WO2022061574A1 - 量子点发光二极管及其制备方法、显示装置 - Google Patents

量子点发光二极管及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022061574A1
WO2022061574A1 PCT/CN2020/117077 CN2020117077W WO2022061574A1 WO 2022061574 A1 WO2022061574 A1 WO 2022061574A1 CN 2020117077 W CN2020117077 W CN 2020117077W WO 2022061574 A1 WO2022061574 A1 WO 2022061574A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electron
layer
quantum dot
dot light
Prior art date
Application number
PCT/CN2020/117077
Other languages
English (en)
French (fr)
Inventor
梅文海
张宜驰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/419,820 priority Critical patent/US20220320454A1/en
Priority to PCT/CN2020/117077 priority patent/WO2022061574A1/zh
Priority to CN202080002050.7A priority patent/CN114531924A/zh
Publication of WO2022061574A1 publication Critical patent/WO2022061574A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present disclosure belongs to the field of display technology, and in particular relates to a quantum dot light-emitting diode
  • a quantum dot light-emitting diode (Quantum Dot Light Emitting Diodes, QLED for short) generally includes a light-emitting layer having a plurality of quantum dot nanocrystals, and the light-emitting layer is sandwiched between an electron transport layer and a hole transport layer. Applying an electric field to a quantum dot light-emitting diode causes electrons and holes to move into the light-emitting layer, where they are trapped in the quantum dots and recombined, emitting photons. Compared with organic light-emitting diodes, quantum dot light-emitting diodes have a narrower emission spectrum.
  • the present disclosure provides a quantum dot light-emitting diode, a preparation method thereof, and a display device.
  • an embodiment of the present disclosure provides a quantum dot light-emitting diode, comprising: a first electrode, a second electrode, a quantum dot light-emitting layer disposed between the first electrode and the second electrode, a quantum dot light-emitting layer disposed on the An electron transport layer between the quantum dot light-emitting layer and the first electrode, and an electron buffer layer disposed between the electron transport layer and the quantum dot light-emitting layer, the electron transport layer and the electron
  • the buffer layer includes the same metal oxide, and the concentration of oxygen vacancies in the electron buffer layer is greater than the concentration of oxygen vacancies in the electron transport layer.
  • the metal oxide includes at least one of zinc oxide, magnesium zinc oxide, aluminum zinc oxide, and magnesium aluminum zinc oxide.
  • the concentration of oxygen vacancies in the electron buffer layer includes: 5% to 50%.
  • the thickness of the electron buffer layer includes: 0.5 nm ⁇ 10 nm.
  • the thickness of the electron transport layer includes: 1 nm ⁇ 100 nm.
  • the metal oxide in the electron transport layer is in a crystalline structure
  • the metal oxide in the electron buffer layer has an amorphous structure.
  • the electron binding energy of metal atoms in the metal oxide in the electron transport layer is greater than the electron binding energy of metal atoms in the metal oxide in the electron buffer layer;
  • the electron binding energy of the oxygen atom in the metal oxide in the electron transport layer is smaller than the electron binding energy of the oxygen atom in the metal oxide in the electron buffer layer.
  • the first electrode, the electron transport layer, the electron buffer layer, the quantum dot light-emitting layer, the hole transport layer, the hole injection layer, and the second electrode are in a direction away from the substrate. Set in sequence;
  • the first electrode, the electron transport layer, the electron buffer layer, the quantum dot light-emitting layer, the hole transport layer, the hole injection layer, and the second electrode are close to the The base directions are set sequentially.
  • embodiments of the present disclosure further provide a method for fabricating a quantum dot light-emitting diode as provided in the first aspect, including: forming a first electrode, a second electrode, a quantum dot light-emitting layer, an electron transport layer, and an electron buffer
  • the quantum dot light-emitting layer is located between the first electrode and the second electrode
  • the electron transport layer is located between the first electrode and the quantum dot light-emitting layer
  • the electron buffer layer is located between the first electrode and the quantum dot light-emitting layer. between the electron transport layer and the quantum dot light-emitting layer;
  • the electron transport layer and the electron buffer layer include the same metal oxide, and the oxygen vacancy concentration in the electron buffer layer is greater than the oxygen vacancy concentration in the electron transport layer.
  • the steps of forming the first electrode, the second electrode, the quantum dot light-emitting layer, the electron transport layer, and the electron buffer layer include:
  • a second electrode is formed on a side of the quantum dot light-emitting layer away from the first electrode.
  • the step of forming an electron transport layer and an electron buffer layer on one side of the first electrode includes:
  • the step of treating the surface portion of the metal oxide material film on the side away from the first electrode using a predetermined surface treatment process includes:
  • the surface part of the metal oxide material film on the side away from the first electrode is treated with an acidic solution, and the pH range of the acidic solution includes: 4-6.
  • the step of treating the surface portion of the thin film of metal oxide material away from the first electrode with an acidic solution includes:
  • the metal oxide material thin film is soaked in the acidic solution for a predetermined time.
  • the step of forming an electron transport layer and an electron buffer layer on one side of the first electrode includes:
  • the part away from the first electrode is the electron buffer layer, and the other part is the electron transport layer Floor.
  • the steps of forming the first electrode, the second electrode, the quantum dot light-emitting layer, the electron transport layer and the electron buffer layer include:
  • An electron transport layer and an electron buffer layer are formed on the side of the quantum dot light-emitting layer away from the second electrode, and the electron transport layer is located at the side of the electron buffer layer away from the first electrode;
  • a first electrode is formed on a side of the electron transport layer away from the second electrode.
  • the step of forming an electron transport layer and an electron buffer layer on a side of the quantum dot light-emitting layer away from the second electrode includes:
  • the part close to the second electrode is the electron buffer layer, and the other part is the electron transport layer Floor.
  • an embodiment of the present disclosure further provides a display device, comprising: the quantum dot light-emitting diode provided in the first aspect.
  • FIG. 1 is a schematic structural diagram of a quantum dot light-emitting diode according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another quantum dot light-emitting diode according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another quantum dot light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for manufacturing a quantum dot light-emitting diode according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of an optional implementation method for forming an electron transport layer and an electron buffer layer in an embodiment of the present disclosure
  • 6a is a schematic diagram of processing a surface portion of a metal oxide material thin film to increase the oxygen defect concentration of the surface portion according to an embodiment of the disclosure
  • 6b is a schematic diagram of electrons passing through an electron transport layer in an embodiment of the disclosure.
  • 6c is a schematic diagram of electrons passing through an electron buffer layer in an embodiment of the disclosure.
  • FIG. 7 is a flowchart of another optional implementation method for forming an electron transport layer and an electron buffer layer in an embodiment of the present disclosure
  • FIG. 8 is a flowchart of another method for fabricating a quantum dot light-emitting diode according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of yet another optional implementation method for forming an electron transport layer and an electron buffer layer in an embodiment of the present disclosure.
  • the basic structure of a light-emitting device includes: an anode, a cathode, and a light-emitting layer between the anode and the cathode. Under the action of an applied voltage, electrons and holes are injected from the cathode direction and the anode direction, respectively, and then migrate and meet and recombine in the light-emitting layer to generate excitons. The energy of the excitons decays in the form of light, that is, light is emitted.
  • the light-emitting layer is a quantum-dot light-emitting layer; the quantum-dot light-emitting layer, as its name implies, is made of quantum dots.
  • the light emitting device may be an upright light emitting device or an inverted light emitting device.
  • the light-emitting device usually includes a substrate, and the anode of the upright light-emitting device is closer to the substrate than the cathode; the cathode of the inverted light-emitting device is closer to the substrate than the anode.
  • the light emitting device may be a top emission type light emitting device or a bottom emission type light emitting device.
  • the anode when the light-emitting device is a positive top-emission light-emitting device, the anode is a reflective electrode, and the cathode is a transmission electrode; when the light-emitting device is a positive bottom-emission light-emitting device, the anode is a transmission electrode, and the cathode is a reflective electrode; When it is an inverted top emission light emitting device, the anode is a transmissive electrode and the cathode is a reflective electrode; when the light emitting device is an inverted bottom emission light emitting device, the anode is a reflective electrode and the cathode is a transmissive electrode.
  • the light-emitting device not only includes an anode layer, a cathode layer and a light-emitting layer; a hole injection layer (Hole Injection Layer, HIL for short), hole transport layer can also be arranged between the anode layer and the light-emitting layer.
  • a Hole Transport Layer (HTL for short) and an Electron Transport Layer (ETL for short) are arranged between the light-emitting layer and the cathode layer.
  • an electron injection layer Electron Transport Layer, EIL for short
  • EIL Electron Transport Layer
  • an inorganic metal oxide eg, zinc oxide
  • the electron transport layer formed at this time has a large electron transport rate (generally 200cm 2 V -1 s -1 to 300cm 2 V -1 ) . s -1 ).
  • the carrier transport is unbalanced, resulting in a low luminous efficiency of the device.
  • the main reason for this is that the electron transport capacity of the existing electron transport layer is too strong, resulting in the electron transport rate is often greater than the hole transport rate, which will lead to an imbalance of carrier injection, which in turn leads to excessive electrons in the quantum dot light-emitting layer. accumulated, affecting device performance.
  • an electron buffer layer is usually added between the electron transport layer and the quantum dot light-emitting layer to reduce the amount of electrons in the QLED device. Electron transfer rate.
  • the electronic buffer layer is selected from organic materials (eg, polymethyl methacrylate) or inorganic insulating materials (eg, magnesium fluoride, aluminum fluoride, silicon dioxide).
  • embodiments of the present disclosure provide a quantum dot light emitting diode, a quantum dot light emitting diode, a preparation method thereof, and a display device.
