WO2022059966A1 - 합금 분말 및 이의 제조방법 - Google Patents

합금 분말 및 이의 제조방법 Download PDF

Info

Publication number
WO2022059966A1
WO2022059966A1 PCT/KR2021/011641 KR2021011641W WO2022059966A1 WO 2022059966 A1 WO2022059966 A1 WO 2022059966A1 KR 2021011641 W KR2021011641 W KR 2021011641W WO 2022059966 A1 WO2022059966 A1 WO 2022059966A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy powder
mixture
temperature
process temperature
metal
Prior art date
Application number
PCT/KR2021/011641
Other languages
English (en)
French (fr)
Inventor
김병성
이성수
이인환
황동목
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP21869588.0A priority Critical patent/EP4215299A1/en
Priority to US18/245,303 priority patent/US20230364678A1/en
Publication of WO2022059966A1 publication Critical patent/WO2022059966A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/11Gradients other than composition gradients, e.g. size gradients
    • B22F2207/15Temperature gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/056Particle size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/058Particle size above 300 nm up to 1 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the embodiment relates to an alloy powder and a method for manufacturing the same.
  • Alloy powder uses the sintering phenomenon in which raw material powder is compressed and heated to cause diffusion between particles and the powder adheres to each other. Using this phenomenon, the raw material powder is molded into a desired product shape, and then the molded body is sintered at a temperature below the melting point of the constituents to manufacture the required product.
  • the alloy powder has advantages in that the post-processing cost is reduced and the alloy composition can be easily controlled.
  • the multi-component high-entropy alloy powder constitutes an alloy in which a plurality of elements mixed in a predetermined composition form solid solution alloys having high mixing entropy.
  • the multi-component high-entropy alloy powder is mainly manufactured by melting and casting, and the multi-component high-entropy alloy produced by this method may exhibit unique physical and mechanical properties compared to conventional alloys due to a simple crystal structure.
  • the embodiment is intended to provide a method for manufacturing an alloy powder that can be easily manufactured and has a particle diameter of nanometer size, and an alloy powder manufactured thereby.
  • the alloy powder manufacturing method includes the steps of forming a mixture by mixing a plurality of metal compounds and heat-treating the mixture, wherein the heat-treating the mixture includes a process temperature according to the particle size of the alloy powder is changing
  • the alloy powder manufacturing method according to the embodiment may produce a high entropy alloy powder at a low temperature.
  • the process can be performed at a low temperature.
  • the alloy powder manufacturing method according to the embodiment can improve process efficiency, and can easily mass-produce the alloy powder.
  • the alloy powder manufacturing method according to the embodiment can easily control the particle size of the alloy powder to be manufactured. That is, it is possible to control the particle size of the alloy powder to be manufactured by controlling the alloy powder process temperature.
  • the alloy powder manufacturing method according to the embodiment can easily manufacture an alloy powder having a particle size to be implemented.
  • the alloy powder manufacturing method according to the embodiment can easily control the properties of the alloy powder to be manufactured. That is, the composition of the alloy powder can easily control the properties of the alloy powder to be prepared.
  • FIG. 1 is a view for explaining a process flow diagram of an alloy powder manufacturing method according to an embodiment.
  • 2 is a graph for explaining the particle size of the alloy powder according to the process temperature of the alloy powder manufacturing according to the embodiments.
  • 3 is a view showing the crystallinity of the metal salt mixture according to the process temperature of the alloy powder manufacturing according to the embodiments.
  • SEM-EDX scanning electron microscope-energy dispersive analyzer
  • HADDF High Angle Annular Dark Field
  • FIG. 6 is a view showing a graph for explaining the overvoltage according to the compound.
  • the terminology used in the embodiments of the present invention is for describing the embodiments and is not intended to limit the present invention.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as "at least one (or one or more) of A and (and) B, C", it can be combined with A, B, and C. It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • top (above) or bottom (below) is one as well as when two components are in direct contact with each other. Also includes a case in which another component as described above is formed or disposed between two components.
  • the alloy powder manufacturing method according to the embodiment may include forming a mixture (ST10) and heat-treating the mixture (ST20).
  • metal compounds may be mixed to form a mixture.
  • the metal compound may be a metal compound including at least one of cobalt (Co), copper (Cu), iron (Fe), nickel (Ni), and ruthenium (Ru). That is, the metal compound may be a metal salt including at least one of the metals.
  • the metal compound may include carbonate, nitrate, halide, sulfate, acetate, and acetylacetonate including at least one of the metals. ) and may include at least one metal salt of perchlorate.
  • the metal compounds may be mixed by various methods to form a mixture.
  • the metal compounds may be added to a container containing methanol and then mixed in a solvent phase using a stirrer to form a mixture. Subsequently, the methanol may be evaporated to form a mixed powder in which the metal compounds are mixed. On the other hand, it can be additionally ground for about 30 minutes through an agate mortar after drying for more uniform mixing.
  • the mixture may be formed by mixing at least three or more metal compounds. Alternatively, the mixture may be formed by mixing at least four or more metal compounds. Alternatively, the mixture may be formed by mixing at least five or more metal compounds.
  • the mixtures obtained by mixing the metal compounds prepared above may be heat-treated.
  • an electric current is applied to a heat source that transfers heat to the reactor, and the temperature inside the reactor is heated to 300° C. to 700° C. to perform heat treatment.
  • the process pressure may be about 7000 Pa or less.
  • the heat treatment may be performed in a gas atmosphere containing hydrogen (H2) gas at a pressure of 10 Pa to 7000 Pa for 1 hour to 2 hours.
  • the metal compounds may be reduced by the hydrogen gas, and metals included in the metal compound may react to form an alloy powder.
  • the step of heat-treating the mixture (ST20) may be performed through a hydrogen reduction method. That is, the metal may be reduced by using hydrogen gas from the aqueous solution of the metal salt, and the reduced metal may be combined to form an alloy powder.
  • the metal salt may be reduced by the following reaction formula.
  • nickel (Ni) and ruthenium (Ru) may form a compound CoCuFeNiRu to form an alloy powder.
  • an alloy powder having an atomic percentage of cobalt (Co), copper (Cu), iron (Fe), nickel (Ni) and ruthenium (Ru) of 1:1:1:1:1 may be formed. .
  • an alloy powder that is, a high entropy alloy powder may be finally formed.
  • the heat treatment of the mixture (ST20) may be performed in a plurality of steps.
