WO2023136225A1 - 結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法 - Google Patents

結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法 Download PDF

Info

Publication number
WO2023136225A1
WO2023136225A1 PCT/JP2023/000236 JP2023000236W WO2023136225A1 WO 2023136225 A1 WO2023136225 A1 WO 2023136225A1 JP 2023000236 W JP2023000236 W JP 2023000236W WO 2023136225 A1 WO2023136225 A1 WO 2023136225A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
crystallized glass
glass
crystals
crystallized
Prior art date
Application number
PCT/JP2023/000236
Other languages
English (en)
French (fr)
Inventor
一樹 金原
和彦 庭野
信隆 木寺
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023136225A1 publication Critical patent/WO2023136225A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to crystallized glass, high-frequency device glass substrates, high-frequency filter devices, liquid crystal antennas, amorphous glass, and methods for producing crystallized glass.
  • dielectric substrate materials examples include quartz, ceramics, and glass.
  • crystallized glass obtained by crystallizing a part of glass has the advantage that it can be easily molded and manufactured at a low cost as compared with quartz and ceramics, and can have better dielectric properties. For this reason, the development of crystallized glass suitable for glass substrates for high-frequency devices is desired.
  • crystallized glass having excellent dielectric properties examples include crystallized glass containing crystals of indialite or cordierite, as disclosed in Patent Document 1, for example.
  • conventional glass materials such as crystallized glass generally show a positive dependence of dielectric constant on temperature. That is, since the relative permittivity increases as the temperature rises, the temperature change may affect the performance of the electronic device. Therefore, it is necessary to develop a crystallized glass that can suppress temperature-dependent changes in relative permittivity in the high frequency region.
  • an object of the present invention is to provide a crystallized glass that exhibits stable dielectric properties over a wide temperature range with a small change in relative permittivity due to temperature in a high frequency range.
  • the rate of change ⁇ Dk (/° C.) of the dielectric constant with temperature at 10 GHz is represented by the following formula (A)
  • the value calculated by the formula (A) is ⁇ 50 ppm (/° C.) to 50 ppm (/° C.)
  • the total content of alkali metal oxides R 2 O is 3.0% or less in terms of molar percentage based on oxides.
  • the amorphous glass according to the embodiment of the present invention is expressed as a molar percentage based on oxides, SiO 2 50-80%, Al 2 O 3 0.5-14%, B2O3 7-35 %, TiO2 3.5-10%, 0-10% MgO, CaO 0-8%, BaO 0-5%, and the total content of alkali metal oxides R 2 O is 3.0% or less, the total content of alkaline earth metal oxides RO is 1 to 20%, and Nb, Bi and Cu are It is characterized by not containing
  • FIG. 1 is a schematic top view of a filter device according to an embodiment.
  • FIG. 2 is a diagram showing transmission characteristics of a filter device manufactured using the crystallized glass of Example 1.
  • FIG. 3 is a diagram showing transmission characteristics of a filter device fabricated using the crystallized glass of Example 87.
  • FIG. 4 is an enlarged view of transmission characteristics of a filter device fabricated using the crystallized glass of Example 1.
  • FIG. 5 is an enlarged view of the transmission characteristics of a filter device fabricated using the crystallized glass of Example 87.
  • FIG. FIG. 6 is a diagram showing temperature-dependent changes in the center frequencies of filter devices fabricated using the crystallized glasses of Examples 1 and 87.
  • the glass composition is expressed in terms of mol percentage based on oxides, and mol% is simply expressed as "%".
  • crystals precipitated in glass means crystals precipitated in glass.
  • crystals refers to glass in which a diffraction peak indicating crystals is observed by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • CuK ⁇ rays are used to measure the range of 2 ⁇ from 10° to 90°, and when a diffraction peak appears, the precipitated crystal can be identified by, for example, the three-strength line method.
  • high frequency means 10 GHz or higher, preferably higher than 30 GHz, and more preferably 35 GHz or higher.
  • the crystallized glass according to Embodiment 1 has ⁇ Dk (hereinafter simply ⁇ Dk ) is ⁇ 50 ppm (/° C.) to 50 ppm (/° C.), and the total content of alkali metal oxides R 2 O is 3.0% or less in terms of molar percentages based on oxides.
  • ⁇ Dk is more preferably ⁇ 45 ppm (/° C.) to 45 ppm (/° C.), more preferably ⁇ 40 ppm (/° C.) to 40 ppm (/° C.), still more preferably ⁇ 35 ppm (/° C.) to 35 ppm ( /° C.), particularly preferably ⁇ 30 ppm (/° C.) to 30 ppm (/° C.), more preferably ⁇ 25 ppm (/° C.) to 25 ppm (/° C.), most preferably ⁇ 20 ppm (/° C.) ) to 20 ppm (/°C).
  • the alkali metal oxide R 2 O is a component that contributes to improving the meltability of the raw material for glass.
  • the total is preferably 3.0% or less, more preferably 2.5% or less, even more preferably 2.0% or less, particularly preferably 1.5% or less, and even more preferably It is 1.0% or less, and most preferably 0.5% or less.
  • the glass composition, crystal species, crystallinity, etc. are not particularly limited as long as the crystallized glass satisfying the above requirements can be obtained.
  • the glass composition and the like in the crystallized glass according to 3 and 4 can be applied.
  • Embodiment 2 In the crystallized glass according to Embodiment 2 (hereinafter sometimes referred to as Embodiment 2), preferred crystal species, crystallinity, and glass composition will be described below.
  • the crystallized glass according to Embodiment 2 preferably contains rutile-type TiO 2 crystals (hereinafter referred to as rutile-type crystals).
  • Rutile crystal is a type of crystal of TiO 2 and has a tetragonal crystal structure.
  • the rutile crystal contained in the crystallized glass according to the second embodiment may have holes or strain.
  • the term rutile crystal includes the case where the crystal has vacancies and the case where the crystal has strain.
  • the rutile crystal is a component in the crystallized glass according to Embodiment 2 that suppresses temperature-dependent changes in relative permittivity.
  • the mechanism by which the rutile crystal suppresses the temperature-induced change in relative dielectric constant is presumed as follows.
  • the total amount of rutile-type crystals is preferably 0.5% by mass or more, more preferably 1.5% by mass or more, relative to the entire crystallized glass, from the viewpoint of suppressing temperature-dependent changes in the dielectric constant of the crystallized glass. 2.0% by mass or more is more preferable, 2.5% by mass or more is even more preferable, 3.0% by mass or more is even more preferable, 3.5% by mass or more is particularly preferable, and 4.0% by mass or more is most preferable. preferable.
  • the total amount of rutile crystals is preferably 10% by mass or less, more preferably 9.0% by mass or less, and further preferably 8.0% by mass or less with respect to the entire crystallized glass. It is preferably 7.0% by mass or less, even more preferably 6.5% by mass or less, particularly preferably 6.0% by mass or less, and most preferably 5.5% by mass or less.
  • the total amount of rutile type crystals may be 0.5 to 10% by mass with respect to the entire crystallized glass.
  • XRD X-ray diffraction measurement
  • Rietveld analysis enables quantitative analysis of crystalline phases and amorphous phases and structural analysis of crystalline phases.
  • the Rietveld method is described in "Crystal Analysis Handbook” Edited by the Editorial Committee of the Crystallographic Society of Japan, “Crystal Analysis Handbook” (Kyoritsu Shuppan, 1999, pp. 492-499).
  • the content of rutile crystals in the present crystallized glass can be calculated by Rietveld analysis using XRD measurement results.
  • the crystallized glass according to Embodiment 2 may contain crystals other than rutile-type crystals as long as the effects of the present invention are not impaired.
  • Crystals other than rutile crystals include, for example, anatase, brookite, alumina, quartz, cristobalite, tridymite, coesite, and stesovite.
  • the total content of crystals other than rutile-type crystals is preferably 10% by mass or less, more preferably 7.5% by mass or less, more preferably 5.0% by mass, relative to the entire crystallized glass. More preferred are: Identification of crystal species other than the rutile crystal and measurement of the content can be performed by the above-mentioned XRD measurement and Rietveld analysis using the XRD measurement results.
  • composition of the crystallized glass according to Embodiment 2 is the same as the composition of the amorphous glass before crystallization, which will be described later.
  • the composition of the crystallized glass in this specification refers to the total composition of the crystal phase and the glass phase of the crystallized glass.
  • the composition of the crystallized glass can be obtained by heat-treating the crystallized glass at a temperature equal to or higher than the melting point and analyzing the vitrified material. Analytical techniques include fluorescent X-ray analysis. Further, the composition of the crystal phase of the crystallized glass according to Embodiment 2 can be analyzed by Rietveld analysis of the results of the XRD measurement described above. In the composition of the crystallized glass according to Embodiment 2, the preferred lower limit of the content of non-essential components is 0%.
  • the crystallized glass according to Embodiment 2 contains SiO 2 of 50% to 80%, Al 2 O 3 of 0.5 to 14%, B 2 O 3 of 7 to 35%, and 3.5-10% TiO 2 , 0-10% MgO, 0-8% CaO, 0-5% BaO, and a total alkaline earth metal oxide RO content of 1-20% is preferably TiO2 is a component that constitutes rutile crystals.
  • SiO 2 is the main component of the crystallized glass according to the second embodiment.
  • the content of SiO2 is preferably 50% or more. When the content of SiO 2 is 50% or more, weather resistance can be improved and devitrification can be suppressed.
  • the content of SiO2 is more preferably 52% or more, still more preferably 54% or more, even more preferably 55% or more, particularly preferably 56% or more, and still more preferably 57% or more, Most preferably it is 58% or more.
  • the content of SiO 2 is preferably 80% or less. When the content of SiO 2 is 80% or less, the frit has good meltability.
  • the content of SiO2 is more preferably 75% or less, more preferably 70% or less, even more preferably 68% or less, even more preferably 66% or less, even more preferably 65% or less, even more preferably 64% or less.
  • 63% or less is even more preferable, 62% or less is even more preferable, 61% or less is particularly preferable, and 60% or less is most preferable.
  • Al 2 O 3 is a component that suppresses phase separation of the crystallized glass and improves the stability of the glass.
  • the content of Al 2 O 3 is preferably 0.5% or more. When the content of Al 2 O 3 is 0.5% or more, the phase separation of the glass can be suppressed and the stability of the glass is improved.
  • the content of Al 2 O 3 is more preferably 1% or more, still more preferably 2% or more, still more preferably 3% or more, particularly preferably 3.5% or more, and still more preferably 4%. or more, and most preferably 4.5% or more.
  • the content of Al 2 O 3 is preferably 14% or less, more preferably 13% or less, even more preferably 12% or less, even more preferably 11% or less. % or less is particularly preferred, 9% or less is even more preferred, 8% or less is particularly preferred, and 7% or less is even more preferred.
  • B 2 O 3 is a component that contributes to improving the dielectric properties of crystallized glass.
  • the content of B 2 O 3 is preferably 7% or more. When the content of B 2 O 3 is 7% or more, the dielectric properties can be improved, and the meltability of the raw material for glass is improved.
  • the content of B 2 O 3 is more preferably 15% or more, still more preferably 17% or more, still more preferably 18% or more, particularly preferably 19% or more, and still more preferably 20% or more. Yes, most preferably 21% or more.
  • the content of B 2 O 3 is preferably 35% or less, more preferably 32.5% or less, further preferably 30% or less, and even more preferably 29% or less. , is particularly preferably 28% or less, even more preferably 27% or less, particularly preferably 26% or less, and even more preferably 25% or less.
  • TiO 2 is a component for precipitating rutile type crystals as a crystal phase.
  • the content of TiO 2 is preferably 3.5% or more. When the content of TiO 2 is 3.5% or more, it is easy to obtain a desired crystal phase, and the precipitation crystal phase of the crystallized glass is easy to stabilize.
  • the content of TiO 2 is more preferably 3.75% or more, even more preferably 4% or more, and even more preferably 4.25% or more.
  • the content of TiO 2 is preferably 10% or less, more preferably 9% or less, even more preferably 8% or less, even more preferably 7% or less, and 6% or less. Especially preferred.
  • the alkaline earth metal oxide RO is a component that contributes to improving the meltability of glass raw materials.
  • RO refers to any one or more selected from MgO, CaO, SrO and BaO.
  • the total RO content is preferably 1.0% or more. When the total RO content is 1.0% or more, good frit properties can be obtained.
  • the total content of RO is more preferably 1.5% or more, still more preferably 2.0% or more, still more preferably 2.5% or more, and particularly preferably 3.0% or more, More preferably 3.5% or more, most preferably 4% or more.
  • the total RO content is preferably 20% or less, more preferably 17.5% or less, even more preferably 15% or less, even more preferably 12.5% or less, and 10 % or less is particularly preferable, and 8% or less is more preferable.
  • MgO is a component that increases the Young's modulus without increasing the specific gravity, and contributes to the improvement of the specific elastic modulus.
  • MgO is contained, it is preferably 1% or more, more preferably 1.5% or more, still more preferably 2.0% or more, even more preferably 2.5% or more, and particularly preferably 3.0% or more. 3.5% or more is more preferable.
  • the content of MgO is preferably 10% or less, more preferably 9% or less, even more preferably 8% or less, even more preferably 7% or less, and 6% or less. is particularly preferred, and 5% or less is more preferred.
  • CaO is a component that improves the specific elastic modulus and does not excessively lower the strain point, in addition to improving the meltability described above.
  • CaO is contained, it is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, even more preferably 2% or more, particularly preferably 2.5% or more, and 3% The above is more preferable.
  • the CaO content is preferably 8% or less, more preferably 7% or less, even more preferably 6% or less, even more preferably 5% or less, and 4% or less. is particularly preferred, and 3% or less is more preferred.
  • SrO is a component that contributes to suppressing the increase in the devitrification temperature in addition to improving the meltability described above.
  • SrO is contained, it is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, even more preferably 2% or more, particularly preferably 2.5% or more, and 3% The above is more preferable.
  • the SrO content is preferably 10% or less, more preferably 9% or less, even more preferably 8% or less, even more preferably 7% or less, and 6% or less. is particularly preferred, and 5% or less is more preferred.
  • BaO is a component that contributes to suppressing the increase in the devitrification temperature in addition to improving the meltability described above.
  • BaO is contained, it is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, even more preferably 2% or more, particularly preferably 2.5% or more, and 3% The above is more preferable.
  • the content of BaO is preferably 5% or less, more preferably 4.5% or less, further preferably 4% or less, and even more preferably 3.5% or less. .
  • the molar ratio of the content represented by Al 2 O 3 /B 2 O 3 is preferably 0.1 or more, more preferably 0.12 or more, from the viewpoint of improving the Young's modulus. It is more preferably 0.14% or more, still more preferably 0.16% or more, particularly preferably 0.18% or more, still more preferably 0.2% or more, and most preferably 0.3% or more. If the Young's modulus is improved, warping can be suppressed when the crystallized glass is used as a glass substrate for high frequency devices.
  • the molar ratio of the contents represented by Al 2 O 3 /B 2 O 3 is preferably 1.4 or less, more preferably 1.3 or less, and 1.2 or less. is more preferably 1.1 or less, particularly preferably 1.0 or less, even more preferably 0.9 or less, and most preferably 0.8 or less. Improving the chemical resistance can suppress deterioration in the flatness of the glass that may occur during chemical treatment when used as a glass substrate in an electronic device.
  • the molar ratio of the contents represented by Al 2 O 3 /B 2 O 3 is preferably 0.1 to 1.4.
  • R 2 O contributes to improving the meltability of the raw material for glass, and may be contained.
  • R 2 O includes Li 2 O, Na 2 O, K 2 O, Rb 2 O and Cs 2 O.
  • the total content is preferably 0.001% or more, more preferably 0.002% or more, still more preferably 0.003% or more, still more preferably 0.004% or more, and 0.004% or more. 005% or more is particularly preferable, and 0.008% or more is more preferable.
  • the total content of R 2 O is preferably 3.0% or less, more preferably 2.0% or less, further preferably 1.0% or less, and 0.5%. The following are even more preferred.
  • the total content is preferably 0.001 to 3.0%.
  • Nb 2 O 3 , Bi 2 O 3 , and Cu 2 O may deteriorate the dielectric properties, it is preferable not to include them.
  • not containing means that the content of each component is at least 0.1% or less.
  • Embodiment 3 In the crystallized glass according to Embodiment 3 (hereinafter sometimes referred to as Embodiment 3), preferred crystal species, crystallinity, and glass composition will be described below.
  • the crystallized glass according to Embodiment 3 preferably contains rutile crystals.
  • the rutile crystal is a component that suppresses the change in dielectric constant due to temperature. Same as form 2.
  • the content of rutile crystals is preferably 4.5% by mass or more, more preferably 5.0% by mass or more, more preferably 5.5% by mass, relative to the entire crystallized glass, from the viewpoint of suppressing temperature-dependent changes in dielectric constant.
  • the above is more preferable, 6.0% by mass or more is even more preferable, 6.5% by mass or more is particularly preferable, 7.0% by mass or more is even more preferable, and 7.5% by mass or more is most preferable.
  • the content of rutile crystals is preferably 10% by mass or less, more preferably 9.0% by mass or less, and further preferably 8.5% by mass or less with respect to the entire crystallized glass.
  • the content of rutile-type crystals may be 4.5 to 10% by mass with respect to the entire crystallized glass.
  • the crystallized glass according to Embodiment 3 preferably contains crystals of at least one of indialite type and cordierite type.
  • Indialite-type and cordierite-type crystals are MgO—Al 2 O 3 —SiO 2 system crystals having the same composition but different crystal structures.
  • the composition of these crystals is represented by the chemical formula Mg2Al4Si5O18 .
  • cordierite crystals When synthesized by a solid phase reaction method, cordierite crystals have a orthogonal crystal structure, while indialite crystals have a hexagonal crystal structure.
  • At least one of the indialite-type and cordierite-type crystals contained in the crystallized glass may be collectively referred to as "indialite-type/cordierite-type crystals". That is, when the crystallized glass contains either indialite-type crystals or cordierite-type crystals, the term "indialite-type/cordierite-type crystals" refers to one of the indialite-type crystals and cordierite-type crystals. When both cordierite-type crystals are contained, both cordierite-type crystals are referred to.
  • the indialite/cordierite crystals contained in the crystallized glass according to Embodiment 3 may have vacancies or strains.
  • the term indialite/cordierite crystal includes the case where the crystal has vacancies or strains.
  • Insulating substrates used in high-frequency devices are required to reduce transmission loss based on dielectric loss, conductor loss, etc., in order to ensure characteristics such as the quality and strength of high-frequency signals.
  • Crystallized glass containing indialite/cordierite crystals tends to have a smaller dielectric loss tangent and relative permittivity as the ratio of the crystals in the crystallized glass increases.
  • the total amount of indialite/cordierite crystals in the crystallized glass according to Embodiment 3 is preferably 40% by mass or more with respect to the entire crystallized glass.
  • the total amount of indialite/cordierite crystals is preferably 50% by mass or more, more preferably 55% by mass or more, and still more preferably 60% by mass or more.
  • the total amount of indialite/cordierite crystals is It is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less, relative to the entire crystallized glass.
  • the total amount of indialite type/cordierite type crystals may be 40 to 90% by mass with respect to the entire crystallized glass.
  • the crystallized glass according to Embodiment 3 may contain crystals other than rutile-type crystals and indialite/cordierite-type crystals to the extent that the effects of the present invention are not impaired.
  • Crystals other than the above include, for example, mullite, corundum, and anatase.
  • the total content of crystals other than rutile-type crystals and indialite/cordierite-type crystals is 15 masses based on the entire crystallized glass. % or less is preferable, 12.5 mass % or less is more preferable, and 10 mass % or less is even more preferable.
  • Crystal species other than rutile type crystals and indialite/cordierite type crystals can be identified and their content can be measured by the above-described XRD measurement and Rietveld analysis using the XRD measurement results.
  • composition The composition of this crystallized glass is the same as the composition of the amorphous glass before crystallization in the manufacturing method described later. Therefore, the composition of the present crystallized glass and the composition of the amorphous glass preferably have the same composition.
  • the composition of the crystallized glass in this specification refers to the total composition of the crystal phase and the glass phase of the crystallized glass.
  • the composition of the crystallized glass can be obtained by heat-treating the crystallized glass at a temperature equal to or higher than the melting point and analyzing the vitrified material. Analytical techniques include fluorescent X-ray analysis.
  • composition of the crystal phase of the crystallized glass according to Embodiment 3 can be analyzed by Rietveld analysis of the results of the XRD measurement described above.
  • the preferred lower limit of the content of non-essential components is 0%.
  • the crystallized glass according to Embodiment 3 contains 51 to 70% SiO 2 , 12 to 30% Al 2 O 3 , 0.5 to 10% P 2 O 5 , and MgO in terms of molar percentages based on oxides. 15-23%, CaO 0-1.5%, and TiO 2 6-15%.
  • TiO 2 is a component that constitutes rutile-type crystals
  • SiO 2 , Al 2 O 3 , and MgO are components that constitute indialite/cordierite-type crystals.
  • SiO 2 is a component for precipitating indialite/cordierite crystals as a crystal phase.
  • the content of SiO 2 is preferably 51% or more. When the content of SiO 2 is 51% or more, the precipitated crystal phase of crystallized glass tends to be stable.
  • the content of SiO 2 is more preferably 51.5% or more, still more preferably 52% or more, even more preferably 52.5% or more, particularly preferably 53% or more, still more preferably 53.5% or more. It is 5% or more, and most preferably 54% or more.
  • the content of SiO 2 is preferably 70% or less. When the content of SiO 2 is 70% or less, the frit can be easily melted and molded.
  • the heat treatment conditions are also an important factor in precipitating indialite/cordierite crystals as the crystal phase .
  • the content of SiO 2 is more preferably 65% or less, more preferably 60% or less, even more preferably 59% or less, particularly preferably 58% or less, even more preferably 57% or less, and most preferably 56% or less.
  • Al 2 O 3 is a component for precipitating indialite/cordierite crystals as a crystal phase.
  • the content of Al 2 O 3 is preferably 12% or more. When the content of Al 2 O 3 is 12% or more, a desired crystal phase can be easily obtained, the precipitation crystal phase of the crystallized glass can be easily stabilized, and an increase in the liquidus temperature can be suppressed.
  • the content of Al 2 O 3 is more preferably 12.5% or more, more preferably 13% or more.
  • the content of Al 2 O 3 is preferably 30% or less. If the content of Al 2 O 3 is 30% or less, the meltability of the raw material for glass tends to be good.
  • the content of Al 2 O 3 is more preferably 28% or less, still more preferably 26% or less, even more preferably 24% or less, particularly preferably 22% or less, even more preferably 20% or less, and most preferably 18% or less. .
  • MgO is a component for precipitating indialite/cordierite crystals as a crystal phase.
  • the content of MgO is preferably 15% or more. When the content of MgO is 15% or more, desired crystals are easily obtained, the precipitated crystal phase of the crystallized glass is easily stabilized, and the meltability of the raw material for glass is improved.
  • the MgO content is more preferably 15% or more, still more preferably 16% or more, even more preferably 17% or more, particularly preferably 18% or more, still more preferably 19% or more, and most preferably 20% or more.
  • the content of MgO is preferably 23% or less. When the MgO content is 23% or less, desired crystals are easily obtained.
  • the MgO content is more preferably 22.5% or less, even more preferably 22% or less, and even more preferably 21.5% or less.
  • TiO 2 is a component for precipitating rutile type crystals as a crystal phase.
  • the content of TiO 2 is preferably 6% or more. When the content of TiO 2 is 6% or more, it is easy to obtain a desired crystal phase, and the precipitation crystal phase of the crystallized glass is easy to stabilize.
  • the content of TiO 2 is more preferably 6.5% or more, still more preferably 7% or more, and even more preferably 7.5% or more. From the viewpoint of suppressing deterioration of dielectric properties, the content of TiO 2 is preferably 15% or less, more preferably 14% or less, even more preferably 13% or less, and even more preferably 12% or less.
  • P 2 O 5 is a component that contributes to improving the meltability, moldability, and devitrification resistance of glass raw materials.
  • the content of P 2 O 5 is preferably 0.5% or more, more preferably 0.75% or more, still more preferably 1% or more, even more preferably 1.25% or more, and particularly 1.5% or more. Preferably, 1.75% or more is more preferred, and 2% or more is most preferred.
  • the content of P 2 O 5 is preferably 10% or less, more preferably 9% or less, and 8% or less. is more preferably 7% or less, particularly preferably 6% or less, even more preferably 5% or less, and most preferably 4% or less.
  • CaO may be contained because it has the effect of improving the meltability of the frit and at the same time preventing coarsening of the precipitated crystal phase.
  • the content is preferably 1.5% or less, more preferably 1.25% or less, even more preferably 1% or less, even more preferably 0.8% or less, and 0.7% or less. Particularly preferred, 0.6% or less is more preferred, and 0.5% or less is most preferred.
  • MoO 3 may be included as it is a component that functions as a nucleating component.
  • the nucleation component is a component capable of generating nuclei that serve as starting points for crystal growth when crystallizing amorphous glass. Containing the nucleation component makes it easier to stably obtain a desired crystal structure and a state in which crystals are relatively homogeneously dispersed in the crystallized glass.
  • the content is preferably 5% or more, more preferably 5.5% or more, further preferably 6.0% or more, further preferably 6.5%, from the viewpoint of stably precipitating the desired crystals.