  • FIG. 1 is a schematic structural diagram of a quantum dot light-emitting diode according to an embodiment of the present disclosure.
  • the quantum dot light-emitting diode includes: a first electrode 1 , a second electrode 2 , a quantum dot light-emitting layer 3 , an electron transport layer 4 and electron buffer layer 5; wherein, the quantum dot light-emitting layer 3 is arranged between the first electrode 1 and the second electrode 2, the electron transport layer 4 is arranged between the quantum dot light-emitting layer 3 and the first electrode 1, and the electron buffer layer
  • the layer 5 is arranged between the electron transport layer 4 and the quantum dot light-emitting layer 3; the electron buffer layer 5 is used to reduce the electron transport rate in the QLED device, so that the difference between the electron transport rate and the hole transport rate in the QLED device is at a predetermined level. Within the threshold range, the balance of holes and electrons in the quantum dot light-emitting layer 3 is promoted.
  • the first electrode 1 is used as a cathode
  • the second electrode 2 is used as an anode
  • the electron transport layer 4 and the electron buffer layer 5 include the same metal oxide, and the oxygen vacancy concentration in the electron buffer layer 5 is greater than the oxygen vacancy concentration (Oxygen Vacancy Concentration) in the electron transport layer 4.
  • oxygen vacancy concentration oxygen vacancy Concentration
  • “the electron transport layer 4 and the electron buffer layer 5 comprise the same metal oxide” specifically refers to the metal oxide in the electron transport layer 4 and the metal oxide in the electron buffer layer 5, both of which have the same constituent elements and the The proportions are also the same, i.e. have the same molecular formula.
  • Oxygen vacancy concentration refers to the ratio of the number of oxygen ion vacancies per unit volume to the number of all oxygen ion nodes in the volume. Generally speaking, for the same metal oxide material film, the greater the oxygen vacancy concentration in the metal oxide material film, the lower the electron transport rate. The specific principle will be exemplarily described later. Therefore, the electron transport rate of the electron buffer layer 5 in the embodiment of the present disclosure is lower than that of the electron transport layer 4 , and the electron buffer layer 5 can play a role in reducing the electron transport rate in the QLED device.
  • the electron injection rate of the quantum dot light-emitting layer 3 can be controlled, so as to realize the balance of holes and electrons in the quantum dot light-emitting layer 3, which is beneficial to improve the luminous efficiency of the QLED device .
  • the metal oxide film used to form the electron buffer layer 5 can use the existing metal oxide film used for preparing the electron transport layer 4 Therefore, there is no need to add additional equipment specially used for preparing the electron buffer layer 5 film in the production line, which is beneficial to reduce the production cost; in addition, the metal oxide film used for forming the electron transport layer 4
  • the metal oxide thin film of the buffer layer 5 can be prepared at the same time (prepared in the same process), which is beneficial to reduce the process steps and realize the simplification of the production process of the QLED device.
  • the metal oxide includes at least one of zinc oxide, magnesium zinc oxide, aluminum zinc oxide, and magnesium aluminum zinc oxide.
  • the thickness of the electron transport layer 4 includes: 1 nm ⁇ 100 nm.
  • the oxygen vacancy concentration in the electron buffer layer 5 includes: 5% to 50%; in general, the higher the oxygen vacancy concentration of the electron buffer layer 5 is, the higher the electron transport rate of the electron buffer layer 5 is. The smaller the electron injection rate of the quantum dot light-emitting layer 3 is, the smaller the electron injection rate is.
  • the thickness of the electron buffer layer 5 includes: 0.5 nm to 10 nm; in general, the larger the thickness of the electron buffer layer 5 is, the smaller the electron transport rate of the electron buffer layer 5 is, and the smaller the electron transport rate of the electron buffer layer 5 is. The electron injection rate is smaller.
  • the oxygen vacancy concentration and thickness of the electron buffer layer 5 can be set according to the hole injection rate of the quantum dot light-emitting layer 3 and the electron transport rate of the electron transport layer 4 .
  • the metal oxide in the electron transport layer has a crystalline structure; the metal oxide in the electron buffer layer has an amorphous structure.
  • the electron binding energy of the metal atoms in the metal oxide in the electron transport layer is greater than the electron binding energy of the metal atoms in the metal oxide in the electron buffer layer; the electron binding energy of the oxygen atoms in the metal oxide in the electron transport layer The electron binding energy is smaller than that of oxygen atoms in the metal oxide in the electron buffer layer.
  • FIG. 2 is a schematic structural diagram of another quantum dot light-emitting diode according to an embodiment of the present disclosure.
  • the QLED device not only includes a first electrode 1 , a second electrode 2 , a quantum dot light-emitting layer 3 , and an electron transport layer 4 and the electron buffer layer 5 , further comprising a substrate 6 , a hole transport layer 7 and a hole injection layer 8 .
  • the first electrode 1 , the electron transport layer 4 , the electron buffer layer 5 , the quantum dot light-emitting layer 3 , the hole transport layer 7 , the hole injection layer 8 , and the second electrode 2 are arranged in order along the direction away from the substrate 6 .
  • the first electrode 1 is a cathode
  • the second electrode 2 is an anode
  • the QLED device is an inverted QLED device.
  • FIG. 3 is a schematic structural diagram of another quantum dot light-emitting diode provided by an embodiment of the present disclosure.
  • the QLED device in the embodiment of the present disclosure is different is a positive QLED device.
  • the first electrode 1 , the electron transport layer 4 , the electron buffer layer 5 , the quantum dot light-emitting layer 3 , the hole transport layer 7 , the hole injection layer 8 , and the second electrode 2 are arranged in sequence along the direction close to the substrate 6 .
  • the materials of the anode include but are not limited to high work function metal materials (eg, gold, copper, silver, platinum, etc.), inorganic metal oxides with certain conductivity (eg, indium tin oxide, zinc oxide, etc.) etc.) or organic conductive polymers (eg: poly3,4-ethylenedioxythiophene/polystyrene sulfonate PEDOT:PSS, polyaniline PANI, etc.).
  • high work function metal materials eg, gold, copper, silver, platinum, etc.
  • inorganic metal oxides with certain conductivity eg, indium tin oxide, zinc oxide, etc.
  • organic conductive polymers eg: poly3,4-ethylenedioxythiophene/polystyrene sulfonate PEDOT:PSS, polyaniline PANI, etc.
  • the materials of the cathode include but are not limited to low work function metal materials (for example: lithium, magnesium, calcium, strontium, aluminum, indium, etc.), alloy materials composed of the above low work function metals and copper, gold, silver, or have certain conductivity of inorganic metal oxides (eg indium tin oxide, zinc oxide, etc.).
  • low work function metal materials for example: lithium, magnesium, calcium, strontium, aluminum, indium, etc.
  • alloy materials composed of the above low work function metals and copper gold, silver, or have certain conductivity of inorganic metal oxides (eg indium tin oxide, zinc oxide, etc.).
  • Materials for the hole injection layer 8 include, but are not limited to, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polythiophene, polyaniline, polypyrrole, copper phthalocyanine, and 4 ,4,4"-tris(N,N-phenyl-3-methylphenylamino)triphenylamine (m-MTDATA), molybdenum oxide, copper phthalocyanine or poly(3,4-ethylenedioxythiophene) ) polystyrene sulfonate (PEDOT:PSS).
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
  • m-MTDATA 4 ,4,4"-tris(N,N-phenyl-3-methylphenylamino)triphenylamine
  • molybdenum oxide copper phthalocyanine or poly(3,4-ethylenedioxythiophene
  • Materials of the hole transport layer 7 include, but are not limited to, p-type polymer materials and various p-type low molecular weight materials, such as polythiophene, polyaniline, polypyrrole, and poly-3,4-ethylenedioxythiophene and poly(sodium p-styrenesulfonate), 4,4'-cyclohexylenebis[N,N-bis(4-methylphenyl)aniline (TAPC) or 4,4',4"-tris(N -carbazolyl) triphenylamine (TCTA), a mixture of N,N'-bis(1-naphthyl)-N,N'-diphenylbenzidine (NPB).
  • p-type polymer materials and various p-type low molecular weight materials such as polythiophene, polyaniline, polypyrrole, and poly-3,4-ethylenedioxythiophene and poly(sodium p-styrenesulfonate), 4,4
  • the materials of the quantum dot light-emitting layer 3 include, but are not limited to, various perovskite quantum dots. Specifically include: (1) lead-containing perovskite quantum dots, such as organic-inorganic lead halide MAPbX 3 quantum dots; all-inorganic cesium lead halide CsPbX 3 quantum dots, and rare earth ions (lanthanum, samarium, uranium, etc.) doped MAPbX 3 or CsPbX 3 quantum dots, etc., wherein MA is CH 3 NH 3 , and X is any one of Cl, Br, and I.
  • lead-containing perovskite quantum dots such as organic-inorganic lead halide MAPbX 3 quantum dots; all-inorganic cesium lead halide CsPbX 3 quantum dots, and rare earth ions (lanthanum, samarium, uranium, etc.) doped MAPbX 3 or CsPbX 3 quantum dots, etc., wherein MA is
  • the material of the quantum dot light-emitting layer 3 can also be any one of the quantum dot light-emitting diodes in the above-mentioned embodiments, which will not be listed one by one here.
  • the material of the electron injection layer includes but is not limited to any one of lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, cesium fluoride, lithium oxide, and lithium metaborate.
  • the substrate 6 is used as the support for functional layers such as electrodes and electron transport layers 4 in the QLED device. It has good light transmission performance in the visible light region and certain waterproof vapor and oxygen permeation capabilities.