  • the step of heat-treating the mixture (ST20) includes the first step of controlling the process temperature to the reaction temperature of the mixture, the second step of setting the process temperature according to the particle size size, and the process temperature set according to the particle size size It may include a third step of reacting the reduced metals in the metal compound by changing to .
  • the process temperature may be controlled to a temperature at which the mixture including the metal compound can be reduced.
  • the metal compounds in order to separate the metals of the metal compounds, the metal compounds may be reduced in a hydrogen atmosphere, and the metals separated from the metal compounds may react to form an alloy powder.
  • the process temperature may be increased to the reduction temperature of the metal compound. That is, in the first step, the mixture may be heat-treated by increasing the temperature to a temperature at which metal salts are reduced to produce an alloy powder.
  • the first step may be heat-treated in a process temperature range of 400 °C to 500 °C.
  • the process temperature may be set differently depending on the particle size of the alloy powder to be realized.
  • the particle size of the alloy powder may be changed according to the process temperature. That is, the particle size of the alloy powder may be inversely proportional to the size of the process temperature. That is, when the process temperature increases when reducing the metal compound, aggregation of the metals increases, and accordingly, as the process temperature increases, the particle size of the metal compounds may increase.
  • the particle size of the alloy powder manufactured by varying the process temperature according to the size of the particle size it is possible to control the particle size of the alloy powder manufactured by varying the process temperature according to the size of the particle size to be implemented. That is, the particle size of the alloy powder manufactured by the method for manufacturing the alloy powder according to the embodiment may be controlled to a size of 50 nm to 700 nm according to the temperature size.
  • the process temperature may be controlled to a temperature at which the metals ionized by reducing the metal compounds react.
  • reaction temperature may be controlled according to the particle size of the alloy powder set in the second step.
  • the metal compounds may be reduced in a hydrogen atmosphere to form metal ions, and the metal ions may react with each other within a specific temperature range to form an alloy powder.
  • the reaction temperature is controlled in consideration of the particle size of the set alloy powder at which the metal ions are reacted, and then the alloy powder can be formed
  • the third step may be heat-treated in a process temperature range of 400 °C to 500 °C.
  • the alloy powder manufacturing method according to the embodiment may produce a high entropy alloy powder at a low temperature.
  • the process can be performed at a low temperature.
  • the alloy powder manufacturing method according to the embodiment may improve process efficiency and facilitate mass production of the alloy powder.
  • the alloy powder manufacturing method according to the embodiment can easily control the particle size of the alloy powder to be manufactured. That is, it is possible to control the particle size of the alloy powder to be manufactured by controlling the alloy powder process temperature.
  • the alloy powder manufacturing method according to the embodiment can easily manufacture an alloy powder having a particle size to be implemented.
  • Example 237.93 mg of CoCl 2 .6H 2 O, 170.48 mg of CuCl 2 .2H 2 O, 198.81 mg of FeCl 2 .4H 2 O, 237.69 mg of NiCl 2 .6H 2 O and 261.47 mg of hydrated RuCl 3 were mixed to form a mixture.
  • the methanol was evaporated to form a mixed powder in which the metal salts were mixed.
  • An alloy powder was prepared in the same manner as in Example 1, except that the process temperature was 600 °C.
  • An alloy powder was prepared in the same manner as in Example 1, except that the process temperature was set to 700°C.
  • the particle size of the alloy powder is changed according to the process temperature. That is, it can be seen that the grain size of the alloy powder increases as the process temperature increases.
  • the alloy powder manufactured by the method for manufacturing the alloy powder according to the embodiment can control the particle size of the alloy powder according to the process temperature during the process, the alloy powder having the desired particle size can be easily manufactured. .
  • the alloy powder manufacturing method according to the embodiment can form the alloy powder even at a low temperature of 300 °C to 700 °C.
  • the alloy powder manufacturing method according to the embodiment prepares the alloy powder by reducing the metal salt, the alloy powder can be manufactured at a lower temperature, and thus, the alloy powder manufacturing method according to the embodiment can improve process efficiency. and can facilitate mass production.
  • 3 is a view showing the crystallinity of the metal salt mixture according to the process temperature in a hydrogen atmosphere.
  • the metal salt (Cobalt, Copper, Iron, Nickel, Ruthenium) reduction by hydrogen does not occur at a process temperature of about 120° C., and the moisture contained in the mixture is removed.
  • the metal salts are randomly mixed It can be seen that it does not show crystallinity.
  • the process temperature is increased to 200 °C to 300 °C, reduction by hydrogen does not occur, but it can be confirmed that the crystallinity of the metal salt mixture is partially improved by the increased temperature.
  • the metal salt mixture starts to be reduced to a metal compound by hydrogen. However, it can be seen that the metal compound formed at 400° C.
  • the produced metal compound has fcc and hcp structures, and the X-ray diffraction peaks due to the structures are 43°, 50°, 74° (fcc) and 40°, 43°, 45°, 60°, It can be seen at 72° (hcp).
  • SEM scanning electron microscopy
  • STEM scanning transmission electron microscopy
  • EDS energy dispersive spectroscopy
  • the diameter of the generated metal compound is confirmed to be approximately 80 nm, and the constituent elements forming the metal compound, that is, Co, Cu, Fe, Ni and Ru, are uniformly distributed over the entire area and It can be confirmed through SEM-EDS.
  • the uniform mixing of constituent elements can be confirmed even in the microscopic region, which can be confirmed through the STEM-EDS image of FIG. 5 . It can be confirmed that the elements constituting the metal compound are uniformly distributed not only in the overall area but also in the local particle unit without deflection of specific elements. showed that it can
  • FIG. 6 is a graph for explaining the overvoltage of a CoCuFeNiRu alloy, a CoCuFeNi alloy, and a Ru metal.
  • the overvoltage of the CoCuFeNiRu alloy formed by the method for manufacturing the alloy powder using the hydrogen reduction process according to the embodiment is reduced compared to the CoCuFeNi alloy and the Ru metal.
  • the CoCuFeNiRu alloy can obtain a large current with a low overvoltage compared to the CoCuFeNi alloy and the Ru metal.
  • the CoCuFeNiRu alloy formed by the method for producing a powdered alloy using the hydrogen reduction process according to the embodiment can have the same effect even with a small amount of energy, so that it can have improved efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

