WO2022059724A1 - 結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法 - Google Patents

結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法 Download PDF

Info

Publication number
WO2022059724A1
WO2022059724A1 PCT/JP2021/034010 JP2021034010W WO2022059724A1 WO 2022059724 A1 WO2022059724 A1 WO 2022059724A1 JP 2021034010 W JP2021034010 W JP 2021034010W WO 2022059724 A1 WO2022059724 A1 WO 2022059724A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallized glass
less
glass
crystal
preferable
Prior art date
Application number
PCT/JP2021/034010
Other languages
English (en)
French (fr)
Inventor
一樹 金原
裕 黒岩
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180063570.3A priority Critical patent/CN116157367A/zh
Priority to JP2022550594A priority patent/JPWO2022059724A1/ja
Priority to DE112021004207.6T priority patent/DE112021004207T5/de
Publication of WO2022059724A1 publication Critical patent/WO2022059724A1/ja
Priority to US18/184,114 priority patent/US20230212062A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix

Definitions

  • the present invention relates to a method for manufacturing crystallized glass, a high frequency substrate, a liquid crystal antenna, and crystallized glass.
  • Examples of the material of the dielectric substrate include quartz, ceramics, and glass.
  • the crystallized glass obtained by crystallizing a part of the glass has an advantage that it is easier to mold and can be manufactured at a lower cost than quartz or ceramics, and the dielectric property can be made better.
  • Examples of the crystallized glass having excellent dielectric properties include crystallized glass containing crystals of Indialite or Cordierite as disclosed in Patent Document 1.
  • an object of the present invention is to solve the above-mentioned problems and to provide a crystallized glass containing a large amount of crystals of Indialite and cordierite and achieving excellent dielectric properties while suppressing cracking.
  • the present invention is a crystallized glass containing at least one crystal of Indialite and cordierite.
  • the total amount of the crystals is 40% by mass or more of the crystallized glass.
  • the crystals provide a crystallized glass containing at least one of a pore and a dissimilar element at the site of Al.
  • the portion containing at least one of the pores and the dissimilar element may be 4 atom% or more of the Al site in total.
  • TiO 2 may be contained in an amount of 5 to 15% in terms of an oxide-based mass percentage. In one aspect of the crystallized glass of the present invention, 0.5 to 15% of P2O 5 may be contained in an oxide-based mass percentage display. In one aspect of the crystallized glass of the present invention, the crystallized glass has main surfaces facing each other, the area of the main surfaces is 100 to 100,000 cm 2 , and the thickness is 0.01 to 2 mm. May be good. In one aspect of the crystallized glass of the present invention, the thermal conductivity at 20 ° C. may be 1.0 W / (m ⁇ K) or more. In one aspect of the crystallized glass of the present invention, the relative permittivity at 20 ° C.
  • the dielectric loss tangent at 20 ° C. and 10 GHz may be 0.003 or less.
  • the average coefficient of thermal expansion at 50 to 350 ° C. may be 1 ppm / ° C. or higher.
  • the present invention provides a high-frequency substrate using the above-mentioned crystallized glass.
  • the present invention provides a liquid crystal antenna using the above-mentioned crystallized glass.
  • the present invention is an oxide-based mass percentage display. SiO 2 45-60%, Al 2 O 3 20-35%, MgO 9-15%, P 2 O 5 0.5 to 15%, TiO 2 5 to 15%, Amorphous glass containing is provided.
  • the present invention is an oxide-based mass percentage display. SiO 2 45-60%, Al 2 O 3 20-35%, MgO 9-15%, Preparing the amorphous glass to be contained and A method for producing crystallized glass, which comprises heat-treating the amorphous glass.
  • a method for producing crystallized glass which comprises heat-treating the amorphous glass.
  • a method for producing a crystallized glass which comprises precipitating at least one crystal of Indialite and cordierite in the heat treatment and allowing at least one of a pore and a dissimilar element to be present in the Al site of the crystal. ..
  • the amorphous glass is In the oxide-based mass percentage display, P 2 O 5 0.5 to 15%, TiO 2 5 to 15%, It may be contained.
  • the amorphous glass has main surfaces facing each other, the area of the main surfaces is 100 to 100,000 cm 2 , and the amorphous glass has an area of 100 to 100,000 cm 2.
  • the thickness may be 0.01 to 2 mm.
  • the heat treatment may include holding the amorphous glass at 960 ° C. or higher for 0.5 hours or longer.
  • the heat treatment includes holding in a first temperature range and holding in a second temperature range, and the first temperature range is 760. The temperature is equal to or higher than 960 ° C, and the holding time in the first temperature range is 0.5 hours or longer.
  • the second temperature range may be 960 ° C. or higher and 1350 ° C. or lower, and the holding time in the second temperature range may be 0.5 hours or longer.
  • the present invention while achieving excellent dielectric properties by containing at least one crystal of Indialite and cordierite in an amount of 40% by mass or more, such crystal causes pores in Al sites and at least one of dissimilar elements.
  • a crystallized glass in which cracking due to a difference in thermal expansion rate between the crystal phase and the glass phase is suppressed a high-frequency substrate using the crystallized glass, and an antenna for liquid crystal can be obtained.
  • FIG. 1 is a diagram schematically showing a temperature change in a two-step heat treatment.
  • the glass composition is expressed as an oxide-based mass percentage display unless otherwise specified, and mass% is simply expressed as “%”.
  • mass-based ratio (percentage, etc.) and the weight-based ratio (percentage, etc.) are the same.
  • substantially not contained means that it is below the level of impurities contained in raw materials and the like, that is, it is not intentionally contained. Specifically, for example, it is less than 0.1% by mass.
  • crystals are deposited.
  • the "crystallized glass” refers to a glass in which a diffraction peak indicating a crystal is recognized by an X-ray diffraction method (XRD: X-ray Diffraction).
  • XRD X-ray Diffraction
  • CuK ⁇ rays are used to measure the range of 2 ⁇ in the range of 10 ° to 80 °, and when a diffraction peak appears, the precipitated crystal can be identified by, for example, a three-strength method.
  • the crystallized glass according to the present embodiment (hereinafter, also referred to as the present crystallized glass) is a crystallized glass containing at least one crystal of Indialite and cordierite, and the total amount of the crystals is crystallized. It is 40% by mass or more of the glass-ceramic, and the crystal contains at least one of a pore and a dissimilar element at the site of Al.
  • the crystallized glass contains at least one crystal of indialite and cordierite.
  • Indialite and cordierite are MgO— Al2O3 - SiO2 -based crystals having the same composition but different crystal structures.
  • the composition of these crystals is represented by the chemical formula Mg 2 Al 4 Si 5 O 18 .
  • cordierite is a low temperature type and has an orthorhombic crystal structure
  • Indialite is a high temperature type and has a hexagonal crystal structure.
  • at least one crystal of indialite and cordierite contained in the crystallized glass may be collectively referred to as "indialite / cordierite crystal”.
  • indialite / cordierite crystal refers to a crystal of one of indialite and cordierite when the crystallized glass contains one of indialite and cordierite, and contains both indialite and cordierite. In the case, it means both crystals.
  • Insulated substrates used in high-frequency devices are required to reduce transmission loss due to dielectric loss, conductor loss, etc., in order to ensure characteristics such as quality and strength of high-frequency signals.
  • Crystallized glass containing Indialite / cordierite crystals tends to have a smaller dielectric constant tangent and relative permittivity as the ratio of the crystals in the crystallized glass increases. Further, among Indialite and cordierite, Indialite tends to have more excellent dielectric properties, and the crystallized glass preferably contains Indialite.
  • the total amount of Indialite / cordierite crystals in the present crystallized glass is 40% by mass or more of the crystallized glass.
  • the total amount of Indialite / cordierite crystals is preferably 50% by mass or more, more preferably 55% by mass or more, and further preferably 60% by mass or more.
  • the total amount of Indialite / cordierite crystals is crystallized. 90% by mass or less of the glass is preferable, 85% by mass or less is more preferable, and 80% by mass or less is further preferable.
  • the crystallized glass comprises at least one crystal of indialite and cordierite, as defined as the peak of the (100) plane.
  • Rietveld analysis quantitative analysis of crystalline phase and amorphous phase and structural analysis of crystalline phase are possible.
  • the Rietveld method is described in the "Crystal Analysis Handbook" (Kyoritsu Shuppan, 1999, pp. 492-499), edited by the editorial board of the "Crystal Analysis Handbook” of the Japanese Crystal Society.
  • the content of Indialite / cordierite crystals in the present crystallized glass can be calculated by Rietveld analysis using the measurement results by XRD.
  • the indialite / cordierite crystal contains at least one of a pore and a dissimilar element in the Al site.
  • the dissimilar element means an element other than Al. That is, the Indialite / cordierite crystal of the present crystallized glass contains a portion where the Al atom does not exist at the site where the Al atom should originally occupy when the ideal crystal structure is repeated. If none of the atoms including the atom of the dissimilar element is present in the portion where the Al atom does not exist, the portion is a vacancies, and if the atom of the dissimilar element is present, the portion is a portion containing the dissimilar element.
  • the dissimilar element is not particularly limited, and examples thereof include elements other than Al whose atom size is relatively close to the size of the Al atom. Specific examples of such elements include Mg, Si and the like.
  • the Indialite / cordierite crystal contains at least one of a pore and a dissimilar element in the Al site, it is possible to suppress the cracking of the crystallized glass due to the difference in the coefficient of thermal expansion between the crystal phase and the glass phase. Since the Indialite / cordierite crystal contains at least one of pores and dissimilar elements in the Al site, the crystal structure is distorted to some extent as compared with the case where it has an ideal crystal structure, that is, the original lattice constant. The structure is such that the lattice constant expands or contracts only in the axial direction in comparison. As a result, the stress generated in the crystallized glass due to the difference in the coefficient of thermal expansion between the crystal phase and the glass phase can be relaxed, and it is considered that cracking can be suppressed.
  • the number of atoms in the crystal is reduced as compared with the case where the crystal has an ideal crystal structure.
  • the dielectric property changes according to the amount of electrons, and the dielectric constant tends to increase as the number of electrons increases. That is, it is considered that the presence of pores in the Al site tends to improve the dielectric properties of the crystallized glass because the number of electrons is reduced as compared with the case where Al atoms are present. From this, it is considered that even when the Al site contains a dissimilar element, the dielectric property is likely to be improved as well when the number of electrons is reduced as compared with the case where the Al atom is present. Therefore, from the viewpoint of further improving the dielectric property, it is preferable that the dissimilar element has a smaller number of electrons than Al. Examples of such a dissimilar element include Mg.
  • the total of the portions containing at least one of the pores and dissimilar elements in the Al site is from the viewpoint of improving the effect of suppressing cracking. It is preferably 4 atom% or more of the Al site.
  • the total of the portions without Al atoms is more preferably 5 atom% or more, further preferably 7.5 atom% or more, still more preferably 9 atom% or more, particularly preferably 10 atom% or more, and further. Particularly preferably, it is 12 atom% or more.
  • the total of the portions where the Al atom does not exist in the Al site is preferably 50 atom% or less, more preferably 35 atom% or less, still more preferably 20 atom% or less from the viewpoint of maintaining the crystal structure.
  • the portion where the Al atom does not exist may be entirely vacant or may be entirely containing dissimilar elements. It is preferably contained, and it is more preferable that there are more pores than the portion containing a dissimilar element.
  • the total ratio of the portion where the Al atom does not exist to the site of Al is the atomic fraction (atom%) of the portion where the Al atom does not exist with respect to the site which the Al atom should originally occupy when the ideal crystal structure is repeated. be.
  • the ratio can be calculated by Rietveld analysis using the measurement result by XRD.
  • the present crystallized glass may contain crystals other than Indialite / cordierite crystals as long as the effects of the present invention are not impaired.
  • crystals other than the Indialite / cordierite crystals include mullite, corundum, rutile, anatase and the like.
  • the total content thereof is preferably 15% by mass or less, more preferably 12.5% by mass or less, still more preferably 10% by mass or less, based on the total amount of the crystallized glass. .. Identification of crystal species and measurement of the content of crystals other than Indialite / Cordierite crystals can be performed by Rietveld analysis using the above-mentioned XRD measurement and XRD measurement results.
  • composition of the present crystallized glass is the same as the composition of the amorphous glass before crystallization in the production method described later. Therefore, the preferred composition is the same between the composition of the present crystallized glass and the composition of the amorphous glass.
  • the composition of the crystallized glass in the present specification refers to the total composition of the crystal phase and the glass phase of the crystallized glass.
  • the composition of the crystallized glass is obtained by heat-treating the crystallized glass at a temperature equal to or higher than the melting point and analyzing the vitrified glass.
  • An example of the analysis method is a fluorescent X-ray analysis method.
  • composition of the crystal phase of the present crystallized glass can be analyzed by Rietveld analysis of the result of the above-mentioned XRD measurement.
  • the lower limit of the preferable content of the non-essential component is 0%.
  • the composition of the crystallized glass is not particularly limited, but it is preferable that SiO 2 is contained in an amount of 45 to 60%, Al 2 O 3 is contained in an amount of 20 to 35%, and Mg O is contained in an amount of 9 to 15% in terms of mass percentage display based on oxides. .. SiO 2 , Al 2 O 3 , and MgO are components constituting Indialite / cordierite crystals.
  • SiO 2 is a component for precipitating Indialite / cordierite crystals as a crystal phase.
  • the content of SiO 2 is preferably 45% or more. When the content of SiO 2 is 45% or more, the precipitated crystal phase of the crystallized glass is likely to be stable.
  • the content of SiO 2 is more preferably 45.2% or more, further preferably 45.5% or more, still more preferably 45.7% or more, particularly preferably 46% or more, still more preferably. It is 46.2% or more, and most preferably 46.5% or more.
  • the content of SiO 2 is preferably 60% or less. When the content of SiO 2 is 60% or less, the glass raw material is easily melted or molded.
  • the heat treatment condition is also an important factor for precipitating the Indialite / cordierite crystal as the crystal phase, but when the content of SiO 2 is not more than the above upper limit value, a wider heat treatment condition can be selected. ..
  • the content of SiO 2 is more preferably 58% or less, further preferably 56% or less, further preferably 54% or less, particularly preferably 52% or less, further preferably 50% or less, and most preferably 48% or less.
  • Al 2 O 3 is a component for precipitating Indialite / cordierite crystals as a crystal phase.
  • the content of Al 2 O 3 is preferably 20% or more. When the content of Al 2 O 3 is 20% or more, a desired crystal phase can be easily obtained, the precipitated crystal phase of the crystallized glass can be easily stabilized, and an increase in the liquid phase temperature can be suppressed.
  • the content of Al 2 O 3 is more preferably 22% or more, further preferably 24% or more, further preferably 26% or more, particularly preferably 28% or more, further preferably 29%, and most preferably 30% or more. be. On the other hand, the content of Al 2 O 3 is preferably 35% or less.
  • the content of Al 2 O 3 is more preferably 34.5% or less, further preferably 34% or less, further preferably 33.5% or less, particularly preferably 33% or less, still more preferably 32.5% or less. 32% or less is the most preferable.
  • MgO is a component for precipitating Indialite / cordierite crystals as a crystal phase.
  • the MgO content is preferably 9% or more. When the content of MgO is 9% or more, desired crystals are easily obtained, the precipitated crystal phase of the crystallized glass is easily stabilized, and the meltability of the glass raw material is good.
  • the MgO content is more preferably 9.3% or more, further preferably 9.5% or more, further preferably 9.7% or more, particularly preferably 10% or more, still more preferably 10.2%, and most preferably. Is 10.5% or more.
  • the content of MgO is preferably 15% or less. When the content of MgO is 15% or less, a desired crystal can be easily obtained.