  • the above is more preferable, 7.0% or more is particularly preferable, 7.5% or more is still more preferable, and 8.0% or more is most preferable.
  • the content of MoO 3 is preferably 15% or less, more preferably 14.5% or less, still more preferably 13.5% or less, even more preferably 13.5% or less, from the viewpoint of improving dielectric properties. % or less is particularly preferred, 12.5% or less is more preferred, and 12% or less is most preferred.
  • ZrO 2 functions as the nucleation component described above, and is a component that contributes to the refinement of the precipitated crystal phase, the improvement of the mechanical strength of the material, and the improvement of the chemical durability, so it may be contained.
  • the content is preferably 5% or more, more preferably 5.5% or more, further preferably 6.0% or more, from the viewpoint of stably precipitating desired crystals. It is more preferably 5% or more, particularly preferably 7.0% or more, even more preferably 7.5% or more, and most preferably 8.0% or more.
  • the content of ZrO 2 is preferably 15% or less, more preferably 14.5% or less, still more preferably 13.5% or less, still more preferably 13.5% or less, from the viewpoint of improving dielectric properties. % or less is particularly preferred, 12.5% or less is more preferred, and 12% or less is most preferred.
  • B 2 O 3 may be contained because it is a component that contributes to adjustment of viscosity during melting and molding of glass raw materials and improvement of dielectric properties.
  • the content of B 2 O 3 is preferably 0.5% or more, more preferably 0.75% or more, still more preferably 1% or more, even more preferably 1.25% or more, and particularly 1.5% or more.
  • Preferably, 1.75% or more is more preferred, and 2% or more is most preferred.
  • it is preferably 10% or less, more preferably 9% or less, even more preferably 8% or less, and even more preferably 7% or less, from the viewpoint of suppressing an excessive decrease in crystallization viscosity and stably producing glass. 6% or less is particularly preferred, 5% or less is more preferred, and 4% or less is most preferred.
  • SrO does not have to be contained, it may be contained at 5% or less in order to improve the meltability of the glass raw material.
  • a more preferable range of the SrO content is 1% or more.
  • a more preferable range of the SrO content is 3% or less.
  • BaO does not have to be contained, it may be contained at 5% or less in order to improve the meltability of the glass raw material.
  • a more preferable range of BaO content is 1% or more.
  • a more preferable range of BaO content is 3% or less.
  • CaO, SrO, and BaO are contained, from the viewpoint of obtaining good dielectric properties, it is preferable that the respective contents of CaO, SrO, and BaO satisfy the relationship CaO>SrO>BaO.
  • Sb 2 O 3 and As 2 O 3 may not be contained, they may be contained in a total amount of 1% or less because they act as clarifiers when frit is melted.
  • F does not have to be contained, it may be contained at 3% or less in order to improve the meltability of the frit.
  • the F content (%) represents the content of the F element expressed as a mole percentage.
  • SnO 2 , CeO, and Fe 2 O 3 may not be contained, but each of them is used as a coloring agent for the glass or for improving the detection sensitivity of surface defects by coloring and improving the absorption characteristics of the LD-pumped solid-state laser. It may contain 5% or less in total of the components.
  • Embodiment 4 Preferred crystal species, crystallinity, and glass composition of the crystallized glass according to Embodiment 4 will be described below.
  • the crystallized glass according to Embodiment 4 preferably contains rutile crystals.
  • the rutile crystal is a component that suppresses the change in dielectric constant due to temperature, as in Embodiments 2 and 3, and the composition, crystal structure, crystal identification method, and mechanism for suppressing the change in dielectric constant due to temperature are also described. It is the same as the second and third embodiments.
  • the content of rutile crystals is preferably 2.0% by mass or more, more preferably 2.5% by mass or more, more preferably 3.0% by mass, with respect to the entire crystallized glass, from the viewpoint of suppressing temperature-dependent changes in dielectric constant. 3.5% by mass or more is more preferable, 4.0% by mass or more is even more preferable, 4.5% by mass or more is particularly preferable, and 5.0% by mass or more is most preferable.
  • the content of rutile crystals in crystallized glass is preferably 10% by mass or less, more preferably 9.0% by mass or less, and even more preferably 8.0% by mass or less.
  • the content of rutile-type crystals may be 2.0 to 10% by mass with respect to the entire crystallized glass.
  • the crystallized glass according to Embodiment 4 preferably contains at least one of celsian-type and hexacelsian-type crystals.
  • Celsian type and hexacelsian type crystals have the same composition but different crystal structures, and the composition is represented by the chemical formula BaAl 2 Si 2 O 8 or SrAl 2 Si 2 O 8 .
  • Celsian-type and hexacelsian-type crystals can also precipitate as solid solutions of BaAl 2 Si 2 O 8 and SrAl 2 Si 2 O 8 .
  • crystals composed of any one of solid solutions of BaAl 2 Si 2 O 8 , SrAl 2 Si 2 O 8 , BaAl 2 Si 2 O 8 and SrAl 2 Si 2 O 8 are referred to as celsian type and hexagonal type. It is called celsian type crystal.
  • celsian-type crystals When synthesized by a solid phase reaction method, celsian-type crystals have a monoclinic crystal structure, while hexacelsian-type crystals have a hexagonal crystal structure.
  • celsian-type/hexacelsian-type crystals At least one of the celsian-type and hexacelsian-type crystals contained in crystallized glass may be collectively referred to as "celsian-type/hexacelsian-type crystals.” That is, when the crystallized glass contains either celsian-type crystals or hexacelsian-type crystals, the term "celsian-type/hexacelsian-type crystals" refers to one of the celsian-type crystals and hexacelsian-type crystals. When it contains both type crystals, it refers to both crystals.
  • Glass substrates used in high-frequency devices are required to reduce transmission loss based on dielectric loss, conductor loss, etc., in order to ensure characteristics such as the quality and strength of high-frequency signals.
  • Crystallized glass containing celsian-type/hexa-celsian-type crystals tends to have a smaller dielectric loss tangent and relative permittivity as the ratio of the crystals in the crystallized glass increases.
  • the celsian type/hexacelsian type crystals contained in the crystallized glass according to Embodiment 4 may have holes or strains.
  • the term celsian-type/hexacelsian-type crystal includes the case where the crystal has vacancies or strains.
  • glass substrates used in high-frequency devices are also required to have a small difference in coefficient of thermal expansion with other members in the device (for example, Si substrates and Cu electrodes).
  • a crystallized glass containing celsian/hexacelsian crystals can exhibit a coefficient of thermal expansion suitable for the above applications.
  • the total amount of celsian type/hexacelsian type crystals in the crystallized glass is preferably 30% by mass or more, more preferably 35% by mass or more, relative to the entire crystallized glass. It is more preferably 40% by mass or more, even more preferably 45% by mass or more, even more preferably 50% by mass or more, particularly preferably 55% by mass or more, and most preferably 60% by mass or more.
  • the total amount of celsian type/hexacelsian type crystals is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less of the crystallized glass.
  • the total amount of celsian type/hexacelsian type crystals may be 30 to 90% by mass based on the entire crystallized glass.
  • XRD X-ray diffraction measurement
  • the crystallized glass according to Embodiment 4 may contain crystals other than rutile-type crystals and celsian-type/hexacelsian-type crystals as long as the effects of the present invention are not impaired.
  • crystals other than rutile type crystals and celsian type/hexacelsian type crystals include mullite, corundum, and anatase.
  • the total content of crystals other than rutile-type crystals and celsian-type/hexacelsian-type crystals is 10% by mass or less of the entire crystallized glass.
  • Crystal species other than rutile type crystals and celsian type/hexacelsian type crystals can be identified and the content can be measured by the above-described XRD measurement and Rietveld analysis using the XRD measurement results.
  • composition The composition of the crystallized glass according to Embodiment 4 is the same as the composition of the amorphous glass before crystallization in the manufacturing method described below. Therefore, the composition of the present crystallized glass and the composition of the amorphous glass preferably have the same composition.
  • the composition of the crystallized glass in this specification refers to the total composition of the crystal phase and the glass phase of the crystallized glass.
  • the composition of the crystallized glass can be obtained by heat-treating the crystallized glass at a temperature equal to or higher than the melting point and analyzing the vitrified material. Analytical techniques include fluorescent X-ray analysis.
  • composition of the crystal phase of the crystallized glass according to Embodiment 4 can be analyzed by Rietveld analysis of the results of the XRD measurement described above.
  • the preferred lower limit of the content of non-essential components is 0%.
  • the crystallized glass according to Embodiment 4 contains 45 to 65% SiO 2 , 7.5 to 30% Al 2 O 3 , and P 2 in terms of oxide-based mass percentage and oxide-based molar percentage. It is preferable to contain 0.5 to 15% of O 5 , 13 to 30% in total of one or more selected from SrO and BaO, 2.5 to 10% of TiO 2 and 0 to 10% of ZrO 2 .
  • TiO 2 is a component that constitutes rutile-type crystals
  • SiO 2 , Al 2 O 3 and SrO or BaO are components that constitute celsian-type/hexacelsian-type crystals.
  • SiO 2 is a component for precipitating celsian type/hexacelsian type crystals as a crystal phase.
  • the content of SiO 2 is preferably 45% or more. When the content of SiO 2 is 45% or more, the precipitated crystal phase of crystallized glass tends to be stable.
  • the content of SiO2 is more preferably 45.5% or more, still more preferably 46% or more, even more preferably 46.5% or more, particularly preferably 47% or more, and still more preferably 48%. or more, and most preferably 50% or more.
  • the content of SiO 2 is preferably 65% or less. When the content of SiO 2 is 65% or less, the frit can be easily melted and molded.
  • the heat treatment conditions are also an important factor in precipitating celsian-type/hexacelsian-type crystals as the crystal phase, but a wider range of heat treatment conditions can be selected because the SiO 2 content is equal to or less than the above upper limit. can.
  • the content of SiO 2 is more preferably 62.5% or less, even more preferably 60% or less, even more preferably 57.5% or less, particularly preferably 55% or less, and even more preferably 52.5% or less.
  • Al 2 O 3 is a component for precipitating celsian type/hexacelsian type crystals as a crystal phase.
  • the content of Al 2 O 3 is preferably 7.5% or more. When the content of Al 2 O 3 is 7.5% or more, a desired crystal phase can be easily obtained, the precipitation crystal phase of the crystallized glass can be easily stabilized, and an increase in the liquidus temperature can be suppressed.
  • the content of Al 2 O 3 is more preferably 10% or more, still more preferably 12.5% or more, still more preferably 15% or more, particularly preferably 17.5% or more, and even more preferably 20% or more. On the other hand, the content of Al 2 O 3 is preferably 30% or less.
  • the content of Al 2 O 3 is more preferably 29% or less, further preferably 28% or less, even more preferably 27.5% or less, particularly preferably 27% or less, even more preferably 26% or less, and 25% or less. Most preferred.
  • P 2 O 5 is a component for improving the meltability of frit without lowering the dielectric properties of crystallized glass.
  • the content of P 2 O 5 is preferably 0.5% or more. When the content of P 2 O 5 is 0.5% or more, desired crystals are easily obtained, the precipitated crystal phase of the crystallized glass is easily stabilized, and the meltability of the raw material for glass is improved.
  • the content of P 2 O 5 is more preferably 1% or more, still more preferably 1.5% or more, even more preferably 2% or more, and particularly preferably 2.5% or more.
  • the content of P 2 O 5 is preferably 15% or less. When the content of P 2 O 5 is 10% or less, desired crystals are easily obtained.
  • the content of P 2 O 5 is more preferably 8% or less, even more preferably 6% or less, and even more preferably 4% or less.
  • the mechanism by which P 2 O 5 contributes to the improvement of the meltability of the frit in the present crystallized glass without lowering the dielectric properties is presumed as follows.
  • the crystal contains more Si and Al than Ba and Sr. It is presumed that this is because the large amount of Si and Al contained in the crystal shortens the movement distance of atoms when an electric field is applied, thereby lowering the dielectric constant.
  • P has a structure very close to that of Si and Al in glass, it is considered that Si and Al can easily move when the amorphous glass before crystallization is heat-treated. From this, it is considered that Si and Al are likely to be contained in the crystal, and as a result, the dielectric properties of the crystallized glass are improved.
  • BaO and SrO are components for precipitating celsian type/hexacelsian type crystals as a crystal phase. At least one of BaO and SrO should be contained in order to obtain the desired crystal phase.
  • the total content of BaO and SrO is preferably 13% or more. When the total content of BaO and SrO is 13% or more, desired crystals are easily obtained, and the precipitated crystal phase of the crystallized glass is easily stabilized.
  • the total content of BaO and SrO is more preferably 13.5% or more, more preferably 14% or more, even more preferably 14.5% or more, particularly preferably 15% or more, and even more preferably 15.5% or more. . On the other hand, the total content of BaO and SrO is preferably 30% or less.
  • the total content of BaO and SrO is 30% or less, desired crystals are easily obtained.
  • the total content of BaO and SrO is more preferably 28% or less, still more preferably 26% or less, still more preferably 25% or less, particularly preferably 24% or less, and even more preferably 23% or less.
  • TiO 2 is a component for precipitating rutile type crystals as a crystal phase.
  • the content of TiO 2 is preferably 2.5% or more. When the content of TiO 2 is 2.5% or more, it is easy to obtain a desired crystal phase, and the precipitation crystal phase of the crystallized glass is easy to stabilize.
  • the content of TiO 2 is more preferably 4% or more, even more preferably 5% or more, and even more preferably 6% or more. From the viewpoint of suppressing deterioration of dielectric properties, the content of TiO 2 is preferably 10% or less, more preferably 9% or less, and even more preferably 8% or less.
  • ZrO 2 may be contained because it functions as a nucleation component and contributes to the refinement of precipitated crystal phases, the improvement of the mechanical strength of the material, and the improvement of chemical durability.
  • the content is preferably 1% or more, more preferably 1.5% or more, still more preferably 2% or more, from the viewpoint of stably precipitating desired crystals, and 2.3% or more. More preferably, 2.5% or more is particularly preferable.
  • the content of ZrO 2 is preferably 10% or less, more preferably 8% or less, even more preferably 6% or less, even more preferably 5% or less, and particularly 4% or less, from the viewpoint of improving dielectric properties. preferable.
  • B 2 O 3 may be contained because it is a component that contributes to adjustment of viscosity during melting and molding of glass raw materials and improvement of dielectric properties.
  • B 2 O 3 is contained, it is preferably 20% or less, more preferably 15% or less, even more preferably 10% or less, even more preferably 7.5% or less, particularly preferably 5% or less, and 2.5%. % or less is more preferable.
  • Li 2 O, Na 2 O, K 2 O, Rb 2 O, and Cs 2 O may not be contained, but may be contained in order to improve the meltability of the glass raw material.
  • the total content is preferably 2% or less, more preferably 1.5% or less, further preferably 1% or less, and 0.5% or less. is even more preferable.
  • MgO and CaO may not be contained, but may be contained in order to improve the meltability of the frit.
  • the total content is preferably 3% or less, more preferably 2.5% or less, even more preferably 2% or less, even more preferably 1.5% or less, and particularly preferably 1% or less.
  • ZnO does not have to be contained, but may be contained in order to improve the meltability of the glass raw material. When ZnO is contained, it is preferably 3% or less, more preferably 2.5% or less, even more preferably 2% or less, still more preferably 1.5% or less, and particularly preferably 1% or less.
  • Sb 2 O 3 and As 2 O 3 may not be contained, they may be contained in a total amount of 1% or less because they act as clarifiers when frit is melted.
  • F does not have to be contained, it may be contained at 3% or less in order to improve the meltability of the frit.
  • the F content (%) represents the content of the F element expressed as a mole percentage.
  • SnO 2 , CeO, and Fe 2 O 3 may not be contained, but each of them is used as a coloring agent for the glass or for improving the detection sensitivity of surface defects by coloring and improving the absorption characteristics of the LD-pumped solid-state laser. It may contain 5% or less in total of the components.
  • the dielectric loss tangent Df at 20° C. and 10 GHz of the crystallized glasses according to Embodiments 1 to 4 is preferably 0.01 or less, more preferably 0.005 or less, and still more preferably 0.004 or less from the viewpoint of improving dielectric properties. , is more preferably 0.003 or less, particularly preferably 0.0025 or less, and even more preferably 0.002 or less.
  • the dielectric loss tangent at 20° C. and 10 GHz is preferably as small as possible, but is usually 0.0001 or more.
  • the relative permittivity Dk at 20° C. and 10 GHz of the crystallized glasses according to Embodiments 1 to 4 is preferably 8.5 or less, more preferably 8.0 or less, and further preferably 7.5 or less from the viewpoint of improving dielectric properties. It is preferable, 7.0 or less is more preferable, and 6.8 or less is particularly preferable. The smaller the dielectric constant at 20° C. and 10 GHz, the better, but it is usually 3.5 or more.
  • the dielectric loss tangent Df at 20°C and 10 GHz is within the above preferable range, it is considered that the dielectric properties are also excellent in a frequency band higher than 10 GHz.
  • the dielectric constant Dk at 20° C. and 10 GHz is within the above preferable range.
  • a dielectric loss tangent and a dielectric constant can be measured using a cavity resonator and a vector network analyzer according to the method specified in JIS R1641 (2007).
  • the shape of the crystallized glass according to Embodiments 1 to 4 is not particularly limited, and can be various shapes depending on the purpose and application.
  • the present crystallized glass may have a plate-like shape having two main surfaces opposed to each other, or may have a shape other than a plate-like shape depending on the product or application to which it is applied.
  • the crystallized glass according to Embodiments 1 to 4 may be, for example, a flat glass plate without warping or a curved glass plate having a curved surface.
  • the shape of the main surface is also not particularly limited, and can be formed into various shapes such as circular and square.
  • the crystallized glass according to Embodiments 1 to 4 has two main surfaces facing each other, at least one of the main surfaces preferably has an arithmetic mean roughness Ra of 2 ⁇ m or less.
  • Ra is 2 ⁇ m or less, the crystallized glass substrate can be miniaturized in addition to obtaining good dielectric properties in a high frequency region.
  • Ra is more preferably 1.5 ⁇ m or less, even more preferably 1 ⁇ m or less, particularly preferably 0.7 ⁇ m or less, still more preferably 0.5 ⁇ m or less, and most preferably 0.3 ⁇ m or less.
  • Ra is preferably as small as possible, it is usually 0.1 nm or more. Ra can be measured by a method conforming to JIS B0601 (2001).
  • the main surface area of the crystallized glasses according to Embodiments 1 to 4 is preferably 100 cm 2 or more, more preferably 225 cm 2 or more, and even more preferably 400 cm 2 or more from the viewpoint of transmission/reception efficiency when used for an antenna or the like.
  • the area of the main surface is preferably 100000 cm 2 or less, more preferably 10000 cm 2 or less, and even more preferably 3600 cm 2 or less from the viewpoint of handling. That is, the area of the largest surface of the crystallized glass according to Embodiments 1 to 4 is preferably within the above range.
  • the crystallized glass according to Embodiments 1 to 4 may have a main surface area of 100 to 100000 cm 2 .
  • the thickness of the crystallized glass according to Embodiments 1 to 4 is preferably 0.01 mm or more, more preferably 0.05 mm or more, and even more preferably 0.1 mm or more.
  • the thickness of the crystallized glass according to Embodiments 1 to 4 is 2 mm or less from the viewpoint of thinning and miniaturization of parts and products using the crystallized glass according to Embodiments 1 to 4, and from the viewpoint of improving production efficiency. is preferred, 1 mm or less is more preferred, and 0.7 mm or less is even more preferred.
  • the crystallized glass according to Embodiments 1 to 4 may have a thickness of 0.01 to 2 mm.
  • the crystallized glass according to Embodiments 1 to 4 can be used for high-frequency devices (electronic devices) such as semiconductor devices used in communication equipment such as mobile phones, smartphones, personal digital assistants, and Wi-Fi equipment, surface acoustic waves ( SAW) devices, circuit boards for radar components such as radar transceivers, and substrates for antenna components such as antennas for liquid crystals.
  • high-frequency devices electronic devices
  • semiconductor devices used in communication equipment
  • SAW surface acoustic waves
  • radar components such as radar transceivers
  • substrates for antenna components such as antennas for liquid crystals.
  • the crystallized glass according to Embodiments 1 to 4 exhibits stable dielectric properties in a high frequency region over a wide temperature range, and is therefore suitable for glass substrates for high frequency devices and antennas for liquid crystals.
  • the crystallized glasses according to Embodiments 1 to 4 exhibit stable dielectric properties in a high frequency region over a wide temperature range, they can be used as glass substrates for high frequency devices.
  • the preferred dielectric constant and dielectric loss tangent of the high-frequency device glass substrate (hereinafter also referred to as the present high-frequency device glass substrate) using any of the crystallized glasses according to Embodiments 1 to 4 are as in Embodiments 1 to 4. It is similar to the crystallized glass concerned.
  • a glass substrate for a high frequency device generally has two main surfaces facing each other.
  • the main surface area of the high-frequency device glass substrate is preferably 75 cm 2 or more, more preferably 100 cm 2 or more, still more preferably 150 cm 2 or more, even more preferably 300 cm 2 or more, and particularly preferably 600 cm 2 . That's it.
  • the area of the main surface of the high-frequency substrate is preferably 5000 cm 2 or less from the viewpoint of securing strength.
  • the shape can be freely designed according to the application as long as it has the above area.
  • the main surface area of the present glass substrate for high-frequency devices may be 75 to 5000 cm 2 .
  • the plate thickness of the glass substrate for high-frequency devices is preferably 1 mm or less, more preferably 0.8 mm or less, and even more preferably 0.7 mm or less.
  • the board thickness is within the above range, it is possible to make the whole board thin when laminating the boards to form a circuit, which is preferable.
  • the plate thickness is preferably 0.05 mm or more, more preferably 0.2 mm or more, strength can be ensured.
  • the plate thickness of the glass substrate for high-frequency devices may be 0.05 to 1 mm.
  • holes may be formed in the crystallized glass substrate made of any of the crystallized glasses according to Embodiments 1 to 4. That is, the high-frequency substrate may have a hole having an opening on at least one of its main surfaces.
  • the hole may be a through hole communicating with the other main surface, or may be a non-penetrating void. These holes can be used as circuits by filling conductors or forming conductor films on the walls of the holes.
  • the diameter of the pores is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less. On the other hand, the diameter of the pores is preferably 1 ⁇ m or more. The pore diameter may be from 1 to 200 ⁇ m.
  • the method of forming the holes is not particularly limited, but in order to form small holes with a diameter of 200 ⁇ m or less with high accuracy, for example, a method of irradiating a crystallized glass substrate with a laser is suitable. A substrate using this crystallized glass is excellent in workability by laser irradiation.
  • the wavelength of the laser is not particularly limited, for example, 10.6 ⁇ m or less, 3000 nm or less, 2050 nm or less, 1090 nm or less, 540 nm or less, or 400 nm or less is used.
  • the following two methods are suitable.
  • a hole is formed in the crystallized glass substrate by irradiating UV laser with a wavelength of 400 nm or less.
  • the UV laser is more preferably pulse-oscillated, and it is preferable to provide an absorption layer on the surface of the crystallized glass substrate when irradiating the laser.
  • the holes may be expanded by etching the crystallized glass substrate with a hydrofluoric acid-containing solution.
  • a modified portion is formed in the crystallized glass substrate by irradiating a laser with a wavelength of 400 to 540 nm, for example, a wavelength of about 532 nm. Subsequently, the crystallized glass substrate is etched with a hydrofluoric acid-containing solution to selectively remove the modified portion and form holes. According to this method, a laser or the like is pulse-oscillated, and the reformed portion can be formed by only one shot of pulse irradiation, so the hole forming speed is high and the productivity is excellent.
  • This glass substrate for high-frequency devices is particularly suitable for high-frequency filter devices for extracting electrical signals of specific frequencies. Since filter devices are required to have a function of handling radio waves of a specific frequency regardless of the environment, they are required to have stable dielectric properties in a wide temperature range like the crystallized glass according to Embodiments 1 to 4. ing.
  • a liquid crystal antenna is an antenna for satellite communication that uses liquid crystal technology and can control the direction of radio waves to be transmitted and received. Since liquid crystal antennas are expected to be used mainly outdoors, they are required to have stable dielectric properties over a wide temperature range.
  • the crystallized glasses according to Embodiments 1 to 4 are suitable for liquid crystal antennas because they exhibit stable dielectric properties in a high frequency range over a wide temperature range.
  • a liquid crystal antenna (hereinafter also referred to as the present liquid crystal antenna) using any of the crystallized glasses according to Embodiments 1 to 4 has a preferable dielectric constant and a preferable range of dielectric loss tangent of the crystallized glass according to Embodiments 1 to 4. Similar to glass.
  • a liquid crystal antenna generally comprises two main surfaces facing each other.
  • the main surface area of the present liquid crystal antenna is preferably 75 cm 2 or more, more preferably 100 cm 2 or more, still more preferably 150 cm 2 or more, still more preferably 300 cm 2 or more, and particularly preferably 700 cm 2 or more, from the viewpoint of transmission and reception efficiency.