  • the surface flatness can generally be made of glass, or a flexible substrate, or an array substrate. If a flexible substrate is used, it can be made of polyester, polyimide or thinner metal.
  • An embodiment of the present disclosure also provides a method for preparing a quantum dot light-emitting diode, which is used to prepare the QLED device provided in any of the above embodiments, the preparation method includes: forming a first electrode 1, a second electrode 2, and a quantum dot light-emitting layer 3.
  • the electron transport layer 4 and the electron buffer layer 5, the quantum dot light-emitting layer 3 is located between the first electrode 1 and the second electrode 2, the electron transport layer 4 is located between the first electrode 1 and the quantum dot light-emitting layer 3, and the electron buffer The layer 5 is located between the electron transport layer 4 and the quantum dot light-emitting layer 3; wherein, the electron transport layer 4 and the electron buffer layer 5 comprise the same metal oxide, and the oxygen vacancy concentration in the electron buffer layer 5 is greater than that in the electron transport layer 4. the oxygen deficient concentration.
  • the metal oxide film used for forming the electron buffer layer can be produced by using the existing equipment for preparing the electron transport layer Therefore, there is no need to add additional equipment dedicated to the preparation of the electron buffer layer film in the production line, which is beneficial to reduce production costs; in addition, the metal oxide film used to form the electron transport layer and the metal oxide used to form the electron buffer layer
  • the thin film can be prepared at the same time (prepared in the same process), which is beneficial to reduce the process steps and simplify the production process of the QLED device.
  • FIG. 4 is a flowchart of a method for manufacturing a quantum dot light-emitting diode according to an embodiment of the present disclosure. As shown in FIG. 4 , the manufacturing method includes:
  • Step S101 forming a first electrode on a substrate.
  • step S101 a conductive material thin film layer (eg, an indium tin oxide material thin film is formed) is first formed on the substrate, and then a patterning process is performed on the conductive material thin film layer to form a pattern of the first electrode.
  • a conductive material thin film layer eg, an indium tin oxide material thin film is formed
  • Step S102 forming an electron transport layer and an electron buffer layer on the side of the first electrode away from the substrate.
  • FIG. 5 is a flowchart of an optional implementation method for forming an electron transport layer and an electron buffer layer in an embodiment of the disclosure. As shown in FIG. 5 , the steps of forming the electron transport layer and the electron buffer layer include:
  • Step S1021a forming a metal oxide material film on one side of the first electrode.
  • the metal oxide material thin film may be prepared by a physical vapor deposition process (Physical Vapour Deposition, PVD for short) or a solution method.
  • PVD Physical Vapour Deposition
  • the following is an exemplary description by taking the metal oxide material as zinc oxide and preparing a zinc oxide thin film by a solution method as an example.
  • zinc acetate about 95% concentration
  • ethanolamine about 4% concentration
  • 2-methoxyethanol 2-methoxyethanol
  • the zinc acetate solution is spin-coated on the first electrode; then, an annealing process (about 180° C.) is performed on the substrate, and the zinc acetate is decomposed at a high temperature to form a zinc oxide film.
  • the metal oxide material thin film formed in step S1021a has a crystal structure.
  • its crystal structure is wurtzite type structure, and it is analyzed by X-ray diffraction (X-Ray Diffraction, referred to as XRD), and the main characteristic crystal plane that appears on the XRD spectrum is (100 ), (002), (101) planes.
  • Step S1022a using a preset surface treatment process to treat the surface portion of the metal oxide material film on the side away from the first electrode, so as to increase the oxygen defect concentration of the surface portion.
  • step S1022a the surface portion of the metal oxide material film is an electron buffer layer, and the portion of the metal oxide material film that is not treated with the acid solution is an electron transport layer.
  • the surface portion of the metal oxide material film on the side away from the first electrode can be treated with a weak acid solution, and the pH range of the weak acid solution includes: 4-6.
  • the acidic solution may employ weak organic acids, including but not limited to metasilicic acid, hypochlorous acid, formic acid, acetic acid, nitrous acid, sulfurous acid, phenol, and the like.
  • the metal oxide material thin film is immersed in the acid solution for a predetermined period of time, so as to increase the oxygen defect concentration of the surface portion of the metal oxide material thin film.
  • the zinc oxide film obtained by S1021a can be soaked in an acetic acid solution (concentration of about 5%) for 5 minutes, then taken out and washed three times with deionized water, and annealed (annealing is stable at about 120°C, annealing is stable at about 120° C.) time is about 20 minutes).
  • the specific process of the “preset surface treatment process” is not limited in the embodiments of the present disclosure, but any oxygen defect concentration (metal The processes in which the oxygen defect concentration of the portion of the oxide material film close to the first electrode remains unchanged or substantially unchanged) all belong to the protection scope of the present disclosure.
  • the weakly acidic solution may weaken the connection sites between oxide crystals in the surface portion of the metal oxide material film , so that the surface part of the metal oxide material film changes from a crystalline structure to an amorphous structure, which is a physical change.
  • oxygen defect sites also called "oxygen ion vacancies” and "oxygen vacancies”
  • These oxygen defect sites serve as traps in the electron transport process and can play Decrease the electron injection rate between the electron transport layer and the quantum dot light-emitting layer.
  • the metal oxide film for forming the electron transport layer and the metal oxide film for forming the electron buffer layer in the embodiments of the present disclosure are prepared simultaneously (prepared in the same process), which is beneficial to reduce The process steps can simplify the production process of the QLED device.
  • FIG. 6a is a schematic diagram of processing the surface part of the metal oxide material film to increase the oxygen defect concentration of the surface part in an embodiment of the disclosure.
  • the metal oxide is zinc oxide as an example.
  • XPS X-ray Photoelectron Spectroscopy
  • the metal oxide in the electron transport layer prepared by the above steps has a crystalline structure, and the metal oxide in the electron buffer layer has an amorphous structure.
  • the electron binding energy of the metal atom in the metal oxide in the electron transport layer is greater than that of the metal atom in the metal oxide in the electron buffer layer; the electron binding energy of the oxygen atom in the metal oxide in the electron transport layer is smaller than that of the electron buffer The electron binding energy of the oxygen atoms in the metal oxide within the layer.
  • FIG. 6b is a schematic diagram of an electron passing through an electron transport layer in an embodiment of the disclosure
  • FIG. 6c is a schematic diagram of an electron passing through an electron buffer layer in an embodiment of the disclosure.
  • FIGS. 6b and 6c when the electron e- passes through the electron In the transport layer, basically all electrons e- can pass through quickly, and the electron transport rate is relatively high; while when passing through the electron buffer layer, the concentration of oxygen vacancies is high, and oxygen vacancies act as electron traps to limit the electron e- move, resulting in a relatively low electron transport rate within the electron buffer layer.
  • FIG. 7 is a flowchart of another optional implementation method for forming an electron transport layer and an electron buffer layer in an embodiment of the disclosure. As shown in FIG. 7 , the steps of forming the electron transport layer and the electron buffer layer include:
  • Step S1021b mixing the metal salt solution used for preparing the metal oxide material film with the photoacid generator to form a mixed solution.
  • the metal oxide material film is prepared by a solution method;
  • the “metal salt solution used to prepare the metal oxide material film” specifically means that the corresponding metal oxide can be decomposed after being treated by a high temperature annealing process (For example, to form a zinc oxide film, the corresponding metal salt solution can be a solution of zinc acetate, and zinc acetate can decompose zinc oxide at high temperature).
  • Photoacid generators are light-sensitive compounds that decompose under light to produce acids (H+), which act as catalysts to exfoliate the pendant acid-labile groups on the polymer during post-exposure bake-off, and release acid-labile groups from the polymer. New acid is produced.
  • Step S1022b coating the mixed solution on the first electrode.
  • step S1022b the mixed solution obtained in step S1021b may be spin-coated on the first electrode by spin coating.
  • Step S1023b irradiating the part of the mixed solution that is far from the first electrode and has a preset thickness by an illuminating process, so that the photoacid generator in the irradiated part generates acid.
  • step S1023b the mixed solution is illuminated from the side of the mixed solution away from the first electrode, and the illumination depth of the mixed solution can be set according to actual needs to ensure that the mixed solution is away from the side of the first electrode and has A portion of the preset thickness is illuminated, while a portion of the mixed solution near the first electrode is not illuminated.
  • the photoacid generator in the irradiated part generates acid, while the photoacid generator in the unirradiated part does not generate acid.
  • Step S1024b baking and annealing the mixed solution to form a metal oxide material film; in the metal oxide material film, the part away from the first electrode is an electron buffer layer, and the other part is an electron transport layer.
  • step S1024b baking and annealing is performed on the mixed solution, and the metal salt in the mixed solution is decomposed to obtain a metal oxide.
  • the part of the mixed solution far away from the first electrode contains acid, it will weaken the connection sites between oxide crystals, so that the part far away from the first electrode in the finally obtained metal oxide material film (that is, the electron The oxygen vacancy concentration of the buffer layer) is greater than the oxygen vacancy concentration of the portion close to the first electrode (ie, the electron transport layer).
  • the metal oxide film for forming the electron transport layer and the metal oxide film for forming the electron buffer layer in the embodiments of the present disclosure are prepared simultaneously (prepared in the same process), which is beneficial to reduce The process steps can simplify the production process of the QLED device.
  • Step S103 forming a quantum dot light-emitting layer on the side of the electron buffer layer away from the first electrode.