실시예에 따른 합금 분말 제조방법은, 복수의 금속 화합물들을 혼합하여 혼합물을 형성하는 단계 및 상기 혼합물을 열처리하는 단계를 포함하고, 상기 혼합물을 열처리하는 단계는 상기 합금 분말의 입경 크기에 따라 공정 온도가 변화한다. 또한, 상기 혼합물을 열처리하는 단계는 수소환원공법을 통해 진행되고, 300℃ 내지 700℃의 공정 온도에서 진행된다.

Description

합금 분말 및 이의 제조방법
실시예는 합금 분말 및 이의 제조방법에 관한 것이다.
합금 분말은 원료분말을 압축 성형하여 가열하여 각각 입자 사이에서 확산이 일어나 분말이 서로 응착하는 소결현상을 이용한 것이다. 이러한 현상을 이용하여 원료분말을 원하는 제품의 형태로 성형한 다음, 이 성형체를 구성성분의 융점 이하의 온도에서 소결하여 필요한 제품을 제조한다. 합금 분말은 후가공비가 절감되고 합금조성의 제어 등이 용이하다는 장점이 있다.
한편, 다원계 고엔트로피 합금 분말은 일정 조성으로 혼합된 복수의 원소들이 합금을 구성하는 것으로, 높은 혼합 엔트로피를 갖는 고용합금(solid solution alloys)을 형성한다.
다원계 고엔트로피 합금 분말은, 주로 용해 및 주조로 제조되고 있으며, 이러한 방법으로 제조된 다원계 고엔트로피 합금은 단순한 결정 구조로 인하여 기존의 합금에 비하여 독특한 물리적 및 기계적 특성을 나타낼 수 있다.
한편, 이러한 고엔트로피 합금 분말을 형성하기 위해서는 고온의 공정이 요구되어 대량생산이 어렵다는 문제점이 있다. 또한, 제조되는 합금 분말의 크기를 용이하게 제어하기 어려운 문제점이 있다.
따라서, 상기와 같은 문제점을 해결할 수 있는 새로운 합금 분말 제조방법 및 이에 의해 제조되는 합금 분말이 요구된다.
실시예는 용이하게 제조할 수 있고, 나노미터 크기의 입경을 가지는 합금 분말 제조방법 및 이에의해 제조되는 합금 분말을 제공하고자 한다.
실시예에 따른 합금 분말 제조방법은, 복수의 금속 화합물들을 혼합하여 혼합물을 형성하는 단계 및 상기 혼합물을 열처리하는 단계를 포함하고, 상기 혼합물을 열처리하는 단계는 상기 합금 분말의 입경 크기에 따라 공정 온도가 변화한다.
실시예에 따른 합금 분말 제조방법은 저온의 온도에서 고엔트로피 합금 분말을 제조할 수 있다.
즉, 복수의 금속염들을 혼합한 후, 낮은 환원 온도에서 합금 분말의 제조가 가능하므로, 저온 공정으로 공정을 진행할 수 있다.
따라서, 실시예에 따른 합금 분말 제조방법은 공정 효율을 향상시킬 수 있고, 합금 분말의 대량 생산을 용이하게 학 수 있다.
또한, 실시예에 따른 합금 분말 제조방법은 제조되는 합금 분말의 입경을 용이하게 제어할 수 있다. 즉, 합금 분말 공정 온도를 제어하여 제조되는 합금 분말의 입경을 제어할 수 있다.
따라서, 실시예에 따른 합금 분말 제조방법은 구현하고자 하는 입경 크기의 합금 분말을 용이하게 제조할 수 있다.
또한, 실시예에 따른 합금 분말 제조방법은 제조되는 합금 분말의 특성을 용이하게 제어할 수 있다. 즉, 합금 분말의 조성을 제조되는 합금 분말의 특성을 용이하게 제어할 수 있다.
도 1은 실시예에 따른 합금 분말 제조방법의 공정 흐름도를 설명하기 위한 도면이다.
도 2는 실시예들에 따른 합금 분말 제조의 공정 온도에 따른 합금 분말의 입경 크기를 설명하기 위한 그래프이다.
도 3은 실시예들에 따른 합금 분말 제조의 공정 온도에 따른 금속염 혼합물의 결정성을 도시한 도면이다.
도 4는 실시예에 따른 합금 분말 제조 방법에 의해 제조된 합금 분말의 주사전자현미경-에너지분산분석기(SEM-EDX) 사진을 도시한 도면이다.
도 5는 실시예에 따른 합금 분말 제조 방법에 의해 제조된 합금 분말의 HADDF(High Angle Annular Dark Field) 사진을 도시한 도면이다.
도 6은 화합물에 따른 과전압을 설명하기 위한 그래프를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C중 적어도 하나(또는 한개이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속'되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다.