  • the area of the main surface of the present liquid crystal antenna is preferably 10,000 cm 2 or less, more preferably 3,600 cm 2 or less, and even more preferably 2,500 cm 2 or less from the viewpoint of handling.
  • the shape can be freely designed according to the application as long as it has the above area.
  • the area of the main surface of the present liquid crystal antenna may be 75-10000 cm 2 .
  • the plate thickness of the present liquid crystal antenna is preferably 1 mm or less, more preferably 0.8 mm or less, and even more preferably 0.7 mm or less. It is preferable that the plate thickness is within the above range because the whole can be made thin. On the other hand, if the plate thickness is preferably 0.05 mm or more, more preferably 0.2 mm or more, strength can be ensured.
  • the plate thickness of the present liquid crystal antenna may be 0.05 to 1 mm.
  • melt-molding In this step, raw materials prepared so as to have a desired glass composition are melt-molded to form an amorphous glass.
  • the method of melt-molding is not particularly limited, but frit prepared by frit preparation is placed in a platinum crucible, placed in an electric furnace at 1300° C. to 1700° C., melted, defoamed, and homogenized.
  • the obtained molten glass is poured into a metal mold (for example, a stainless platen) at room temperature, held at the temperature of the glass transition point for about 3 hours, and then cooled to room temperature to obtain a glass block of amorphous glass.
  • a metal mold for example, a stainless platen
  • the obtained glass block is processed, such as cutting, grinding, polishing, etc., if necessary, and formed into a desired shape. Processing such as cutting, grinding, and polishing may be performed after the crystallization step.
  • the amorphous glass is processed before the crystallization process, its shape is not particularly limited, and the preferred shape is the same as the preferred shape of the present crystallized glass.
  • amorphous glass can be formed into a desired shape from a molten state. Compared to the process of cutting into the shape of , it is superior in that it is easy to mold and easy to increase the area, and in view of the crystallization process described later, it can be manufactured at a low cost.
  • composition of amorphous glass is not particularly limited, preferred amorphous glass compositions for producing the crystallized glasses according to Embodiments 2 to 4 will be described below.
  • the amorphous glass contains 50 to 80% SiO 2 , 0.5 to 14% Al 2 O 3 , and B 2 O 3 7-35%, MgO 0-10%, CaO 0-8%, BaO 0-5%, TiO 2 3.5-10% and an alkali metal oxide R 2 It is preferable that the total content of O is 3.0% or less, the total content of alkaline earth metal oxide RO is 1 to 20%, and Nb, Bi and Cu are not included.
  • the composition of the amorphous glass is the same as the composition of the crystallized glass according to the second embodiment described above.
  • the amorphous glass contains 51 to 70% SiO 2 and Al 2 O 3 in terms of mol percentage based on oxides and mass percentage based on oxides. 12-30%, P 2 O 5 0.5-10%, MgO 15-23%, CaO 0-1.5%, and TiO 2 6-15%.
  • the composition of the amorphous glass is the same as the composition of the crystallized glass according to the third embodiment described above.
  • the amorphous glass contains 45 to 65% SiO 2 , 7.5 to 30% Al 2 O 3 , and P It is preferable to contain 0.5 to 15% of 2O5 , a total of 13 to 30% of one or more selected from SrO or BaO, 2.5 to 10% of TiO2 , and 0 to 10% of ZrO2 .
  • the composition of the amorphous glass is the same as the composition of the crystallized glass according to the fourth embodiment.
  • the amorphous glass obtained in the amorphous glass forming step is heat-treated.
  • the heat treatment it is preferable to hold the amorphous glass at a specific treatment temperature for a specific holding time, and the treatment temperature and holding time are not particularly limited as long as the desired crystals can be precipitated.
  • Preferred specific heat treatment conditions for producing the crystallized glasses according to Embodiments 2 to 4 will be described below.
  • the processing temperature of the amorphous glass is preferably 750° C. or higher from the viewpoint of promoting the precipitation of rutile crystals and from the viewpoint of shortening the heat treatment time and increasing productivity. , 800° C. or higher is more preferable, and 850° C. or higher is even more preferable.
  • the treatment temperature is preferably 1200° C. or lower, more preferably 1150° C. or lower, and even more preferably 1100° C. or lower.
  • the retention time is preferably 0.5 hours or longer, more preferably 1 hour or longer, more preferably 2 hours or longer, and particularly preferably 3 hours or longer.
  • crystallization proceeds sufficiently.
  • a long heat treatment increases the cost of the heat treatment, so the heat treatment is preferably 24 hours or less, more preferably 12 hours or less, and particularly preferably 8 hours or less.
  • the heat treatment preferably includes holding at the above treatment temperature, but may further include raising or lowering the temperature within the above treatment temperature range or within another temperature range.
  • the temperature may be raised from room temperature to the first temperature range and held for a certain period of time, and then slowly cooled to room temperature, or after the temperature is raised from room temperature to the first temperature range and held for a certain period of time.
  • a two-stage heat treatment may be selected in which the material is held in a second temperature range higher than the first temperature range for a certain period of time and then slowly cooled to room temperature.
  • the first temperature range is preferably a temperature range in which the crystal nucleation rate increases in the glass composition.
  • the first temperature range is preferably 760° C. or higher, more preferably 800° C. or higher, and even more preferably 850° C. or higher.
  • the first temperature range is preferably 960° C. or lower, more preferably 920° C. or lower, and even more preferably 880° C. or lower.
  • the holding time in the first temperature range is preferably 0.5 hours or longer, more preferably 1 hour or longer, more preferably 1.5 hours or longer, and particularly preferably 2 hours or longer.
  • the holding time is preferably 5 hours or less, more preferably 4 hours or less, particularly from the viewpoint of suppressing the progress of crystal growth at the same time as the nucleation and from the viewpoint of improving the dielectric properties of the entire crystallized glass. It is preferably 3 hours or less.
  • the second temperature range is preferably a temperature range in which the crystal growth rate of the desired crystal increases.
  • the second temperature range is preferably 960° C. or higher, more preferably 980° C. or higher, and even more preferably 1000° C. or higher.
  • the second temperature range is preferably 1100° C. or lower, more preferably 1050° C. or lower, and even more preferably 1100° C. or lower.
  • the retention time in the second temperature range is preferably 1 hour or longer, more preferably 3 hours or longer, more preferably 5 hours or longer, and particularly preferably 6 hours or longer.
  • the holding time is within the above range, the crystal growth tends to proceed sufficiently.
  • the holding time is preferably 15 hours or less, more preferably 14 hours or less, and particularly preferably 12 hours or less.
  • the temperature increase rate in the heat treatment is not particularly limited, but is generally 1° C./min or more, preferably 3° C./min or more, more preferably 5° C./min or more, from the viewpoint of productivity. On the other hand, if the heating rate is preferably 30° C./min or less, more preferably 25° C./min or less, a glass with a stable shape can be produced.
  • the temperature drop rate is not particularly limited, but is preferably 10° C./min or less, more preferably 5° C./min or less, and still more preferably 1° C./min or less. Easy to maintain. On the other hand, the temperature drop rate is generally 0.5° C./min or more.
  • the processing temperature of the amorphous glass is adjusted from the viewpoint of promoting the precipitation of rutile-type, cordierite-type, and indialite-type crystals, shortening the heat treatment time, and improving productivity.
  • the treatment temperature is preferably 1400° C. or lower, more preferably 1350° C. or lower, and even more preferably 1300° C. or lower.
  • the holding time is preferably 0.25 hours or longer, more preferably 0.5 hours or longer, more preferably 0.75 hours or longer, and particularly preferably 1 hour or longer.
  • crystallization proceeds sufficiently.
  • a long heat treatment increases the cost of the heat treatment, so the heat treatment is preferably 24 hours or less, more preferably 12 hours or less, and particularly preferably 8 hours or less.
  • the heat treatment preferably includes holding at the above treatment temperature, but may further include raising or lowering the temperature within the above treatment temperature range or within another temperature range.
  • the temperature may be raised from room temperature to the first temperature range and held for a certain period of time, and then slowly cooled to room temperature, or after the temperature is raised from room temperature to the first temperature range and held for a certain period of time.
  • a two-stage heat treatment may be selected in which the material is held in a second temperature range higher than the first temperature range for a certain period of time and then slowly cooled to room temperature.
  • the first temperature range is preferably a temperature range in which the crystal nucleation rate increases in the glass composition.
  • the first temperature range is preferably 760° C. or higher, more preferably 800° C. or higher, and even more preferably 850° C. or higher.
  • the first temperature range is preferably 960° C. or lower, more preferably 920° C. or lower, and even more preferably 880° C. or lower.
  • the holding time in the first temperature range is preferably 0.5 hours or longer, more preferably 1 hour or longer, more preferably 1.5 hours or longer, and particularly preferably 2 hours or longer.
  • the holding time is preferably 5 hours or less, more preferably 4 hours or less, particularly from the viewpoint of suppressing the progress of crystal growth at the same time as the nucleation and from the viewpoint of improving the dielectric properties of the entire crystallized glass. It is preferably 3 hours or less.
  • the second temperature range is preferably a temperature range in which the crystal growth rate of the desired crystal increases.
  • the second temperature range is preferably 960° C. or higher, more preferably 980° C. or higher, and even more preferably 1000° C. or higher.
  • the second temperature range is preferably 1350° C. or lower, more preferably 1250° C. or lower, and even more preferably 1150° C. or lower.
  • the retention time in the second temperature range is preferably 0.25 hours or longer, more preferably 0.5 hours or longer, more preferably 0.75 hours or longer, and particularly preferably 1 hour or longer.
  • the retention time is preferably 10 hours or less, more preferably 8 hours or less, and particularly preferably 6 hours or less.
  • the temperature increase rate in the heat treatment is not particularly limited, but is generally 1° C./min or more, preferably 3° C./min or more, more preferably 5° C./min or more, from the viewpoint of productivity. On the other hand, if the heating rate is preferably 30° C./min or less, more preferably 25° C./min or less, a glass with a stable shape can be produced.
  • the temperature drop rate is not particularly limited, but is preferably 10° C./min or less, more preferably 5° C./min or less, and still more preferably 1° C./min or less. Easy to maintain. On the other hand, the temperature drop rate is generally 0.5° C./min or more.
  • the processing temperature of the amorphous glass is adjusted from the viewpoint of promoting the precipitation of rutile-type, celsian-type, and hexacelsian-type crystals, shortening the heat treatment time, and increasing productivity. From the point of view, for example, 1050° C. or higher is preferable, 1100° C. or higher is more preferable, and 1150° C. or higher is even more preferable.
  • the treatment temperature is preferably 1400° C. or lower, more preferably 1350° C. or lower, and even more preferably 1300° C. or lower.
  • the retention time is preferably 0.5 hours or longer, more preferably 1 hour or longer, more preferably 2 hours or longer, and particularly preferably 3 hours or longer.
  • crystallization proceeds sufficiently.
  • a long heat treatment increases the cost of the heat treatment, so the heat treatment is preferably 24 hours or less, more preferably 12 hours or less, and particularly preferably 8 hours or less.
  • the heat treatment preferably includes holding at the above treatment temperature, but may further include raising or lowering the temperature within the above treatment temperature range or within another temperature range.
  • the temperature may be raised from room temperature to the first temperature range and held for a certain period of time, and then slowly cooled to room temperature, or after the temperature is raised from room temperature to the first temperature range and held for a certain period of time.
  • a two-stage heat treatment may be selected in which the material is held in a second temperature range higher than the first temperature range for a certain period of time and then slowly cooled to room temperature.
  • the first temperature range is preferably a temperature range in which the crystal nucleation rate increases in the glass composition.
  • the first temperature range is preferably 760° C. or higher, more preferably 800° C. or higher, and even more preferably 850° C. or higher.
  • the first temperature range is preferably 960° C. or lower, more preferably 920° C. or lower, and even more preferably 880° C. or lower.
  • the holding time in the first temperature range is preferably 0.5 hours or longer, more preferably 1 hour or longer, more preferably 1.5 hours or longer, and particularly preferably 2 hours or longer.
  • the holding time is preferably 5 hours or less, more preferably 4 hours or less, particularly from the viewpoint of suppressing the progress of crystal growth at the same time as the nucleation and from the viewpoint of improving the dielectric properties of the entire crystallized glass. It is preferably 3 hours or less.
  • the second temperature range is preferably a temperature range in which the crystal growth rate of the desired crystal increases.
  • the second temperature range is preferably 960° C. or higher, more preferably 980° C. or higher, and even more preferably 1000° C. or higher.
  • the second temperature range is preferably 1350° C. or lower, more preferably 1250° C. or lower, and even more preferably 1150° C. or lower.
  • the retention time in the second temperature range is preferably 1 hour or longer, more preferably 3 hours or longer, more preferably 5 hours or longer, and particularly preferably 6 hours or longer.
  • the holding time is within the above range, the crystal growth tends to proceed sufficiently.
  • the holding time is preferably 15 hours or less, more preferably 14 hours or less, and particularly preferably 12 hours or less.
  • the temperature increase rate in the heat treatment is not particularly limited, but is generally 1° C./min or more, preferably 3° C./min or more, more preferably 5° C./min or more, from the viewpoint of productivity. On the other hand, if the heating rate is preferably 30° C./min or less, more preferably 25° C./min or less, a glass with a stable shape can be produced.
  • the temperature drop rate is not particularly limited, but is preferably 10° C./min or less, more preferably 5° C./min or less, and still more preferably 1° C./min or less. Easy to maintain. On the other hand, the temperature drop rate is generally 0.5° C./min or more.
  • Tables 1 to 12 show the glass compositions of the prepared samples in terms of molar percentages based on oxides.
  • Tables 1 to 9 correspond to glass compositions of samples of crystallized glass and amorphous glass according to Embodiment 2
  • glasses 1 to 86 correspond to examples of amorphous glass according to Embodiment 2.
  • Glasses 87-90 correspond to comparative examples.
  • Tables 10 and 11 correspond to glass compositions of samples of crystallized glass and amorphous glass according to the third embodiment.
  • Table 12 corresponds to the glass compositions of the crystallized glass and amorphous glass samples according to the fourth embodiment.
  • Amorphous glasses having compositions of glasses 1 to 86 and 89 to 105 were each subjected to heat treatment to obtain crystallized glass.
  • Tables 13 to 25 show the composition, heat treatment conditions, and properties of the crystallized glass thus produced.
  • the composition of the crystallized glass is the same as the composition of the amorphous glass before crystallization, and is shown in Tables 13-25 using the glass numbers in Tables 1-12.
  • Tables 13 to 22 correspond to examples and comparative examples of the crystallized glass according to the second embodiment.
  • Tables 23 and 24 correspond to examples and comparative examples of the crystallized glass according to the third embodiment.
  • Table 25 corresponds to examples and comparative examples of the crystallized glass according to the fourth embodiment.
  • the method of producing the crystallized glass used as an example and a comparative example is specifically shown below.
  • Glass raw materials were prepared so as to have the compositions shown in Tables 1 to 12, and weighed to give 400 g of glass. Then, the mixed raw material was placed in a platinum crucible and placed in an electric furnace at 1500 to 1700° C., melted for about 3 hours, degassed and homogenized.
  • the resulting molten glass was poured into a metal mold, held at a temperature about 10°C higher than the glass transition point for 1 hour, and then cooled to room temperature at a rate of 0.5°C/min to obtain a glass block.
  • the obtained glass block was cut, ground, and finally both surfaces were mirror-polished to obtain a glass plate having a thickness of 2 mm.
  • a heat treatment was performed on the obtained glass. Specifically, the amorphous glass was heated to a temperature T1 at a predetermined heating rate, held for a holding time t1, and then cooled. Note that a part of the glass was subjected to a two-stage heat treatment. Specifically, the amorphous glass is heated to a temperature T1 at a first heating rate, held for a holding time t1, then heated to a temperature T2 at a second heating rate, and held for a holding time t2. It was held for a while and then cooled.
  • Crystallized glass was obtained by performing heat treatment under the conditions shown in Tables 13 to 25, such as specific temperature conditions for the above heat treatment. Further, the physical properties shown in Tables 13 to 25 were obtained from the obtained crystallized glass.
  • the blank "-" in the "crystallization conditions” column of Tables 13 to 25 indicates that heat treatment has not been performed under the corresponding conditions, and the blank "-" in the "properties” column indicates that the corresponding physical properties have not been measured. indicates that
  • Powder X-ray diffraction was measured under the following conditions to identify precipitated crystals. Diffraction peak patterns recorded in the ICSD inorganic crystal structure database and the ICDD powder diffraction database were used to identify the crystal species.
  • Tables 1 to 9 show the composition of each sample of examples and comparative examples of the crystallized glass according to the second embodiment, and Tables 13 to 22 show the heat treatment conditions and the measurement results of each characteristic.
  • the crystallized glasses of Examples 1 to 86 which are examples, obtained using glasses 1 to 86 contained an appropriate amount of TiO 2 and were subjected to an appropriate heat treatment. It was confirmed that stable dielectric properties were exhibited in a wide temperature range. Moreover, the dielectric constant Dk, the dielectric loss tangent Df, and the arithmetic average roughness Ra are also good values, and it was confirmed that the glass substrate has suitable physical properties as a glass substrate used for high-frequency devices.
  • Examples 87 and 88 are samples of amorphous glasses having compositions of glasses 87-88. Since glasses 87 and 88 do not contain TiO 2 , rutile crystals do not precipitate, so no heat treatment is performed. Examples 87 and 88 correspond to comparative examples, and from Table 9, it can be seen that the ⁇ Dk values of these samples are larger than the above preferred range. From this, it is considered that ⁇ Dk can be controlled by precipitating rutile type crystals in the glass.
  • Examples 89 to 91 are comparative samples obtained by using glass 89 and performing heat treatment under three conditions. In Examples 89 to 91, since the content of TiO 2 was small, no rutile-type crystals were precipitated under any heat treatment conditions, and as a result, the ⁇ Dk of the samples was larger than the above preferable range. rice field.
  • Example 92 is a comparative sample obtained using Glass 90. In Example 92, since the content of TiO 2 was high, more rutile-type crystals were precipitated than the predetermined amount.
  • Tables 10 and 11 show the compositions of samples of examples and comparative examples of the crystallized glass according to Embodiment 3, and Tables 23 and 24 show the heat treatment conditions and measurement results of each characteristic.
  • the crystallized glasses of Examples 93 to 103 which are examples, obtained using Glasses 91 to 100 contained an appropriate amount of TiO 2 and were subjected to an appropriate heat treatment. It was confirmed that stable dielectric properties were exhibited in a wide temperature range. Moreover, the dielectric constant Dk, the dielectric loss tangent Df, and the arithmetic average roughness Ra are also good values, and it was confirmed that the glass substrate has suitable physical properties as a glass substrate used for high-frequency devices.
  • Example 104 is a comparative sample obtained using glass 102 .
  • Example 102 since the content of TiO 2 was small, a sufficient amount of rutile-type crystals was not precipitated, and as a result, the ⁇ Dk of the sample was larger than the above preferable range.
  • Table 12 shows the composition of each sample as an example and a comparative example of the crystallized glass according to Embodiment 4, and Table 25 shows the heat treatment conditions and the measurement results of each characteristic.
  • the crystallized glasses of Examples 105 and 107 which are examples obtained using Glasses 103 and 104, contained an appropriate amount of TiO 2 and were subjected to an appropriate heat treatment. It was confirmed that stable dielectric properties were exhibited in a wide temperature range. Moreover, the dielectric constant Dk, the dielectric loss tangent Df, and the arithmetic average roughness Ra are also good values, and it was confirmed that the glass substrate has suitable physical properties as a glass substrate used for high-frequency devices.
  • Example 108 is a comparative sample obtained using glass 103.
  • Example 108 is a sample using Glass 103 as in Example 105, but since the heat treatment temperature was low and the holding time was short, rutile crystals were not precipitated. Therefore, ⁇ Dk of the sample was larger than the preferable range.
  • Example 109 is a comparative sample obtained using Glass 105.
  • Example 109 since TiO 2 was not contained in the glass, rutile-type crystals were not precipitated, and as a result, the ⁇ Dk value of the sample was larger than the above preferable range.
  • FIG. 1 shows a schematic top view of the filter device 10 produced.
  • a filter device 10 has electrodes 2 formed on a glass substrate 1 and is a device for extracting an electric signal of a specific frequency. Cu was used as the electrode 2 .
  • FIG. 2 shows the transmission characteristics of a filter device manufactured using the crystallized glass of Example 1, which is an example, measured while changing from ⁇ 20° C. to 40° C.
  • the horizontal axis corresponds to frequency
  • the vertical axis corresponds to transmission characteristics. It is shown as an insertion loss
  • FIG. 3 shows the results of measuring the transmission characteristics of a filter device manufactured using the crystallized glass of Example 87, which is a comparative example, while changing the transmission characteristics from -20°C to 40°C.
  • the crystallized glass of Example 1 which is an example, exhibits a good value of ⁇ Dk, and therefore exhibits stable dielectric properties in a wide temperature range compared to the crystallized glass of Example 87, which is a comparative example. It is considered to have Therefore, the transmission characteristics of the filter device manufactured using the crystallized glass of Example 1 are less susceptible to temperature changes than the transmission characteristics of the filter device manufactured using the crystallized glass of Example 87. it is conceivable that.
  • FIGS. 4 and 5 are enlarged views of the frequency range of 28 to 32 GHz in FIGS. . From FIG. 4, it can be seen that the transmission characteristics of the filter device manufactured using the crystallized glass of Example 1 hardly change even if the temperature changes. On the other hand, it can be seen from FIG. 5 that the transmission characteristics of the filter device manufactured using the crystallized glass of Example 87 change as the temperature changes. Specifically, it can be seen that as the temperature rises, the corresponding frequency gradually shifts to the low frequency side.
  • the temperature change of the center frequency of the region where the insertion loss is -5 dB or more, that is, the median value of the frequency of the region was examined.
  • the results are shown in FIG. 6, the center frequency of the filter device manufactured using the crystallized glass of Example 1 hardly changed, and the center frequency of the filter device manufactured using the crystallized glass of Example 87 increased as the temperature increased. It can be seen that it is declining.
  • Crystallized glass according to 4 above containing 2.0% by mass or more of rutile-type TiO 2 crystals relative to the entire crystallized glass. 6. 6. Crystallized glass as described in 4 or 5 above, wherein the molar ratio of the contents represented by Al 2 O 3 /B 2 O 3 is 0.1 to 1.4. 7. 7. The crystallized glass according to any one of 4 to 6 above, wherein the total content of the alkali metal oxides R 2 O is 0.001 to 3.0%, expressed as a molar percentage based on the oxides. 8.
  • mole percentage display based on oxides, SiO 2 45-65%, Al 2 O 3 7.5-30%, P2O5 0.5-15 %, 13 to 30% in total of one or more selected from SrO or BaO, TiO2 2.5-10%, ZrO2 0-10%, 2.
  • the crystallized glass according to 1 above which contains 2.0% by mass or more of rutile-type TiO 2 crystals relative to the entire crystallized glass, and contains at least one of celsian-type and hexacelsian-type crystals.
  • the crystallized glass according to any one of 1 and 4 to 11 above which has a dielectric loss tangent Df of 0.01 or less at 12.10 GHz and 20°C. 13.
  • the crystallized glass according to any one of 1 and 4 to 12 above which has two main surfaces facing each other, and at least one of the main surfaces has an arithmetic mean roughness Ra of 2 ⁇ m or less.
  • the crystallized glass according to any one of 1 and 4 to 14 above, wherein the area of the largest surface is 100 to 100,000 cm 2 . 16.
  • 16. A high-frequency device glass substrate using the crystallized glass according to any one of 4 to 15 above. 17. 17.
  • the crystallized glass of the present invention exhibits stable dielectric properties in a wide temperature range as a glass substrate for high frequency devices.
  • Such crystallized glass is generally used in high-frequency electronic devices such as high-frequency substrates that handle high-frequency signals exceeding 10 GHz, particularly high-frequency signals exceeding 30 GHz, and high-frequency signals exceeding 35 GHz, and in environments with large temperature changes. It is very useful as a member for liquid crystal antennas, devices that require hole drilling by laser or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本発明は、10GHzにおける比誘電率の温度による変化率ΔDk(/℃)を下記式(A)としたときに、前記式(A)によって、算出される値が-50ppm(/℃)~50ppm(/℃)であり、酸化物基準のモル百分率表示でアルカリ金属酸化物R2Oの合計含有量が3.0%以下である結晶化ガラスに関する。