  • the MgO content is more preferably 14.5% or less, further preferably 14% or less, further preferably 13.5% or less, particularly preferably 13% or less, further preferably 12.5% or less, and even more preferably 12% or less. Is most preferable.
  • the present crystallized glass preferably contains a nucleation component.
  • the nucleation component is a component that can generate a nucleus that is a starting point of crystal growth when crystallizing an amorphous glass. By including the nucleation component, it becomes easy to stably obtain a desired crystal structure and a state in which crystals are relatively uniformly dispersed in the crystallized glass.
  • the nucleation component include TiO 2 , MoO 3 , ZrO 2 , and the like.
  • TIO 2 is preferable from the viewpoint of stably precipitating Indialite / cordierite crystals.
  • the total content of the nucleation components is preferably 5% or more, more preferably 5.5% or more, still more preferably 6.0% or more, still more preferably 6 5.5% or more is more preferable, 7.0% or more is particularly preferable, 7.5% is further preferable, and 8.0% or more is most preferable.
  • the total content of nucleated components is preferably 15% or less, preferably 14.5% or less, from the viewpoint of increasing the ratio of indialite / cordierite crystals in the entire crystallized glass and improving the dielectric properties. More preferably, 14% or less is further preferable, 13.5% or less is further preferable, 13% or less is particularly preferable, 12.5% or less is further preferable, and 12% or less is most preferable.
  • TiO 2 is not an essential component, it functions as the above-mentioned nucleation component, and also contributes to the miniaturization of the precipitated crystal phase, the improvement of the mechanical strength of the material, and the improvement of the chemical durability.
  • the content is preferably 5% or more, more preferably 5.5% or more, still more preferably 6.0% or more, from the viewpoint of stably precipitating Indialite / cordierite crystals. 6.5% or more is more preferable, 7.0% or more is particularly preferable, 7.5% is further preferable, and 8.0% or more is most preferable.
  • the TiO 2 content is preferably 15% or less, more preferably 14.5% or less, from the viewpoint of increasing the ratio of indialite / cordierite crystals in the entire crystallized glass and improving the dielectric properties. 14% or less is further preferable, 13.5% or less is further preferable, 13% or less is particularly preferable, 12.5% or less is further preferable, and 12% or less is most preferable.
  • MoO 3 is not an essential component, but is a component that functions as the above-mentioned nucleation component.
  • the content is preferably 5% or more, more preferably 5.5% or more, still more preferably 6.0% or more, from the viewpoint of stably precipitating Indialite / cordierite crystals. 6.5% or more is more preferable, 7.0% or more is particularly preferable, 7.5% is further preferable, and 8.0% or more is most preferable.
  • the MoO 3 content is preferably 15% or less, more preferably 14.5% or less, from the viewpoint of increasing the ratio of indialite / cordierite crystals in the entire crystallized glass and improving the dielectric properties. 14% or less is further preferable, 13.5% or less is further preferable, 13% or less is particularly preferable, 12.5% or less is further preferable, and 12% or less is most preferable.
  • ZrO 2 is not an essential component, it functions as the above-mentioned nucleation component, and also contributes to the miniaturization of the precipitated crystal phase, the improvement of the mechanical strength of the material, and the improvement of the chemical durability.
  • the content of ZrO 2 is preferably 5% or more, more preferably 5.5% or more, still more preferably 6.0% or more, and 6.5%, from the viewpoint of stably precipitating Indialite / cordierite crystals.
  • the above is even more preferable, 7.0% or more is particularly preferable, 7.5% is even more preferable, and 8.0% or more is most preferable.
  • the content of ZrO 2 is preferably 15% or less, more preferably 14.5% or less, from the viewpoint of increasing the ratio of indialite / cordierite crystals in the entire crystallized glass and improving the dielectric properties. 14% or less is further preferable, 13.5% or less is further preferable, 13% or less is particularly preferable, 12.5% or less is further preferable, and 12% or less is most preferable.
  • the present crystallized glass preferably contains a pore-forming component.
  • the vacancy-forming component is a component that facilitates the formation of at least one of the above-mentioned Al atom-free portion, that is, the vacancy and the portion containing a dissimilar element in the Al site of the Indialite / cordierite crystal. ..
  • Examples of the pore-forming component include P 2 O 5 and B 2 O 3 . Of these, P 2 O 5 is a component that easily forms a large number of pores and portions containing different elements in the Al site of the Indialite / cordierite crystal, and is particularly preferable as a pore-forming component.
  • the pore-forming component for example, P 2 O 5 .
  • the pore-forming component causes a minute phase separation during the crystallization process of heating the amorphous glass.
  • the pore-forming component causes a minute phase separation during the crystallization process of heating the amorphous glass.
  • the atoms around the Al site are likely to compete for the Al atom during crystal growth. Therefore, the Al site becomes a hole, and it becomes easy to take in a foreign element such as Mg.
  • a portion in which Al atom does not exist is formed in the Al site by the addition of the pore-forming component, it is considered that the portion tends to contain pores and has more pores than the portion containing different elements.
  • the content of the pore-forming component is preferably 0.5% or more, more preferably 1% or more, still more preferably 2% or more, and further preferably 3%, from the viewpoint of facilitating the formation of a portion where Al atoms do not exist in the Al site. The above is even more preferable.
  • the content of the pore-forming component is preferably 15% or less, more preferably 7.5% or less. 3.5% or less is more preferable.
  • P 2 O 5 is not an essential component, it is preferably contained because it functions as the above-mentioned pore-forming component. In addition to functioning as a pore-forming component, P 2 O 5 also contributes to improving the meltability, moldability, and devitrification resistance of the glass raw material.
  • the content is preferably 0.5% or more, more preferably 0.75% or more, and 1% or more from the viewpoint of facilitating the formation of a portion where Al atoms do not exist in the Al site. Is even more preferable, 1.25% or more is even more preferable, 1.5% or more is particularly preferable, 1.75% is even more preferable, and 2% or more is most preferable.
  • the content of P2O 5 is preferably 15% or less, more preferably 13% or less, and 11% or less. Is even more preferable, 9% or less is even more preferable, 7% or less is particularly preferable, 5% or less is further preferable, and 3.5% or less is most preferable.
  • B 2 O 3 is not an essential component, it may be contained because it functions as the above-mentioned pore-forming component. Further, B 2 O 3 is a component that contributes to the adjustment of the viscosity at the time of melt molding of the glass raw material and the crystallization temperature.
  • the content of B 2 O 3 is preferably 0.5% or more, more preferably 0.75% or more, still more preferably 1% or more, from the viewpoint of facilitating the formation of a portion where Al atoms do not exist in the Al site. 1.25% or more is more preferable, 1.5% or more is particularly preferable, 1.75% is further preferable, and 2% or more is most preferable.
  • the content of B 2 O 3 is preferably 10% or less, more preferably 9% or less, and further preferably 8% or less. It is more preferably 7% or less, particularly preferably 6% or less, still more preferably 5% or less, and most preferably 4% or less.
  • the total amount is preferably 1% or more, and the crystal phase and the glass phase are used, from the viewpoint of facilitating the formation of a portion where no Al atom is present in the Al site.
  • the total amount is preferably 15% or less from the viewpoint of suppressing the separation of aluminum and from the viewpoint of stably precipitating crystals.
  • CaO may not be contained, but may be contained in an amount of 4% or less because it has an effect of improving the meltability of the glass raw material and at the same time preventing the coarsening of the precipitated crystal phase.
  • a more preferable range of CaO content is 1% or more. Further, the more preferable range of the CaO content is 3% or less.
  • BaO may not be contained, but may be contained in an amount of 5% or less in order to improve the meltability of the glass raw material.
  • a more preferable range of BaO content is 1% or more. Further, the more preferable range of the BaO content is 3% or less.
  • Sb 2 O 3 and As 2 O 3 may not be contained, but may be contained in an amount of 1% or less because they act as a clarifying agent when the glass raw material is melted.
  • F may not be contained, but may be contained in an amount of 3% or less in order to improve the meltability of the glass raw material.
  • SnO 2 , CeO, and Fe 2 O 3 may not be contained, but they can be used to improve the detection sensitivity of surface defects by coloring or coloring the glass, and to improve the absorption characteristics of the LD-excited solid-state laser. A total of 5% or less of the components may be contained.
  • the dielectric loss tangent of the crystallized glass at 20 ° C. and 10 GHz is preferably 0.003 or less, more preferably 0.002 or less, further preferably 0.0018 or less, and more preferably 0.0016 or less from the viewpoint of improving the dielectric properties. Further, 0.0014 or less is particularly preferable, 0.0012 or less is further preferable, 0.001 or less is particularly preferable, and 0.0008 or less is most preferable. The smaller the dielectric loss tangent at 20 ° C. and 10 GHz is preferable, but it is usually 0.0001 or more.
  • the relative permittivity of the present crystallized glass at 20 ° C. and 10 GHz is preferably 7 or less, more preferably 6.5 or less, still more preferably 6 or less, from the viewpoint of improving the dielectric property.
  • This crystallized glass has excellent dielectric properties because it contains a relatively large amount of Indialite / Cordierite crystals.
  • the dielectric loss tangent or relative permittivity at 20 ° C. and 10 GHz is within the above-mentioned preferable range, it is considered that the dielectric property for a frequency higher than 10 GHz is also excellent.
  • Dielectric properties such as dielectric loss tangent and relative permittivity are measured by the slip-post dielectric resonance method (SPDR method).
  • the thermal conductivity of the crystallized glass at 20 ° C. is preferably 1.0 W / (m ⁇ K) or more, more preferably 1. 5 W / (m ⁇ K) or more, more preferably 2.0 W / (m ⁇ K) or more, even more preferably 2.5 W / (m ⁇ K) or more, particularly preferably 3.0 W / (m ⁇ K) or more. That is all.
  • the thermal conductivity can be measured by using a laser flash method thermophysical property measuring device according to the method specified in JIS R1611 (2010). The larger the thermal conductivity, the more preferable, but it is usually 8.0 W / (m ⁇ K) or less.
  • the thermal conductivity can be adjusted by the crystal content, crystal type, crystal precipitation form and the like.
  • the thermal conductivity has a particularly high correlation with the crystallization rate, and the thermal conductivity is generally 1.0 W / (m ⁇ K) or less in uncrystallized glass, but the thermal conductivity is improved in the sample after crystallization. It is known.
  • the average coefficient of thermal expansion of the present crystallized glass at 50 to 350 ° C. is preferably 1 ppm / ° C. or higher from the viewpoint of reducing the difference in the coefficient of thermal expansion when the present crystallized glass is used by adhering it to other members.
  • 1.5 ppm / ° C. or higher is more preferable, 1.75 ppm / ° C. or higher is further preferable, 2.0 ppm / ° C. or higher is particularly preferable, 2.25 ppm / ° C. or higher is even more preferable, and 2.5 ppm / ° C. or higher is most preferable.
  • the average coefficient of thermal expansion at 50 to 350 ° C. can be measured using a differential thermal expansion meter according to the method specified in JIS R3102 (1995).
  • the average coefficient of thermal expansion can be adjusted by adjusting the composition of the glass, the crystal content, and the like. Further, in the present crystallized glass, cracking due to the difference in thermal expansion coefficient between the crystal phase and the glass phase is suppressed, and as a result, the average thermal expansion coefficient tends to be increased to some extent.
  • the shape of the crystallized glass is not particularly limited, and various shapes can be used depending on the purpose and application.
  • the present crystallized glass may have a plate shape having two main surfaces facing each other, or may have a shape other than the plate shape depending on the product to be applied, the application, and the like. More specifically, the present crystallized glass may be, for example, a flat plate-shaped glass plate having no warp, or a curved glass plate having a curved surface.
  • the shape of the main surface is not particularly limited, and can be formed into various shapes such as a circle and a quadrangle.
  • Preferred shapes of the crystallized glass include, for example, a shape having two main surfaces facing each other, having an area of 100 to 100,000 cm 2 and a thickness of 0.01 to 2 mm.
  • the area of the main surface of the crystallized glass is preferably 100 cm 2 or more, more preferably 225 cm 2 or more, and even more preferably 400 cm 2 or more, from the viewpoint of transmission / reception efficiency when used for an antenna or the like. Further, the area of the main surface is preferably 100,000 cm 2 or less, more preferably 10,000 cm 2 or less, and further preferably 3600 cm 2 or less from the viewpoint of handleability.
  • the thickness of the present crystallized glass is preferably 0.01 mm or more, more preferably 0.05 mm or more, still more preferably 0.1 mm or more from the viewpoint of maintaining strength.
  • the thickness of the crystallized glass is preferably 2 mm or less, more preferably 1 mm or less, and 0.7 mm or less from the viewpoint of improving production efficiency from the viewpoint of thinning and miniaturization of parts and products using the crystallized glass. Is even more preferable.
  • This crystallized glass is used for high frequency devices (electronic devices) such as semiconductor devices used in communication devices such as mobile phones, smartphones, mobile information terminals, and Wi-Fi devices, surface acoustic wave (SAW) devices, and radar transmission / reception. It is suitable for circuit boards such as radar parts such as machines and boards such as antenna parts such as antennas for liquid crystal.
  • This crystallized glass has excellent dielectric properties especially in the high frequency range, cracking due to the difference in the coefficient of thermal expansion between the crystal phase and the glass phase is suppressed, and it also has excellent thermal shock resistance. Suitable for liquid crystal antennas.
  • This crystallized glass has excellent dielectric properties at high frequencies and also has excellent thermal shock resistance, so that it can be used as a substrate for high frequencies.
  • the preferable range of the preferable specific dielectric constant, dielectric loss, thermal conductivity and average thermal expansion coefficient of the high frequency substrate according to the present embodiment (hereinafter, also referred to as the present high frequency substrate) using the present crystallized glass is the present crystal. Similar to glass-ceramic.
  • High frequency substrates generally have two main surfaces facing each other.
  • the area of the main surface of the high frequency substrate is preferably 75 cm 2 or more, more preferably 100 cm 2 or more, further preferably 150 cm 2 or more, still more preferably 300 cm 2 or more, and particularly preferably 600 cm 2 or more, from the viewpoint of transmission / reception efficiency. be.
  • the area of the main surface of the high frequency substrate is preferably 5000 cm 2 or less from the viewpoint of ensuring the strength.
  • the shape can be freely designed according to the application as long as it has the above area.
  • the plate thickness of the high frequency substrate is preferably 1 mm or less, more preferably 0.8 mm or less, and further preferably 0.7 mm or less.
  • the plate thickness is in the above range, it is preferable because the whole can be thinned when the substrates are laminated to form a circuit.
  • the plate thickness is preferably 0.05 mm or more, more preferably 0.2 mm or more, the strength can be ensured.
  • holes may be formed in the crystallized glass substrate made of the present crystallized glass. That is, the high frequency substrate may have a hole having an opening on at least one of the main surfaces.
  • the hole may be a through hole communicating with the other main surface, or may be a non-penetrating void. It can be used as a circuit by filling these holes with a conductor or forming a conductor film on the hole wall.
  • the diameter of the hole is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less. On the other hand, the diameter of the hole is preferably 1 ⁇ m or more.
  • the method of forming the holes is not particularly limited, but in order to accurately form small holes having a diameter of 200 ⁇ m or less, for example, a method of irradiating a crystallized glass substrate with a laser is preferable.
  • the substrate using this crystallized glass is excellent in processability by laser irradiation.
  • the wavelength of the laser is not particularly limited, but for example, a laser having a wavelength of 10.6 ⁇ m or less, 3000 nm or less, 2050 nm or less, 1090 nm or less, 540 nm, and 400 nm or less is used.
