WO2022059856A1 - 모듈형 토양관제화 식물재배기 - Google Patents

모듈형 토양관제화 식물재배기 Download PDF

Info

Publication number
WO2022059856A1
WO2022059856A1 PCT/KR2020/017804 KR2020017804W WO2022059856A1 WO 2022059856 A1 WO2022059856 A1 WO 2022059856A1 KR 2020017804 W KR2020017804 W KR 2020017804W WO 2022059856 A1 WO2022059856 A1 WO 2022059856A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
space
soil
unit
disposed
Prior art date
Application number
PCT/KR2020/017804
Other languages
English (en)
French (fr)
Inventor
권미진
Original Assignee
주식회사 애그유니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 애그유니 filed Critical 주식회사 애그유니
Priority to US17/922,273 priority Critical patent/US20230200292A1/en
Publication of WO2022059856A1 publication Critical patent/WO2022059856A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/02Special arrangements for delivering the liquid directly into the soil
    • A01C23/023Special arrangements for delivering the liquid directly into the soil for liquid or gas fertilisers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/04Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
    • A01C23/042Adding fertiliser to watering systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/005Reservoirs connected to flower-pots through conduits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/006Reservoirs, separate from plant-pots, dispensing directly into rooting medium
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • A01G9/021Pots formed in one piece; Materials used therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/04Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
    • A01C23/045Filling devices for liquid manure or slurry tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the present invention relates to a plant cultivator having a structure in which air and nutrient solution can be simultaneously supplied.
  • Ondol method is mainly used in Korea as a device to maintain the temperature in various residential or industrial spaces for people to live in in winter.
  • the ondol method refers to a method of heating the floor through heat exchange between the floor and the heating wire by circulating heating water heated with a heating wire installed on the floor.
  • a heat exchange boiler capable of supplying heating water continuously heated with a hot wire is essential.
  • a smart farm is an expanded concept of a plant grower or plant factory. It refers to an advanced agricultural form that improves the productivity and quality of agricultural products by applying ICT technologies such as the Internet of Things or BT technologies to facility horticulture.
  • the size of the smart farm support business and market size at home and abroad is increasing every year. In the case of Korea, it is expected to grow at an average annual rate of 5% from KRW 4.44 trillion in 2017 to KRW 5,958.8 billion in 2022. .
  • the plant cultivator is a means capable of providing a space in which plants can be grown, for example, a space in which land and plants are accommodated in the case of soil cultivation or a nutrient solution is accommodated in the case of hydroponics.
  • a space in which plants can be grown for example, a space in which land and plants are accommodated in the case of soil cultivation or a nutrient solution is accommodated in the case of hydroponics.
  • an injection pipe for supplying the nutrient solution is disposed on the upper part of the space in which the soil is accommodated to provide a plant cultivator capable of uniformly supplying the nutrient solution to the soil.
  • a plant cultivator capable of uniformly supplying the nutrient solution to the soil.
  • a plant cultivator capable of uniformly supplying a nutrient solution to the roots of plants and simultaneously supplying oxygen, that is, air for root respiration. It is not limited to the technical problem as described above, and another technical problem may be derived from the following description.
  • a plant cultivator includes a growth space in which soil and plants are accommodated and a nutrient solution is supplied, and an auxiliary space disposed below the growth space to introduce air and discharge the nutrient solution supplied to the soil. wealth; a fertilization unit disposed inside the body unit to supply a nutrient solution to the soil; and a separation unit disposed between the growth space and the auxiliary space to prevent the soil from flowing into the auxiliary space, and having a plurality of openings having diameters less than or equal to a set size, wherein the air introduced into the auxiliary space is It is introduced into the soil through the opening and characterized in that it promotes the growth of plants.
  • the main body portion, the case portion forming the growth space and the auxiliary space; a nutrient solution inlet formed on one side of the growth space of the case part and through which the nutrient solution flows into the fertilization part; and an air inlet formed on one side of the auxiliary space of the case part through which air is introduced into the auxiliary space.
  • the fertilization unit a first fertilization unit connected to the nutrient solution inlet and disposed to surround the side surface of the growth space and formed with a plurality of injection holes; and a second fertilization part extending downwardly of the first fertilization part and disposed to surround the side surface of the growth space and having a plurality of injection holes formed therein.
  • the growth space may include: a first growth space formed by a set length downward from the upper end of the case part; and a second growth space formed from a lower end of the first growth space to a lower end of the case part and disposed with soil, wherein the first fertilization part is disposed in the first growth space to supply a nutrient solution to the outside of the soil, and The second fertilization part is disposed in the second growth space to supply the nutrient solution into the soil.
  • the fertilization unit the nutrient solution is supplied to form a flow path portion formed with a plurality of injection holes; and a flow path protection part formed to surround the outside of the flow path part and having a plurality of openings having a diameter less than or equal to a set size.
  • a plant cultivation system comprises: the plant cultivation machine according to claim 2; Nutrient solution supply unit for supplying a mixture of the nutrient solution; a water supply unit for supplying the nutrient solution to the yangapp inlet; and an air supply unit for supplying air to the air inlet.
  • the nutrient solution supply unit at least one nutrient solution storage unit in which the nutrient solution is stored; a water storage unit for storing water; and a mixed solution storage unit in which the nutrient solution stored in the nutrient solution storage unit and the moisture stored in the water storage unit are mixed.
  • the separation unit divides the plant into a plant growth space that can receive nutrient solution with the roots buried in the soil and an auxiliary space for supplying air to the plant roots, so that the nutrient solution and air can be simultaneously supplied to the plant roots. .
  • FIG. 1 is a configuration diagram of a plant cultivation system for using a plant cultivation machine according to an embodiment of the present invention.
  • FIG. 2 is a front perspective view of a state in which soil is accommodated in a plant grower according to an embodiment of the present invention.
  • FIG 3 is a front perspective view of a state in which soil is not accommodated in a plant grower according to an embodiment of the present invention.
  • FIG. 4 is a rear perspective view of a plant cultivation machine according to an embodiment of the present invention.
  • FIG. 5 is a perspective view excluding the main body of the plant cultivator according to the embodiment of the present invention.
  • FIG. 6 is a side cross-sectional view of a plant cultivation machine according to an embodiment of the present invention.
  • FIG. 1 is a front cross-sectional view of a heat exchange boiler according to an embodiment of the present invention
  • FIG. 2 is a side cross-sectional view of a heat exchange boiler according to an embodiment of the present invention
  • FIG. 3 is a bottom view of the heat exchange boiler according to an embodiment of the present invention .
  • the boiler according to an embodiment of the present invention has a case 110 forming an exterior, a storage unit 120 disposed inside the case 110 to store heated water, and a storage unit 120 .
  • Heat exchange unit 130 through which circulating water circulates inside the heating wire of the floor to be heated through heat exchange with the heating water in the floor, a heater unit 140 disposed in the storage unit 120 and supplying heat for heating the heated water, heat exchange It may include a pump unit 150 for circulating the circulating water in the unit 130 , and a controller 160 for controlling the operation of the heater and the pump unit 150 .
  • the case 110 may be formed in a rectangular box shape, and the heating wire inlet 111 connected to the outlet of the heating wire and the heated circulating water are heated by circulating the heating wire installed on the floor of the living space to introduce the circulating water whose temperature is lowered.
  • a hot wire outlet 112 connected to the inlet of the hot wire to be supplied may be formed.
  • the heated water outlet 113 through which the heated water flows into or out of the storage unit 120 may be formed.
  • a circulating water supply port for supplying the circulating water to the heat exchange unit 130 may be formed.
  • the storage unit 120 is a means capable of providing a storage space 122 in which heated water can be stored.
  • the storage unit 120 includes a storage tank 121 having a storage space 122 for storing heated water therein, a water level measuring unit 170 disposed in the storage tank 121 to measure the internal heated water level, and It is disposed below the storage tank 121 and may include a heated water inlet/outlet connected to the heated water outlet 113 so as to be an inflow or outflow of the heated water.
  • the heat exchange unit 130 may be disposed in the storage space 122 of the storage unit 120 . The detailed configuration will be described in detail in the description of the configuration of the heat exchange unit 130 below.
  • the storage tank 121 may be a rectangular case 110 , and a heat exchange unit 130 and a heater may be disposed therein, and a storage space 122 in which heated water may be stored may be formed.
  • a plurality of heat exchange fins 131 , an inlet bar 132 , and an outlet bar 134 to be described later among the configuration of the heat exchange unit 130 are disposed, There is an effect that the circulating water in the heat exchange unit 130 can exchange heat.
  • the water level measuring unit 170 may be disposed at a set height in the storage space 122 in the storage tank 121 to measure the level of the heated water in the storage space 122 .
  • the water level measurement unit 170 sets the upper side of the heat exchange fins 131 to prevent the water level of the heated water in the storage space 122 from overflowing above the upper ends of the plurality of heat exchange fins 131 to be described later of the heat exchange unit 130 . It is disposed at a height so that it can be determined whether or not the heating water is in contact. That is, the water level measuring unit 170 may be formed of a contact sensor.
  • the heated water inlet and outlet are disposed below the storage tank 121 and are means capable of supplying heated water to the inside of the storage tank 121 or discharging the heated water to the outside.
  • the heated water outlet can provide a flow path extending from the lower side of the storage tank 121 to the heated water outlet 113 formed in the case 110 , so that the inflow and outflow of heated water is possible.
  • the heat exchange unit 130 has a flow path through which circulating water flows therein, is disposed in the storage space 122 formed in the storage tank 121 of the storage unit 120 , and receives heat by the heating water, and is internally through heat exchange. It is a means to heat the flowing circulating water.
  • the heat exchange unit 130 provides a flow path through which circulating water flows therein, and is connected to the top of the plurality of heat exchange fins 131 and the plurality of heat exchange fins 131 that exchange heat with the heated water of the storage unit 120 and is connected to the bottom.
  • It may include an inlet bar 132 through which circulating water having a lowered temperature by circulating through the heating wire of the inflow bar 132 and an outlet bar 134 connected to the lower end of the plurality of heat exchange fins 131 and through which circulating water heated by the floor heating wire flows out. there is.
  • the heat exchange unit 130 is disposed between the hot wire inlet 111 and the inlet bar 132 , and the circulating water heat-exchanged with the hot wire through the outlet of the hot wire flows into the inlet bar 132 through the hot wire inlet 111 . It is disposed between the hot wire inlet and outlet bar 134 and the hot wire outlet 112 to provide It may further include a hot wire outlet providing a.
  • the inlet bar 132 is a bar-shaped means through which circulating water is introduced for heating by being connected to the heating wire inlet, and the upper end of a plurality of heat exchange fins 131, that is, the inlet 131a of the heat exchange fin 131 is connected. and can serve as a medium for introducing circulating water to the plurality of heat exchange fins 131 .
  • the outlet is a bar-shaped means for circulating water heated by being connected to the hot wire outlet to flow out to the hot wire. It can serve as a medium to be discharged as a hot wire.
  • the inlet bar 132 and the outlet bar 134 may be arranged to extend in a horizontal form to the ground in the storage space 122 formed in the storage tank 121 of the storage unit 120 , and the inlet bar 132 and The outlet bars 134 may be disposed to be parallel to each other.
  • the inlet may be disposed in the upper front of the storage space 122 in the storage tank 121
  • the outlet may be disposed in the lower rear of the storage space 122 in the storage tank 121 .
  • the plurality of heat exchange fins 131 connected to the inlet and outlet may extend from the upper front to the lower rear of the storage space 122 , and when viewed from the side of the storage tank 121 , it goes from the upper side to the lower side. It may be arranged to have an oblique shape inclined to the rear.
  • the configuration of the plurality of heat exchange fins 131 will be described in detail.
  • the plurality of heat exchange fins 131 are disposed in the storage space 122 of the storage unit 120 and are means capable of being heated by the heating water in the storage space 122 while circulating water flows therein.
  • a structure of one heat exchange fin 131 will be described, and then an arrangement structure of a plurality of heat exchange fins 131 will be described.
  • the heat exchange fins 131 are formed in a spring shape, so that an area that can be in contact with the heated water in the storage space 122 is wide.
  • the heat exchange fins 131 may be arranged to have a narrower width from the upper end to the lower end, and may be arranged such that the interval between the rotation sections of the heat exchange fins 131 becomes narrower from the upper end to the lower end.
  • the heat exchange fin 131 extends from the inlet bar 132 to the outlet bar 134 in a spring shape with respect to the central axis. In this case, the vertical rotation interval of the rotation section becomes narrower from the top to the bottom. can be placed.
  • the diameter T1 of the upper side of the heat exchange fin 131 has a larger diameter than the diameter T2 of the lower side of the heat exchange fin 131, and the inner flow path of the heat exchange fin 131 goes from the upper side to the lower side.
  • the diameter may gradually become narrower, and the vertical rotation interval L1 of the upper side of the heat exchange fin 131 maintains a longer interval compared to the vertical rotation interval L2 of the lower side of the heat exchange fin 131, so heat exchange from the upper side to the lower side is maintained.
  • the vertical rotation interval of the pin 131 may be gradually narrowed.
  • the circulating water whose temperature is lowered through the inlet bar 132 to which the heat exchange fin 131 is connected has an effect of being quickly heated due to high heat exchange efficiency in the process of moving through the narrower flow path.
  • the heat exchange area compared to the same area can be widened toward the lower side in the storage space 122 .
  • the temperature of the heated water in the storage space 122 in the storage tank 121 is higher toward the lower side than the upper side (which will be described later). There is an effect that heating is made efficiently.
  • the upper end of the heat exchange fin 131 that is, a portion connected to the inlet bar 132 may be disposed to be bent in the direction of the hot wire inlet. Accordingly, since the upper end of the heat exchange fin 131, that is, the inlet of the heat exchange fin 131, is bent in a direction opposite to the flow direction of the circulating water introduced into the inlet bar 132 through the hot wire inlet, the inlet bar 132 ) can be easily introduced into the heat exchange fins 131, and thus the circulation efficiency of the circulating water circulating through the floor heating wire of the living space can be increased.
  • the plurality of heat exchange fins 131 may have an inlet connected to the inlet bar 132 and an outlet connected to the outlet bar 134, and may be arranged to extend while having a rotation section in the form of a spring in a direction perpendicular to the ground. .
  • the plurality of heat exchange fins 131 may be disposed to be spaced apart from each other in a horizontal direction to the ground. That is, the plurality of heat exchange fins 131 may be arranged in parallel with each other based on the inlet bar 132 and the outlet bar 134 .
  • the circulating water introduced into the inlet bar 132 may be simultaneously introduced into the inlets of the plurality of heat exchange fins 131 and may be simultaneously discharged through the outlets of the plurality of heat exchange fins 131 .
  • a group in which a plurality of heat exchange fins 131 are parallel to each other as described above is defined as a heat exchange fin 131 group.
  • the heat exchange fins 131 group may include a first heat exchange group 135 and a second heat exchange group 136 .
  • the first heat exchange group 135 may be disposed to be spaced apart from each other by a set interval in the forward direction based on the extension line extending from the inlet bar 132 and the outlet bar 134 .
  • the second group of heat exchange fins 131 may be disposed to be spaced apart from each other by a set interval in the rear based on the extension line extending from the inlet bar 132 and the outlet bar 134 .
  • first heat exchange group 135 and the second heat exchange group 136 are spaced apart in the front and rear directions in parallel to each other, and a plurality of heat exchange fins are based on the inlet bar 132 and the outlet bar 134 .
  • 131 may be arranged in parallel connection.
  • the extension line from the upper end to the lower end of the first heat exchange group 135 and the second heat exchange group 136 may be parallel to the extension line extending the inlet bar 132 and the outlet bar 134 .
  • the storage tank 121 in a state in which the first heat exchange group 135 and the second heat exchange group 136 are inclined by an angle (hereinafter, set angle) between the extension line of the inlet bar 132 and the outlet bar 134 and the ground. ) because it is disposed in the storage space 122, a larger area than the state perpendicular to the ground can be stored in the storage space 122, and accordingly, the area of the heat exchange fins 131 heated by the heated water is widened. It has the effect of increasing the heat exchange efficiency.
  • the heater unit 140 may be disposed in the storage unit 120 to radiate heat for heating the heated water to the outside.
