WO2022062163A1 - 摄像头驱动马达的光学稳像性能测试方法 - Google Patents

摄像头驱动马达的光学稳像性能测试方法 Download PDF

Info

Publication number
WO2022062163A1
WO2022062163A1 PCT/CN2020/131932 CN2020131932W WO2022062163A1 WO 2022062163 A1 WO2022062163 A1 WO 2022062163A1 CN 2020131932 W CN2020131932 W CN 2020131932W WO 2022062163 A1 WO2022062163 A1 WO 2022062163A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
ois
hall
driving motor
drive motor
Prior art date
Application number
PCT/CN2020/131932
Other languages
English (en)
French (fr)
Inventor
张超
吴志江
张启
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022062163A1 publication Critical patent/WO2022062163A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/027Specimen mounting arrangements, e.g. table head adapters

Definitions

  • the invention relates to a test method, in particular to a test method for optical image stabilization performance of a camera driving motor used in the field of portable camera electronic products.
  • OIS Optical Image Stabilization, optical image stabilization
  • the camera module factory usually tests the actual imaging effect of the camera module sample on the shaking table before shipment, and uses the calculated SR (Suppression Ratio, suppression ratio) parameter as the criterion for determining the quality of OIS performance.
  • This evaluation method requires the camera module and the gyroscope to be installed on the signal transfer module and jointly fixed on the shaking table, and can only be successfully carried out after the camera module is fully assembled and shot with normal power and with the help of image analysis.
  • the technical problem to be solved by the present invention is to provide a method for testing the optical image stabilization performance of a camera driving motor, which can perform an OIS test on the camera driving motor in the incoming material stage before the camera module is completely assembled, thereby effectively increasing the production efficiency, reduce production costs, and effectively control the risk of substandard performance after the camera module is assembled.
  • the present invention provides a method for testing the optical image stabilization performance of a camera driving motor, which provides:
  • the shaking table is used to simulate the shaking process of actual hand-held shooting
  • a test tool which is used to install a camera drive motor that can carry a lens, and includes an X/Y direction displacement monitoring module and an OIS drive module; the camera drive motor has a built-in X direction for detecting the displacement of the lens in the X direction Hall sensor and Y-direction Hall sensor for detecting the displacement of the lens in the Y-direction;
  • the X/Y direction displacement monitoring module is connected to the host computer;
  • the test method includes the following steps:
  • Step S1 install the camera drive motor to be tested on the test fixture, and make it electrically connected to the X/Y direction displacement monitoring module and the OIS drive module respectively;
  • Step S2 open the OIS drive module, so that the camera drive motor and the OIS drive module form an OIS closed-loop control system, to drive the OIS performance adjustment of the lens in the camera drive motor;
  • Step S3 open the displacement monitoring module in the X/Y direction, to obtain the initial position data X Target (t0) and Y Target (t0) of the camera drive motor initial posture in the X direction and the Y direction, and obtain the Initial displacement data X Hall (t0) and Y Hall (t0) of the lens in the camera drive motor in the X direction and the Y direction, where t0 is the time corresponding to the initial posture of the camera drive motor;
  • Step S4 turning on the shaking vibration table, so that the test tool vibrates according to a preset program
  • Step S5 obtain the position data after the projection of the real-time attitude of the camera drive motor in the X direction and the Y direction by the X/Y direction displacement monitoring module: displacement offset X Target (t) and displacement offset Y Target (t ), and obtain the real-time position data of the lens in the X-direction and Y-direction of the camera drive motor: compensation displacement X Hall (t) and compensation displacement Y Hall (t)
  • t is the real-time camera drive motor The time corresponding to the attitude
  • Step S6 X direction data analysis, Y direction data analysis:
  • the data X Target (t0), Y Target (t0), X Hall (t0), Y Hall (t0), X Target (t), Y Target obtained by the host computer from the X/Y direction displacement monitoring module (t), X Hall (t) and Y Hall (t) to analyze the phase and difference, and get the compensation rate and compensation amount that the OIS function of the camera driving motor can provide in the X/Y direction;
  • a reasonable threshold frame line is set for the compensation rate and compensation amount, so as to judge whether the OIS performance of the camera driving motor meets the standard.
  • the method further includes step S7: displaying the test result of the OIS performance of the camera driving motor through the host computer.
  • the OIS drive module includes an OIS drive chip electrically connected to the camera drive motor and a first gyroscope electrically connected to the OIS drive chip;
  • the OIS drive chip adjusts the size and direction of the drive current in real time to control the real-time movement of the lens in the camera drive motor in the X/Y direction, wherein the OIS drive chip drives the lens in the camera drive motor to move in the X/Y direction.
  • the direction of the real-time movement in the /Y direction is opposite to the direction in which the lens in the camera driving motor is moved by the shaking table, and the resulting displacement is equal in magnitude.
  • the X/Y direction displacement monitoring module includes a DSP processing module, a Hall signal preprocessing module and a second gyroscope electrically connected to the DSP processing module respectively;
  • the DSP processing module obtains X Hall (t) and Y Hall (t) through the Hall signal preprocessing module;
  • the DSP processing module obtains the real-time angular rate data of its own attitude through the second gyroscope, and processes the angular rate data through integration and conversion: the deflection angle that occurs in the Yaw direction is ⁇ Yaw (t), which is projected to The rear in the X direction represents the displacement offset X Target (t) of the camera drive motor in the X direction due to shaking; the deflection angle in the Pitch direction is ⁇ Pitch (t), which is projected to the Y direction to represent the The displacement offset Y Target (t) of the camera drive motor in the Y direction due to shaking.
  • two of the X-direction Hall sensors are arranged on opposite sides of the lens at intervals, and two of the Y-direction Hall sensors are arranged at intervals on other opposite sides of the lens.
  • the test tool is shaken by a shaking vibration table, and the camera driving motor to be tested is installed on the test tool, so that the camera drives the test tool.