  • the following two methods are suitable.
  • the liquid crystal antenna is a satellite communication antenna that can control the direction of radio waves transmitted and received by using liquid crystal technology, and is mainly used for vehicles such as ships, airplanes, and automobiles. Since LCD antennas are mainly expected to be used outdoors, stable characteristics over a wide temperature range are required, and they are added due to sudden temperature changes such as squalls on the ground and above, and in the scorching desert. Resistance to thermal shock is also required.
  • This crystallized glass has excellent dielectric properties at high frequencies and also has excellent thermal shock resistance, so it can be used for liquid crystal antennas.
  • the preferable range of the preferable specific dielectric constant, dielectric loss, thermal conductivity and average thermal expansion coefficient of the liquid crystal antenna according to the present embodiment (hereinafter, also referred to as the present liquid crystal antenna) using the present crystallized glass is the present crystal. Similar to glass-ceramic.
  • a liquid crystal antenna generally has two main surfaces facing each other.
  • the area of the main surface of the liquid crystal antenna is preferably 75 cm 2 or more, more preferably 100 cm 2 or more, further preferably 150 cm 2 or more, still more preferably 300 cm 2 or more, and particularly preferably 700 cm 2 or more, from the viewpoint of transmission / reception efficiency. be.
  • the area of the main surface of the liquid crystal antenna is preferably 10000 cm 2 or less, more preferably 3600 cm 2 or less, and further preferably 2500 cm 2 or less from the viewpoint of handleability.
  • the shape can be freely designed according to the application as long as it has the above area.
  • the plate thickness of the liquid crystal antenna is preferably 1 mm or less, more preferably 0.8 mm or less, and further preferably 0.7 mm or less.
  • the plate thickness is in the above range, the whole can be thinned, which is preferable.
  • the plate thickness is preferably 0.05 mm or more, more preferably 0.2 mm or more, the strength can be ensured.
  • a method for producing the present crystallized glass (hereinafter, also referred to as the present production method) will be described.
  • the method for producing the present crystallized glass is not particularly limited, but for example, the following method is preferable.
  • a method for manufacturing a plate-shaped glass will be described, but the shape of the glass can be appropriately adjusted according to the purpose.
  • amorphous glass containing 45 to 60% of SiO 2 , 20 to 35% of Al 2 O 3 and 9 to 15% of Mg O is prepared by displaying the mass percentage based on the oxide (non-). Includes a crystalline glass molding step) and a heat treatment of the amorphous glass (crystallization step). Further, the present production method includes precipitating at least one crystal of indialite and cordierite in the heat treatment, and allowing at least one of pores and dissimilar elements to be present in the Al site of the crystal. The details of each step will be described below.
  • melt molding process In this step, a raw material prepared so as to have a desired glass composition is melt-molded to obtain amorphous glass.
  • the method of melt molding is not particularly limited, but a glass raw material containing a glass raw material is placed in a platinum crucible and placed in an electric furnace at 1300 ° C. to 1700 ° C. to melt, defoam, and homogenize.
  • the obtained molten glass is poured into a metal mold at room temperature (for example, a stainless steel platen), held at the temperature of the glass transition point for about 3 hours, and then cooled to room temperature to obtain an amorphous glass glass block.
  • the obtained glass blocks are processed by cutting, grinding, polishing and the like as necessary to form a desired shape. Processing such as cutting, grinding, and polishing may be performed after the crystallization step.
  • the amorphous glass is processed before the crystallization step, its shape is not particularly limited, and the preferred shape is the same as the preferred shape of the present crystallized glass.
  • amorphous glass can be molded into a desired shape from a molten state, so it is desired after molding with powder or slurry like ceramics and firing, or after manufacturing an ingot like synthetic quartz.
  • it has advantages in that it is easy to mold and it is easy to increase the area, and it can be manufactured at low cost in consideration of the crystallization process described later.
  • Amorphous glass contains 45 to 60% SiO 2 , 20 to 35% Al 2 O 3 , and 9 to 15 Mg O from the viewpoint of precipitating at least one crystal of indialite and cordierite on the crystallized glass. % Is preferably contained. Further, the amorphous glass preferably contains 5 to 15% of TiO 2 as a nucleating agent. Amorphous glass preferably contains 0.5 to 15% of P 2 O 5 as a pore-forming component.
  • the preferable composition of the amorphous glass is the same as the preferable composition of the present crystallized glass described above in ⁇ Crystallized glass>, and the details thereof are the same as those described above.
  • the amorphous glass obtained in the amorphous glass molding step is heat-treated.
  • the heat treatment it is preferable to hold the amorphous glass at a specific treatment temperature for a specific holding time, and the treatment temperature or holding time is such that at least one crystal of Indialite and cordierite is precipitated, and the crystal is described.
  • the condition is not particularly limited as long as at least one of the pores and the dissimilar element can be present in the Al site.
  • the present production method is characterized in that at least one crystal of indialite and cordierite is precipitated in the heat treatment, and at least one of a pore and a dissimilar element is present in the Al site of the crystal.
  • the method for allowing at least one of the pores and the dissimilar element to be present in the Al site is not particularly limited, but for example, the composition contains a pore-forming component such as P 2 O 5 , and a minute component in the first temperature range described later.
  • the treatment temperature is preferably, for example, 960 ° C. or higher, more preferably 980 ° C. or higher, still more preferably 1000 ° C. or higher, from the viewpoint of advancing the precipitation of Indialite / cordierite crystals and shortening the heat treatment time to increase productivity.
  • the treatment temperature is preferably 1350 ° C. or lower, more preferably 1250 ° C. or lower, and even more preferably 1150 ° C. or lower, from the viewpoint of suppressing the precipitation of crystals other than Indialite / cordierite and from the viewpoint of manufacturability.
  • the holding time is preferably 0.5 hours or longer, more preferably 1 hour or longer, still more preferably 1.5 hours or longer, still more preferably 2 hours or longer, particularly preferably 2.5 hours or longer, and most preferably 3 It's more than an hour.
  • crystallization sufficiently proceeds.
  • long-term heat treatment increases the cost of heat treatment, so it is preferably 15 hours or less, more preferably 12 hours or less, and particularly preferably 10 hours or less.
  • the heat treatment preferably includes holding at the above-mentioned treatment temperature, but may further include raising and lowering the temperature within the above-mentioned treatment temperature range and other temperature ranges.
  • the temperature may be raised from room temperature to the first temperature range and held for a certain period of time, and then slowly cooled to room temperature, or the temperature may be raised from room temperature to the first temperature range and held for a certain period of time.
  • You may choose a two-step heat treatment in which the temperature is kept in the second temperature range, which is higher than the first temperature range, for a certain period of time, and then slowly cooled to room temperature.
  • the heat treatment may include a two-step heat treatment including holding in the first temperature range and holding in the second temperature range, especially when the composition contains nucleation components and pore-forming components. preferable.
  • a two-step heat treatment by holding in the first temperature range, nucleation components in the amorphous glass can generate nuclei that are the starting points for the growth of Indianite / cordierite crystals.
  • an indialite / cordierite crystal grows from such a nucleus as a starting point.
  • Indialite / Cordierite crystals grow even with a one-step heat treatment, by growing the crystals after forming nuclei, the crystals tend to be uniformly present in the crystallized glass and become Alsite.
  • the amorphous glass contains a pore-forming component
  • the pore-forming component causes a minute phase separation in the heat treatment process, so that crystals can be grown from the interface of the phase separation, and Al atoms are formed on the Al site. It becomes easier to form the part where is not present.
  • the first temperature range is preferably a temperature range in which the crystal nucleation rate increases in the glass composition.
  • the first temperature range is preferably 760 ° C. or higher, more preferably 800 ° C. or higher, and even more preferably 850 ° C. or higher.
  • the first temperature range is preferably 960 ° C. or lower, more preferably 920 ° C. or lower, and even more preferably 880 ° C. or lower.
  • the holding time in the first temperature range is preferably 0.5 hours or longer, more preferably 1 hour or longer, more preferably 1.5 hours or longer, and particularly preferably 2 hours or longer.
  • the holding time is preferably 5 hours or less, more preferably 4 hours or less, particularly from the viewpoint of suppressing the progress of crystal growth at the same time as nucleation and improving the dielectric properties of the entire crystallized glass. It is preferably 3 hours or less.
  • the second temperature range is preferably a temperature range in which the crystal growth rate of the Indialite / cordierite crystals is high.
  • the second temperature range is preferably 960 ° C. or higher, more preferably 980 ° C. or higher, and even more preferably 1000 ° C. or higher.
  • the second temperature range is preferably 1350 ° C. or lower, more preferably 1250 ° C. or lower, and even more preferably 1150 ° C. or lower.
  • the holding time in the second temperature range is preferably 0.5 hours or more, more preferably 1 hour or more, further preferably 1.5 hours or more, still more preferably 2 hours or more, and particularly preferably 2.5 hours. More than an hour, most preferably 3.0 hours or more.
  • the holding time is preferably 15 hours or less, more preferably 14 hours or less, and particularly preferably 12 hours or less.
  • the heating rate in the heat treatment is not particularly limited, but is generally 5 ° C./min or more, and from the viewpoint of increasing the heating rate so that pores and at least one of dissimilar elements are present in the Al site. 15 ° C./min or higher is preferable, and 20 ° C./min or higher is more preferable.
  • the rate of temperature rise is preferably 30 ° C./min or less, and more preferably 25 ° C./min or less, cracking due to the difference in expansion rate between the glass phase and the crystal phase that occurs at the time of temperature rise can be suppressed.
  • the temperature lowering rate is not particularly limited, but is preferably 10 ° C./min or less, more preferably 5 ° C./min or less, and even more preferably 1 ° C./min or less. Cracking due to the difference in expansion rate between the crystalline phase and the crystalline phase can be suppressed. On the other hand, the temperature lowering rate is generally 0.5 ° C./min or more.
  • Examples 1 to 8, 11 to 13, 15 to 18 are examples, and examples 9, 10 and 14 are comparative examples.
  • the glass raw materials were prepared so as to have the composition shown in the molar percentage display based on the oxide in Table 1, and weighed so as to be 400 g as glass. Then, the mixed raw materials were put into a platinum crucible, put into an electric furnace at 1500 to 1700 ° C., melted for about 3 hours, defoamed, and homogenized. Further, Table 2 shows the components shown in Table 1 in terms of mass percentage.
  • the obtained molten glass was poured into a metal mold, kept at a temperature about 50 ° C. higher than the glass transition point for 1 hour, and then cooled to room temperature at a rate of 0.5 ° C./min to obtain glass blocks.
  • the obtained glass blocks were cut and ground, and finally both sides were mirror-polished to obtain glasses 1 to 12 as glass plates having a thickness of 40 mm ⁇ 40 mm and a thickness of 2 mm.
  • FIG. 1 is a diagram schematically showing a temperature change in a two-step heat treatment. Specifically, FIG. 1 shows that in heat treatment, the amorphous glass is heated to the temperature T1 at the first heating rate, held for the holding time t1, and then heated to the temperature T2 at the second heating rate. It is shown that the temperature is maintained for the holding time t2 and then the temperature is lowered.
  • Crystallized glass was obtained by performing the heat treatment under the conditions shown in Table 3 such as the specific temperature of the heat treatment shown in FIG. Moreover, the physical characteristics shown in Table 3 were obtained from the obtained crystallized glass.
  • Table 3 the blank "-" in the "Crystalization conditions” column indicates that the heat treatment under the corresponding conditions has not been performed, and the blank "-" in the "Characteristics” column has not measured the corresponding physical properties. Show that.
  • X-ray diffraction is measured under the following conditions to identify the precipitated crystals. Diffraction peak patterns recorded in the ICSD inorganic crystal structure database and the ICDD powder diffraction database were used to identify the crystal species.
  • the powder X-ray diffraction profile obtained under the above conditions was analyzed using the Rietveld analysis program: Rietan FP.
  • the analysis of each sample was converged so that the Rwp indicating the quality of the convergence of the analysis was 10 or less.
  • the Rietveld method is described in the "Crystal Analysis Handbook" (Kyoritsu Shuppan, 1999, pp. 492-499), edited by the editorial board of the "Crystal Analysis Handbook" of the Japanese Crystal Society.
  • the content (crystallization rate) of the Indialite / cordierite crystals in the crystallized glass is the weight ratio of the crystal phase obtained by the Rietbelt analysis and the residual glass phase obtained by subtracting the content of the crystal phase from the total amount of the measured samples. 10 wt% of ZnO was subtracted from the added ZnO, and the calculation was performed so that the total amount of the remaining phases was 100 wt%.
  • total amount of indialite / cordierite crystals describes the ratio (mass%) of the total content of indialite / cordierite crystals.
  • Thermal conductivity was performed using a laser flash method thermophysical property measuring device (LFA-502 manufactured by Kyoto Electronics Manufacturing Co., Ltd.) according to the method specified in JIS R1611 (2010).
  • the measurement temperature was 20 ° C.
  • a crystallized glass plate after heat treatment processed into a circle having a diameter of 5 mm and a thickness of 1 mm was used.
  • sample state For each of the crystallized glasses of Examples 1 to 18, the fragility of the samples was evaluated using the following criteria using five samples. When the sample was visually confirmed and there was even a slight crack, it was judged that the sample was cracked. A: The number of cracked samples after heat treatment was 1 or less per 5. B: The number of cracked samples after the heat treatment was 2 to 3 per 5. C: The number of cracked samples after heat treatment was 4 or more per 5.
  • the crystallized glass of Examples 1 to 8, 11 to 13, 15 to 18 obtained by using the glasses 1 to 7 and 9 to 12 did not break or was hard to break after the heat treatment, and further, the sample was not broken.
  • the physical properties could be measured by processing, and the content of Indialite / Cordierite crystals was 40% by mass or more.
  • the crystallized glass of Example 15 was more difficult to break than the crystallized glass of Examples 11 to 13. Therefore, in Table 3, the sample state of Example 15 was designated as B +.
  • the content of the Indialite / cordierite crystals is 40% by mass or more, and the average linear thermal expansion coefficient at 50 to 350 ° C. is 1 ppm.
  • the crystallized glass of Examples 2, 3, 4, 6, 7, 11, 12, 16, 17, and 18 further has a relative permittivity of 7 or less at 20 ° C. and 10 GHz and a dielectric loss tangent of 0. It was a good value of 003 or less, and it was confirmed that it had good radio wave transmission.
  • Example 14 With respect to the crystallized glass of Example 9, sufficient crystallization did not occur due to the low temperature of the heat treatment, and the crystallization rate became low. As for the crystallized glass of Example 10, since the heat treatment time was short, sufficient crystallization did not occur and the crystallization rate was low. In Example 14, the proportion of P was too high, so that the amount of crystal precipitates of the Indianite / cordierite crystals was small. Further, in the crystallized glass of Example 14, many crystals other than the Indialite / cordierite crystals were precipitated, and the result was that the sample was easily cracked after the heat treatment.
  • the crystallized glass of the present invention has excellent dielectric properties for high-frequency signals and exhibits high thermal shock resistance.
  • Such crystallized glass is used for all high-frequency electronic devices such as high-frequency electronic devices that handle high-frequency signals exceeding 10 GHz, particularly high-frequency signals exceeding 30 GHz, and high-frequency signals handling 35 GHz or higher, and in environments with large temperature changes. It is very useful as a member of a device such as an antenna for liquid crystal used, a device that involves drilling with a laser, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