  • the heater unit 140 may be disposed on the bottom surface of the storage tank 121 of the storage unit 120 to directly contact the heated water stored in the storage space 122 to supply heat to the heated water. That is, the heater unit 140 may receive electricity and radiate heat to the outer surface, and in this case, the heating water in contact with the outer surface of the heater unit 140 may be heated. That is, since the heater unit 140 generates heat from the bottom surface of the storage tank 121 , the temperature of the heated water inside the storage tank 121 may increase from the upper side to the lower side, and the heat exchange fin 131 also moves from the upper side to the lower side. As the vertical interval of the rotation section becomes narrower, the contact area of the heated water at the lower side is widened, thereby increasing the heat exchange efficiency.
  • the pump unit 150 is connected to one side of the hot wire inlet, so that the circulating water passes through the hot wire inlet, the inlet bar 132, the heat exchange fin 131, the outlet bar 134, the hot wire outlet, and the hot wire on the floor to return to the hot wire inlet. It is a means of supplying pressure so that it can flow in.
  • the pump unit 150 may supply pressure in one direction by using hydraulic pressure, etc., and accordingly, the circulating water flows out from the heat exchange boiler 100 and heats the floor by exchanging heat with the heating wire of the floor in a heated state, and this After that, it may be introduced into the heat exchange boiler 100 in a state in which the temperature is lowered again.
  • the control unit 160 is a means capable of controlling the heater unit 140 and the pump unit 150, and in general, when the user operates the heat exchange boiler 100 through the input/output unit, the heater unit 140 and the pump are adjusted to the set temperature.
  • the unit 150 can be controlled.
  • the control unit 160 controls the heater unit 140 to control the amount of heat supplied from the heater unit 140 , and at the same time controls the pump unit 150 to adjust the degree of pressure supplied. there is.
  • the pump unit 150 When the user operates the control unit 160 to operate the heat exchange boiler 100 , the pump unit 150 operates to circulate the circulating water by applying pressure to the circulating water.
  • the circulating water explains its movement based on the circulating water stored in the heating wire inside the space floor.
  • the circulating water whose temperature has been lowered after completing heat exchange with the floor in the heated wire in the space floor may be introduced into the heat exchange boiler 100 through the hot wire inlet 111.
  • the hot wire inlet It may be introduced into the inlet bar 132 .
  • the circulating water introduced into the inlet bar 132 is bent in a direction opposite to the inflow direction of the inlet side of the plurality of heat exchange fins 131 , that is, the circulating water is bent in the opposite direction to the plurality of heat exchange fins 131 efficiently. Since the plurality of heat exchange fins 131 are submerged in the heated water disposed in the storage space 122 of the storage unit 120, the circulating water introduced into the plurality of heat exchange fins 131 is It may be heated through heat exchange with the heated water of the storage unit 120 .
  • each of the plurality of heat exchange fins 131 has a smaller inner flow path diameter from the upper end to the lower end, that is, from the inlet bar 132 direction to the outlet bar 134 direction. can move
  • each of the plurality of heat exchange fins 131 extends in the form of a spring while rotating toward the inlet bar 132 and the outlet bar 134 with respect to the central axis, and since the interval between the rotations becomes narrower from the upper end to the lower end, the lower side As it goes down, the area of the heat exchange fins 131 in contact with the heated water is widened, thereby increasing heat exchange efficiency.
  • the heater unit 140 is disposed at the lower end of the storage unit 120 to supply heat with the heated water, the temperature of the heated water at the bottom is higher than the temperature of the heated water at the top in the storage space 122 in the storage unit 120 . , and accordingly, the circulating water inside the heat exchange fin 131 may also show a higher heat exchange efficiency as it goes down.
  • first heat exchange group 135 and the second heat exchange group 136 are spaced back and forth from the inlet bar 132 and extend to the outlet bar 134 in an inclined state, below the heat exchange, refer to the accompanying drawings
  • first heat exchange group 135 and the second heat exchange group 136 are spaced back and forth from the inlet bar 132 and extend to the outlet bar 134 in an inclined state, below the heat exchange, refer to the accompanying drawings
  • the embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them.
  • the present invention may be embodied in many different forms and is not limited to the structure or method described herein.
  • the nutrient solution and oxygen are uniformly supplied to the plant roots by supplying air into the soil L while uniformly supplying the nutrient solution to the inside of the soil L in which the plant is accommodated.
  • plant grower 200 it will be briefly referred to as "plant grower 200".
  • FIG. 1 is a configuration diagram of a plant cultivation system for using a plant cultivation machine according to an embodiment of the present invention.
  • the plant cultivation system 100 is a system that can supply nutrient solution and oxygen to the roots of a plant by using the plant cultivation machine 200, and a nutrient solution supply unit 110, which provides a nutrient solution to be supplied to plants, from the nutrient solution supply unit 110
  • It may include 140 and a plant cultivator 200 that provides a space for plants to grow and receives nutrient solution and air from the water supply unit 120 and the air supply unit 120 .
  • the nutrient solution supply unit 110 is a means for supplying a nutrient solution for supplying nutrients necessary for the growth of plants, the nutrient solution storage unit 111 in which one or more nutrient solutions are stored in detail, and moisture for controlling the concentration of the nutrient solution for watering the plants. It may include a water storage unit to be stored and a mixed solution storage unit 113 for storing a mixed solution in which the water of the water storage unit and the nutrient solution of the nutrient solution storage unit 111 is mixed.
  • the manager has the effect of being able to store the determined ratio of the mixed solution in the mixed solution storage unit 113 by determining the various nutrient solutions of the nutrient solution storage unit 111 and the moisture ratio of the water storage unit 112 according to the type of plant to be grown.
  • the water supply unit 120 is a means for supplying the mixed solution stored in the mixed solution storage unit 113 to the plant grower 200 .
  • the water supply unit 120 includes a water supply pump 121 that provides power for supplying the mixed solution to the plant grower 200, and a water supply path 122 that provides a flow path through which the mixed solution supplied from the water pump 121 flows. and a water supply valve 123 capable of selectively opening and closing the supply passage. Through this, if desired, the manager may determine whether to supply the plant culture machine 200 of the mixed solution by turning the water supply valve 123 on or off.
  • the air supply unit 120 includes an air pump 121 that provides power for external air to be supplied to the plant grower 200, and an air flow path 122 that provides a flow path through which the air supplied from the air pump 121 flows. and an air valve 123 capable of selectively opening and closing the air flow path 122 . Through this, the manager can determine whether to supply air to the plant culture machine 200 by turning the air valve 123 on or off if desired.
  • the drainage unit 140 is a means through which the mixture remaining after being supplied to the plants in the plant cultivation machine 200 can be discharged to the outside.
  • the drain unit 140 includes a drain pump 141 providing power for discharging the mixed solution remaining after supplying plants, a drain flow path 142 providing a flow path through which the mixed solution discharged from the drain pump 141 flows, and draining. It may include a drain valve 143 for selectively opening and closing the flow passage 142 and a filter unit 144 for filtering and filtering the mixed solution passing through the drain passage 142 .
  • the mixed solution discharged through the drainage unit 140 may be filtered and supplied to the nutrient solution supply unit 110 again.
  • FIG. 2 is a front perspective view of a state in which the soil (L) of the plant grower according to an embodiment of the present invention is accommodated
  • FIG. 4 is a rear perspective view of a plant cultivator according to an embodiment of the present invention
  • FIG. 5 is a perspective view excluding the main body of the plant cultivator according to an embodiment of the present invention
  • FIG. 6 is a plant cultivator according to an embodiment of the present invention is a cross-sectional side view of
  • the plant cultivator 200 has a space for cultivating plants, receives the mixed solution generated by the nutrient solution supply unit 110 from the water supply unit 120 , and receives air from the air supply unit 120 . It is a means to receive and provide to plants.
  • the plant cultivator 200 is disposed below the growth space 240 and the growth space 240 to which the soil L and plants are accommodated and the nutrient solution is supplied, so that air is introduced and the nutrient solution supplied to the soil L is
  • the main body part 210 in which the auxiliary space 250 to be discharged is formed, the fertilization part 220 which is disposed inside the main body part 210 and supplies the nutrient solution to the soil L, and the growth space 240 and the auxiliary space 250 It is disposed between the soil (L) to prevent the inflow of the auxiliary space 250 and at the same time may include a separation unit 230 formed with a plurality of openings having a diameter less than or equal to a set size.
  • the body part 210 is formed on one side of the growth space 240 of the case part 211 and the case part 211 for forming the growth space 240 and the auxiliary space 250 and supplied from the fertilization part 220 .
  • the nutrient solution inlet 212 for introducing the nutrient solution, that is, the mixed solution, is formed on one side of the auxiliary space 250 of the case unit 211, and the air inlet 213 for introducing the air supplied from the air supply unit 120 into the plant and the plant.
  • the supplied and remaining mixed solution may include volleyball water 214 for draining. there is.
  • the case unit 211 may have, for example, a rectangular box shape, and an inner space may be divided into an upper growth space 240 and a lower auxiliary space 250 by the separation unit 230 .
  • the fertilization unit 220 and the separation unit 230 may be disposed inside the case unit 211 .
  • the growth space 240 means a space in which the soil L is disposed and plants can grow by being planted in the soil L
  • the auxiliary space 250 is a separate empty space below the growth space 240 . It means a space in which air is introduced or supplied to plants in the growth space 240 and the remaining mixture can be discharged.
  • the growth space 240 is a space filled by the soil L on the lower side of the first growth space 241 and the first growth space 241 that provide a space for a plant to grow on the upper side of the soil (L). It may be divided into a second growth space 242 .
  • the first growth space 241 and the second growth space 242 are means defined for the arrangement of the fertilization part 220 to be described later.
  • the nutrient solution inlet 212 is connected to the water supply passage 122 of the water supply unit 120 to provide an opening through which the mixed solution flowing in the water supply passage 122 can be introduced into the growth space 240 , likewise the air inlet Reference numeral 213 may be connected to the air flow path 122 of the air supply unit 120 to provide an opening through which air flowing through the air flow path 122 may be introduced into the auxiliary space 250 . That is, the nutrient solution (mixed solution) may be supplied to the growth space 240 and air to the auxiliary space 250 through the nutrient solution inlet 212 and the air inlet 213 , respectively.
  • drain hole 214 may be connected to the drain passage 142 of the drain unit 140 to provide an opening through which the mixed solution remaining after being supplied to the plant can be introduced into the mixed solution storage unit 141 again.
  • the fertilization unit 220 is connected to the nutrient solution inlet 212 and is a means capable of supplying the mixed solution introduced through the nutrient solution inlet 212 to the growth space 240 .
  • the fertilization unit 220 provides a flow path through which the mixed solution flowing in from the nutrient solution inlet 212 can flow, and a plurality of injection holes are formed to form a plurality of injection holes through which the mixed solution can be sprayed to the outside. It may include a flow path protection part formed to surround the outside and having a plurality of openings having a diameter less than or equal to a set size.
  • the nutrient solution flow path has a circular cross section and is formed to surround the inner surface of the case part 211 , and is a means through which the mixed solution to be sprayed into the growth space 240 can flow.
  • a plurality of injection holes are formed inside the nutrient solution flow path, there is an effect that the mixed solution can be uniformly sprayed into the growth space 240 .
  • the flow path protection part is formed to inspect the appearance of the nutrient solution flow path, and a plurality of openings having a diameter less than or equal to a set size may be formed.
  • the plurality of openings may have a size smaller than the grains of the soil L, and through this, the soil L or foreign substances disposed in the growth space 240 are introduced into the injection port of the nutrient solution flow path to spray the mixed solution. While solving the clogging problem, the mixed solution injected through the injection hole of the nutrient solution flow passage has an effect that can be efficiently supplied to the growth space 240 .
  • the fertilization unit 220 is composed of a first fertilization unit 221 disposed in the first growth space 241 and a second fertilization unit 222 disposed in the second growth space 242 according to the arrangement area thereof.
  • the first fertilization part 221 is connected from the nutrient solution inlet 212 and is disposed on the upper side of the fertilization part 220, so that the mixed solution can be sprayed into the first growth space 241 in which the soil L is not disposed. there is.
  • the mixed solution is supplied to wet the surface of the soil (L) serves to constantly control the humidity of the surface of the soil (L).
  • the first fertilization part 221 may be disposed to surround the side of the growth space 240 , in detail, the first growth space 241 .
  • the second fertilization part 222 may be disposed to extend downward from one side of the first fertilization part 221 , and may be disposed buried in the soil L of the second growth space 242 . Accordingly, as the mixed solution flowing in from the nutrient solution inlet 212 is directly sprayed into the soil L from the injection port of the second fertilization unit 222 through the first fertilization unit 221, the humidity inside the soil L is reduced. It plays a role in keeping it constant.
  • the second fertilization portion 222 may be disposed to surround the side of the growth space 240 , in detail, the second growth space 242 .
  • the flow path protection part of the fertilization part 220 may be disposed only in the second fertilization part 222 . This is because there is no need to protect the nutrient solution flow path unless it is directly buried in the soil L like the first fertilization part 221 .
  • the fertilization unit 220 is disposed in the first fertilization unit 221 disposed outside the soil L (the first growth space 241) and the soil L inside (the second growth space 242). It may consist of the second fertilization part 222 , and accordingly, there is an effect of supplying the mixed solution to the surface of the soil L and the interior of the soil L at the same time.
  • the separation unit 230 is disposed inside the main body 210 and is a means capable of separating the space in the main body 210 into a growth space 240 and an auxiliary space 250 .
  • the separation unit 230 includes one or more protrusions 231 protruding as much as the height of the auxiliary space 250 and a separation plate 232 disposed on the upper end of the protrusions 231 and having the same size as the top surface of the main body 210 . ) may be included.
  • the protrusions 231 are disposed at four corners of the separator plate 232 , the separator plate 232 may be spaced apart from the lower surface of the case part 211 by an auxiliary space upward.
  • a plurality of openings smaller than a set size may be formed in the separation plate 232 . This is to prevent the soil L disposed on the upper side of the separation plate from flowing into the auxiliary space 250 and at the same time to allow the mixed solution supplied to the plants to flow into the auxiliary space 250 .
  • the separation unit 230 may form a space for air to be introduced from the auxiliary space 250 , that is, the air inlet 213 , or to be supplied from the growth space 240 and the remaining mixed solution may be discharged.
  • the auxiliary space 250 may be disposed as an empty space below the separation unit 230 , and the mixed solution may be discharged or air may be supplied through the auxiliary space 250 .
  • the supplied mixed solution may be introduced into the fertilization unit 220 through the nutrient solution supply port through the water supply unit 120 .
  • the mixed solution introduced into the fertilization unit 220 is sprayed into the first growth space 241 by the injection hole formed in the first fertilization unit 221 in the process of moving downward within the fertilization unit 220 according to gravity, and the soil ( L) Can be sprayed on the surface.
  • the mixed solution moved downward may be injected into the second growth space 242 by the injection hole formed in the second fertilization unit 222 to be injected into the soil L. Accordingly, there is an effect that the mixture can be evenly sprayed on the surface of the soil (L) and the interior of the soil (L).
  • the mixed solution may be supplied from the nutrient solution supply unit 110 and air may be supplied from the air supply unit 120 at the same time.
  • the air supplied from the air supply unit 120 may be introduced into the auxiliary space 250 through the air supply port.
  • the auxiliary space 250 may be kept sealed, and accordingly, the incoming air is discharged through the opening of the separation unit 230 . It can be supplied into the soil (L) through the.
  • the mixed solution is uniformly supplied to the soil (L) and at the same time air is evenly supplied between the pores in the soil (L), so that the mixed solution and air are abundantly supplied to the roots of plants growing in the growth space 240 can be, and thus the growth of the plant can be promoted.
  • the separation unit 230 divides the nutrient solution and It has the effect of supplying air to the plant roots at the same time.
  • the fertilization unit 220 to supply the nutrient solution from the outside of the soil L and the inside of the soil L of the plant growth space 240 , the nutrient solution is uniformly applied to the soil L in the plant growing machine 200 . has the effect of supplying
  • the air holding amount of the soil L in the plant growth space 240 is increased, thereby effectively supplying oxygen to the plant roots.
  • 100 plant cultivation system 110: nutrient solution supply unit
  • body part 211 case part
  • first fertilization part 222 second fertilization part
  • separation unit 240 growth space 241: first growth space 242: second growth space