Description

結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法
 本発明は、結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法に関する。
 近年、大容量伝送技術としてマイクロ波帯やミリ波帯域を利用する無線伝送が注目されている。使用する周波数の拡大に伴い信号周波数が高くなるにつれて、高周波における誘電特性に優れる誘電体基板が求められている。
 誘電体基板の材料としては、例えば、石英、セラミックス、ガラスなどが挙げられる。ここで、ガラスの中でも、ガラスの一部を結晶化させた結晶化ガラスは、石英やセラミックスに比べ成形が容易で安価に製造でき、誘電特性をより優れたものにできるという利点がある。このことから、高周波デバイス用のガラス基板に好適な結晶化ガラスの開発が求められている。
 誘電特性に優れる結晶化ガラスとしては、例えば特許文献1に開示されるような、インディアライトまたはコーディエライトの結晶を含む結晶化ガラスが挙げられる。しかしながら、結晶化ガラスをはじめとする従来のガラス材料は、一般的に、比誘電率が温度に対して正の依存性を示すことが多い。すなわち、比誘電率が温度の上昇に伴って、増加するため、温度変化が電子デバイスの性能に影響を与えるおそれがある。従って、高周波領域において、比誘電率の温度による変化を抑制できる結晶化ガラスの開発が必要とされている。
国際公開第2020/023205号
 そこで、本発明は、高周波領域における比誘電率の温度による変化が小さく、広い温度域で安定した誘電特性を示す結晶化ガラスを提供することを目的とする。
 本発明の実施形態に係る結晶化ガラスは、10GHzにおける比誘電率の温度による
変化率ΔDk(/℃)を下記式(A)としたときに、前記式(A)によって、算出される値が-50ppm(/℃)~50ppm(/℃)であり、酸化物基準のモル百分率表示でアルカリ金属酸化物ROの合計含有量が3.0%以下である。
Figure JPOXMLDOC01-appb-M000002
 本発明の実施形態に係る非晶質ガラスは、酸化物基準のモル百分率表示で、
 SiO 50~80%、
 Al 0.5~14%、
 B 7~35%、
 TiO 3.5~10%、
 MgO 0~10%、
 CaO 0~8%、
 BaO 0~5%、
 を含み、かつ、アルカリ金属酸化物ROの合計含有量が3.0%以下であり、アルカリ土類金属酸化物ROの合計含有量が1~20%であり、Nb、Bi及びCuを含まないことを特徴とする。
 本発明によれば、高周波領域における比誘電率の温度による変化が小さく、広い温度域で安定した誘電特性を示す結晶化ガラスが得られる。
図1は、実施形態に係るフィルターデバイスの上面模式図である。 図2は、例1の結晶化ガラスを用いて作製したフィルターデバイスの透過特性を示す図である。 図3は、例87の結晶化ガラスを用いて作製したフィルターデバイスの透過特性を示す図である。 図4は、例1の結晶化ガラスを用いて作製したフィルターデバイスの透過特性の拡大図である。 図5は、例87の結晶化ガラスを用いて作製したフィルターデバイスの透過特性の拡大図である。 図6は、例1及び87の結晶化ガラスを用いて作製したフィルターデバイスの中心周波数の温度による変化を示す図である。
 本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。特段の定めがない限り、以下本明細書において「~」は、同様の意味で使用される。
 本明細書において、ガラス組成は、特に断らない限り酸化物基準のモル百分率表示で表し、mol%を単に「%」と表記する。
 本明細書において、「結晶化ガラス」とは、ガラス中に結晶が析出したものである。本明細書では、「結晶化ガラス」とは、X線回折法(XRD:X-ray Diffraction)によって結晶を示す回折ピークが認められるガラスをいう。X線回折測定は、例えば、CuKα線を用いて2θが10°~90°の範囲を測定し、回折ピークが現れた場合には、例えば3強線法によって析出結晶を同定できる。
 本明細書において、「高周波」とは、10GHz以上、好ましくは30GHzより大きく、より好ましくは35GHz以上とする。
<実施形態1>
 実施形態1に係る結晶化ガラスは、10GHzにおける比誘電率の温度による変化率ΔDk(/℃)を下記式(A)としたときに、前記式(A)によって算出されるΔDk(以下単にΔDkと称する)が-50ppm(/℃)~50ppm(/℃)であり、酸化物基準のモル百分率表示でアルカリ金属酸化物ROの合計含有量が3.0%以下である。
Figure JPOXMLDOC01-appb-M000003
 実施形態1に係る結晶化ガラスにおいて、ΔDkが-50ppm(/℃)~50ppm(/℃)の範囲にあることによって、結晶化ガラスの比誘電率の温度による変化が小さく、広い温度域において安定した誘電特性を得ることができる。ΔDkは、-45ppm(/℃)~45ppm(/℃)がより好ましく、さらに好ましくは-40ppm(/℃)~40ppm(/℃)であり、よりさらに好ましくは-35ppm(/℃)~35ppm(/℃)であり、特に好ましくは-30ppm(/℃)~30ppm(/℃)であり、一層好ましくは-25ppm(/℃)~25ppm(/℃)であり、最も好ましくは-20ppm(/℃)~20ppm(/℃)である。
 実施形態1に係る結晶化ガラスにおいて、アルカリ金属酸化物ROはガラス原料の溶融性の向上に寄与する成分であるが、結晶化ガラスの誘電特性の低下を抑制する観点から、含有量の合計は3.0%以下であることが好ましく、より好ましくは2.5%以下であり、よりさらに好ましくは2.0%以下であり、特に好ましくは1.5%以下であり、一層好ましくは1.0%以下であり、最も好ましくは0.5%以下である。
 実施形態1に係る結晶化ガラスにおいて、ガラス組成、結晶種、結晶化度などは、上記要件を満足する結晶化ガラスを得ることが出来れば、特に限定されないが、例えば、後述の実施形態2、3、4に係る結晶化ガラスにおけるガラス組成等を適用することができる。
 <実施形態2>
 以下において、実施形態2に係る結晶化ガラス(以下実施形態2という場合がある)において、好ましい結晶種、結晶化度、ガラス組成について説明する。
 (結晶)
 実施形態2に係る結晶化ガラスは、ルチル型のTiO結晶(以後ルチル型結晶と称する)を含有することが好ましい。ルチル型結晶はTiOの結晶の1種であり、正方晶系の結晶構造を有する。また、実施形態2に係る結晶化ガラスに含まれる、ルチル型結晶には空孔が存在していてもよく、歪が存在していてもよい。本明細書においては、結晶中に空孔を有している場合も歪を有している場合も含めて、ルチル型結晶という。
 ルチル型結晶は、実施形態2に係る結晶化ガラスにおいて、比誘電率の温度による変化を抑制する成分である。ルチル型結晶によって、比誘電率の温度による変化が抑制されるメカニズムは以下のように推定される。
 前記したように、一般的なガラス材料は、比誘電率が温度に対して正の依存性を示すことが多い。一方、ルチル型結晶は、ガラス中で比誘電率が温度に対して負の依存性を示すと考えられるため、ガラス中にルチル型結晶を析出させることによって、比誘電率の温度変化を抑制できると推定される。
 ルチル型結晶の合計量は、結晶化ガラスの比誘電率の温度による変化を抑制する観点から、結晶化ガラス全体に対し0.5質量%以上が好ましく、1.5質量%以上がより好ましく、2.0質量%以上がさらに好ましい、2.5質量%以上がよりさらに好ましく、3.0質量%以上がよりさらに好ましく、3.5質量%以上が特に好ましく、4.0質量%以上が最も好ましい。
 また、誘電特性の低下を抑制する観点から、ルチル型結晶の合計量は結晶化ガラス全体に対し10質量%以下が好ましく、9.0質量%以下がより好ましく、8.0質量%以下がさらに好ましく、7.0質量%以下がよりさらに好ましく、6.5質量%以下がよりさらに好ましく、6.0質量%以下が特に好ましく、5.5質量%以下が最も好ましい。ルチル型結晶の合計量は結晶化ガラス全体に対し0.5~10質量%であってもよい。
 ルチル型結晶はX線回折測定(XRD)により同定できる。具体的には、結晶化ガラスのバルク体を粉砕し、XRDによりCuKα線を用いて2θ=10~90°で測定した際に、2θ=27.2~27.6°の範囲に最も強度の大きいピークが確認される場合、該結晶化ガラスはルチル型の結晶を含む。
 また、より正確な結晶構造を知るためには、リートベルト解析がなされることが好ましい。リートベルト解析によると、結晶相および非晶質相の定量解析や結晶相の構造解析が可能である。リートベルト法については、日本結晶学会「結晶解析ハンドブック」編集委員会編、「結晶解析ハンドブック」(協立出版 1999年刊、p492~499)に記載されている。本結晶化ガラスにおけるルチル型結晶の含有量は、XRDによる測定結果を用いたリートベルト解析により算出できる。
 実施形態2に係る結晶化ガラスは、本発明の効果を阻害しない範囲で、ルチル型結晶以外の結晶を含んでもよい。ルチル型結晶以外の結晶としては、例えば、アナターゼ、ブルッカイト、アルミナ、クオーツ、クリストバライト、トリジマイト、コーサイト、ステショバイト等が挙げられる。ルチル型結晶以外の結晶を含む場合、ルチル型結晶以外の結晶の含有量の合計は結晶化ガラス全体に対し10質量%以下が好ましく、7.5質量%以下がより好ましく、5.0質量%以下がさらに好ましい。ルチル型以外の結晶の結晶種の同定および含有量の測定は、上述のXRD測定およびXRD測定結果を用いたリートベルト解析により行える。
 (組成)
 実施形態2に係る結晶化ガラスの組成は、後述する結晶化前の非晶質ガラスの組成と同じである。ここで、本明細書における結晶化ガラスの組成とは、結晶化ガラスの結晶相とガラス相の組成を合計した組成を指す。また、結晶化ガラスの組成は、結晶化ガラスを融点以上の温度で熱処理を行い、ガラス化したものを分析することで求められる。分析の手法としては蛍光X線分析法が挙げられる。また、実施形態2に係る結晶化ガラスの結晶相の組成については、上述のXRD測定した結果をリートベルト解析することで分析できる。実施形態2に係る結晶化ガラスの組成において、必須でない成分の好ましい含有量の下限は0%である。
 実施形態2に係る結晶化ガラスは、酸化物基準のモル百分率表示で、SiOを50%~80%、Alを0.5~14%、Bを7~35%、TiOを3.5~10%、MgOを0~10%、CaOを0~8%、BaOを0~5%含み、かつ、アルカリ土類金属酸化物ROの合計含有量が1~20%であることが好ましい。TiOはルチル型結晶を構成する成分である。
 SiOは、実施形態2に係る結晶化ガラスの主成分である。SiOの含有量は50%以上が好ましい。SiOの含有量が50%以上であることで、耐候性を良好にでき、失透を抑制できる。SiOの含有量は52%以上がより好ましく、さらに好ましくは54%以上であり、よりさらに好ましくは55%以上であり、特に好ましくは56%以上であり、一層好ましくは57%以上であり、最も好ましくは58%以上である。また、SiOの含有量は80%以下が好ましい。SiOの含有量が80%以下であると、ガラス原料の溶融性が良好となる。SiOの含有量は75%以下がより好ましく、70%以下がさらに好ましく、68%以下がよりさらに好ましく、66%以下がことさらに好ましく、65%以下がなおさらに好ましく、64%以下がより一層好ましく、63%以下がさらに一層好ましく、62%以下がなお一層好ましく、61%以下が特に好ましく、60%以下が最も好ましい。 
 Alは、結晶化ガラスの分相を抑制し、ガラスの安定性を向上させる成分である。Alの含有量は0.5%以上が好ましい。Alの含有量が0.5%以上であることで、ガラスの分相を抑制でき、ガラスの安定性が向上する。Alの含有量は1%以上がより好ましく、さらに好ましくは2%以上であり、よりさらに好ましくは3%以上であり、特に好ましくは3.5%以上であり、一層好ましくは4%以上であり、最も好ましくは4.5%以上である。また、耐薬品性の低下を抑制する観点から、Alの含有量は14%以下が好ましく、13%以下がより好ましく、12%以下がさらに好ましく、11%以下がよりさらに好ましく、10%以下がことさらに好ましく、9%以下がなおさらに好ましく、8%以下が特に好ましく、7%以下が一層好ましい。
 Bは、結晶化ガラスの誘電特性の向上に寄与する成分である。Bの含有量は7%以上が好ましい。Bの含有量が7%以上であることで、誘電特性を良好にでき、さらに、ガラス原料の溶融性が向上する。Bの含有量は15%以上がより好ましく、さらに好ましくは17%以上であり、よりさらに好ましくは18%以上であり、特に好ましくは19%以上であり、一層好ましくは20%以上であり、最も好ましくは21%以上である。また、耐薬品性の低下を抑制する観点から、Bの含有量は35%以下が好ましく、32.5%以下がより好ましく、30%以下がさらに好ましく、29%以下がよりさらに好ましく、28%以下がことさらに好ましく、27%以下がなおさらに好ましく、26%以下が特に好ましく、25%以下が一層好ましい。
 TiOは、結晶相として、ルチル型結晶を析出させるための成分である。TiOの含有量は3.5%以上が好ましい。TiOの含有量が3.5%以上であると、所望の結晶相を得やすく、結晶化ガラスの析出結晶相が安定しやすい。TiOの含有量は3.75%以上がより好ましく、4%以上がさらに好ましく、4.25%以上がよりさらに好ましい。また、誘電特性の低下を抑制する観点から、TiOの含有量は10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましく、7%以下がよりさらに好ましく、6%以下が特に好ましい。
 アルカリ土類金属酸化物ROは、ガラス原料の溶融性の向上に寄与する成分である。ここで、ROとはMgO、CaO、SrO及びBaOから選択されるいずれか1以上のことを指す。ROの合計含有量は、1.0%以上が好ましい。ROの合計含有量が、1.0%以上であると、ガラス原料の良好な溶融性が得られる。ROの合計含有量は、1.5%以上がより好ましく、さらに好ましくは2.0%以上であり、よりさらに好ましくは2.5%以上であり、特に好ましくは3.0%以上であり、一層好ましくは3.5%以上であり、最も好ましくは4%以上である。また、良好な誘電特性を得る観点から、ROの合計含有量は20%以下が好ましく、17.5%以下がより好ましく、15%以下がさらに好ましく、12.5%以下がよりさらに好ましく、10%以下が特に好ましく、8%以下が一層好ましい。
 MgOは上記の溶融性の向上に加えて、比重を上げずにヤング率を上げる成分であり、比弾性率の向上に寄与する。MgOを含有する場合は、1%以上が好ましく、1.5%以上がより好ましく、2.0%以上がさらに好ましく、2.5%以上がよりさらに好ましく、3.0%以上が特に好ましく、3.5%以上が一層好ましい。また、失透温度の上昇を抑制する観点から、MgOの含有量は、10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましく、7%以下がよりさらに好ましく、6%以下が特に好ましく、5%以下が一層好ましい。
 CaOは上記の溶融性の向上に加えて、比弾性率を向上させ、かつ、歪点を過大には低下させない成分である。CaOを含有する場合は、0.5%以上が好ましく、1%以上がより好ましく、1.5%以上がさらに好ましく、2%以上がよりさらに好ましく、2.5%以上が特に好ましく、3%以上が一層好ましい。また、失透温度の上昇を抑制する観点から、CaOの含有量は、8%以下が好ましく、7%以下がより好ましく、6%以下がさらに好ましく、5%以下がよりさらに好ましく、4%以下が特に好ましく、3%以下が一層好ましい。
 SrOは上記の溶融性の向上に加えて、失透温度の上昇の抑制に寄与する成分である。SrOを含有する場合は、0.5%以上が好ましく、1%以上がより好ましく、1.5%以上がさらに好ましく、2%以上がよりさらに好ましく、2.5%以上が特に好ましく、3%以上が一層好ましい。また、失透温度の上昇を抑制する観点から、SrOの含有量は、10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましく、7%以下がよりさらに好ましく、6%以下が特に好ましく、5%以下が一層好ましい。
 BaOは上記の溶融性の向上に加えて、失透温度の上昇の抑制に寄与する成分である。BaOを含有する場合は、0.5%以上が好ましく、1%以上がより好ましく、1.5%以上がさらに好ましく、2%以上がよりさらに好ましく、2.5%以上が特に好ましく、3%以上が一層好ましい。また、失透温度の上昇を抑制する観点から、BaOの含有量は、5%以下が好ましく、4.5%以下がより好ましく、4%以下がさらに好ましく、3.5%以下がよりさらに好ましい。
 実施形態2に係る結晶化ガラスにおいて、Al/Bで表される含有量のモル比は、ヤング率を向上させる観点から、0.1以上が好ましく、0.12以上がより好ましく、0.14以上がさらに好ましく、0.16以上がよりさらに好ましく、0.18%以上が特に好ましく、0.2%以上が一層好ましく、0.3以上が最も好ましい。ヤング率を向上させると、結晶化ガラスを高周波デバイス用のガラス基板として、使用した際に反りを抑制することができる。また、耐薬品性を向上させる観点から、Al/Bで表される含有量のモル比は、1.4以下が好ましく、1.3以下がより好ましく、1.2以下がさらに好ましく、1.1以下がよりさらに好ましく、1.0以下が特に好ましく0.9以下が一層好ましく、0.8以下が最も好ましい。耐薬品性を向上させると、ガラス基板として、電子デバイスに用いる際の薬液処理時に生じる恐れのあるガラスの平坦性の低下を抑制できる。Al/Bで表される含有量のモル比は0.1~1.4が好ましい。
 アルカリ金属酸化物ROはガラス原料の溶融性の向上に寄与するため、含有させてもよい。ここで、ROとしては、LiO、NaO、KO、RbO、CsOが挙げられる。ROを含有する場合、合計含有量は0.001%以上が好ましく、0.002%以上がより好ましく、0.003%以上がさらに好ましく、0.004%以上がよりさらに好ましく、0.005%以上が特に好ましく、0.008%以上が一層好ましい。また、誘電特性の低下を抑制する観点から、ROの合計含有量は3.0%以下が好ましく、2.0%以下がより好ましく、1.0%以下がさらに好ましく、0.5%以下がよりさらに好ましい。ROを含有する場合、合計含有量は0.001~3.0%が好ましい。
 Nb、Bi、CuOは誘電特性を低下させる恐れがあるため、含有させないことが好ましい。ここで、含有させないとは各成分の含有量が少なくとも0.1%以下であることを意味する。
 <実施形態3>
 以下において、実施形態3に係る結晶化ガラス(以下実施形態3という場合がある)において、好ましい結晶種、結晶化度、ガラス組成について説明する。
 (結晶)
 実施形態3に係る結晶化ガラスは、ルチル型結晶を含有することが好ましい。ルチル型結晶は、実施形態2と同様に、誘電率の温度による変化を抑制する成分であり、結晶組成、結晶構造、結晶の同定方法、及び誘電率の温度による変化を抑制するメカニズムについても実施形態2と同様である。
 ルチル型結晶の含有量は、誘電率の温度による変化を抑制する観点から、結晶化ガラス全体に対し4.5質量%以上が好ましく、5.0質量%以上がより好ましく、5.5質量%以上がさらに好ましく、6.0質量%以上がよりさらに好ましく、6.5質量%以上が特に好ましく、7.0質量%以上が一層好ましく、7.5質量%以上が最も好ましい。
 また、誘電特性の低下を抑制する観点から、ルチル型結晶の含有量は結晶化ガラス全体に対し10質量%以下が好ましく、9.0質量%以下がより好ましく、8.5質量%以下がさらに好ましい。ルチル型結晶の含有量は結晶化ガラス全体に対し4.5~10質量%であってもよい。
 さらに、実施形態3に係る結晶化ガラスは、インディアライト型およびコーディエライト型の少なくとも一方の結晶を含有することが好ましい。インディアライト型およびコーディエライト型結晶は、同じ組成で結晶構造の異なる関係にあるMgO-Al-SiO系結晶である。これら結晶の組成は化学式MgAlSi18で示される。固相反応法で合成する場合、コーディエライト型結晶は直方晶系の結晶構造を有するのに対し、インディアライト型結晶は六方晶系の結晶構造を有する。以降、本明細書において、結晶化ガラスが含むインディアライト型およびコーディエライト型の少なくとも一方の結晶について、まとめて「インディアライト型/コーディエライト型結晶」と称することがある。すなわち、「インディアライト型/コーディエライト型結晶」は、結晶化ガラスがインディアライト型結晶およびコーディエライト型結晶の一方を含有する場合はその一方の結晶のことをいい、インディアライト型結晶およびコーディエライト型結晶の両方を含有する場合はその両方の結晶のことをいう。
 実施形態3に係る結晶化ガラスに含まれる、インディアライト型/コーディエライト型結晶には空孔または歪が存在していてもよい。本明細書においては、結晶中に空孔または歪を有している場合も含めて、インディアライト型/コーディエライト型結晶という。
 高周波デバイスに用いられる絶縁基板には、高周波信号の質や強度等の特性を確保するために、誘電損失や導体損失等に基づく伝送損失の低減が求められている。インディアライト型/コーディエライト型結晶を含有する結晶化ガラスは、結晶化ガラス中の該結晶の割合が大きいほど誘電正接や比誘電率が小さくなる傾向がある。
 誘電特性に優れる結晶化ガラスを得る観点から、実施形態3に係る結晶化ガラスにおけるインディアライト型/コーディエライト型結晶の合計量は、結晶化ガラスの全体に対し40質量%以上であることが好ましい。また、インディアライト型/コーディエライト型結晶の合計量は好ましくは50質量%以上であり、より好ましくは55質量%以上であり、さらに好ましくは60質量%以上である。