또한 “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하, 도면들을 참조하여, 실시예에 따른 합금 분말 및 이의 제조방법을 설명한다.
도 1을 참조하면, 실시예에 따른 합금 분말 제조방법은 혼합물을 형성하는 단계(ST10) 및 상기 혼합물을 열처리하는 단계(ST20)를 포함할 수 있다.
상기 혼합물을 형성하는 단계(ST10)에서는 금속 화합물들을 혼합하여 혼합물을 형성할 수 있다. 상기 금속 화합물은 코발트(Co), 구리(Cu), 철(Fe), 니켈(Ni) 및 루테늄(Ru) 중 적어도 하나의 금속을 포함하는 금속 화합물일 수 있다. 즉, 상기 금속 화합물은 상기 금속들 중 적어도 하나를 포함하는 금속염일 수 있다.
예를 들어, 상기 금속 화합물은 상기 금속들 중 적어도 하나를 포함하는 카보네이트(Carbonate), 질산염(Nitrate), 할로젠화물(Halide), 황산염(Sulfate), 아세트산염(Acetate), 아세틸아세토네이트(Acetylacetonate) 및 과염소산염(Perchlorate) 중 적어도 하나의 금속염을 포함할 수 있다.
상기 금속 화합물들은 다양한 방법에 의해 혼합되어 혼합물을 형성할 수 있다.
예를 들어, 상기 금속 화합물들은 메탄올이 담긴 용기에 첨가한 후, 이들을 교반기를 이용하여 용매상 혼합하여 혼합물을 형성할 수 있다. 이어서, 상기 메탄올을 증발하여 상기 금속 화합물들이 혼합된 혼합 분말을 형성할 수 있다. 한편, 보다 균일한 혼합을 위해 건조 후 마노 절구(Agate mortar)를 통해 약 30분 동안 추가적으로 갈아줄 수 있다.
상기 혼합물은 적어도 3개 이상의 금속 화합물들을 혼합하여 형성될 수 있다. 또는, 상기 혼합물은 적어도 4개 이상의 금속 화합물들을 혼합하여 형성될 수 있다. 또는, 상기 혼합물은 적어도 5개 이상의 금속 화합물들을 혼합하여 형성될 수 있다.
이어서, 상기 혼합물을 열처리하는 단계(ST20)에서는 앞서 제조한 금속 화합물들을 혼합한 혼합물들을 열처리할 수 있다.
자세하게, 상기 혼합물을 반응기 내에 투입한 후, 상기 반응기로 열을 전달하는 열원에 전류를 가하여 상기 반응기의 내부의 온도를 300℃ 내지 700℃가 되도록 가열하여 열처리를 진행할 수 있다.
이때, 상기 공정 압력은 약 7000㎩ 이하의 압력을 진행될 수 있다. 자세하게, 수소(H2)가스를 포함하는 기체 분위기에서 10㎩ 내지 7000㎩의 압력에서 1시간 내지 2시간 동안 열처리를 진행할 수 있다.
상기 수소 가스에 의해 상기 금속 화합물들이 환원되고, 상기 금속 화합물 내에 포함되는 금속들이 반응하여 합금 분말을 형성할 수 잇다.
자세하게, 상기 혼합물을 열처리하는 단계(ST20)는 수소환원공법을 통해 진행될 수 있다. 즉, 금속염의 수용액으로부터 수소가스를 이용하여 금속이 환원되고, 환원된 금속이 결합하여 합금 분말이 형성될 수 있다.
상기 금속염은 하기의 반응식에 의해 환원될 수 있다.
[반응식 1]
MCl2 (M = Co, Cu, Fe, Ni)
MCl2 + H2 = M + 2HCl
[반응식 2]
MCl3 (M = Ru)
2MCl3 + 3H2 = 2M + 6HCl
즉, 상기 수소환원공법을 통해 코발트(Co), 구리(Cu), 철(Fe), 니켈(Ni) 및 루테늄(Ru)이 환원되고, 코발트(Co), 구리(Cu), 철(Fe), 니켈(Ni) 및 루테늄(Ru)이 화합물 CoCuFeNiRu을 형성하여 합금 분말을 형성할 수 있다. 자세하게, 코발트(Co), 구리(Cu), 철(Fe), 니켈(Ni) 및 루테늄(Ru)의 원자퍼센트(atomic percentage가 1:1:1:1:1인 합금 분말을 형성할 수 있다.
이에 따라, 최종적으로 합금 분말 즉, 고엔트로피 합금 분말이 형성될 수 있다.
한편, 상기 혼합물을 열처리하는 단계(ST20)는 복수의 단계로 진행될 수 있다. 자세하게, 상기 혼합물을 열처리하는 단계(ST20)는 공정 온도를 상기 혼합물의 반응온도로 제어하는 제 1 단계 공정온도를 입경 크기에 따라 설정하는 제 2 단계 및 공정 온도를 상기 입경 크기에 따라 설정된 공정 온도로 변경하여 금속 화합물에서 환원된 금속들을 반응하는 제 3 단계를 포함할 수 있다.