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Soil Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Inorganic Chemistry (AREA)
  • Botany (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Hydroponics (AREA)

Abstract

본 발명의 실시예에 따른 식물재배기는, 토양 및 식물이 수용되고 양액이 공급되는 성장공간과, 성장공간 하측에 배치되어 공기가 유입되고 토양에 공급된 양액이 배출되는 보조공간이 형성된 본체부; 본체부 내부에 배치되어 토양으로 양액을 공급하는 시비부; 및 성장공간과 보조공간 사이에 배치되어 토양의 보조공간 유입을 방지하고, 설정크기 이하의 직경을 가진 다 수의 개구가 형성된 분리부를 포함하고, 보조공간으로 유입된 공기는 개구를 통해 토양으로 유입되어 식물의 생장을 촉진시키는 것을 특징으로 한다.

Description

모듈형 토양관제화 식물재배기
본 발명은 공기와 양액이 동시에 공급될 수 있는 구조를 가진 식물재배기에 관한 것이다.
겨울철 사람들이 거주하기 위한 각종 거주공간이나 산업공간에서 온도를 유지하기 위한 장치로 우리나라에서는 주로 온돌방식을 사용한다. 상세히, 온돌방식이란 바닥에 설치된 열선으로 가열된 난방수를 순환시킴으로써 바닥과 열선 간의 열교환을 통해 바닥을 가열하는 방식을 의미한다. 이러한 온돌방식을 사용하기 위해서는 열선으로 지속적으로 가열된 난방수를 공급할 수 있는 열교환 보일러가 필수적으로 사용된다.
이러한 열교환 보일러의 경우, 일반적으로 가스 또종래 농업과 같은 2차산업에 대 한 종사자가 점점 줄어들고 있는 추세였으나, 최근 4차산업분야에 따른 AI나 빅데이터 기술이 농업시스템을 효율적으로 활용할 수 있도록 융합된 스마트팜 시장규모가 점점 증가하고 있는 추세이다. 스마트팜이란 식물재배기 또는 식물공장의 확장형 개념으로써, 사물인터넷과 같은 ICT기술이나 BT기술을 시설원예 등에 적용해 농산물의 생산성 및 품질을 향상시키는 진보된 농업형태를 의미한다.
국내외에서 스마트팜에 대한 지원사업 규모 및 시장규모는 연마다 증가하고 있는 추세이다. 국내의 경우, 2017년 4조 4,493억 원에서 연평균 5%씩 성장해 2022년에는 5조 9,588억 원의 규모를 형성할 것으로 예상되고 있고, 글로벌 시장규모 역시 연간 5% 이상 성장되고 있는 것을 확인할 수 있다.
특히, 국내의 경우, 정부나 공공기관에서 스마트팜 관련 지원사업에 대한 지원이 활발하게 이루어지고 있는 실정이다. 실제로 농촌진흥청에서는 2015년 기준으로 스마트팜의 효율적 기술개발 및 신속보급을 목적으로 3단계에 거쳐서 스마트팜 기술개발을 추진하고 있다. 1세대 기술인 원격모니터링 및 제어기술에 대해서는 이미 기술개발이 완료되었고, 2세대 기술인 지능형 정밀 생육관리 기술에 대해서는 현재 기술개발이 추진되고 있는 추세이다. 추후 3단계로 한국형 스마트팜 기술개발을 통해 기술수출을 진행하는 것을 목적으로 하고 있다. 이 외에도 각 지자체별로 스마트팜 혁신밸리를 전국 4개소에 설치하기로 결정하는 등 국내 스마트팜 기술개발 및 확산을 중심적으로 진행하고 있는 추세이다.
그런데 이러한 스마트팜 기술이 정상적으로 이루어지기 위해서는 식물의 생장을 위한 식물재배기가 가장 중요하고 필수적으로 필요한 수단이다. 식물재배기란 식물이 재배될 수 있는 공간, 예를 들어 토경재배의 경우 토지 및 식물이 수용되거나 수경재배의 경우 양액이 수용되는 공간을 제공할 수 있는 수단이다. 하지만 종래에 제공되던 식물재배기의 경우, 아래와 같은 문제점이 있다.
우선 토경재배용 식물재배기의 경우, 토양이 수용된 상태에서 식물에 양액이 공급될 수 있는 수단이 별도로 존재하지 않기 때문에 식물의 성장촉진을 위해서는 관리자가 토양에 직접 양액을 뿌려주어야 하는 문제점이 있다.
이에 대한 해결책으로, 토양이 수용된 공간 상부에 양액이 공급되기 위한 분사관이 배치되어 토양에 양액을 균일하게 공급할 수 있는 식물재배기가 제공되고 있다. 그러나 이 경우에도 양액이 토양 내부에서 균일하게 공급될 수 없을 뿐 아니라, 식물의 뿌리까지 양액이 공급되지 않는 문제가 있다.
또한, 토경재배의 경우 식물 뿌리가 토양에 매몰된 상태를 유지하기 때문에 뿌리호흡을 위한 산소가 뿌리에 접촉하지 못해 뿌리호흡이 제대로 이루어지지 않아 식물의 생장이 더디게 이루어지는 문제가 있다.
반대로, 수경재배용 식물재배기의 경우, 식물의 뿌리가 양액에 직접 잠겨있기 때문에 영양공급은 수월하게 이루어지는 효과가 있으나, 수경재배를 통해 재배할 수 있는 작물종류의 제한이 있는 문제가 있을 뿐 아니라, 특히 뿌리호흡을 위해 뿌리로 산소공급이 불가능한 문제점 있다.
이에 스마트팜 산업 발전을 위해 양액의 공급과 뿌리호흡을 위한 산소공급이 원활하게 이루어지기 위한 식물재배기의 개발이 절실하게 필요한 상황이다.
[선행기술문헌]
[특허문헌]
대한민국 실용신안 출원번호 20-2014-0001904 (발명의 명칭 : 식물재배기구 및 식물재배방법)
상기와 같은 문제점을 해결하기 위해 식물의 뿌리에 양액을 균일하게 공급함과 동시에 뿌리호흡을 위한 산소, 즉 공기를 동시에 공급할 수 있는 식물재배기를 제공하는데 있다. 상기된 바와 같은 기술적 과제로 한정되지는 않으며, 이하의 설명으로부터 또 다른 기술적 과제가 도출될 수도 있다.
본 발명의 일 실시예에 따른 식물재배기는, 토양 및 식물이 수용되고 양액이 공급되는 성장공간과, 상기 성장공간 하측에 배치되어 공기가 유입되고 토양에 공급된 양액이 배출되는 보조공간이 형성된 본체부; 상기 본체부 내부에 배치되어 상기 토양으로 양액을 공급하는 시비부; 및 상기 성장공간과 상기 보조공간 사이에 배치되어 상기 토양의 상기 보조공간 유입을 방지하고, 설정크기 이하의 직경을 가진 다 수의 개구가 형성된 분리부를 포함하고, 상기 보조공간으로 유입된 공기는 상기 개구를 통해 토양으로 유입되어 식물의 생장을 촉진시키는 것을 특징으로 한다.
또한, 상기 본체부는, 상기 성장공간과 상기 보조공간을 형성하는 케이스부; 상기 케이스부의 상기 성장공간 일측에 형성되어 상기 시비부로 양액이 유입되는 양액유입구; 및 상기 케이스부의 상기 보조공간 일측에 형성되어 상기 보조공간으로 공기가 유입되는 공기유입구를 포함하는 것을 특징으로 한다.
또한, 상기 시비부는, 상기 양액유입구에 연결되고 상기 성장공간의 측면을 둘러싸도록 배치되고 다 수의 분사구가 형성된 제1 시비부; 및 상기 제1 시비부의 하측으로 연장되어 상기 성장공간의 측면을 둘러싸도록 배치되고 다 수의 분사구가 형성된 제2 시비부를 포함하는 것을 특징으로 한다.
또한, 상기 성장공간은, 상기 케이스부 상단에서 하측으로 설정길이만큼 형성된 제1 성장공간; 및 상기 제1 성장공간 하단에서 상기 케이스부 하단으로 형성되어 토양이 배치되는 제2 성장공간을 포함하고, 상기 제1 시비부는 상기 제1 성장공간에 배치되어 상기 토양 외부로 양액을 공급하고, 상기 제2 시비부는 상기 제2 성장공간에 배치되어 상기 토양 내부로 양액을 공급하는 것을 특징으로 한다.
또한, 상기 시비부는, 양액이 공급되는 유로를 형성하고 다 수의 분사구가 형성된 유로부; 및 상기 유로부 외측을 감싸도록 형성되고 설정크기 이하의 직경을 가진 다 수의 개구가 형성된 유로보호부를 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따른 식물재배시스템은, 제 2 항에 따른 식물재배기; 양액을 혼합하여 공급하는 양액공급부; 상기 양앱유입구로 양액을 공급하는 급수부; 및 상기 공기유입구로 공기를 공급하는 공기공급부를 포함하는 것을 특징으로 한다.
또한, 상기 양액공급부는, 양액이 저장되는 하나 이상의 양액저장부; 수분이 저장되는 수분저장부; 및 상기 양액저장부에 저장된 양액과 상기 수분저장부에 저장된 수분이 혼합되는 혼합액저장부를 포함하는 것을 특징으로 한다.
상기와 같은 구성을 이루는 본 발명의 실시예에 따른 식물재배기에 의하면 다음과 같은 효과가 있다.
분리부에 의해 식물의 뿌리가 토양에 묻힌 상태로 양액을 공급받을 수 있는 식물성장공간과 식물뿌리로 공기를 공급하기 위한 보조공간으로 구분하여 양액과 공기를 식물뿌리로 동시에 공급할 수 있는 효과가 있다.
또한, 식물성장공간의 토양 외측과 토양 내측에서 양액을 각각 공급할 수 있도록 시비부를 배치함으로써, 식물재배기 내의 토양에 균일하게 양액을 공급할 수 있는 효과가 있다.
또한, 식물 토양으로 일정한 압려의 공기를 공급함에 따라 식물성장공간 내의 토양의 공기보유량을 늘려줌으로써, 식물뿌리로 산소를 효율적으로 공급할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 식물재배기가 활용되기 위한 식물재배시스템의 구성도이다.
도 2는 본 발명의 실시예에 따른 식물재배기의 토양이 수용된 상태의 정면사시도이다.
도 3은 본 발명의 실시예에 따른 식물재배기의 토양이 수용되지 않은 상태의 정면사시도이다.
도 4는 본 발명의 실시예에 따른 식물재배기의 후면사시도이다.
도 5는 본 발명의 실시예에 따른 식물재배기의 본체부를 제외한 사시도이다.
도 6은 본 발명의 실시예에 따른 식물재배기의 측단면도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 이하에서 설명되는 실시예들은 설치공간이 좁으면서도 열교환 효율이 높은 열교환 보일러에 관한 것이다. 이하에서는 이러한 열교환 보일러는 간략하게 “보일러”라 호칭한다.