本発明は、インディアライトおよびコーディエライトの少なくとも一方の結晶を含有する結晶化ガラスであって、前記結晶の合計量が、前記結晶化ガラスの40質量%以上であり、前記結晶は、Alのサイトに空孔および異種元素の少なくとも一方を含む、結晶化ガラスに関する。

Description

結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法
 本発明は、結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法に関する。
 近年、大容量伝送技術としてマイクロ波帯やミリ波帯域を利用する無線伝送が注目されている。使用する周波数の拡大に伴い信号周波数が高くなるにつれて、高周波における誘電特性に優れる誘電体基板が求められてきている。
 誘電体基板の材料としては、例えば、石英、セラミックス、ガラスなどが挙げられる。ここで、ガラスの中でも、ガラスの一部を結晶化させた結晶化ガラスは、石英やセラミックスに比べ成形容易で安価に製造でき、誘電特性をより優れたものにできるという利点がある。誘電特性に優れる結晶化ガラスとしては、例えば特許文献1に開示されるような、インディアライトまたはコーディエライトの結晶を含む結晶化ガラスが挙げられる。
国際公開第2020/023205号
 しかしながら、誘電特性を良好にするために、結晶化ガラス中のインディアライトやコーディエライトの結晶の割合を増加させると、結晶相とガラス相の熱膨張率差により、割れが発生してしまうという課題があった。
 そこで本発明は、上記課題を解決し、インディアライトやコーディエライトの結晶を多く含み優れた誘電特性を達成しつつも、割れを抑制した結晶化ガラスの提供を目的とする。
 すなわち、本発明は、インディアライトおよびコーディエライトの少なくとも一方の結晶を含有する結晶化ガラスであって、
 前記結晶の合計量が、前記結晶化ガラスの40質量%以上であり、
 前記結晶は、Alのサイトに空孔および異種元素の少なくとも一方を含む、結晶化ガラスを提供する。
 本発明の結晶化ガラスの一態様において、前記空孔および前記異種元素の少なくとも一方を含む部分は合計で前記Alのサイトの4atom%以上であってもよい。
 本発明の結晶化ガラスの一態様において、
 酸化物基準の質量百分率表示で、
 SiOを45~60%、
 Alを20~35%、
 MgOを9~15%、
 含有してもよい。
 本発明の結晶化ガラスの一態様において、酸化物基準の質量百分率表示で、TiOを5~15%含有してもよい。
 本発明の結晶化ガラスの一態様において、酸化物基準の質量百分率表示で、Pを0.5~15%含有してもよい。
 本発明の結晶化ガラスの一態様において、前記結晶化ガラスは相互に対向する主面を有し、前記主面の面積が100~100000cmであり、厚さが0.01~2mmであってもよい。
 本発明の結晶化ガラスの一態様において、20℃における熱伝導率が1.0W/(m・K)以上であってもよい。
 本発明の結晶化ガラスの一態様において、20℃、10GHzにおける比誘電率が7以下であってもよい。
 本発明の結晶化ガラスの一態様において、20℃、10GHzにおける誘電正接が0.003以下であってもよい。
 本発明の結晶化ガラスの一態様において、50~350℃における平均熱膨張係数が1ppm/℃以上であってもよい。
 本発明は、上記の結晶化ガラスを用いた高周波用基板を提供する。
 本発明は、上記の結晶化ガラスを用いた液晶用アンテナを提供する。
 本発明は、酸化物基準の質量百分率表示で、
 SiOを45~60%、
 Alを20~35%、
 MgOを9~15%、
 Pを0.5~15%、
 TiOを5~15%、
 含有する非晶質ガラスを提供する。
 本発明は、酸化物基準の質量百分率表示で、
 SiOを45~60%、
 Alを20~35%、
 MgOを9~15%、
 含有する非晶質ガラスを準備することと、
 前記非晶質ガラスを熱処理することを含む結晶化ガラスの製造方法であって、
 前記熱処理において、インディアライトおよびコーディエライトの少なくとも一方の結晶を析出させ、前記結晶のAlのサイトに空孔および異種元素の少なくとも一方を存在させることを含む、結晶化ガラスの製造方法を提供する。
 本発明の結晶化ガラスの製造方法の一態様において、前記非晶質ガラスは、
 酸化物基準の質量百分率表示で、
 Pを0.5~15%、
 TiOを5~15%、
 含有してもよい。
 本発明の結晶化ガラスの製造方法の一態様において、前記非晶質ガラスは、相互に対向する主面を有し、前記主面の面積は100~100000cmであり、前記非晶質ガラスの厚さは0.01~2mmであってもよい。
 本発明の結晶化ガラスの製造方法の一態様において、前記熱処理は、前記非晶質ガラスを960℃以上に0.5時間以上保持することを含んでもよい。
 本発明の結晶化ガラスの製造方法の一態様において、前記熱処理は、第1の温度域で保持することと、第2の温度域で保持することを含み、前記第1の温度域は、760℃以上960℃以下であり、前記第1の温度域での保持時間は0.5時間以上であり、
 前記第2の温度域は960℃以上1350℃以下であり、前記第2の温度域での保持時間は0.5時間以上であってもよい。
 本発明によれば、インディアライトおよびコーディエライトの少なくとも一方の結晶を40質量%以上含有することで優れた誘電特性を達成しつつ、かかる結晶がAlサイトに空孔および異種元素の少なくとも一方を含むことで、結晶相とガラス相の熱膨張率差による割れが抑制された結晶化ガラスならびに該結晶化ガラスを用いた高周波用基板および液晶用アンテナが得られる。
図1は、二段階の熱処理における温度変化を模式的に示す図である。
 本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。特段の定めがない限り、以下本明細書において「~」は、同様の意味で使用される。
 本明細書において、ガラス組成は、特に断らない限り酸化物基準の質量百分率表示で表し、質量%を単に「%」と表記する。なお本明細書において、質量基準の割合(百分率など)と、重量基準の割合(百分率など)は同じである。
 また、本明細書において「実質的に含有しない」とは、原材料等に含まれる不純物レベル以下である、つまり意図的に含有させたものではないことをいう。具体的には、たとえば0.1質量%未満である。
 本明細書において、「結晶化ガラス」とは、ガラス中に結晶が析出したものである。本願では、「結晶化ガラス」とは、X線回折法(XRD:X-ray Diffraction)によって結晶を示す回折ピークが認められるガラスをいう。X線回折測定は、例えば、CuKα線を用いて2θが10°~80°の範囲を測定し、回折ピークが現れた場合には、例えば3強線法によって析出結晶を同定できる。
<結晶化ガラス>
 本実施形態に係る結晶化ガラス(以下、本結晶化ガラスとも称する。)は、インディアライトおよびコーディエライトの少なくとも一方の結晶を含有する結晶化ガラスであって、該結晶の合計量が、結晶化ガラスの40質量%以上であり、該結晶は、Alのサイトに空孔および異種元素の少なくとも一方を含む。
 (結晶)
 本結晶化ガラスは、インディアライトおよびコーディエライトの少なくとも一方の結晶を含有する。インディアライトおよびコーディエライトは、同じ組成で結晶構造の異なる関係にあるMgO-Al-SiO系結晶である。これら結晶の組成は化学式MgAlSi18で示される。固相反応法で合成する場合、コーディエライトは低温型であり、直方晶系の結晶構造を有するのに対し、インディアライトは高温型であり、六方晶系の結晶構造を有する。以降、本明細書において、結晶化ガラスが含むインディアライトおよびコーディエライトの少なくとも一方の結晶について、まとめて「インディアライト/コーディエライト結晶」と称することがある。すなわち、「インディアライト/コーディエライト結晶」は、結晶化ガラスがインディアライトおよびコーディエライトの一方を含有する場合はその一方の結晶のことをいい、インディアライトおよびコーディエライトの両方を含有する場合はその両方の結晶のことをいう。
 高周波デバイスに用いられる絶縁基板には、高周波信号の質や強度等の特性を確保するために、誘電損失や導体損失等に基づく伝送損失の低減が求められている。インディアライト/コーディエライト結晶を含有する結晶化ガラスは、結晶化ガラス中の該結晶の割合が大きいほど誘電正接や比誘電率が小さくなる傾向がある。また、インディアライトとコーディエライトとでは、インディアライトの方がより誘電特性に優れる傾向があり、結晶化ガラスはインディアライトを含むことが好ましい。
 誘電特性に優れる結晶化ガラスを得る観点から、本結晶化ガラスにおけるインディアライト/コーディエライト結晶の合計量は、結晶化ガラスの40質量%以上である。また、インディアライト/コーディエライト結晶の合計量は好ましくは50質量%以上であり、より好ましくは55質量%以上であり、さらに好ましくは60質量%以上である。
 また、結晶相とガラス相との熱膨張率差による割れを抑制する観点や、結晶化ガラスとして十分な熱膨張率を確保する観点からは、インディアライト/コーディエライト結晶の合計量は結晶化ガラスの90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。
 ここで、インディアライト/コーディエライト結晶はX線回折測定(XRD)により同定できる。具体的には、結晶化ガラスのバルク体を粉砕し、XRDによりCuKα線を用いて2θ=10~90°で測定した際に、2θ=10~11°の範囲に最も強度の大きいピークが確認され、(100)面のピークと定義できる場合、該結晶化ガラスはインディアライトおよびコーディエライトの少なくとも一方の結晶を含む。
 また、より正確な結晶構造を知るためには、リートベルト解析がなされることが好ましい。リートベルト解析によると、結晶相および非晶質相の定量解析や結晶相の構造解析が可能である。リートベルト法については、日本結晶学会「結晶解析ハンドブック」編集委員会編、「結晶解析ハンドブック」(協立出版 1999年刊、p492~499)に記載されている。本結晶化ガラスにおけるインディアライト/コーディエライト結晶の含有量は、XRDによる測定結果を用いたリートベルト解析により算出できる。
 本結晶化ガラスにおいて、インディアライト/コーディエライト結晶は、Alのサイトに空孔および異種元素の少なくとも一方を含む。ここで、異種元素とはAl以外の元素のことをいう。すなわち、本結晶化ガラスのインディアライト/コーディエライト結晶は、理想的な結晶構造を繰り返した際に本来Al原子が占めるべきサイトについて、Al原子が存在しない部分を含む。Al原子が存在しない部分に異種元素の原子も含めたいずれの原子も存在しない場合、該部分は空孔であり、異種元素の原子が存在する場合、該部分は異種元素を含む部分である。
 異種元素としては、特に限定されないが、例えば、原子の大きさがAl原子の大きさと比較的近いAl以外の元素が挙げられる。かかる元素としては、具体的には例えば、Mg、Si等が挙げられる。
 インディアライト/コーディエライト結晶がAlのサイトに空孔および異種元素の少なくとも一方を含むことで、結晶相とガラス相の熱膨張率差による結晶化ガラスの割れを抑制できる。インディアライト/コーディエライト結晶がAlのサイトに空孔および異種元素の少なくとも一方を含むことで、該結晶構造は理想的な結晶構造を有する場合に比べある程度歪んだ構造、すなわち本来の格子定数と比較してある軸方向だけ格子定数が伸長、もしくは収縮している構造となる。これにより、結晶相とガラス相の熱膨張率差によって結晶化ガラス中に生じる応力を緩和できるため、割れを抑制できると考えられる。
 また、インディアライト/コーディエライト結晶がAlのサイトに空孔を含む場合、理想的な結晶構造を有する場合に比べ結晶中の原子が少なくなる。ここで、誘電特性は電子数の量に応じて変化し、電子数が多いほど誘電率も上がる傾向にあることが知られている。すなわち、Alのサイトに空孔が存在することで、Al原子が存在する場合に比べ電子数が減るために、結晶化ガラスの誘電特性がより優れたものになりやすいと考えられる。
 またこのことから、Alのサイトが異種元素を含む場合も、Al原子が存在する時と比べて電子数が減少する場合、同様に誘電特性が向上しやすいと考えられる。したがって、誘電特性をより向上する観点からは、異種元素はAlよりも電子数が少ないことが好ましい。このような異種元素としては、例えばMgが挙げられる。
 インディアライト/コーディエライト結晶において、Alのサイトに空孔および異種元素の少なくとも一方を含む部分、すなわちAlのサイトにAl原子が存在しない部分の合計は、割れ抑制の効果を向上する観点から、Alのサイトの4atom%以上が好ましい。Al原子が存在しない部分の合計は、より好ましくは5atom%以上であり、さらに好ましくは7.5atom%以上であり、よりさらに好ましくは9atom%以上であり、特に好ましくは10atom%以上であり、さらに特に好ましくは12atom%以上である。
 また、AlのサイトにAl原子が存在しない部分の合計は、結晶構造を維持する観点から50atom%以下が好ましく、35atom%以下がより好ましく、20atom%以下がさらに好ましい。