  • the motor and the OIS drive module on it form a motor OIS closed-loop control system to drive the OIS performance adjustment of the lens in the camera drive motor, and obtain X Hall (t) and X in real time through the X/Y direction displacement monitoring module Target (t), Y Hall (t) and Y Target (t) data, and then perform phase and difference analysis on the acquired data through the host computer, thus it can be known that the OIS function of the camera drive motor is in X/
  • the host computer can determine whether the performance of the OIS of the camera drive motor meets the standard. This method does not need to completely assemble the camera driving motor into a finished camera module and then perform the OIS performance test.
  • the test can be carried out at the incoming stage of the camera driving motor, avoiding the need to test the camera module of the assembled product to find the camera driving motor in it.
  • the OIS performance is unqualified and the defective rate is generated. It can be found in advance whether the OIS performance meets the standard, thereby avoiding the problem of rework and maintenance, effectively increasing the production efficiency, reducing the production cost, and effectively controlling the camera module after assembly. risk of compliance.
  • Fig. 1 is the flow chart of the optical image stabilization performance test method of the camera drive motor of the present invention
  • FIG. 2 is a schematic structural diagram of a test device for a method for testing the optical image stabilization performance of a camera driving motor according to the present invention
  • FIG. 3 is an X-direction data analysis diagram in the steps of the optical image stabilization performance testing method of the camera drive motor of the present invention
  • FIG. 4 is a Y-direction data analysis diagram in the steps of the optical image stabilization performance testing method of the camera drive motor of the present invention
  • FIG. 5 is an analysis diagram of the compensation rate and compensation amount that can be provided in the X direction by the OIS function of the camera drive motor in the steps of the optical image stabilization performance testing method of the camera drive motor of the present invention
  • FIG. 6 is an analysis diagram of the compensation rate and compensation amount that can be provided by the OIS function of the camera driving motor in the Y direction in the steps of the optical image stabilization performance testing method of the camera driving motor of the present invention.
  • the present invention provides a method for testing the optical image stabilization performance of a camera driving motor, providing:
  • the shaking vibration table 1 is used to simulate the shaking process of a person's actual hand-held shooting.
  • the test fixture 2 is used to mount the camera drive motor 10 that can carry the lens 101 , and includes an X/Y direction displacement monitoring module 21 and an OIS drive module 22 .
  • the camera driving motor 10 has built-in at least two sets of Hall sensors that detect the displacement of the internal lens 101 in the X direction and the Y direction and generate the Hall signal X Hall respectively.
  • two X-direction Hall sensors 102a are provided on opposite sides of the lens 101 at intervals, and two Y-direction Hall sensors 102b are provided on the other opposite sides of the lens 101 at intervals. to improve detection accuracy.
  • the upper computer 3 the X/Y direction displacement monitoring module 21 is connected with the upper computer 3.
  • the X/Y direction displacement monitoring module 21 is used to transmit the obtained displacement signal of the camera drive motor 10 in the X/Y direction and the obtained displacement signal of the test tool 2 in the X/Y direction to the upper position.
  • the OIS driving module 22 includes an OIS driving chip 221 electrically connected to the camera driving motor 10 and a first gyroscope 222 electrically connected to the OIS driving chip 221 .
  • the OIS driving chip 221 adjusts the size and direction of the driving current in real time to control the real-time movement of the lens 101 in the camera driving motor 10 in the X/Y direction, wherein the OIS driving chip 221 drives the camera driving motor 10
  • the real-time movement direction of the lens 101 in the X/Y direction is opposite to the direction in which the lens 101 in the camera driving motor 10 is moved by the shaking table 1, and the magnitudes are equal.
  • the X/Y direction displacement monitoring module 21 includes a DSP processing module 211 , a Hall signal preprocessing module 212 and a second gyroscope 213 electrically connected to the DSP processing module 211 respectively.
  • the test method includes the following steps:
  • Step S1 install the camera drive motor 10 to be tested on the test fixture 2, and make it electrically connected to the X/Y direction displacement monitoring module 21 and the OIS drive module 22, respectively.
  • Step S2 turning on the OIS driving module 22 , so that the camera driving motor and the OIS driving module 22 form a motor OIS closed-loop control system to drive the OIS performance adjustment of the lens 101 in the camera driving motor 10 .
  • the camera driving motor 10 and the OIS driving module 22 form a motor OIS closed-loop control system
  • the camera motor OIS closed-loop control system in the module product can make the OIS performance of the camera drive motor 10 in the above-mentioned motor OIS closed-loop control system completely equivalent to the camera motor OIS closed-loop control system in the complete camera module product. OIS performance.
  • the camera driving motor 10 ie, the motor unit in the motor OIS closed-loop control system of the present invention is not assembled into a camera module, therefore It can be easily replaced; by replacing different camera driving motors 10 and studying the performance of the OIS performance of the camera driving motor 10 in the above-mentioned motor OIS closed-loop control system of the present invention, the OIS performance of the camera driving motor 10 can be realized. According to the evaluation, the OIS performance of the camera driving motor 10 can be obtained before the camera module is assembled, which effectively controls the risk of disassembly and rework after the camera driving motor 10 is not up to standard after the test OIS performance is assembled.
  • the OIS performance of the camera drive motor 10 in the motor OIS closed-loop control system is mainly manifested as follows: when the external environment shakes, the camera drive motor 10 is in the X/Y state. When the direction is displaced, whether the camera drive motor 10 can quickly drive the lens 101 to have an equal amount of reverse displacement in the X/Y direction under the action of the above-mentioned motor OIS closed-loop control system, thereby achieving the purpose of compensating for external jitter and realizing optical image stabilization .
  • the purpose of evaluating the OIS performance of the camera driving motor 10 can be achieved by evaluating the magnitude of the above-mentioned phase delay and displacement deviation.