  • step S103 taking the quantum dot light-emitting layer including the perovskite quantum dot light-emitting layer as an example, the step of forming the perovskite-type quantum dot light-emitting layer includes: , toluene, n-hexane, n-octane, or n-heptane, etc.) spin-coated on the electron buffer layer at a speed of 2500 rpm; then, dry and form a film (drying temperature at 80 ° C ⁇ 120 ° C) to form quantum dots that emit light Floor.
  • Step S104 forming a second electrode on the side of the quantum dot light-emitting layer away from the first electrode.
  • a conductive material eg, an aluminum film, a silver film, or an indium zinc oxide sputtered
  • a conductive material may be formed by evaporation, sputtering, or the like, so as to prepare the second electrode.
  • an inverted QLED device can be prepared, that is, the distance between the cathode (the first electrode) and the substrate is greater than the distance between the anode (the second electrode) and the substrate.
  • the steps of sequentially forming a hole transport layer and a hole injection layer are included between steps S103 and S104. After the step of the hole injection layer is completed, the preparation of the second electrode is performed.
  • FIG. 8 is a flowchart of another method for manufacturing a quantum dot light-emitting diode provided by an embodiment of the present disclosure. As shown in FIG. 8 , the manufacturing method includes:
  • Step S201 forming a second electrode on the substrate.
  • Step S202 forming a quantum dot light-emitting layer on the second electrode.
  • step S201 and step S202 For the description of step S201 and step S202, reference may be made to the previous description of step S104 and step S103.
  • Step S203 forming an electron transport layer and an electron buffer layer on the side of the quantum dot light-emitting layer away from the second electrode, and the electron transport layer is located on the side of the electron buffer layer away from the first electrode.
  • FIG. 9 is a flowchart of another optional implementation method for forming an electron transport layer and an electron buffer layer in an embodiment of the disclosure. As shown in FIG. 9 , the steps of forming the electron transport layer and the electron buffer layer include:
  • Step S2031 mixing the metal salt solution used for preparing the metal oxide material film with the photoacid generator to form a mixed solution.
  • Step S2032 coating the mixed solution on the side of the quantum dot light-emitting layer away from the second electrode.
  • step S2031 and step S1032 please refer to the previous description of step S1021b and step S1022b.
  • Step S2033 irradiating a portion of the mixed solution that is close to the second electrode and has a preset thickness by an illuminating process, so that the photoacid generator in the irradiated portion generates acid.
  • the mixed solution is illuminated from the side of the substrate facing away from the second electrode, and the illumination depth of the mixed solution can be set according to actual needs to ensure mixing.
  • a portion of the solution close to the second electrode and having a preset thickness is illuminated, while a portion of the mixed solution that is far from the second electrode is not illuminated.
  • the photoacid generator in the irradiated part generates acid, while the photoacid generator in the unirradiated part does not generate acid.
  • Step S2034 baking and annealing the mixed solution to form a metal oxide material film; in the metal oxide material film, the part close to the second electrode is an electron buffer layer, and the other part is an electron transport layer.
  • step S2034 the mixed solution is subjected to baking annealing treatment, and the metal salt in the mixed solution is decomposed to obtain a metal oxide.
  • the part near the second electrode in the mixed solution contains acid, it will weaken the connection sites between the oxide crystals, so that the part near the second electrode (that is, the electrons) in the finally obtained metal oxide material film
  • the oxygen vacancy concentration of the buffer layer is greater than the oxygen vacancy concentration of the portion away from the second electrode (ie, the electron transport layer).
  • Step S204 forming a first electrode on the side of the electron transport layer away from the second electrode.
  • the metal oxide film used for forming the electron transport layer and the metal oxide film used for forming the electron buffer layer in the embodiments of the present disclosure are prepared at the same time (prepared in the same process), which is beneficial to reduce The process steps can simplify the production process of the QLED device.
  • an upright QLED device can be prepared, that is, the distance between the anode (second electrode) and the substrate is greater than the distance between the cathode (first electrode) and the substrate