 また、結晶相とガラス相との熱膨張率差による割れを抑制する観点や、結晶化ガラスとして十分な熱膨張率を確保する観点からは、インディアライト型/コーディエライト型結晶の合計量は結晶化ガラスの全体に対し90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。インディアライト型/コーディエライト型結晶の合計量は結晶化ガラスの全体に対し40~90質量%であってもよい。
 ここで、インディアライト型/コーディエライト型結晶はX線回折測定(XRD)により同定できる。具体的には、結晶化ガラスのバルク体を粉砕し、XRDによりCuKα線を用いて2θ=10~90°で測定した際に、2θ=10~11°の範囲に最も強度の大きいピークが確認される場合、該結晶化ガラスはインディアライト型およびコーディエライト型の少なくとも一方の結晶を含む。インディアライト型/コーディエライト型結晶の含有量は、XRDによる測定結果を用いたリートベルト解析により算出できる。
 実施形態3に係る結晶化ガラスは、本発明の効果を阻害しない範囲で、ルチル型結晶及びインディアライト型/コーディエライト型結晶以外の結晶を含んでもよい。上記以外の結晶としては、例えば、ムライト、コランダム、アナターゼ等が挙げられる。ルチル型結晶及びインディアライト型/コーディエライト型結晶以外の結晶を含む場合、ルチル型結晶及びインディアライト型/コーディエライト型結晶以外の結晶の含有量の合計は結晶化ガラス全体に対し15質量%以下が好ましく、12.5質量%以下がより好ましく、10質量%以下がさらに好ましい。ルチル型結晶及びインディアライト型/コーディエライト型結晶以外の結晶の結晶種の同定および含有量の測定は、上述のXRD測定およびXRD測定結果を用いたリートベルト解析により行える。
 (組成)
 本結晶化ガラスの組成は、後述する製造方法における結晶化前の非晶質ガラスの組成と同じである。したがって、本結晶化ガラスの組成と、非晶質ガラスの組成とで、好ましい組成は同様である。ここで、本明細書における結晶化ガラスの組成とは、結晶化ガラスの結晶相とガラス相の組成を合計した組成を指す。また、結晶化ガラスの組成は、結晶化ガラスを融点以上の温度で熱処理を行い、ガラス化したものを分析することで求められる。分析の手法としては蛍光X線分析法が挙げられる。また、実施形態3に係る結晶化ガラスの結晶相の組成については、上述のXRD測定した結果をリートベルト解析することで分析できる。実施形態3に係る結晶化ガラスの組成において、必須でない成分の好ましい含有量の下限は0%である。
 実施形態3に係る結晶化ガラスは、酸化物基準のモル百分率表示で、SiOを51~70%、Alを12~30%、Pを0.5~10%、MgOを15~23%、CaOを0~1.5%、TiOを6~15%含有することが好ましい。TiOはルチル型結晶を構成する成分であり、SiO、Al、MgOはインディアライト型/コーディエライト型結晶を構成する成分である。
 SiOは、結晶相として、インディアライト型/コーディエライト型結晶を析出させるための成分である。SiOの含有量は51%以上が好ましい。SiOの含有量が51%以上であることで、結晶化ガラスの析出結晶相が安定しやすい。SiOの含有量は51.5%以上がより好ましく、さらに好ましくは52%以上であり、よりさらに好ましくは52.5%以上であり、特に好ましくは53%以上であり、一層好ましくは53.5%以上であり、最も好ましくは54%以上である。また、SiOの含有量は70%以下が好ましい。SiOの含有量が70%以下であると、ガラス原料の溶融や成形がしやすい。また、結晶相として、インディアライト型/コーディエライト型結晶を析出するには熱処理条件も重要な因子となるが、SiOの含有量が上記上限値以下であることで、より広い熱処理条件を選択できる。SiOの含有量は65%以下がより好ましく、60%以下がさらに好ましく、59%以下がよりさらに好ましく、58%以下が特に好ましく、57%以下が一層好ましく、56%以下が最も好ましい。
 Alは、結晶相として、インディアライト型/コーディエライト型結晶を析出させるための成分である。Alの含有量は12%以上が好ましい。Alの含有量が12%以上であると、所望の結晶相を得やすく、結晶化ガラスの析出結晶相が安定しやすく、さらに液相温度の上昇を抑制できる。Alの含有量は12.5%以上がより好ましく、13%以上がさらに好ましい。一方、Alの含有量は30%以下が好ましい。Alの含有量が30%以下であると、ガラス原料の溶融性が良好となりやすい。Alの含有量は28%以下がより好ましく、26%以下がさらに好ましく、24%以下がよりさらに好ましく、22%以下が特に好ましく、20%以下が一層好ましく、18%以下が最も好ましい。
 MgOは、結晶相として、インディアライト型/コーディエライト型結晶を析出させるための成分である。MgOの含有量は15%以上が好ましい。MgOの含有量が15%以上であると、所望の結晶を得やすく、結晶化ガラスの析出結晶相が安定しやすく、さらにガラス原料の溶融性が良好となる。MgOの含有量は15%以上がより好ましく、16%以上がさらに好ましく、17%以上がよりさらに好ましく、18%以上が特に好ましく、19%以上が一層好ましく、最も好ましくは20%以上である。一方、MgOの含有量は23%以下が好ましい。MgOの含有量が23%以下であると所望の結晶が得やすい。MgOの含有量は22.5%以下がより好ましく、22%以下がさらに好ましく、21.5%以下がよりさらに好ましい。
 TiOは、結晶相として、ルチル型結晶を析出させるための成分である。TiOの含有量は6%以上が好ましい。TiOの含有量が6%以上であると、所望の結晶相を得やすく、結晶化ガラスの析出結晶相が安定しやすい。TiOの含有量は6.5%以上がより好ましく、7%以上がさらに好ましく、7.5%以上がよりさらに好ましい。また、誘電特性の低下を抑制する観点から、TiOの含有量は15%以下が好ましく、14%以下がより好ましく、13%以下がさらに好ましく、12%以下がよりさらに好ましい。
 Pは、ガラス原料の溶融性、成型性、耐失透性の向上に寄与する成分である。Pの含有量は、0.5%以上が好ましく、0.75%以上がより好ましく、1%以上がさらに好ましく、1.25%以上がよりさらに好ましく、1.5%以上が特に好ましく、1.75%以上が一層好ましく、最も好ましくは2%以上である。また、結晶相とガラス相との分離を抑制する観点、結晶を安定して析出させる観点からは、Pの含有量は10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましく、7%以下がよりさらに好ましく、6%以下が特に好ましく、5%以下が一層好ましく、4%以下が最も好ましい。
 CaOは、ガラス原料の溶融性を向上させるのと同時に析出結晶相の粗大化を防止する作用があるため含有してもよい。CaOを含有する場合は、含有量は1.5%以下が好ましく、1.25%以下がより好ましく、1%以下がさらに好ましく、0.8%以下がよりさらに好ましく、0.7%以下が特に好ましく、0.6%以下が一層好ましく、0.5%以下が最も好ましい。
 MoOは、核生成成分として機能する成分であるため、含有してもよい。核生成成分は、非晶質ガラスを結晶化する際に、結晶成長の起点となる核を生成し得る成分である。核生成成分を含むことで、所望の結晶構造や、結晶化ガラス中に結晶が比較的均質に分散した状態を安定して得やすくなる。MoOを含有する場合の含有量は、安定して所望の結晶を析出させる観点から5%以上が好ましく、5.5%以上がより好ましく、6.0%以上がさらに好ましく、6.5%以上がよりさらに好ましく、7.0%以上が特に好ましく、7.5%以上が一層好ましく、最も好ましくは8.0%以上である。また、MoOの含有量は、誘電特性を良好にする観点から15%以下が好ましく、14.5%以下がより好ましく、14%以下がさらに好ましく、13.5%以下がよりさらに好ましく、13%以下が特に好ましく、12.5%以下が一層好ましく、12%以下が最も好ましい。
 ZrOは、上述の核生成成分として機能する他、析出結晶相の微細化と材料の機械的強度向上、および化学的耐久性の向上に寄与する成分であるため、含有してもよい。ZrOを含有する場合、安定して所望の結晶を析出させる観点から、その含有量は、5%以上が好ましく、5.5%以上がより好ましく、6.0%以上がさらに好ましく、6.5%以上がよりさらに好ましく、7.0%以上が特に好ましく、7.5%以上が一層好ましく、最も好ましくは8.0%以上である。また、ZrOの含有量は、誘電特性を良好にする観点から15%以下が好ましく、14.5%以下がより好ましく、14%以下がさらに好ましく、13.5%以下がよりさらに好ましく、13%以下が特に好ましく、12.5%以下が一層好ましく、12%以下が最も好ましい。
 Bは、ガラス原料の溶解成形時の粘度の調整、誘電特性の向上に寄与する成分であるため、含有してもよい。Bの含有量は、0.5%以上が好ましく、0.75%以上がより好ましく、1%以上がさらに好ましく、1.25%以上がよりさらに好ましく、1.5%以上が特に好ましく、1.75%以上が一層好ましく、最も好ましくは2%以上である。一方、結晶化する粘度の過剰な低下を抑制し、ガラスを安定して製造する観点から、10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましく、7%以下がよりさらに好ましく、6%以下が特に好ましく、5%以下が一層好ましく、4%以下が最も好ましい。
 SrOは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、5%以下含有してもよい。SrOの含有量のより好ましい範囲は1%以上である。また、SrOの含有量のより好ましい範囲は3%以下である。
 BaOは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、5%以下含有してもよい。BaOの含有量のより好ましい範囲は1%以上である。また、BaOの含有量のより好ましい範囲は3%以下である。
 更に、CaO、SrO、及びBaOを含有する場合は、良好な誘電特性を得る観点から、CaO、SrO、及びBaOのそれぞれの含有量について、CaO>SrO>BaOの関係を満たすことが好ましい。
 Sb、Asは含有しなくてもよいが、ガラス原料の溶融時に清澄剤として作用するため、合計で1%以下含有してもよい。
 Fは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、3%以下含有してもよい。なお、本明細書においてFの含有量(%)は、F元素のモル百分率表示の含有量を表す。
 SnO、CeO、Feは、含有しなくてもよいが、ガラスの着色剤または着色することによる表面欠陥の検出感度の向上、およびLD励起固体レーザの吸収特性を向上させるのに各成分の合計で5%以下含有してもよい。
 <実施形態4>
 以下において、実施形態4に係る結晶化ガラスにおいて、好ましい結晶種、結晶化度、ガラス組成について説明する。
 (結晶)
 実施形態4に係る結晶化ガラスは、ルチル型の結晶を含有することが好ましい。ルチル型結晶は、実施形態2、3と同様に、誘電率の温度による変化を抑制する成分であり、組成、結晶構造、結晶の同定方法、及び誘電率の温度による変化を抑制するメカニズムについても実施形態2、3と同様である。
 ルチル型結晶の含有量は、誘電率の温度による変化を抑制する観点から、結晶化ガラス全体に対し2.0質量%以上が好ましく、2.5質量%以上がより好ましく、3.0質量%以上がさらに好ましい、3.5質量%以上がよりさらに好ましく、4.0質量%以上がよりさらに好ましく、4.5質量%以上が特に好ましく、5.0質量%以上が最も好ましい。
 また、誘電特性の低下を抑制する観点から、ルチル型結晶の含有量は結晶化ガラスの10質量%以下が好ましく、9.0質量%以下がより好ましく、8.0質量%以下がさらに好ましい。ルチル型結晶の含有量は結晶化ガラス全体に対し2.0~10質量%であってもよい。
 さらに、実施形態4に係る結晶化ガラスは、セルシアン型およびヘキサセルシアン型の少なくとも一方の結晶を含有することが好ましい。セルシアン型およびヘキサセルシアン型結晶は、同じ組成で結晶構造の異なる関係にあり、組成は化学式BaAlSiまたはSrAlSiで示される。また、セルシアン型およびヘキサセルシアン型結晶はBaAlSi及びSrAlSiの固溶体としても析出し得る。そのため、本明細書においては、BaAlSi、SrAlSi、BaAlSi及びSrAlSiの固溶体のいずれかから構成される結晶をセルシアン型およびヘキサセルシアン型結晶という。
 固相反応法で合成する場合、セルシアン型結晶は単斜晶系の結晶構造を有するのに対し、ヘキサセルシアン型結晶は六方晶系の結晶構造を有する。以降、本明細書において、結晶化ガラスが含むセルシアン型およびヘキサセルシアン型の少なくとも一方の結晶について、まとめて「セルシアン型/ヘキサセルシアン型結晶」と称することがある。すなわち、「セルシアン型/ヘキサセルシアン型結晶」は、結晶化ガラスがセルシアン型結晶およびヘキサセルシアン型結晶の一方を含有する場合はその一方の結晶のことをいい、セルシアン型結晶およびヘキサセルシアン型結晶の両方を含有する場合はその両方の結晶のことをいう。
 高周波デバイスに用いられるガラス基板には、高周波信号の質や強度等の特性を確保するために、誘電損失や導体損失等に基づく伝送損失の低減が求められている。セルシアン型/ヘキサセルシアン型結晶を含有する結晶化ガラスは、結晶化ガラス中の該結晶の割合が大きいほど誘電正接や比誘電率が小さくなる傾向がある。
 実施形態4に係る結晶化ガラスに含まれる、セルシアン型/ヘキサセルシアン型結晶には空孔または歪が存在していてもよい。本明細書においては、結晶中に空孔または歪を有している場合も含めて、セルシアン型/ヘキサセルシアン型結晶という。
 また、高周波デバイスに用いられるガラス基板には、デバイス内の他の部材(例えばSi基板やCu電極)との熱膨張率差を小さくすることも併せて求められている。セルシアン型/ヘキサセルシアン型結晶を含有する結晶化ガラスは、上記の用途に適した熱膨張率を示し得る。
 好適な誘電特性と、熱膨張率を得る観点から、本結晶化ガラスにおけるセルシアン型/ヘキサセルシアン型結晶の合計量は、結晶化ガラス全体に対し30質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上がさらに好ましい、45質量%以上がよりさらに好ましく、50質量%以上がよりさらに好ましく、55質量%以上が特に好ましく、60質量%以上が最も好ましい。
 また、好適な加工特性を得る観点から、セルシアン型/ヘキサセルシアン型結晶の合計量は結晶化ガラスの90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。セルシアン型/ヘキサセルシアン型結晶の合計量は結晶化ガラス全体に対し30~90質量%であってもよい。
 ここで、セルシアン型/ヘキサセルシアン型結晶はX線回折測定(XRD)により同定できる。具体的には、結晶化ガラスのバルク体を粉砕し、XRDによりCuKα線を用いて2θ=10~90°で測定した際に、2θ=22.3~22.6°の範囲に最も強度の大きいピークが確認される場合、該結晶化ガラスはセルシアン型の結晶を含む。2θ=25.6~25.8°の範囲に最も強度の大きいピークが確認される場合、該結晶化ガラスはヘキサセルシアン型の結晶を含む。セルシアン型/ヘキサセルシアン型結晶の含有量は、XRDによる測定結果を用いたリートベルト解析により算出できる。
 実施形態4に係る結晶化ガラスは、本発明の効果を阻害しない範囲で、ルチル型結晶及びセルシアン型/ヘキサセルシアン型結晶以外の結晶を含んでもよい。ルチル型結晶及びセルシアン型/ヘキサセルシアン型結晶以外の結晶としては、例えば、ムライト、コランダム、アナターゼ等が挙げられる。ルチル型結晶及びセルシアン型/ヘキサセルシアン型結晶以外の結晶を含む場合、ルチル型結晶及びセルシアン型/ヘキサセルシアン型結晶以外の結晶の含有量の合計は結晶化ガラス全体に対し10質量%以下が好ましく、8.0質量%以下がより好ましく、6.0質量%以下がさらに好ましい。ルチル型結晶及びセルシアン型/ヘキサセルシアン型以外の結晶の結晶種の同定および含有量の測定は、上述のXRD測定およびXRD測定結果を用いたリートベルト解析により行える。
 (組成)
 実施形態4に係る結晶化ガラスの組成は、後述する製造方法における結晶化前の非晶質ガラスの組成と同じである。したがって、本結晶化ガラスの組成と、非晶質ガラスの組成とで、好ましい組成は同様である。ここで、本明細書における結晶化ガラスの組成とは、結晶化ガラスの結晶相とガラス相の組成を合計した組成を指す。また、結晶化ガラスの組成は、結晶化ガラスを融点以上の温度で熱処理を行い、ガラス化したものを分析することで求められる。分析の手法としては蛍光X線分析法が挙げられる。また、実施形態4に係る結晶化ガラスの結晶相の組成については、上述のXRD測定した結果をリートベルト解析することで分析できる。実施形態4に係る結晶化ガラスの組成において、必須でない成分の好ましい含有量の下限は0%である。
 実施形態4に係る結晶化ガラスは、酸化物基準の質量百分率表示で、酸化物基準のモル百分率表示で、SiOを45~65%、Alを7.5~30%、Pを0.5~15%、SrOまたはBaOから選択される一種以上を合計で13~30%、TiOを2.5~10%、ZrOを0~10%含有することが好ましい。TiOはルチル型結晶を構成する成分であり、SiO、Al並びにSrOまたはBaOはセルシアン型/ヘキサセルシアン型結晶を構成する成分である。
 SiOは、結晶相として、セルシアン型/ヘキサセルシアン型結晶を析出させるための成分である。SiOの含有量は45%以上が好ましい。SiOの含有量が45%以上であることで、結晶化ガラスの析出結晶相が安定しやすい。SiOの含有量は45.5%以上がより好ましく、さらに好ましくは46%以上であり、よりさらに好ましくは46.5%以上であり、特に好ましくは47%以上であり、一層好ましくは48%以上であり、最も好ましくは50%以上である。また、SiOの含有量は65%以下が好ましい。SiOの含有量が65%以下であると、ガラス原料の溶融や成形がしやすい。また、結晶相として、セルシアン型/ヘキサセルシアン型結晶を析出するには熱処理条件も重要な因子となるが、SiOの含有量が上記上限値以下であることで、より広い熱処理条件を選択できる。SiOの含有量は62.5%以下がより好ましく、60%以下がさらに好ましく、57.5%以下がよりさらに好ましく、55%以下が特に好ましく、52.5%以下が一層好ましい。
 Alは、結晶相として、セルシアン型/ヘキサセルシアン型結晶を析出させるための成分である。Alの含有量は7.5%以上が好ましい。Alの含有量が7.5%以上であると、所望の結晶相を得やすく、結晶化ガラスの析出結晶相が安定しやすく、さらに液相温度の上昇を抑制できる。Alの含有量は10%以上がより好ましく、12.5%以上がさらに好ましく、15%以上がよりさらに好ましく、17.5%以上が特に好ましく、20%以上が一層好ましい。一方、Alの含有量は30%以下が好ましい。Alの含有量が30%以下であると、ガラス原料の溶融性が良好となりやすい。Alの含有量は29%以下がより好ましく、28%以下がさらに好ましく、27.5%以下がよりさらに好ましく、27%以下が特に好ましく、26%以下が一層好ましく、25%以下が最も好ましい。
 Pは、結晶化ガラスの誘電特性を低下させることなく、ガラス原料の溶融性を向上させるための成分である。Pの含有量は0.5%以上が好ましい。Pの含有量が0.5%以上であると、所望の結晶を得やすく、結晶化ガラスの析出結晶相が安定しやすく、さらにガラス原料の溶融性が良好となる。Pの含有量は1%以上がより好ましく、1.5%以上がさらに好ましく、2%以上がよりさらに好ましく、2.5%以上が特に好ましい。一方、Pの含有量は15%以下が好ましい。Pの含有量が10%以下であると所望の結晶が得やすい。Pの含有量は8%以下がより好ましく、6%以下がさらに好ましく、4%以下がよりさらに好ましい。
 Pが本結晶化ガラスにおいて、誘電特性を低下させることなく、ガラス原料の溶融性の向上に寄与するメカニズムは以下のように推定される。
 実施形態4に係る結晶化ガラスの誘電特性を向上させる一因として、結晶中にSi及びAlをBa及びSrよりも多く含んでいることが好ましい。これは、結晶中に多くのSi及びAlが含有されることによって、電場がかかった際の原子の移動距離が短くなり、誘電率が低下するためであると推定される。Pはガラス中で、Si及びAlと非常に近い構造を取るため、結晶化前の非晶質ガラスを熱処理する際にSi及びAlの移動が容易になると考えられる。このことから、結晶中にSi及びAlが含まれやすくなり、結果として、結晶化ガラスの誘電特性が向上すると考えられる。
 BaO及びSrOは、結晶相として、セルシアン型/ヘキサセルシアン型結晶を析出させるための成分である。所望の結晶相を得るには、BaO及びSrOの少なくとも一方を含有していればよい。BaO及びSrOの含有量の合計は13%以上が好ましい。BaO及びSrOの含有量の合計が13%以上であると、所望の結晶を得やすく、結晶化ガラスの析出結晶相が安定しやすい。BaO及びSrOの含有量の合計は13.5%以上がより好ましく、14%以上がさらに好ましく、14.5%以上がよりさらに好ましく、15%以上が特に好ましく、15.5%以上が一層好ましい。一方、BaO及びSrOの含有量の合計は30%以下が好ましい。BaO及びSrOの含有量の合計が30%以下であると所望の結晶が得やすい。BaO及びSrOの含有量の合計は28%以下がより好ましく、26%以下がさらに好ましく、25%以下がよりさらに好ましく、24%以下が特に好ましく、23%以下が一層好ましい。