  • Step S3 open the displacement monitoring module 21 in the X/Y direction to obtain the initial position data X Target (t0) and Y Target (t0) of the camera drive motor 10 in the X direction and the Y direction, and obtain The initial displacement data X Hall (t0) and Y Hall (t0) of the lens 101 in the X direction and the Y direction in the camera driving motor 10.
  • t0 is the time corresponding to the initial attitude of the camera driving motor 10 .
  • Step S4 turning on the shaking table, so that the test tool vibrates according to a preset program.
  • Step S5 through the X/Y direction displacement monitoring module 21, obtain the position data after the real-time attitude of the camera drive motor 10 is projected in the X direction and the Y direction: displacement offset X Target (t) and displacement offset Y Target (t); and acquiring real-time position data of the lens 101 in the camera driving motor 10 in the X direction and the Y direction: the compensation displacement amount X Hall (t) and the compensation displacement amount Y Hall (t).
  • t is the time corresponding to the real-time attitude of the camera driving motor.
  • the test tool 2 is rigidly connected to the camera drive motor 10, so it is displaced in the X/Y direction, which represents the displacement offset (X Target (t), Y Target (t)) of the camera drive motor 10 due to shaking.
  • the X/Y direction displacement monitoring module 21 mainly monitors two signals:
  • the Hall signal X Hall in the X/Y direction from the camera driving motor 10 is monitored in real time, and this signal represents the actual position of the lens 101 in the camera driving motor 10 in X/Y, that is, the above-mentioned X Hall (t) and Y Hall (t);
  • the DSP processing module 211 of the X/Y direction displacement monitoring module 21 obtains X Hall (t) and Y Hall (t) through the Hall signal preprocessing module 212, that is, obtains the X/Y direction of the lens
  • the displacement signal that is, the real-time position data of the lens 101 in the X direction and the Y direction, is represented as the above-mentioned X Hall (t) and Y Hall (t);
  • attitude angular rate data of the second gyroscope 213 in the X/Y direction displacement monitoring module 21 is monitored in real time.
  • the DSP processing module 211 obtains the real-time angular rate data of its own attitude through the second gyroscope 213, and integrates the angular rate data through the integration and summation.
  • Conversion processing the deflection angle occurring in the Yaw direction is ⁇ Yaw (t), and after being projected to the X direction, it represents the displacement offset X Target (t );
  • the deflection angle that takes place in the Pitch direction is ⁇ Pitch (t), and after being projected to the Y direction, the camera drive motor 10 represents the displacement offset Y Target (t) that occurs in the Y direction due to the vibration caused by the external vibration.
  • the Yaw direction is the direction of rotation around the Y axis
  • the pitch direction is the direction of rotation around the X axis.
  • Step S6 X direction data analysis, Y direction data analysis:
  • the OIS drive chip will adjust the size and direction of the drive current in real time, and then control the lens in the camera drive motor to move in the X/Y direction in real time; ideally, this movement
  • the direction should be exactly opposite to that of the camera drive motor in the X/Y direction due to shaking, and the resulting displacement should be equal in size, so as to compensate for the X/Y offset caused by shaking and achieve the purpose of OIS.
  • there is a time delay and displacement error between the target displacement in the X/Y direction and the actual compensation displacement Therefore, on the contrary, the time delay and displacement error can correctly reflect the OIS performance of the camera drive motor.
  • the data X Target (t0), Y Target (t0), X Hall (t0), Y Hall (t0) obtained by the host computer for the X/Y direction displacement monitoring module; X Target (t0); (t) and X Hall (t); Y Target (t) and Y Hall (t).
  • the compensation rate and compensation amount that the OIS function of the camera driving motor can provide in the X direction is an analysis diagram. It can be seen from FIG. 5 that the X Hall The difference between (t) and X Target (t) is zero at almost every moment, indicating that the OIS performance of the camera drive motor is good, that is, the camera drive motor can achieve equal displacement compensation.
  • FIG 4 it is the Y direction data analysis diagram in the steps of the optical image stabilization performance test method of the camera driving motor of the present invention, Y Target (t) and Y Hall (t), as can be seen from Figure 4, in the abscissa In the time axis direction, Y Hall (t) and Y Target (t) have no obvious phase delay, indicating that the OIS performance of the camera drive motor is good, that is, the camera drive motor can achieve low-latency and fast compensation.
  • the compensation rate and compensation amount that the OIS function of the camera driving motor can provide in the Y direction is an analysis diagram. It can be seen from FIG. 6 that Y Hall The difference between (t) and Y Target (t) is zero at almost every moment, indicating that the OIS performance of the camera drive motor is good, that is, the camera drive motor can achieve equal displacement compensation.
  • test method further includes step S7: displaying the test result of the OIS performance of the camera driving motor through the host computer.
  • the test tool is shaken by a shaking vibration table, and the camera driving motor to be tested is installed on the test tool, so that the camera drives the test tool.
  • the motor and the OIS drive module on it form a motor OIS closed-loop control system to drive the OIS performance adjustment of the lens in the camera drive motor, and obtain X Hall (t) and X in real time through the X/Y direction displacement monitoring module Target (t), Y Hall (t) and Y Target (t) data, and then perform phase and difference analysis on the acquired data through the host computer, thus it can be known that the OIS function of the camera drive motor is in X/
  • the host computer can determine whether the performance of the OIS of the camera drive motor meets the standard. This method does not need to completely assemble the camera driving motor into a finished camera module and then perform the OIS performance test.
  • the test can be carried out at the incoming stage of the camera driving motor, avoiding the need to test the camera module of the assembled product to find the camera driving motor in it.
  • the OIS performance is unqualified and the defective rate is generated. It can be found in advance whether the OIS performance meets the standard, thereby avoiding the problem of rework and maintenance, effectively increasing the production efficiency, reducing the production cost, and effectively controlling the camera module after assembly. risk of compliance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