  • the step of sequentially forming a hole injection layer and a hole transport layer is included between steps S201 and S202. After the preparation of the hole transport layer is completed, the quantum dot light-emitting layer is prepared.
  • An embodiment of the present disclosure provides a display device, which includes the quantum dot light emitting diode provided in any of the foregoing embodiments, and the quantum dot light emitting diode can be fabricated by any of the foregoing fabrication methods.
  • the quantum dot light-emitting diode and the preparation method thereof reference may be made to the corresponding content in the foregoing embodiments, and details are not repeated here.
  • the display device can be any product or component with a display function, such as a TV, a digital camera, a mobile phone, and a tablet computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种量子点发光二极管,包括:第一电极、第二电极、设置在所述第一电极与所述第二电极之间的量子点发光层、设置在所述量子点发光层和所述第一电极之间的电子传输层,以及设置在所述电子传输层和所述量子点发光层之间的电子缓冲层,所述电子传输层与所述电子缓冲层包括相同的金属氧化物,所述电子缓冲层中的氧缺位浓度大于所述电子传输层中的氧缺位浓度。本公开实施例还提供了一种量子点发光二极管的制备方法和显示装置。

Description

量子点发光二极管及其制备方法、显示装置 技术领域
本公开属于显示技术领域,具体涉及一种量子点发光二极管
及其制备方法、显示装置。
背景技术
量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)通常包括具有多个量子点纳米晶体的发光层,发光层夹在电子传输层和空穴传输层之间。将电场施加到量子点发光二极管,使电子和空穴移动到发光层中,在发光层中,电子和空穴被捕获在量子点中并被重新组合,发射光子。与有机发光二极管相比,量子点发光二极管的发射光谱更窄。
发明内容
本公开提出了一种量子点发光二极管及其制备方法、显示装置。
第一方面,本公开实施例提供了一种量子点发光二极管,包括:第一电极、第二电极、设置在所述第一电极与所述第二电极之间的量子点发光层、设置在所述量子点发光层和所述第一电极之间的电子传输层,以及设置在所述电子传输层和所述量子点发光层之间的电子缓冲层,所述电子传输层与所述电子缓冲层包括相同的金属氧化物,所述电子缓冲层中的氧缺位浓度大于所述电子传输层中的氧缺位浓度。
在一些实施例中,所述金属氧化物包括:氧化锌、氧化镁锌、氧化铝锌和氧化镁铝锌中的至少一种。
在一些实施例中,电子缓冲层中的氧缺位浓度包括:5%~50%。
在一些实施例中,所述电子缓冲层的厚度包括:0.5nm~10nm。
在一些实施例中,所述电子传输层的厚度包括:1nm~100nm。
在一些实施例中,所述电子传输层内金属氧化物呈晶体结构;
所述电子缓冲层内金属氧化物呈无定型结构。
在一些实施例中,所述电子传输层内金属氧化物中的金属原子的电子结合能大于所述电子缓冲层内金属氧化物中的金属原子的电子结合能;
所述电子传输层内金属氧化物中的氧原子的电子结合能小于所述电子缓冲层内金属氧化物中的氧原子的电子结合能。
在一些实施例中,还包括基底、空穴传输层和空穴注入层;
所述第一电极、所述电子传输层、所述电子缓冲层、所述量子点发光层、所述空穴传输层、所述空穴注入层、所述第二电极沿远离所述基底方向依次设置;
或者,所述第一电极、所述电子传输层、所述电子缓冲层、所述量子点发光层、所述空穴传输层、所述空穴注入层、所述第二电极沿靠近所述基底方向依次设置。
第二方面,本公开实施例还提供了一种如第一方面所提供的量子点发光二极管的制备方法,包括:形成第一电极、第二电极、量子点发光层、电子传输层和电子缓冲层,所述量子点发光层位于所述第一电极和第二电极之间,所述电子传输层位于所述第一电极与所述量子点发光层之间,所述电子缓冲层位于所述电子传输层和所述量子点发光层之间;
其中,所述电子传输层与所述电子缓冲层包括相同的金属氧化物,所述电子缓冲层中的氧缺位浓度大于所述电子传输层中的氧缺位浓度。
在一些实施例中,形成第一电极、第二电极、量子点发光层、电子传输层和电子缓冲层的步骤包括:
形成第一电极;
在所述第一电极的一侧形成电子传输层和电子缓冲层,所述电子缓冲层位于所述电子传输层远离所述第一电极的一侧;
在所述电子缓冲层远离所述第一电极的一侧形成量子点发光层;
在所述量子点发光层远离所述第一电极的一侧形成第二电极。
在一些实施例中,在所述第一电极的一侧形成电子传输层和电子缓冲层的步骤包括:
在所述第一电极的一侧形成金属氧化物材料薄膜;
使用预设表面处理工艺对所述金属氧化物材料薄膜远离所述第一电极的一侧的表面部分进行处理,以增大所述表面部分的氧缺陷浓度,所述表面部分为所述电子缓冲层,所述金属氧化物材料薄膜中未被所述酸性溶液处理的部分为所述电子传输层。
在一些实施例中,使用预设表面处理工艺对所述金属氧化物材料薄膜远离所述第一电极的一侧的表面部分进行处理的步骤包括:
使用酸性溶液对所述金属氧化物材料薄膜远离所述第一电极的一侧的表面部分进行处理,所述酸性溶液的PH范围包括:4~6。
在一些实施例中,使用酸性溶液对所述金属氧化物材料薄膜远离所述第一电极的一侧的表面部分进行处理的步骤包括:
将所述金属氧化物材料薄膜在所述酸性溶液中浸泡预设时长。
在一些实施例中,在所述第一电极的一侧形成电子传输层和电子缓冲层的步骤包括:
将用于制备金属氧化物材料薄膜的金属盐溶液与光致生酸剂进行混合,形成混合溶液;
在所述第一电极上涂覆所述混合溶液;
通过光照工艺对所述混合溶液远离所述第一电极的一侧且具有预设厚度的部分进行光照,以使得被光照的部分中的光致生酸剂产生酸;
对所述混合溶液进行烘烤退火处理,形成金属氧化物材料薄膜;在所述金属氧化物材料薄膜中,远离所述第一电极的部分为所述电子缓冲层,其他部分为所述电子传输层。
在一些实施例中,所述形成第一电极、第二电极、量子点发光层、 电子传输层和电子缓冲层的步骤包括:
形成第二电极;
在所述第二电极上形成量子点发光层;
在所述量子点发光层远离所述第二电极的一侧形成电子传输层和电子缓冲层,所述电子传输层位于所述电子缓冲层远离所述第一电极的一侧;
在所述电子传输层远离所述第二电极的一侧形成第一电极。
在一些实施例中,在所述量子点发光层远离所述第二电极的一侧形成电子传输层和电子缓冲层的步骤包括:
将用于制备金属氧化物材料薄膜的金属盐溶液与光致生酸剂进行混合,形成混合溶液;
在在所述量子点发光层远离所述第二电极的一侧涂覆所述混合溶液;
通过光照工艺对所述混合溶液靠近所述第二电极的一侧且具有预设厚度的部分进行光照,以使得被光照的部分中的光致生酸剂产生酸;
对所述混合溶液进行烘烤退火处理,形成金属氧化物材料薄膜;在所述金属氧化物材料薄膜中,靠近所述第二电极的部分为所述电子缓冲层,其他部分为所述电子传输层。
第三方面,本公开实施例还提供了一种显示装置,包括:如第一方面提供的所述量子点发光二极管。
附图说明
图1为本公开实施例提供的一种量子点发光二极管的结构示意图;
图2为本公开实施例提供的另一种量子点发光二极管的结构示意图;
图3为本公开实施例提供的又一种量子点发光二极管的结构示意 图;
图4为本公开实施例提供的一种量子点发光二极管的制备方法的流程图;
图5为本公开实施例中形成电子传输层和电子缓冲层的一种可选实现方法的流程图;
图6a为本公开实施例中对金属氧化物材料薄膜的表面部分进行处理以增大表面部分的氧缺陷浓度的示意图;
图6b为本公开实施例中电子通过电子传输层时的示意图;
图6c为本公开实施例中电子通过电子缓冲层时的示意图;
图7为本公开实施例中形成电子传输层和电子缓冲层的另一种可选实现方法的流程图;
图8为本公开实施例提供的另一种量子点发光二极管的制备方法的流程图;
图9为本公开实施例中形成电子传输层和电子缓冲层的又一种可选实现方法的流程图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的一种量子点发光二极管及其制备方法、显示装置进行详细描述。
本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元 件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
发光器件的基本结构包括:阳极、阴极,以及在阳极和阴极之间的发光层。在外加电压作用下,电子和空穴分别从阴极方向和阳极方向注入,然后迁移并在发光层中相遇复合产生激子,激子的能量以光的形式衰减,即辐射出光。当发光器件为量子点发光二极管时,发光层为量子点发光层;量子点发光层顾名思义其材料为量子点。
发光器件可以是正置型发光器件,也可以是倒置型发光器件。其中,发光器件通常包括基底,对于正置型发光器件其阳极较阴极而言更靠近基底;倒置型发光器件其阴极较阳极而言更靠近基底。无论发光器件为正置型发光器件,还是为倒置型发光器件,该发光器件可以是顶发射型发光器件,也可以是底发射型发光器件。其中,当发光器件为正置顶发射型发光器件时,阳极为反射电极,阴极为透射电极;当发光器件为正置底发射型发光器件时,阳极为透射电极,阴极为反射电极;当发光器件为倒置顶发射型发光器件时,阳极为透射电极,阴极为反射电极;当发光器件为倒置底发射型发光器件时,阳极为反射电极,阴极为透射电极。
随着发光器件的性能的不断优化,发光器件不仅包含阳极层、阴极层和发光层;还可以在阳极层和发光层之间设置空穴注入层(Hole Injection Layer,简称HIL)、空穴传输层(Hole Transport Layer,简称HTL)、在发光层和阴极层之间设置电子传输层(Electron Transport Layer,简称ETL)。当然,在电子传输层和阴极层之间还可以设置电子注入层(Electron Injection Layer,简称EIL)。
通常使用无机金属氧化物(例如,氧化锌)来制备电子传输层,此时所形成的电子传输层具有较大的电子传输速率(一般在200cm 2V -1s -1~300cm 2V -1s -1)。在包含有电子传输层的QLED器件中,常规会存在载流子传输不平衡而导致器件的发光效率低下的问题。其主要原因是,现有的电子传输层的电子传输能力过强,导致电子传输速率常常大于空穴传输速率,这会产生载流子注入不平衡现象,进而导致电子在量子点发光层中过度累积,影响器件性能。