 TiOは、結晶相として、ルチル型結晶を析出させるための成分である。TiOの含有量は2.5%以上が好ましい。TiOの含有量が2.5%以上であると、所望の結晶相を得やすく、結晶化ガラスの析出結晶相が安定しやすい。TiOの含有量は4%以上がより好ましく、5%以上がさらに好ましく、6%以上がよりさらに好ましい。また、誘電特性の低下を抑制する観点から、TiOの含有量は10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましい。
 ZrOは、核生成成分として機能する他、析出結晶相の微細化と材料の機械的強度向上、および化学的耐久性の向上に寄与する成分であるため、含有してもよい。ZrOを含有する場合、安定して所望の結晶を析出させる観点から含有量は、1%以上が好ましく、1.5%以上がより好ましく、2%以上がさらに好ましく、2.3%以上がよりさらに好ましく、2.5%以上が特に好ましい。また、ZrOの含有量は、誘電特性を良好にする観点から10%以下が好ましく、8%以下がより好ましく、6%以下がさらに好ましく、5%以下がよりさらに好ましく、4%以下が特に好ましい。
 Bは、ガラス原料の溶解成形時の粘度の調整、誘電特性の向上に寄与する成分であるため、含有してもよい。Bを含有する場合は、20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、7.5%以下がよりさらに好ましく、5%以下が特に好ましく、2.5%以下が一層好ましい。
 LiO、NaO、KO、RbO、CsOは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、含有してもよい。LiO、NaO、KO、CsOを含有する場合は、合計で2%以下が好ましく、1.5%以下がより好ましく、1%以下がさらに好ましく、0.5%以下がよりさらに好ましい。
 MgO、CaOは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、含有してもよい。MgO、CaOを含有する場合は、合計で3%以下が好ましく、2.5%以下がより好ましく、2%以下がさらに好ましく、1.5%以下がよりさらに好ましく、1%以下が特に好ましい。
 ZnOは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、含有してもよい。ZnOを含有する場合は、3%以下が好ましく、2.5%以下がより好ましく、2%以下がさらに好ましく、1.5%以下がよりさらに好ましく、1%以下が特に好ましい。
 Sb、Asは含有しなくてもよいが、ガラス原料の溶融時に清澄剤として作用するため、合計で1%以下含有してもよい。
 Fは、含有しなくてもよいが、ガラス原料の溶融性を向上させるため、3%以下含有してもよい。なお、本明細書においてFの含有量(%)は、F元素のモル百分率表示の含有量を表す。
 SnO、CeO、Feは、含有しなくてもよいが、ガラスの着色剤または着色することによる表面欠陥の検出感度の向上、およびLD励起固体レーザの吸収特性を向上させるのに各成分の合計で5%以下含有してもよい。
(物性)
 実施形態1から4に係る結晶化ガラスの20℃、10GHzにおける誘電正接Dfは、誘電特性を向上する観点から0.01以下が好ましく、0.005以下がより好ましく、0.004以下がさらに好ましく、0.003以下がよりさらに好ましく、0.0025以下が特に好ましく、0.002以下が一層好ましい。20℃、10GHzにおける誘電正接は小さいほど好ましいが、通常0.0001以上である。
 実施形態1から4に係る結晶化ガラスの20℃、10GHzにおける比誘電率Dkは、誘電特性を向上する観点から8.5以下が好ましく、8.0以下がより好ましく、7.5以下がさらに好ましく、7.0以下がよりさらに好ましく、6.8以下が特に好ましい。20℃、10GHzにおける比誘電率は小さいほど好ましいが、通常3.5以上である。
 実施形態1から4に係る結晶化ガラスにおいて、少なくとも20℃、10GHzにおける誘電正接Dfが上記の好ましい範囲内であれば、10GHzよりも高周波数の帯域に対する誘電特性も優れると考えられる。誘電正接に加えて、20℃、10GHzにおける比誘電率Dkが上記の好ましい範囲であれば、さらに好ましい。誘電正接および比誘電率は、JIS R1641(2007年)に規定されている方法に従い、空洞共振器およびベクトルネットワークアナライザを用いて測定できる。
 (形状)
 実施形態1から4に係る結晶化ガラスの形状は特に限定されず、目的や用途に応じて種々の形状とできる。例えば、本結晶化ガラスは相互に対向する2つの主面を備える板状であってもよいし、適用される製品や用途等に応じて、板状以外の形状でもよい。より具体的には、実施形態1から4に係る結晶化ガラスは、例えば、反りの無い平板状のガラス板であってもよく、また、湾曲した表面を有する曲面ガラス板であってもよい。主面の形状も特に限定されず、円形、四角形等の種々の形状に成形できる。
 実施形態1から4に係る結晶化ガラスが相互に対向する2つの主面を備えている場合、少なくとも一方の主面において、算術平均粗さRaが、2μm以下であることが好ましい。Raが2μm以下であることによって、高周波領域において、良好な誘電特性が得られることに加えて、結晶化ガラス基板を小型化することができる。Raは、1.5μm以下がさらに好ましく、1μm以下がよりさらに好ましく、0.7μm以下が特に好ましく、0.5μm以下が一層好ましく、0.3μm以下が最も好ましい。Raは小さいほど好ましいが、通常0.1nm以上である。Raは、JIS B0601(2001年)に準拠した方法で測定することができる。
 実施形態1から4に係る結晶化ガラスの主面の面積は、アンテナ等に使用する場合の送受信効率の観点から100cm以上が好ましく、225cm以上がより好ましく、400cm以上がさらに好ましい。また、主面の面積はハンドリング性の観点から100000cm以下が好ましく、10000cm以下がより好ましく、3600cm以下がさらに好ましい。すなわち、実施形態1から4に係る結晶化ガラスの最も大きい面の面積が上記範囲であることが好ましい。実施形態1から4に係る結晶化ガラスの主面の面積は100~100000cmであってもよい。
 また、実施形態1から4に係る結晶化ガラスの厚さは強度を維持する観点から0.01mm以上が好ましく、0.05mm以上がより好ましく、0.1mm以上がさらに好ましい。実施形態1から4に係る結晶化ガラスの厚さは、実施形態1から4に係る結晶化ガラスを用いた部品や製品の薄型化や小型化等の観点生産効率の向上等の観点から2mm以下が好ましく、1mm以下がより好ましく、0.7mm以下がさらに好ましい。実施形態1から4に係る結晶化ガラスの厚さは0.01~2mmであってもよい。
 (用途) 
 実施形態1から4に係る結晶化ガラスは、例えば携帯電話機、スマートフォン、携帯情報端末、Wi-Fi機器のような通信機器に用いられる半導体デバイスのような高周波デバイス(電子デバイス)、弾性表面波(SAW)デバイス、レーダ送受信機のようなレーダ部品等の回路基板や、液晶用アンテナのようなアンテナ部品等の基板に好適である。実施形態1から4に係る結晶化ガラスは、広い温度域において、高周波領域における安定した誘電特性を示すことから、高周波デバイス用ガラス基板や液晶用アンテナに好適である。
 <高周波デバイス用ガラス基板> 
 実施形態1から4に係る結晶化ガラスは、広い温度域において、高周波領域における安定した誘電特性を示すことから、高周波デバイス用ガラス基板に用いることができる。実施形態1から4に係る結晶化ガラスのいずれかを用いた、高周波デバイス用ガラス基板(以下、本高周波デバイス用ガラス基板とも称する。)の好ましい比誘電率、誘電正接は実施形態1から4に係る結晶化ガラスと同様である。
 高周波デバイス用ガラス基板は、一般的に相互に対向する2つの主面を備える。本高周波デバイス用ガラス基板の主面の面積は送受信効率の観点から75cm以上が好ましく、より好ましくは100cm以上、さらに好ましくは150cm以上、よりさらに好ましくは300cm以上、特に好ましくは600cm以上である。本高周波用基板の主面の面積は強度を担保する観点から5000cm以下が好ましい。形状は上記の面積であれば用途に合わせて自由に設計できる。本高周波デバイス用ガラス基板の主面の面積は75~5000cmであってもよい。
 本高周波デバイス用ガラス基板の板厚は、好ましくは1mm以下、より好ましくは0.8mm以下、更に好ましくは0.7mm以下である。板厚が上記範囲であると、基板を積層して回路を形成する際に、全体を薄くできるため好ましい。一方、板厚は好ましくは0.05mm以上、より好ましくは0.2mm以上であると、強度を確保できる。本高周波デバイス用ガラス基板の板厚は0.05~1mmであってもよい。
 実施形態1から4に係る結晶化ガラスを高周波デバイス用基板材料として用いる場合、実施形態1から4に係る結晶化ガラスのいずれかからなる結晶化ガラス基板に孔を形成してもよい。すなわち、本高周波用基板は、主面の少なくとも一方に開口部を有する孔を有していてもよい。孔はもう一方の主面に連通する貫通孔であってもよく、未貫通のボイドであってもよい。これらの孔に導体が充填され、または孔壁に導体膜が形成されることによって、回路として使用されうる。
 上記孔の直径は、例えば200μm以下であり、好ましくは100μm以下であり、より好ましくは50μm以下である。一方、孔の直径は好ましくは1μm以上である。孔の直径は1~200μmであってもよい。
 孔の形成方法は特に限られないが、直径200μm以下の小孔を精度よく形成するために、例えば結晶化ガラス基板にレーザを照射する方法が好適である。本結晶化ガラスを用いた基板は、レーザ照射による加工性に優れている。レーザの波長は特に限られないが、例えば10.6μm以下、3000nm以下、2050nm以下、1090nm以下、540nm以下、400nm以下のものが用いられる。特に直径100μm以下の小孔を形成する場合は、以下の2通りの方法が好適である。
 (UVレーザによる加工)
 波長400nm以下のUVレーザを照射することで、結晶化ガラス基板に孔を形成する。UVレーザはより好ましくはパルス発振し、レーザ照射の際には、結晶化ガラス基板の表面に吸収層を設置することが好ましい。レーザ照射の後、結晶化ガラス基板をフッ酸含有溶液でエッチングすることで、孔を拡張してもよい。
 (改質部形成による加工)
 波長400~540nm、例えば波長約532nmのレーザを照射することで、結晶化ガラス基板に改質部を形成する。続けて結晶化ガラス基板をフッ酸含有溶液でエッチングすることにより、改質部を選択的に除去し孔を形成する。かかる方法によると、レーザ等をパルス発振し、1ショットのパルス照射のみで改質部形成が可能であるため、孔形成速度が速く、生産性に優れている。
 本高周波デバイス用ガラス基板は、特定の周波数の電気信号を取り出すための、高周波用フィルターデバイスに特に好適である。フィルターデバイスは環境によらず、特定の周波数の電波を扱える機能が求められているため、本実施形態1から4に係る結晶化ガラスが有するような、広い温度域おける安定した誘電特性が求められている。
 <液晶アンテナ> 
 液晶アンテナとは液晶技術を用い、送受信する電波の方向を制御可能な衛星通信用アンテナであり、主に船舶や飛行機、自動車等といった乗り物に好適に用いられる。液晶アンテナは主に屋外での使用が想定されることから、広い温度域での安定した誘電特性が求められる。
 実施形態1から4に係る結晶化ガラスは、広い温度域において、高周波領域における安定した誘電特性を示すことから、液晶アンテナに好適である。実施形態1~4に係る結晶化ガラスのいずれかを用いた、液晶アンテナ(以下、本液晶アンテナとも称する。)の好ましい比誘電率、誘電正接の好ましい範囲は実施形態1から4に係る結晶化ガラスと同様である。
 液晶アンテナは、一般的に相互に対向する2つの主面を備える。本液晶アンテナの主面の面積は送受信効率の観点から75cm以上が好ましく、より好ましくは100cm以上、さらに好ましくは150cm以上、よりさらに好ましくは300cm以上、特に好ましくは700cm以上である。本液晶アンテナの主面の面積はハンドリング性の観点から10000cm以下が好ましく、3600cm以下がより好ましく、2500cm以下がさらに好ましい。形状は上記の面積であれば用途に合わせて自由に設計できる。本液晶アンテナの主面の面積は75~10000cmであってもよい。
 本液晶アンテナの板厚は、好ましくは1mm以下、より好ましくは0.8mm以下、更に好ましくは0.7mm以下である。板厚が上記範囲であると、全体を薄くできるため好ましい。一方、板厚は好ましくは0.05mm以上、より好ましくは0.2mm以上であると、強度を確保できる。本液晶アンテナの板厚は0.05~1mmであってもよい。
 <結晶化ガラスの製造方法> 
 次に、実施形態1から4に係る結晶化ガラスの製造方法(以下、本製造方法とも称する。)について説明する。以下では、板状ガラスの製造方法の各工程について説明するが、ガラスの形状は目的に応じて適宜調整できる。
 (非晶質ガラス成形工程)
 本工程では、所望のガラス組成となるように調合した原料を溶融成形して非晶質ガラスとする。溶融成形の方法は特に限られないが、ガラス原料を調合したガラス原料を白金るつぼに入れ、1300℃~1700℃の電気炉に投入して溶融し、脱泡し、均質化する。得られた溶融ガラスを室温の金属型(例えばステンレス定盤)に流し込み、ガラス転移点の温度において3時間程度保持した後、室温まで冷却して非晶質ガラスのガラスブロックを得る。また、得られたガラスブロックを必要に応じ切断、研削、研磨等の加工をして所望の形状に成形する。なお、切断、研削、研磨等の加工は結晶化工程後に行ってもよい。非晶質ガラスを結晶化工程前に加工する場合、その形状は特に限定されず、好ましい形状は本結晶化ガラスの好ましい形状と同様である。
 このように、非晶質ガラスは溶融状態から所望の形状に成形できるため、セラミックスなどのように粉体やスラリーで成形し、焼成するプロセスや、合成石英などのようにインゴットを製造後、所望の形状に切り出すプロセスに比べ、成形のしやすい点や大面積化しやすい点で優位性があり、また、後述する結晶化工程を鑑みても、安価で製造できる。
 (非晶質ガラスの組成)
 非晶質ガラスの組成は、特に限定されるものではないが、実施形態2から4に係る結晶化ガラスを製造する際に好ましい非晶質ガラスの組成を以下にそれぞれ説明する。
 実施形態2に係る結晶化ガラスを製造する際に、非晶質ガラスは、酸化物基準のモル百分率表示で、SiOを50~80%、Alを0.5~14%、Bを7~35%、MgOを0~10%、CaOを0~8%、BaOを0~5%、TiOを3.5~10%を含み、かつ、アルカリ金属酸化物ROの合計含有量が3.0%以下であり、アルカリ土類金属酸化物ROの合計含有量が1~20%であり、Nb、Bi及びCuを含まないことが好ましい。なお非晶質ガラスの組成は、上述した実施形態2に係る結晶化ガラスの組成と同様である。
 実施形態3に係る結晶化ガラスを製造する際に、非晶質ガラスは、酸化物基準のモル百分率表示で、酸化物基準の質量百分率表示で、SiOを51~70%、Alを12~30%、Pを0.5~10%、MgOを15~23%、CaOを0~1.5%、TiOを6~15%含有することが好ましい。なお非晶質ガラスの組成は、上述した実施形態3に係る結晶化ガラスの組成と同様である。
 実施形態4に係る結晶化ガラスを製造する際に、非晶質ガラスは、酸化物基準のモル百分率表示で、SiOを45~65%、Alを7.5~30%、Pを0.5~15%、SrOまたはBaOから選択される一種以上を合計で13~30%、TiOを2.5~10%、ZrOを0~10%含有することが好ましい。なお非晶質ガラスの組成は、上述した実施形態4に係る結晶化ガラスの組成と同様である。
 (結晶化工程)
 次に非晶質ガラス成形工程で得られた非晶質ガラスを熱処理する。熱処理においては、非晶質ガラスを特定の処理温度で特定の保持時間保持することが好ましく、その処理温度や保持時間は、所望の結晶を析出できる条件であれば特に限定されるものではないが、実施形態2から4に係る結晶化ガラスを製造する際に、好ましい具体的な熱処理条件を以下に説明する。
 実施形態2に係る結晶化ガラスを製造する際に、非晶質ガラスの処理温度は、ルチル型結晶の析出を進行させる観点、熱処理時間を短縮し生産性を上げる観点から例えば750℃以上が好ましく、800℃以上がより好ましく、850℃以上がさらに好ましい。一方、製造性の観点からは処理温度は1200℃以下が好ましく、1150℃以下がより好ましく、1100℃以下がさらに好ましい。
 また保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、より好ましくは2時間以上、特に好ましくは3時間以上である。保持時間が上記範囲であると、結晶化が十分に進む。一方、長時間の熱処理は熱処理にかかるコストを増加させるため、好ましくは24時間以下であり、より好ましくは12時間以下、特に好ましくは8時間以下である。
 熱処理においては、好ましくは上記の処理温度で保持することを含むが、さらに上記の処理温度の範囲内や、その他の温度範囲で昇温・降温することを含んでいてもよい。
 具体的には例えば、室温から第1の温度域まで昇温して一定時間保持した後、室温まで徐冷してもよく、室温から第1の温度域まで昇温して一定時間保持した後、第1の温度域より高温である第2の温度域に一定時間保持後、室温まで徐冷する二段階の熱処理を選択してもよい。
 二段階の熱処理による場合、第1の温度域は、そのガラス組成において結晶核生成速度が大きくなる温度域が好ましい。具体的には、第1の温度域は760℃以上が好ましく、800℃以上がより好ましく、850℃以上がさらに好ましい。また、第1の温度域は960℃以下が好ましく、920℃以下がより好ましく、880℃以下がさらに好ましい。
 また第1の温度域での保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、より好ましくは1.5時間以上、特に好ましくは2時間以上である。保持時間が上記範囲であると、核生成が十分に進みやすい。一方、核生成と同時に結晶成長が進んでしまうことを抑制する観点、結晶化ガラス全体の誘電特性を向上させる観点から、保持時間は好ましくは5時間以下であり、より好ましくは4時間以下、特に好ましくは3時間以下である。
 第2の温度域は、その所望の結晶の結晶成長速度が大きくなる温度域が好ましい。具体的には、第2の温度域は960℃以上が好ましく、980℃以上がより好ましく、1000℃以上がさらに好ましい。また、第2の温度域は1100℃以下が好ましく、1050℃以下がより好ましく、1100℃以下がさらに好ましい。
 また第2の温度域での保持時間は、好ましくは1時間以上、より好ましくは3時間以上、より好ましくは5時間以上、特に好ましくは6時間以上である。保持時間が上記範囲であると、結晶の成長が十分に進みやすい。一方、製造性の観点から、保持時間は好ましくは15時間以下であり、より好ましくは14時間以下、特に好ましくは12時間以下である。
 熱処理における昇温速度は、特に限られないが、一般的に1℃/分以上であり、製造性の観点から、3℃/分以上が好ましく、5℃/分以上がより好ましい。
 一方で、昇温速度は好ましくは30℃/分以下であり、より好ましくは25℃/分以下であると、形状を安定させたガラスを作ることができる。
 降温速度は、特に限られないが、好ましくは10℃/分以下であり、より好ましくは5℃/分以下、更に好ましくは1℃/分以下であると、ガラスが冷却時に割れにくく、形状を維持しやすい。一方、降温速度は一般的に0.5℃/分以上である。
 実施形態3に係る結晶化ガラスを製造する際に、非晶質ガラスの処理温度は、ルチル型、コーディエライト型、インディアライト型結晶の析出を進行させる観点、熱処理時間を短縮し生産性を上げる観点から例えば800℃以上が好ましく、850℃以上がより好ましく、900℃以上がさらに好ましい。一方、製造性の観点からは処理温度は1400℃以下が好ましく、1350℃以下がより好ましく、1300℃以下がさらに好ましい。
 また保持時間は、好ましくは0.25時間以上、より好ましくは0.5時間以上、より好ましくは0.75時間以上、特に好ましくは1時間以上である。保持時間が上記範囲であると、結晶化が十分に進む。一方、長時間の熱処理は熱処理にかかるコストを増加させるため、好ましくは24時間以下であり、より好ましくは12時間以下、特に好ましくは8時間以下である。
 熱処理においては、好ましくは上記の処理温度で保持することを含むが、さらに上記の処理温度の範囲内や、その他の温度範囲で昇温・降温することを含んでいてもよい。
 具体的には例えば、室温から第1の温度域まで昇温して一定時間保持した後、室温まで徐冷してもよく、室温から第1の温度域まで昇温して一定時間保持した後、第1の温度域より高温である第2の温度域に一定時間保持後、室温まで徐冷する二段階の熱処理を選択してもよい。
 二段階の熱処理による場合、第1の温度域は、そのガラス組成において結晶核生成速度が大きくなる温度域が好ましい。具体的には、第1の温度域は760℃以上が好ましく、800℃以上がより好ましく、850℃以上がさらに好ましい。また、第1の温度域は960℃以下が好ましく、920℃以下がより好ましく、880℃以下がさらに好ましい。
 また第1の温度域での保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、より好ましくは1.5時間以上、特に好ましくは2時間以上である。保持時間が上記範囲であると、核生成が十分に進みやすい。一方、核生成と同時に結晶成長が進んでしまうことを抑制する観点、結晶化ガラス全体の誘電特性を向上させる観点から、保持時間は好ましくは5時間以下であり、より好ましくは4時間以下、特に好ましくは3時間以下である。
