-18 2021-04-30 福建易动力电子科技股份有限公司 一种带液冷的软包电池系统
CN216145679U (zh) * 2021-06-29 2022-03-29 深圳市南海高新科技有限公司 一种热安全管理系统及电池
CN216288649U (zh) * 2021-09-22 2022-04-12 广州智光电气股份有限公司 一种液冷储能电池包
CN218602547U (zh) * 2022-10-19 2023-03-10 北京车和家汽车科技有限公司 电池包散热装置、电池包和车辆

Also Published As

Publication number Publication date
CN218602547U (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
US11843102B2 (en) Counter-flow heat exchanger for battery thermal management applications
US10601093B2 (en) Counter-flow heat exchanger for battery thermal management applications
EP3243240B1 (en) Counter-flow heat exchanger for battery thermal management applications
WO2024082953A1 (zh) 电池包散热装置、电池包和车辆
US11499790B2 (en) Heat exchanger with multipass fluid flow passages
WO2021018675A1 (en) Contra flow channel battery heat exchanger
US20210025655A1 (en) Three-layer heat exchanger with internal manifold for battery thermal management
WO2023208218A1 (zh) 散热器总成、电池包和车辆
CN218827450U (zh) 电池装置、电池包以及车辆
CN216288626U (zh) 液冷板及电池包
CN213366661U (zh) 电池模组结构和电池包
CN219873742U (zh) 一种电池模组及电池包
CN114608368A (zh) 换热器
CN220367991U (zh) 储能装置
CN218241977U (zh) 换热器和具有其的其电池包、车辆
CN221080142U (zh) 液冷装置及具有该液冷装置的储能系统
CN220021307U (zh) 电池包的换热器、电池包及用电装置
CN220382234U (zh) 电芯排的组合壳、电芯排、电池模组和电池包
CN217361728U (zh) 电池组件
CN218101487U (zh) 电池组以及电池装置
CN220021258U (zh) 电池包以及用电装置
CN219979713U (zh) 一种电芯组单元、电芯模组及集成电池包
CN221057521U (zh) 一种多面液冷模组结构及电池
CN220731630U (zh) 换热板及包括该换热板的电池包
EP4047721B1 (en) Energy storage module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878945

Country of ref document: EP

Kind code of ref document: A1