도 1은 본 발명의 실시예에 따른 열교환 보일러의 정단면도이고, 도 2는 본 발명의 실시예에 따른 열교환 보일러의 측단면도이며, 도 3은 본 발명의 실시예에 따른 열교환 보일러의 하면도이다.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 보일러는 외관을 형성하는 케이스(110), 케이스(110) 내부에 배치되어 가열수가 저장되는 저장부(120), 저장부(120) 내의 가열수와 열교환되어 가열대상 바닥의 열선 내부를 순환하는 순환수가 통과하는 열교환부(130), 저장부(120) 내에 배치되어 가열수를 가열하기 위한 열을 공급하는 히터부(140), 열교환부(130) 내의 순환수를 순환시키는 펌프부(150), 히터와 펌프부(150)의 동작을 제어하는 제어부(160)를 포함할 수 있다.
케이스(110)는 직사각형의 박스 형태로 형성될 수 있고, 거주공간의 바닥에 설치된 열선을 순환하여 온도가 낮아진 순환수가 유입되기 위해 열선의 출구와 연결된 열선유입구(111) 및 가열된 순환수가 열선으로 공급되기 위해 열선의 입구와 연결된 열선유출구(112)가 형성될 수 있다. 또한, 저장부(120) 내부의 가열수가 유입 또는 유출되기 위한 가열수 유출입구(113)가 형성될 수 있다. 또한, 열교환부(130) 내의 가열된 순환수가 바닥의 열선을 순환하는 과정에서 누수되거나 증발되는 경우 순환수를 열교환부(130)로 공급하기 위한 순환수공급구가 형성될 수 있다.
저장부(120)는 내부에 가열수가 저장될 수 있는 저장공간(122)을 제공할 수 있는 수단이다. 상세히, 저장부(120)는 내부에 가열수가 저장되는 저장공간(122)이 형성된 저장탱크(121), 상기 저장탱크(121) 내에 배치되어 내부 가열수 수위를 측정하는 수위측정부(170) 및 저장탱크(121) 하측에 배치되어 가열수의 유입 또는 유출이 되기 위해 가열수 유출입구(113)와 연결된 가열수 유출입부를 포함할 수 있다. 또한, 저장부(120)의 저장공간(122) 내에는 열교환부(130)가 배치될 수 있다. 상세한 구성은 아래 열교환부(130) 구성의 설명에서 자세히 설명한다.
저장탱크(121)는 직사각 형상의 케이스(110)일 수 있고, 내부에 열교환부(130) 및 히터가 배치됨과 동시에 가열수가 저장될 수 있는 저장공간(122)을 형성할 수 있다. 상세히, 저장탱크(121)의 저장공간(122)에는 열교환부(130)의 구성 중 후술할 다 수의 열교환핀(131)과 유입바(132) 및 유출바(134)가 배치되어 가열수와 열교환부(130) 내의 순환수가 열교환할 수 있는 효과가 있다.
수위측정부(170)는 상기 저장탱크(121) 내 저장공간(122)에서 설정높이에 배치되어, 저장공간(122) 내의 가열수의 수위를 측정할 수 있다. 상세히, 수위측정부(170)는 저장공간(122) 내 가열수의 수위가 열교환부(130)의 후술할 다 수의 열교환핀(131) 상단 이상이 넘치지 못하게 하기 위해 열교환핀(131) 상측 설정높이에 배치되어 가열수가 접촉되는 접촉여부를 판단할 수 있다. 즉, 수위측정부(170)는 접촉센서로 이루어질 수 있다.
가열수 유출입부는 저장탱크(121) 하측에 배치되어 저장탱크(121) 내부에 가열수를 공급하거나 가열수를 외부로 배출시킬 수 있는 수단이다. 상세히, 가열수 유출입부는 저장탱크(121) 하측으로부터 케이스(110)에 형성된 가열수 유출입구(113)까지 연장되는 유로를 제공할 수 있어 가열수의 유입 및 유출이 가능한 효과가 있다.
열교환부(130)는 내부에 순환수가 흐르는 유로가 형성되어, 저장부(120)의 저장탱크(121)에 형성된 저장공간(122) 내에 배치되어 가열수에 의해 열을 전달받아 열교환을 통해 내부에 흐르는 순환수를 가열할 수 있는 수단이다. 상세히, 열교환부(130)는 내부에 순환수가 흐르는 유로를 제공하고 저장부(120)의 가열수와 열교환되는 다 수의 열교환핀(131), 다 수의 열교환핀(131) 상단에 연결되어 바닥의 열선을 통해 순환하여 온도가 낮아진 순환수가 유입되는 유입바(132) 및 다 수의 열교환핀(131) 하단에 연결되어 바닥의 열선으로 가열된 순환수가 유출되는 유출바(134)를 포함할 수 있다.
또한, 열교환부(130)는 열선유입구(111)와 유입바(132) 사이에 배치되어 열선의 출구를 통해 열선과 열교환된 순환수가 열선유입구(111)를 통해 유입바(132)로 유입되는 유로를 제공하는 열선유입부 및 유출바(134)와 열선유출구(112) 사이에 배치되어 열교환부(130)를 통해 가열된 순환수를 유출바(134)를 통해 열선유출구(112)로 유출되는 유로를 제공하는 열선유출부를 더 포함할 수 있다.
유입바(132)는, 열선유입부와 연결되어 순환수가 가열을 위한 순환수가 유입되는 바 형태의 수단으로, 다 수의 열교환핀(131) 상단, 즉 열교환핀(131) 입구(131a)가 연결되어 다 수의 열교환핀(131)으로 순환수를 유입하는 매개체 역할을 할 수 있다. 또한, 유출부는, 열선유출부와 연결되어 가열된 순환수가 열선으로 유출되기 위한 바 형태의 수단으로, 다 수의 열교환핀(131) 하단, 즉 열교환핀(131) 출구가 연결되어 가열된 순환수가 열선으로 배출되기 위한 매개체 역할을 할 수 있다.
유입바(132) 및 유출바(134)는 저장부(120)의 저장탱크(121) 내 형성된 저장공간(122)에서 지면에 수평한 형태로 연장되도록 배치될 수 있고, 유입바(132)와 유출바(134)는 서로 평행하도록 배치될 수 있다. 또한, 유입부는 저장탱크(121) 내 저장공간(122)의 상측 전방에 배치될 수 있고, 유출부는 저장탱크(121) 내 저장공간(122)의 하측 후방에 배치될 수 있다. 이에 따라, 유입부 및 유출부에 연결된 다 수의 열교환핀(131)은 저장공간(122)의 상측 전방에서 하측 후방으로 연장될 수 있고, 저장탱크(121)의 측면에서 보면 상측에서 하측으로 갈수록 후방으로 기울어지는 사선형태를 가지도록 배치될 수 있다.
다 수의 열교환핀(131)에 대한 구성을 상세히 설명한다. 다 수의 열교환핀(131)은 저장부(120)의 저장공간(122) 내에 배치되고, 내부에 순환수가 흐르면서 저장공간(122) 내의 가열수에 의해 가열될 수 있는 수단이다. 아래에서는 하나의 열교환핀(131) 구조에 대하여 설명한 후, 다 수의 열교환핀(131)의 배치구조에 대하여 설명한다.
열교환핀(131)은 스프링 형상으로 형성되어 저장공간(122) 내의 가열수에 접촉할 수 있는 면적이 넓은 효과가 있다. 또한, 열교환핀(131)은 상단에서 하단으로 갈수록 폭이 좁아지도록 배치될 수 있고, 더불어 상단에서 하단으로 갈수록 열교환핀(131) 회전구간 사이의 간격이 좁아지도록 배치될 수 있다. 상세히 설명하면, 열교환핀(131)은 중심축을 기준으로 스프링 형상으로 유입바(132)에서 유출바(134) 방향으로 연장되는데, 이 경우 회전구간의 상하 회전간격이 상단에서 하단으로 갈수록 점점 좁아지도록 배치될 수 있다.
도 1을 참고하여 설명하면, 열교환핀(131) 상측의 직경(T1)은 열교환핀(131) 하측의 직경(T2)에 비해 더 큰 직경을 가져 상측에서 하측으로 갈수록 열교환핀(131) 내부유로 직경이 점섬 좁아질 수 있고, 열교환핀(131) 상측의 상하 회전간격(L1)은 열교환핀(131) 하측의 상하 회전간격(L2)에 비해 더 긴 간격을 유지하고 있어 상측에서 하측으로 갈수록 열교환핀(131) 상하 회전간격이 점점 좁아질 수 있다.
즉, 열교환핀(131)이 연결된 유입바(132)를 통해 온도가 낮아진 순환수는 점점 좁아지는 유로를 통해 이동하는 과정에서 높은 열교환 효율에 의해 빨리 가열되는 효과가 있다. 더불어, 아래로 내려갈수록 열교환핀(131)에서 스프링 형상의 회전구간 사이 간격이 좁아지도록 배치되어 있기 때문에 저장공간(122)에서 하측으로 갈수록 동일면적 대비 열교환면적이 넓어질 수 있다. 저장탱크(121) 내 저장공간(122)의 가열수 온도는 상측보다 하측으로 갈수록 높아지는데(이에 대한 설명은 후술함), 이에 따라 열교환핀(131) 하측으로 갈수록 열교환 면적이 넓어져 순환수의 가열이 효율적으로 이루어지는 효과가 있다.
또한, 열교환핀(131)의 상단, 즉 유입바(132)에 연결된 부위는 열선유입부 방향으로 휘어지도록 배치될 수 있다. 이에 따라, 열선유입부를 통해 유입바(132)로 유입된 순환수의 유동방향과 대향되는 방향으로 열교환핀(131)의 상단, 즉 열교환핀(131)의 입구가 휘어져있기 때문에, 유입바(132)로 유입된 순환수가 열교환핀(131)으로 쉽게 유입될 수 있고, 이에 따라 거주공간 바닥 열선을 순환하는 순환수의 순환효율이 높아질 수 있다.
아래에서는 다 수의 열교환핀(131) 배치 구조에 대하여 설명한다.
다 수의 열교환핀(131)은 유입바(132)에 입구가 연결되고 유출바(134)에 출구가 연결되며, 지면에 수직한 방향으로 스프링 형태로 회전구간을 가지면서 연장되도록 배치될 수 있다. 또한, 다 수의 열교환핀(131)은 지면에 수평한 방향으로 서로 이격되도록 배치될 수 있다. 즉, 다 수의 열교환핀(131)은 유입바(132) 및 유출바(134)를 기준으로 서로 병렬되도록 배치될 수 있다. 이에 따라 유입바(132)에 유입된 순환수는 다 수의 열교환핀(131)의 입구에 동시에 유입될 수 있고, 더불어 다 수의 열교환핀(131)의 출구를 통해 동시에 유출될 수 있다. 아래에서는 상기와 같이 다 수의 열교환핀(131)이 서로 평행한 그룹을 열교환핀(131) 그룹으로 정의한다.
상기 열교환핀(131) 그룹은 제1 열교환그룹(135) 및 제2 열교환그룹(136)을 포함할 수 있다. 상세히, 제1 열교환그룹(135)은 유입바(132) 및 유출바(134)를 연장한 연장선을 기준으로 전방으로 설정간격만큼 이격되어 배치될 수 있다. 또한, 제2 열교환핀(131) 그룹은 유입바(132) 및 유출바(134)를 연장한 연장선을 기준으로 후방으로 설정간격만큼 이격되어 배치될 수 있다. 즉, 제1 열교환그룹(135) 및 제2 열교환그룹(136)은 서로 평행하는 형태로 전후 방향으로 이격되어, 상기 유입바(132)와 상기 유출바(134)를 기준으로 다 수의 열교환핀(131)이 병렬연결되어 배치될 수 있다. 또한, 제1 열교환그룹(135) 및 제2 열교환그룹(136)의 상단으로부터 하단까지의 연장선은 유입바(132) 및 유출바(134)를 연장한 연장선에 평행할 수 있다.