目前,为克服因电子传输层的电子传输速率过大而导致载流子传输不平衡的问题,通常是在电子传输层和量子点发光层之间增加电子缓冲层,以减小QLED器件中的电子传输速率。通常,电子缓冲层选用有机材料(例如,聚甲基丙烯酸甲酯)或无机绝缘材料(例如,氟化镁、氟化铝、二氧化硅)。此时,虽能解决载流子注入不平衡的问题,但是需要在现有制备电子传输层的工序步骤和制备量子点发光层的工序步骤之间,至少再增加一道用于沉积有机材料薄膜或无机绝缘材料薄膜的工序步骤用以制备电子缓冲层,这会导致QLED器件生产工序的复杂化;另外,产线中也需要额外添加用于制备电子缓冲层薄膜的设备,导致生产成本的显著增加。
为解决上述技术问题,本公开实施例提供了一种量子点发光二极管量子点发光二极管及其制备方法、显示装置。
图1为本公开实施例提供的一种量子点发光二极管的结构示意图,如图1所示,该量子点发光二极管包括:第一电极1、第二电极2、量子点发光层3、电子传输层4和电子缓冲层5;其中,量子点发光层3设置在第一电极1与第二电极2之间,电子传输层4设置在量子点发光层3和第一电极1之间,电子缓冲层5设置在电子传输层4和量子点发光层3之间;电子缓冲层5用于降低QLED器件中的电子传输速率,以使得QLED器件中电子传输速率与空穴传输速率的差值处于预设阈值范围内,促进 量子点发光层3中空穴、电子的平衡。
在本公开实施例中,第一电极1用作阴极,第二电极2用作阳极。
其中,电子传输层4与电子缓冲层5包括相同的金属氧化物,且电子缓冲层5中的氧缺位浓度大于电子传输层4中的氧缺位浓度(Oxygen Vacancy Concentration)。其中,“电子传输层4与电子缓冲层5包括相同的金属氧化物”具体是指电子传输层4内金属氧化物与电子缓冲层5内金属氧化物,两者的组成元素相同且各元素的比例也相同,即具有相同的分子式。
氧缺位浓度是指单位体积中氧离子缺位数与该体积中所有氧离子结点数的比值。一般而言,对于同一金属氧化物材料薄膜,该金属氧化物材料薄膜内的氧缺位浓度越大,则其电子传输率越小,具体原理将在后面进行示例性描述。因此,本公开实施例中的电子缓冲层5的电子传输速率小于电子传输层4的电子传输速率,电子缓冲层5可起到降低QLED器件中的电子传输速率的作用。通过对电子缓冲层5的电子传输速率的控制,从而能对量子点发光层3的电子注入速率进行控制,以实现量子点发光层3中空穴、电子的平衡,有利于提高QLED器件的发光效率。
在本公开实施例中,由于电子传输层4和电子缓冲层5包括相同的金属氧化物,因此,用于形成电子缓冲层5的金属氧化物薄膜可以采用现有的用于制备电子传输层4的设备进行生产,因此无需在产线中额外添加专门用于制备电子缓冲层5薄膜的设备,有利于降低生产成本;另外,用于形成电子传输层4的金属氧化物薄膜与用于形成电子缓冲层5的金属氧化物薄膜可以同时进行制备(在同一次工序中进行制备),有利于减少工艺步骤,实现QLED器件生产工序的简单化。
在一些实施例中,金属氧化物包括:氧化锌、氧化镁锌、氧化铝锌和氧化镁铝锌中的至少一种。
在一些实施例中,电子传输层4的厚度包括:1nm~100nm。
在一些实施例中,电子缓冲层5中的氧缺位浓度包括:5%~50%;一般而言,电子缓冲层5的氧缺位浓度越大,则电子缓冲层5的电子传输率越小,量子点发光层3的电子注入速率越小。
在一些实施例中,电子缓冲层5的厚度包括:0.5nm~10nm;一般而言,电子缓冲层5的厚度越大,则电子缓冲层5的电子传输率越小,量子点发光层3的电子注入速率越小。
在实际应用中,可根据量子点发光层3的空穴注入速率、电子传输层4的电子传输速率,来设定电子缓冲层5的氧缺位浓度和厚度。
在一些实施例中,电子传输层内金属氧化物呈晶体结构;电子缓冲层内金属氧化物呈无定型结构。
在一些实施例中,电子传输层内金属氧化物中的金属原子的电子结合能大于电子缓冲层内金属氧化物中的金属原子的电子结合能;电子传输层内金属氧化物中的氧原子的电子结合能小于电子缓冲层内金属氧化物中的氧原子的电子结合能。
后面将结合具体示例,来对电子传输层和电子缓冲层内金属氧化物的结构以及原子的电子结合能进行详细描述。
图2为本公开实施例提供的另一种量子点发光二极管的结构示意图,如图2所示,该QLED器件不但包括第一电极1、第二电极2、量子点发光层3、电子传输层4和电子缓冲层5,还包括基底6、空穴传输层7和空穴注入层8。其中,第一电极1、电子传输层4、电子缓冲层5、量子点发光层3、空穴传输层7、空穴注入层8、第二电极2沿远离基底6方向依次设置。
需要说明的是,在图2所示QLED器件中,第一电极1为阴极、第二电极2为阳极,该QLED器件为倒置QLED器件。
图3为本公开实施例提供的又一种量子点发光二极管的结构示意图,如图3所示,与图2中所示QLED器件为倒置QLED器件不同是的, 本公开实施例中的QLED器件为正置QLED器件。其中,第一电极1、电子传输层4、电子缓冲层5、量子点发光层3、空穴传输层7、空穴注入层8、第二电极2沿靠近基底6方向依次设置。
在本公开实施例中,阳极的材料包括但不限于高功函数金属材料(例如:金、铜、银、铂等)、具有一定导电性的无机金属氧化物(例如:氧化铟锡,氧化锌等)或者有机导电聚合物(例如:聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐PEDOT:PSS,聚苯胺PANI等)。
阴极的材料包括但不限于低功函数金属材料(例如:锂、镁、钙、锶、铝、铟等)、上述低功函数金属与铜、金、银构成的合金材料、或者具有一定导电性的无机金属氧化物(例如:氧化铟锡,氧化锌等)。
空穴注入层8的材料包括但不限于聚(3,4-亚乙二氧基噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)、聚噻吩、聚苯胺、聚吡咯、铜酞菁和4,4,4“-三(N,N-苯基-3-甲基苯基氨基)三苯胺(m-MTDATA)、氧化钼、酞菁铜或者聚(3,4-亚乙二氧基噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)。
空穴传输层7的材料包括但不限于p型聚合物材料和各种p型低分子量材料,例如,聚噻吩、聚苯胺、聚吡咯、和具有聚-3,4-亚乙基二氧噻吩和聚(对苯乙烯磺酸钠)、4,4’-亚环己基双[N,N-双(4-甲基苯基)苯胺(TAPC)或者4,4’,4”-三(N-咔唑基)三苯胺(TCTA),N,N'-二(1-萘基)-N,N'-二苯基联苯胺(NPB)的混合物。
量子点发光层3的材料包括但不限于多种钙钛矿型量子点。具体包括:(1)含铅钙钛矿型量子点,如有机-无机铅卤MAPbX 3量子点;全无机铯铅卤CsPbX 3量子点,及稀土离子(镧、钐、铀等)掺杂MAPbX 3或CsPbX 3量子点等,其中MA为CH 3NH 3,X为Cl、Br、I中的任意一种。(2)含铋基、锡基、银基中至少一种的钙钛矿型量子点,如CsSnX 3量子点、CsSbX 3量子点、Cs 2SnX 6量子点、Cs2AgInCl 6量子点、CH 3NH 3SbX 3量子点、CH 3NH 3SnX 3量子点等;其中,X为Cl、Br、I中的任意一种。当然量子点发光层3 的材料也可以采用上述实施例的量子点发光二极管中的任意一种,在此不再一一列举。
电子注入层的材料包括但不限于氟化锂、氟化钠、氟化钾、氟化铷、氟化铯、氧化锂、偏硼酸锂中的任意一种。
在一些实施例中,基底6作为QLED器件中电极、电子传输层4等功能层的依托,它在可见光区域有着良好的透光性能以及一定的防水汽和氧气渗透的能力,并具有较好的表面平整性,一般可以采用玻璃、或柔性基片、或阵列基板等制成。如果选用柔性基片,可采用聚酯类,聚酞亚胺或者较薄的金属制成。
本公开实施例还提供了一种量子点发光二极管的制备方法,用于制备上述任一实施例提供的QLED器件,该制备方法包括:形成第一电极1、第二电极2、量子点发光层3、电子传输层4和电子缓冲层5,量子点发光层3位于第一电极1和第二电极2之间,电子传输层4位于第一电极1与量子点发光层3之间,电子缓冲层5位于电子传输层4和量子点发光层3之间;其中,电子传输层4与电子缓冲层5包括相同的金属氧化物,电子缓冲层5中的氧缺位浓度大于电子传输层4中的氧缺位浓度。
在本公开实施例中,由于电子传输层和电子缓冲层包括相同的金属氧化物,因此,用于形成电子缓冲层的金属氧化物薄膜可以采用现有的用于制备电子传输层的设备进行生产,因此无需在产线中额外添加专门用于制备电子缓冲层薄膜的设备,有利于降低生产成本;另外,用于形成电子传输层的金属氧化物薄膜与用于形成电子缓冲层的金属氧化物薄膜可以同时进行制备(在同一次工序中进行制备),有利于减少工艺步骤,实现QLED器件生产工序的简单化。
图4为本公开实施例提供的一种量子点发光二极管的制备方法的流程图,如图4所示,该制备方法包括:
步骤S101、在基底上形成第一电极。
在步骤S101中,首先在基底上形成导电材料薄膜层(例如,形成氧化铟锡材料薄膜),然后对导电材料薄膜层进行构图工艺,以形成第一电极的图形。
步骤S102、在第一电极远离基底的一侧形成电子传输层和电子缓冲层。
图5为本公开实施例中形成电子传输层和电子缓冲层的一种可选实现方法的流程图,如图5所示,形成电子传输层和电子缓冲层的步骤包括:
步骤S1021a、在第一电极的一侧形成金属氧化物材料薄膜。
在步骤S1021a中,可通过物理气相沉积工艺(Physical Vapour Deposition,简称PVD)或溶液法来制备金属氧化物材料薄膜。
下面以金属氧化物材料为氧化锌,并采用溶液法来制备氧化锌薄膜为例进行示例性描述。首先,将醋酸锌(浓度约为95%)和乙醇胺(浓度约为4%)溶解于2-甲氧基乙醇中,形成醋酸锌溶液(密度大约为75mg/ml);然后,以2000rpm的转速将醋酸锌溶液旋涂于第一电极上;接着,对基板进行退火工艺(大约180℃),醋酸锌在高温下分解,形成氧化锌薄膜。
在步骤S1021a中所形成的金属氧化物材料薄膜为晶体结构。以制备出的氧化锌薄膜为例,其晶体结构为纤锌矿型结构,通过X射线衍射(X-Ray Diffraction,简称XRD)进行分析,出现在XRD谱图上的主要特征晶面为(100),(002),(101)晶面。
步骤S1022a、使用预设表面处理工艺对金属氧化物材料薄膜远离第一电极的一侧的表面部分进行处理,以增大表面部分的氧缺陷浓度。
在步骤S1022a中,金属氧化物材料薄膜的表面部分为电子缓冲层,金属氧化物材料薄膜中未被酸性溶液处理的部分为电子传输层。
在一些实施例中,可使用弱酸性溶液对金属氧化物材料薄膜远离第 一电极的一侧的表面部分进行处理,弱酸性溶液的PH范围包括:4~6。在一些实施例中,酸性溶液可采用弱有机酸,包括但不限于偏硅酸、次氯酸、甲酸、乙酸、亚硝酸、亚硫酸、苯酚等。
作为一种可选实施方案,将金属氧化物材料薄膜在酸性溶液中浸泡预设时长,以实现增大金属氧化物材料薄膜的表面部分的氧缺陷浓度。
示例性地,可将S1021a得到的氧化锌薄膜置于乙酸溶液(浓度约为5%)中浸泡5分钟,然后取出后用去离子水清洗三遍,并进行退火(退火稳定约120℃,退火时间约20分钟)。
需要说明的是,本公开实施例中对“预设表面处理工艺”的具体工艺不作限定,但凡是能够增大金属氧化物材料薄膜远离第一电极的一侧的表面部分的氧缺陷浓度(金属氧化物材料薄膜靠近第一电极的部分的氧缺陷浓度保持不变或基本不变)的工艺,均属于本公开的保护范围。