 Al原子が存在しない部分は全部が空孔であってもよいし、全部が異種元素を含む部分であってもよいが、割れ抑制や誘電特性向上の効果をより大きくする観点から、空孔を含むことが好ましく、異種元素を含む部分よりも空孔が多いことがより好ましい。
 Alのサイトに対するAl原子が存在しない部分の合計の割合は、理想的な結晶構造を繰り返した際に本来Al原子が占めるべきサイトに対する、Al原子が存在しない部分の原子分率(atom%)である。該割合はXRDによる測定結果を用いたリートベルト解析により算出できる。
 本結晶化ガラスは、本発明の効果を阻害しない範囲で、インディアライト/コーディエライト結晶以外の結晶を含んでもよい。インディアライト/コーディエライト結晶以外の結晶としては、例えば、ムライト、コランダム、ルチル、アナターゼ等が挙げられる。インディアライト/コーディエライト結晶以外の結晶を含む場合、その含有量の合計は結晶化ガラス全体に対し15質量%以下が好ましく、12.5質量%以下がより好ましく、10質量%以下がさらに好ましい。インディアライト/コーディエライト結晶以外の結晶の結晶種の同定および含有量の測定は、上述のXRD測定およびXRD測定結果を用いたリートベルト解析により行える。
 (組成)
 本結晶化ガラスの組成は、後述する製造方法における結晶化前の非晶質ガラスの組成と同じである。したがって、本結晶化ガラスの組成と、非晶質ガラスの組成とで、好ましい組成は同様である。ここで、本明細書における結晶化ガラスの組成とは、結晶化ガラスの結晶相とガラス相の組成を合計した組成を指す。また、結晶化ガラスの組成は、結晶化ガラスを融点以上の温度で熱処理を行い、ガラス化したものを分析することで求められる。分析の手法としては蛍光X線分析法が挙げられる。また、本結晶化ガラスの結晶相の組成については、上述のXRD測定した結果をリートベルト解析することで分析できる。本結晶化ガラスの組成において、必須でない成分の好ましい含有量の下限は0%である。
 本結晶化ガラスの組成は特に限定されないが、酸化物基準の質量百分率表示で、SiOを45~60%、Alを20~35%、MgOを9~15%含有することが好ましい。SiO、Al、MgOはインディアライト/コーディエライト結晶を構成する成分である。
 SiOは、結晶相として、インディアライト/コーディエライト結晶を析出させるための成分である。SiOの含有量は45%以上が好ましい。SiOの含有量が45%以上であることで、結晶化ガラスの析出結晶相が安定しやすい。SiOの含有量は45.2%以上がより好ましく、さらに好ましくは45.5%以上であり、よりさらに好ましくは45.7%以上であり、特に好ましくは46%以上であり、一層好ましくは46.2%以上であり、最も好ましくは46.5%以上である。また、SiOの含有量は60%以下が好ましい。SiOの含有量が60%以下であると、ガラス原料の溶融や成形がしやすい。また、結晶相として、インディアライト/コーディエライト結晶を析出するには熱処理条件も重要な因子となるが、SiOの含有量が上記上限値以下であることで、より広い熱処理条件を選択できる。SiOの含有量は58%以下がより好ましく、56%以下がさらに好ましく、54%以下がよりさらに好ましく、52%以下が特に好ましく、50%以下が一層好ましく、48%以下が最も好ましい。
 Alは、結晶相として、インディアライト/コーディエライト結晶を析出させるための成分である。Alの含有量は20%以上が好ましい。Alの含有量が20%以上であると、所望の結晶相を得やすく、結晶化ガラスの析出結晶相が安定しやすく、さらに液相温度の上昇を抑制できる。Alの含有量は22%以上がより好ましく、24%以上がさらに好ましく、26%以上がよりさらに好ましく、28%以上が特に好ましく、29%が一層好ましく、最も好ましくは30%以上である。一方、Alの含有量は35%以下が好ましい。Alの含有量が35%以下であると、ガラス原料の溶融性が良好となりやすい。Alの含有量は34.5%以下がより好ましく、34%以下がさらに好ましく、33.5%以下がよりさらに好ましく、33%以下が特に好ましく、32.5%以下が一層好ましく、32%以下が最も好ましい。
 MgOは、結晶相として、インディアライト/コーディエライト結晶を析出させるための成分である。MgOの含有量は9%以上が好ましい。MgOの含有量が9%以上であると、所望の結晶を得やすく、結晶化ガラスの析出結晶相が安定しやすく、さらにガラス原料の溶融性が良好となる。MgOの含有量は9.3%以上がより好ましく、9.5%以上がさらに好ましく、9.7%以上がよりさらに好ましく、10%以上が特に好ましく、10.2%が一層好ましく、最も好ましくは10.5%以上である。一方、MgOの含有量は15%以下が好ましい。MgOの含有量が15%以下であると所望の結晶が得やすい。MgOの含有量は14.5%以下がより好ましく、14%以下がさらに好ましく、13.5%以下がよりさらに好ましく、13%以下が特に好ましく、12.5%以下が一層好ましく、12%以下が最も好ましい。
 本結晶化ガラスは、核生成成分を含むことが好ましい。核生成成分は、非晶質ガラスを結晶化する際に、結晶成長の起点となる核を生成し得る成分である。核生成成分を含むことで、所望の結晶構造や、結晶化ガラス中に結晶が比較的均質に分散した状態を安定して得やすくなる。核生成成分としては、例えば、TiO、MoO、ZrO等が挙げられる。核生成成分としては、安定してインディアライト/コーディエライト結晶を析出させる観点からTiOが好ましい。
 核生成成分の含有量の合計は、核形成剤としてガラス全体にある濃度以上で存在させる観点から5%以上が好ましく、5.5%以上がより好ましく、6.0%以上がさらに好ましく、6.5%以上がよりさらに好ましく、7.0%以上が特に好ましく、7.5%が一層好ましく、最も好ましくは8.0%以上である。また、核生成成分の含有量の合計は、結晶化ガラス全体のうちインディアライト/コーディエライト結晶の割合を増やし、誘電特性を良好にする観点から15%以下が好ましく、14.5%以下がより好ましく、14%以下がさらに好ましく、13.5%以下がよりさらに好ましく、13%以下が特に好ましく、12.5%以下が一層好ましく、12%以下が最も好ましい。
 TiOは、必須成分ではないが、上述の核生成成分として機能する他、析出結晶相の微細化と材料の機械的強度向上、および化学的耐久性の向上に寄与する成分である。TiOを含有する場合の含有量は、安定してインディアライト/コーディエライト結晶を析出させる観点から5%以上が好ましく、5.5%以上がより好ましく、6.0%以上がさらに好ましく、6.5%以上がよりさらに好ましく、7.0%以上が特に好ましく、7.5%が一層好ましく、最も好ましくは8.0%以上である。また、TiOの含有量は、結晶化ガラス全体のうちインディアライト/コーディエライト結晶の割合を増やし、誘電特性を良好にする観点から15%以下が好ましく、14.5%以下がより好ましく、14%以下がさらに好ましく、13.5%以下がよりさらに好ましく、13%以下が特に好ましく、12.5%以下が一層好ましく、12%以下が最も好ましい。
 MoOは、必須成分ではないが、上述の核生成成分として機能する成分である。MoOを含有する場合の含有量は、安定してインディアライト/コーディエライト結晶を析出させる観点から5%以上が好ましく、5.5%以上がより好ましく、6.0%以上がさらに好ましく、6.5%以上がよりさらに好ましく、7.0%以上が特に好ましく、7.5%が一層好ましく、最も好ましくは8.0%以上である。また、MoOの含有量は、結晶化ガラス全体のうちインディアライト/コーディエライト結晶の割合を増やし、誘電特性を良好にする観点から15%以下が好ましく、14.5%以下がより好ましく、14%以下がさらに好ましく、13.5%以下がよりさらに好ましく、13%以下が特に好ましく、12.5%以下が一層好ましく、12%以下が最も好ましい。
 ZrOは、必須成分ではないが、上述の核生成成分として機能する他、析出結晶相の微細化と材料の機械的強度向上、および化学的耐久性の向上に寄与する成分である。ZrOの含有量は、安定してインディアライト/コーディエライト結晶を析出させる観点から5%以上が好ましく、5.5%以上がより好ましく、6.0%以上がさらに好ましく、6.5%以上がよりさらに好ましく、7.0%以上が特に好ましく、7.5%が一層好ましく、最も好ましくは8.0%以上である。また、ZrOの含有量は、結晶化ガラス全体のうちインディアライト/コーディエライト結晶の割合を増やし、誘電特性を良好にする観点から15%以下が好ましく、14.5%以下がより好ましく、14%以下がさらに好ましく、13.5%以下がよりさらに好ましく、13%以下が特に好ましく、12.5%以下が一層好ましく、12%以下が最も好ましい。
 本結晶化ガラスは、空孔生成成分を含むことが好ましい。空孔生成成分とは、インディアライト/コーディエライト結晶のAlサイトに、上述のAl原子が存在しない部分、すなわち空孔および異種元素を含む部分の少なくとも一方を形成しやすくする成分のことをいう。空孔生成成分としては、例えばPやBが挙げられる。このうちPはインディアライト/コーディエライト結晶のAlサイトに空孔および異種元素を含む部分を多く形成しやすい成分であり、空孔生成成分として特に好ましい。
 空孔生成成分を含むことによりAlサイトに空孔や異種元素を含む部分が形成されやすい理由としては、次のように考えられる。すなわち、空孔生成成分、例えばPは、非晶質ガラスを加熱する結晶化処理時に微小な分相を引き起こす。インディアライト/コーディエライト結晶が成長する際に、結晶はかかる微小な分相の界面のそれぞれから成長するため、結晶化ガラス中の結晶の分散性が向上し、結晶が均質に形成されやすくなる。これにより、結晶成長時にAlサイトの周囲の原子はAl原子を奪い合いやすくなる。そのためAlサイトが空孔となったり、Mg等の異種元素を取り込んだりしやすくなる。なお、空孔生成成分の添加によりAlサイトにAl原子が存在しない部分を形成した場合は、該部分は空孔を含みやすく、異種元素を含む部分よりも空孔が多くなりやすいと考えられる。
 空孔生成成分の含有量は、AlサイトにAl原子が存在しない部分を形成しやすくする観点から、0.5%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましく、3%以上がよりさらに好ましい。一方で、結晶相とガラス相との分離を抑制する観点、結晶を安定して析出させる観点からは、空孔生成成分の含有量は15%以下が好ましく、7.5%以下がより好ましく、3.5%以下がさらに好ましい。
 Pは、必須成分ではないが、上述の空孔生成成分として機能するため含有することが好ましい。Pは、空孔生成成分としての機能の他、ガラス原料の溶融性、成型性、耐失透性の改善にも寄与する。Pを含有する場合の含有量は、AlサイトにAl原子が存在しない部分を形成しやすくする観点から、0.5%以上が好ましく、0.75%以上がより好ましく、1%以上がさらに好ましく、1.25%以上がよりさらに好ましく、1.5%以上が特に好ましく、1.75%が一層好ましく、最も好ましくは2%以上である。また、結晶相とガラス相との分離を抑制する観点、結晶を安定して析出させる観点からは、Pの含有量は15%以下が好ましく、13%以下がより好ましく、11%以下がさらに好ましく、9%以下がよりさらに好ましく、7%以下が特に好ましく、5%以下が一層好ましく、3.5%以下が最も好ましい。
 Bは、必須成分ではないが、上述の空孔生成成分として機能するため含有してもよい。またBは、ガラス原料の溶解成形時の粘度の調整、結晶化温度にも寄与する成分である。Bの含有量は、AlサイトにAl原子が存在しない部分を形成しやすくする観点から、0.5%以上が好ましく、0.75%以上がより好ましく、1%以上がさらに好ましく、1.25%以上がよりさらに好ましく、1.5%以上が特に好ましく、1.75%が一層好ましく、最も好ましくは2%以上である。一方、結晶化する粘度の過剰な低下を抑制し、ガラスを安定して製造する観点から、Bの含有量は10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましく、7%以下がよりさらに好ましく、6%以下が特に好ましく、5%以下が一層好ましく、4%以下が最も好ましい。
 更に、PとBを両方添加する場合は、AlサイトにAl原子が存在しない部分を形成しやすくする観点から、合計量は1%以上が好ましく、結晶相とガラス相との分離を抑制する観点、結晶を安定して析出させる観点から合計量は15%以下が好ましい。
 CaOは、含有しなくてもよいが、ガラス原料の溶融性を向上させるのと同時に析出結晶相の粗大化を防止する作用があるため、4%以下含有してもよい。CaOの含有量のより好ましい範囲は1%以上である。また、CaOの含有量のより好ましい範囲は3%以下である。
 BaOは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、5%以下含有してもよい。BaOの含有量のより好ましい範囲は1%以上である。また、BaOの含有量のより好ましい範囲は3%以下である。
 Sb、Asは含有しなくてもよいが、ガラス原料の溶融時に清澄剤として作用するため、1%以下含有してもよい。
 Fは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、3%以下含有してもよい。