一种摄像头驱动马达(10)的光学稳像性能测试方法,包括如下步骤:将摄像头驱动马达(10)安装在测试工装(2)上,并使其分别与X/Y方向位移监测模块(21)和OIS驱动模块(22)电性连接;开启OIS驱动模块(22),使得摄像头驱动马达(10)与OIS驱动模块(22)形成OIS闭环控制系统;开启X/Y方向位移监测模块(21),以获取摄像头驱动马达(10)的X、Y方向初始位置数据;开启抖动振台(1);通过X/Y方向位移监测模块(21)获取摄像头驱动马达(10)实时的X、Y方向位移数据;通过上位机(3)对X方向数据分析、Y方向数据分析,以判断OIS性能是否达标。该方法可靠性好,有效的提高了生产效率、降低了生产成本和不良率风险。

Description

摄像头驱动马达的光学稳像性能测试方法 技术领域
本发明涉及一种测试方法,尤其涉及一种运用在便携式摄像电子产品领域的摄像头驱动马达的光学稳像性能测试方法。
背景技术
近年来具有OIS(Optical Image Stabilization,光学稳像)功能的微型马达控制系统被许多高端手机摄像头模组争相采用。为了确保摄像头模组具备优秀的OIS性能,摄像头模组厂在出货前,通常会对摄像头模组样品在抖动振动台上的实际成像效果进行测试,并以计算所得的SR(Suppression Ratio,抑制比)参数作为OIS性能优劣的判定标准。该种评测方法需要将摄像头模组和陀螺仪安装在信号转接模块上并共同固定在抖动振台上,而且只有在摄像头模组完全装配好之后以正常通电拍摄并借助图像分析才能顺利开展,而无法在来料阶段对摄像头模组内的摄像头驱动马达(马达单体)的OIS性能进行评测,此时一旦摄像头驱动马达的OIS性能不达标,会造成已装配的摄像头模组样品报废,增加了生产良率不达标的风险;同时,返工调试OIS控制参数后再次装配也会造成生产效率低、生产成本增加。
因此,有必要提供一种新的摄像头驱动马达的光学稳像性能测试方法解决上述问题。
技术问题
本发明需要解决的技术问题是提供一种摄像头驱动马达的光学稳像性能测试方法,可在摄像头模组完全装配好之前,在来料阶段对摄像头驱动马达进行OIS性测试,有效的增加了生产效率、降低了生产成本,且有效控制了摄像头模组装配后性能不达标的风险。
技术解决方案
为解决上述技术问题,本发明提供了一种摄像头驱动马达的光学稳像性能测试方法,提供:
抖动振台,用以模拟人实际手持拍摄的抖动过程;
测试工装,所述测试工装用于安装待可承载镜头的摄像头驱动马达,其包括X/Y方向位移监测模块和OIS驱动模块;所述摄像头驱动马达内置检测镜头在X方向的移位的X向霍尔传感器以及检测镜头在Y方向的移位的Y向霍尔传感器;
上位机,所述X/Y方向位移监测模块与所述上位机连接;
该测试方法包括如下步骤:
步骤S1、将待测试的摄像头驱动马达安装在测试工装,并使其分别与所述X/Y方向位移监测模块和所述OIS驱动模块电性连接;
步骤S2、开启所述OIS驱动模块,使得所述摄像头驱动马达与所述OIS驱动模块形成OIS闭环控制系统,用以驱动所述摄像头驱动马达中的镜头的OIS性能调节;
步骤S3、开启所述X/Y方向位移监测模块,以获取所述摄像头驱动马达初始姿态在X方向和Y方向的起始位置数据X Target(t0)和Y Target(t0),以及获取所述摄像头驱动马达中的镜头在X方向和Y方向的初始位移数据X Hall(t0)和Y Hall(t0) ,其中,t0为所述摄像头驱动马达初始姿态时对应的时间;
步骤S4、开启所述抖动振台,使所述测试工装按预设程序振动;
步骤S5、通过所述X/Y方向位移监测模块获取所述摄像头驱动马达实时姿态在X方向和Y方向投影后位置数据:位移偏移量X Target(t)和位移偏移量Y Target(t),以及获取所述摄像头驱动马达中的镜头在X方向和Y方向的实时位置数据:补偿位移量X Hall(t)和补偿位移量Y Hall(t) 其中,t为所述摄像头驱动马达实时姿态时对应的时间;
步骤S6、X方向数据分析、Y方向数据分析:
通过所述上位机对所述X/Y方向位移监测模块获取的数据X Target(t0)、Y Target(t0)、X Hall(t0)、Y Hall(t0)、X Target(t)、Y Target(t)、X Hall(t)和Y Hall(t)进行相位和差值分析,并得出所述摄像头驱动马达的OIS功能在X/Y方向所能提供的补偿速率以及补偿量;通过对该补偿速率和补偿量设定合理的阈值框线,以判断所述摄像头驱动马达的OIS性能是否达标。
优选的,还包括步骤S7:通过上位机显示所述摄像头驱动马达的OIS性能的测试结果。
优选的,所述OIS驱动模块包括与所述摄像头驱动马达电性连接的OIS驱动芯片以及与所述OIS驱动芯片电性连接的第一陀螺仪;
所述OIS驱动芯片实时调整驱动电流的大小和方向以控制所述摄像头驱动马达内的镜头在X/Y方向的实时运动,其中,所述OIS驱动芯片驱动所述摄像头驱动马达内的镜头在X/Y方向的实时运动的方向与所述摄像头驱动马达内的镜头受所述抖动振台产生运动的方向相反,且产生的位移大小相等。
优选的,所述X/Y方向位移监测模块包括DSP处理模块以及分别与所述DSP处理模块电性连接的霍尔信号预处理模块和第二陀螺仪;
所述DSP处理模块通过所述霍尔信号预处理模块获取X Hall(t)和Y Hall(t);
所述DSP处理模块通过所述第二陀螺仪获取其自身姿态实时的角速率数据,并对该角速率数据通过积分和换算处理:在Yaw方向发生的偏转角度为θ Yaw(t),投影到X方向后代表所述摄像头驱动马达因受抖动而在X方向发生的位移偏移量X Target(t);在Pitch方向发生的偏转角度为θ Pitch(t),投影到Y方向后代表所述摄像头驱动马达因受抖动而在Y方向发生的位移偏移量Y Target(t)。
优选的,所述X向霍尔传感器设有两个且间隔设置于镜头的相对两侧,所述Y向霍尔传感器设有两个且间隔设置于镜头的另外相对两侧。
有益效果