 第2の温度域は、その所望の結晶の結晶成長速度が大きくなる温度域が好ましい。具体的には、第2の温度域は960℃以上が好ましく、980℃以上がより好ましく、1000℃以上がさらに好ましい。また、第2の温度域は1350℃以下が好ましく、1250℃以下がより好ましく、1150℃以下がさらに好ましい。
 また第2の温度域での保持時間は、好ましくは0.25時間以上、より好ましくは0.5時間以上、より好ましくは0.75時間以上、特に好ましくは1時間以上である。保持時間が上記範囲であると、結晶の成長が十分に進みやすい。一方、製造性の観点から、保持時間は好ましくは10時間以下であり、より好ましくは8時間以下、特に好ましくは6時間以下である。
 熱処理における昇温速度は、特に限られないが、一般的に1℃/分以上であり、製造性の観点から、3℃/分以上が好ましく、5℃/分以上がより好ましい。
 一方で、昇温速度は好ましくは30℃/分以下であり、より好ましくは25℃/分以下であると、形状を安定させたガラスを作ることができる。
 降温速度は、特に限られないが、好ましくは10℃/分以下であり、より好ましくは5℃/分以下、更に好ましくは1℃/分以下であると、ガラスが冷却時に割れにくく、形状を維持しやすい。一方、降温速度は一般的に0.5℃/分以上である。
 実施形態4に係る結晶化ガラスを製造する際に、非晶質ガラスの処理温度は、ルチル型、セルシアン型、ヘキサセルシアン型結晶の析出を進行させる観点、熱処理時間を短縮し生産性を上げる観点から例えば1050℃以上が好ましく、1100℃以上がより好ましく、1150℃以上がさらに好ましい。一方、製造性の観点からは処理温度は1400℃以下が好ましく、1350℃以下がより好ましく、1300℃以下がさらに好ましい。
 また保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、より好ましくは2時間以上、特に好ましくは3時間以上である。保持時間が上記範囲であると、結晶化が十分に進む。一方、長時間の熱処理は熱処理にかかるコストを増加させるため、好ましくは24時間以下であり、より好ましくは12時間以下、特に好ましくは8時間以下である。
 熱処理においては、好ましくは上記の処理温度で保持することを含むが、さらに上記の処理温度の範囲内や、その他の温度範囲で昇温・降温することを含んでいてもよい。
 具体的には例えば、室温から第1の温度域まで昇温して一定時間保持した後、室温まで徐冷してもよく、室温から第1の温度域まで昇温して一定時間保持した後、第1の温度域より高温である第2の温度域に一定時間保持後、室温まで徐冷する二段階の熱処理を選択してもよい。
 二段階の熱処理による場合、第1の温度域は、そのガラス組成において結晶核生成速度が大きくなる温度域が好ましい。具体的には、第1の温度域は760℃以上が好ましく、800℃以上がより好ましく、850℃以上がさらに好ましい。また、第1の温度域は960℃以下が好ましく、920℃以下がより好ましく、880℃以下がさらに好ましい。
 また第1の温度域での保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、より好ましくは1.5時間以上、特に好ましくは2時間以上である。保持時間が上記範囲であると、核生成が十分に進みやすい。一方、核生成と同時に結晶成長が進んでしまうことを抑制する観点、結晶化ガラス全体の誘電特性を向上させる観点から、保持時間は好ましくは5時間以下であり、より好ましくは4時間以下、特に好ましくは3時間以下である。
 第2の温度域は、その所望の結晶の結晶成長速度が大きくなる温度域が好ましい。具体的には、第2の温度域は960℃以上が好ましく、980℃以上がより好ましく、1000℃以上がさらに好ましい。また、第2の温度域は1350℃以下が好ましく、1250℃以下がより好ましく、1150℃以下がさらに好ましい。
 また第2の温度域での保持時間は、好ましくは1時間以上、より好ましくは3時間以上、より好ましくは5時間以上、特に好ましくは6時間以上である。保持時間が上記範囲であると、結晶の成長が十分に進みやすい。一方、製造性の観点から、保持時間は好ましくは15時間以下であり、より好ましくは14時間以下、特に好ましくは12時間以下である。
 熱処理における昇温速度は、特に限られないが、一般的に1℃/分以上であり、製造性の観点から、3℃/分以上が好ましく、5℃/分以上がより好ましい。
 一方で、昇温速度は好ましくは30℃/分以下であり、より好ましくは25℃/分以下であると、形状を安定させたガラスを作ることができる。
 降温速度は、特に限られないが、好ましくは10℃/分以下であり、より好ましくは5℃/分以下、更に好ましくは1℃/分以下であると、ガラスが冷却時に割れにくく、形状を維持しやすい。一方、降温速度は一般的に0.5℃/分以上である。
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。表1~12に作製したサンプルのガラス組成を酸化物基準のモル百分率で示した。なお、表1~9は実施形態2に係る結晶化ガラス及び非晶質ガラスのサンプルのガラス組成に相当し、ガラス1~86が実施形態2に係る非晶質ガラスの実施例に相当し、ガラス87~90が比較例に相当する。表10~11は実施形態3に係る結晶化ガラス及び非晶質ガラスのサンプルのガラス組成に相当する。表12は実施形態4に係る結晶化ガラス及び非晶質ガラスのサンプルのガラス組成に相当する。
 ガラス1~86及び89~105の組成を有する非晶質ガラスに対して、それぞれ熱処理を実施し、結晶化ガラスとした。作製した結晶化ガラスの組成、熱処理条件、特性を表13~25に示す。結晶化ガラスの組成は、結晶化前の非晶質ガラスの組成と同じであり、表1~12のガラス番号を用いて、表13~25に示した。なお、表13~22は実施形態2に係る結晶化ガラスの実施例、比較例に相当する。表23~24は実施形態3に係る結晶化ガラスの実施例、比較例に相当する。表25は実施形態4に係る結晶化ガラスの実施例、比較例に相当する。
 実施例、比較例となる結晶化ガラスを作製した方法を以下に具体的に示す。表1~12で示した組成となるようにガラス原料を調合し、ガラスとして400gになるように秤量した。ついで、混合した原料を白金るつぼに入れ、1500~1700℃の電気炉に投入して3時間程度溶融し、脱泡し、均質化した。
 得られた溶融ガラスを金属型に流し込み、ガラス転移点より10℃程度高い温度に1時間保持した後、0.5℃/分の速度で室温まで冷却し、ガラスブロックを得た。得られたガラスブロックを切断、研削し、最後に両面を鏡面研磨して、厚さが2mmのガラス板を得た。
 得られたガラスに対し、熱処理を実施した。具体的には、非晶質ガラスを所定の昇温速度で温度T1に加熱し、保持時間t1の間保持し、その後降温して行った。なお、一部のガラスについては、2段階の熱処理を実施した。具体的には、非晶質ガラスを第1の昇温速度で温度T1に加熱し、保持時間t1の間保持し、次に第2の昇温速度で温度T2に加熱し、保持時間t2の間保持し、その後降温して行った。
 上記の熱処理の具体的な温度等の条件を表13~25に示す条件とし、熱処理を行うことで結晶化ガラスを得た。また、得られた結晶化ガラスから表13~25に記載の物性を得た。なお、表13~25の「結晶化条件」欄における空欄「-」は該当の条件での熱処理を未実施であることを示し、「特性」欄における空欄「-」は該当の物性を未測定であることを示す。
 以下に各物性の測定方法を示す。
 (PXRD測定、リートベルト解析)
 得られた結晶化ガラスを下記手順でPXRD測定を行い、結晶種の同定を行った。
 (PXRD測定サンプル作製条件)
 SPDR法に供した結晶化ガラス板をメノウ乳鉢およびメノウ乳棒を用いて粉砕しPXRD測定用粉末を得た。
 (PXRD測定条件)
 以下の条件で粉末X線回折を測定し、析出結晶を同定した。
 結晶種の同定にはICSD無機結晶構造データベースおよびICDD粉末回折データベースに収録されている回折ピークパターンを用いた。
 測定装置:株式会社リガク製 SmartLab
 測定方法:集中法
 管電圧:45kV
 管電流:200mA
 使用X線:CuKα線
 測定範囲:2θ=10°~80°
 スピード:10°/分
 ステップ:0.02°
 (リートベルト測定サンプル作製条件)
 PXRD測定に用いた結晶化ガラス粉末を目開き500μmのメッシュに通した後、標準物質としてZnOをサンプル全体の10質量%となるよう添加した。
 (リートベルト解析条件)
 以下の条件で粉末X線回折を測定し、得られた結果を用いてリートベルト解析を行った。
 測定装置:株式会社リガク製 SmartLab
 測定方法:集中法
 管電圧:45kV
 管電流:200mA
 使用X線:CuKα線
 測定範囲:2θ=10°~90°
 スピード:5°/分
 ステップ:0.01°
 上記の条件で取得した粉末X線回折プロファイルをリートベルト解析プログラム:Rietan FPを用いて解析を行った。各サンプルの解析は、解析の収束の良否を表すRwpが10以下となるように収束させた。リートベルト法については、日本結晶学会「結晶解析ハンドブック」編集委員会編、「結晶解析ハンドブック」(協立出版 1999年刊、p492~499)に記載されている。
(結晶化度の算出)
 リートベルト解析より得られた結晶相および測定サンプル全量から結晶相の含有量を減じた残ガラス相の重量比率に対して、添加した10質量%のZnOを差し引き、残りの相で合計100質量%になるように計算を行った。
(10GHzにおける比誘電率Dk、誘電正接Df)
 ネットワークアナライザを用いて、スリップポスト誘電体共振法(SPDR法)により、10GHzにおける比誘電率Dkおよび誘電正接Dfを測定した。サンプルとしては、熱処理後の結晶化ガラス板を35mm×35mm×0.5mmに加工したものを用いた。
(10GHzにおける比誘電率の温度による変化率ΔDkの測定)
 JIS R1641(2007年)に規定されている方法に従い、空洞共振器およびベクトルネットワークアナライザを用いて測定した。測定周波数は10GHz、測定温度は-20、0、20、40、60℃とした。サンプルとしては、熱処理後の結晶化ガラス板を35mm×35mm×0.5mmに加工したものを用いた。
(Raの測定)
 キーエンス社製のレーザーマイクロ顕微鏡VK-X200を用いて、JIS B0601(2001年)に準拠した方法で測定した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 実施形態2に係る結晶化ガラスの実施例、比較例である各サンプルの組成を表1~9に、熱処理条件及び各特性の測定結果を表13~22に示す。ガラス1~86を用いて得た、実施例である例1~86の結晶化ガラスは、適切な量のTiOを含有させ、適切な熱処理を実施したことで、ΔDkがいずれのサンプルも良好な値となり、広い温度域において、安定した誘電特性を示すことが確認された。また、比誘電率Dk、誘電正接Df、算術平均粗さRaについても良好な値となっており、高周波デバイスに用いるガラス基板として好適な物性を備えることが確認された。
 例87、88は、ガラス87~88の組成を有する非晶質ガラスのサンプルである。ガラス87~88はTiOを含有していないため、ルチル型結晶が析出しないことから熱処理は実施していない。例87、88は比較例に相当し、表9より、当該サンプルはΔDkが上記の好ましい範囲よりも大きな値となっていることが分かる。このことから、ガラス中にルチル型結晶を析出させることによって、ΔDkを制御できると考えられる。
 例89~91は、いずれもガラス89を用いて、3種類の条件で熱処理を実施して得た比較例のサンプルである。例89~91は、TiOの含有量が少量であったため、いずれの熱処理条件においても、ルチル型結晶は析出せず、結果として、当該サンプルのΔDkは上記の好ましい範囲よりも大きな値となった。
 例92は、ガラス90を用いて得た比較例のサンプルである。例92は、TiOの含有量が多かったため、ルチル型結晶が所定の量より多く析出したため、結果として、当該サンプルのΔDkは上記の好ましい範囲よりも小さな値となった。
 実施形態3に係る結晶化ガラスの実施例、比較例である各サンプルの組成を表10~11に、熱処理条件及び各特性の測定結果を表23~24に示す。ガラス91~100を用いて得た、実施例である例93~103の結晶化ガラスは、適切な量のTiOを含有させ、適切な熱処理を実施したことで、ΔDkがいずれのサンプルも良好な値となり、広い温度域において、安定した誘電特性を示すことが確認された。また、比誘電率Dk、誘電正接Df、算術平均粗さRaについても良好な値となっており、高周波デバイスに用いるガラス基板として好適な物性を備えることが確認された。
 例104は、ガラス102を用いて得た比較例のサンプルである。例102は、TiOの含有量が少量であったため、十分な量のルチル型結晶が析出せず、結果として、当該サンプルのΔDkは上記の好ましい範囲よりも大きな値となった。
 実施形態4に係る結晶化ガラスの実施例、比較例である各サンプルの組成を表12に、熱処理条件及び各特性の測定結果を表25に示す。ガラス103~104を用いて得た、実施例である例105~107の結晶化ガラスは、適切な量のTiOを含有させ、適切な熱処理を実施したことで、ΔDkがいずれのサンプルも良好な値となり、広い温度域において、安定した誘電特性を示すことが確認された。また、比誘電率Dk、誘電正接Df、算術平均粗さRaについても良好な値となっており、高周波デバイスに用いるガラス基板として好適な物性を備えることが確認された。
 例108は、ガラス103を用いて得た比較例のサンプルである。例108は、例105と同様にガラス103を用いたサンプルであるが、熱処理温度が低温で、保持時間も短かったため、ルチル型結晶が析出しなかった。そのため、当該サンプルのΔDkは上記の好ましい範囲よりも大きな値となった。
 例109は、ガラス105を用いて得た比較例のサンプルである。例109は、ガラス中にTiOを含有していないため、ルチル型結晶が析出せず、結果として、当該サンプルのΔDkは上記の好ましい範囲よりも大きな値となった。
 さらに、本発明の実施形態に係る結晶化ガラスを高周波デバイスに適用した際の効果を検証するために、フィルターデバイスを作製し特性評価を行った。図1に作製したフィルターデバイス10の模式上面図を示す。フィルターデバイス10は、ガラス基板1に電極2が形成されており、特定の周波数の電気信号を取り出すためのデバイスである。電極2としては、Cuを用いた。
 図2は実施例である例1の結晶化ガラスを用いて作製したフィルターデバイスの透過特性を、-20℃から40℃まで変化させて測定し、横軸を周波数、縦軸を透過特性に相当する挿入損失として示したものである。さらに、比較例である例87の結晶化ガラスを用いて作製したフィルターデバイスの透過特性を、-20℃から40℃まで変化させて測定した結果を図3に示す。
 上述のように、実施例である例1の結晶化ガラスはΔDkが良好な値を示すため、比較例である例87の結晶化ガラスと比較して、広い温度域において、安定した誘電特性を有するものと考えられる。このことから、例1の結晶化ガラスを用いて作製したフィルターデバイスの透過特性は、例87の結晶化ガラスを用いて作製したフィルターデバイスの透過特性と比較して、温度変化による影響を受けにくいと考えられる。
 例1及び87のそれぞれの結晶化ガラス用いてフィルターデバイスの透過特性の温度変化による影響を比較するために、図2、3における、周波数28~32GHzの領域の拡大図を図4、5に示す。図4より、例1の結晶化ガラスを用いて作製したフィルターデバイスの透過特性は、温度が変化してもほとんど変化しないことが分かる。一方で、図5より、例87の結晶化ガラスを用いて作製したフィルターデバイスの透過特性は、温度が変化に伴って、変化していることが分かる。具体的には、温度が上がるにつれて、対応周波数が徐々に低周波側にシフトしていることが分かる。
 さらに、例1及び87のそれぞれの結晶化ガラス用いて作製したフィルターデバイスの透過特性について、-5dB以上の挿入損失となる領域の中心周波数、すなわち、当該領域の周波数の中央値の温度変化を調べた結果を図6に示す。図6より、例1の結晶化ガラスを用いて作製したフィルターデバイスの中心周波数がほとんど変化しておらず、例87の結晶化ガラスを用いて作製したフィルターデバイスは、温度が上がるにつれて中心周波数が低下していることが分かる。
 -20℃から40℃の範囲において中心周波数の変化率を計算すると、例1の結晶化ガラスを用いて作製したフィルターデバイスの中心周波数のシフトが55ppm/Kの変化率だったのに対し、例87の結晶化ガラスを用いて作製したフィルターデバイスの中心周波数のシフトは524ppm/Kの変化率であった。これらのことから、本発明の実施形態に係る結晶化ガラスを高周波デバイスに適用することによって、実際に温度によるデバイス特性の変化を抑制できると考えられる。
 以上説明したように、本明細書には次の事項が開示されている。
1.10GHzにおける比誘電率の温度による変化率ΔDk(/℃)を下記式(A)としたときに、前記式(A)によって、算出される値が-50ppm(/℃)~50ppm(/℃)であり、酸化物基準のモル百分率表示でアルカリ金属酸化物ROの合計含有量が3.0%以下である結晶化ガラス。
Figure JPOXMLDOC01-appb-M000029
2.前記1に記載の結晶化ガラスを用いた高周波デバイス用ガラス基板。
3.前記2に記載のガラス基板を用いた高周波用フィルターデバイス。
4.酸化物基準のモル百分率表示で、
 SiO 50~80%、
 Al 0.5~14%、
 B 7~35%、
 TiO 3.5~10%、
 MgO 0~10%、
 CaO 0~8%、
 BaO 0~5%、
 を含み、かつ、
 アルカリ土類金属酸化物ROの合計含有量が1~20%であり、
 ルチル型のTiO結晶を結晶化ガラス全体に対し0.5質量%以上含む前記1に記載の結晶化ガラス。
5.ルチル型のTiO結晶を結晶化ガラス全体に対し2.0質量%以上含む前記4に記載の結晶化ガラス。
6.Al/Bで表される含有量のモル比が0.1~1.4である、前記4または5に記載の結晶化ガラス。
7.酸化物基準のモル百分率表示で、アルカリ金属酸化物ROの合計含有量が0.001~3.0%である、前記4~6のいずれか1に記載の結晶化ガラス。
8.酸化物基準のモル百分率表示で、
 SiO 51~70%、
 Al 12~30%、
 P 0.5~10%、
 MgO 15~23%、
 CaO 0~1.5%、
 TiO 6~15%、
 を含み、かつ、ルチル型のTiO結晶を結晶化ガラス全体に対し4.5質量%以上含み、インディアライト型及びコーディエライト型の少なくとも一方の結晶を含有する前記1に記載の結晶化ガラス。
9.酸化物基準のモル百分率表示におけるCaO、SrO及びBaOの含有量が、CaO>SrO>BaOの関係を満たす、前記8に記載の結晶化ガラス。
10.酸化物基準のモル百分率表示で、
 SiO 45~65%、
 Al 7.5~30%、
 P 0.5~15%、
 SrOまたはBaOから選択される1種以上を合計で13~30%、
 TiO 2.5~10%、
 ZrO 0~10%、
 を含み、かつ、ルチル型のTiO結晶を結晶化ガラス全体に対し2.0質量%以上含み、セルシアン型及びヘキサセルシアン型の少なくとも一方の結晶を含有する前記1に記載の結晶化ガラス。
11.10GHz、20℃における比誘電率Dkが8.5以下である、前記1及び4~10のいずれか1に記載の結晶化ガラス。
12.10GHz、20℃における誘電正接Dfが0.01以下である、前記1及び4~11のいずれか1に記載の結晶化ガラス。
13.相互に対向する2つの主面を備え、少なくとも一方の主面において、算術平均粗さRaが、2μm以下である、前記1及び4~12のいずれか1に記載の結晶化ガラス。
14.板厚が0.01~2mmである、前記1及び4~13のいずれか1に記載の結晶化ガラス。
15.最も大きい面の面積が100~100000cmである前記1及び4~14のいずれか1に記載の結晶化ガラス。
16.前記4~15のいずれか1に記載の結晶化ガラスを用いた高周波デバイス用ガラス基板。
17.前記16に記載のガラス基板を用いた高周波用フィルターデバイス。
18.前記1及び4~15のいずれか1に記載の結晶化ガラスを用いた液晶アンテナ。
19.酸化物基準のモル百分率表示で、
 SiO 50~80%、
 Al 0.5~14%、
 B 7~35%、
 TiO 3.5~10%、
 MgO 0~10%、
 CaO 0~8%、
 BaO 0~5%、
 を含み、かつ、アルカリ金属酸化物ROの合計含有量が3.0%以下であり、アルカリ土類金属酸化物ROの合計含有量が1~20%であり、Nb、Bi及びCuを含まない非晶質ガラス。
20.前記19に記載の非晶質ガラスを800℃以上に0.5時間以上保持する工程を含む、結晶化ガラスの製造方法。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2022年1月14日出願の日本特許出願(特願2022-004643)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の結晶化ガラスは高周波デバイスに用いるガラス基板として、広い温度域で安定した誘電特性を示す。このような結晶化ガラスは、10GHzを超えるような高周波信号、特に30GHzを超える高周波信号、さらには35GHz以上の高周波信号を扱う高周波用基板等の高周波電子デバイス全般や、温度変化の大きい環境下で用いられる液晶用アンテナ、レーザ等による穴開け加工を伴うデバイス等の部材として非常に有用である。 