제1 열교환그룹(135) 및 제2 열교환그룹(136)이 유입바(132) 및 유출바(134)의 연장선과 지면이 이루는 각도(이하, 설정각도)만큼 기울어져 있는 상태로 저장탱크(121) 내 저장공간(122)에 배치되어 있기 때문에 지면에 수직한 상태보다 더 넓은 면적이 저장공간(122) 내에 저장될 수 있고, 이에 따라 가열수에 의해 가열되는 열교환핀(131) 면적이 넓어져 열교환효율이 높아지는 효과가 있다.
히터부(140)는 저장부(120) 내에 배치되어 가열수를 가열하기 위한 열을 외부로 방출할 수 있다. 상세히, 히터부(140)는 저장부(120)의 저장탱크(121) 저면에 배치되어 저장공간(122)에 저장된 가열수에 직접 접촉하여 열을 가열수로 공급할 수 있다. 즉, 히터부(140)는 전기를 공급받아 외면으로 열을 발산할 수 있고, 이 경우 히터부(140)의 외면과 접촉하고 있는 가열수가 가열될 수 있다. 즉, 히터부(140)가 저장탱크(121) 저면에서 열을 발생시키기 때문에 저장탱크(121) 내부의 가열수 온도는 상측보다 하측으로 갈수록 높아질 수 있고, 열교환핀(131)도 상단에서 하단으로 갈수록 회전구간의 상하간격이 좁아지기 때문에 하측에서 가열수의 접촉면적이 넓어져 열교환 효율이 높아지는 효과가 있다.
펌프부(150)는 열선유입부의 일측에 연결되어 순환수가 열선유입부, 유입바(132), 열교환핀(131), 유출바(134), 열선유출부, 바닥의 열선을 거쳐 다시 열선유입부로 유입될 수 있도록 압력을 공급할 수 있는 수단이다. 상세히, 펌프부(150)는 유압 등을 활용하여 일방으로 압력을 공급할 수 있고, 이에 따라 순환수는 열교환 보일러(100)로부터 유출되어 가열된 상태로 바닥의 열선과 열교환하여 바닥을 가열하고, 이 후 다시 온도가 낮아진 상태로 열교환 보일러(100)로 유입될 수 있다.
제어부(160)는 히터부(140) 및 펌프부(150)를 제어할 수 있는 수단으로, 일반적으로 입출력부를 통해 사용자가 열교환 보일러(100)를 동작시키면 설정된 온도에 맞추어 히터부(140) 및 펌프부(150)를 제어할 수 있다. 상세히, 설정온도에 따라 제어부(160)는 히터부(140)를 제어하여 히터부(140)로부터 공급되는 열의 양을 제어하고, 동시에 펌프부(150)를 제어하여 공급되는 압력의 정도를 조절할 수 있다.
이하에서는 열교환 보일러(100)의 동작에 대하여 상세히 설명한다.
사용자가 제어부(160)를 조작하여 열교환 보일러(100)를 작동시키면, 펌프부(150)가 작동하여 순환수에 압력을 가하여 순환수를 순환시킨다. 순환수는 공간바닥 내부의 열선에 저장되어 있던 순환수를 기준으로 그 움직임을 설명한다.
펌프부(150)로부터 압력을 받으면, 공간바닥 내 열선에서 바닥과 열교환을 마치고 온도가 낮아진 순환수는 열선유입구(111)를 통해 열교환 보일러(100)로 유입될 수 있고, 이 경우 열선유입부를 거쳐 유입바(132)로 유입될 수 있다.
유입바(132)로 유입된 순환수는 다 수의 열교환핀(131)의 입구측이 유입되는 방향과 대향되는 방향, 즉 반대되는 방향으로 휘어져 있기 때문에 다 수의 열교환핀(131)에 효율적으로 유입될 수 있고, 다 수의 열교환핀(131)은 저장부(120)의 저장공간(122)에 배치된 가열수에 침수되어 있기 때문에, 다 수의 열교환핀(131)에 유입된 순환수는 저장부(120)의 가열수와 열교환을 통해 가열될 수 있다.
이 과정에서, 다 수의 열교환핀(131) 각각은 상단에서 하단, 즉 유입바(132) 방향에서 유출바(134) 방향으로 갈수록 내부 유로 직경이 작아지기 때문에 압력이 높아져 속도가 빨라지면서 효율적으로 유동할 수 있다. 또한, 다 수의 열교환핀(131) 각각은 중심축을 기준으로 유입바(132)와 유출바(134)로 회전하면서 스프링 형태로 연장되고, 상단에서 하단으로 갈수록 회전간격 사이가 좁아지기 때문에, 하측으로 내려갈수록 가열수에 접촉되는 열교환핀(131) 면적이 넓어지고 이에 따라 열교환 효율이 높아지는 효과가 있다. 더불어, 저장부(120) 하단에 히터부(140)가 배치되어 가열수로 열을 공급하기 때문에, 저장부(120) 내 저장공간(122)에서도 하단의 가열수 온도가 상단의 가열수보다 높고, 이에 따라 열교환핀(131) 내부 순환수 역시 아래로 갈수록 높은 열교환 효율을 보일 수 있다.
또한, 유입바(132)로부터 제1 열교환그룹(135)과 제2 열교환그룹(136)이 각각 전후로 이격되어 기울어진 상태로 유출바(134)까지 연장되기 때문에, 열교환이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구조나 방법에 한정되지 않는다.
본 발명의 실시예에는 식물이 수용된 토양(L) 내부에 균일하게 양액을 공급함과 동시에 공기를 토양(L) 내부로 공급함으로써 양액과 산소를 균일하게 식물뿌리에 공급할 수 있는 식물재배기(200)에 관한 것으로, 이하에서는 간략하게 "식물재배기(200)"로 호칭하기로 한다.
또한, 아래에서 양액과 수분이 혼합된 혼합액의 경우, 양액이 원액 단독으로 공급되는 경우도 포함될 수 있기 때문에, 아래에서 설명하는 혼합액을 청구항에서는 양액으로 정의한다.
도 1은 본 발명의 실시예에 따른 식물재배기가 활용되기 위한 식물재배시스템의 구성도이다.
도 1을 참조하여, 우선 본 발명의 실시예에 따른 식물재배기(200)가 사용되는 식물재배시스템(100) 전체구조에 대하여 설명한다. 식물재배시스템(100)은 식물재배기(200)를 활용하여 식물의 뿌리에 양액 및 산소를 공급할 수 있는 시스템으로, 식물에 공급되기 위한 양액을 제공하는 양액공급부(110), 양액공급부(110)로부터 공급된 양액을 식물재배기(200)로 공급하는 급수부(120), 식물재배기(200)로 공기를 공급하기 위한 공기공급부(120), 식물재배기(200)에 공급된 양액이 배출되기 위한 배수부(140) 및 식물이 생장하는 공간을 제공하고 급수부(120)와 공기공급부(120)로부터 양액 및 공기를 공급받는 식물재배기(200)를 포함할 수 있다.
양액공급부(110)는 식물의 성장에 필요한 영양소를 공급하기 위한 양액을 공급하는 수단으로, 상세히 하나 이상의 양액이 저장되는 양액저장부(111), 식물에 급수되기 위한 양액의 농도조절을 위한 수분이 저장되는 수분저장부 및 수분저장부의 수분과 양액저장부(111)의 양액이 혼합된 혼합액이 저장되는 혼합액저장부(113)를 포함할 수 있다. 관리자는 재배되는 식물의 종류에 따라 양액저장부(111)의 다양한 양액과 수분저장부(112)의 수분비율을 결정하여 혼합액저장부(113)에 결정된 비율의 혼합액을 저장할 수 있는 효과가 있다.
급수부(120)는 혼합액저장부(113)에 저장된 혼합액을 식물재배기(200)로 공급할 수 있는 수단이다. 상세히, 급수부(120)는 식물재배기(200)로 혼합액이 공급되기 위한 동력을 제공하는 급수펌프(121), 급수펌프(121)로부터 공급되는 혼합액이 유동하는 유로를 제공하는 급수유로(122) 및 선택적으로 공급유로를 개폐할 수 있는 급수밸브(123)를 포함할 수 있다. 이를 통해, 관리자는 원하는 경우 급수밸브(123)를 온 또는 오프함으로써 혼합액의 식물재배기(200) 공급여부를 결정할 수 있다.
공기공급부(120)는 외부의 공기가 식물재배기(200)로 공급되기 위한 동력을 제공하는 공기펌프(121), 공기펌프(121)로부터 공급되는 공기가 유동하는 유로를 제공하는 공기유로(122) 및 선택적으로 공기유로(122)를 개폐할 수 있는 공기밸브(123)를 포함할 수 있다. 이를 통해, 관리자는 원하는 경우 공기밸브(123)를 온 또는 오프함으로써 공기의 식물재배기(200) 공급여부를 결정할 수 있다.
배수부(140)는 식물재배기(200)로에서 식물에 공급되고 남은 혼합액이 외부로 배출될 수 있는 수단이다. 상세히, 배수부(140)는 식물공급 후 남은 혼합액이 배출되기 위한 동력을 제공하는 배수펌프(141), 배수펌프(141)로부터 배출되는 혼합액이 유동하는 유로를 제공하는 배수유로(142), 배수유로(142)를 선택적으로 개폐하는 배수밸브(143) 및 배수유로(142)를 통과하는 혼합액을 여과하여 필터링하는 필터부(144)를 포함할 수 있다. 배수부(140)를 통해 배출된 혼합액은 여과되어 다시 양액공급부(110)로 공급될 수 있다.
도 2는 본 발명의 실시예에 따른 식물재배기의 토양(L)이 수용된 상태의 정면사시도이고, 도 3은 본 발명의 실시예에 따른 식물재배기의 토양(L)이 수용되지 않은 상태의 정면사시도이며, 도 4는 본 발명의 실시예에 따른 식물재배기의 후면사시도이고, 도 5는 본 발명의 실시예에 따른 식물재배기의 본체부를 제외한 사시도이며, 도 6은 본 발명의 실시예에 따른 식물재배기의 측단면도이다.
도 2 내지 도 6을 참조하면, 식물재배기(200)는 식물이 재배되기 위한 공간이 형성되고, 양액공급부(110)에서 생성된 혼합액을 급수부(120)로부터 공급받고 공기공급부(120)로부터 공기를 공급받아 식물에 제공할 수 있는 수단이다. 상세히, 식물재배기(200)는 토양(L) 및 식물이 수용되고 양액이 공급되는 성장공간(240)과 상기 성장공간(240) 하측에 배치되어 공기가 유입되고 토양(L)에 공급된 양액이 배출되는 보조공간(250)이 형성된 본체부(210), 본체부(210) 내부에 배치되어 토양(L)으로 양액을 공급하는 시비부(220) 및 성장공간(240)과 보조공간(250) 사이에 배치되어 토양(L)의 보조공간(250) 유입을 방지함과 동시에 설정크기 이하의 직경을 가진 다 수의 개구가 형성된 분리부(230)를 포함할 수 있다. 아래에서는 각 구성에 대하여 상세히 설명한다.