자세하게, 상기 공정 온도를 상기 혼합물의 반응온도로 제어하는 제 1 단계에서는 상기 금속화합물을 포함하는 혼합물이 환원될 수 있는 온도로 공정 온도를 제어할 수 있다.
즉, 상기 금속 화합물들의 금속을 분리하기 위해 상기 금속 화합물들은 수소 분위기에서 환원되고, 상기 금속 화합물들에서 분리된 금속들이 반응하여 합금 분말이 형성될 수 있다.
이에 따라, 상기 공정 온도를 상기 혼합물의 반응온도로 제어하는 제 1 단계에서는 상기 공정 온도를 상기 금속화합물의 환원 온도까지 증가시킬수 있다. 즉, 제 1 단계에서는 합금 분말을 생성하기 위해 금속염들이 환원되는 온도까지 온도를 상승하여 상기 혼합물을 열처리할 수 있다.
자세하게, 상기 제 1 단계는 400℃ 내지 500℃의 공정 온도 범위에서 열처리될 수 있다.
상기 공정온도를 입경 크기에 따라 설정하는 제 2 단계에서는 상기 공정 온도를 구현하고자 하는 합금 분말의 입경에 따라 다르게 설정할 수 있다.
자세하게, 상기 합금 분말의 입경은 상기 공정 온도에 따라 변화될 수 있다. 즉, 상기 합금 분말의 입경 크기는 상기 공정 온도의 크기에 반비례할 수 있다. 즉, 상기 금속 화합물을 환원할 때 상기 공정 온도가 증가하는 경우 상기 금속들의 응집 현상이 증가되고, 이에 따라, 공정 온도가 증가하면서, 금속 화합물들의 입경 크기가 증가될 수 있다.
이에 따라, 상기 제 2 단계에서는 구현하고자 하는 입경의 크기에 따라, 다양한 공정 온도를 설벙하여 제조되는 합금 분말의 입경 크기를 제어할 수 있다. 즉, 실시예에 따른 합금 분말 제조방법에 의해 제조되는 합금 분말의 입경은 상기 온도 크기에 따라 50㎚ 내지 700㎚의 크기로 제어할 수 있다.
상기 공정 온도를 금속 화합물에서 환원된 금속들의 반응온도로 제어하는 제 3 단계에서는 상기 금속 화합물들이 환원되어 이온화된 금속들이 반응하는 온도로 공정 온도를 제어할 수 있다.
자세하게, 상기 제 2 단계에서 설정한 합금 분말의 입경에 따라 상기 반응 온도를 제어할 수 있다.
즉, 상기 금속 화합물들은 수소 분위기에서 환원되어 금속 이온이 형성되고, 상기 금속 이온들은 특정 온도 범위 내에서 서로 반응되어 합금 분말을 형성할 수 있다.
이에 따라, 상기 공정 온도를 금속 화합물에서 환원된 금속들의 반응온도로 제어하는 제 3 단계에서는 상기 금속 이온이 반응되는 상기 설정되어 합금 분말의 입경 크기를 고려하여 반응 온도를 제어한 후 상기 합금 분말을 형성할 수 있다.
자세하게, 상기 제 3 단계는 400℃ 내지 500℃의 공정 온도 범위에서 열처리될 수 있다.
실시예에 따른 합금 분말 제조방법은 저온의 온도에서 고엔트로피 합금 분말을 제조할 수 있다.
즉, 복수의 금속염들을 혼합한 후, 낮은 환원 온도에서 합금 분말의 제조가 가능하므로, 저온 공정으로 공정을 진행할 수 있다.
따라서, 실시예에 따른 합금 분말 제조방법은 공정 효율을 향상시킬 수 있고, 합금 분말의 대량 생산을 용이하게 할 수 있다.
또한, 실시예에 따른 합금 분말 제조방법은 제조되는 합금 분말의 입경을 용이하게 제어할 수 있다. 즉, 합금 분말 공정 온도를 제어하여 제조되는 합금 분말의 입경을 제어할 수 있다.
따라서, 실시예에 따른 합금 분말 제조방법은 구현하고자 하는 입경 크기의 합금 분말을 용이하게 제조할 수 있다.
이하, 실시예들 및 비교예들에 따른 합금 분말 제조방법을 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 제조예는 본 발명을 좀더 상세하게 설명하기 위하여 예시로 제시한 것에 불과하다. 따라서 본 발명이 이러한 제조예에 한정되는 것은 아니다.
실시예 1
실시예 237.93 mg의 CoCl2·6H2O, 170.48 mg의 CuCl2·2H2O, 198.81 mg의 FeCl2·4H2O, 237.69 mg의 NiCl2·6H2O 및 261.47 mg의 hydrated RuCl3을 혼합하여 혼합물을 형성하였다. 자세하게, 메탄올에 상기 금속염들을 용해한 후, 상기 메탄올을 증발함으로써, 상기 금속염들이 혼합된 혼합 분말을 형성하였다.