在使用弱酸性溶液对金属氧化物材料薄膜远离第一电极的一侧的表面部分进行处理的过程中,弱酸性溶液会削弱金属氧化物材料薄膜的表面部分内氧化物晶体之间的连接位点,使得金属氧化物材料薄膜的表面部分由晶体结构变为呈无定型结构,这种变化为物理变化。这样金属氧化物材料薄膜的表面部分中有大量的氧缺陷位点(也称为“氧离子缺位”“氧缺位”),这些氧缺陷位点作为电子传输过程中的陷阱,可以起到降低电子传输层和量子点发光层之间电子注入速率。
基于上述内容可见,本公开实施例中用于形成电子传输层的金属氧化物薄膜与用于形成电子缓冲层的金属氧化物薄膜是同时进行制备(在同一次工序中进行制备),有利于减少工艺步骤,实现QLED器件生产工序的简单化。
图6a为本公开实施例中对金属氧化物材料薄膜的表面部分进行处理以增大表面部分的氧缺陷浓度的示意图,如图6a所示,以金属氧化物为氧化锌为例。通过对氧化锌薄膜的表面部分进行处理,以使得氧化锌 薄膜的表面部分中氧缺陷位点的数量增多;通过X射线光电子能谱(X-ray Photoelectron Spectroscopy,简称XPS)可见,氧原子的电子结合能会变小,向低能量端位移;锌原子的电子结合能会变大,向高能量端位移。此时,氧化锌薄膜的表面部分为无定型结构膜层(不存在任何晶型)。
基于上述内容可见,通过上述步骤制备出的电子传输层内金属氧化物呈晶体结构,电子缓冲层内金属氧化物呈无定型结构。电子传输层内金属氧化物中的金属原子的电子结合能大于电子缓冲层内金属氧化物中的金属原子的电子结合能;电子传输层内金属氧化物中的氧原子的电子结合能小于电子缓冲层内金属氧化物中的氧原子的电子结合能。
图6b为本公开实施例中电子通过电子传输层时的示意图,图6c为本公开实施例中电子通过电子缓冲层时的示意图,如图6b和图6c所示,在电子e-穿过电子传输层时,基本上所有电子e-都可以快速通过,电子传输速率相对较高;而在穿过电子缓冲层时,氧缺位浓度较高,氧缺位作为电子陷阱会限制电子e-的移动,导致电子缓冲层内的电子传输速率相对较低。
图7为本公开实施例中形成电子传输层和电子缓冲层的另一种可选实现方法的流程图,如图7所示,形成电子传输层和电子缓冲层的步骤包括:
步骤S1021b、将用于制备金属氧化物材料薄膜的金属盐溶液与光致生酸剂进行混合,形成混合溶液。
在图7所示方法中,金属氧化物材料薄膜是采用溶液法进行制备;其中“用于制备金属氧化物材料薄膜的金属盐溶液”具体是指经过高温退火工艺处理后能够分解得到对应金属氧化物材料薄膜的溶液(例如,要形成氧化锌薄膜,则对应的金属盐溶液可以为醋酸锌溶液,醋酸锌在高温下可分解出氧化锌)。
光致生酸剂是一种光敏感的化合物,在光照下分解产生酸(H+),在曝光后烘烤过程中,这些酸会作为催化剂使得聚合物上悬挂的酸不稳定基团脱落,并产生新的酸。
步骤S1022b、在第一电极上涂覆混合溶液。
在步骤S1022b中,可通过旋涂方式将步骤S1021b得到的混合溶液旋涂于第一电极上。
步骤S1023b、通过光照工艺对混合溶液远离第一电极的一侧且具有预设厚度的部分进行光照,以使得被光照的部分中的光致生酸剂产生酸。
在步骤S1023b中,从混合溶液远离第一电极的一侧来对混合溶液进行光照,对混合溶液的光照深度可根据实际需要来进行设定,以保证混合溶液远离第一电极的一侧且具有预设厚度的部分被光照,而混合溶液内靠近第一电极的部分未被光照。此时,被光照部分中的光致生酸剂会产生酸,而未被光照部分中的光致生酸剂未产生酸。
步骤S1024b、对混合溶液进行烘烤退火处理,形成金属氧化物材料薄膜;在金属氧化物材料薄膜中,远离第一电极的部分为电子缓冲层,其他部分为电子传输层。
在步骤S1024b中,对混合溶液进行烘烤退火处理,混合溶液中的金属盐分解得到金属氧化物。其中,由于混合溶液中远离第一电极的部分含有酸,其会削弱氧化物晶体之间的连接位点,从而使得最终所得到的金属氧化物材料薄膜中远离第一电极的部分(即为电子缓冲层)的氧缺位浓度大于靠近第一电极的部分(即为电子传输层)的氧缺位浓度。
基于上述内容可见,本公开实施例中用于形成电子传输层的金属氧化物薄膜与用于形成电子缓冲层的金属氧化物薄膜是同时进行制备(在同一次工序中进行制备),有利于减少工艺步骤,实现QLED器件生产工序的简单化。
步骤S103、在电子缓冲层远离第一电极的一侧形成量子点发光层。
在步骤S103中,以量子点发光层包括钙钛矿型量子点发光层为例,形成该钙钛矿型量子点发光层的步骤包括:首先,将钙钛矿量子点的低沸点溶液(氯仿、甲苯、正己烷、正辛烷、或正庚烷等)旋涂到电子缓冲层上,转速为2500rpm;然后,进行干燥成膜(干燥温度在80℃~120℃),以形成量子点发光层。
步骤S104、在量子点发光层远离第一电极的一侧形成第二电极。
在步骤S104中可以通过蒸镀、溅射等方式来形成导电材料(例如蒸镀铝膜、银膜或溅射铟锌氧化物),以制备出第二电极。
通过上述步骤S101~步骤S104,可制备出倒置QLED器件,即阴极(第一电极)与基底之间的距离大于阳极(第二电极)与基底之间的距离。
在一些实施例中,在步骤S103和步骤S104之间包括依次形成空穴传输层和空穴注入层的步骤。在完成空穴注入层的步骤之后,再进行第二电极的制备。
图8为本公开实施例提供的另一种量子点发光二极管的制备方法的流程图,如图8所示,该制备方法包括:
步骤S201、在基底上形成第二电极。
步骤S202、在第二电极上形成量子点发光层。
对于步骤S201和步骤S202的描述可参见前面对步骤S104和步骤S103的描述。
步骤S203、在量子点发光层远离第二电极的一侧形成电子传输层和电子缓冲层,电子传输层位于电子缓冲层远离第一电极的一侧。
图9为本公开实施例中形成电子传输层和电子缓冲层的又一种可选实现方法的流程图,如图9所示,形成电子传输层和电子缓冲层的步骤包括:
步骤S2031、将用于制备金属氧化物材料薄膜的金属盐溶液与光致 生酸剂进行混合,形成混合溶液。
步骤S2032、在在量子点发光层远离第二电极的一侧涂覆混合溶液。
对于步骤S2031和步骤S1032的描述可参见前面对步骤S1021b和步骤S1022b的描述。
步骤S2033、通过光照工艺对混合溶液靠近第二电极的一侧且具有预设厚度的部分进行光照,以使得被光照的部分中的光致生酸剂产生酸。
与前面步骤S1023b中不同的是,在本实施例中是从基底背向第二电极的一侧来对混合溶液进行光照,对混合溶液的光照深度可根据实际需要来进行设定,以保证混合溶液靠近第二电极的一侧且具有预设厚度的部分被光照,而混合溶液内远离第二电极的部分未被光照。此时,被光照部分中的光致生酸剂会产生酸,而未被光照部分中的光致生酸剂未产生酸。
步骤S2034、对混合溶液进行烘烤退火处理,形成金属氧化物材料薄膜;在金属氧化物材料薄膜中,靠近第二电极的部分为电子缓冲层,其他部分为电子传输层。
在步骤S2034中,对混合溶液进行烘烤退火处理,混合溶液中的金属盐分解得到金属氧化物。其中,由于混合溶液中靠近第二电极的部分含有酸,其会削弱氧化物晶体之间的连接位点,从而使得最终所得到的金属氧化物材料薄膜中靠近第二电极的部分(即为电子缓冲层)的氧缺位浓度大于远离第二电极的部分(即为电子传输层)的氧缺位浓度。
步骤S204、在电子传输层远离第二电极的一侧形成第一电极。
基于上述内容可见,本公开实施例中用于形成电子传输层的金属氧化物薄膜与用于形成电子缓冲层的金属氧化物薄膜是同时进行制备(在同一次工序中进行制备),有利于减少工艺步骤,实现QLED器件生产工序的简单化。
通过上述步骤S201~步骤S204,可制备出正置QLED器件,即阳极 (第二电极)与基底之间的距离大于阴极(第一电极)与基底之间的距离
在一些实施例中,在步骤S201和步骤S202之间包括依次形成空穴注入层和空穴传输层的步骤。在完成空穴传输层的制备步骤之后,再进行量子点发光层的制备。
本公开实施例提供了一种显示装置,其包括前面任一实施例提供的量子点发光二极管,该量子点发光二极管可采用前面任一制备方法来进行制备。对于量子点发光二极管及其制备方法的具体描述可参见前面实施例中的相应内容,此处不再赘述。
该显示装置可以为电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (17)

  1. 一种量子点发光二极管,包括:第一电极、第二电极、设置在所述第一电极与所述第二电极之间的量子点发光层、设置在所述量子点发光层和所述第一电极之间的电子传输层,以及设置在所述电子传输层和所述量子点发光层之间的电子缓冲层,其特征在于,所述电子传输层与所述电子缓冲层包括相同的金属氧化物,所述电子缓冲层中的氧缺位浓度大于所述电子传输层中的氧缺位浓度。
  2. 根据权利要求1所述的量子点发光二极管,其特征在于,所述金属氧化物包括:氧化锌、氧化镁锌、氧化铝锌和氧化镁铝锌中的至少一种。
  3. 根据权利要求1所述的量子点发光二极管,其特征在于,所述电子缓冲层中的氧缺位浓度包括:5%~50%。
  4. 根据权利要求1所述的量子点发光二极管,其特征在于,所述电子缓冲层的厚度包括:0.5nm~10nm。
  5. 根据权利要求1所述的量子点发光二极管,其特征在于,所述电子传输层的厚度包括:1nm~100nm。
  6. 根据权利要求1所述的量子点发光二极管,其特征在于,所述电子传输层内金属氧化物呈晶体结构;
    所述电子缓冲层内金属氧化物呈无定型结构。
  7. 根据权利要求1所述的量子点发光二极管,其特征在于,所述电子传输层内金属氧化物中的金属原子的电子结合能大于所述电子缓冲层内金属氧化物中的金属原子的电子结合能;
    所述电子传输层内金属氧化物中的氧原子的电子结合能小于所述电子缓冲层内金属氧化物中的氧原子的电子结合能。
  8. 根据权利要求1至7中任一所述的量子点发光二极管,其特征在于,还包括基底、空穴传输层和空穴注入层;
    所述第一电极、所述电子传输层、所述电子缓冲层、所述量子点发光层、所述空穴传输层、所述空穴注入层、所述第二电极沿远离所述基底方向依次设置;
    或者,所述第一电极、所述电子传输层、所述电子缓冲层、所述量子点发光层、所述空穴传输层、所述空穴注入层、所述第二电极沿靠近所述基底方向依次设置。
  9. 一种如权利要求1至8中任一所述量子点发光二极管的制备方法,其特征在于,包括:形成第一电极、第二电极、量子点发光层、电子传输层和电子缓冲层,所述量子点发光层位于所述第一电极和第二电极之间,所述电子传输层位于所述第一电极与所述量子点发光层之间,所述电子缓冲层位于所述电子传输层和所述量子点发光层之间;
    其中,所述电子传输层与所述电子缓冲层包括相同的金属氧化物,所述电子缓冲层中的氧缺位浓度大于所述电子传输层中的氧缺位浓度。
  10. 根据权利要求9所述的制备方法,其特征在于,形成第一电极、第二电极、量子点发光层、电子传输层和电子缓冲层的步骤包括:
    形成第一电极;
    在所述第一电极的一侧形成电子传输层和电子缓冲层,所述电子缓冲层位于所述电子传输层远离所述第一电极的一侧;
    在所述电子缓冲层远离所述第一电极的一侧形成量子点发光层;
    在所述量子点发光层远离所述第一电极的一侧形成第二电极。
  11. 根据权利要求10所述的制备方法,其特征在于,在所述第一电极的一侧形成电子传输层和电子缓冲层的步骤包括:
    在所述第一电极的一侧形成金属氧化物材料薄膜;
    使用预设表面处理工艺对所述金属氧化物材料薄膜远离所述第一电极的一侧的表面部分进行处理,以增大所述表面部分的氧缺陷浓度,所述表面部分为所述电子缓冲层,所述金属氧化物材料薄膜中未被所述酸性溶液处理的部分为所述电子传输层。