相较于现有技术,本发明的摄像头驱动马达的光学稳像性能测试方法中,通过抖动振台对测试工装进行抖动,将待测的摄像头驱动马达安装于测试工装上,使得所述摄像头驱动马达与其上的所述OIS驱动模块组成一个马达OIS闭环控制系统,用以驱动所述摄像头驱动马达中的镜头的OIS性能调节,通过X/Y方向位移监测模块实时获取X Hall(t)和X Target(t),Y Hall(t)和Y Target(t)数据,再通过上位机对获取数据进行相位和差值分析,由此即可得知该所述摄像头驱动马达的OIS功能在X/Y方向的补偿速度以及补偿量参数,通过设定合理的阈值框线,上位机则可实现判定摄像头驱动马达的OIS的性能是否达标。该方法不需要将摄像头驱动马达完全组装成成品摄像头模组后再进行OIS性能测试,在摄像头驱动马达来料阶段即可进行测试,避免了对组装成品的摄像头模测试发现其内的摄像头驱动马达OIS性能不合格而使其产生不良率,可提前发现OIS性能是否达标,从而避免了返工维修的问题,有效的增加了生产效率、降低了生产成本,且有效控制了摄像头模组装配后性能不达标的风险。
附图说明
图1为本发明摄像头驱动马达的光学稳像性能测试方法的流程框图;
图2为本发明摄像头驱动马达的光学稳像性能测试方法的测试装置结构示意图;
图3为本发明摄像头驱动马达的光学稳像性能测试方法步骤中X方向数据分析图;
图4为本发明摄像头驱动马达的光学稳像性能测试方法步骤中Y方向数据分析图;
图5为本发明摄像头驱动马达的光学稳像性能测试方法步骤中,摄像头驱动马达的OIS功能在X方向所能提供的补偿速率以及补偿量分析图;
图6为本发明摄像头驱动马达的光学稳像性能测试方法步骤中,摄像头驱动马达的OIS功能在Y方向所能提供的补偿速率以及补偿量分析图。
本发明的实施方式
下面将结合附图和实施方式对本发明作进一步说明。
请同时参阅图1-2,本发明提供一种摄像头驱动马达的光学稳像性能测试方法,提供:
抖动振台1,用以模拟人实际手持拍摄的抖动过程。
测试工装2,所述测试工装2用于安可承载镜头101的摄像头驱动马达10,其包括X/Y方向位移监测模块21和OIS驱动模块22。
本实施方式中,所述摄像头驱动马达10内置检测其内部镜头101的X方向和Y方向移位并分别产生霍尔信号X Hall的至少两组霍尔传感器,即用于检测镜头101在X方向移位的一组X向霍尔传感器102a和用于检测镜头101在Y方向移位的一组Y向霍尔传感器102b。
更优的,X向霍尔传感器102a设有两个且间隔设置于镜头101的相对两侧,Y向霍尔传感器102b设有两个且间隔设置于镜头101的另外相对两侧,对称设置用以提高检测精度。
上位机3,所述X/Y方向位移监测模块21与所述上位机3连接。
所述X/Y方向位移监测模块21用以将其获取的摄像头驱动马达10在X/Y方向的位移信号及其获取的所述测试工装2在X/Y方向的位移信号传送至所述上位机3,并通过上位机3进行分析比对。
所述OIS驱动模块22包括与所述摄像头驱动马达10电性连接的OIS驱动芯片221以及与所述OIS驱动芯片221电性连接的第一陀螺仪222。
所述OIS驱动芯片221实时调整驱动电流的大小和方向以控制所述摄像头驱动马达10内的镜头101在X/Y方向的实时运动,其中,所述OIS驱动芯片221驱动所述摄像头驱动马达10内的镜头101在X/Y方向的实时运动的方向与所述摄像头驱动马达10内的镜头101受所述抖动振台1产生运动的方向相反,大小相等。
所述X/Y方向位移监测模块21包括DSP处理模块211以及分别与所述DSP处理模块211电性连接的霍尔信号预处理模块212和第二陀螺仪213。
该测试方法包括如下步骤:
步骤S1、将待测试的摄像头驱动马达10安装在测试工装2,并使其分别与所述X/Y方向位移监测模块21和所述OIS驱动模块22电性连接。
步骤S2、开启所述OIS驱动模块22,使得所述摄像头驱动马达与所述OIS驱动模块22组成一个马达OIS闭环控制系统,用以驱动所述摄像头驱动马达10中的镜头101的OIS性能调节。
本步骤中,使得所述摄像头驱动马达10与所述OIS驱动模块22形成马达OIS闭环控制系统时,需要确保该系统中元器件型号、元器件相对位置、固件程序版本等完全等同于了完整摄像头模组产品中的摄像头马达OIS闭环控制系统,即可将摄像头驱动马达10在上述马达OIS闭环控制系统中的OIS性能表现,完全等同于其在完整摄像头模组产品中的摄像头马达OIS闭环控制系统的OIS性能表现。不同的是,相比现有技术中对完整摄像头模组产品进行OIS测试,本发明中的马达OIS闭环控制系统中的摄像头驱动马达10(即,马达单体)没有组装成摄像头模组,因此可以方便的更换;通过更换不同摄像头驱动马达10,并研究该摄像头驱动马达10在本发明的上述马达OIS闭环控制系统中的OIS 性能的表现,即可实现对该摄像头驱动马达10的OIS性能的评测,在该摄像头驱动马达10组装成摄像头模组前即可获得其OIS性能,有效控制了摄像头驱动马达10组装后测试OIS性能不达标而需要拆装返工的风险。
摄像头驱动马达10与OIS驱动模块22组成一个马达OIS闭环控制系统后,摄像头驱动马达10在该马达OIS闭环控制系统中的OIS性能主要表现为:当外部环境抖动造成摄像头驱动马达10在X/Y方向产生位移时,摄像头驱动马达10能否在上述马达OIS闭环控制系统的作用下快速驱动镜头101在X/Y方向发生等量的反向位移,进而达到补偿外部抖动,实现光学稳像的目的。
理想情况下,OIS性能好的摄像头驱动马达,其在X/Y方向的补偿偏移量与抖动产生的X/Y方向的偏移量之间相位延迟和位移偏差均趋近于零;而实际情况中,上述相位延迟和位移偏差会随着摄像头驱动马达的OIS性能的降低而变大。因此,通过评测上述相位延迟和位移偏差的大小,即可达到评测摄像头驱动马达10的OIS性能优劣的目的。
步骤S3、开启所述X/Y方向位移监测模块21,以获取所述摄像头驱动马达10初始姿态在X方向和Y方向的起始位置数据X Target(t0)和Y Target(t0),以及获取所述摄像头驱动马达10中的镜头101在X方向和Y方向的初始位移数据X Hall(t0)和Y Hall(t0)。其中,t0为所述摄像头驱动马达10初始姿态时对应的时间。
步骤S4、开启所述抖动振台,使所述测试工装按预设程序振动。