본체부(210)는 성장공간(240)과 보조공간(250)이 형성되기 위한 케이스부(211), 케이스부(211)의 성장공간(240) 일측에 형성되고 시비부(220)로부터 공급되는 양액, 즉 혼합액이 유입되기 위한 양액유입구(212),케이스부(211)의 보조공간(250) 일측에 형성되고 공기공급부(120)로부터 공급되는 공기가 유입되기 위한 공기유입구(213) 및 식물에 공급되고 남은 혼합액이 배수되기 위한 배구수(214)를 포함할 수 있다. 있다.
케이스부(211)는 일 예로 직사각박스 형상을 가질 수 있고, 분리부(230)에 의해 내부공간이 상측의 성장공간(240)과 하측의 보조공간(250)으로 구분될 수 있다. 이 경우, 시비부(220) 및 분리부(230)는 케이스부(211) 내측에 배치될 수 있다. 여기서 성장공간(240)이란 토양(L)이 배치되고 식물이 토양(L)에 심어져 성장할 수 있는 공간을 의미하고, 보조공간(250)이란 성장공간(240)의 하측에 별개의 빈 공간으로 형성되어 공기가 유입되거나 성장공간(240)에서 식물에게 공급되고 남은 혼합액이 배출될 수 있는 공간을 의미한다.
또한, 성장공간(240)은 토양(L) 상측에 식물이 자랄 수 있는 공간을 제공하는 제1 성장공간(241)과 제1 성장공간(241)의 하측에 토양(L)에 의해 채워지는 공간인 제2 성장공간(242)로 구분될 수 있다. 제1 성장공간(241)과 제2 성장공간(242)는 후술할 시비부(220)의 배치를 위해 정의한 수단이다.
양액유입구(212)는 급수부(120)의 급수유로(122)와 연결되어, 급수유로(122)에 흐르는 혼합액이 성장공간(240)으로 유입될 수 있는 개구를 제공할 수 있고, 마찬가지로 공기유입구(213)는 공기공급부(120)의 공기유로(122)와 연결되어, 공기유로(122)에 흐르는 공기가 보조공간(250)으로 유입될 수 있는 개구를 제공할 수 있다. 즉, 양액유입구(212) 및 공기유입구(213)를 통해 성장공간(240)에는 양액(혼합액)이 보조공간(250)에는 공기가 각각 공급될 수 있다.
또한, 배수구(214)는 배수부(140)의 배수유로(142)와 연결되어 식물에 공급되고 남은 혼합액을 다시 혼합액저장부(141)로 유입될 수 있는 개구를 제공할 수 있다.
시비부(220)는 양액유입구(212)와 연결되어 양액유입구(212)를 통해 유입되는 혼합액을 성장공간(240)으로 공급할 수 있는 수단이다. 시비부(220)는 양액유입구(212)로부터 유입되는 혼합액이 유동할 수 있는 유로를 제공하고 다 수의 분사구가 형성되어 혼합액이 외부로 분사될 수 있는 다 수의 분사구가 형성된 양액유로 및 양액유로 외측을 감싸도록 형성되고 설정크기 이하의 직경을 가진 다 수의 개구가 형성된 유로보호부를 포함할 수 있다.
양액유로는 단면이 원형상을 이루고 케이스부(211)의 내측면을 둘러싸도록 형성되어 성장공간(240)으로 분사되기 위한 혼합액이 유동할 수 있는 수단이다. 더불어, 양액유로의 내측에는 다 수의 분사구가 형성됨에 따라 성장공간(240)으로 혼합액이 균일하게 분사될 수 있는 효과가 있다.
유로보호부는 양액유로의 외관을 감사도록 형성되며 설정크기 이하의 직경을 가진 다 수의 개구가 형성될 수 있다. 이 경우, 다 수의 개구는 토양(L)의 알갱이보다 작은 크기를 가질 수 있고, 이를 통해 성장공간(240)에 배치된 토양(L)이나 이물질이 양액유로의 분사구로 유입되어 혼합액의 분사를 막는 문제를 해결함과 동시에 양액유로의 분사구를 통해 분사되는 혼합액은 성장공간(240)으로 효율적으로 공급될 수 있는 효과가 있다.
또한, 시비부(220)는 그 배치영역에 따라 제1 성장공간(241)에 배치되는 제1 시비부(221)과 제2 성장공간(242)에 배치되는 제2 시비부(222)로 이루어질 수 있다.
상세히, 제1 시비부(221)은 양액유입구(212)로부터 연결되고 시비부(220)의 상측에 배치됨으로써, 토양(L)이 배치되지 않은 제1 성장공간(241)로 혼합액을 분사할 수 있다. 이 경우, 혼합액은 토양(L)의 표면을 적시도록 공급되어 토양(L) 표면의 습도를 일정하게 조절시킬 수 있는 역할을 한다. 또한, 제1 시비부(221)은 성장공간(240), 상세히는 제1 성장공간(241)의 측면을 둘러싸도록 배치될 수 있다.
또한, 제2 시비부(222)는 제1 시비부(221)의 일측에서 하측으로 연장되도록 배치되고, 제2 성장공간(242)의 토양(L) 내부에 매몰되어 배치될 수 있다. 이에 따라 양액유입구(212)로부터 유입되는 혼합액이 제1 시비부(221)을 거쳐 제2 시비부(222)의 분사구로부터 토양(L) 내부로 직접 분사됨에 따라 토양(L)의 내부의 습도를 일정하게 유지할 수 있는 역할을 한다. 또한, 제2 시비부(222)는 성장공간(240), 상세히는 제2 성장공간(242)의 측면을 둘러싸도록 배치될 수 있다.
이 경우, 시비부(220)의 유로보호부는 제2 시비부(222)에만 배치될 수 있다. 이는 제1 시비부(221)과 같이 토양(L)에 직접적으로 매몰되는 경우가 아니면 굳이 양액유로를 보호할 필요가 없기 때문이다.
즉, 시비부(220)는 토양(L) 외측(제1 성장공간(241))에 배치된 제1 시비부(221)과 토양(L) 내측(제2 성장공간(242))에 배치된 제2 시비부(222)로 이루어질 수 있고, 이에 따라 토양(L)의 표면과 토양(L) 내부에 동시에 혼합액을 공급할 수 있는 효과가 있다.
분리부(230)는 본체부(210) 내부에 배치되어 본체부(210) 내의 공간을 성장공간(240)과 보조공간(250)으로 분리할 수 있는 수단이다. 상세히, 분리부(230)는 보조공간(250)의 높이만큼 돌출된 하나 이상의 돌출부(231)와 돌출부(231) 상단에 배치되고 본체부(210)의 상단면과 동일한 크기로 형성된 분리판(232)을 포함할 수 있다. 이 경우, 분리판(232)의 모서리 4군데에 돌출부(231)가 배치됨으로써 분리판(232)이 상측으로 보조공간만큼 케이스부(211)의 하면과 이격될 수 있다.
또한, 분리판(232)에는 설정크기 이하의 다 수의 개구가 형성될 수 있다. 이는 분리판 상측에 배치된 토양(L)이 보조공간(250)으로 유입되는 것을 방지함과 동시에 식물에 공급된 혼합액이 보조공간(250)으로 유입되도록 하기 위함이다.
분리부(230)에 의해 보조공간(250), 즉 공기유입구(213)로부터 공기가 유입되거나 성장공간(240)에서 공급되고 남은 혼합액이 배출되기 위한 공간이 형성될 수 있다. 이러한 보조공간(250)은 분리부(230) 하측에 빈 공간으로 배치될 수 있고, 보조공간(250)을 통해 혼합액이 배출되거나 공기가 공급될 수 있다.
아래에서는 본 발명의 실시예에 따른 식물재배기(200)의 동작에 대해 설명한다.
우선 양액공급부(110)로부터 양액, 즉 혼합액이 공급되면 공급된 혼합액은 급수부(120)를 통해 양액공급구를 통해 시비부(220)로 유입될 수 있다. 시비부(220)로 유입된 혼합액은 중력에 따라 시비부(220) 내부에서 아래로 이동되는 과정에서 제1 시비부(221)에 형성된 분사구에 의해 제1 성장공간(241)로 분사되어 토양(L) 표면에 분사될 수 있다. 또한, 아래로 이동된 혼합액은 제2 시비부(222)에 형성된 분사구에 의해 제2 성장공간(242)로 분사되어 토양(L) 내부에 분사될 수 있다. 이에 따라 혼합액이 토양(L) 표면과 토양(L) 내부에 골고루 분사될 수 있는 효과가 있다.
또한, 양액공급부(110)로부터 혼합액이 공급됨과 동시에 공기공급부(120)로부터 공기가 공급될 수 있다. 상세히, 공기공급부(120)로부터 공급된 공기는 공기공급구를 통해 보조공간(250)으로 유입될 수 있다. 이 경우, 배수밸브(143)가 설정시간동안 오프되어 배수유로(142)를 폐쇄함에 따라 보조공간(250)은 밀폐상태가 유지될 수 있고, 이에 따라 유입되는 공기는 분리부(230)의 개구를 통해 토양(L) 내부로 공급될 수 있다.
상기와 같은 동작에 따라 혼합액이 토양(L)에 균일하게 공급됨과 동시에 토양(L) 내 공공 사이로 공기가 고르게 공급됨에 따라 성장공간(240)에 성장중인 식물의 뿌리로 혼합액과 공기가 풍부하게 공급될 수 있고, 이에 따라 식물의 성장이 촉진될 수 있다.
상기와 같은 구성을 이루는 본 발명의 실시예에 따른 식물재배기(200)에 의하면 다음과 같은 효과가 있다.
분리부(230)에 의해 식물의 뿌리가 토양(L)에 묻힌 상태로 양액을 공급받을 수 있는 식물성장공간(240)과 식물뿌리로 공기를 공급하기 위한 보조공간(250)으로 구분하여 양액과 공기를 식물뿌리로 동시에 공급할 수 있는 효과가 있다.
또한, 식물성장공간(240)의 토양(L) 외측과 토양(L) 내측에서 양액을 각각 공급할 수 있도록 시비부(220)를 배치함으로써, 식물재배기(200) 내의 토양(L)에 균일하게 양액을 공급할 수 있는 효과가 있다.
또한, 식물 토양(L)으로 일정한 압력의 공기를 공급함에 따라 식물성장공간(240) 내의 토양(L)의 공기보유량을 늘려줌으로써, 식물뿌리로 산소를 효율적으로 공급할 수 있는 효과가 있다.
이제까지 본 발명에 대하여 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
100 : 식물재배시스템 110 : 양액공급부
120 : 급수부 130 : 공기공급부
140 : 배수부 200 : 식물재배기
210 : 본체부 211 : 케이스부
212 : 양앱유입구 213 : 공기유입구
214 : 배수구 220 : 시비부
221 : 제1 시비부 222 : 제2 시비부
230 : 분리부 240 : 성장공간 241 : 제1 성장공간 242 : 제2 성장공간
250 : 보조공간