  12. 根据权利要求11所述的制备方法,其特征在于,使用预设表面处理工艺对所述金属氧化物材料薄膜远离所述第一电极的一侧的表面部分进行处理的步骤包括:
    使用酸性溶液对所述金属氧化物材料薄膜远离所述第一电极的一侧的表面部分进行处理,所述酸性溶液的PH范围包括:4~6。
  13. 根据权利要求12所述的制备方法,其特征在于,使用酸性溶液对所述金属氧化物材料薄膜远离所述第一电极的一侧的表面部分进行处理的步骤包括:
    将所述金属氧化物材料薄膜在所述酸性溶液中浸泡预设时长。
  14. 根据权利要求10所述的制备方法,其特征在于,在所述第一电极的一侧形成电子传输层和电子缓冲层的步骤包括:
    将用于制备金属氧化物材料薄膜的金属盐溶液与光致生酸剂进行混合,形成混合溶液;
    在所述第一电极上涂覆所述混合溶液;
    通过光照工艺对所述混合溶液远离所述第一电极的一侧且具有预设厚度的部分进行光照,以使得被光照的部分中的光致生酸剂产生酸;
    对所述混合溶液进行烘烤退火处理,形成金属氧化物材料薄膜;在所述金属氧化物材料薄膜中,远离所述第一电极的部分为所述电子缓冲层,其他部分为所述电子传输层。
  15. 根据权利要求9所述的制备方法,其特征在于,所述形成第一电极、第二电极、量子点发光层、电子传输层和电子缓冲层的步骤包括:
    形成第二电极;
    在所述第二电极上形成量子点发光层;
    在所述量子点发光层远离所述第二电极的一侧形成电子传输层和电子缓冲层,所述电子传输层位于所述电子缓冲层远离所述第一电极的一侧;
    在所述电子传输层远离所述第二电极的一侧形成第一电极。
  16. 根据权利要求15所述的制备方法,其特征在于,在所述量子点发光层远离所述第二电极的一侧形成电子传输层和电子缓冲层的步骤包括:
    将用于制备金属氧化物材料薄膜的金属盐溶液与光致生酸剂进行混合,形成混合溶液;
    在在所述量子点发光层远离所述第二电极的一侧涂覆所述混合溶液;
    通过光照工艺对所述混合溶液靠近所述第二电极的一侧且具有预设 厚度的部分进行光照,以使得被光照的部分中的光致生酸剂产生酸;
    对所述混合溶液进行烘烤退火处理,形成金属氧化物材料薄膜;在所述金属氧化物材料薄膜中,靠近所述第二电极的部分为所述电子缓冲层,其他部分为所述电子传输层。
  17. 一种显示装置,其特征在于,包括:如权利要求1至8中任一所述的量子点发光二极管。
PCT/CN2020/117077 2020-09-23 2020-09-23 量子点发光二极管及其制备方法、显示装置 WO2022061574A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/419,820 US20220320454A1 (en) 2020-09-23 2020-09-23 Quantum dot light emitting diode, manufacturing method thereof and display apparatus
PCT/CN2020/117077 WO2022061574A1 (zh) 2020-09-23 2020-09-23 量子点发光二极管及其制备方法、显示装置
CN202080002050.7A CN114531924A (zh) 2020-09-23 2020-09-23 量子点发光二极管及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117077 WO2022061574A1 (zh) 2020-09-23 2020-09-23 量子点发光二极管及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022061574A1 true WO2022061574A1 (zh) 2022-03-31

Family

ID=80844577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117077 WO2022061574A1 (zh) 2020-09-23 2020-09-23 量子点发光二极管及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20220320454A1 (zh)
CN (1) CN114531924A (zh)
WO (1) WO2022061574A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576139A (zh) * 2016-01-06 2016-05-11 京东方科技集团股份有限公司 一种量子点电致发光二极管及其制备方法、显示器
CN106816545A (zh) * 2017-03-23 2017-06-09 京东方科技集团股份有限公司 量子点发光二极管及其制作方法、阵列基板、显示装置
CN109545996A (zh) * 2018-11-28 2019-03-29 河南大学 一种量子点发光二极管及制备方法
CN110112302A (zh) * 2019-01-17 2019-08-09 华南理工大学 一种以Al2O3薄膜为缓冲层的量子点发光二极管及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643766B (zh) * 2016-09-13 2022-02-11 罗门哈斯电子材料韩国有限公司 包含电子缓冲层和电子传输层的有机电致发光装置
WO2019187064A1 (ja) * 2018-03-30 2019-10-03 シャープ株式会社 発光素子、発光デバイス、発光素子の製造装置
KR102575481B1 (ko) * 2018-04-24 2023-09-07 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
CN114695826A (zh) * 2020-12-31 2022-07-01 Tcl科技集团股份有限公司 调控氧化锌的电子迁移率的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576139A (zh) * 2016-01-06 2016-05-11 京东方科技集团股份有限公司 一种量子点电致发光二极管及其制备方法、显示器
CN106816545A (zh) * 2017-03-23 2017-06-09 京东方科技集团股份有限公司 量子点发光二极管及其制作方法、阵列基板、显示装置
CN109545996A (zh) * 2018-11-28 2019-03-29 河南大学 一种量子点发光二极管及制备方法
CN110112302A (zh) * 2019-01-17 2019-08-09 华南理工大学 一种以Al2O3薄膜为缓冲层的量子点发光二极管及其制备方法

Also Published As

Publication number Publication date
CN114531924A (zh) 2022-05-24
US20220320454A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI375346B (en) Metal compound-metal multilayer electrodes for organic electronic devices
CN108735905B (zh) 一种qled器件及制备方法
JP2019522367A (ja) 酸化ニッケル薄膜及びその製造方法、機能性材料、薄膜構造体の作製方法およびエレクトロルミネセンス素子
CN105140411B (zh) 不含ito的qled及其制备方法
US11410818B2 (en) Semiconductor elements and method for manufacturing the same
US10388465B2 (en) Semiconductor elements and method for manufacturing the same
WO2016188041A1 (zh) 一种电致发光器件及其制备方法、显示基板、显示装置
US20070075628A1 (en) Organic light emitting devices having latent activated layers
JP2022537682A (ja) ドープされた混合されたカチオンのペロブスカイト材料およびそれを利用したデバイス
KR20080063764A (ko) 잠재적 활성화된 층을 갖는 유기 발광 디바이스 및 이의제조 방법
US20190189363A1 (en) Method for fabricating a layer of material in an organic electronic structure, an organic electronic structure and a perovskite precursor ink for use in fabricating the same
CN111816794A (zh) 一种peie介入标准倒置qled器件及其制备方法
Mokarian Zanjani et al. Tailored ZnO Functional Nanomaterials for Solution‐Processed Quantum‐Dot Light‐Emitting Diodes
Ashok Kumar et al. Device engineering aspects of organic light-emitting diodes (OLEDs)
US10270055B2 (en) Flexible display device and method of manufacturing the same
WO2018166094A1 (zh) 一种柔性显示器件及其制备方法
WO2016188042A1 (zh) 电致发光器件及其制备方法、显示基板、显示装置
WO2022011988A1 (zh) 一种纳米材料及其制备方法与量子点发光二极管
CN112151648B (zh) 一种量子点发光二极管及其制备方法
WO2022061574A1 (zh) 量子点发光二极管及其制备方法、显示装置
KR20110107447A (ko) 플렉서블 유기 발광 다이오드 및 그 제조 방법
CN113871542B (zh) 发光二极管器件及其制备方法、显示面板
Xiong et al. Organic Light-Emitting Diodes Array With High-Luminance Stability and Low-Lateral Leakage by Hybridized Plasma Treatments
CN113130813A (zh) 量子点发光二极管及其制备方法
JP2019220701A (ja) 半導体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954428

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20954428

Country of ref document: EP

Kind code of ref document: A1