步骤S5、通过所述X/Y方向位移监测模块21获取所述摄像头驱动马达10实时姿态在X方向和Y方向投影后位置数据:位移偏移量X Target(t)和位移偏移量Y Target(t);以及获取所述摄像头驱动马达10中的镜头101在X方向和Y方向的实时位置数据:补偿位移量X Hall(t)和补偿位移量Y Hall(t)。其中,t为所述摄像头驱动马达实时姿态时对应的时间。
测试工装2与摄像头驱动马达10刚性连接,因此其在X/Y方向位移,即代表摄像头驱动马达10因抖动而产生的位移偏移量(X Target(t)、Y Target(t)),它与镜头101移动而产生的补偿位移量(X Hall(t)、X Target(t))之间的相位差和位移偏差越小,说明OIS性能越好。
X/Y方向位移监测模块21主要监测两方面的信号:
一方面实时监测来自摄像头驱动马达10内的X/Y方向的霍尔信号X Hall,该信号代表摄像头驱动马达10内镜头101在X/Y的实际位置,即表现为上述X Hall(t)和Y Hall(t);
本步骤中,具体的,所述X/Y方向位移监测模块21的DSP处理模块211通过霍尔信号预处理模块212获取X Hall(t)和Y Hall(t),即获取镜头X/Y方向位移信号,也就是镜头101在X方向和Y方向的实时位置数据,表现为上述X Hall(t)和Y Hall(t);
另一方面实时监测X/Y方向位移监测模块21中第二陀螺仪213自身姿态角速率数据。
本步骤中,具体的,X/Y方向位移监测模块21中,所述DSP处理模块211通过所述第二陀螺仪213获取其自身姿态实时的角速率数据,并对该角速率数据通过积分和换算处理:在Yaw方向发生的偏转角度为θ Yaw(t),投影到X方向后代表所述摄像头驱动马达10因受外界振动造成本身抖动而在X方向发生的位移偏移量X Target(t);在Pitch方向发生的偏转角度为θ Pitch(t),投影到Y方向后代表所述摄像头驱动马达10因受外界振动造成本身抖动而在Y方向发生的位移偏移量Y Target(t)。其中,Yaw方向为绕Y轴旋转的方向,Pitch方向为绕X轴旋转的方向。
步骤S6、X方向数据分析、Y方向数据分析:
依据OIS的工作原理,当OIS驱动模块功能开启后,OIS驱动芯片会实时调整驱动电流的大小和方向,进而控制摄像头驱动马达内的镜头在X/Y方向实时运动;在理想情况下,该运动方向应该与摄像头驱动马达受抖动而在X/Y方向产生的偏移的方向刚好相反,且产生的位移大小相等,从而才能补偿抖动产生的X/Y偏移,达到OIS的目的。而在实际情况中,由于受系统OIS性能限制,导致X/Y方向的目标位移量和实际补偿位移量之间存在时间延迟和位移误差。因此,反之,时间延迟和位移误差则能够正确的反映摄像头驱动马达的OIS性能优劣。
依据上述原理,X Hall(t)与X Target(t)之间,以及Y Hall(t)与Y Target(t)的相位延迟和位移偏差越小,就说明该摄像头驱动马达10的OIS性能越好,反之越差。
因此,本步骤中,通过所述上位机对所述X/Y方向位移监测模块获取的数据X Target(t0)、Y Target(t0)、X Hall(t0)、Y Hall(t0);X Target(t)和X Hall(t);Y Target(t)和Y Hall(t)。通过对该补偿速率和补偿量设定合理的阈值框线,以判断所述摄像头驱动马达的OIS性能是否达标。
本发明的上述测试方式对摄像头驱动马达10进行测试后,如图3所示,为本发明摄像头驱动马达的光学稳像性能测试方法步骤中X方向数据分析图,X Target(t)和X Hall(t),图3中可知,在横坐标时间轴方向,X Hall(t)与X Target(t)没有明显的相位延迟,说明摄像头驱动马达的OIS性能好,即摄像头驱动马达能够实现低延迟快速补偿。
如图5所示,为本发明摄像头驱动马达的光学稳像性能测试方法步骤中,摄像头驱动马达的OIS功能在X方向所能提供的补偿速率以及补偿量分析图,由图5可知,X Hall(t)和X Target(t)作差之后的结果几乎在每一时刻都是零,说明摄像头驱动马达的OIS性能好,即该摄像头驱动马达能够实现等量位移补偿。
同理,如图4所示,为本发明摄像头驱动马达的光学稳像性能测试方法步骤中Y方向数据分析图,Y Target(t)和Y Hall(t),由图4可知,在横坐标时间轴方向,Y Hall(t)和Y Target(t)没有明显的相位延迟,说明摄像头驱动马达的OIS性能好,即摄像头驱动马达能够实现低延迟快速补偿。
如图6所示,为本发明摄像头驱动马达的光学稳像性能测试方法步骤中,摄像头驱动马达的OIS功能在Y方向所能提供的补偿速率以及补偿量分析图,由图6可知,Y Hall(t)和Y Target(t)作差之后的结果几乎在每一时刻都是零,说明摄像头驱动马达的OIS性能好,即该摄像头驱动马达能够实现等量位移补偿。
通过图3-6的测试结果综合判断,可知该摄像头驱动马达(马达单体)的OIS性能好,能够保证X/Y方向的低延迟快速补偿和等量位移补偿。
更优的,该测试方法还包括步骤S7:通过上位机显示所述摄像头驱动马达的OIS性能的测试结果。
相较于现有技术,本发明的摄像头驱动马达的光学稳像性能测试方法中,通过抖动振台对测试工装进行抖动,将待测的摄像头驱动马达安装于测试工装上,使得所述摄像头驱动马达与其上的所述OIS驱动模块组成一个马达OIS闭环控制系统,用以驱动所述摄像头驱动马达中的镜头的OIS性能调节,通过X/Y方向位移监测模块实时获取X Hall(t)和X Target(t),Y Hall(t)和Y Target(t)数据,再通过上位机对获取数据进行相位和差值分析,由此即可得知该所述摄像头驱动马达的OIS功能在X/Y方向的补偿速度以及补偿量参数,通过设定合理的阈值框线,上位机则可实现判定摄像头驱动马达的OIS的性能是否达标。该方法不需要将摄像头驱动马达完全组装成成品摄像头模组后再进行OIS性能测试,在摄像头驱动马达来料阶段即可进行测试,避免了对组装成品的摄像头模测试发现其内的摄像头驱动马达OIS性能不合格而使其产生不良率,可提前发现OIS性能是否达标,从而避免了返工维修的问题,有效的增加了生产效率、降低了生产成本,且有效控制了摄像头模组装配后性能不达标的风险。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