이어서, 상기 혼합 분말을 알루미나 보트(Alumina boat)에 충진한 후, 튜브 전기로(Tube Furnace)에서 승온 온도를 20℃/min으로 하여 300℃의 공정 온도 및 10㎩ 내지 7000㎩의 압력에서 열처리하였다.
이때, 상기 튜브 전기로에는 50sccm의 유량으로 수소 가스가 유입되었으며, 열처리는 약 1시간 진행하여 합금 분말을 제조하였다.
실시예 2
공정 온도를 600℃로 하였다는 점을 제외하고는 실시예 1과 동일하게 합금 분말을 제조하엿다.
실시예 3
공정 온도를 700℃로 하였다는 점을 제외하고는 실시예 1과 동일하게 합금 분말을 제조하였다.
도 2를 참조하면, 실시예들에 따른 합금 분말은 공정 온도에 따라 합금 분말의 입경 크기가 변화되는 것을 알 수 있다. 즉, 공정 온도가 증가할수록 합금 분말의 입경 크기가 증가하는 것을 알 수 있다.
이에 따라, 실시예에 따른 합금 분말 제조방법에 의해 제조되는 합금 분말은 공정 중 공정 온도에 따라 합금 분말의 입경 크기를 제어할 수 있으므로, 구현하고자 하는 입경 크기의 합금 분말을 용이하게 제조할 수 있다.
또한, 실시예에 따른 합금 분말 제조방법은 300℃ 내지 700℃의 저온에서도 합금 분말을 형성할 수 있는 것을 알 수 있다.
종래에는 합금 분말을 제조할 때 잉곳 성장 방식에 의해 제조되어 1500℃ 이상의 고온 공정이 요구되므로 공정 효율이 저하되고 대량 생산이 어려운 문제점이 있었다.
그러나, 실시예에 따른 합금 분말 제조방법은 금속염을 환원하여 합금 분말을 제조하므로, 보다 낮은 온도에서 합금 분말을 제조할 수 있고, 이에 따라, 시예에 따른 합금 분말 제조방법은 공정 효율을 향상시킬 수 있고, 대량 생산을 용이하게 할 수 있다.
도 3은 수소 분위기에서 공정 온도에 따른 금속염 혼합물의 결정성을 도시한 도면이다.
도 3을 참조하면, 공정 온도 120℃ 내외에서는 수소에 의한 금속염 (Cobalt, Copper, Iron, Nickel, Ruthenium) 환원이 발생하지 않으며 혼합물에 포함된 수분이 제거되는 온도로써, 상기 금속염들이 무작위적으로 혼합되어 결정성을 나타내지 않는 것을 알 수 있다. 또한, 공정 온도가 200℃내지 300℃로 상승하게 되면 수소에 의한 환원은 발생하지 않으나, 상승한 온도에 의해 상기 금속염 혼합물의 결정성이 일부 향상되는 것을 확인할 수 있다. 또한, 공정 온도가 400℃에 이르면 상기 금속염 혼합물이 수소에 의해 금속 화합물로 환원되기 시작한다. 그러나, 400℃에서 형성된 금속 화합물은 결정성이 떨어지며, 공정 온도를 500℃로 상승시킬 경우 해당 금속 화합물의 결정성이 향상되는 것을 확인할 수 있다. 생성된 금속 화합물은 fcc와 hcp 구조를 가지고 있는 것으로 확인되며, 해당 구조에 의한 X-ray 회절 피크는 43°, 50°, 74°(fcc)와 40°, 43°, 45°, 60°, 72° (hcp)에서 확인할 수 있다.
도 4 및 도 5는 생성된 금속 화합물의 형상 및 원소 분포를 Scanning electron microscopy (SEM) 및 Scanning transmission electron microscopy (STEM)와 Energy dispersive spectroscopy (EDS)를 통해 분석하여, 그 결과를 도시한 도면이다.
도 4의 SEM 이미지에서 확인할 수 있듯이 생성된 금속 화합물의 직경은 대략 80㎚로 확인되며, 상기 금속 화합물을 형성하는 구성 원소들, 즉 Co, Cu, Fe, Ni 및 Ru이 전면적에서 균일하게 분포하고 있음을 SEM-EDS을 통해 확인할 수 있다. 구성 원소의 균일한 혼합은 미세 영역에서도 확인할 수 있으며, 이는 도 5의 STEM-EDS 이미지를 통해 확인할 수 있다. 전반적인 영역뿐만 아니라, 국부적인 입자 단위에서도 특정 원소의 편향 없이 금속 화합물을 구성하는 원소들이 균일하게 분포하고 있음을 확인할 수 있으며, 위 SEM 및 STEM 결과를 통해 상기 조건에서 금속 합금 분말이 문제없이 형성될 수 있음을 보여주었다.
도 6은 CoCuFeNiRu 합금, CoCuFeNi 합금 및 Ru 금속의 과전압을 설명하기 위한 그래프이다.