 SnO、CeO、Feは、含有しなくてもよいが、ガラスの着色剤または着色することによる表面欠陥の検出感度の向上、およびLD励起固体レーザの吸収特性を向上させるのに各成分の合計で5%以下含有してもよい。
(物性)
 本結晶化ガラスの20℃、10GHzにおける誘電正接は、誘電特性を向上する観点から0.003以下が好ましく、0.002以下がより好ましく、0.0018以下がさらに好ましく、0.0016以下がよりさらに好ましく、0.0014以下が特に好ましく、0.0012以下が一層好ましく、0.001以下が特に好ましく、0.0008以下が最も好ましい。20℃、10GHzにおける誘電正接は小さいほど好ましいが、通常0.0001以上である。
 本結晶化ガラスの20℃、10GHzにおける比誘電率は、誘電特性を向上する観点から7以下が好ましく、6.5以下がより好ましく、6以下がさらに好ましい。20℃、10GHzにおける比誘電率は小さいほど好ましいが、通常4.0以上である。
 本結晶化ガラスは、インディアライト/コーディエライト結晶を比較的多く含むことで誘電特性に優れる。本結晶化ガラスにおいて、20℃、10GHzにおける誘電正接または比誘電率が上記の好ましい範囲内であれば、10GHzよりも高周波数の帯域に対する誘電特性も優れると考えられる。なお、誘電正接や比誘電率などの誘電特性はスリップポスト誘電体共振法(SPDR法)により測定される。
 本結晶化ガラスの20℃における熱伝導率は、高周波用基板等として用いる際に生じる熱を高い効率で放熱する観点から、1.0W/(m・K)以上が好ましく、より好ましくは1.5W/(m・K)以上、さらに好ましくは2.0W/(m・K)以上、よりさらに好ましくは2.5W/(m・K)以上、特に好ましくは3.0W/(m・K)以上である。熱伝導率は、JIS R1611(2010年)に規定されている方法に従い、レーザフラッシュ法熱物性測定装置を用いて測定できる。熱伝導率は大きいほど好ましいが、通常8.0W/(m・K)以下である。熱伝導率は、結晶含有量、結晶種、結晶の析出形態等により調整できる。熱伝導率は特に結晶化率と相関が高く、結晶化していないガラスでは一般に熱伝導率は1.0W/(m・K)以下となるが、結晶化後のサンプルでは熱伝導率が向上することが知られている。
 本結晶化ガラスの50~350℃における平均熱膨張係数は、本結晶化ガラスを他の部材と接着して使用する際等に熱膨張率差を小さくする観点から、1ppm/℃以上が好ましく、1.5ppm/℃以上がより好ましく、1.75ppm/℃以上がさらに好ましく、2.0ppm/℃以上が特に好ましく、2.25ppm/℃以上が一層好ましく、2.5ppm/℃以上が最も好ましい。また、50~350℃における平均熱膨張係数は、同様に他の部材との熱膨張率差を小さくする観点や結晶とガラスの熱膨張率差を減らし、結晶化ガラスの割れを抑制する観点から8.0ppm/℃以下が好ましく、7.0ppm/℃以下がより好ましく、6.0ppm/℃以下がさらに好ましい。50~350℃における平均熱膨張係数は、JIS R3102(1995年)に規定されている方法に従い、示差熱膨張計を用いて測定できる。平均熱膨張係数は、ガラスの組成や結晶含有量等により調整できる。また、本結晶化ガラスは、結晶相とガラス相との熱膨張率差による割れが抑制されているので、結果的に平均熱膨張係数をある程度大きくしやすい。
(形状)
 本結晶化ガラスの形状は特に限定されず、目的や用途に応じて種々の形状とできる。例えば、本結晶化ガラスは相互に対向する2つの主面を備える板状であってもよいし、適用される製品や用途等に応じて、板状以外の形状でもよい。より具体的には、本結晶化ガラスは、例えば、反りの無い平板状のガラス板であってもよく、また、湾曲した表面を有する曲面ガラス板であってもよい。主面の形状も特に限定されず、円形、四角形等の種々の形状に成形できる。
 本結晶化ガラスの好ましい形状としては、例えば、相互に対向する2つの主面を有し、主面の面積が100~100000cm、厚さが0.01~2mmである形状が挙げられる。
 本結晶化ガラスの主面の面積は、アンテナ等に使用する場合の送受信効率の観点から100cm以上が好ましく、225cm以上がより好ましく、400cm以上がさらに好ましい。また、主面の面積はハンドリング性の観点から100000cm以下が好ましく、10000cm以下がより好ましく、3600cm以下がさらに好ましい。
 また、本結晶化ガラスの厚さは強度を維持する観点から0.01mm以上が好ましく、0.05mm以上がより好ましく、0.1mm以上がさらに好ましい。本結晶化ガラスの厚さは本結晶化ガラスを用いた部品や製品の薄型化や小型化等の観点生産効率の向上等の観点から2mm以下が好ましく、1mm以下がより好ましく、0.7mm以下がさらに好ましい。
(用途)
 本結晶化ガラスは、例えば携帯電話機、スマートフォン、携帯情報端末、Wi-Fi機器のような通信機器に用いられる半導体デバイスのような高周波デバイス(電子デバイス)、弾性表面波(SAW)デバイス、レーダ送受信機のようなレーダ部品等の回路基板や、液晶用アンテナのようなアンテナ部品等の基板に好適である。本結晶化ガラスは特に高周波域での誘電特性に優れ、かつ結晶相とガラス相の熱膨張率差による割れが抑制され、耐熱衝撃性にも優れることから、高周波デバイスに用いられる高周波用基板や液晶用アンテナに好適である。
<高周波用基板>
 本結晶化ガラスは、高周波での誘電特性に優れ、かつ耐熱衝撃性にも優れるため、高周波用基板に用いることができる。本結晶化ガラスを用いた、本実施形態に係る高周波用基板(以下、本高周波用基板とも称する。)の好ましい比誘電率、誘電損失、熱伝導率および平均熱膨張係数の好ましい範囲は本結晶化ガラスと同様である。
 高周波用基板は、一般的に相互に対向する2つの主面を備える。本高周波用基板の主面の面積は送受信効率の観点から75cm以上が好ましく、より好ましくは100cm以上、さらに好ましくは150cm以上、よりさらに好ましくは300cm以上、特に好ましくは600cm以上である。本高周波用基板の主面の面積は強度を担保する観点から5000cm以下が好ましい。形状は上記の面積であれば用途に合わせて自由に設計できる。
 本高周波用基板の板厚は、好ましくは1mm以下、より好ましくは0.8mm以下、更に好ましくは0.7mm以下である。板厚が上記範囲であると、基板を積層して回路を形成する際に、全体を薄くできるため好ましい。一方、板厚は好ましくは0.05mm以上、より好ましくは0.2mm以上であると、強度を確保できる。
 本結晶化ガラスを高周波基板材料として用いる場合、本結晶化ガラスからなる結晶化ガラス基板に孔を形成してもよい。すなわち、本高周波用基板は、主面の少なくとも一方に開口部を有する孔を有していてもよい。孔はもう一方の主面に連通する貫通孔であってもよく、未貫通のボイドであってもよい。これらの孔に導体が充填され、または孔壁に導体膜が形成されることによって、回路として使用されうる。
 上記孔の直径は、例えば200μm以下であり、好ましくは100μm以下であり、より好ましくは50μm以下である。一方、孔の直径は好ましくは1μm以上である。
 孔の形成方法は特に限られないが、直径200μm以下の小孔を精度よく形成するために、例えば結晶化ガラス基板にレーザを照射する方法が好適である。本結晶化ガラスを用いた基板は、レーザ照射による加工性に優れている。レーザの波長は特に限られないが、例えば10.6μm以下、3000nm以下、2050nm以下、1090nm以下、540nm、400nm以下のものが用いられる。特に直径100μm以下の小孔を形成する場合は、以下の2通りの方法が好適である。
(UVレーザによる加工)
 波長400nm以下のUVレーザを照射することで、結晶化ガラス基板に孔を形成する。UVレーザはより好ましくはパルス発振し、レーザ照射の際には、結晶化ガラス基板の表面に吸収層を設置することが好ましい。レーザ照射の後、結晶化ガラス基板をフッ酸含有溶液でエッチングすることで、孔を拡張してもよい。
(改質部形成による加工)
 波長400~540nm、例えば波長約532nmのレーザを照射することで、結晶化ガラス基板に改質部を形成する。続けて結晶化ガラス基板をフッ酸含有溶液でエッチングすることにより、改質部を選択的に除去し孔を形成する。かかる方法によると、レーザ等をパルス発振し、1ショットのパルス照射のみで改質部形成が可能であるため、孔形成速度が速く、生産性に優れている。
<液晶用アンテナ>
 液晶用アンテナとは液晶技術を用い、送受信する電波の方向を制御可能な衛星通信用アンテナであり、主に船舶や飛行機、自動車等といった乗り物に好適に用いられる。液晶用アンテナは主に屋外での使用が想定されることから、広い温度域での安定した特性が求められ、また、地上と上空や、灼熱の砂漠中のスコール等、急激な温度変化により加わる熱衝撃に対する耐性も求められる。
 本結晶化ガラスは、高周波での誘電特性に優れ、かつ耐熱衝撃性にも優れるため、液晶用アンテナに用いることができる。本結晶化ガラスを用いた、本実施形態に係る液晶用アンテナ(以下、本液晶用アンテナとも称する。)の好ましい比誘電率、誘電損失、熱伝導率および平均熱膨張係数の好ましい範囲は本結晶化ガラスと同様である。
 液晶用アンテナは、一般的に相互に対向する2つの主面を備える。本液晶用アンテナの主面の面積は送受信効率の観点から75cm以上が好ましく、より好ましくは100cm以上、さらに好ましくは150cm以上、よりさらに好ましくは300cm以上、特に好ましくは700cm以上である。本液晶用アンテナの主面の面積はハンドリング性の観点から10000cm以下が好ましく、3600cm以下がより好ましく、2500cm以下がさらに好ましい。形状は上記の面積であれば用途に合わせて自由に設計できる。
 本液晶用アンテナの板厚は、好ましくは1mm以下、より好ましくは0.8mm以下、更に好ましくは0.7mm以下である。板厚が上記範囲であると、全体を薄くできるため好ましい。一方、板厚は好ましくは0.05mm以上、より好ましくは0.2mm以上であると、強度を確保できる。
<結晶化ガラスの製造方法>
 次に、本結晶化ガラスの製造方法(以下、本製造方法とも称する。)について説明する。本結晶化ガラスを製造する方法は特に限定されないが、例えば以下の方法が好ましい。以下では、板状ガラスの製造方法について説明するが、ガラスの形状は目的に応じて適宜調整できる。
 本製造方法は、酸化物基準の質量百分率表示で、SiOを45~60%、Alを20~35%、MgOを9~15%含有する非晶質ガラスを準備すること(非晶質ガラス成形工程)と、非晶質ガラスを熱処理すること(結晶化工程)を含む。また、本製造方法は、熱処理において、インディアライトおよびコーディエライトの少なくとも一方の結晶を析出させ、前記結晶のAlのサイトに空孔および異種元素の少なくとも一方を存在させることを含む。
 以下で、各工程の詳細を説明する。
 (非晶質ガラス成形工程)
 本工程では、所望のガラス組成となるように調合した原料を溶融成形して非晶質ガラスとする。溶融成形の方法は特に限られないが、ガラス原料を調合したガラス原料を白金るつぼに入れ、1300℃~1700℃の電気炉に投入して溶融し、脱泡し、均質化する。得られた溶融ガラスを室温の金属型(例えばステンレス定盤)に流し込み、ガラス転移点の温度において3時間程度保持した後、室温まで冷却して非晶質ガラスのガラスブロックを得る。また、得られたガラスブロックを必要に応じ切断、研削、研磨等の加工をして所望の形状に成形する。なお、切断、研削、研磨等の加工は結晶化工程後に行ってもよい。非晶質ガラスを結晶化工程前に加工する場合、その形状は特に限定されず、好ましい形状は本結晶化ガラスの好ましい形状と同様である。
 このように、非晶質ガラスは溶融状態から所望の形状に成形できるため、セラミックスなどのように粉体やスラリーで成形し、焼成するプロセスや、合成石英などのようにインゴットを製造後、所望の形状に切り出すプロセスに比べ、成形のしやすい点や大面積化しやすい点で優位性があり、また、後述する結晶化工程を鑑みても、安価で製造できる。
 非晶質ガラスは、結晶化ガラスにインディアライトおよびコーディエライトの少なくとも一方の結晶を析出させる観点から、SiOを45~60%、Alを20~35%、MgOを9~15%含有することが好ましい。また、非晶質ガラスは核生成剤としてTiOを5~15%含有することが好ましい。非晶質ガラスは空孔生成成分としてPを0.5~15%含有することが好ましい。なお非晶質ガラスの好ましい組成は、<結晶化ガラス>において上述した本結晶化ガラスの好ましい組成と同様であり、その詳細は上述した内容と同様である。
 (結晶化工程)
 次に非晶質ガラス成形工程で得られた非晶質ガラスを熱処理する。
 熱処理においては、非晶質ガラスを特定の処理温度で特定の保持時間保持することが好ましく、その処理温度や保持時間は、インディアライトおよびコーディエライトの少なくとも一方の結晶を析出させ、前記結晶のAlのサイトに空孔および異種元素の少なくとも一方を存在させられる条件であれば特に限定されない。
 本製造方法では、熱処理において、インディアライトおよびコーディエライトの少なくとも一方の結晶を析出させ、前記結晶のAlのサイトに空孔および異種元素の少なくとも一方を存在させることを特徴とする。