  1. 一种摄像头驱动马达的光学稳像性能测试方法,其特征在于,提供:
    抖动振台,用以模拟人实际手持拍摄的抖动过程;
    测试工装,所述测试工装用于安装可承载镜头的摄像头驱动马达,其包括X/Y方向位移监测模块和OIS驱动模块;所述摄像头驱动马达内置检测镜头在X方向的移位的X向霍尔传感器以及检测镜头在Y方向的移位的Y向霍尔传感器;
    上位机,所述X/Y方向位移监测模块与所述上位机连接;
    该测试方法包括如下步骤:
    步骤S1、将待测试的摄像头驱动马达安装在测试工装,并使其分别与所述X/Y方向位移监测模块和所述OIS驱动模块电性连接;
    步骤S2、开启所述OIS驱动模块,使得所述摄像头驱动马达与所述OIS驱动模块形成OIS闭环控制系统,用以驱动所述摄像头驱动马达中的镜头的OIS性能调节;
    步骤S3、开启所述X/Y方向位移监测模块,以获取所述摄像头驱动马达初始姿态在X方向和Y方向的起始位置数据X Target(t0)和Y Target(t0),以及获取所述摄像头驱动马达中的镜头在X方向和Y方向的初始位移数据X Hall(t0)和Y Hall(t0) ,其中,t0为所述摄像头驱动马达初始姿态时对应的时间;
    步骤S4、开启所述抖动振台,使所述测试工装按预设程序振动;
    步骤S5、通过所述X/Y方向位移监测模块获取所述摄像头驱动马达实时姿态在X方向和Y方向投影后位置数据:位移偏移量X Target(t)和位移偏移量Y Target(t),以及获取所述摄像头驱动马达中的镜头在X方向和Y方向的实时位置数据:补偿位移量X Hall(t)和补偿位移量Y Hall(t),其中,t为所述摄像头驱动马达实时姿态时对应的时间;
    步骤S6、X方向数据分析、Y方向数据分析:
    通过所述上位机对所述X/Y方向位移监测模块获取的数据X Target(t0)、Y Target(t0)、X Hall(t0)、Y Hall(t0)、X Target(t)、Y Target(t)、X Hall(t)和Y Hall(t)进行相位和差值分析,并得出所述摄像头驱动马达的OIS功能在X/Y方向所能提供的补偿速率以及补偿量;通过对该补偿速率和补偿量设定合理的阈值框线,以判断所述摄像头驱动马达的OIS性能是否达标。
  2. 根据权利要求1所述的摄像头驱动马达的光学稳像性能测试方法,其特征在于,还包括步骤S7:通过上位机显示所述摄像头驱动马达的OIS性能的测试结果。
  3. 根据权利要求1所述的摄像头驱动马达的光学稳像性能测试方法,其特征在于,所述OIS驱动模块包括与所述摄像头驱动马达电性连接的OIS驱动芯片以及与所述OIS驱动芯片电性连接的第一陀螺仪;
    所述OIS驱动芯片实时调整驱动电流的大小和方向以控制所述摄像头驱动马达内的镜头在X/Y方向的实时运动,其中,所述OIS驱动芯片驱动所述摄像头驱动马达内的镜头在X/Y方向的实时运动的方向与所述摄像头驱动马达内的镜头受所述抖动振台产生运动的方向相反,且产生的位移大小相等。
  4. 根据权利要求3所述的摄像头驱动马达的光学稳像性能测试方法,其特征在于,所述X/Y方向位移监测模块包括DSP处理模块以及分别与所述DSP处理模块电性连接的霍尔信号预处理模块和第二陀螺仪;
    所述DSP处理模块通过所述霍尔信号预处理模块获取X Hall(t)和Y Hall(t);
    所述DSP处理模块通过所述第二陀螺仪获取其自身姿态实时的角速率数据,并对该角速率数据通过积分和换算处理:在Yaw方向发生的偏转角度为θ Yaw(t),投影到X方向后代表所述摄像头驱动马达因受抖动而在X方向发生的位移偏移量X Target(t);在Pitch方向发生的偏转角度为θ Pitch(t),投影到Y方向后代表所述摄像头驱动马达因受抖动而在Y方向发生的位移偏移量Y Target(t)。
  5. 根据权利要求3所述的摄像头驱动马达的光学稳像性能测试方法,其特征在于,所述X向霍尔传感器设有两个且间隔设置于镜头的相对两侧,所述Y向霍尔传感器设有两个且间隔设置于镜头的另外相对两侧。
PCT/CN2020/131932 2020-09-28 2020-11-26 摄像头驱动马达的光学稳像性能测试方法 WO2022062163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011037048.1A CN111879499B (zh) 2020-09-28 2020-09-28 摄像头驱动马达的光学稳像性能测试方法
CN202011037048.1 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022062163A1 true WO2022062163A1 (zh) 2022-03-31