도 6 을 참조하면, 실시예에 따른 수소환원공정을 이용한 합긍 분말 제조방법 의해 형성되는 CoCuFeNiRu 합금은 CoCuFeNi 합금 및 Ru 금속에 비해 과전압이 감소하는 것을 알 수 있다. 또한, CoCuFeNiRu 합금은 CoCuFeNi 합금 및 Ru 금속에 비해 낮은 과전압으로 큰 전류를 얻을 수 있는 것을 알 수 있다.
즉, 실시예에 따른 수소환원공정을 이용한 합긍 분말 제조방법 의해 형성되는 CoCuFeNiRu 합금은 작은 에너지로도 동일한 효과를 가질 수 있으므로, 향상된 효율을 가질 수 있는 것을 알 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. 합금 분말 제조방법으로서,
    복수의 금속 화합물들을 혼합하여 혼합물을 형성하는 단계: 및
    상기 혼합물을 열처리하는 단계를 포함하고,
    상기 혼합물을 열처리하는 단계는 상기 합금 분말의 입경 크기에 따라 공정 온도가 변화하는 합금 분말 제조방법,
  2. 제 1항에 있어서,
    상기 공정 온도는 300℃ 내지 700℃인 합금 분말 제조방법.
  3. 제 1항에 있어서,
    상기 금속 화합물은 코발트(Co), 구리(Cu), 철(Fe), 니켈(Ni) 및 루테늄(Ru) 중 적어도 하나의 금속을 포함하는 합금 분말 제조방법.
  4. 제 3항에 있어서,
    상기 금속 화합물은 카보네이트(Carbonate), 질산염(Nitrate), 할로젠화물(Halide), 황산염(Sulfate), 아세트산염(Acetate), 아세틸아세토네이트(Acetylacetonate) 및 과염소산염(Perchlorate) 중 적어도 하나의 금속염을 포함하는 합금 분말 제조방법.
  5. 제 4항에 있어서,
    상기 혼합물을 열처리 하는 단계는 수소(H2) 가스 분위기에서 진행하는 합금 분말 제조방법.
  6. 제 5항에 있어서,
    상기 혼합물을 열처리하는 단계는 수소환원공법을 통해 진행되는 합금 분말 제조방법.
  7. 제 6항에 있어서,
    상기 금속염은 하기의 반응식에 의해 환원되는 합금 분말 제조방법.
    [반응식 1]
    MCl2 (M = Co, Cu, Fe, Ni)
    MCl2 + H2 = M + 2HCl
    [반응식 2]
    MCl3 (M = Ru)
    2MCl3 + 3H2 = 2M + 6HCl
  8. 제 7항에 있어서,
    상기 환원된 금속은 코발트(Co), 구리(Cu), 철(Fe), 니켈(Ni) 및 루테늄(Ru)의 원자퍼센트(atomic percentage가 1:1:1:1:1인 CoCuFeNiRu을 형성하는 합금 분말 제조방법.
  9. 제 1항에 있어서,
    상기 혼합물을 열처리하는 단계는,
    공정 온도를 상기 혼합물의 반응온도로 제어하는 제 1 단계;
    공정온도를 입경 크기에 따라 설정하는 제 2 단계; 및
    공정 온도를 금속 화합물에서 환원된 금속들의 반응온도로 제어하는 제 3 단계를 포함하는 힙금 분말 제조방법.
  10. 제 9항에 있어서,
    상기 제 1 단계의 온도는 400℃ 내지 500℃이고,
    상기 제 3 단계의 온도는 500℃ 내지 700℃인 합금 분말 제조방법.
  11. 제 1항 내지 제 10항 중 어느 한 항에 따른 제조방법에 의해 제조되는 합급 분말.
  12. 제 11항에 있어서,
    상기 합금 분말의 입경은 50㎚ 내지 700㎚인 합금 분말.
PCT/KR2021/011641 2020-09-21 2021-08-31 합금 분말 및 이의 제조방법 WO2022059966A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21869588.0A EP4215299A1 (en) 2020-09-21 2021-08-31 Alloy powder and preparation method therefor
US18/245,303 US20230364678A1 (en) 2020-09-21 2021-08-31 Alloy powder and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200121267A KR20220038899A (ko) 2020-09-21 2020-09-21 합금 분말 및 이의 제조방법
KR10-2020-0121267 2020-09-21