 Alのサイトに空孔および異種元素の少なくとも一方を存在させる方法は特に限定されないが、例えば組成にP等の空孔生成成分を含み、後述する第1の温度域にて微小な分相領域をガラス中に作ることで、AlサイトにAl原子が存在しない部分を生成しやすくなる。また、熱処理時に急速に温度を上昇させることでもAlサイトにAl原子が存在しない部分を生成しやすくなる。これらの方法を単独で用いてもよく、組み合わせて用いてもよい。
 以下に、熱処理の具体的な好ましい条件について説明する。
 処理温度は、インディアライト/コーディエライト結晶の析出を進行させる観点、熱処理時間を短縮し生産性を上げる観点から例えば960℃以上が好ましく、980℃以上がより好ましく、1000℃以上がさらに好ましい。一方、インディアライト/コーディエライト以外の結晶の析出を抑制する観点、製造性の観点からは処理温度は1350℃以下が好ましく、1250℃以下がより好ましく、1150℃以下がさらに好ましい。
 また保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、さらに好ましくは1.5時間以上、よりさらに好ましくは2時間以上、特に好ましくは2.5時間以上、最も好ましくは3時間以上である。保持時間が上記範囲であると、結晶化が十分に進む。一方、長時間の熱処理は熱処理にかかるコストを増加させるため、好ましくは15時間以下であり、より好ましくは12時間以下、特に好ましくは10時間以下である。
 熱処理においては、好ましくは上記の処理温度で保持することを含むが、さらに上記の処理温度の範囲内や、その他の温度範囲で昇温・降温することを含んでいてもよい。
 具体的には例えば、室温から第1の温度域まで昇温して一定時間保持した後、室温まで徐冷してもよく、室温から第1の温度域まで昇温して一定時間保持した後、第1の温度域より高温である第2の温度域に一定時間保持後、室温まで徐冷する二段階の熱処理を選択してもよい。
 熱処理は、特に組成に核生成成分や空孔生成成分を含む場合には、第1の温度域で保持することと、第2の温度域で保持することを含む二段階の熱処理を含むことが好ましい。二段階の熱処理においては、第1の温度域で保持することで、非晶質ガラス中の核生成成分により、インディアライト/コーディエライト結晶の成長の起点となる核を生成できる。そして、第2の温度域で保持することで、かかる核を起点にインディアライト/コーディエライト結晶が成長する。一段階の熱処理であってもインディアライト/コーディエライト結晶は成長するものの、核を生成してから結晶を成長させることで、結晶化ガラス中に結晶が均質に存在しやすくなり、AlサイトにAl原子が存在しない部分をより形成しやすくなる。さらに非晶質ガラスが空孔生成成分を含む場合、熱処理の過程において空孔生成成分が微小な分相を起こすので、かかる分相の界面から結晶を成長させることができ、AlサイトにAl原子が存在しない部分をより形成しやすくなる。
 二段階の熱処理による場合、第1の温度域は、そのガラス組成において結晶核生成速度が大きくなる温度域が好ましい。具体的には、第1の温度域は760℃以上が好ましく、800℃以上がより好ましく、850℃以上がさらに好ましい。また、第1の温度域は960℃以下が好ましく、920℃以下がより好ましく、880℃以下がさらに好ましい。
 また第1の温度域での保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、より好ましくは1.5時間以上、特に好ましくは2時間以上である。保持時間が上記範囲であると、核生成が十分に進みやすい。一方、核生成と同時に結晶成長が進んでしまうことを抑制する観点、結晶化ガラス全体の誘電特性を向上させる観点から、保持時間は好ましくは5時間以下であり、より好ましくは4時間以下、特に好ましくは3時間以下である。
 第2の温度域は、インディアライト/コーディエライト結晶の結晶成長速度が大きくなる温度域が好ましい。具体的には、第2の温度域は960℃以上が好ましく、980℃以上がより好ましく、1000℃以上がさらに好ましい。また、第2の温度域は1350℃以下が好ましく、1250℃以下がより好ましく、1150℃以下がさらに好ましい。
 また第2の温度域での保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、さらに好ましくは1.5時間以上、よりさらに好ましくは2時間以上、特に好ましくは2.5時間以上、最も好ましくは3.0時間以上である。保持時間が上記範囲であると、結晶の成長が十分に進みやすい。一方、製造性の観点から、保持時間は好ましくは15時間以下であり、より好ましくは14時間以下、特に好ましくは12時間以下である。
 熱処理における昇温速度は、特に限られないが、一般的に5℃/min以上であり、昇温速度を大きくしてAlのサイトに空孔および異種元素の少なくとも一方を存在させる観点からは、15℃/min以上が好ましく、20℃/min以上がより好ましい。
 一方で、昇温速度は好ましくは30℃/min以下であり、より好ましくは25℃/min以下であると、昇温時に生じるガラス相および結晶相の膨張率の差による割れを抑えられる。
 降温速度は、特に限られないが、好ましくは10℃/min以下であり、より好ましくは5℃/min以下、更に好ましくは1℃/min以下であると、降温時に結晶化ガラスの反りおよび非晶質相および結晶相の膨張率の差による割れを抑えられる。一方、降温速度は一般的に0.5℃/min以上である。
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。例1~8、11~13、15~18は実施例であり、例9、10、14は比較例である。
 表1に酸化物基準のモル百分率表示で示した組成となるようにガラス原料を調合し、ガラスとして400gになるように秤量した。ついで、混合した原料を白金るつぼに入れ、1500~1700℃の電気炉に投入して3時間程度溶融し、脱泡し、均質化した。また表2には表1で示した成分を質量百分率表示で示す。
 得られた溶融ガラスを金属型に流し込み、ガラス転移点より50℃程度高い温度に1時間保持した後、0.5℃/分の速度で室温まで冷却し、ガラスブロックを得た。得られたガラスブロックを切断、研削し、最後に両面を鏡面研磨して、40mm×40mm、厚さが2mmのガラス板としてガラス1~12を得た。
 得られたガラスに対し、図1のような熱処理を行った。図1は二段階の熱処理における温度変化を模式的に示す図である。具体的には、図1は、熱処理において非晶質ガラスを第1の昇温速度で温度T1に加熱し、保持時間t1の間保持し、次に第2の昇温速度で温度T2に加熱し、保持時間t2の間保持し、その後降温することを示している。
 図1の熱処理の具体的な温度等の条件を表3に示す条件とし、熱処理を行うことで結晶化ガラスを得た。また、得られた結晶化ガラスから表3に記載の物性を得た。なお表3中、「結晶化条件」欄における空欄「-」は該当の条件での熱処理を未実施であることを示し、「特性」欄における空欄「-」は該当の物性を未測定であることを示す。
 以下に各物性の測定方法を示す。
(XRD測定、リートベルト解析)
(XRD測定サンプル作製条件)
 熱処理後の結晶化ガラス板をメノウ乳鉢およびメノウ乳棒を用いて粉砕しXRD測定用粉末を得た。
(XRD測定条件)
 以下の条件でX線回折を測定し、析出結晶を同定する。結晶種の同定にはICSD無機結晶構造データベースおよびICDD粉末回折データベースに収録されている回折ピークパターンを用いた。
   測定装置:株式会社リガク製 SmartLab
   測定方法:集中法
   管電圧:45kV
   管電流:200mA
   使用X線:CuKα線
   測定範囲:2θ=10°~80°
   スピード:10°/分
   ステップ:0.02°
 (リートベルト測定サンプル作製条件)
 XRD測定に用いた結晶化ガラス粉末を目開き500μmのメッシュに通した後、標準物質としてZnOをサンプル全体の10wt%となるよう添加した。
 (リートベルト解析条件)
 以下の条件で粉末X線回折を測定し、得られた結果を用いてリートベルト解析を行った。測定装置:株式会社リガク製 SmartLab
   測定方法:集中法
   管電圧:45kV
   管電流:200mA
   使用X線:CuKα線
   測定範囲:2θ=10°~90°
   スピード:5°/分
   ステップ:0.01°
 上記の条件で取得した粉末X線回折プロファイルをリートベルト解析プログラム:Rietan FPを用いて解析を行った。各サンプルの解析は、解析の収束の良否を表すRwpが10以下となるように収束させた。リートベルト法については、日本結晶学会「結晶解析ハンドブック」編集委員会編、「結晶解析ハンドブック」(協立出版 1999年刊、p492~499)に記載されている。
(結晶化率の算出)
 結晶化ガラスにおけるインディアライト/コーディエライト結晶の含有量(結晶化率)は、リートベルト解析より得られた結晶相、および測定サンプル全量から結晶相の含有量を減じた残ガラス相の重量比率に対して、添加した10wt%のZnOを差し引き、残りの相で合計100wt%になるように計算を行った。なお、以下表3で「インディアライト/コーディエライト結晶の合計量」はインディアライト/コーディエライト結晶の合計の含有量の割合(質量%)について記載している。
(空孔率の算出)
 リートベルト解析より得られたAlの原子占有率を用いて空孔率、すなわちAlのサイトに対するAl原子が存在しない部分の合計の割合(atom%)を算出した。
(平均熱膨張係数)
 JIS R3102(1995年)に規定されている方法に従い、示差熱膨張計を用いて測定した。測定温度範囲は50~350℃で、単位をppm/℃として表した。サンプルとしては、熱処理後の結晶化ガラス板を直径5mm×厚さ20mmの円形(円柱形)に加工したものを用いた。
 (熱伝導率)
 JIS R1611(2010年)に規定されている方法に従い、レーザフラッシュ法熱物性測定装置(京都電子工業株式会社製LFA-502)を用いて測定した。測定温度は20℃とした。サンプルとしては、熱処理後の結晶化ガラス板を直径5mm×厚さ1mmの円形に加工したものを用いた。
(比誘電率ε’、誘電正接tanδ)
 得られた非晶質ガラスおよび結晶化ガラスを長さ30.0mm、幅30.0mm、厚さ0.5mmの直方体に加工し、30.0mm×30.0mmの面を鏡面に研磨した。ネットワークアナライザを用いて、スリップポスト誘電体共振法(SPDR法)により、20℃、10GHzにおける比誘電率ε’および誘電正接tanδを測定した。
(サンプル状態) 
 例1~18の各結晶化ガラスについて、5個のサンプルを用いてサンプルの割れやすさを以下の基準で評価した。サンプルを目視で確認してわずかにでもひび割れがあったとき、そのサンプルが割れたと判断した。
 A:熱処理後にサンプルが割れた個数が5個あたり1個以下であった。
 B:熱処理後にサンプルが割れた個数が5個あたり2~3個であった。
 C:熱処理後にサンプルが割れた個数が5個あたり4個以上であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ガラス1~7及び9~12を用いて得た、実施例である例1~8、11~13、15~18の結晶化ガラスは熱処理後にサンプルが壊れることがなかったか、割れにくく、さらにサンプルを加工して物性測定を行うことができ、インディアライト/コーディエライト結晶の含有量が40質量%以上となった。なお、例15の結晶化ガラスは、例11~13の結晶化ガラスよりも割れにくかった。そのため、表3において例15のサンプル状態をB+とした。
 また、例2~4、6、7、12の結晶化ガラスでは、インディアライト/コーディエライト結晶の含有量が40質量%以上であり、かつ50~350℃における平均の線熱膨張率が1ppm以上であり、20℃における熱伝導率も1.0W/(m・K)以上となった。
 また、実施例である例2、3、4、6、7、11、12、16、17、18の結晶化ガラスはさらに20℃、10GHzでの比誘電率が7以下で誘電正接が0.003以下と良好な値となっており、良好な電波透過性を備えることが確認された。
 一方で、例9の結晶化ガラスに関しては熱処理の温度が低いことによって十分な結晶化が起こらず、結晶化率が低くなった。例10の結晶化ガラスに関しては熱処理の時間が短いため、十分な結晶化が起こらず、結晶化率が低くなった。例14に関してはPの割合が多すぎるためにインディアライト/コーディエライト結晶の結晶析出量が少なくなってしまった。また、例14の結晶化ガラスではインディアライト/コーディエライト結晶以外の結晶が多く析出してしまい、熱処理後にサンプルが割れやすい結果となった。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2020年9月18日出願の日本特許出願(特願2020-157712)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の結晶化ガラスは高周波信号の誘電特性に優れており、高い耐熱衝撃性を示す。
 このような結晶化ガラスは、10GHzを超えるような高周波信号、特に30GHzを超える高周波信号、さらには35GHz以上の高周波信号を扱う高周波用基板等の高周波電子デバイス全般や、温度変化の大きい環境下で用いられる液晶用アンテナ、レーザー等による穴開け加工を伴うデバイス等の部材として非常に有用である。