Family

ID=73199233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131932 WO2022062163A1 (zh) 2020-09-28 2020-11-26 摄像头驱动马达的光学稳像性能测试方法

Country Status (2)

Country Link
CN (1) CN111879499B (zh)
WO (1) WO2022062163A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117221521A (zh) * 2023-11-09 2023-12-12 深圳市东视电子有限公司 一种摄像头装配后的出厂测试装置
WO2024036681A1 (zh) * 2022-08-18 2024-02-22 诚瑞光学(南宁)有限公司 摄像头模组的组装方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879499B (zh) * 2020-09-28 2020-12-08 常州市瑞泰光电有限公司 摄像头驱动马达的光学稳像性能测试方法
CN114001931B (zh) * 2021-11-02 2024-04-30 Oppo广东移动通信有限公司 成像组件的测试装置及测试方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176331A (zh) * 2011-12-22 2013-06-26 三星电机株式会社 光学影像稳定器
CN103702025A (zh) * 2013-12-04 2014-04-02 宁波舜宇光电信息有限公司 基于反射型图像的防手抖补正效果判定方法
KR101433846B1 (ko) * 2014-03-14 2014-08-26 주식회사 퓨런티어 광학 이미지 안정화 모듈의 검사 장치 및 방법
CN204389147U (zh) * 2015-02-05 2015-06-10 刘刚 Ois自动化测试设备
CN204515337U (zh) * 2015-03-02 2015-07-29 联想(北京)有限公司 光学图像稳定器抖动检测装置
CN105049839A (zh) * 2015-07-13 2015-11-11 成都西可科技有限公司 基于移动终端的ois摄像头模组测试系统及测试方法
CN105407345A (zh) * 2014-09-10 2016-03-16 宁波舜宇光电信息有限公司 一种防抖动技术检测系统及其方法
CN105791656A (zh) * 2014-12-19 2016-07-20 宁波舜宇光电信息有限公司 一种影像模组光学防抖系统的矫正系统及其方法
CN111879499A (zh) * 2020-09-28 2020-11-03 常州市瑞泰光电有限公司 摄像头驱动马达的光学稳像性能测试方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116365A2 (en) * 2006-04-07 2007-10-18 Ecole Polytechnique Federale De Lausanne (Epfl) Method and apparatus to measure and compute the amplitude point spread function and associated parameters of a coherent optical imaging system
KR100819301B1 (ko) * 2006-12-20 2008-04-03 삼성전자주식회사 모바일 기기용 카메라 모듈의 손떨림 보정 방법 및 장치
CN104639936B (zh) * 2015-02-06 2017-04-05 苏州艾微视图像科技有限公司 摄像头的自动测试方法
CN106303506B (zh) * 2015-06-02 2019-01-29 比亚迪股份有限公司 Ois光学防抖测试装置和测试系统
CN107991065B (zh) * 2017-11-30 2020-05-19 福建福光股份有限公司 电动变焦镜头回程差的检测装置及检测方法
CN109379586B (zh) * 2019-01-16 2019-08-06 歌尔股份有限公司 摄像头模组的倾斜角度测试方法及装置
CN111263142B (zh) * 2020-02-25 2022-04-08 昆山丘钛微电子科技股份有限公司 一种摄像模组光学防抖的测试方法、装置、设备及介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176331A (zh) * 2011-12-22 2013-06-26 三星电机株式会社 光学影像稳定器
CN103702025A (zh) * 2013-12-04 2014-04-02 宁波舜宇光电信息有限公司 基于反射型图像的防手抖补正效果判定方法
KR101433846B1 (ko) * 2014-03-14 2014-08-26 주식회사 퓨런티어 광학 이미지 안정화 모듈의 검사 장치 및 방법
CN105407345A (zh) * 2014-09-10 2016-03-16 宁波舜宇光电信息有限公司 一种防抖动技术检测系统及其方法
CN105791656A (zh) * 2014-12-19 2016-07-20 宁波舜宇光电信息有限公司 一种影像模组光学防抖系统的矫正系统及其方法
CN204389147U (zh) * 2015-02-05 2015-06-10 刘刚 Ois自动化测试设备
CN204515337U (zh) * 2015-03-02 2015-07-29 联想(北京)有限公司 光学图像稳定器抖动检测装置
CN105049839A (zh) * 2015-07-13 2015-11-11 成都西可科技有限公司 基于移动终端的ois摄像头模组测试系统及测试方法
CN111879499A (zh) * 2020-09-28 2020-11-03 常州市瑞泰光电有限公司 摄像头驱动马达的光学稳像性能测试方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036681A1 (zh) * 2022-08-18 2024-02-22 诚瑞光学(南宁)有限公司 摄像头模组的组装方法
CN117221521A (zh) * 2023-11-09 2023-12-12 深圳市东视电子有限公司 一种摄像头装配后的出厂测试装置
CN117221521B (zh) * 2023-11-09 2024-03-01 深圳市东视电子有限公司 一种摄像头装配后的出厂测试装置

Also Published As

Publication number Publication date
CN111879499B (zh) 2020-12-08
CN111879499A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2022062163A1 (zh) 摄像头驱动马达的光学稳像性能测试方法
CN100561275C (zh) 镜头模组组装测试装置及组装测试方法
KR100782281B1 (ko) 휴대폰의 카메라 렌즈와 하우징의 자동체결기
CN113714789B (zh) 基于视觉定位的螺纹拧紧装置及控制方法
EP2836869A1 (en) Active alignment using continuous motion sweeps and temporal interpolation
TWI485359B (zh) 鐳射平面度量測系統及方法
US10836036B2 (en) Control device, control system, robot, and robot system
CN114636886B (zh) 一种基于辅助转向系统的汽车电磁兼容射频抗扰测试方法
CN112104851B (zh) 画面校正的检测方法、装置和检测系统
CN105407345B (zh) 一种防抖动技术检测系统及其方法
TW201441604A (zh) 外觀瑕疵檢測系統及方法
CN107421627A (zh) 一种基于减速器驱动柔性梁振动形态视觉测量装置及方法
US8670039B2 (en) Method and system for testing an image stabilizing device for an image capture apparatus
CN114505813A (zh) 贴合装置及贴合方法
CN113092895A (zh) 一种自动测试方法及自动测试设备
CN116087216B (zh) 一种多轴联动视觉检测设备、方法及应用
CN219266127U (zh) 一种用于多轴联动视觉检测设备的标定块
TWI792386B (zh) 影像檢測裝置、系統及影像檢測方法
CN216303267U (zh) 微机电系统惯性器件的惯性测试装置
CN117054051B (zh) 多工位旋转平台控制装置的调试方法及屏幕亮度测试系统
CN111843419B (zh) 基于协作机器人和可穿戴设备的微重力装配系统及方法
US20220381660A1 (en) Systems and methods for error correction for video extensometers
WO2023276309A1 (ja) 作業システム、駆動システム、パラメータ設定方法、及びプログラム
CN219761119U (zh) 一种手机摄像头防抖测试装置
CN112729117B (zh) 一种基于机器视觉的压缩机筒体电气盒螺纹孔检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955005

Country of ref document: EP

Kind code of ref document: A1