Claims (20)

  1.  10GHzにおける比誘電率の温度による変化率ΔDk(/℃)を下記式(A)としたときに、前記式(A)によって、算出される値が-50ppm(/℃)~50ppm(/℃)であり、酸化物基準のモル百分率表示でアルカリ金属酸化物ROの合計含有量が3.0%以下である結晶化ガラス。
    Figure JPOXMLDOC01-appb-M000001
  2.  請求項1に記載の結晶化ガラスを用いた高周波デバイス用ガラス基板。
  3.  請求項2に記載のガラス基板を用いた高周波用フィルターデバイス。
  4.  酸化物基準のモル百分率表示で、
     SiO 50~80%、
     Al 0.5~14%、
     B 7~35%、
     TiO 3.5~10%、
     MgO 0~10%、
     CaO 0~8%、
     BaO 0~5%、
     を含み、かつ、
     アルカリ土類金属酸化物ROの合計含有量が1~20%であり、
     ルチル型のTiO結晶を結晶化ガラス全体に対し0.5質量%以上含む請求項1に記載の結晶化ガラス。
  5.  ルチル型のTiO結晶を結晶化ガラス全体に対し2.0質量%以上含む請求項4に記載の結晶化ガラス。
  6.  Al/Bで表される含有量のモル比が0.1~1.4である、請求項4に記載の結晶化ガラス。
  7.  酸化物基準のモル百分率表示で、アルカリ金属酸化物ROの合計含有量が0.001~3.0%である、請求項4に記載の結晶化ガラス。
  8.  酸化物基準のモル百分率表示で、
     SiO 51~70%、
     Al 12~30%、
     P 0.5~10%、
     MgO 15~23%、
     CaO 0~1.5%、
     TiO 6~15%、
     を含み、かつ、ルチル型のTiO結晶を結晶化ガラス全体に対し4.5質量%以上含み、インディアライト型及びコーディエライト型の少なくとも一方の結晶を含有する請求項1に記載の結晶化ガラス。
  9.  酸化物基準のモル百分率表示におけるCaO、SrO及びBaOの含有量が、CaO>SrO>BaOの関係を満たす、請求項8に記載の結晶化ガラス。
  10.  酸化物基準のモル百分率表示で、
     SiO 45~65%、
     Al 7.5~30%、
     P 0.5~15%、
     SrOまたはBaOから選択される1種以上を合計で13~30%、
     TiO 2.5~10%、
     ZrO 0~10%、
     を含み、かつ、ルチル型のTiO結晶を結晶化ガラス全体に対し2.0質量%以上含み、セルシアン型及びヘキサセルシアン型の少なくとも一方の結晶を含有する請求項1に記載の結晶化ガラス。
  11.  10GHz、20℃における比誘電率Dkが8.5以下である、請求項1及び4~10のいずれか1項に記載の結晶化ガラス。
  12.  10GHz、20℃における誘電正接Dfが0.01以下である、請求項1及び4~10のいずれか1項に記載の結晶化ガラス。
  13.  相互に対向する2つの主面を備え、少なくとも一方の主面において、算術平均粗さRaが、2μm以下である、請求項1及び4~10のいずれか1項に記載の結晶化ガラス。
  14.  板厚が0.01~2mmである、請求項1及び4~10のいずれか1項に記載の結晶化ガラス。
  15.  最も大きい面の面積が100~100000cmである請求項1及び4~10のいずれか1項に記載の結晶化ガラス。
  16.  請求項4~10のいずれか1項に記載の結晶化ガラスを用いた高周波デバイス用ガラス基板。
  17.  請求項16に記載のガラス基板を用いた高周波用フィルターデバイス。
  18.  請求項1及び4~10のいずれか1項に記載の結晶化ガラスを用いた液晶アンテナ。
  19.  酸化物基準のモル百分率表示で、
     SiO 50~80%、
     Al 0.5~14%、
     B 7~35%、
     TiO 3.5~10%、
     MgO 0~10%、
     CaO 0~8%、
     BaO 0~5%、
     を含み、かつ、アルカリ金属酸化物ROの合計含有量が3.0%以下であり、アルカリ土類金属酸化物ROの合計含有量が1~20%であり、Nb、Bi及びCuを含まない非晶質ガラス。
  20.  請求項19に記載の非晶質ガラスを800℃以上に0.5時間以上保持する工程を含む、結晶化ガラスの製造方法。
PCT/JP2023/000236 2022-01-14 2023-01-06 結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法 WO2023136225A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-004643 2022-01-14
JP2022004643 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023136225A1 true WO2023136225A1 (ja) 2023-07-20

Family

ID=87279062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000236 WO2023136225A1 (ja) 2022-01-14 2023-01-06 結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法

Country Status (1)

Country Link
WO (1) WO2023136225A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339672A (ja) * 1999-03-24 2000-12-08 Ohara Inc 情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法
JP2005082415A (ja) * 2003-09-05 2005-03-31 Nippon Electric Glass Co Ltd ガラスセラミック誘電体材料、焼結体及び高周波用回路部材
WO2019082590A1 (ja) * 2017-10-25 2019-05-02 日本板硝子株式会社 ガラス組成物
CN112939471A (zh) * 2021-03-15 2021-06-11 武汉理工大学 一种高导热低膨胀低介电的微晶玻璃及其制备方法
WO2022059724A1 (ja) * 2020-09-18 2022-03-24 Agc株式会社 結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339672A (ja) * 1999-03-24 2000-12-08 Ohara Inc 情報記憶媒体用ガラス基板材またはガラスセラミックス基板材の加工方法
JP2005082415A (ja) * 2003-09-05 2005-03-31 Nippon Electric Glass Co Ltd ガラスセラミック誘電体材料、焼結体及び高周波用回路部材
WO2019082590A1 (ja) * 2017-10-25 2019-05-02 日本板硝子株式会社 ガラス組成物
WO2022059724A1 (ja) * 2020-09-18 2022-03-24 Agc株式会社 結晶化ガラス、高周波用基板、液晶用アンテナおよび結晶化ガラスの製造方法
CN112939471A (zh) * 2021-03-15 2021-06-11 武汉理工大学 一种高导热低膨胀低介电的微晶玻璃及其制备方法

Similar Documents

Publication Publication Date Title
JP7120341B2 (ja) 高周波デバイス用ガラス基板と高周波デバイス用回路基板
TWI806992B (zh) 玻璃基板、液晶天線及高頻裝置
WO2009057878A1 (en) Low fired dielectric ceramic composition with high strength and high q-value
US20210261456A1 (en) Glass substrate for high frequency device, liquid crystal antenna and high frequency device
US20200407267A1 (en) Substrate, liquid crystal antenna and high-frequency device
US20230212062A1 (en) Crystallized glass, high frequency substrate, antenna for liquid crystals, and method for producing crystallized glass
WO2023136225A1 (ja) 結晶化ガラス、高周波デバイス用ガラス基板、高周波用フィルターデバイス、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法
WO2023136224A1 (ja) 結晶化ガラス、高周波デバイス用ガラス基板、液晶アンテナ、非晶質ガラスおよび結晶化ガラスの製造方法
US20230034469A1 (en) Crystallized glass, high-frequency substrate, and method for manufacturing crystallized glass
JP2024035396A (ja) 結晶化ガラス、誘電体材料及び高周波誘電体デバイス
WO2023032935A1 (ja) 結晶化ガラス、化学強化ガラス及び電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740234

Country of ref document: EP

Kind code of ref document: A1