Claims (18)

  1.  インディアライトおよびコーディエライトの少なくとも一方の結晶を含有する結晶化ガラスであって、
     前記結晶の合計量が、前記結晶化ガラスの40質量%以上であり、
     前記結晶は、Alのサイトに空孔および異種元素の少なくとも一方を含む、結晶化ガラス。
  2.  前記空孔および前記異種元素の少なくとも一方を含む部分は合計で前記Alのサイトの4atom%以上である請求項1に記載の結晶化ガラス。
  3.  酸化物基準の質量百分率表示で、
     SiOを45~60%、
     Alを20~35%、
     MgOを9~15%、
     含有する、請求項1または2に記載の結晶化ガラス。
  4.  酸化物基準の質量百分率表示で、
     TiOを5~15%含有する、請求項3に記載の結晶化ガラス。
  5.  酸化物基準の質量百分率表示で、
     Pを0.5~15%含有する、請求項3または4に記載の結晶化ガラス。
  6.  前記結晶化ガラスは相互に対向する主面を有し、前記主面の面積が100~100000cmであり、厚さが0.01~2mmである、請求項1から5のいずれか一項に記載の結晶化ガラス。
  7.  20℃における熱伝導率が1.0W/(m・K)以上である、請求項1から6のいずれか一項に記載の結晶化ガラス。
  8.  20℃、10GHzにおける比誘電率が7以下である、請求項1から7のいずれか一項に記載の結晶化ガラス。
  9.  20℃、10GHzにおける誘電正接が0.003以下である、請求項1から8のいずれか一項に記載の結晶化ガラス。
  10.  50~350℃における平均熱膨張係数が1ppm/℃以上である、請求項1から9のいずれか一項に記載の結晶化ガラス。
  11.  請求項1から10のいずれか一項に記載の結晶化ガラスを用いた高周波用基板。
  12.  請求項1から10のいずれか一項に記載の結晶化ガラスを用いた液晶用アンテナ。
  13.  酸化物基準の質量百分率表示で、
     SiOを45~60%、
     Alを20~35%、
     MgOを9~15%、
     Pを0.5~15%、
     TiOを5~15%、
     含有する非晶質ガラス。
  14.  酸化物基準の質量百分率表示で、
     SiOを45~60%、
     Alを20~35%、
     MgOを9~15%、
     含有する非晶質ガラスを準備することと、
     前記非晶質ガラスを熱処理することを含む結晶化ガラスの製造方法であって、
     前記熱処理において、インディアライトおよびコーディエライトの少なくとも一方の結晶を析出させ、前記結晶のAlのサイトに空孔および異種元素の少なくとも一方を存在させることを含む、結晶化ガラスの製造方法。
  15.  前記非晶質ガラスは、
     酸化物基準の質量百分率表示で、
     Pを0.5~15%、
     TiOを5~15%、
     含有する、請求項14に記載の結晶化ガラスの製造方法。
  16.  前記非晶質ガラスは、相互に対向する主面を有し、前記主面の面積は100~100000cmであり、前記非晶質ガラスの厚さは0.01~2mmである請求項14または15に記載の結晶化ガラスの製造方法。
  17.  前記熱処理は、前記非晶質ガラスを960℃以上に0.5時間以上保持することを含む、請求項14から16のいずれか1項に記載の結晶化ガラスの製造方法。
  18.  前記熱処理は、第1の温度域で保持することと、第2の温度域で保持することを含み、前記第1の温度域は、760℃以上960℃以下であり、前記第1の温度域での保持時間は0.5時間以上であり、
     前記第2の温度域は960℃以上1350℃以下であり、前記第2の温度域での保持時間は0.5時間以上である、請求項14から16のいずれか1項に記載の結晶化ガラスの製造方法。
PCT/JP2021/034010 2020-09-18 2021-09-15 結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法 WO2022059724A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180063570.3A CN116157367A (zh) 2020-09-18 2021-09-15 结晶玻璃、高频用基板、液晶用天线和结晶玻璃的制造方法
JP2022550594A JPWO2022059724A1 (ja) 2020-09-18 2021-09-15
DE112021004207.6T DE112021004207T5 (de) 2020-09-18 2021-09-15 Kristallisiertes Glas, Hochfrequenzsubstrat, Flüssigkristallantenne und Verfahren zur Herstellung eines kristallisierten Glases
US18/184,114 US20230212062A1 (en) 2020-09-18 2023-03-15 Crystallized glass, high frequency substrate, antenna for liquid crystals, and method for producing crystallized glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-157712 2020-09-18
JP2020157712 2020-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/184,114 Continuation US20230212062A1 (en) 2020-09-18 2023-03-15 Crystallized glass, high frequency substrate, antenna for liquid crystals, and method for producing crystallized glass

Publications (1)

Publication Number Publication Date
WO2022059724A1 true WO2022059724A1 (ja) 2022-03-24

Family

ID=80776706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034010 WO2022059724A1 (ja) 2020-09-18 2021-09-15 結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法

Country Status (6)

Country Link
US (1) US20230212062A1 (ja)
JP (1) JPWO2022059724A1 (ja)
CN (1) CN116157367A (ja)
DE (1) DE112021004207T5 (ja)
TW (1) TW202229188A (ja)
WO (1) WO2022059724A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136225A1 (ja) * 2022-01-14 2023-07-20 Agc株式会社 結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287958A (ja) * 2000-04-03 2001-10-16 Minolta Co Ltd ガラス組成
JP2016040222A (ja) * 2014-08-12 2016-03-24 国立大学法人 名古屋工業大学 高周波用結晶化ガラスセラミックス誘電体およびその製造方法
JP2018062461A (ja) * 2016-10-13 2018-04-19 ショット アクチエンゲゼルシャフトSchott AG コーディエライトガラスセラミック、その製造および使用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533880A (zh) 2018-07-23 2021-03-19 康宁股份有限公司 铝硅酸镁盐玻璃陶瓷
JP2020157712A (ja) 2019-03-28 2020-10-01 大日本印刷株式会社 ミラーシート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287958A (ja) * 2000-04-03 2001-10-16 Minolta Co Ltd ガラス組成
JP2016040222A (ja) * 2014-08-12 2016-03-24 国立大学法人 名古屋工業大学 高周波用結晶化ガラスセラミックス誘電体およびその製造方法
JP2018062461A (ja) * 2016-10-13 2018-04-19 ショット アクチエンゲゼルシャフトSchott AG コーディエライトガラスセラミック、その製造および使用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136225A1 (ja) * 2022-01-14 2023-07-20 Agc株式会社 結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法

Also Published As

Publication number Publication date
CN116157367A (zh) 2023-05-23
US20230212062A1 (en) 2023-07-06
DE112021004207T5 (de) 2023-06-01
JPWO2022059724A1 (ja) 2022-03-24
TW202229188A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
JP7415237B2 (ja) 高周波デバイス用ガラス基板と高周波デバイス用回路基板
TWI806992B (zh) 玻璃基板、液晶天線及高頻裝置
EP3770128B1 (en) Substrate, liquid crystal antenna and high-frequency device
WO2022059724A1 (ja) 結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法
CN103958428A (zh) 在高频范围内作为电介质的微晶玻璃
WO2023136225A1 (ja) 結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法
WO2023136224A1 (ja) 結晶化ガラス、高周波デバイス用ガラス基板、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法
WO2021199631A1 (ja) 結晶化ガラス、高周波用基板および結晶化ガラスの製造方法
JP2024035396A (ja) 結晶化ガラス、誘電体材料及び高周波誘電体デバイス
Wang et al. Effect of CeO2 on Microwave Dielectric Properties of MgO–Al2O3–SiO2–TiO2 Glass-Ceramic
JP2016040222A (ja) 高周波用結晶化ガラスセラミックス誘電体およびその製造方法
JP2004352514A (ja) 高周波用誘電体磁器用材料および高周波用誘電体磁器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550594

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21869408

Country of ref document: EP

Kind code of ref document: A1