Claims (7)

  1. 토양 및 식물이 수용되고 양액이 공급되는 성장공간과, 상기 성장공간 하측에 배치되어 공기가 유입되고 토양에 공급된 양액이 배출되는 보조공간이 형성된 본체부;
    상기 본체부 내부에 배치되어 상기 토양으로 양액을 공급하는 시비부; 및
    상기 성장공간과 상기 보조공간 사이에 배치되어 상기 토양의 상기 보조공간 유입을 방지하고, 설정크기 이하의 직경을 가진 다 수의 개구가 형성된 분리부를 포함하고,
    상기 보조공간으로 유입된 공기는 상기 개구를 통해 토양으로 유입되어 식물의 생장을 촉진시키는 것을 특징으로 하는 식물재배기.
  2. 제 1 항에 있어서,
    상기 본체부는,
    상기 성장공간과 상기 보조공간을 형성하는 케이스부;
    상기 케이스부의 상기 성장공간 일측에 형성되어 상기 시비부로 양액이 유입되는 양액유입구; 및
    상기 케이스부의 상기 보조공간 일측에 형성되어 상기 보조공간으로 공기가 유입되는 공기유입구를 포함하는 것을 특징으로 하는 식물재배기.
  3. 제 2 항에 있어서,
    상기 시비부는,
    상기 양액유입구에 연결되고 상기 성장공간의 측면을 둘러싸도록 배치되고 다 수의 분사구가 형성된 제1 시비부; 및
    상기 제1 시비부의 하측으로 연장되어 상기 성장공간의 측면을 둘러싸도록 배치되고 다 수의 분사구가 형성된 제2 시비부를 포함하는 것을 특징으로 하는 식물재배기.
  4. 제 3 항에 있어서,
    상기 성장공간은,
    상기 케이스부 상단에서 하측으로 설정길이만큼 형성된 제1 성장공간; 및
    상기 제1 성장공간 하단에서 상기 케이스부 하단으로 형성되어 토양이 배치되는 제2 성장공간을 포함하고,
    상기 제1 시비부는 상기 제1 성장공간에 배치되어 상기 토양 외부로 양액을 공급하고, 상기 제2 시비부는 상기 제2 성장공간에 배치되어 상기 토양 내부로 양액을 공급하는 것을 특징으로 하는 식물재배기.
  5. 제 1 항에 있어서,
    상기 시비부는,
    양액이 공급되는 유로를 형성하고 다 수의 분사구가 형성된 유로부; 및
    상기 유로부 외측을 감싸도록 형성되고 설정크기 이하의 직경을 가진 다 수의 개구가 형성된 유로보호부를 포함하는 것을 특징으로 하는 식물재배기.
  6. 제 2 항에 따른 식물재배기;
    양액을 혼합하여 공급하는 양액공급부;
    상기 양앱유입구로 양액을 공급하는 급수부; 및
    상기 공기유입구로 공기를 공급하는 공기공급부를 포함하는 것을 특징으로 하는 식물재배시스템
  7. 제 6 항에 있어서,
    상기 양액공급부는,
    양액이 저장되는 하나 이상의 양액저장부;
    수분이 저장되는 수분저장부; 및
    상기 양액저장부에 저장된 양액과 상기 수분저장부에 저장된 수분이 혼합되는 혼합액저장부를 포함하는 것을 특징으로 하는 식물재배시스템.
PCT/KR2020/017804 2020-09-18 2020-12-08 모듈형 토양관제화 식물재배기 WO2022059856A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/922,273 US20230200292A1 (en) 2020-09-18 2020-12-08 Modular control-type plant cultivation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200120884A KR102545541B1 (ko) 2020-09-18 2020-09-18 모듈형 토양관제화 식물재배기
KR10-2020-0120884 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022059856A1 true WO2022059856A1 (ko) 2022-03-24