Publications (1)

Publication Number Publication Date
WO2022059966A1 true WO2022059966A1 (ko) 2022-03-24

Family

ID=80776243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011641 WO2022059966A1 (ko) 2020-09-21 2021-08-31 합금 분말 및 이의 제조방법

Country Status (4)

Country Link
US (1) US20230364678A1 (ko)
EP (1) EP4215299A1 (ko)
KR (1) KR20220038899A (ko)
WO (1) WO2022059966A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115533111A (zh) * 2022-10-11 2022-12-30 浙江工业大学 一种高比表面积高熵合金纳米粉末及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575190A2 (en) * 1992-06-17 1993-12-22 Mitsui Petrochemical Industries, Ltd. Fe-base soft magnetic alloy and process for making same
KR20100076824A (ko) * 2008-12-26 2010-07-06 한국과학기술연구원 마이크로 로드 및 이를 함유하는 재료와, 마이크로 로드 및나노분말의 제조 방법
KR20100131237A (ko) * 2009-06-05 2010-12-15 삼성에스디아이 주식회사 연료전지용 촉매 및 이를 포함하는 연료전지 시스템
WO2018181568A1 (ja) * 2017-03-28 2018-10-04 宇部興産株式会社 金属複合粒子及びその製造方法、金属複合粒子担持体及びその製造方法、並びに粒子組成物
KR20190022881A (ko) * 2016-07-06 2019-03-06 키날텍 피티와이. 엘티디. 발열 금속 시스템의 열 화학적 처리

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575190A2 (en) * 1992-06-17 1993-12-22 Mitsui Petrochemical Industries, Ltd. Fe-base soft magnetic alloy and process for making same
KR20100076824A (ko) * 2008-12-26 2010-07-06 한국과학기술연구원 마이크로 로드 및 이를 함유하는 재료와, 마이크로 로드 및나노분말의 제조 방법
KR20100131237A (ko) * 2009-06-05 2010-12-15 삼성에스디아이 주식회사 연료전지용 촉매 및 이를 포함하는 연료전지 시스템
KR20190022881A (ko) * 2016-07-06 2019-03-06 키날텍 피티와이. 엘티디. 발열 금속 시스템의 열 화학적 처리
WO2018181568A1 (ja) * 2017-03-28 2018-10-04 宇部興産株式会社 金属複合粒子及びその製造方法、金属複合粒子担持体及びその製造方法、並びに粒子組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115533111A (zh) * 2022-10-11 2022-12-30 浙江工业大学 一种高比表面积高熵合金纳米粉末及其制备方法
CN115533111B (zh) * 2022-10-11 2024-03-29 浙江工业大学 一种高比表面积高熵合金纳米粉末及其制备方法

Also Published As

Publication number Publication date
EP4215299A1 (en) 2023-07-26
US20230364678A1 (en) 2023-11-16
KR20220038899A (ko) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2022059966A1 (ko) 합금 분말 및 이의 제조방법
WO2021010741A1 (ko) 습식공정을 이용한 코어-쉘 구조의 은-구리 혼합분말의 제조 방법
WO2016060367A1 (ko) 에그-쉘 형 고분산 나노 입자-산화금속 지지체 혼성 구조체, 이의 제조방법 및 이의 용도
US20230059571A1 (en) Cathode material stabilization
WO2016024689A1 (ko) 탄질화티타늄 분말의 제조 방법
CN107866562B (zh) 一种球形金微粉及其制备方法和应用
US7592292B2 (en) Catalyst for use in reforming methanol with steam and method for preparation thereof
WO2020071841A1 (ko) 은 분말 및 이의 제조 방법
WO2015190888A1 (ko) 중공 금속 나노입자의 제조방법 및 이에 의해 제조된 중공 금속 나노입자
WO2018124365A1 (ko) 벼이삭형 구리 입자의 제조방법, 이에 의해 제조된 벼이삭형 구리 입자 그리고 이를 이용한 전도성 페이스트
CN108436104B (zh) —种用酸性蚀刻废液制备铜纳米线的工艺
CN109128143B (zh) 一种具有核壳结构的纳米钨铜粉体的制备方法
WO2011021546A1 (ja) カルコゲン化合物粉、カルコゲン化合物ペースト及びカルコゲン化合物粉の製造方法
WO2019004755A1 (ko) 산화니켈 나노입자의 제조방법 및 이를 이용하여 제조된 산화니켈 나노입자
WO2021060754A1 (ko) 비철금속 분말의 제조 방법
WO2012077242A1 (ja) カルコゲン化合物粉、カルコゲン化合物ペースト、カルコゲン化合物粉の製造方法、カルコゲン化合物ペーストの製造方法およびカルコゲン化合物薄膜の製造方法
KR100828007B1 (ko) 개선된 산화알루미늄 분산강화형 동 합금 분말의 제조방법
CN104311074B (zh) 一种亚微米铁铝尖晶石及其制备方法和用途
JP6494338B2 (ja) ニッケル粒子の製造方法
JP5003648B2 (ja) 酸化物被覆銅微粒子の製造方法
CN101522929B (zh) 镍-铼合金粉末及含有其的导体糊
WO2023008796A1 (ko) 양극 활물질 제조용 전이금속 전구체
CN1571190A (zh) 一种过渡金属二锑化物的制备方法
WO2018182368A1 (ko) 구리합금 제조방법 및 구리합금을 원료로 하는 호일 제조방법
WO2021020867A1 (ko) 탄소 전극 재료 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021869588

Country of ref document: EP

Effective date: 20230421