Family

ID=80777065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017804 WO2022059856A1 (ko) 2020-09-18 2020-12-08 모듈형 토양관제화 식물재배기

Country Status (3)

Country Link
US (1) US20230200292A1 (ko)
KR (1) KR102545541B1 (ko)
WO (1) WO2022059856A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140047928A (ko) * 2012-10-15 2014-04-23 서울과학기술대학교 산학협력단 인삼 또는 산양산삼 재배 시스템
KR20150145665A (ko) * 2014-06-20 2015-12-30 위선정 양액 토양 겸용 화분 및 상기 양액 토양 겸용 화분에 적용되는 화분 받침 부재 및 화분 내부 부재
KR20170034584A (ko) * 2015-09-21 2017-03-29 농업회사법인 친환경농부들 주식회사 양액과 공기를 번갈아 공급하는 식물재배방법 및 장치
KR101837146B1 (ko) * 2016-02-02 2018-03-09 손도재 공기공급 가능한 양액 재배 장치
KR20200090459A (ko) * 2019-01-21 2020-07-29 위선정 지속적 양분 및 산소 공급 가능형 토양 양액 재배 겸용 화분

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2126414A1 (de) * 1970-05-28 1971-12-02 Adam, Roger Francois Jean, Saint-Cloud, Hauts-de-Seine (Frankreich) Bewässerungsvorrichtung, insbesondere für Topfpflanzen
US4869018A (en) * 1987-04-13 1989-09-26 Hjs Enterprises, Inc. System forming a self-irrigating, raised bed
US5044120A (en) * 1990-11-02 1991-09-03 Couch David M Double-walled plant pot with graduated fertilizer
US5277877A (en) * 1991-08-06 1994-01-11 Space Biospheres Ventures Room air purifier
KR100332418B1 (ko) * 1999-02-04 2002-04-13 왕영성 양액재배에서 근권부 냉각 및 가열에 의한 생육조절방법 및 장치
US20050135880A1 (en) * 2003-12-17 2005-06-23 Stark William R. Root zone injection surface irrigation system
US9578820B2 (en) * 2006-11-28 2017-02-28 Jeno Muthiah Watering systems
US8091279B2 (en) * 2007-05-09 2012-01-10 Stewart Donald J Multiple self watering container system
US20100044463A1 (en) * 2008-08-13 2010-02-25 Morgan Concepts, Inc. Plant irrigation, oxygenation and feeding device
US20110232174A1 (en) * 2010-03-24 2011-09-29 Mm&Lmproperties, Llc Garden in a package
US8919038B2 (en) * 2010-08-06 2014-12-30 Inventagon Llc Irrigation system and method
NL2010420C2 (nl) * 2013-03-11 2014-09-15 Peter Hubertus Elisabeth Ende Pad voor het vasthouden van water en/of voedingsstoffen in een plantpot of in de grond, alsmede werkwijze voor vormen van een watervasthoudende, hydraterende en luchtdoorlatende laag onder in een plantpot of in de grond.
JP2016532449A (ja) * 2013-08-15 2016-10-20 ワン ヨンソンWANG, Youngsung 食用の宿根草花類及び球根類のための栽培管理器
US20150052808A1 (en) * 2013-08-26 2015-02-26 Li Wang Gardening box
US9345207B2 (en) * 2013-09-09 2016-05-24 Harvest Urban Farms, Inc. Commercial aeroponics system
KR20140001904U (ko) 2013-12-05 2014-04-02 박창준 다중영상표시장치
KR101603067B1 (ko) * 2013-12-19 2016-03-14 상명대학교 천안산학협력단 살균장치를 포함한 수경재배 배양액 재순환장치
KR101644630B1 (ko) * 2015-11-03 2016-08-10 정필호 농사용 공기주입장치
CN105830905A (zh) * 2016-03-25 2016-08-10 京东方光科技有限公司 一种植物水培架和植物生长环境保障系统
US11944051B2 (en) * 2016-04-18 2024-04-02 Classic Home & Garden, LLC. Planter with elevated internal portion and water preservation features
JP6372867B2 (ja) * 2016-05-10 2018-08-15 有限会社ナチュラルステップ 植物栽培方法及び植物栽培装置
US10091956B2 (en) * 2016-09-30 2018-10-09 Jutta M. Gietl Subsurface irrigation systems and methods
US20180332786A1 (en) * 2017-05-20 2018-11-22 Daniel Michael Leo Aeroponic farming systems and methods
CA2974420C (en) * 2017-07-25 2022-09-27 Equinox Industries Ltd Self-watering planter with unique wicking devices and soil drainage filtration assembly
US10159203B1 (en) * 2017-11-16 2018-12-25 Mark E. Ogram Irrigation system
US10986790B2 (en) * 2017-12-17 2021-04-27 Timothy Glaude System for infusing a gas or liquids into the roots of a plant
US10709076B2 (en) * 2017-12-20 2020-07-14 Treant Protector Pte. Ltd. Smart cabinet for home gardening
US11785904B2 (en) * 2018-01-03 2023-10-17 Earl B. Graffius Self-regulating watering insert for a plant container
US11129371B1 (en) * 2018-01-29 2021-09-28 Nathan Alan Hollis Self-contained universal mini terrarium
CN109618889B (zh) * 2019-01-10 2021-12-14 重庆龙缸茶业有限公司 一种农业节水灌溉系统及其节水灌溉方法
US11612111B1 (en) * 2019-02-01 2023-03-28 Aerofarms, Inc. Nesting container for vertical farm
US20230389496A1 (en) * 2022-06-03 2023-12-07 Urban Agriculture Innovations, Llc Mobile aeroponic grow system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140047928A (ko) * 2012-10-15 2014-04-23 서울과학기술대학교 산학협력단 인삼 또는 산양산삼 재배 시스템
KR20150145665A (ko) * 2014-06-20 2015-12-30 위선정 양액 토양 겸용 화분 및 상기 양액 토양 겸용 화분에 적용되는 화분 받침 부재 및 화분 내부 부재
KR20170034584A (ko) * 2015-09-21 2017-03-29 농업회사법인 친환경농부들 주식회사 양액과 공기를 번갈아 공급하는 식물재배방법 및 장치
KR101837146B1 (ko) * 2016-02-02 2018-03-09 손도재 공기공급 가능한 양액 재배 장치
KR20200090459A (ko) * 2019-01-21 2020-07-29 위선정 지속적 양분 및 산소 공급 가능형 토양 양액 재배 겸용 화분

Also Published As

Publication number Publication date
US20230200292A1 (en) 2023-06-29
KR102545541B1 (ko) 2023-06-20
KR20220037885A (ko) 2022-03-25

Similar Documents

Publication Publication Date Title
CN108432506A (zh) 一种半封闭植物工厂
KR101591498B1 (ko) 수경재배기 및 그를 이용한 수경재배시스템
JP4315732B2 (ja) 壁面緑化装置
CN102487760B (zh) 温室爬蔓作物有芯微管灌溉系统
JP3679053B2 (ja) 縦型養液栽培装置
WO2022059856A1 (ko) 모듈형 토양관제화 식물재배기
KR102226453B1 (ko) 아쿠아포닉스 복합 재배장치
WO2022154565A1 (ko) 수확량 유지 및 수확량 조절을 위한 식용식물 재배장치 및 그 재배방법
CN206380370U (zh) 一种智能花盆
CN215122757U (zh) 一种室内苜蓿水肥一体化栽培装置
CN208434427U (zh) 一种半封闭植物工厂
CN208210932U (zh) 一种新型园林花卉培育设备
CN209806696U (zh) 一种便于水、肥、热管理的植物栽培盆
CN219844438U (zh) 一种草莓种植用基质槽设备
CN112913508A (zh) 一种智能化植物培育装置
KR20050089960A (ko) 육묘 장치
CN105660246A (zh) 立体种植循环供水自动微润灌溉有氧培植系统
CN218851443U (zh) 一种多功能智能化农业育苗育种装置
CN111700022A (zh) 一种克氏原螯虾反季节育苗养殖池及其养殖方法
CN214676729U (zh) 一种蔬菜立体栽培装置
CN217470867U (zh) 一种生态农业大棚种植系统
KR101773848B1 (ko) 병충해의 확산을 방지하고 기후를 극복할 수 있도록 하는 수경 재배 시스템
KR20200122683A (ko) 기둥형태의 수직배지를 이용한 다중 폭포식 아쿠아포닉스 새싹인삼 수경재배 시스템
CN218388940U (zh) 可控制二氧化碳的环保温室
CN218634856U (zh) 一种应用于高原的草甸孵育装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954250

Country of ref document: EP

Kind code of ref document: A1